The role of chemistry in upper troposphere NO_2 under-predictions

Barron Henderson^{1,2}, Robert Pinder², Ron Cohen³, Wendy Goliff⁴, William Stockwell⁵, Askar Fahr⁵, Golam Sarwar², Bill Hutzell², Rohit Mathur², Ann Marie Carlton², Paul Wennberg⁶, William Vizuete¹

¹Dept. of Environmental Science and Engineering UNC Chapel Hill
 ²Atmospheric Modeling and Analysis Division, U.S. EPA
 ³Depts. of Chemistry and Earth and Planetary Sciences, UC Berkeley
 ⁴College of Engineering-CERT, UC Riverside
 ⁵Dept. of Chemistry, Howard University
 ⁶California Institute of Technology

December 18, 2009

barronh@gmail.com

Models Under-predict NO_x above 8km

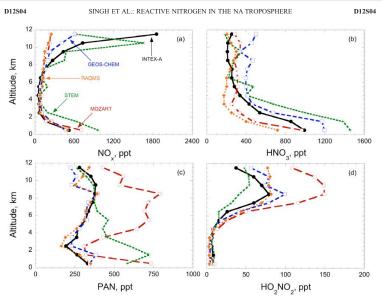


Figure 1: Simulated NO $_{y}$ compared to INTEX-NA observations (Singh 2007) $_{\text{ONE}}$

Which model processes lead to under-prediction?

- Potential sources of error:
 - chemistry, photolysis, aerosols, advection, convection, diffusion, wet deposition, dry deposition, emissions, the stratosphere, the ocean, ...
- Modeled chemistry has been questioned: Olson 2006, Bertram 2007, Ren 2008
- Evaluation of a chemical mechanism
 - **typically**: evaluate a model against a chamber study (i.e. a controlled time series of measurements)
 - problem: does anyone have a chamber at 236 K and 0.298 atm?
- This study statistically compares model predictions to observations using a chemical indicator of age.

Bertram results can derive air parcel ages

Deep convection sends a plug of surface air to upper troposphere

- \bullet wet scavenging removes HNO_3 and lightning adds NO_\times
- Air parcels are mostly stable for up to 5 days
- ullet Freshly convected: ${
 m NO_x:HNO_3} >> 1$

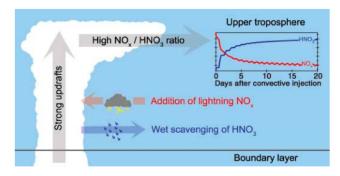


Figure 2: Deep convection from Bertram et al. Science 2007

Observation time series: classified by "derived age"

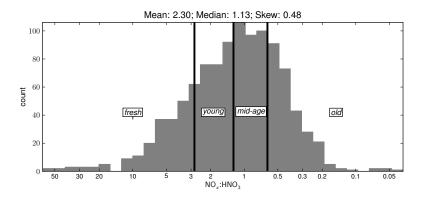


Figure 3: INTEX-NA aircraft observations of NO_x :HNO₃. NO_x :HNO₃ can be used to split the observations into four groups of decreasing (left to right) photochemical age.

Observation time series: classified by "derived age"

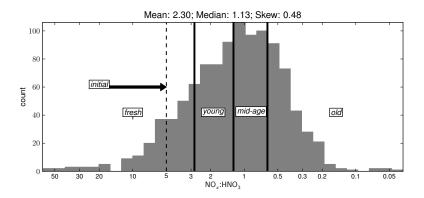


Figure 3: INTEX-NA aircraft observations of NO_x :HNO₃. NO_x :HNO₃ can be used to split the observations into four groups of decreasing (left to right) photochemical age.

Observations initialize our box model

Table 1: Median values from the 95 initial observations.

