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• Photolysis of particulate nitrate over 
seawater enhances ozone over the U.S.

• The pathway produces more ozone over 
the western than over the eastern U.S.

• The pathway improves model spring
time ozone underestimation

• The pathway improves model summer
time ozone underestimation over the 
western U.S.

• Boundary condition effect contributes 
68 % of particulate nitrate photolysis in 
the U.S.
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A B S T R A C T

We implement particulate nitrate (pNO−
3 ) photolysis into the Community Multiscale Air Quality (CMAQv5.5) 

model and examine the impact of pNO−
3 photolysis on air quality over the contiguous U.S. using 12-km hori

zontal grids for May–September 2018. Model results show that pNO−
3 photolysis increases ozone in each month 

compared to simulations without the pNO−
3 photolysis and increases monthly mean of 24-h surface ozone over 

the modeling domain by 9.3 ppb (32 %) in May, 8.0 ppb (29 %) in June, 5.6 ppb (20 %) in July, 5.1 ppbv (17 %) 
in August and 3.6 ppbv (13 %) in September. These increases are larger over the western U.S. than over the 
eastern U.S. and improve the negative ozone bias over the western U.S. Over the eastern U.S., incorporating 
pNO−

3 photolysis improves the underestimation of ozone in May but slightly deteriorates the positive ozone bias 
in June–September. However, the deterioration of the ozone bias occurs only at the lower end of observed ozone. 
Incorporating the effect improves the bias at the higher end of observed ozone and improves the comparison of 
model diurnal ozone with observed data over the western U.S. but deteriorates it over the eastern U.S. Model 
sensitivity results suggest that boundary condition effect of pNO−

3 photolysis contributes 68 % and pNO−
3 

photolysis within the limited area domain contributes 32 % of the total impact of pNO−
3 photolysis on ozone over 

the U.S. in May.
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1. Introduction

Tropospheric ozone (O3) is a harmful air pollutant with detrimental 
impacts on human health and ecosystems (US EPA, 2020a). Ozone 
mixing ratios have decreased substantially in the United States (U.S.) 
over the past two decades (Simon et al., 2015; Lefohn et al., 2017; 
Gaudel et al., 2018; Wells et al., 2021) but there remain numerous areas 
that are still in nonattainment for U.S. O3 National Ambient Air Quality 
Standards (NAAQS) of 70 ppb (https://www.epa.gov/green-book/g 
reen-book-8-hour-ozone-2015-area-information). O3 levels in the U.S. 
result from a combination of local and regional formation from U.S. 
anthropogenic emissions, natural sources, and long-range transport of 
anthropogenically formed O3 from upwind regions outside of the U.S. 
The U.S. EPA reports that the relative importance of these sources varies 
by time of year and location (US EPA, 2020b). Modeling simulations 
indicate that O3 originating from sources other than U.S. anthropogenic 
emissions (i.e., natural + international) is in the range of about 30 ppb 
averaged across all days and locations but is highest in the spring, at 
high elevation locations in the western U.S. due to transport from the 
free troposphere and in near-border areas where short-range transport 
from large urban areas along the border is important (US EPA, 2020b). 
The importance of long-range transport of anthropogenic O3 from up
wind regions outside of the U.S. is most important during spring months 
and in high-elevation western U.S. locations. These findings are based on 
analyses using comprehensive chemistry-transport models which are 
well suited for determining O3 source contributions. However, uncer
tainty in model estimates stem from uncertainty in inputs (e.g., emis
sions) as well as uncertainty in the underlying model representation of 
atmospheric physical and chemical processes (Russel and Dennis, 2000; 
Dennis et al., 2010; Napelenok et al., 2011). Recent experimental and 
observational studies (Ye et al., 2016; Ye et al., 2017; Reed et al., 2017; 
Romer et al., 2018; Shi et al., 2021; Zhu et al., 2022; Anderson et al., 
2023) suggest that nitrate photolysis in aerosol particles is accelerated 
several orders of magnitude relative to the bulk solution reaction and 
have identified particulate nitrate (pNO−

3 ) photolysis as one important 
chemical uncertainty. pNO−

3 had previously been treated as a sink for 
reactive nitrogen in most models, but pNO−

3 is now believed to be a 
reservoir from which reactive nitrogen can be recycled through 
photolysis. Photolysis of pNO−

3 has the potential to increase the lifetime 
of oxides of nitrogen (NOy) and is thus critically important to accurately 
represent the contribution of long-range international transport to O3 
levels in the U.S. In previous work, we simulated the impacts of 
including this chemistry on modeled O3 mixing ratios by using coarse- 
resolution (108-km) hemispheric CMAQ (Mathur et al., 2017) model 
simulations (Sarwar et al., 2024). Here, we further explore the impor
tance of this chemistry by pairing the hemispheric model simulations 
with finer-resolution 12-km model simulations over the contiguous U.S. 
to better characterize the impact of large scale forcings on regional and 
local-scale O3 formation.

