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Aircraft analysis shows NO, low-bias
Simulated NO, vertical profiles from Singh 2007
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* most models under-predict tropospheric NO,
» STEM model uses out-dated emission inventory
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Processes in the upper troposphere
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Source: Prados et al., 2000

Sources Sinks 3D Models
» Convection » Chemistry « Simulate all
» Lightning » Subsidence * Many uncertainty

« Aircraft » Rain, snow, ice terms
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NO, Processing in the upper troposphere
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Stochastic model of air parcel removal
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Sample Bias

INTEX-NA observations
have 21.4% near
convection, but observed
convection covers only

: 12.5% of sampling domain.
0 2l Stochastic model adjusted
to correct for this bias.

Simple Model Bias-Corrected
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e y 2
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where x =

dr>9
log (2exp (58) — 1) ancr =

7 is the average time an air parcel is in the upper troposphere
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Simulation results for NO,:HNO4

IGNORING stochastic removal
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Simulation results for NO,:HNO4

INCLUDING stochastic removal
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High Empirical Physical Sinks

Best fit 7

Given a chemical oxidation
rate, the average air parcel
lifetime would have to be 7
to reproduce observed
NO,:HNO4

15 20 25 30 35 40 45 50 55 60
Tair (hOUrS)
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High Empirical Physical Sinks
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pack trajectory
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Henderson et al., 2010 ACPD

Given a chemical oxidation
rate, the average air parcel
lifetime would have to be 7
to reproduce observed
NO,:HNO4

Given observed air parcel
ages, the average air
parcel lifetime is 7

Using met 7 with modeled
chemical sinks causes
30% low-bias for NO,
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Can known uncertainty explain bias?

» 323 independent variables

« Initial conditions come from experimental techniques
» JPL and IUPAC cite experimental and systematic uncertainty for all
reactions
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Can known uncertainty explain bias?

» 323 independent variables
« Initial conditions come from experimental techniques
» JPL and IUPAC cite experimental and systematic uncertainty for all
reactions
» Pre-screen influential variables
» slow NO, to HNO; conversion
» characterized uncertainty

2)CO + OH - HO,

06 12 18 24 30 36 42 48 54 60 6¢ 78 84 90 96 102 108 114 120 12¢ 2 138

integration hours
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Cost functions for optimization

* Problem: do not have paired observations and model outputs

Solution: Use Mann Whitney Wilcoxon U statistic (used for
distribution comparison in original paper)

» U is normally distributed
» mean: "k

nnp(ni+na+1)
12

Calculate the likelihood (L) of U from predictions (Y) given
observations (O) of species (s)

BRYar:
L(Ys|Os) = zimz exp <_; [O - Y] >

Combine likelihoods as the product of individuals

L = L(Yo,|00,) x L(Yno,:nNo,|ONo,:HNo,)

* sigma:
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Observatlonal Uncertalnty Evaluation Results

q % 10~10 overall

obs error (o) obs error (o)

For example, with ozone the model reproduces:
» adjusted ozone observation best near reported value
» NO,:HNO; somewhat better at a lower (or very high) value
» overall, best estimate of ozone is near reported value

914



Observatlonal Uncertalnty Evaluation Results

q % 10~10 overall

obs error (o) obs error (o)

For example, with ozone the model reproduces:
» adjusted ozone observation best near reported value
» NO,:HNO3; somewhat better at a lower (or very high) value
» overall, best estimate of ozone is near reported value
» What about other species?

914



Observational Uncertainty Evaluation Results

x10-10 overall
. .
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» NO, performs best at a slightly lower value
* HNO; performs best at a slightly higher value




Reaction Uncertainty Evaluation Results
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* Kno,+on—sHNo, Dest at lower value (Moliner et al., 2010)




Reaction Uncertainty Evaluation Results

%1010 Loveral
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. kN02+OH—>HNO3 best at lower value (Mollner et al., 2010)
* Kno+0,—3NO, 40, best at lower value




Reaction Uncertainty Evaluation Results
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. kNOO+OH_>HN03 best at lower value (Mollner et al., 2010)
* Kno+o,—sno,+o, best at lower value
* Kyo +Hb,—>NE)7 1o has a broad range of acceptable values




Ranking influential variables

Parameter %Error 7 hrs
NO, (-5,-22%) | (+0,+4.8)
HO, + NO — NO, (-7,-16%) (+0,+2)
HNO4 (+4,+12%) +0
NO, + OH — HNO;, -10% +0
NO + O3 — NO, -10% +0
NO, — NO + O +7% +0
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Summary and Conclusions

» Evaluation:
# Ensure proper understanding of the upper troposphere
® Accurately attribute and apportion radiative forcing of UT Oq
» Completed a thorough uncertainty analysis for the model evaluation
framework and application in Henderson et al., 2010 ACPD
» Excluded many variables due to confounding influence on key
species
» |dentified observations and reactions that have the potential to
improve model evaluation and lengthen inferred air parcel lifetime
* [NOy]

- kHOZJrNO*—)NOZJrHO
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Next steps

» Use Bayes Theorem to constrain uncertainty of key reactions

» posterior: updated using likelihood function
» prior: JPL reported uncertainty
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