Altitude	Pressure	Temperature	CO	O ₃	H_2O_2
9 051m	28 739 Pa	236.6K	106.4ppb	67.6ppb	384.0ppt
CH ₂ O	CH ₃ C(O)H	CH ₃ C(O)CH ₃	CH ₄	C_2H_6	C ₃ H ₈
92.0ppt	64.0ppt	1 420.7ppt	1 794 ppb	639.0ppt	217.0ppt
C_2H_4	CH ₃ C(O)OOH	$CH_3C(O)C_2H_5$	CH ₃ ONO ₂	·OH	HO ₂
99.0ppt	237.1 ppt	98.8 ppt	2.3 ppt	0.59 ppt	13.7 ppt

Univ. LEEDS DSMACC Box Model

- 95 initial parcels
- chemistry only
- 120 hour integration time
- TUV photolysis model

- used process analysis to quantify
 - gross production by reaction
 - gross loss by reaction

Testing a range of chemical mechanisms

Table 2: Overview of 7 chemical mechanisms in this study.

Model (abbreviation)	# Rxns	# Spcs
Carbon Bond '05 (CB05)	176	62
State Air Pollution Research Center '99	222	77
(SAPRC99)		
SAPRC '07 (SAPRC07)	333	105
Model for OZone And Related chemical	200	90
Tracers "Standard" (MZ4)		
GEOS-Chem "full" (GEOS)	290	88
Regional Atmospheric Chemistry Mech v.2	349	117
(RACM2)		
Master Chemical Mechanism (MCM)	>12600	>4500

Testing a range of chemical mechanisms

Table 2: Overview of 7 chemical mechanisms in this study.

Model (abbreviation)	# Rxns	# Spcs
Carbon Bond '05 (CB05)	176	62
State Air Pollution Research Center '99	222	77
(SAPRC99)		
SAPRC '07 (SAPRC07)	333	105
Model for OZone And Related chemical	200	90
Tracers "Standard" (MZ4)		
GEOS-Chem "full" (GEOS)	290	88
Regional Atmospheric Chemistry Mech v.2	349	117
(RACM2)		
Master Chemical Mechanism (MCM)	>12600	>4500

Why so many mechanisms?

- Only CB05: critics say condensation is too simplified
- Only MCM: critics say semi-explicit assumes more knowledge than we have

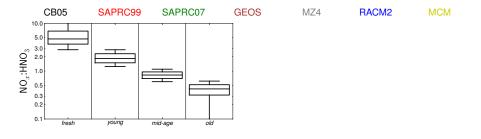


Figure 4: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).

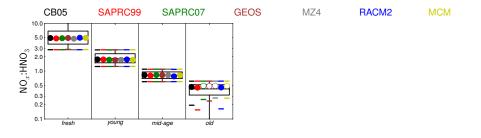


Figure 4: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).

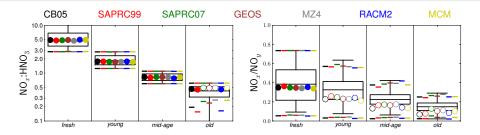


Figure 4: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).

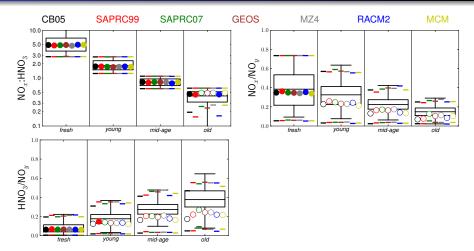


Figure 4: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).

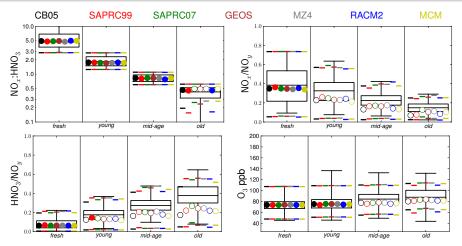


Figure 4: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).

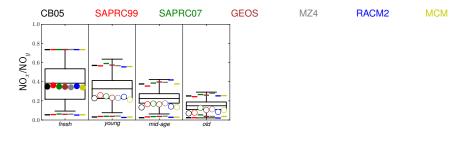


Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).

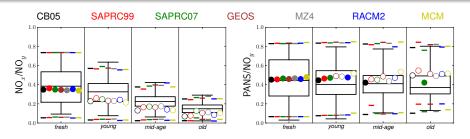


Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).