2. Methodology

The Community Multiscale Air Quality (CMAQ) model (www.epa. 
gov/cmaq) is a state of the science air quality model containing 
comprehensive treatment of all important atmospheric processes and 
has been used in many air quality research studies and regulatory ac
tivities in and outside the U.S. It contains detailed treatment of emis
sions, advection and diffusion, gas-phase chemistry, aerosol processes, 
deposition, and cloud processes. The CMAQ model is periodically 
updated and released to the public. CMAQv5.5 was released in October 
2024 (www.epa.gov/cmaq; doi: https://doi.org/10.5281/zenodo 
.13883210) and has been used in this study. The modeling domain for 
this study covers the entire contiguous U.S., Canada, and Mexico and is 
discretized using 12-km horizontal grids and 35 vertical layers of 
varying thickness with a model top reaching to 50 hpa and a first layer 

height of approximately 20-m.
Meteorological fields for driving the CMAQ model were prepared 

using the Weather Research and Forecasting model version 4.3.3 
(WRFv4.3.3; Skamarock et al., 2021). WRF has been used for retro
spective meteorological simulations at the U.S. EPA for many years 
(Appel et al., 2017; U.S. EPA, 2019; Gilliam et al., 2021). The physics 
options followed the standard US EPA configuration. Key physics pa
rameterizations include the RRTMG shortwave and longwave radiation 
schemes (Iacono et al., 2008) and the Kain-Fritsch 2 (KF2, Kain, 2004) 
convective parameterization scheme with the subgrid cloud feedback to 
the radiation (Alapaty et al., 2012; Herwehe et al., 2014) option. The 
Morrison double-moment microphysics (Morrison et al., 2009) has been 
used for many years in WRF. The P-X Land Surface model (LSM) (Pleim 
and Xiu, 1995), the Asymmetric Convective Model, version 2 (ACM2) 
Planetary Boundary Layer (PBL) (Pleim, 2007), and Pleim surface layer 
schemes (Pleim, 2006) were used to resolve surface-atmospheric in
teractions where the National Land Cover Dataset with 40 land use 
categories (NLCD40) defined the surface characteristics.

Four-Dimensional Data Assimilation (FDDA) in the form of grid 
nudging was used for winds, temperature and moisture above the 
planetary boundary layer. FDDA has been found to significantly reduce 
the uncertainty of atmospheric state variables in the free troposphere 
(Stauffer and Seaman, 1990) and is a key model setting for retrospective 
meteorology inputs for air quality modeling (Gilliam et al., 2021). 
Three-hourly National Center for Environmental Prediction (NCEP), 
North American Model (NAM)-based 12 km analyses were the source of 
FDDA inputs. The P-X LSM used indirect soil moisture and temperature 
nudging (Pleim and Gilliam, 2009) that requires NAM-based 2-m tem
perature and moisture from the same NCEP NAM analysis. The obsgrid 
re-analysis tool was used for both FDDA and P-X soil nudging fields to 
further improve the analysis inputs that has been shown to further 
reduce modeling error (Gilliam et al., 2021).

WRF predictions were evaluated against observed surface and upper- 
air meteorology as well as precipitation and shortwave radiation over 
the U.S. Root Mean Square Error (RMSE) of model predicted tempera
ture, water vapor mixing ratio, wind speed, and wind direction are 
calculated using observed data over the U.S. (Table S.1). The WRF 
simulation had expected levels of error. Monthly error in temperature 
was <2.1 K, water vapor mixing ratio was <1.7 g kg− 1, 10-m wind speed 
was <1.7 m s− 1, and wind direction was 31–33 degrees. All of these 
follow published benchmarks like US EPA (2019) and other historical US 
EPA modeling. Thus, WRF predicted meteorological field is deemed 
suitable for driving the CMAQ model.

Model-ready emissions were generated using the Sparse Matrix 
Operator Kernel Emissions (SMOKE). Anthropogenic emissions were 
obtained from the 2017 National Emissions Inventory (USEPA, 2021) 
and were adjusted for year 2018 using year-specific data for sources 
when available (e.g., onroad, nonroad, oil and gas, power plants, vola
tile chemical products) or scaling factors following the methodology in 
Foley et al. (2023). Biogenic emissions were generated using in-line 
Biogenic Emission Inventory System (Bash et al., 2016) as imple
mented in CMAQv5.5 (doi: https://doi.org/10.5281/zenodo.13883210; 
https://github.com/USEPA/CMAQ/wiki/CMAQ-Release-Notes:
Emissions-Updates:-BEIS-Biogenic-Emissions). Lightning NOx (NOx =

NO + NO2) emissions were calculated in-line (Kang et al., 2019). Pro
cedures used in estimating fire emissions for the US EPA Air Quality 
Time Series project (EQUATES) (Beidler et al., 2024) are used. Sea-spray 
emissions in CMAQ (Gantt et al., 2015) are speciated into several aerosol 
species by mass (gm/g) (Millero, 1996): Cl− , Na+, SO4

2− , Ca2+, Mg2+, K+, 
and Br− . We include an additional tracer species for sea-salt in CMAQ as 
it does not separately track sea-salt concentration and use its molar 
concentration to calculate enhancement factor.

Chemical mechanisms used in air quality models typically do not 
include the photolysis of pNO−

3 . Nitric acid (HNO3) photolysis frequency 
is well known, and most air quality models employ HNO3 photolysis. 
However, several recent studies suggest that pNO−

3 can undergo 
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photolysis in the atmosphere. pNO−
3 photolysis frequency is usually 

expressed with an enhancement factor (EF) that is simply a ratio of 
pNO−

3 photolysis frequency and HNO3 photolysis frequency. Several 
studies (Romer et al., 2018; Shi et al., 2021) suggest that EF is small 
(1− 30). In contrast, other studies (Ye et al., 2016; Ye et al., 2017; Reed 
et al., 2017; Zhu et al., 2022; Anderson et al., 2023) suggest EF is much 
higher and can reach several hundreds. Anderson et al. (2023) recently 
completed a field campaign and suggest that EF is not constant but 
varies with many factors e.g., temperature, relative humidity, pH, par
ticle composition and particle aging, presence of dust and other factors. 
They suggest EF is generally high at low pNO−

