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Previous studies have proposed that model performance statistics from earlier photochemical grid model (PGM)
applications can be used to benchmark performance in new PGM applications. A challenge in implementing this
approach is that limited information is available on consistently calculated model performance statistics that
vary spatially and temporally over the U.S. Here, a consistent set of model performance statistics are calculated
by year, season, region, and monitoring network for PM, s and its major components using simulations from
versions 4.7.1-5.2.1 of the Community Multiscale Air Quality (CMAQ) model for years 2007-2015. The multi-
year set of statistics is then used to provide quantitative context for model performance results from the 2015
simulation. Model performance for PM, 5 organic carbon in the 2015 simulation ranked high (i.e., favorable
performance) in the multi-year dataset, due to factors including recent improvements in biogenic secondary
organic aerosol and atmospheric mixing parameterizations in CMAQ. Model performance statistics for the
Northwest region in 2015 ranked low (i.e., unfavorable performance) for many species in comparison to the
2007-2015 dataset. This finding motivated additional investigation that suggests a need for improved speciation
of wildfire PM, 5 emissions and modeling of boundary layer dynamics near water bodies. Several limitations
were identified in the approach of benchmarking new model performance results with previous results. Since
performance statistics vary widely by region and season, a simple set of national performance benchmarks (e.g.,
one or two targets per species and statistic) as proposed previously are inadequate to assess model performance
throughout the U.S. Also, trends in model performance statistics for sulfate over the 2007 to 2015 period suggest
that model performance for earlier years may not be a useful reference for assessing model performance for
recent years in some cases. Comparisons of results from the 2015 base case with results from five sensitivity
simulations demonstrated the importance of parameterizations of NH3 surface exchange, organic aerosol vola-
tility and production, and emissions of crustal cations for predicting PM, 5 species concentrations.

1. Introduction (SJVAPCD, 2018). The predictive capability of PGMs is established in

part during model development by deriving process parameterizations

Photochemical grid models (PGMs) simulate concentrations of trace
gases and particles in the atmosphere using numerical representations
of the major physical and chemical production and loss processes. Since
PGMs are based on mechanistic parameterizations, they are believed to
have suitable predictive capability to be used in a wide range of as-
sessments including human health and welfare risk analyses (USEPA,
2009, 2014b), policy cost-benefit assessments (USEPA, 2012c), air
quality forecasting (Lee et al.,, 2017), and air quality management

from first principles, using fundamental laboratory and other scientific
datasets, and evaluating model developments against field study mea-
surements designed to isolate processes of interest. PGM predictions are
also assessed by comparison with routine observations according to
operational, diagnostic, dynamic, and probabilistic performance eva-
luation techniques (Dennis et al., 2010).

Operational model evaluation uses statistical and graphical com-
parisons to assess the overall agreement of model predictions and
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observations from routine monitoring networks. Operational evaluation
statistics are often used in judging the appropriateness of modeling for a
given application, and several studies have recommended approaches
and best practices for operational evaluation. Boylan and Russell (2006)
recommended goals and criteria for model performance in terms of
mean fractional bias (MFB) and mean fractional error (MFE) statistics
based on performance in earlier modeling studies for particulate matter
(PM) and visibility impairment. The Boylan and Russell (2006) goals
and criteria relax under low concentration conditions to accommodate
a range of environments, but do not vary by region or season. Simon
et al. (2012) compiled model performance statistics for multiple pol-
lutants from 69 peer-reviewed publications during 2006-2012 and
provided recommendations on a minimum set of statistics that should
be reported in studies of regulatory relevance. The set includes absolute
and normalized bias and error statistics along with information to as-
sess performance for correlation and variability. Recently, Emery et al.
(2017) provided recommendations on statistics and benchmarks to as-
sess PGM performance based on information from 31 of the 69 studies
compiled by Simon et al. (2012) in combination with results from seven
additional studies published between 2012 and 2015. For operational
evaluations of PM, 5 and several PM, 5 components, Emery et al. (2017)
recommended model performance goals and criteria for mean bias
(MB), normalized mean bias (NMB), and Pearson correlation coefficient
(r). The Emery et al. (2017) benchmarks do not vary with region,
season, or pollutant concentration.

The previous studies identified several challenges in assessing the
state of operational model performance using statistics available in the
peer-reviewed literature. Limitations include inconsistency in the sta-
tistics reported, inconsistency in the temporal and spatial scales of ag-
gregation, relatively large influence on multi-study compilations of a
minority of studies that report many statistics, and possible publication
bias in the model performance literature. Artifacts in measurements of
total and speciated PM, 5 (e.g., El-Sayed et al., 2016; Kim et al., 2015;
Pye et al., 2018; Solomon et al., 2014) also complicate interpretation of
model performance statistics. Another issue in compiling information
across studies is inconsistency in the type of modeling performed. For
instance, some applications are based on an optimal model configura-
tion developed for a specific region and period. For routine annual
modeling of the conterminous U.S., computational considerations and
differences in performance in different regions and seasons limit the
ability to optimize model configuration options and grid resolution. As
a result, typical model performance statistics likely differ for routine
national modeling compared to modeling tailored to a specific region
and period (e.g., Murphy et al., 2017). In summary, limited information
is available in the peer-reviewed literature to provide quantitative
context for interpreting spatially and temporally varying operational
model performance statistics for national simulations over the U.S.

In the current study, PM, s is simulated over the conterminous U.S.
during 2015 with the Community Multiscale Air Quality (CMAQ) model
using 12-km horizontal resolution. Operational model performance
statistics are calculated and compared with a consistent set of perfor-
mance statistics developed for the years 2007-2015 from national 12-
km modeling of the U.S. with varying versions of CMAQ. The 2015
model predictions are also compared with results of five sensitivity si-
mulations to help interpret model performance and examine the in-
fluence of alternative model configurations. Information on model
performance statistics for 2007-2015 developed in this study are pro-
vided in the supporting information (Tables S1-S9 and a supplementary
file) for use in assessing 12-km modeling studies of the conterminous
u.s.