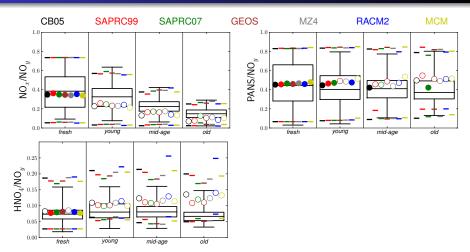


Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).

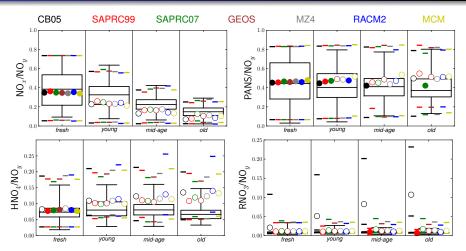


Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).

CB05: Alkyl nitrate source uncertainty

Acetone yields of alkyl nitrate producing radicals CB05 SAPRC99 SAPRC07 GEOS MZ4 RACM2 MCM 13% < 3%</td>

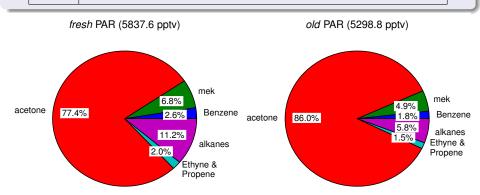
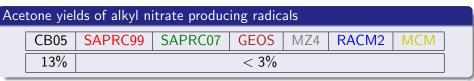



Figure 6: Composition of CB05 PAR chemical mechanism species for *fresh* and *old* air parcels.

CB05: Alkyl nitrate source uncertainty

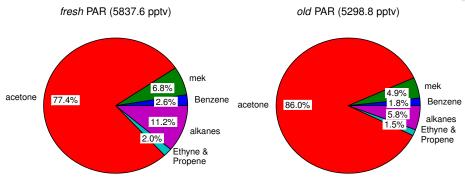
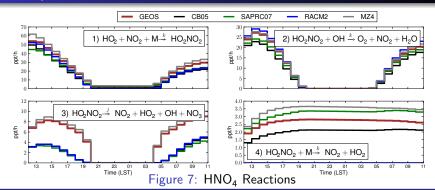
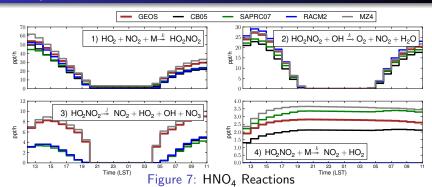
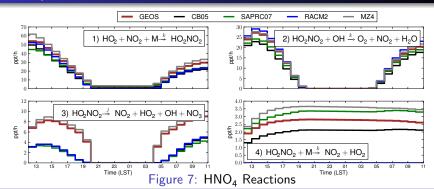
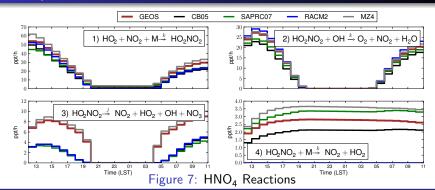
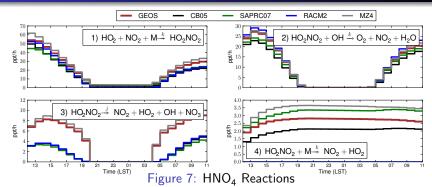




Figure 6: Composition of CB05 PAR chemical mechanism species for *fresh* and *old* air parcels.


Recommendation: Explicit acetone or dynamic XO_2N yield $\longrightarrow \longrightarrow \longrightarrow \bigcirc$


Source Uncertainty

Sink Uncertainties



Sink Uncertainties

Sink Uncertainties

- $\bullet \ \ \, \mathrm{HO_2NO_2} + \mathrm{M} \longrightarrow \mathrm{HO_2} + \mathrm{NO_2} \colon \approx 2\mathrm{x} \ \mathrm{at} \ 260 \ \mathrm{K}$

Sink Uncertainties

- **1** $HO_2NO_2 \xrightarrow{J} NO_2 + HO_2$: Near IR and studied only at 296 K
- $\bullet \ \ \, \mathsf{HO_2NO_2} + \mathsf{M} \longrightarrow \mathsf{HO_2} + \mathsf{NO_2} \colon \approx \mathsf{2x} \ \mathsf{at} \ \mathsf{260} \ \mathsf{K}$