3 concentration and low at 
high pNO−

3 concentration.
Ye et al. (2016) proposed that pNO−

3 photolysis produces HONO 
(nitrous acid) and NO2 (nitrogen dioxide) as follows: 

pNO−
3 →hv 0.67×HONO+0.33×NO2 (1) 

Dang et al. (2023) and Shah et al. (2023) implemented pNO−
3 

photolysis in GEOS-Chem using the following parametrization for EF: 

EF = 100×max

(
[SSA]

[SSA] +
[
pNO−

3
] , 0.1

)

(2) 

Where [SSA] is the molar concentration of sea-salt and [pNO3] is the 
molar concentration of pNO3. Sarwar et al. (2024) implemented eqs. 1 
and 2 into CMAQv5.4 and quantified the impact of the chemistry on O3 
over the Northern Hemisphere. Here, we also use the same chemistry 
and EF but apply this chemistry using simulations with finer 12-km grid 
resolution over the contiguous U.S. using an updated version of CMAQ 
(www.epa.gov/cmaq; doi: https://doi.org/10.5281/zenodo 
.13883210).

Two different CMAQ simulations were completed for the study. The 
first simulation was completed using the Carbon Bond 6, release 5 
(CB6r5) chemical mechanism (Yarwood et al., 2020) without any pNO3 
photolysis chemistry. Boundary and initial conditions for this simulation 
were generated from the hemispheric CMAQ results without any pNO3 
photolysis. The second simulation was completed using the CB6r5 with 
the pNO3 photolysis reaction described in eq. 1 and the EF parameter
ization from eq. 2. Boundary conditions for the second simulation were 
generated from the hemispheric CMAQ results with pNO3 photolysis 
(Sarwar et al., 2024). Boundary conditions for the second simulation 
contained lower pNO3 concentrations and higher NO2, HONO, and O3 
mixing ratios compared to those used for the first simulation. Differences 
in model results of the second and first simulations are attributed to the 
pNO3 photolysis. Both simulations started on April 20, 2018, and ended 
on September 30, 2018. The first 11 days are used as model spin-up 
period and the results for May–September are analyzed. May is taken 
as a representative month for spring while September is taken as a 
representative month for fall. The months of June, July, August 
comprised the summer season. To examine impacts of the pNO3 
photolysis without including the effect of pNO3 photolysis in the 
boundary conditions, we completed an additional sensitivity simulation 
for May. The sensitivity simulation included pNO3 photolysis but uti
lized boundary conditions from the hemispheric model without the 
pNO3 photolysis. The details of each simulation performed for this study 
are presented in Table 1.

3. Results

3.1. Impact on pNO−
3

We focus on daytime (solar radiation absorbed on ground >5-watt 
m− 2) model predictions since the pNO3 photolysis is active only during 
the day. Model predicted May – September daytime surface layer mean 
pNO3 concentrations and the impacts of the pNO3 photolysis on pNO3 
are shown in Fig. 1(a) and (b), respectively. The model without pNO3 

photolysis predicts pNO3 concentrations >0.25 μg m− 3 over portion of 
California and the surrounding coastal water, the mid-west, portions of 
western Canada, and portion of seawater. pNO3 concentrations are 
predicted to be <0.25 μg m− 3 over other areas. pNO3 photolysis reduces 
pNO3 concentrations by 0.02–0.2 μg m− 3 over seawater, parts of Cali
fornia, and the mid-west but increases pNO3 concentrations by <0.05 μg 
m− 3 over some isolated areas. The locations of the greatest decreases in 
pNO3 due to photolysis generally coincide with locations with the 
largest pNO3 concentrations in the model simulation except for Alberta, 
Canada where pNO3 photolysis had little impact on pNO3 concentra
tions despite relatively high concentrations. The reduction of pNO3 oc
curs primarily due to the direct loss of pNO3 from photolysis and lower 
pNO3 transported into the modeled domain through the boundary 
conditions. pNO3 concentrations in Alberta are very high resulting in a 
very low EF which in turn generated only small impact on pNO3 
concentrations.

Monthly Mean Bias (MB; calculated as observed concentrations – 
modeled concentrations) of model predicted pNO3 concentrations 
without and with the pNO3 photolysis is shown in Fig. 1(c) and (d) for 
the western and eastern U.S., respectively (see Fig. S.1 for definition of 
the western and eastern U.S.). Over the western U.S., the model without 
pNO3 photolysis (red bars in Fig. 1(c)) reproduces observed data in May 
as MB is close to zero. Model pNO3 concentrations without the pNO3 
photolysis are lower than the observed concentrations in other months 
as MB is negative in each month. The model with pNO3 photolysis (blue 
bars in Figs. 1(c)) marginally affects the pNO3 concentrations as MBs are 
close to those obtained with the pNO3 photolysis. Over the eastern U.S., 
model pNO3 concentrations without the pNO3 photolysis are consis
tently lower than the observed data as MB is negative in each month. 
Again, the model treatment with pNO3 photolysis only marginally af
fects the pNO3 concentrations and MBs are very similar to those ob
tained in the model simulations without pNO3 photolysis.

3.2. Impact on NO2

Model predicted mean daytime NO2 mixing ratios without the pNO3 
photolysis and the changes due to the inclusion of pNO3 photolysis are 
shown in Fig. 2a and b, respectively. The model without pNO3 photolysis 
produces NO2 mixing ratios >800 pptv over many urban areas which 
have relatively large NO2 emissions. It predicts relatively lower levels of 
NO2 away from large NO2 emissions sources over rural areas and 
seawater. Elevated NO2 mixing ratios along the shipping tracks are also 
evident in comparison to surrounding marine locations in Fig. 2(a). 
pNO3 photolysis enhances NO2 levels over seawater, large areas of the 
western U.S., Mexico, and Canada and reduces NO2 levels over large 

Table 1 
Simulation cases.

