EPA 13th CONFERENCE ON AIR QUALITY MODELING

Comments by the American Petroleum Institute
November 15, 2023

Chris Rabideau - Chair API Air Modeling Group

API Supports Improving the Science

- API appreciates EPA's willingness to work with the public to improve the science
- Over the past decade
 - Improving NO/NO₂ chemistry
 - ARM2
 - PVMRM improvements
 - CALPUFF chemistry
 - GRSM
 - TTRM
 - Low wind speed
 - Building downwash

Topics for Discussion – Summary here, details to be submitted in writing to EPA docket

- AERMOD Updates
 - Tier 3 NOx GRSM
- Proposed Recommendations for Background Concentrations
- Transition Period for Applicability of Revisions
- Modifications to PRIME
- TTRM/TTRM2
- Other issues for written comments

AERMOD Updates – Tier 3 NO₂ - GRSM

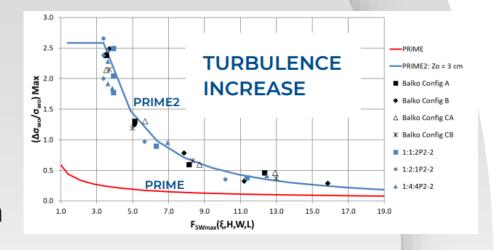
- We appreciate EPA's efforts in support of further NO₂ chemistry refinements and in development of evaluation databases.
- API worked with Cambridge Environmental Research
 Consultants to finalize a new Tier 3 option for AERMOD, called
 the GRSM (Generic Reaction Set Method). GRSM explicitly solves
 key chemical equations (NOx titration by O₃ and NO₂ photolysis),
 accounting for pollutant travel time.
- We support the EPA proposal to include the GRSM as a regulatory non-default Tier 3 NO₂ screening option.
- We also support proposal to include a statement indicating GRSM performance may be better than OLM and PVMRM under certain source characterization situations.

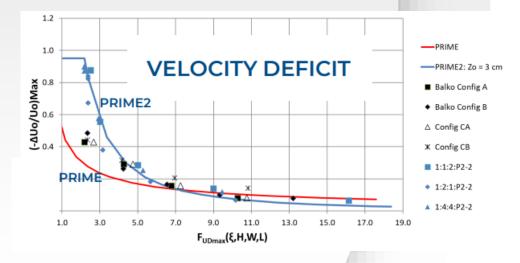
Proposed Recommendations for Background Concentrations

- Support wording that is aimed at being clear to reduce possibility of double counting emissions. Provide examples.
- Support the recommendation that the monitoring network used for developing background concentrations is expected to conform to the same quality assurance requirements as those established for PSD purposes.
- Just as the guidance calls for emissions data to be representative of "normal" operating conditions, the ambient monitoring data should represent normal conditions.
- Regarding the "Additional Considerations" section in the Draft Guidance on Developing Background Concentrations for Use in Modeling Demonstrations
 - This section is unnecessary. The determination of background is based on the isolated or multi-source analysis which covers NAAQS, PSD, SILs, etc. There is no need for redundancy modeling using EJScreen and CEJEST.

Transition Period for Applicability of Revisions

 We support timely incorporation of model updates. Model updates for technical advances should not be delayed for several years.


Modifications to PRIME


- API is working with Ron Petersen and CPP on evaluation of AERMOD dispersion and wake computations versus wind tunnel and Balko, OK field observations.
- Extensive wind tunnel database was collected that documents plume dispersion and velocity fields for two hours from the Balko field study.
- Wind tunnel database was used to evaluate AERMOD plume rise, wake and dispersion algorithms.
- Comparisons to Balko field observations for two hours showed:
 - Wind tunnel agrees well with the field observations
 - AERMOD agrees well with field observations for one hour and underpredicts for the other case

Modifications to PRIME

- PRIME wake velocity and turbulence equations do not agree with Balko wind tunnel results. (Also supported by BOEM study)
- PRIME wake height and width equations do not agree with wind tunnel observations.
- PRIME σ_v and σ_z overpredicts but agrees better with Balko wind tunnel observations than PRIME2 due to offsetting errors.
 - Wake turbulence underestimated
 - Dispersion overestimated
 - Wake height and width equations incorrect
- PRIME2 wake velocity and turbulence equations agree well with Balko wind tunnel test results.
- PRIME plume rise predictions need improvement

Modifications to PRIME

- AERMOD/PRIME had the overall worst agreement with field observations.
- PRIME2 with updated building wake dispersion constants provided the best agreement with field observations.
- The new wake growth equations did not improve model performance because of other problems with PRIME (cavity length criterion for $\sigma_{\rm Y}$ and $\sigma_{\rm Z}$).
- PRIME2 velocity deficit and turbulence enhancement and BOEM wake growth equations should replace PRIME equations once the following changes are made and can be evaluated:
 - Omit the criterion that the building downwash calculations are made if the plume rise is less than the height of the wake.
 - Change the code so that cavity length does not affect the σ_{γ} and σ_{z} calculation but is still used for the streamline calculation.

TTRM/TTRM2

- The Travel Time Reaction Method (TTRM) was introduced in AERMOD v21112 as an ALPHA option to address the void in the NO-to-NO₂ conversion techniques that do not consider the initial non-instantaneous rate of conversion of NO to NO₂.
 - The issue of finite time needed for the conversion of NO to NO₂ has been well documented in a peer-reviewed publication (Hanrahan 1999) and EPA White Papers.
- AERMOD has ARM2 (Tier 2) and OLM, PVMRM, and GRSM (Tier 3) techniques available for computing the conversion of NO to NO₂ GRSM is the only technique that accounts for travel time conversion rate of NO to NO₂ without TTRM.
- In AERMOD v22112, TTRM2 was more fully integrated and could be used simultaneously with ARM2, OLM, or PVMRM.
- TTRM/TTRM2 are based on well-established scientific methods and have been demonstrated to improve model performance in the near-field (typically < 100 m from source); comparable in performance to GRSM.
- EPA should elevate TTRM2 to "BETA" or completely integrate into ARM2, OLM, and PVMRM to allow for multiple NO₂ modeling options in addition to GRSM that account for the chemistry in the near-field that TTRM and GRSM both address.

Hanrahan, P.L., 1999. "The plume volume molar ratio method for determining NO2/NOx ratios in modeling. Part I: Methodology," J. Air & Waste Manage. Assoc., 49, 1324-1331

Other issues for written comments

- Downwash from offshore platforms / overwater dispersion
- Low wind default override
- Improvements needed to the downwash pre-processor (BPIP)
- PM_{2.5} NAAQS Modeling
- Appendix W should allow modeling approaches that account for emissions variability and partial utilization of a source.
- Surface roughness
- Updates needed for model evaluation procedures

