AERMET

8TH Modeling Conference RTP, NC

September 22 – 23, 2005

Presented by: Desmond T. Bailey desmond.bailey@noaa.gov

The Planetary Boundary Layer (PBL)

- Surface Layer
 - 0 to 0.1 Z_i (mixing height)
 - Dominated by friction
 - M-O Similarity applies
- Mixed Layer
 - Capped by a stable layer aloft
 - Develops due to heating from below
 - Wind speed is constant with height

AERMET Science

- The Planetary Boundary Layer (PBL)
 - Convective Boundary Layer (CBL)
 - Driven by surface heating
 - Develops during the day
 - Moderate to strong vertical mixing
 - Stable Boundary Layer (SBL)
 - Driven by surface cooling
 - Develops at night
 - Little to no vertical mixing

AERMET Science

- Properties of the PBL affecting dispersion
 - vertical profiles of
 - Wind speed
 - Temperature
 - Vertical turbulence
 - Lateral turbulence
 - Depth of mixing

AERMET Science

- Surface Layer
- Similarity Theory
 - Applies in the surface layer
 - Important scaling parameters
 - Friction velocity
 - Convective velocity scale
 - Monin-Obukhov length
 - Temperature Scale
 - Mixing height

```
fn (wind shear, z_0)
fn (H, Z_i, \theta)
```

fn (H,
$$u_*$$
, θ)

CBL Regimes

- Surface Layer
 - Depth 0 to 50 m
 - Dominated by friction
 - M-O similarity theory applies
 - Turbulence depends on roughness and M-O length
- Mixed Layer
 - Depth up to 3000 m
 - Wind speed is constant with height
 - Turbulence depends on convective velocity scale

CBL Characteristics

- Monin-Obukhov length < 0</p>
- Depth increases during the day due to surface heating
- Shear and buoyancy contribute to turbulence
- Capped by a stable layer

Modeling the CBL

- Estimate the sensible heat flux using an energy balance approach
- Given the heat flux, calculate the friction velocity and M-O length using an iterative approach
- Determine the growth of the mixed layer by integrating heat flux over time

SBL Characteristics

- Monin-Obukhov length > 0
- Develops when surface begins to cool
- > Turbulence is shear driven
- Turbulence decays with height
- Mixing is weak
- > Problematic
 - Not as well understood as the CBL

Modeling the SBL

Extension of CBL method for estimating friction velocity and M-O length problematic due to small negative heat flux.

Alternative method uses the Bulk Richardson Number

Bulk Richardson Number

- Advantages
 - Does not require cloud cover

- Required measurements
 - Wind speed at one level in surface layer
 - Vertical Temperature gradient in the surface layer

- Problems were found with the approach used in AERMET 02222
- An evaluation was funded to resolve the problem
- Several alternative implementations were considered
- These were tested using the Kansas, Prairie Grass, and Cinder Cone Butte data bases

- Problems were found with the approach used in AERMET 02222
- An evaluation was funded to resolve the problem
- Several alternative implementations were considered
- These were tested using the Kansas, Prairie Grass, and Cinder Cone Butte data bases

IMPLEMENTATION AND EVALUATION OF BULK RICHARDSON NUMBER SCHEME IN AERMOD

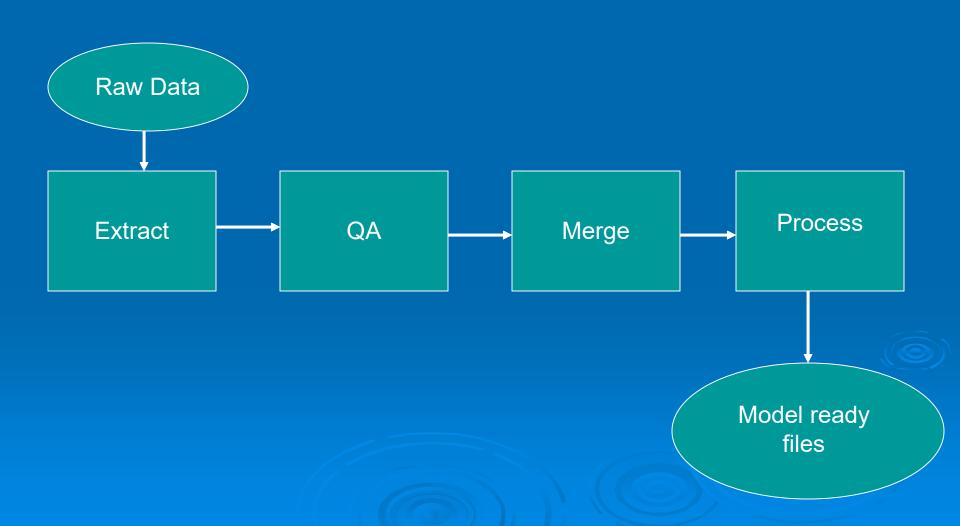
Roger W. Brode* MACTEC Federal Programs, Inc.