Case Chemical 
mechanism

Boundary and 
initial condition

Simulation 
period

Comments

A CB6r5 
without any 
pNO−

3 
photolysis

Hemispheric 
CMAQ results 
without any 
pNO−

3 photolysis

May to 
September

B-A = Combined 
impacts of pNO−

3 
photolysis 
occurring over the 
model domain and 
integrating the 
effect of pNO−

3 
photolysis into 
boundary condition 
B-C = Impacts of 
integrating the 
effect of pNO−

3 
photolysis into 
boundary condition 
C-A = Impacts of 
pNO−

3 photolysis 
occurring over the 
model domain

B CB6r5 with 
pNO−

3 
photolysis

Hemispheric 
CMAQ results 
with pNO−

3 
photolysis

May to 
September

C CB6r5 with 
pNO−

3 
photolysis

Hemispheric 
CMAQ results 
without any 
pNO−

3 photolysis

May
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areas of eastern U.S. Higher impacts are predicted over water than over 
land. NO2 enhancements occur primarily due to the production of NO2 
via the pNO3 photolysis and the contribution from the boundary con
dition. Over the eastern U.S., NO2 mixing ratios in the model without the 
pNO3 photolysis are relatively high compared to the western U.S. As 
shown in Fig. 3, pNO3 photolysis enhances O3 regionally. Reactions of 
NO2 with additional O3 and NO2 with NO3 (gas-phase nitrate radical) 
reduce night-time NO2 causing the morning levels to be lower than the 
corresponding values of the model without the pNO3 photolysis. In the 
eastern U.S., the lower morning NO2 level causes lower daytime NO2 
despite production from the pNO3 photolysis while in the western U.S. 
the increased production along with transport from the boundaries 
outweigh the chemical loss due to increased O3 mixing ratios. The re
action of NO2 with additional hydroxyl radical also contributes to the 
lower daytime NO2 in the eastern U.S. in the simulation with pNO3 
photolysis compared to the simulation without pNO3 photolysis. Model 
predictions are compared to data (all hours) from Air Quality System 
(AQS) over the western and eastern U.S. in Fig. 2(c) and 2(d). The AQS 
sites are generally located in urban areas with higher NO2 mixing ratios. 
Monthly MB without the pNO3 photolysis is negative in each month 
which indicates that model predictions are lower than the observed 
data. The model with pNO3 photolysis, however, does not change MB in 
the western or eastern U.S. Model changes near the surface are small; 
consequently, there are no changes in MB. Model predicted NOx mixing 
ratios are compared to data (all hours) from AQS over the western and 
eastern U.S. in Fig. 2(e) and 2(f). Consistent with the NO2 results, the 
model with pNO3 photolysis, however, does not change MB of NOx 
mixing ratios in the western or eastern U.S.

We compare CMAQ NO2 tropospheric vertical column densities 
(VCD) with retrievals from the Ozone Monitoring Instrument (OMI; 

Krotkov et al., 2017) and describe mean bias without and with pNO3 
photolysis in Fig. S.2(a) and S.2(b), respectively. CMAQ-OMI bias cal
culations use all OMI retrievals over the domain for May to September 
after excluding retrievals based on quality flags or effective cloud frac
tion >0.3. OMI pixels are regridded to CMAQ's lambert conformal grid 
using an area-weighted average approach as implemented in CMAQ 
Satellite Processor (https://github.com/barronh/cmaqsatproc v0.4.1) 
resulting in 70,089 valid grid cell pairs per day on average (51 % of 
possible cells) for comparison. To compare to CMAQ, the OMI retrieved 
slant path column density (SCD) is converted to a VCD (=SCD/(ΣwzSzs)) 
using the reported scattering weights (wz: increasing with altitude) and 
simulation dependent NO2 shape factor (Szs = VCDzs/VCDs). The shape 
factor weighted wz scales the SCD to account for both viewing geometry 
and retrieval sensitivity (Krotkov et al., 2017). Using CMAQ for the 
shape factor ensures consistent resolution and vertical distribution 
within the bias calculation. The OMI VCD will be smaller (larger) when 
the CMAQ simulation has more (less) NO2 aloft because wz increases 
with altitude. Biases obtained without pNO3 photolysis are negative 
with a mean value of − 0.50 ± 0.37 × 1015 molecules cm− 2 and a 
Normalized Mean Bias (NMB) of − 45 ± 16 %, where values are mean ±
std. over all pixels in the domain. The model with pNO3 photolysis 
generally produces positive bias with a mean value of 0.10 ± 0.20 ×
1015 molecules cm− 2 and a NMB of 23 ± 34 %. The change in bias can be 
broken down into two distinct components: (1) a direct change in the 
predicted NO2 column and (2) a change to the OMI VCD. First, pNO3 
photolysis produces NO2 and increases model average vertical column 
density by 0.36 ± 0.07 × 1015 molecules cm− 2 (81 ± 38 %). Second, 
pNO3 photolysis decreases the processed OMI vertical columns by 
changing the derived air mass factor. pNO3 photolysis disproportion
ately increases the partial columns (VCDzs) aloft where satellite 

