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ABSTRACT

We implement particulate nitrate (pNO;) photolysis into the Community Multiscale Air Quality (CMAQV5.5)
model and examine the impact of pNO; photolysis on air quality over the contiguous U.S. using 12-km hori-
zontal grids for May-September 2018. Model results show that pNO; photolysis increases ozone in each month
compared to simulations without the pNO; photolysis and increases monthly mean of 24-h surface ozone over
the modeling domain by 9.3 ppb (32 %) in May, 8.0 ppb (29 %) in June, 5.6 ppb (20 %) in July, 5.1 ppbv (17 %)
in August and 3.6 ppbv (13 %) in September. These increases are larger over the western U.S. than over the
eastern U.S. and improve the negative ozone bias over the western U.S. Over the eastern U.S., incorporating
pNO; photolysis improves the underestimation of ozone in May but slightly deteriorates the positive ozone bias
in June-September. However, the deterioration of the ozone bias occurs only at the lower end of observed ozone.
Incorporating the effect improves the bias at the higher end of observed ozone and improves the comparison of
model diurnal ozone with observed data over the western U.S. but deteriorates it over the eastern U.S. Model
sensitivity results suggest that boundary condition effect of pNO; photolysis contributes 68 % and pNOj3
photolysis within the limited area domain contributes 32 % of the total impact of pNO3 photolysis on ozone over
the U.S. in May.
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1. Introduction

Tropospheric ozone (O3) is a harmful air pollutant with detrimental
impacts on human health and ecosystems (US EPA, 2020a). Ozone
mixing ratios have decreased substantially in the United States (U.S.)
over the past two decades (Simon et al., 2015; Lefohn et al., 2017;
Gaudel et al., 2018; Wells et al., 2021) but there remain numerous areas
that are still in nonattainment for U.S. O3 National Ambient Air Quality
Standards (NAAQS) of 70 ppb (https://www.epa.gov/green-book/g
reen-book-8-hour-ozone-2015-area-information). Os levels in the U.S.
result from a combination of local and regional formation from U.S.
anthropogenic emissions, natural sources, and long-range transport of
anthropogenically formed O3 from upwind regions outside of the U.S.
The U.S. EPA reports that the relative importance of these sources varies
by time of year and location (US EPA, 2020b). Modeling simulations
indicate that O3 originating from sources other than U.S. anthropogenic
emissions (i.e., natural + international) is in the range of about 30 ppb
averaged across all days and locations but is highest in the spring, at
high elevation locations in the western U.S. due to transport from the
free troposphere and in near-border areas where short-range transport
from large urban areas along the border is important (US EPA, 2020b).
The importance of long-range transport of anthropogenic O3 from up-
wind regions outside of the U.S. is most important during spring months
and in high-elevation western U.S. locations. These findings are based on
analyses using comprehensive chemistry-transport models which are
well suited for determining O3 source contributions. However, uncer-
tainty in model estimates stem from uncertainty in inputs (e.g., emis-
sions) as well as uncertainty in the underlying model representation of
atmospheric physical and chemical processes (Russel and Dennis, 2000;
Dennis et al., 2010; Napelenok et al., 2011). Recent experimental and
observational studies (Ye et al., 2016; Ye et al., 2017; Reed et al., 2017,
Romer et al., 2018; Shi et al., 2021; Zhu et al., 2022; Anderson et al.,
2023) suggest that nitrate photolysis in aerosol particles is accelerated
several orders of magnitude relative to the bulk solution reaction and
have identified particulate nitrate (pNO3) photolysis as one important
chemical uncertainty. pNO3 had previously been treated as a sink for
reactive nitrogen in most models, but pNO; is now believed to be a
reservoir from which reactive nitrogen can be recycled through
photolysis. Photolysis of pNO; has the potential to increase the lifetime
of oxides of nitrogen (NOy) and is thus critically important to accurately
represent the contribution of long-range international transport to O3
levels in the U.S. In previous work, we simulated the impacts of
including this chemistry on modeled O3 mixing ratios by using coarse-
resolution (108-km) hemispheric CMAQ (Mathur et al., 2017) model
simulations (Sarwar et al., 2024). Here, we further explore the impor-
tance of this chemistry by pairing the hemispheric model simulations
with finer-resolution 12-km model simulations over the contiguous U.S.
to better characterize the impact of large scale forcings on regional and
local-scale O3 formation.

2. Methodology

The Community Multiscale Air Quality (CMAQ) model (www.epa.
gov/cmaq) is a state of the science air quality model containing
comprehensive treatment of all important atmospheric processes and
has been used in many air quality research studies and regulatory ac-
tivities in and outside the U.S. It contains detailed treatment of emis-
sions, advection and diffusion, gas-phase chemistry, aerosol processes,
deposition, and cloud processes. The CMAQ model is periodically
updated and released to the public. CMAQV5.5 was released in October
2024 (www.epa.gov/cmaq; doi: https://doi.org/10.5281/zenodo
.13883210) and has been used in this study. The modeling domain for
this study covers the entire contiguous U.S., Canada, and Mexico and is
discretized using 12-km horizontal grids and 35 vertical layers of
varying thickness with a model top reaching to 50 hpa and a first layer
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height of approximately 20-m.