Recommendation: Further study $HO_2NO_2 + OH$ at low temperatures

PAN sources and uncertainty

$$CH_3C(O)OO \cdot + NO_2 \longrightarrow PAN$$

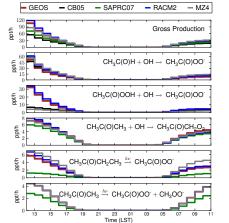
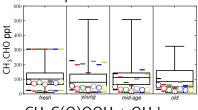



Figure 8: Source reactions of $CH_3C(0)00$.

Uncertainty in Sources

- CH₃C(O)H under-predicted
 - observation uncertainty?
 - missing source?
 - over-predicted OH sink?

- CH₃C(O)OOH + OH has no kinetic value in the literature
- Ketone photolysis rates recently updated

PAN sources and uncertainty

$$CH_3C(O)OO \cdot + NO_2 \longrightarrow PAN$$

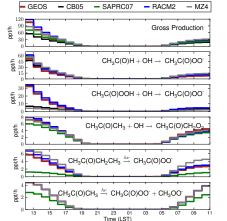
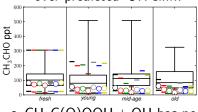



Figure 8: Source reactions of $CH_3C(0)OO$

Uncertainty in Sources

- CH₃C(O)H under-predicted
 - observation uncertainty?
 - missing source?
 - over-predicted OH sink?

- CH₃C(O)OOH + OH has no kinetic value in the literature
- Ketone photolysis rates recently updated

Recommendation: use acetic acid k for $CH_3C(O)OOH$; use Blitz for ketones; $CH_3C(O)H$ need further study

Conclusions

Chemical Mechanism Performance

- all mechanisms have similar errors*
- under-predict NO_x, HNO₃, and O₃
- over-predict PAN and HNO₄
- *CB05 alkyl nitrate over-prediction due to acetone representation

Uncertainty Review

- PAN source uncertainties are sufficient to correct over-prediction
- HNO₄ loss uncertainties sufficient to correct over-prediction

Acknowledgments

For all their support and help:

- Mat Evans, Ph.D., Univ. of LEEDS
- Jingqiu Mao, Ph.D., Harvard
- Gao Chen, Ph.D., NASA
- Kinetic Pre-Processor (Damien et al. 2002)
- MAQLAB, UNC Chapel Hill

Special thanks for DC8 observational data to:

Melody Avery, Donald Blake, William Brune, Alan Fried, Brian Heikes, Greg Huey, Glen Sachse, Hanwant Singh, Paul Wennberg, and the INTEX team.

Support:

This research was supported in part by an appointment to the Research Participation Program at the National Exposure Research Laboratory, U.S. Environmental Protection Agency administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.

The role of chemistry in upper troposphere NO_2 under-predictions

Barron Henderson^{1,2}, Robert Pinder², Ron Cohen³, Wendy Goliff⁴, William Stockwell⁵, Askar Fahr⁵, Golam Sarwar², Bill Hutzell², Rohit Mathur², Ann Marie Carlton², Paul Wennberg⁶, William Vizuete¹

¹Dept. of Environmental Science and Engineering UNC Chapel Hill
 ²Atmospheric Modeling and Analysis Division, U.S. EPA
 ³Depts. of Chemistry and Earth and Planetary Sciences, UC Berkeley
 ⁴College of Engineering-CERT, UC Riverside
 ⁵Dept. of Chemistry, Howard University
 ⁶California Institute of Technology

December 18, 2009

barronh@gmail.com

GEOS-Chem Sensitivity Analysis Results

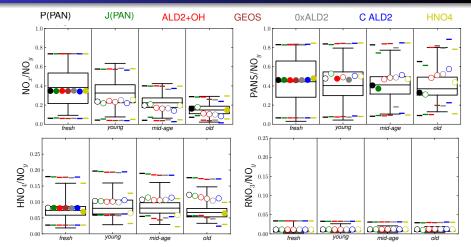


Figure 9: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p > 0.0001).