Fig. 1. (a) May – September daytime mean pNO−
3 concentrations without pNO−

3 photolysis (Case A) (b) impact of pNO−
3 photolysis on daytime May–September mean 

pNO−
3 concentrations (Case B – Case A) (c) monthly Mean Bias (MB) of pNO−

3 concentrations without (red) and with (blue) the pNO−
3 photolysis over the western U.S. 

and (d) Monthly MB of pNO−
3 concentrations without (red) and with (blue) the pNO−

3 photolysis over the eastern U.S. Weekly (all hours) data from the Clean Air 
Status and Trends Network (CASTNET) and 24-h average data from Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Envi
ronments (IMPROVE) are combined for comparison with modeled data. Red color represents model without pNO−

3 photolysis and blue color represents model with 
pNO−

3 photolysis. The number of model/observation pairs for each month is shown above the x-axis in (c) and (d).
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sensitivity (wz) is high and, therefore, decreases the OMI VCD by − 0.26 
± 0.23 × 1015 molecules cm− 2 (− 21 ± 11 %). The direct addition of NO2 
in the column and the change in the shape factor both substantially 
contribute to the net change in estimated bias.

3.3. Impact on HONO

Model predicted May – September daytime mean HONO mixing ra
tios without the pNO3 photolysis and the changes with the HONO 
photolysis are shown in Fig. S.3a and Fig. S.3b, respectively. Model 
HONO production depends on NO2 (Sarwar et al., 2008). Relatively 
higher HONO levels are predicted over many urban areas due to 
elevated NO2 levels over those areas. Lower values are predicted over 
rural areas and seawater. Higher values along the shipping track are also 
noticeable. pNO3 photolysis enhances HONO mixing ratios over 
seawater and some land areas. However, its impact over land is gener
ally small due to lower EF. Higher impacts are seen over seawater than 
over land. Reduction of HONO occurs over some land areas due to lower 
NO2 levels. Impact of pNO3 photolysis on HONO over land is generally 
small where other HONO production pathways are important. To eval
uate the impact of the chemistry on HONO, observed HONO data are 
needed in remote areas. Model predictions are not compared to any 
observed data since such data are not available in remote areas within 
the modeling domain.

We previously compared model prediction with observed HONO 
data from a remote area off the west coast of Africa (Sarwar et al., 2024) 
(which is located outside the modeling domain used in this study) and 
model predictions with the pNO3 photolysis compared much better with 
observed data.

3.4. Impact on O3

Unlike daytime results reported for other pollutants which included 
hours where solar radiation absorbed on ground is >5-watt m− 2, day
time O3 is calculated as the daily maximum 8-h (MDA8) O3 mixing ratio, 
which is also the regulatory metric in the U.S. Mean MDA8 O3 mixing 
ratios without the pNO3 photolysis are shown in Fig. 3(a). Higher values 
are predicted over land than over seawater. pNO3 photolysis enhances 
mean MDA O3 mixing ratios by 3.0–17.0 ppbv over the U.S. and larger 
enhancements occur over the western U.S. than over the eastern U.S. 
(Fig. 3(b)). The largest enhancement occurs in May. These results are 
consistent to those presented in Sarwar et al. (2024).

Monthly MDA8 O3 MB was calculated by using model predicted O3 
and observed data from the AQS (Fig. 3(c-d)) and CASTNET (Fig. 3(e-f)) 
sites over the western and eastern U.S. Over the western U.S., the model 
without pNO3 photolysis underpredicts observed data (negative MB) at 
the AQS sites. The extent of the negative bias is largest in May and then 
the bias improves in each month but the model still underpredicts the 
observed data in each month. The model with pNO3 photolysis elimi
nates almost all negative biases and produces slightly positive mean 
biases in each month. Over the eastern U.S., the model without pNO3 
photolysis produces mixed bias compared to the observed data at AQS 
sites, with a negative mean bias in May, nearly zero mean bias in June 
and July, and positive mean bias in August and September. The model 
with the pNO3 photolysis eliminates the negative MB in May but pro
duces positive bias in June–September. A similar trend is also noticeable 
over the western and eastern U.S. at the CASTNET sites (Fig. 3(e-f)). 
Thus, over the western U.S, the model without the pNO3 photolysis 
underpredicts monthly mean MDA8 O3 throughout the May–September 

Fig. 2. (a) May–September daytime mean NO2 mixing ratios without pNO−
3 photolysis (Case A) (b) impact of pNO−

3 photolysis on NO2 mixing ratios (Case B - Case A) 
(c) Monthly MB of NO2 mixing ratios (all hours) without and with the pNO−

3 photolysis over the western U.S. at AQS sites (d) Monthly MB of NO2 mixing ratios (all 
hours) without and with the pNO−

3 photolysis over the eastern U.S. at AQS sites. (e) Monthly MB of NOx mixing ratios (all hours) without and with the pNO−
3 

photolysis over the western U.S. at AQS sites (f) Monthly MB of NOx mixing ratios (all hours) without and with the pNO−
3 photolysis over the eastern U.S. at AQS sites. 

Red color represents model without pNO−
3 photolysis and blue color represents model with pNO−

3 photolysis. The number of model/observation pairs for each month 
is shown above the x-axis in (c) and (d).

G. Sarwar et al.                                                                                                                                                                                                                                 Science of the Total Environment 970 (2025) 178968 

5 



period analyzed in this study and the pNO3 photolysis substantially 
improves the model under-predictions. Over the eastern U.S., the model 
without the pNO3 photolysis underpredicts monthly mean MDA8 O3 in 
May but produces nearly zero MB or over-predicts in June–September 
and the pNO3 photolysis improves the model under-predictions in May 
but results in positive bias in the remaining months.

