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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Current vehicular ammonia emissions in 
US urban inventories are 
underestimated. 

• New NH3 emission rates based on 
roadside measurements of cars and 
trucks across US. 

• Onroad NH3 inventory increases 
roughly by a factor of 2 in urban areas. 

• Updated NH3 emissions reduce model 
bias in modeled NH3 concentrations. 

• Modeled PM2.5 increases particularly in 
winter in the northeast region.  
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A B S T R A C T   

The US Environmental Protection Agency (EPA) estimates on-road vehicles emissions using the Motor Vehicle 
Emission Simulator (MOVES). We developed updated ammonia emission rates for MOVES based on road-side 
exhaust emission measurements of light-duty gasoline and heavy-duty diesel vehicles. The resulting nation
wide on-road vehicle ammonia emissions are 1.8, 2.1, 1.8, and 1.6 times higher than the MOVES3 estimates for 
calendar years 2010, 2017, 2024, and 2035, respectively, primarily due to an increase in light-duty gasoline 
vehicle NH3 emission rates. We conducted an air quality simulation using the Community Multi-Scale Air Quality 
(CMAQv5.3.2) model to evaluate the sensitivity of modeled ammonia and fine particulate matter (PM2.5) con
centrations in calendar year 2017 using the updated on-road vehicle ammonia emissions. The average monthly 
urban ammonia ambient concentrations increased by up to 2.3 ppbv in January and 3.0 ppbv in July. The 
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updated on-road NH3 emission rates resulted in better agreement of modeled ammonia concentrations with 2017 
annual average ambient ammonia measurements, reducing model bias by 5.8 % in the Northeast region. Modeled 
average winter PM2.5 concentrations increased in urban areas, including enhancements of up to 0.5 μg/m3 in the 
northeast United States. The updated ammonia emission rates have been incorporated in MOVES4 and will be 
used in future versions of the NEI and EPA’s modeling platforms.   

1. Introduction 

Atmospheric ammonia (NH3) concentrations have increased by more 
than 40% in the United States from 2008 to 2018 based on both ground- 
level (Yao and Zhang, 2019) and satellite measurements (Damme et al., 
2021). The US EPA has reported an increase in NH3 emissions of 14% in 
the US in the same time period, and a subsequent increase in NH3 
emissions of 2% between 2018 and 2022. (US EPA) Some studies have 
reported that lower sulfur dioxide (SO2) and nitrogen oxides (NOx) 
emissions result in lower formation of ammonium sulfate and ammo
nium nitrate, and a subsequent increase in ambient gas-phase NH3, 
(Saylor et al., 2015; Schiferl et al., 2016; Yao and Zhang, 2019) sug
gesting that controlling NH3 emissions would also reduce ambient fine 
particulate matter (PM2.5) (Arter et al., 2021; Damme et al., 2021; 
Paulot and Jacob, 2014). 

National-scale NH3 emissions are dominated by agriculture, 
contributing over 80% of emissions in the 2017 and 2020 National 
Emission Inventory (NEI) (US EPA, 2021; US EPA, 2023). However, in 
urban areas, on-road vehicles are important sources of NH3 emissions 
(Cao et al., 2022; Chen et al., 2022; Sun et al., 2017) which are released 
as an unintended byproduct of aftertreatment systems. In gasoline ve
hicles, NH3 is formed from the catalytic reduction of nitrogen oxide (NO) 
across the three-way catalyst during fuel rich conditions (Easter and 
Bohac, 2016). Conventional diesel vehicles (i.e., model years prior to 
2010) have rather low NH3 emissions. To comply with US heavy-duty 
diesel 2010 model year emission standards (US EPAb), modern 
heavy-duty diesel vehicles are equipped with selective catalytic reduc
tion systems to control nitrogen oxide (NOX) emissions, which actively 
inject urea into the aftertreatment system. The urea decomposes into 
NH3 in the aftertreatment system (Jeon et al., 2016), and any unreacted 
NH3 escapes the aftertreatment system leading to NH3 emissions (Khalek 
et al., 2015). Several recent studies have suggested that 
combustion-related NH3 emissions, including on-road vehicle emissions, 
are underestimated in emission inventories (Cao et al., 2022; Chen et al., 
2022; Emery et al., 2020; Farren et al., 2020; Moravek et al., 2019; Sun 
et al., 2017). The underestimation of NH3 in vehicle emissions could 
lead to underestimation of their contribution to ambient particulate 
matter and nitrogen deposition pollution. 

On-road vehicle emissions for the NEI are estimated using the Motor 
Vehicle Emission Simulator (MOVES) (US EPA Motor Vehicle Emission 
Simulator (MOVES)) for all States except California, which are generally 
estimated using the EMission FACtor (EMFAC) (CARB, 2021) model. 
MOVES contains a database of on-road running exhaust vehicle emission 
rates as a function of vehicle class, fuel type, operating mode, model 
year, and vehicle age in units of mass per time (gram/hour). MOVES 
uses emission rates coupled with estimates of vehicle activity to estimate 
vehicle emissions by county for all calendar years between 1999 and 
2060 (US EPA, 2021). MOVES simulations used for the NEI account for 
county-level differences in vehicle fleet composition (vehicle classes), 
vehicle age distributions, and inputs that impact operating mode dis
tributions (e.g., vehicle speeds and roadway type distributions). 