2. Methods
2.1. Air quality modeling

The 2015 base case simulation was based on CMAQ version 5.2.1
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(www.epa.gov/cmag; https://doi.org/10.5281/zenodo.1212601)
(Appel et al., 2018) on a domain covering the conterminous U.S. with
12-km horizontal resolution and 35 vertical layers as part of a recent
study (Kelly et al., 2019). Gas-phase chemistry was represented with
the Carbon Bond 2006 mechanism (CB6r3; Emery et al.,, 2015), in-
organic aerosol thermodynamics were based on ISORROPIA II
(Fountoukis and Nenes, 2007; Nenes et al., 1998), primary organic
aerosol (POA) was modeled as non-volatile (Appel et al., 2017; Simon
and Bhave, 2012), and secondary organic aerosol (SOA) from volatile
organic compounds was based on Pye et al. (2017). Chemical boundary
conditions (BCs) were developed from a CMAQ simulation on a larger
domain that used BCs based on a hemispheric CMAQ simulation
(Mathur et al., 2017). U.S. anthropogenic emissions were based on
version 2 of the 2014 national emission inventory (NEI) (USEPA,
2019a). Day-specific satellite-based fire activity data and fuel-specific
emissions were used to generate wild, prescribed (Baker et al., 2016,
2018), and cropland fire (Pouliot et al., 2017; Zhou et al., 2018)
emissions for 2015. Electric generation unit emissions were based on
continuous emission monitoring data from 2015. Mobile source emis-
sions were simulated for 2014 and 2016 with MOVES2014a (www.epa.
gov/moves) and were interpolated to 2015. Emissions of biogenic
compounds (Bash et al., 2016), windblown dust (Foroutan et al., 2017),
and sea-spray aerosol (Gantt et al., 2015; Kelly et al., 2010) were si-
mulated online using 2015 meteorology. NH3 surface-exchange was
simulated using an updated version of the CMAQv5.2.1 bidirectional
exchange parameterization (Bash et al.,, 2013; Pleim et al., 2013).
Specifically, the resistance parameterization of Pleim et al. (2013) was
replaced with that of Massad et al. (2010), and the maximum amount of
NH,™* in soil-water solution was estimated using the sorption model of
Venterea et al. (2015) rather than a fixed fraction of total NH,*. Me-
teorological fields for CMAQ modeling were based on version 3.8 of the
Weather Research and Forecasting (WRF) model (Skamarock et al.,
2008).

Five sensitivity simulations were conducted with CMAQ to examine
the influence of emissions and model configuration options on PM, 5
predictions in the 2015 base case. First, a simulation with wild and
prescribed (but not cropland) fire emissions set to zero (“no.fire” case)
was conducted to understand the influence of modeled fires on pre-
dictions. Second, a simulation with gridded emissions of crustal PM, 5
components set to zero (“no.crustal” case) was conducted to examine
the influence of crustal cations on nitrate predictions via their effects on
inorganic aerosol thermodynamics. Crustal cation emissions from sea
spray and windblown dust are calculated during CMAQ execution and
are included in all simulations. Third, a simulation was conducted using
the default version of the NH; bidirectional exchange parameterization
in CMAQvV5.2.1 and updated versions of the emissions inventory and
BCs that became available during the study (“nei.bc.nh3” case).
National total emissions for NO,, SO,, and primary EC and OC in the
nei.bc.nh3 case were within 1% of the emissions in the base case.
Fourth, a simulation without the bidirectional surface-exchange para-
meterization for NH; (“no.bidi” case) was conducted to understand the
influence of this model option on performance. Finally, a simulation
was conducted where the organic aerosol treatment of Murphy et al.
(2017) was used (“pc.soa” case) instead of the non-volatile POA treat-
ment. The Murphy et al. (2017) parameterization treats POA as semi-
volatile and produces SOA from an additional species that is emitted in
proportion to POA emissions to approximate potential missing SOA
production from combustion sources.

As part of previous studies, CMAQ simulations for the conterminous
U.S. were conducted for years 2007-2014. Consistent with the 2015
base case, these simulations used 12-km horizontal resolution for an-
nual simulations of air quality over the U.S. CMAQ versions ranged
from 4.7.1 to 5.2 and WRF versions ranged from 3.1 to 3.8.1 for the
2007 to 2014 simulations. The differences in model configuration over
the years introduced variability into the model performance statistics,
which is useful in providing a broader range of recent performance
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Table 1

Model configuration for 2007-2015 simulations.
Year Case name Air Quality Model Meteorological Model Reference
2007 2007aq_07c_N5ao_inline CMAQv4.7.1 WRFv3.1 USEPA (2012a)
2008 2008aa_08c_N5ao_inline CMAQv4.7.1 WRFv3.1 USEPA (2012b)
2009 2009ef2_v5_09d_N5ao_inline CMAQv4.7.1 WRFv3.2 USEPA (2013)
2010 2010ef v5_10f N5ao_inline CMAQv4.7.1 WRFv3.4 USEPA (2014a)
2011 2011ef v6_11g 1tngNO_bidi_25L CMAQvV5.0.2 WRFv3.4 USEPA (2015a)
2012 2012eh_cb05v2_v6_12g CMAQv5.0.2 WRFv3.6.1 USEPA (2016)
2013 2013ej_v6_13i CMAQvV5.1 WRFv3.7.1 USEPA (2017)
2014 2014 fb_cb6r3_ae6nvPOA _aq CMAQvV5.2 WRFv3.8.1 USEPA (2018a)
2015 2015fd_cb6_15j (“base case”) CMAQvV5.2.1 WRFv3.8 This study
2015 2015fd_cb6_15j_noptf (“no.fire”) CMAQv5.2.1 WRFv3.8 This study
2015 2015fd_cb6_15j_0cr (“no.crustal”) CMAQvV5.2.1 WRFv3.8 This study
2015 2015fe_cb6_15j (“nei.bc.nh3”) CMAQv5.2.1 WRFv3.8 This study
2015 2015fd_cb6_15j_nobidi (“no.bidi”) CMAQv5.2.1 WREFv3.8 This study
2015 2015fd_cb6_15j_pcSOA (‘pc.soa”) CMAQv5.2.1 WRFv3.8 This study

results for comparison with the new modeling. More details on the
configuration of the 2007-2014 simulations are provided in Table 1 and
references therein.