Spatial plots of monthly mean MDA8 O3 MB in May at AQS sites are 
shown in Fig. 4(a-b). The model without pNO3 photolysis substantially 
under-predicts MDA8 O3 producing large negative bias over the U.S. The 
magnitude of the under-predictions is larger over the western U.S. than 
over the eastern U.S. pNO3 photolysis increases MDA8 O3 mixing ratios 
and substantially improves the bias over the U.S. eliminating the 
negative mean bias over large areas of the U.S. and producing slightly 
positive mean bias. However, negative bias is still persistent in some 
areas of the U.S. (western U.S., northeast, and the mid-west). Thus, 
pNO3 photolysis substantially improves the modeled May O3 under- 
prediction that has been reported in previous studies (Appel et al., 
2021). Spatial plots of monthly mean MB in July at AQS sites are shown 
in Fig. S.4(a-b). The model without pNO3 photolysis under-predicts 
MDA8 O3 (negative bias) over the western U.S. but produces positive 
bias over the eastern U.S. pNO3 photolysis improves model MDA8 O3 
under-prediction over the western U.S. but further exacerbates over- 
predictions of O3 over the eastern U.S.

Building upon the monthly mean results shown in Figs. 3(c)–3(f), 
daily time series of MB were calculated over the eastern and western U. 
S. by using model predicted MDA8 O3 and observed data from the AQS 
sites in each region. Over the eastern U.S., the model without pNO3 
photolysis produces mixed bias (Fig. 5(a)). The base model simulation 
without pNO3 photolysis produces negative MDA8 O3 bias for many 

days in May and June, mixed bias for remaining days in May–June and 
July, and positive bias in August and September. The model with the 
pNO3 photolysis improves the negative bias on many days in May and 
June but over-predicts on other days. Over the western U.S., the model 
without pNO3 photolysis produces negative bias (Fig. 5(b)). The 
magnitude of the negative bias is the largest in May and then the 
negative bias improves but persists in subsequent months. The model 
with pNO3 photolysis eliminates the negative bias on most days. Time 
series of daily MDA8 O3 MB at the CASTNET sites over the western and 
eastern U.S. are shown in Fig. S.5(a-b). Similar to the results at the AQS 
sites, the model without pNO3 photolysis produces negative bias over 
the western U.S. and the pNO3 photolysis improves the negative bias on 
all days over the western U.S. but only improves the bias in May and part 
of June and deteriorates it on other days over the eastern U.S. Thus, the 
model without pNO3 photolysis produces mixed bias over the eastern U. 
S. and the pNO3 photolysis improves the negative bias in May for all 
days but tends to deteriorate the bias in June–September. The Model 
without pNO3 photolysis produces negative daily bias over the western 
U.S. and the pNO3 photolysis improves the negative bias for almost all 
days in May–September modeled period.

We show MB of MDA8 O3 at the AQS sites as a function of observed 
MDA8 mixing ratio bins in Fig. 6(a, c) by combining all data during the 
simulation. Over the eastern U.S., the model without pNO3 photolysis 
produces positive bias when observed MDA8 O3 is below 50 ppbv and 
negative bias when observed MDA8 O3 is above 50 ppbv (Fig. 6(a)). The 
pNO3 photolysis further deteriorates the bias on observed days below 50 
ppbv but improves the bias on observed days above 50 ppbv. Over the 
western U.S., the model without pNO3 photolysis produces positive bias 
on days with observed MDA8 O3 below 30 ppbv and negative bias on 

Fig. 3. (a) May – September mean MDA O3 mixing ratios in simulation without pNO−
3 photolysis (Case A) (b) impact of pNO−

3 photolysis on mean MDA O3 mixing 
ratios (Case B - Case A) (c) Monthly MB of MDA8 O3 mixing ratios without (red) and with (blue) the pNO−

3 photolysis over the western U.S. at AQS sites (d) Monthly 
MB of MDA8 O3 mixing ratios without (red) and with (blue) the pNO−

3 photolysis over the eastern U.S. at AQS sites (e) Monthly MB of MDA8 O3 mixing ratios without 
(red) and with (blue) the pNO−

3 photolysis over the western U.S. at CASTNET sites (f) Monthly MB of MDA8 O3 mixing ratios without (red) and with (blue) the pNO−
3 

photolysis over the eastern U.S. at CASTNET sites. The number of model/observation pairs for each month is shown above the x-axis in (c-f).
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days with observed MDA8 O3 above 30 ppbv (Fig. 6(c)). The pNO3 
photolysis further deteriorates the bias on observed days below 30 ppbv 
but improves the bias on observed days above 30 ppbv. Root Mean 
Square Error (RMSE) of MDA8 O3 as a function of observed data are 
shown in Fig. 6(b, d). The pNO3 photolysis increases the error at the 
lower ranges of observed data but reduces the error at the higher end of 
observed data. MB and RMSE of MDA8 O3 at the CASTNET sites as a 
function of observed data are shown in Fig. S.6(a-d). Results at the 
CASTNET sites are consistent to those shown in Fig. 6(a-d) at the AQS 
sites.