Meteorological fields for driving the CMAQ model were prepared
using the Weather Research and Forecasting model version 4.3.3
(WRFv4.3.3; Skamarock et al., 2021). WRF has been used for retro-
spective meteorological simulations at the U.S. EPA for many years
(Appel et al., 2017; U.S. EPA, 2019; Gilliam et al., 2021). The physics
options followed the standard US EPA configuration. Key physics pa-
rameterizations include the RRTMG shortwave and longwave radiation
schemes (lacono et al., 2008) and the Kain-Fritsch 2 (KF2, Kain, 2004)
convective parameterization scheme with the subgrid cloud feedback to
the radiation (Alapaty et al., 2012; Herwehe et al., 2014) option. The
Morrison double-moment microphysics (Morrison et al., 2009) has been
used for many years in WRF. The P-X Land Surface model (LSM) (Pleim
and Xiu, 1995), the Asymmetric Convective Model, version 2 (ACM2)
Planetary Boundary Layer (PBL) (Pleim, 2007), and Pleim surface layer
schemes (Pleim, 2006) were used to resolve surface-atmospheric in-
teractions where the National Land Cover Dataset with 40 land use
categories (NLCD40) defined the surface characteristics.

Four-Dimensional Data Assimilation (FDDA) in the form of grid
nudging was used for winds, temperature and moisture above the
planetary boundary layer. FDDA has been found to significantly reduce
the uncertainty of atmospheric state variables in the free troposphere
(Stauffer and Seaman, 1990) and is a key model setting for retrospective
meteorology inputs for air quality modeling (Gilliam et al., 2021).
Three-hourly National Center for Environmental Prediction (NCEP),
North American Model (NAM)-based 12 km analyses were the source of
FDDA inputs. The P-X LSM used indirect soil moisture and temperature
nudging (Pleim and Gilliam, 2009) that requires NAM-based 2-m tem-
perature and moisture from the same NCEP NAM analysis. The obsgrid
re-analysis tool was used for both FDDA and P-X soil nudging fields to
further improve the analysis inputs that has been shown to further
reduce modeling error (Gilliam et al., 2021).

WREF predictions were evaluated against observed surface and upper-
air meteorology as well as precipitation and shortwave radiation over
the U.S. Root Mean Square Error (RMSE) of model predicted tempera-
ture, water vapor mixing ratio, wind speed, and wind direction are
calculated using observed data over the U.S. (Table S.1). The WRF
simulation had expected levels of error. Monthly error in temperature
was <2.1 K, water vapor mixing ratio was <1.7 g kg1, 10-m wind speed
was <1.7 m s~!, and wind direction was 31-33 degrees. All of these
follow published benchmarks like US EPA (2019) and other historical US
EPA modeling. Thus, WRF predicted meteorological field is deemed
suitable for driving the CMAQ model.

Model-ready emissions were generated using the Sparse Matrix
Operator Kernel Emissions (SMOKE). Anthropogenic emissions were
obtained from the 2017 National Emissions Inventory (USEPA, 2021)
and were adjusted for year 2018 using year-specific data for sources
when available (e.g., onroad, nonroad, oil and gas, power plants, vola-
tile chemical products) or scaling factors following the methodology in
Foley et al. (2023). Biogenic emissions were generated using in-line
Biogenic Emission Inventory System (Bash et al., 2016) as imple-
mented in CMAQV5.5 (doi: https://doi.org/10.5281/zenodo.13883210;
https://github.com/USEPA/CMAQ/wiki/CMAQ-Release-Notes:
Emissions-Updates:-BEIS-Biogenic-Emissions). Lightning NOy (NOy =
NO + NO3) emissions were calculated in-line (Kang et al., 2019). Pro-
cedures used in estimating fire emissions for the US EPA Air Quality
Time Series project (EQUATES) (Beidler et al., 2024) are used. Sea-spray
emissions in CMAQ (Gantt et al., 2015) are speciated into several aerosol
species by mass (gm/g) (Millero, 1996): CI~, Na™, SO3~, Ca®*, Mg?*, K*,
and Br™. We include an additional tracer species for sea-salt in CMAQ as
it does not separately track sea-salt concentration and use its molar
concentration to calculate enhancement factor.

Chemical mechanisms used in air quality models typically do not
include the photolysis of pNOj . Nitric acid (HNO3) photolysis frequency
is well known, and most air quality models employ HNOgs photolysis.
However, several recent studies suggest that pNO; can undergo
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photolysis in the atmosphere. pNO; photolysis frequency is usually
expressed with an enhancement factor (EF) that is simply a ratio of
pNO; photolysis frequency and HNO3 photolysis frequency. Several
studies (Romer et al., 2018; Shi et al., 2021) suggest that EF is small
(1-30). In contrast, other studies (Ye et al., 2016; Ye et al., 2017; Reed
et al., 2017; Zhu et al., 2022; Anderson et al., 2023) suggest EF is much
higher and can reach several hundreds. Anderson et al. (2023) recently
completed a field campaign and suggest that EF is not constant but
varies with many factors e.g., temperature, relative humidity, pH, par-
ticle composition and particle aging, presence of dust and other factors.
They suggest EF is generally high at low pNO3 concentration and low at
high pNO; concentration.