2.2. Model performance statistics

Model performance statistics were calculated consistently for all
simulations using measurements of major PM,s components from
Chemical Speciation Network (CSN) and Interagency Monitoring for the
Protection of Visual Environments (IMPROVE) monitoring sites
(Solomon et al., 2014). Comparisons were made between modeled and
observed concentrations that were paired in space and time by aver-
aging predictions to the 24-h sampling period of each measurement.
Particle mass in the sub-2.5 um diameter size range was calculated di-
rectly from the predicted particle size distributions. Nolte et al. (2015)
reported that summation of particles mass in the Aitken and accumu-
lation modes provides a similar estimate as the direct calculation used
here. Since CSN sites tend to be in urban areas and IMPROVE sites tend
to be in rural areas, model performance statistics are considered sepa-
rately for the two networks. Statistics were calculated for PM, 5 com-
ponents by season, year, network, and U.S. climate region (Karl and
Koss, 1984; Fig. S1). Information on model performance for total PM, 5
is available in Tables S1 and S10 and previous work (Kelly et al., 2019)
but is not discussed below for brevity.

The following statistics are considered below (see Table S11 for
definitions): NMB (%), MB (ug m_s), root-mean-square error (RMSE)
(ug m ™), and Pearson r. Normalized mean error (NME) (%), MFB, and
MFE values are also provided in the supporting information. This set of
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statistics is consistent with recommendations of Simon et al. (2012) and
Emery et al. (2017). Absolute values of NMB and MB were used in
ranking performance for the 2015 base case against the multi-year set
of statistics because NMB and MB can have positive and negative va-
lues.

3. Results
3.1. Overview

In this section, model performance statistics for PM, g5 sulfate, ni-
trate, organic carbon (OC), and elemental carbon (EC) are discussed.
PM, s ammonium is not discussed because of measurement un-
certainties (e.g., Yu et al., 2006) and its strong correlation with sulfate
and nitrate. Due to the large number of possible comparisons (e.g.,
species, seasons, regions, networks, statistics), key features of model
performance are considered below, and the supporting information is
used to provide additional details. The median and range of the model
performance statistics for simulations of 2007-2015 are provided in
Tables S1-S9, and performance statistics for the 2015 base case are
provided in Tables S10 and S12-S15. The full table of performance
statistics for the individual annual simulations are available in a sup-
porting file. Since distinct performance issues were observed for the
Northwest, performance for the Northwest is discussed in more detail
following the discussion of performance for the species.
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Fig. 1. PM, 5 sulfate performance statistics for the 2015 base case at CSN sites by season and U.S. climate region.
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3.2. Sulfate

Model performance statistics for PM, 5 sulfate at CSN sites for the
2015 base case simulation are illustrated in Fig. 1 by season and U.S.
climate region. Values of the sulfate performance statistics at CSN and
IMPROVE sites are provided in Table S12. NMB for sulfate at CSN sites
is generally within = 20% (Fig. 1), with a notable exception of the
Northwest region, where NMB is greater than 80% for most seasons. MB
is generally within + 0.2 ugm ™2 and has a similar spatial and seasonal
dependence as NMB. The highest RMSE values are in the Northeast and
Ohio Valley regions due to the relatively high absolute sulfate con-
centrations. For instance, the mean observed sulfate concentrations at
CSN sites in the Northeast (1.45 pg m~2) and Ohio Valley (1.81 ugm ™ %
are several times that in the Northwest (0.52 pgm’3). The correlation
coefficient for sulfate predictions in the Northeast and Ohio Valley is
relatively low in winter compared with other seasons, which could be
due to challenges in simulating oxidation mechanisms in winter (Shah
et al., 2018). Correlation coefficients are also generally lower in the
western U.S., where concentrations are relatively low. The annual
correlation coefficient for predictions at CSN sites ranged from 0.31
(Southwest) to 0.79 (Upper Midwest) (Table S12).

Model performance statistics for sulfate at CSN sites for the 2015
base case are compared with statistics for 2007-2015 in Fig. 2. The
percentiles give the relative level of performance for the base case
compared with the multi-year set of statistics. Since the 2015 base case
is included in the multi-year set, the model performance percentiles for
the base case fall between 0% (lowest rank) and 100% (highest rank).
Sulfate performance for the 2015 base case compares favorably with
previous modeling in terms of NMB, MB, and RMSE, with exceptions of
the Southwest in Spring and Northwest in all seasons. The rank of the
correlation coefficient for the 2015 sulfate predictions is relatively low
compared with that of NMB, MB, and RMSE. A challenge in comparing
sulfate performance statistics across years is that model performance for
sulfate appears to have been influenced by the substantial decreases in
ambient sulfate in the U.S. during the 2007 to 2015 period. For in-
stance, negative correlation exists between year and RMSE (r: 0.70), r
(r: 0.74), and observed concentration (r: 0.57) based on annual values
at IMPROVE and CSN sites over 2007-2015 (Figs. S2 and S3). The re-
latively low rank for r performance for the 2015 base case for regions in
the eastern U.S. is consistent with the trend of decreasing r over
2007-2015. The trend is associated with reductions in SO, emissions
from electric generation units that have decreased the summertime
sulfate peaks (i.e., signal-to-noise ratio) in the eastern U.S. (Chan et al.,
2018; gispub.epa.gov/neireport/2014/). Therefore, although perfor-
mance statistics from modeling of earlier years may be helpful in pro-
viding context for a new model case, performance for earlier years may
set inappropriate standards to judge new modeling in cases where the
underlying atmospheric conditions have changed substantially between
the modeling periods.