We compare model diurnal patterns of hourly O3 with observed data 
for two representative months: May and July. The model predicted 
median diurnal pattern of O3 in May are compared to the observed data 
at the CASTNET and AQS sites in Fig. 7(a-d). Observed O3 mixing ratios 
are lower at night and higher during the day peaking in the mid- 
afternoon. Both model simulations reproduce the diurnal pattern of 
observed data. However, the model without pNO3 photolysis substan
tially (>10 ppbv) under-predicts the observed data both at night and 
during the day in the western U.S. The pNO3 photolysis enhances O3 
mixing ratios and substantially improves the comparison with observed 
data. Over the eastern U.S., the model without pNO3 photolysis also 
under-predicts the observed data and the pNO3 photolysis enhances O3 

mixing ratios and improves the comparison with observed data but tends 
to over-estimate observed data for some hours. The model predicted 
median diurnal pattern of O3 in July are compared to the observed data 
at the CASTNET and AQS sites in Fig. S.7(a-d). pNO3 photolysis im
proves the comparison with observed data in the western U.S. However, 
it results in overprediction in the eastern U.S.

Ozonesonde data from the National Oceanic and Atmospheric Ad
ministration's Earth System Research Laboratory are available at three 
sites (Trinidad Head, California; Boulder, Colorado and Huntsville, 
Alabama) in the U.S. (Johnson, et al., 2018). Modeled O3 mixing ratios 
are compared to observed data at Trinidad Head, California in Fig. 8. 
Model results without pNO3 photolysis are generally lower than 
observed data in May–August and the model results with pNO3 
photolysis agree better with observed data at all altitudes. In September, 
the comparison produces mixed performance. Model results with pNO3 
photolysis agree better with observed data at 1–3 km while model re
sults without pNO3 photolysis agree better with observed data at other 
altitudes. Model O3 mixing ratios are compared with observed data at 
Boulder, Colorado and Huntsville, Alabama in Fig. S.8. In Boulder, 
model results without pNO3 photolysis are consistently lower than 
observed data in May and June, and model results with pNO3 photolysis 
agree better with observed data at all altitudes. In July–August, model 

Fig. 4. (a) Spatial plot of May MB of MDA8 O3 without the pNO−
3 photolysis at the AQS sites (b) Spatial plot of May MB of MDA8 O3 with the pNO−

3 photolysis at the 
AQS sites.
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Fig. 5. (a) Daily bias of MDA8 hour O3 without and with the pNO−
3 photolysis over the eastern U.S. at AQS sites (b) Daily bias of MDA8 hour O3 without and with the 

pNO−
3 photolysis over the western U.S. at AQS sites. Red color represents model without pNO−

3 photolysis and blue color represents model with pNO−
3 photolysis.

Fig. 6. MB of MDA8 O3 without and with the pNO−
3 photolysis at AQS sites as a function of observed data: (a) the eastern U.S. (c) the western U.S. RMSE of MDA8 O3 

without and with the pNO−
3 photolysis at AQS sites as a function of observed data: (b) the eastern U.S. (d) the western U.S. The number of model/observation pairs for 

each bin is shown above the x-axis. Red color represents model without pNO−
3 photolysis and blue color represents model with pNO−

3 photolysis.
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results with pNO3 photolysis agree better with observed data at lower 
altitudes and model results without pNO3 photolysis agree better with 
observed data at higher altitudes. In September, model results without 
pNO3 photolysis agree better with observed data at all altitudes except at 
very low altitude where the model without pNO3 photolysis produces 
lower and the model with pNO3 photolysis produces higher values than 
observed data. In Huntsville, the model produces mixed results. Model 
results without pNO3 photolysis agree better with observed data at 
lower altitudes while results with pNO3 photolysis agree better with 
observed data at higher altitude in some months.

4. Sensitivity study

We calculate impacts of pNO3 photolysis occurring over the model 
domain on May MDA8 O3 by subtracting model results of the first 
simulation (Case A, which did not include any pNO3 photolysis) from the 
model results with the sensitivity simulation (Case C, which includes 
pNO3 photolysis). We calculate the impacts of integrating the effect of 
pNO3 photolysis into boundary condition by subtracting model results of 
the sensitivity simulation (Case C) from the model results with the 
second simulation (Case B, which includes pNO3 photolysis and the ef
fect of pNO3 photolysis was integrated into boundary condition). The 
impacts of the pNO3 photolysis without integrating the effect of pNO3 

Fig. 7. A comparison of model median diurnal O3 without (red line, Case A) and with (blue line, Case B) the pNO−
3 photolysis to observed O3 (black line) in May (a) 

the western U.S. at AQS sites (b) eastern U.S. at AQS sites (c) Western U.S. at CASTNET sites (d) eastern U.S. at CASTNET sites. The number of observed and model 
values at each hour is shown above the x-axis. Horizontal black bars in the figure represent median values at each hour.

Fig. 8. (a) A comparison of median modeled O3 without (red line, Case A) and with (blue line, Case B) the pNO−
3 photolysis compared to median ozonesonde data 