Ye et al. (2016) proposed that pNO; photolysis produces HONO
(nitrous acid) and NO», (nitrogen dioxide) as follows:

pNO; % 0.67 x HONO +0.33 x NO, )

Dang et al. (2023) and Shah et al. (2023) implemented pNO;
photolysis in GEOS-Chem using the following parametrization for EF:

[SSA]
[SSA] + [pNO5 |’ 0‘1> @

EF =100 x max(
Where [SSA] is the molar concentration of sea-salt and [pNOs] is the
molar concentration of pNO3. Sarwar et al. (2024) implemented egs. 1
and 2 into CMAQV5.4 and quantified the impact of the chemistry on O3
over the Northern Hemisphere. Here, we also use the same chemistry
and EF but apply this chemistry using simulations with finer 12-km grid
resolution over the contiguous U.S. using an updated version of CMAQ
(www.epa.gov/cmagq; doi: https://doi.org/10.5281/zenodo
.13883210).

Two different CMAQ simulations were completed for the study. The
first simulation was completed using the Carbon Bond 6, release 5
(CB6r5) chemical mechanism (Yarwood et al., 2020) without any pNO3
photolysis chemistry. Boundary and initial conditions for this simulation
were generated from the hemispheric CMAQ results without any pNO3
photolysis. The second simulation was completed using the CB6r5 with
the pNOs photolysis reaction described in eq. 1 and the EF parameter-
ization from eq. 2. Boundary conditions for the second simulation were
generated from the hemispheric CMAQ results with pNOs photolysis
(Sarwar et al., 2024). Boundary conditions for the second simulation
contained lower pNO3 concentrations and higher NO,, HONO, and O3
mixing ratios compared to those used for the first simulation. Differences
in model results of the second and first simulations are attributed to the
pNOs photolysis. Both simulations started on April 20, 2018, and ended
on September 30, 2018. The first 11 days are used as model spin-up
period and the results for May-September are analyzed. May is taken
as a representative month for spring while September is taken as a
representative month for fall. The months of June, July, August
comprised the summer season. To examine impacts of the pNOs
photolysis without including the effect of pNO3 photolysis in the
boundary conditions, we completed an additional sensitivity simulation
for May. The sensitivity simulation included pNOs photolysis but uti-
lized boundary conditions from the hemispheric model without the
PNO3 photolysis. The details of each simulation performed for this study
are presented in Table 1.

3. Results
3.1. Impact on pNOg

We focus on daytime (solar radiation absorbed on ground >5-watt
m~?) model predictions since the pNO3 photolysis is active only during
the day. Model predicted May — September daytime surface layer mean
pNO;3 concentrations and the impacts of the pNO3 photolysis on pNO3
are shown in Fig. 1(a) and (b), respectively. The model without pNO3
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Table 1
Simulation cases.
Case  Chemical Boundary and Simulation Comments
mechanism initial condition period
A CB6r5 Hemispheric May to B-A = Combined
without any CMAQ results September impacts of pNO3
pNO3 without any photolysis
photolysis pNOj; photolysis occurring over the
B CB6r5 with Hemispheric May to model domain and
pNO3 CMAQ results September integrating the
photolysis with pNO3 effect of pNO3
photolysis photolysis into
C CB6r5 with Hemispheric May boundary condition
pNO3 CMAQ results B-C = Impacts of
photolysis without any integrating the

pNO; photolysis effect of pNO3
photolysis into
boundary condition
C-A = Impacts of
PNO; photolysis
occurring over the
model domain

photolysis predicts pNO3 concentrations >0.25 pg m™> over portion of
California and the surrounding coastal water, the mid-west, portions of
western Canada, and portion of seawater. pNOs concentrations are
predicted to be <0.25 pg m ™~ over other areas. pNO3 photolysis reduces
pNO3 concentrations by 0.02-0.2 pg m~> over seawater, parts of Cali-
fornia, and the mid-west but increases pNO3 concentrations by <0.05 pg
m 2 over some isolated areas. The locations of the greatest decreases in
pNO3 due to photolysis generally coincide with locations with the
largest pNO3 concentrations in the model simulation except for Alberta,
Canada where pNO3 photolysis had little impact on pNOs3 concentra-
tions despite relatively high concentrations. The reduction of pNO3 oc-
curs primarily due to the direct loss of pNO3 from photolysis and lower
pNO;3 transported into the modeled domain through the boundary
conditions. pNO3 concentrations in Alberta are very high resulting in a
very low EF which in turn generated only small impact on pNOj
concentrations.