A prominent feature of Figs. 1 and 2 is the relatively poor perfor-
mance for sulfate in the Northwest in the 2015 base case simulation.
Predicting sulfate in the Northwest is relatively challenging because the
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concentrations are typically low and representing source-receptor re-
lationships is difficult due to the complex terrain. In Fig. 3, NMB for
sulfate at CSN and IMPROVE sites is compared for the base case si-
mulation and the nei.bc.nh3 and no.fire simulations. Updates to the
emission inventory and BCs in the nei.bc.nh3 case improved sulfate
performance statistics in the Northwest and Southwest. These im-
provements are due in part to emission regulations for shipping sources
(USEPA, 2019b) that were better represented in the nei.bc.nh3 case
than the base case. Recent reductions in SO, emissions in China (e.g.,
Krotkov et al., 2016; van der A et al., 2017; Zheng et al., 2018) were
also better represented in the nei.bc.nh3 case and contributed to im-
proved sulfate performance in the western U.S. Annual NMB for sulfate
improved from 108% for the base case to 96% for the no.fire case at
IMPROVE sites in the Northwest. High bias in sulfate predictions was
evident on days where the model estimated a high fire contribution to
the concentrations (e.g., Fig. S4). These results suggest that the model
may overestimate sulfate from wildfires in the west. Multiple factors
could have contributed to model performance issues for sulfate from
wildfires including problems with plume rise and transport, excessive
mixing of aloft plumes to the surface, and emissions issues (e.g., over-
estimates in SO, emissions, primary PM, s emissions, or the fraction of
primary PM, s emissions speciated to sulfate). Laboratory measure-
ments suggest that the modeled percent of primary PM, s emissions
speciated as sulfate (0.33%) is not too high, because much larger values
have been reported for fuels typical of the western U.S. such as needle
leaf trees (0.68%) and chaparral (1.72%) (McMeeking et al., 2009). In
previous modeling of fires in 2011 and 2013 (Baker et al., 2016, 2018),
regional transport of wildfire plumes was captured reasonably well by
the modeling system and sulfate predictions were relatively unbiased
on days with wildfire impacts. Modeling wildfires in the 2015 base case
could be relatively challenging because the 2015 fire season in the
Pacific Northwest was the most severe in modern history by some
metrics (USDA, 2016).

3.3. Nitrate

Model performance statistics for PM, 5 nitrate at CSN sites in the
2015 base case simulation are shown in Fig. 4 by season and U.S. cli-
mate region. Values of the nitrate performance statistics at CSN and
IMPROVE sites are provided in Table S13. In the eastern U.S., NMB for
nitrate at CSN sites is generally within + 40%, with exceptions such as
the Southeast in Fall (NMB: 98%) and Winter (NMB: 77%). Seasonal
average modeled NO, concentrations were within 14% of measured
values in all seasons at Southeastern Aerosol Research Characterization
(SEARCH) sites, and so overpredictions of nitrate in the Southeast do
not appear to be due to overpredictions in the total oxides of nitrogen.
In the western U.S., nitrate is generally biased low with NMBs between
about —20 and —60%, except for the Northwest in Fall (62%), Spring
(NMB: 107%), and Summer (NMB: 145%). Underpredictions in the
West and Southwest in winter appear more pronounced when viewed in
terms of MB (Fig. 4b) than NMB (Fig. 4a). These relatively large ne-
gative MBs are driven by underpredictions of nitrate in mountain

Pearson r

Percentile
80-100%
60-80%

40-60%

| ] 20-40%
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Fig. 2. Percentile rank of PM, 5 sulfate performance statistics for the 2015 simulation relative to performance statistics for 2007-2015. Scale ranges from low rank

(0-20%) to high rank (80-100%).



J.T. Kelly, et al.

CSN
:\0‘80-
oM 40-
= |
=2 O —— e — —= o —— il -.
s = £ o %
L > S w 5 o = 3 L
Pz T (7] o P

Atmospheric Environment 214 (2019) 116872

IMPROVE
i1 _
| | base
. J‘ I neibc.nh3
-~ ——mpgm _ [ ‘ I nofire
T S5 L f o o2 7 s
L
138383 §¢2

Fig. 3. Comparison of annual NMB for PM, s sulfate in the 2015 base simulation with NMB for the no.fire and nei.bc.nh3 cases at CSN and IMPROVE sites.

valleys during ammonium nitrate episodes associated with strong me-
teorological temperature inversions in winter (e.g., Chen et al., 2012;
Chow et al., 2006; Franchin et al., 2018). Modeling stagnant meteor-
ology in complex terrain often requires finer grid resolution than is
currently possible in national-scale modeling (e.g., < 1-4 km; Crosman
and Horel, 2017), and wintertime nitrate episodes have been simulated
reasonably well in the western U.S. for higher-resolution CMAQ simu-
lations (e.g., Chen et al., 2014; Kelly et al., 2018). Since model per-
formance can differ for PGM simulations at different grid resolutions
(e.g., Zakoura and Pandis, 2018), comparisons of performance statistics
among simulations to assess operational model performance are most
meaningful when a consistent grid resolution is used. The correlation
coefficients for nitrate predictions at CSN sites are greater than 0.6 in
much of the U.S., with exceptions in cases where nitrate concentrations
are low (e.g., during summer and in the Southwest) and in the North-
west (Fig. 4d).