1. INTRODUCTION

8.1

The AERMOD dispersion model was designed to accept a wide range of site-specific meteorological measurements, including profiles of wind, temperature and turbulence data. However, the algorithm for estimating the heat flux under stable conditions requires a cloud cover measurement, which is not typically available from site-specific monitoring programs. For applications of AERMOD in remote settings, the non-representativeness of cloud cover measurements from the nearest airport may present an obstacle to the application of AERMOD. Concerns have also been raised regarding the representativeness of cloud cover measurements from Automated Surface Observing System (ASOS) installations due to limitations in the vertical range of the ceilometer (EPA, 1997).

An effort was made to resolve the issues associated with the current implementation of the Scheme in AERMET, and a revised version of the code was developed, referred to hereafter as version 02222R. However, once the initial issues with the current implementation were resolved, additional issues with the performance of the Scheme were encountered during tests with the Prairie Grass tracer field study data (Barad, 1958; Haugan, 1959). In particular, cases were encountered where the wind speed was initially above the critical wind speed, but fell below the critical wind speed during the iteration as the critical wind speed was adjusted. The current implementation in version 02222 assigns such cases as missing. In preliminary tests of the revised version (02222R), using the Prairie Grass data, the top three observed and predicted concentrations (based on cloud cover data) fell into this


Presented at the 8th AMS/AWMA Joint Conference in Vancover, BC

6. CONCLUSIONS

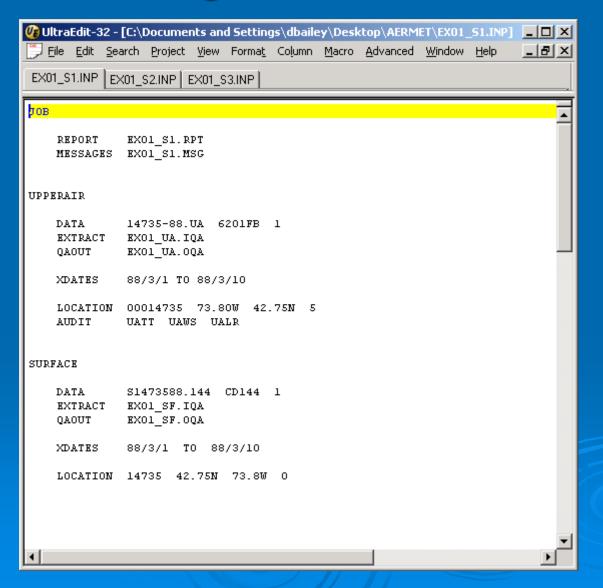
The modifications to the implementation of the Bulk Richardson Number Scheme in AERMET improved the performance of the modeling system in relation to the current version of AERMET (dated 02222) based on comparisons of observed to predicted concentrations for the Prairie Grass and CCB tracer field studies. The revised BulkRi implementation produces results that are comparable to results based on the use of cloud cover data for both the Prairie Grass and CCB databases The revised implementation also shows improved results relative to version 02222 when comparing observed to predicted wind speed and ∆T data. The modified Scheme based on the Prof UNL method appears to provide a robust method for estimating boundary layer parameters under stable conditions when representative cloud cover data available, using a single measurement and a low-level AT