Monthly Mean Bias (MB; calculated as observed concentrations —
modeled concentrations) of model predicted pNOs concentrations
without and with the pNO3 photolysis is shown in Fig. 1(c) and (d) for
the western and eastern U.S., respectively (see Fig. S.1 for definition of
the western and eastern U.S.). Over the western U.S., the model without
pNOs photolysis (red bars in Fig. 1(c)) reproduces observed data in May
as MB is close to zero. Model pNO3 concentrations without the pNO3
photolysis are lower than the observed concentrations in other months
as MB is negative in each month. The model with pNO3 photolysis (blue
bars in Figs. 1(c)) marginally affects the pNO3 concentrations as MBs are
close to those obtained with the pNO3 photolysis. Over the eastern U.S.,
model pNOs3 concentrations without the pNO3 photolysis are consis-
tently lower than the observed data as MB is negative in each month.
Again, the model treatment with pNO3 photolysis only marginally af-
fects the pNO3 concentrations and MBs are very similar to those ob-
tained in the model simulations without pNO3 photolysis.

3.2. Impact on NO»

Model predicted mean daytime NO2 mixing ratios without the pNO3
photolysis and the changes due to the inclusion of pNOg photolysis are
shown in Fig. 2a and b, respectively. The model without pNO3 photolysis
produces NO; mixing ratios >800 pptv over many urban areas which
have relatively large NO; emissions. It predicts relatively lower levels of
NO, away from large NO, emissions sources over rural areas and
seawater. Elevated NOy mixing ratios along the shipping tracks are also
evident in comparison to surrounding marine locations in Fig. 2(a).
pNO3 photolysis enhances NO, levels over seawater, large areas of the
western U.S., Mexico, and Canada and reduces NO; levels over large
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(b) Impact of the chemistry on pNO3
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Fig. 1. (a) May - September daytime mean pNO; concentrations without pNO; photolysis (Case A) (b) impact of pNO; photolysis on daytime May—September mean
pNO; concentrations (Case B — Case A) (c) monthly Mean Bias (MB) of pNO; concentrations without (red) and with (blue) the pNO; photolysis over the western U.S.
and (d) Monthly MB of pNO; concentrations without (red) and with (blue) the pNO; photolysis over the eastern U.S. Weekly (all hours) data from the Clean Air
Status and Trends Network (CASTNET) and 24-h average data from Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Envi-
ronments (IMPROVE) are combined for comparison with modeled data. Red color represents model without pNO; photolysis and blue color represents model with
pNO; photolysis. The number of model/observation pairs for each month is shown above the x-axis in (¢) and (d).

areas of eastern U.S. Higher impacts are predicted over water than over
land. NO; enhancements occur primarily due to the production of NOy
via the pNOs3 photolysis and the contribution from the boundary con-
dition. Over the eastern U.S., NOy mixing ratios in the model without the
pNOs photolysis are relatively high compared to the western U.S. As
shown in Fig. 3, pNO3 photolysis enhances O3 regionally. Reactions of
NO, with additional O3 and NO; with NO3 (gas-phase nitrate radical)
reduce night-time NO3 causing the morning levels to be lower than the
corresponding values of the model without the pNO3 photolysis. In the
eastern U.S., the lower morning NO, level causes lower daytime NO,
despite production from the pNO3 photolysis while in the western U.S.
the increased production along with transport from the boundaries
outweigh the chemical loss due to increased Os mixing ratios. The re-
action of NO2 with additional hydroxyl radical also contributes to the
lower daytime NOg in the eastern U.S. in the simulation with pNO3
photolysis compared to the simulation without pNOg photolysis. Model
predictions are compared to data (all hours) from Air Quality System
(AQS) over the western and eastern U.S. in Fig. 2(c) and 2(d). The AQS
sites are generally located in urban areas with higher NOy mixing ratios.
Monthly MB without the pNO3 photolysis is negative in each month
which indicates that model predictions are lower than the observed
data. The model with pNOs photolysis, however, does not change MB in
the western or eastern U.S. Model changes near the surface are small;
consequently, there are no changes in MB. Model predicted NOx mixing
ratios are compared to data (all hours) from AQS over the western and
eastern U.S. in Fig. 2(e) and 2(f). Consistent with the NO, results, the
model with pNO3 photolysis, however, does not change MB of NOy
mixing ratios in the western or eastern U.S.

We compare CMAQ NO, tropospheric vertical column densities
(VCD) with retrievals from the Ozone Monitoring Instrument (OMI;