(black line) at Trinidad Head in California for all sonde data in May (left-hand plot), June (second-from left), July (center plot), August (second from right) and 
September (right-hand plot).
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photolysis in boundary conditions on MDA8 O3 reach up to 8 ppbv 
(Fig. 9(a)) while the impacts of integrating the effect of pNO3 photolysis 
into boundary condition are higher and reach up to 16 ppbv (Fig. 9(b)). 
Higher impacts occur over the western U.S. than the eastern U.S. in both 
cases. In essence, Fig. 9(a) shows the modeled impact of pNO3 photolysis 
on MDA8 O3 within the model domain while Fig. 9(b) shows the impact 
from long-range transport outside the 12-km modeling domain. The 
mean MDA8 O3 enhancement over the U.S. due to both effects is 11.0 
ppbv, due to the boundary condition effect of pNO3 photolysis is 7.5 
ppbv, and due to the photolysis of pNO3 from within the limited area 
domain is 3.5 ppbv. Thus, the mean MDA8 O3 enhancement over the U. 
S. due to the boundary condition effect of pNO3 photolysis is >2 times 
greater than the mean enhancement due to the photolysis of pNO3 from 
within the limited area domain. Therefore, modeling with pNO3 
photolysis using the effect of pNO3 photolysis in boundary conditions 
has a much larger impact on model O3 over the U.S. than the model 
without using the effect of pNO3 photolysis in boundary conditions. To 
calculate fractional impact of the pNO3 photolysis within the modeling 
domain on MDA8 O3, we divide the results in Fig. 9(a) by the sum of 
results in Figs. 9(a) and 9(b). Similarly, to calculate fractional impact of 
integrating the effect of pNO3 photolysis into boundary condition on 
MDA8 O3, we divide the results in Fig. 9(b) by the sum of results shown 
in Figs. 9(a) and 9(b). Fractional impacts of the pNO3 photolysis and 
integrating the effect of pNO3 photolysis into boundary condition on 
MDA8 O3 are shown in Fig. 9(c) and 9(d), respectively which show that 
50–90 % of the O3 impacts from pNO3 photolysis are a result of chem
istry occuring outside of the modeling domain. The fraction of O3 im
pacts resulting from chemistry within the domain is largest in the 
southeastern U.S. (40–50 %) and smallest along the northern border of 
the U.S. (10–20 %). While the fraction of O3 impacts resulting from 
pNO3 photolysis within the domain is the largest in the southeastern U.S. 
(Fig. 9(c)), it represents a smaller portion of the combined impact as 
most of the contribution comes from integrating the effect of pNO3 

photolysis into boundary condition (Fig. 9(d)). The combined impact is 
still largest in the western U.S. [the sum of Figs. 9(a) and 9(b)].

This analysis suggests that long-range transport from remote atmo
sphere over seawater (outside the 12-km modeling domain) increases O3 
over the U.S. The higher pNO3 photolysis frequency over remote 
seawater releases NO2 and HONO in NOx limited areas where it can 
effectively enhance O3, and this increased O3 can then be transported 
into the U.S. pNO3 photolysis also decreases pNO3 concentrations over 
seawater. However, pNO3 concentrations over seawater are much 
smaller than those over land. Thus, the transport of lower pNO3 con
centrations from the remote atmosphere over seawater to the U.S. only 
affects its concentrations by small margins. In addition, the production 
of pNO3 via atmospheric reactions in polluted atmosphere over land is 
higher than over remote areas of seawater. While pNO3 photolysis also 
increases HONO and NO2 over remote areas of seawater, their impacts 
over land are relatively small since HONO and NO2 mixing ratios over 
land are generally much higher than those over remote areas of seawater 
and additional sources of HONO and NO2 contribute to the higher 
mixing ratios over land. Thus, pNO3 photolysis has a relatively larger 
impact on O3 over the U.S. than on pNO3, HONO, and NO2. This 
sensitivity study highlights the importance of integrating the effect of 
pNO3 photolysis into boundary conditions for modeling over the U.S.

5. Summary and future direction

Here, we examine the impacts of pNO3 photolysis over seawater on 
air quality over the U.S. by using CMAQv5.5 with 12-km horizontal grid 
resolution. The model simulation with pNO3 photolysis reduces the 
pNO3 concentrations over seawater without affecting the model skill in 
reproducing the observed data in the U.S. Including pNO3 photolysis in 
the model chemistry increases NO2 mixing ratios over seawater without 
affecting the comparison of model predictions with surface layer 
observed data in the U.S. but improves the comparison with satellite 

Fig. 9. Sensitivity analysis: (a) Absolute impact of pNO−
3 photolysis on mean MDA8 O3 in May (boundary condition did not include the effects of pNO−

3 photolysis) 
(Case C - Case A) (b) absolute impact of integrating the impact of pNO−

3 photolysis into boundary condition on mean MDA8 O3 in May (the model did not include the 
pNO−

3 photolysis) (Case B - Case C) (c) fractional impact of pNO−
3 photolysis on mean MDA8 O3 in May (boundary condition did not include the effects of pNO−

3 
photolysis) (d) fractional impact of integrating the impact of pNO−

3 photolysis into boundary condition on mean MDA8 O3 in May (the model did not include the 
pNO−

3 photolysis).
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retrievals due to increases in upper layer NO2 mixing ratios. pNO3 
photolysis also increases HONO mixing ratios over seawater but has only 
small impacts on surface layer HONO over land. Finally, the model 
predicts that pNO3 photolysis substantially increases surface layer O3, 
improves the model underestimation of springtime O3 in the U.S., im
proves the underestimation of model O3 in the western U.S. in summer 
and fall, and slightly increases the overestimation in the eastern U.S. 
Including pNO3 photolysis in the model chemistry deteriorates the 
comparison with observed O3 at lower end of observed data, improves 
the underestimation of O3 at higher end of observed data, and improves 
the model diurnal patterns compared to observed data in the western U. 
S. in May and July and in the eastern U.S. in May. Model sensitivity 
results suggest that boundary condition effects account for majority of 
the impact of pNO3 photolysis on O3 in the U.S. Here, we use a simple 
parameterization for calculating pNO3 photolysis frequency. However, 
many factors including pH, relative humidity, temperature, ice and 
snow, halides, solvent cages, coexisting species, cations, organics, and 
mineral dust (Gen et al., 2022; Cao et al., 2023) can affect pNO3 
photolysis frequency. Additional field and experimental studies are 
needed to better characterize the effects of these parameters on pNO3 
photolysis frequency which can then be incorporated into air quality 
models.
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