Model performance statistics for nitrate at CSN sites for the 2015
base case are compared with statistics for 2007-2015 in Fig. 5. In
general, NMB, MB, and RMSE statistics for nitrate predictions from the
2015 base simulation rank high compared with the full 2007-2015
dataset, with exceptions of the Northern Rockies and Plains in Winter,
Upper Midwest in Spring, and the Northwest. The high NMBs for nitrate
predictions in the Southeast in Fall and Winter (Fig. 4a) are not
anomalous compared with the full 2007-2015 dataset (Fig. 5). A per-
sistent high bias in PM, s nitrate predictions occurred in the Southeast
in Fall and Winter during 2007-2015 (NMB: 32-119%, Table S4), al-
though nitrate is typically a small fraction of PM; s in the Southeast
(e.g., about 6% on average for CSN sites in 2015). Correlation coeffi-
cients for nitrate in the 2015 base case tend to compare less favorably to
the multi-year dataset than do NMB, MB, and RMSE. However, corre-
lation coefficients for nitrate predictions in the 2015 base case were
high in some cases (e.g., r: 0.63 for Ohio Valley in Fall; Table S13)
where performance ranked in the lowest category (0-20%) in
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comparison to the 2007-2015 dataset. This behavior illustrates that
relatively weak performance in new modeling compared with previous
modeling does not necessarily imply a model performance issue. The
annual correlation coefficient for nitrate predictions over all CSN sites
in the 2015 base case (0.71) was the highest in the 2007-2015 dataset
(0.62-0.71; Fig. S6d).

Recent studies have identified that over-predictions of crustal ca-
tions can influence model performance for nitrate by affecting particle
pH and gas-particle partitioning of total nitrate (i.e., NO3~ + HNO3)
(Pye et al., 2018; Shah et al., 2018; Vasilakos et al., 2018). Crustal
cations were biased high in the 2015 base case over much of the U.S.
(Fig. S7). These biases may derive in part from issues with the nonpoint
and fugitive dust emission sectors considering the magnitude and spa-
tial correspondence of the emissions (Fig. S8) and predicted con-
centrations (Fig. S9). Also, crustal cation concentrations were under-
predicted in the Southwest in Summer when windblown dust is
relatively active (Fig. S7). Dust concentrations in the northern U.S. were
influenced by transport from Canada in the model (Fig. S9), but sources
of dust in Canada are unlikely to explain overpredictions of crustal
cations in regions far from the border, such as the Southeast. In Fig. 6,
NMB for nitrate at CSN and IMPROVE sites for the 2015 base case is
compared with values for sensitivity simulations. For the no.crustal
simulation, nitrate concentrations and NMBs are lower than for the base
case due to increases in particle acidity associated with lower con-
centrations of water-soluble crustal cations in the model (i.e., Ca%™,
Mg?*, and K*). The increases in particle acidity reduce the fraction of
total nitrate in the particle phase in the no.crustal simulation compared
with the base case simulation (Fig. S10). In areas of the country with
overpredictions of nitrate (e.g., Southeast and Northwest), the reduc-
tions in crustal cation emissions improved model bias (e.g., annual NMB
improved from 47 to 22% at CSN sites in the Southeast). In the West
and Southwest, the nitrate NMB was slightly worse in the no.crustal
simulation than the base case consistent with underpredictions of
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Fig. 4. PM, 5 nitrate performance statistics for the 2015 base case at CSN sites by season and U.S. climate region.
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Fig. 6. Comparison of annual NMB for PM, s nitrate in the 2015 base simula-
tion with NMB for the sensitivity modeling cases at CSN and IMPROVE sites.

crustal cation concentrations in the Southwest in the 2015 base case.
The effect of removing the bidirectional NH3 treatment (no.bidi
case) on nitrate NMB was often directionally similar but smaller than
for removing the gridded crustal cation emissions, with some excep-
tions such as the Ohio Valley, South, and Southwest at IMPROVE sites
(Fig. 6). Turning off the bidirectional surface-exchange parameteriza-
tion led to relatively near-source NH;3 deposition and lower NH; con-
centrations. Lower NHj concentration, in turn, led to greater parti-
tioning of total nitrate to HNO3 (Fig. S10), which deposits rapidly.
Model predictions for NH3; were closer to observations from U.S.
monitoring networks in the base case than in the no.bidi case, although
model predictions were biased low in both cases (Table S16, Figs. S11
and S12). For the nei.bc.nh3 simulation, nitrate NMB was higher than
in the base case indicating degraded performance in the Northeast,
Southeast, and Northwest. The greater nitrate NMBs are associated with
the greater NH;3 concentrations in the nei.bc.nh3 case, which used the
default version of the CMAQvS5.2.1 bidirectional exchange para-
meterization, compared with the base case, which used the updated
bidirectional exchange parameterization (Figs. S11 and S12). The
higher NHj levels in the nei.bc.nh3 case increased the fraction of total
nitrate in the particle phase compared with the base case (Fig. S10).
Despite the degraded performance for nitrate in the nei.bc.nh3 case,
NH; predictions for the nei.bc.nh3 case were closer to observations in
Winter and Spring at SEARCH and Atmospheric Ammonia Network
(AMOoN; Butler et al., 2016) sites than were the base case predictions.
For the no.fire simulation, model bias for nitrate is similar to that in
the base case with some exceptions such as the Northwest, where bias is
lower and performance is improved (e.g., NMB improved from 76 to
48% at IMPROVE sites in the Northwest; Fig. 6). The wildfire sector
emits significant amounts of NH3 (Bray et al., 2016) and NO, that can
contribute to nitrate formation. In previous studies (Baker et al., 2018;
Cai et al., 2016), the modeling system simulated plume-top NO, con-
centrations reasonably well and produced little HNO3 in wildfire
plumes, which suggests that the wildfire-driven nitrate overpredictions
in the Northwest are due to factors other than NO, emissions and

chemistry. Laboratory testing of fuels common to this region
(McMeeking et al., 2009) suggest the nitrate fraction of primary PM; s
emissions from wildfires (0.85-1.02%) is similar to the value used here
(1.07%).