Krotkov et al., 2017) and describe mean bias without and with pNOg
photolysis in Fig. S.2(a) and S.2(b), respectively. CMAQ-OMI bias cal-
culations use all OMI retrievals over the domain for May to September
after excluding retrievals based on quality flags or effective cloud frac-
tion >0.3. OMI pixels are regridded to CMAQ's lambert conformal grid
using an area-weighted average approach as implemented in CMAQ
Satellite Processor (https://github.com/barronh/cmagsatproc v0.4.1)
resulting in 70,089 valid grid cell pairs per day on average (51 % of
possible cells) for comparison. To compare to CMAQ, the OMI retrieved
slant path column density (SCD) is converted to a VCD (=SCD/(Zw,S;s))
using the reported scattering weights (w,: increasing with altitude) and
simulation dependent NO; shape factor (Sz; = VCD,;/VCDy). The shape
factor weighted w; scales the SCD to account for both viewing geometry
and retrieval sensitivity (Krotkov et al., 2017). Using CMAQ for the
shape factor ensures consistent resolution and vertical distribution
within the bias calculation. The OMI VCD will be smaller (larger) when
the CMAQ simulation has more (less) NO, aloft because w, increases
with altitude. Biases obtained without pNO3 photolysis are negative
with a mean value of —0.50 + 0.37 x 10'° molecules cm™2 and a
Normalized Mean Bias (NMB) of —45 4 16 %, where values are mean =+
std. over all pixels in the domain. The model with pNOs photolysis
generally produces positive bias with a mean value of 0.10 + 0.20 X
10'® molecules cm ™2 and a NMB of 23 + 34 %. The change in bias can be
broken down into two distinct components: (1) a direct change in the
predicted NO2 column and (2) a change to the OMI VCD. First, pNOg
photolysis produces NO; and increases model average vertical column
density by 0.36 + 0.07 x 10> molecules cm ™2 (81 + 38 %). Second,
pNO3 photolysis decreases the processed OMI vertical columns by
changing the derived air mass factor. pNO3 photolysis disproportion-
ately increases the partial columns (VCD,) aloft where satellite
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(b) Impact of the chemistry on NO->
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Fig. 2. (a) May-September daytime mean NO, mixing ratios without pNO;3 photolysis (Case A) (b) impact of pNO; photolysis on NO, mixing ratios (Case B - Case A)
(c) Monthly MB of NO, mixing ratios (all hours) without and with the pNO; photolysis over the western U.S. at AQS sites (d) Monthly MB of NO, mixing ratios (all
hours) without and with the pNO; photolysis over the eastern U.S. at AQS sites. (e) Monthly MB of NO, mixing ratios (all hours) without and with the pNO3
photolysis over the western U.S. at AQS sites (f) Monthly MB of NOy mixing ratios (all hours) without and with the pNO3 photolysis over the eastern U.S. at AQS sites.
Red color represents model without pNO; photolysis and blue color represents model with pNO; photolysis. The number of model/observation pairs for each month

is shown above the x-axis in (c¢) and (d).

sensitivity (w;) is high and, therefore, decreases the OMI VCD by —0.26
4+ 0.23 x 10'° molecules cm™2 (—21 + 11 %). The direct addition of NO
in the column and the change in the shape factor both substantially
contribute to the net change in estimated bias.

3.3. Impact on HONO

Model predicted May — September daytime mean HONO mixing ra-
tios without the pNOs photolysis and the changes with the HONO
photolysis are shown in Fig. S.3a and Fig. S.3b, respectively. Model
HONO production depends on NO, (Sarwar et al., 2008). Relatively
higher HONO levels are predicted over many urban areas due to
elevated NO levels over those areas. Lower values are predicted over
rural areas and seawater. Higher values along the shipping track are also
noticeable. pNOs3; photolysis enhances HONO mixing ratios over
seawater and some land areas. However, its impact over land is gener-
ally small due to lower EF. Higher impacts are seen over seawater than
over land. Reduction of HONO occurs over some land areas due to lower
NO;, levels. Impact of pNO3 photolysis on HONO over land is generally
small where other HONO production pathways are important. To eval-
uate the impact of the chemistry on HONO, observed HONO data are
needed in remote areas. Model predictions are not compared to any
observed data since such data are not available in remote areas within
the modeling domain.

We previously compared model prediction with observed HONO
data from a remote area off the west coast of Africa (Sarwar et al., 2024)
(which is located outside the modeling domain used in this study) and
model predictions with the pNO3 photolysis compared much better with
observed data.

3.4. Impact on O3

Unlike daytime results reported for other pollutants which included
hours where solar radiation absorbed on ground is >5-watt m~2, day-
time Os is calculated as the daily maximum 8-h (MDAS8) O3 mixing ratio,
which is also the regulatory metric in the U.S. Mean MDA8 Os mixing
ratios without the pNOg photolysis are shown in Fig. 3(a). Higher values
are predicted over land than over seawater. pNO3 photolysis enhances
mean MDA O3 mixing ratios by 3.0-17.0 ppbv over the U.S. and larger
enhancements occur over the western U.S. than over the eastern U.S.
(Fig. 3(b)). The largest enhancement occurs in May. These results are
consistent to those presented in Sarwar et al. (2024).