Presented at the 8th AMS/AWMA Joint Conference in Vancover, BC

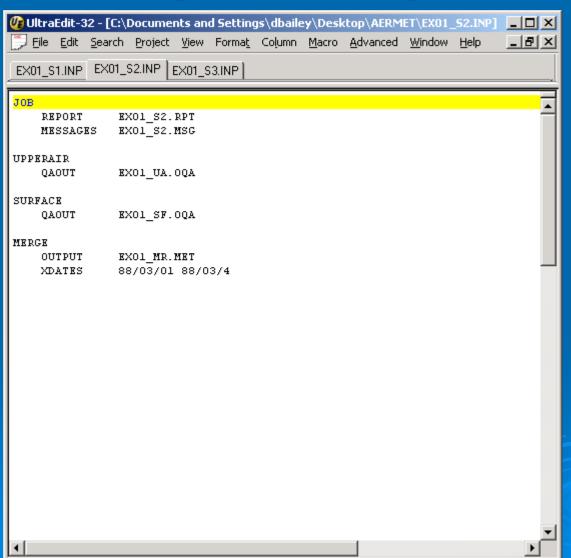
Process meteorological data for use in AERMOD

Surface Data

- Supported Formats
 - SAMSON
 - CD 144
 - TD 3280
 - HUSWO
 - TD 3505 (ISHD)
 - <u>SCRAM</u>

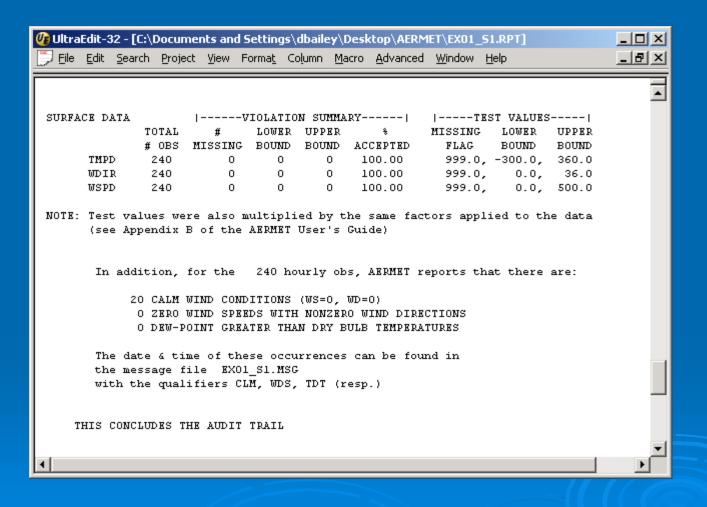

Upper-Air Data

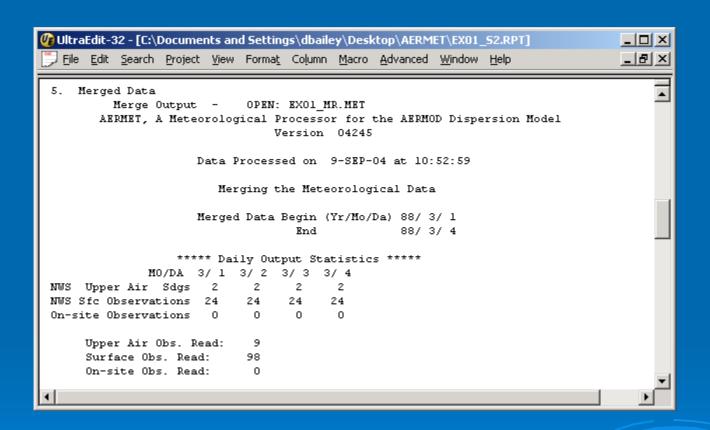
Supported Formats


• *FSL*

• TD 6201

Stage 1 Extract


Stage 2 Merge


Stage 3 Process for AERMOD

```
UltraEdit-32 - [C:\Documents and Settings\dbailey\Desktop\AERMET\EX01_S3.INP] 🔲 🗙
 Jeile Edit Search Project View Format Column Macro Advanced Window Help
                                                                    _ | & | ×
JOB
    REPORT
             EXO1 S3.RPT
    MESSAGES EXO1 S3.MSG
METPREP
    DATA
             EXO1 MR.MET
             EXO1 MP.SFC
    OUTPUT
             EXO1 MP.PFL
    PROFILE
    LOCATION MYSITE 74.00W 41.3N 5
    METHOD
             REFLEVEL SUBNWS
    METHOD
             WIND DIR RANDOM
    NWS HGT
             WIND
                       6.1
    FREQ SECT ANNUAL 1
    SECTOR
                        360
    SITE CHAR 1 1 0.15 2.0 0.12
```

Audit Report Surface Data

Stage 2 Merge Report