Another challenge in simulating nitrate is representing nitrate pro-
duction due to heterogeneous hydrolysis of N,Os (Chang et al., 2011).
Nitrate production from this pathway is highly variable and difficult to
parameterize in PGMs (Jaeglé et al., 2018; McDuffie et al., 2018).
McDuffie et al. (2018) reported that the Davis et al. (2008) para-
meterization used in CMAQ produced higher N,Os uptake coefficients
than were estimated from aircraft measurements in 2015. Future work
is planned to better constrain estimates of N,Os uptake using field study
data.

3.4. Organic carbon

Model performance statistics for PM, 5 OC at CSN sites for the 2015
base case are shown in Fig. 7 by season and U.S. climate region. Values
of the OC performance statistics at CSN and IMPROVE sites are pro-
vided in Table S14. For half of the region-season cases in Fig. 7, NMB is
within = 20%, but underpredictions of —23 to —50% occur in six of
the nine regions in summer. Summertime OC underpredictions could be
due in part to too little SOA production, although predictions are re-
latively unbiased in the Southeast in summer (NMB: 7.6%), where
biogenic SOA concentrations are high. In contrast to the under-
predictions for summer, OC predictions were biased high (3-76%) in
seven of the nine regions in winter. Emissions associated with home
heating (e.g., wood combustion) and prescribed burning in the South-
east are relatively important in winter (Odman et al., 2018; Watson
et al., 2015) and lead to model OC overestimates under non-volatile
POA assumptions (Murphy et al., 2017). Challenges in simulating pre-
scribed burning along the Gulf of Mexico contributed to PM, 5 over-
predictions in winter there (Fig. S17). For instance, the predicted OC
concentration at Breton Island, LA on 14 February was 250 pgm ™~ in
the base case (and 2.2 g m ™2 in the no.fire case) when the observed
concentration was less than 5ugm ™3 (Fig. S18). RMSE for OC is gen-
erally between 1 and 2ugm 2 in the eastern U.S. and tends to be
higher in the western U.S., especially in the Northwest region. The
correlation coefficient for OC is frequently between 0.4 and 0.6, but is
between 0.6 and 0.8 in the West in all seasons and six of the nine re-
gions in Fall. Overall, model performance for the 2015 simulation
ranked high in the full 2007-2015 dataset (Fig. 8), with a few excep-
tions (e.g., Northern Rockies and Plains in Fall and Summer). The re-
latively good performance for OC could be due to a range of factors
including recent improvements in the biogenic SOA parameterizations
(Pye et al., 2013, 2017) and atmospheric mixing (USEPA, 2015b) in
CMAQ.

NMB values for OC at CSN and IMPROVE sites for the 2015 base
case are compared with values for the sensitivity simulations in Fig. 9.
The lower NMB values for the no.fire simulation than the base case
indicate generally worse model performance for the simulation without
wild and prescribed fire emissions. This behavior is most evident at
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Fig. 7. PM, s OC performance statistics for the 2015 base case at CSN sites by season and U.S. climate region.

IMPROVE sites in regions of the western U.S. where fires were most
prevalent (Fig. S19). Consistent with previous studies (Baker et al,
2016, 2018), model performance for OC is mixed within regions and
across seasons (Fig. S20) on days with modeled fire influence. The
model had some skill in predicting OC associated with large fires for
sites in the Northwest (Flathead and Glacier), but underpredictions
(Fresno) and overpredictions (Redwood) are evident at other sites (e.g.,
see Fig. S21).

For the pc.soa simulation, NMB for OC is lower at CSN sites and
higher at IMPROVE sites compared with the base case. This behavior is
consistent with the organic aerosol parameterization used in the pc.soa
simulation in which organic aerosol may locally decrease due to POA
evaporation, but generally increase in source regions and downwind
due to additional SOA production relative to the base case (Murphy
et al., 2017). The Murphy et al. (2017) treatment tends to increase OC
during photochemically active daytime conditions (Fig. S22) and was
previously shown to substantially reduce negative bias in at urban sites
in California during summer when evaluated with hourly observations.
OC model performance statistics were generally similar for the base
case and the pc.soa case, although NMB performance degraded mod-
erately in some regions in the pc.soa simulation (e.g., at IMPROVE sites
in the east) (Fig. 9). These results should be interpreted cautiously,
however, because differences in OC measurements from collocated
IMPROVE and CSN sites have been previously reported (e.g., Kim et al.,
2015; Weakley et al., 2016). NMB for OC was noticeably better in the
Northwest for the pc.soa case than the base case, although this behavior
may be related to issues with simulating boundary layer mixing (see
section 3.5). The influence on OC NMB of updates to the emission in-
ventory, BCs, and NHj; surface-exchange parameterization in the
nei.bc.nh3 case was moderate and mixed overall. Correlation coeffi-
cients for OC improved significantly in the Upper Midwest and several
other regions in the nei.bc.nh3 case compared with the base case (Fig.
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Fig. 9. Comparison of annual NMB for PM, 5 OC in the 2015 base simulation
with NMB for the no.fire, pc.soa, and nei.bc.nh3 cases at CSN and IMPROVE
sites.

523).