Monthly MDA8 O3 MB was calculated by using model predicted O3
and observed data from the AQS (Fig. 3(c-d)) and CASTNET (Fig. 3(e-f))
sites over the western and eastern U.S. Over the western U.S., the model
without pNOs photolysis underpredicts observed data (negative MB) at
the AQS sites. The extent of the negative bias is largest in May and then
the bias improves in each month but the model still underpredicts the
observed data in each month. The model with pNOs photolysis elimi-
nates almost all negative biases and produces slightly positive mean
biases in each month. Over the eastern U.S., the model without pNO3
photolysis produces mixed bias compared to the observed data at AQS
sites, with a negative mean bias in May, nearly zero mean bias in June
and July, and positive mean bias in August and September. The model
with the pNOgs photolysis eliminates the negative MB in May but pro-
duces positive bias in June-September. A similar trend is also noticeable
over the western and eastern U.S. at the CASTNET sites (Fig. 3(e-)).
Thus, over the western U.S, the model without the pNO3 photolysis
underpredicts monthly mean MDA8 O3 throughout the May-September
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(a) Mean MDAS8 O3 w/o pNO3 photolysis
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(b) Impact of the chemistry on MDAS8 O3
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Fig. 3. (a) May — September mean MDA O3 mixing ratios in simulation without pNO; photolysis (Case A) (b) impact of pNO; photolysis on mean MDA O3 mixing
ratios (Case B - Case A) (c) Monthly MB of MDA8 O3 mixing ratios without (red) and with (blue) the pNO; photolysis over the western U.S. at AQS sites (d) Monthly
MB of MDA8 O3 mixing ratios without (red) and with (blue) the pNO5 photolysis over the eastern U.S. at AQS sites (e) Monthly MB of MDAS8 O3 mixing ratios without
(red) and with (blue) the pNOj photolysis over the western U.S. at CASTNET sites (f) Monthly MB of MDA8 O3 mixing ratios without (red) and with (blue) the pNO3
photolysis over the eastern U.S. at CASTNET sites. The number of model/observation pairs for each month is shown above the x-axis in (c-f).

period analyzed in this study and the pNOj3 photolysis substantially
improves the model under-predictions. Over the eastern U.S., the model
without the pNO3 photolysis underpredicts monthly mean MDA8 Os in
May but produces nearly zero MB or over-predicts in June-September
and the pNOg photolysis improves the model under-predictions in May
but results in positive bias in the remaining months.

Spatial plots of monthly mean MDA8 O3 MB in May at AQS sites are
shown in Fig. 4(a-b). The model without pNO3 photolysis substantially
under-predicts MDA8 O3 producing large negative bias over the U.S. The
magnitude of the under-predictions is larger over the western U.S. than
over the eastern U.S. pNO3 photolysis increases MDA8 O3 mixing ratios
and substantially improves the bias over the U.S. eliminating the
negative mean bias over large areas of the U.S. and producing slightly
positive mean bias. However, negative bias is still persistent in some
areas of the U.S. (western U.S., northeast, and the mid-west). Thus,
pNO3 photolysis substantially improves the modeled May Os under-
prediction that has been reported in previous studies (Appel et al.,
2021). Spatial plots of monthly mean MB in July at AQS sites are shown
in Fig. S.4(a-b). The model without pNO3 photolysis under-predicts
MDAS8 Os (negative bias) over the western U.S. but produces positive
bias over the eastern U.S. pNO3 photolysis improves model MDA8 O3
under-prediction over the western U.S. but further exacerbates over-
predictions of Os over the eastern U.S.

Building upon the monthly mean results shown in Figs. 3(c)-3(f),
daily time series of MB were calculated over the eastern and western U.
S. by using model predicted MDA8 O3 and observed data from the AQS
sites in each region. Over the eastern U.S., the model without pNO3
photolysis produces mixed bias (Fig. 5(a)). The base model simulation
without pNO3 photolysis produces negative MDA8 Ogs bias for many

days in May and June, mixed bias for remaining days in May-June and
July, and positive bias in August and September. The model with the
pNO3 photolysis improves the negative bias on many days in May and
June but over-predicts on other days. Over the western U.S., the model
without pNOs photolysis produces negative bias (Fig. 5(b)). The
magnitude of the negative bias is the largest in May and then the
negative bias improves but persists in subsequent months. The model
with pNOs photolysis eliminates the negative bias on most days. Time
series of daily MDA8 O3 MB at the CASTNET sites over the western and
eastern U.S. are shown in Fig. S.5(a-b). Similar to the results at the AQS
sites, the model without pNOs photolysis produces negative bias over
the western U.S. and the pNOg3 photolysis improves the negative bias on
all days over the western U.S. but only improves the bias in May and part
of June and deteriorates it on other days over the eastern U.S. Thus, the
model without pNO3 photolysis produces mixed bias over the eastern U.
S. and the pNOj3 photolysis improves the negative bias in May for all
days but tends to deteriorate the bias in June-September. The Model
without pNO3 photolysis produces negative daily bias over the western
U.S. and the pNOj3 photolysis improves the negative bias for almost all
days in May-September modeled period.

We show MB of MDAS8 O3 at the AQS sites as a function of observed
MDAS8 mixing ratio bins in Fig. 6(a, ¢) by combining all data during the
simulation. Over the eastern U.S., the model without pNO3 photolysis
produces positive bias when observed MDAS8 Os is below 50 ppbv and
negative bias when observed MDAS8 Og is above 50 ppbv (Fig. 6(a)). The
pNO3 photolysis further deteriorates the bias on observed days below 50
ppbv but improves the bias on observed days above 50 ppbv. Over the
western U.S., the model without pNOs3 photolysis produces positive bias
on days with observed MDA8 O3 below 30 ppbv and negative bias on
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Modeled — Observed O3_8hrmax for run CMAQv55_2018_12US1_STAGE_EM_CBG6RS5 for 20180501 to 20180531
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Fig. 4. (a) Spatial plot of May MB of MDAS8 O3 without the pNO; photolysis at the AQS sites (b) Spatial plot of May MB of MDA8 O3 with the pNO; photolysis at the

AQS sites.

days with observed MDA8 O3 above 30 ppbv (Fig. 6(c)). The pNO3
photolysis further deteriorates the bias on observed days below 30 ppbv
but improves the bias on observed days above 30 ppbv. Root Mean
Square Error (RMSE) of MDA8 Os as a function of observed data are
shown in Fig. 6(b, d). The pNO3 photolysis increases the error at the
lower ranges of observed data but reduces the error at the higher end of
observed data. MB and RMSE of MDA8 O3 at the CASTNET sites as a
function of observed data are shown in Fig. S.6(a-d). Results at the
CASTNET sites are consistent to those shown in Fig. 6(a-d) at the AQS
sites.

