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@ Quantifying intercontinental air pollution impacts is sensitive to transport _ - ATEIR S LTIL I, I, L
and emissions processes. 3 BT OIEE| SR
@ Emissions and transport have independent uncertainties that need EI IR ERGLES mnmnne e
exploration and both affect US national composition. R
@ Our work evaluates two models, Hemispheric CMAQ and GEOS-Chem EEn TEE| SEEGEEm DA
that cover the northern hemisphere for ozone for 2016. e N
e CMAQ with two emissions cases demonstrations emission sensitivity. ComLsEeR] L B
@ CMAQ to GEOS-Chem includes both transport and emission differences. s el NIRRT

Model Configurations
Figure 3 : Sonde locations (left) and time coverage by site (right).

Table 1 : Model versions, options, and configuration.
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Option CMAQ GEOS-Chem
Version 5.2.1 11.2

Domain N. Hemisphere Global

Horizontal Resolution 108km ( 1deg) 2x2.5 deg

Vertical Resolution 44 layers to 50 hPa 47 layers to 0.01 hPa
Met Model’ WRF v3.8 GEOS 5.x (FP)
Native Met Res 108km ( 1degQ) 12km degraded
Chemistry/Aero CB6r3 AE6 nvPOA ”"soa”
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Table 2 : Anthropogenic and natural 2016 emission inventories.
Emission CMAQ GEOS-Chem
Global Default EDGAR-HTAPv2 x CEDS dE/dt EDGAR-HTAPV2
United States EPA 2016 EPA 2011 scaled
Canada Env. Canada 2014 scaled CAC scaled E
Mexico SEMARNAT? 2008 scaled BRAVO 1998 scaled
Asia MIX scaled MIX scaled
China THUS/EDGAR-HTAPV2 MIX scaled
Biogenic/Soil MEGAN?*/BEIS NA MEGAN Figure 4 : CMAQ (top, hourly) and GEOS-Chem (bottom, monthly outside North America) compared to
Fires FINN v1.5/EPA 2016 FINNv1.6 sonde releases ordered by latitude (average time) and ordered by time (average site).
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' Weather Research and Forecasting and Goddard Earth Observing System ? Secretaria del Medio Ambiente y
Recursos Naturales 32015 baseyear via Collaboration with Dr. Jia Xing at Tsinghua University * Hemispheric

MEGAN was processed using HEMCO > 2016 updates from Lee Murray at University of Rochester

o Il'”'-l"‘ ||"L’WI l
l W“' '

- 102 |

CMAQ and GEOS-Chem Seasonal 500hPa Ozone
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Figure 5 : Comparison of CMAQ with THU and HTAPv2 for Chinese emissions and enhancements in
ppb at sonde locations.

CASTNet Surface Hourly Evaluation
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Figure 1 : CMAQ (top) and GEOS-Chem (bottom) ozone at approximately 500hPa in 0008 = 3000
spring (left) and summer (right). 2000 Eézo 2000 2 o 2000
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Figure 2 : Ozone enhancements in CMAQ from HTAPV2 relative to THU Chinese = o 2 o - Y
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@ CMAQ and GEOS-Chem both show mild low biases near the tropopause. o o - B G !
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@ Surface bias has diurnally and seasonally structured bias. 5 "RESNEERYNERE £ "REAREENIRERE O "RCGHNEEOXRERE
day of year = day of year day of year

@ diurnal: lower at night than in the day

@ seasonal: lower in winter than summer Figure 6 : CMAQ w/ THU (left), w/HTAP China (center), GEOS-Chem (right) hourly performance (top),

@ Alternate China emissions have more affect in mid trop than at surface. | diurnal profile (upper), mid day bias (09-15Z, upper), and morning bias (00-05Z, bottom). Color shows
the site-days per bin.

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.
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