3.5. Elemental carbon

Model performance statistics for PM, 5 EC at CSN sites in the 2015
base case simulation are shown in Fig. 10 by season and U.S. climate
region. Values of the EC performance statistics at CSN and IMPROVE
sites are provided in Table S15. Modeled EC is biased high for all re-
gions and seasons compared with CSN (and IMPROVE, Table S15) ob-
servations. NMB values are between 20 and 60% for 23 of the 36 re-
gion-season cases in Fig. 10a. Despite some large NMBs, MB values are
generally less than 0.2 pg m ™2 due to the low concentrations of EC (e.g,
Fig. S15), with an exception of the Northwest region for which MBs are
greater than 0.8 ugm™2 (see Section 3.5 below). Annual correlation
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Fig. 8. Percentile rank of PM, s OC performance statistics for the 2015 simulation relative to performance statistics for 2007-2015. Scale ranges from low rank

(0-20%) to high rank (80-100%).
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Fig. 10. PM, 5 EC performance statistics for the 2015 base case at CSN sites by season and U.S. climate region.
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Fig. 11. Percentile rank of PM, s EC performance statistics for the 2015 simulation relative to performance statistics for 2007-2015. Scale ranges from low rank
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coefficients for EC predictions at CSN sites ranged from 0.39 (North-
west) to 0.65 (Northern Rockies and Plains). Model performance for EC
in the base case often ranks high in comparison to statistics for the
2007-2015 dataset (Fig. 11), with exceptions of the Northern Rockies
and Plains and Northwest regions, which experienced unusually high
wildfire activity in 2015. PM, s EC predictions were biased high on
median throughout the 2007-2015 period (Table S9).

NMB for PM, 5 EC predictions in the 2015 base case is compared
with NMB for the PM, 5 EC in the sensitivity simulations in Fig. 12. The
bias in EC predictions was smaller in the no.fire simulation than the
base case, and the biggest improvements in the no.fire simulation
compared with the base case occurred at IMPROVE sites in the western
U.S. For instance, NMB improved from 90 to 7% in the West, and 120 to
—12% in the Northern Rockies and Plains. On days where the model
predicted substantial influence of fire emissions on concentrations at
monitoring sites, EC concentrations were generally overestimated in the
base case (Fig. S4) consistent with previous studies (Baker et al., 2016,
2018). Issues with primary PM, 5 emissions from the wildfire sector or
the fraction of PM, 5 emissions speciated to EC may contribute to the
overpredictions. In the nei.bc.nh3 case, model performance for EC
improved slightly compared with the base case.
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3.6. Model performance in the northwest

Consistently higher MB and NMB for the predictions in Northwest
compared to the other regions are evident in Figs. 1, 4, 7 and 10, with
NMB exceeding 60% for most seasons across all species examined. This
pattern is particularly pronounced for EC, where NMB exceeds 100%
across the whole year. The greater high biases for EC in the Northwest
are likely due in part to assumptions about the speciation of PM, 5
emissions from wildland fires and challenges in simulating boundary
layer dynamics near the Puget Sound and other coastal areas.

The NMB for EC improved dramatically in the Northwest in the
no.fire simulation, reducing from 309% in the base case to 149% in the
no.fire case at IMPROVE sites. The speciation profile for wildland fire
PM, s emissions, which was based on profiles estimated in two studies
(Chow et al., 2004; Watson et al., 1996) according to Reff et al. (2009),
allocates 9.5% of total PM, 5 from all wildfire emissions as EC. The
Chow et al. (2004) and Watson et al. (1996) speciation profiles were
developed by combining measurements across several burn experi-
ments, some of which included measurements from pile burns of dried
vegetative clippings and fence posts in addition to natural biomass. A
more recent laboratory study also suggests that EC may contribute a
relatively large percentage of PM,s emissions for fuels in the

Fig. 12. Comparison of annual NMB for PM, 5 EC in
the 2015 base simulation with NMB for the no.fire
and nei.bc.nh3 cases at CSN and IMPROVE sites.
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Fig. 13. Comparison of wildfire PM, 5 speciation profiles. The assumed profile
for the 2015 modeling platform is based on Reff et al. (2009) and labeled “NEI
2014”. The “Lab Averages” profile represents the mean profile across several
additional laboratory studies (Hays et al., 2002; Hosseini et al., 2013;
McMeeking et al., 2009).

southeastern (7.5%) and southwestern (e.g., 20% for chaparral) U.S.
(Hosseini et al., 2013). However, separate laboratory measurements for
fuels common in the western U.S. suggest that EC makes up a smaller
percentage of total PM, s emissions (e.g., 1.4% for montane and 4.3%
for chaparral ecosystems) (McMeeking et al., 2009) than the 9.5% value
used in our modeling. Additionally, recent field measurements from
forest fires in the southeastern U.S. (Aurell et al., 2015) suggest that the
composite profile developed by Reff et al. (2009) that was used in de-
veloping the NEI may have overestimated the contribution of EC to
emitted PM, 5 mass by a factor of four (Fig. 13). Updated speciated
contributions for wildland fire EC are scheduled for implementation in
future U.S. EPA emission inventories and should correct some of the
relatively high biases in EC performance in the Northwest and the other
western fire-prone regions observed in this assessment.

In addition to issues with speciation profiles for fire emissions,
overpredictions for EC and other primary species at some sites in the
Northwest appear to be due to meteorological factors. For instance, EC
was strongly overestimated in the no.fire simulation at the Puget Sound
IMPROVE site (PUGE1l) in Seattle, which is west of the Cascade
Mountain Range and upwind from many of the major fire areas in
eastern Washington, Oregon, and Idaho. Unusually high concentrations
of EC (> 20pugm %) and other species (e.g., soil and OC) were pre-
dicted at this site during periods where the modeled boundary layer
height was extremely low (< 50m) (e.g., Figs. S24 and S25). Simu-
lating atmospheric mixed layers is challenging near the shoreline
(McNider et al., 2018), and modeled boundary layer heights may have
been underestimated at times due to the low water temperature of the
Puget Sound. Other monitoring sites in Washington and Oregon show
similar patterns of elevated EC and soil concentrations during periods
with low simulated boundary layer heights (e.g., Fig. S26) suggesting
that this issue is not confined to the site in Seattle. Further evaluation of
modeled boundary layer dynamics in this region would be of interest.
Also, although this section emphasizes the role of fire emissions and
boundary layer dynamics, other factors likely contributed to the high
biases for EC predictions in the Northwest and other regions.