We compare model diurnal patterns of hourly O3 with observed data
for two representative months: May and July. The model predicted
median diurnal pattern of O3 in May are compared to the observed data
at the CASTNET and AQS sites in Fig. 7(a-d). Observed O3 mixing ratios
are lower at night and higher during the day peaking in the mid-
afternoon. Both model simulations reproduce the diurnal pattern of
observed data. However, the model without pNOgs photolysis substan-
tially (>10 ppbv) under-predicts the observed data both at night and
during the day in the western U.S. The pNOs photolysis enhances O3
mixing ratios and substantially improves the comparison with observed
data. Over the eastern U.S., the model without pNO3 photolysis also
under-predicts the observed data and the pNO3 photolysis enhances O3

mixing ratios and improves the comparison with observed data but tends
to over-estimate observed data for some hours. The model predicted
median diurnal pattern of O3 in July are compared to the observed data
at the CASTNET and AQS sites in Fig. S.7(a-d). pNO3 photolysis im-
proves the comparison with observed data in the western U.S. However,
it results in overprediction in the eastern U.S.

Ozonesonde data from the National Oceanic and Atmospheric Ad-
ministration's Earth System Research Laboratory are available at three
sites (Trinidad Head, California; Boulder, Colorado and Huntsville,
Alabama) in the U.S. (Johnson, et al., 2018). Modeled O3 mixing ratios
are compared to observed data at Trinidad Head, California in Fig. 8.
Model results without pNOs photolysis are generally lower than
observed data in May-August and the model results with pNO;
photolysis agree better with observed data at all altitudes. In September,
the comparison produces mixed performance. Model results with pNO3
photolysis agree better with observed data at 1-3 km while model re-
sults without pNOg3 photolysis agree better with observed data at other
altitudes. Model O3 mixing ratios are compared with observed data at
Boulder, Colorado and Huntsville, Alabama in Fig. S.8. In Boulder,
model results without pNO3 photolysis are consistently lower than
observed data in May and June, and model results with pNO3 photolysis
agree better with observed data at all altitudes. In July—August, model
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results with pNO3 photolysis agree better with observed data at lower
altitudes and model results without pNO3 photolysis agree better with
observed data at higher altitudes. In September, model results without
pNOs photolysis agree better with observed data at all altitudes except at
very low altitude where the model without pNOgs photolysis produces
lower and the model with pNO3 photolysis produces higher values than
observed data. In Huntsville, the model produces mixed results. Model
results without pNO3 photolysis agree better with observed data at
lower altitudes while results with pNO3 photolysis agree better with
observed data at higher altitude in some months.

4. Sensitivity study

We calculate impacts of pNO3 photolysis occurring over the model
domain on May MDA8 Os by subtracting model results of the first
simulation (Case A, which did not include any pNOj3 photolysis) from the
model results with the sensitivity simulation (Case C, which includes
pNOs photolysis). We calculate the impacts of integrating the effect of
PNOs photolysis into boundary condition by subtracting model results of
the sensitivity simulation (Case C) from the model results with the
second simulation (Case B, which includes pNO3 photolysis and the ef-
fect of pNOg3 photolysis was integrated into boundary condition). The
impacts of the pNO3 photolysis without integrating the effect of pNO3
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photolysis in boundary conditions on MDA8 Ogs reach up to 8 ppbv
(Fig. 9(a)) while the impacts of integrating the effect of pNO3 photolysis
into boundary condition are higher and reach up to 16 ppbv (Fig. 9(b)).
Higher impacts occur over the western U.S. than the eastern U.S. in both
cases. In essence, Fig. 9(a) shows the modeled impact of pNO3 photolysis
on MDAS8 O3 within the model domain while Fig. 9(b) shows the impact
from long-range transport outside the 12-km modeling domain. The
mean MDA8 O3 enhancement over the U.S. due to both effects is 11.0
ppbv, due to the boundary condition effect of pNO3 photolysis is 7.5
ppbv, and due to the photolysis of pNO3 from within the limited area
domain is 3.5 ppbv. Thus, the mean MDA8 O3 enhancement over the U.
S. due to the boundary condition effect of pNO3 photolysis is >2 times
greater than the mean enhancement due to the photolysis of pNO3 from
within the limited area domain. Therefore, modeling with pNO3
photolysis using the effect of pNO3 photolysis in boundary conditions
has a much larger impact on model O3 over the U.S. than the model
without using the effect of pNO3 photolysis in boundary conditions. To
calculate fractional impact of the pNOgs photolysis within the modeling
domain on MDAS8 O3, we divide the results in Fig. 9(a) by the sum of
results in Figs. 9(a) and 9(b). Similarly, to calculate fractional impact of
integrating the effect of pNO3 photolysis into boundary condition on
MDAS O3, we divide the results in Fig. 9(b) by the sum of results shown
in Figs. 9(a) and 9(b). Fractional impacts of the pNO3 photolysis and
integrating the effect of pNOs photolysis into boundary condition on
MDAS8 O3 are shown in Fig. 9(c) and 9(d), respectively which show that
50-90 % of the O3 impacts from pNO3 photolysis are a result of chem-
istry occuring outside of the modeling domain. The fraction of O3 im-
pacts resulting from chemistry within the domain is largest in the
southeastern U.S. (40-50 %) and smallest along the northern border of
the U.S. (10-20 %). While the fraction of O3 impacts resulting from
PpNO3 photolysis within the domain is the largest in the southeastern U.S.
(Fig. 9(c)), it represents a smaller portion of the combined impact as
most of the contribution comes from integrating the effect of pNO3

