THE AERMOD MODELING SYSTEM

AN OVERVIEW FOR THE 8TH MODELING CONFERENCE
SEPTEMBER 22, 2005

- THE AERMIC (AMS/EPA REGULATORY MODEL IMPROVEMENT COMMITTEE)
 - Jeff Weil, University of Colorado, Chair
 - Akula Venkatram, University of California at Riverside
 - Robert Paine, ENSR International
 - Steven Perry, NOAA (EPA/ORD)
 - Alan Cimorelli, Region III, EPA
 - Russell Lee, Russel F. Lee Consulting
 - Robert Wilson, Region X, EPA
 - Warren Peters, OAQPS, EPA
- Recognize Roger Brode, MACTEC

Brief regulatory history

April 2000 AERMOD proposal (version 99351)

June 2000 7th modeling conference

Sept 2003 Notice of Data Avail. (02222)

Any minute Promulgation (04300)

- Updates since proposal to obtain AERMOD (version 02222)
 - Added PRIME
 - Modified complex terrain algorithms
 - Modified urban dispersion for low-level sources and minimum mixing heights for calculating dispersion
 - Added meander for all stable and unstable point source conditions
- Updates to obtain version 04300
 - Minor bug fixes

AERMOD MODELING SYSTEM

3 COMPONENTS

- AERMET THE METEOROLOGICAL PREPROCESOR
- AERMAP THE TERRAIN DATA
 PREPROCESSOR
- AERMOD THE DISPERSION MODEL

2 SUPPORT TOOLS

- AERSURFACE - PROCESSES SURFACE CHARACTERISTICS DATA

- **AERSCREEN** - PROVIDES A SCREENING TOOL

DOCUMENTATION

- 1. THE MODEL FORMULATION DOCUMENT
- 2. THE 3 USERS GUIDES
- 3. THE MODEL EVALUATION REPORT
- 4. THE CONSEQUENCE ANALYSIS

PLEASE READ AND USE THESE DOCUMENTS

BETTER BASIC SCIENCE WRT ISC

- PLANTETARY BOUNDARY LAYER
 CONCEPTS CONTINUUM OF
 ATMOSPHERES
- MORE ADVANCED BUILDING DOWNWASH ALGORITHMS
- ATMOSPHERIC PROFILING FOR MORE VARIABLES
- OTHER ENHANCEMENTS (SEE HANDOUT)

AERMOD IS SIMILAR TO ISC IN SETUP

- THE CONTROL FILE STRUCTURE IS THE SAME

VIRTUALLY ALL THE CONTROL
 KEYWORDS AND OPTIONS ARE THE SAME

- AERMOD IS DIFFERENT FROM ISC
 - REQUIRES SURFACE CHARACTERISTICS (ALBEDO, BOWEN RATIO, SURFACE ROUGHNESS) IN AERMET
 - HAS PRIME FOR BUILDING DOWNWASH AND THE BUILDING PARAMETERS ARE MORE EXTENSIVE
 - REQUIRES LONGER COMPUTER RUN TIMES

CONSEQUENCE ANALYSIS - ratios of AERMOD predicted high concentrations to ISCST3 predicted high concentrations:

flat and simple terrain point, volume and area sources.

	1hour	3hour	24hour	annual
average	1.04	1.09	1.14	1.33
high	4.25	2.82	3.15	3.89
low	0.32	0.26	0.24	0.30
Total	48	48	48	48

CONSEQUENCE ANALYSIS - ratios of AERMOD predicted high concentrations to ISCST3 (and PRIME) predicted high concentrations:

flat terrain point sources with significant bldg downwash

ANNUAL		<u>24 F</u>	<u>24 H2H</u>		<u>3 H2H</u>	
	AER/ISC3	AER/ISCP	AER/ISC3	AER/ISCP	AER/ISC3	AER/ISCP
ave	1.08	1.05	1.25	1.01	0.71	1.05
max	1.35	1.29	1.87	1.14	1.20	1.17
min	0.69	0.79	0.69	0.84	0.38	0.93
No case	s 6		6		6	

CONSEQUENCE ANALYSIS - ratios of AERMOD predicted high concentrations to ISCST3 predicted high concentrations:

complex terrain point sources

AER/ISC3
AVERAGE 0.24
MAX 0.79
MIN 0.07
no of cases 196

- AERMOD performance
 - 17 databases 7 with building downwash, 10 w/o building downwash
 - W/o downwash AERMOD outperformed ISCST in 9 of 10 evaluations, had the same performance in 1 evaluation
 - With downwash AERMOD outperformed ISCST-PRIME in 2 evaluations, had the same performance in 4 evaluations, was outperformed in 1 evaluation
 - * ISC-PRIME slightly outperformed ISCST3

- On-going activities
 - Parallel processing
 - Various minor upgrades such as running AERMOD in multiple urban areas
 - Beta test with deposition
 - Beta test with OLM, PVMRM