4. Summary and conclusions

Comparing model performance statistics for new modeling with
consistently calculated statistics from previous modeling studies can be
useful in assessing model performance (Boylan and Russell, 2006;
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Emery et al.,, 2017; Simon et al., 2012; USEPA, 2018b). However,
limited information on performance statistics from previously pub-
lished studies is available to provide quantitative context for annual 12-
km modeling of the conterminous U.S. Here, a consistent set of model
performance statistics by season, year, network, and U.S. climate region
are developed for PM, 5 and its major components (i.e., sulfate, nitrate,
OC, and EC) using 12-km CMAQ simulations for 2007 to 2015. The
multi-year set of statistics are then used to interpret model performance
for the 2015 base simulation.

Several insights were provided by comparison of model perfor-
mance statistics for the 2015 base case simulation with statistics for the
full 2007-2015 dataset. Performance statistics for OC in the base case
generally ranked high compared with performance statistics for the
2007-2015 dataset and built confidence in the 2015 simulation results.
The relatively good performance for OC in 2015 could be due to im-
provements in emissions modeling as well as the modeling of atmo-
spheric mixing (USEPA, 2015b) and biogenic SOA (Pye et al., 2013,
2017) in recent versions of CMAQ. Model performance for sulfate and
nitrate in the 2015 base case also ranked high in general (excluding the
Northwest) for NMB, MB, and RMSE compared with the 2007-2015
dataset. Comparison of 2015 model performance statistics with results
for previous years helped identify relatively weak model skill in the
Northwest in 2015. Additional investigation of performance in the
Northwest indicated that the fraction of wildfire PM, 5 emissions spe-
ciated as EC is likely too high and the simulated boundary layer height
is frequently too low at coastal urban sites in the Northwest in the 2015
simulation. Model performance for sulfate in the Northwest was also
found to improve with updates to shipping emissions and boundary
conditions that better reflected recent reductions in SO, emissions in
Asia.

Limitations in comparing performance statistics for the 2015 base
case with results of earlier modeling also emerged from our study. First,
performance statistics were found to vary widely by region and season
due to the spatially and temporally varying nature of the underlying
processes. This behavior suggests that a simple set of nationally re-
presentative statistical benchmarks (e.g., one or two national bench-
marks per statistic and species) as has been proposed previously would
not be adequate to assess model results throughout the U.S. Second,
trends in model performance due to trends in ambient air quality can
compromise the value of using performance statistics from previous
modeling in assessing the appropriateness of new modeling. For ex-
ample, recent decreases in sulfate concentration in the eastern U.S.
appear to have contributed to improvements in MB and RMSE and
degradation in r for CMAQ predictions over the 2007-2015 period.
Third, relatively high rank of performance for new modeling compared
with previous modeling can occur even when model skill is weak in the
new modeling, and vice-versa. For example, NMB for nitrate at CSN
sites in the Southeast in Winter appeared high in the 2015 base case
(NMB: 77%), but this value ranked reasonably high (i.e., 40-60% ca-
tegory) in the 2007-2015 dataset. Conversely, good correlation for
nitrate (e.g., - 0.63 for Ohio Valley in Fall) in the 2015 base case
ranked in the lowest category (0-20%) compared with the full
2007-2015 period. These limitations should be considered when using
previous model performance results to provide context for new mod-
eling. Summary statistics for the full 2007-2015 dataset are provided in
Tables S1-S9 and statistics for individual cases are available in a sup-
plementary file.

In addition to providing a database of model performance statistics
and illustrating their use, sensitivity simulations were used to examine
model performance for the 2015 base case. Improved performance for
sulfate, nitrate, and EC at IMPROVE sites in the western U.S. in a si-
mulation with wild and prescribed fire emissions removed suggested
that sulfur and EC (and possibly NH3) emissions may be overestimated
from the wildfire sector. Fire-related OC performance was mixed but
removing all wild and prescribed fire emissions resulted in unreason-
able concentrations at monitors in the West and Southeast, consistent
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with previous studies (Baker et al., 2016, 2018). A simulation with
reduced crustal cation emissions demonstrated that these species have
an important influence on nitrate concentrations, and crustal cation
concentrations were frequently overestimated in the base case. Simu-
lations with different treatments of NH3 surface exchange in CMAQ
demonstrated that NH; and nitrate concentrations are sensitive to NHs
resistance and bidirectional flux parameterizations. These para-
meterizations are active areas of development in CMAQ. A simulation
using a semi-volatile POA treatment and SOA formation from poten-
tially missing combustion sources yielded higher OC concentrations at
IMPROVE sites and lower OC concentrations at CSN sites. This behavior
generally had a small impact on performance statistics, with some de-
gradation in annual NMB at IMPROVE sites in the east. However, in-
terpreting OC performance across CSN and IMPROVE networks is
challenging due to differences in OC measurements at collocated CSN
and IMPROVE sites identified in recent studies (e.g., Kim et al., 2015;
Weakley et al., 2016). Additional work is warranted on understanding
the volatility distribution of POA emissions and the magnitude of SOA
precursor emissions, particularly from wild and prescribed fires and
residential wood combustion. CMAQ predictions for wild and pre-
scribed fires may need to be supplemented with other relevant in-
formation to gain a more comprehensive understanding of fire influ-
ence in cases where such predictions are of importance (e.g., extreme
events in rural and remote areas).
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