(a) Impact of pNO3 photolysis

AOs [ppbV]
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photolysis into boundary condition (Fig. 9(d)). The combined impact is
still largest in the western U.S. [the sum of Figs. 9(a) and 9(b)].

This analysis suggests that long-range transport from remote atmo-
sphere over seawater (outside the 12-km modeling domain) increases O3
over the U.S. The higher pNO;3 photolysis frequency over remote
seawater releases NO, and HONO in NOy limited areas where it can
effectively enhance O3 and this increased O3 can then be transported
into the U.S. pNOg3 photolysis also decreases pNO3 concentrations over
seawater. However, pNOs concentrations over seawater are much
smaller than those over land. Thus, the transport of lower pNO3 con-
centrations from the remote atmosphere over seawater to the U.S. only
affects its concentrations by small margins. In addition, the production
of pNOj3 via atmospheric reactions in polluted atmosphere over land is
higher than over remote areas of seawater. While pNO3 photolysis also
increases HONO and NO, over remote areas of seawater, their impacts
over land are relatively small since HONO and NOy mixing ratios over
land are generally much higher than those over remote areas of seawater
and additional sources of HONO and NOs contribute to the higher
mixing ratios over land. Thus, pNO3 photolysis has a relatively larger
impact on O3 over the U.S. than on pNOs, HONO, and NO,. This
sensitivity study highlights the importance of integrating the effect of
PNOs photolysis into boundary conditions for modeling over the U.S.

5. Summary and future direction

Here, we examine the impacts of pNO3 photolysis over seawater on
air quality over the U.S. by using CMAQv5.5 with 12-km horizontal grid
resolution. The model simulation with pNO3 photolysis reduces the
pNO3 concentrations over seawater without affecting the model skill in
reproducing the observed data in the U.S. Including pNO3 photolysis in
the model chemistry increases NO2 mixing ratios over seawater without
affecting the comparison of model predictions with surface layer
observed data in the U.S. but improves the comparison with satellite

(b) Impact of boundary condition
v L=

5

AO3 [ppbV]
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Fig. 9. Sensitivity analysis: (a) Absolute impact of pNO; photolysis on mean MDAS8 O3 in May (boundary condition did not include the effects of pNO3 photolysis)
(Case C - Case A) (b) absolute impact of integrating the impact of pNO3 photolysis into boundary condition on mean MDA8 O3 in May (the model did not include the
PNO; photolysis) (Case B - Case C) (c) fractional impact of pNO; photolysis on mean MDA8 O3 in May (boundary condition did not include the effects of pNO3
photolysis) (d) fractional impact of integrating the impact of pNO; photolysis into boundary condition on mean MDAS8 O3 in May (the model did not include the

pPNO; photolysis).
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retrievals due to increases in upper layer NOy mixing ratios. pNO3
photolysis also increases HONO mixing ratios over seawater but has only
small impacts on surface layer HONO over land. Finally, the model
predicts that pNO3 photolysis substantially increases surface layer Os,
improves the model underestimation of springtime O3 in the U.S., im-
proves the underestimation of model Og in the western U.S. in summer
and fall, and slightly increases the overestimation in the eastern U.S.
Including pNOs3 photolysis in the model chemistry deteriorates the
comparison with observed O3 at lower end of observed data, improves
the underestimation of Os at higher end of observed data, and improves
the model diurnal patterns compared to observed data in the western U.
S. in May and July and in the eastern U.S. in May. Model sensitivity
results suggest that boundary condition effects account for majority of
the impact of pNOs photolysis on O3 in the U.S. Here, we use a simple
parameterization for calculating pNOs photolysis frequency. However,
many factors including pH, relative humidity, temperature, ice and
snow, halides, solvent cages, coexisting species, cations, organics, and
mineral dust (Gen et al., 2022; Cao et al., 2023) can affect pNO3
photolysis frequency. Additional field and experimental studies are
needed to better characterize the effects of these parameters on pNO3
photolysis frequency which can then be incorporated into air quality
models.
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