MOVES3 (and earlier versions) calculates vehicle NH3 emission rates 
based on data from a study carried out in the early 2000s (Durbin et al., 
2002; US EPA, 2010). These data has been the basis for national NH3 
emissions developed for NEIs up to its most recent version (2020NEI) 
(US EPA, 2015; US EPA, 2018; US EPA, 2021; US EPA, 2023). EMFAC 
versions preceding EMFAC2021 did not include NH3 vehicle emission 
rates, and MOVES3 was used to generate California emissions included 

in all NEI versions mentioned previously as well as in EPA’s Air QUality 
TimE Series (EQUATES) project (Foley et al., 2023). The latest version of 
the MOVES model, MOVES4, (US EPA, 2023a) incorporates updated 
NH3 emission rates for on-road vehicles based on roadside remote 
sensing measurements. The new rates are a better representation of the 
current US fleet and increase significantly on-road NH3 emissions. In this 
study, we evaluated the modeled air quality impacts of using the 2017 
EQUATES dataset (which uses the 2017 NEI as base year) with adjusted 
NH3 on-road vehicle emissions based on measurements from roadside 
emission studies, following a similar methodology to that used in the 
development of emission rates for MOVES4. Our goal is to quantify the 
effect of using on-road NH3 emission rates, based on recent real-world 
measurements, on the simulation of NH3 and PM2.5 levels in urban areas. 

2. Methods 

2.1. On-road vehicle ammonia emission rates 

We revised the NH3 emission rates in MOVES3 for on-road vehicles 
using data from roadside measurement studies (Preble et al., 2019; Fuel 
Efficiency Automobile Test Data) from both light-duty gasoline and 
heavy-duty diesel vehicles. The NH3 emission rates in MOVES3 and 
earlier versions were based on a study with a limited number of vehicles, 
of model year pre-2000, sampled in laboratory conditions (Durbin et al., 
2002; US EPA, 2010). By using road-side measurements, the updated 
NH3 emission rates in this study are based on hundreds to thousands of 
in-use vehicles, including high-emitting vehicles that contribute 
disproportionately to the emissions inventory. The methodology to 
develop ammonia emission rates for light-duty and heavy-duty vehicles 
using roadside measurements is described in detail in the MOVES4 
technical documentation (US EPA, 2023b; US EPA, 2023c). However, 
we provide a brief overview of the dataset and general approach used 
below. We further note that the work described in this paper was 
developed using a first draft of the emission rates developed for 
MOVES4. Nonetheless, as discussed in Section S2, the changes to the 
ammonia emission rates incorporated into the final MOVES4 have a 
minimal impact in the adjustments developed for this work. 

For light-duty gasoline vehicles, we analyzed fuel-based NH3 emis
sions measured by researchers at the University of Denver using a 
roadside remote sensing device called the Fuel Efficiency Automobile 
Test (FEAT) (Fuel Efficiency Automobile Test Data). The emissions data 
collected by the University of Denver using FEAT are publicly available 
and contains over 335,000 light-duty gasoline vehicle-specific NH3 ob
servations collected at seven different locations across the United States 
from 2005 to 2020 (see Tables S–1). Fuel-specific light-duty gasoline 
vehicle NH3 rates derived from FEAT compare well across different lo
cations in the US (Tables S–1), and to on-road and roadway tunnel NH3 
measurements made by other researchers at different locations in the 
United States, Europe, and Beijing China (Sun et al., 2017). Using 
FEAT-reported measurements, we developed average fuel-based NH3 
emission rates for light-duty vehicles by vehicle class (light-duty car or 
light-duty truck), model year and age (US EPA, 2023b). 

For heavy-duty diesel vehicles, we utilized NH3 emission rates from a 
study by Preble et al. (Preble et al., 2019), who sampled exhaust plumes 
of over 900 individual heavy-duty vehicles at the Caldecott Tunnel near 
Oakland, California in 2018 (see Section S1.2). By matching license 
plate images to state truck registration databases, they associated the 
measurements with vehicle information including engine model year 
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and type of aftertreatment system. Preble et al. reported average emis
sion rates for heavy-duty diesel vehicles by model year ranges and type 
of exhaust aftertreatment system, including use of diesel particulate 
filters and selective catalytic reduction. This is an advantage from the 
perspective of MOVES modeling as we can assign emission rates to 
specific heavy-duty vehicle populations. The fleet-average fuel-based 
NH3 emission rates reported by Preble et al. compare well to other 
heavy-duty diesel fleet-averages as discussed in Section S1.2 
(Tables S–3) and references therein. 

Using the fuel-based NH3 emission rates from the road-side studies, 
we estimated the updated MOVES NH3 emission rates (in units of g/ 
hour, classified by operating mode) for light-duty gasoline and heavy- 
duty diesel vehicles. The conversion from fuel-based rates (g NH3/kg- 
fuel) to mass rates (g NH3/hr) involves multiplying the fuel-based ob
servations for a specific vehicle type-model year group by the corre
sponding MOVES fuel consumption rate (kg-fuel/hr) as described in 
Section S1.3. A limitation of using remote sensing data for our purposes 
is that the measurements are taken under a narrow range of driving 
conditions, generally low speed and acceleration, limiting the charac
terization of vehicle emissions across the range of operating modes. This 
is important for emissions that correlate with vehicle specific power, as 
expected for ammonia. We can account for this in our methodology 
because the fuel consumption rates used in the conversion to mass rates 
are defined across the range of operating modes represented in MOVES. 
Thus, the resulting ammonia mass rates will have the same relative in
crease with vehicle specific power than the corresponding fuel con
sumption rates. However, it is possible that the mass rates derived might 
still underestimate emission rates at high acceleration conditions. This 
uncertainty can only be minimized by using measurements that capture 
a wider range of operating conditions (e.g., dynamometer measure
ments, Portable Emissions Measurement Systems (PEMS)), but these 
data were not available at the time of developing this work. Therefore, 
validating the emission rates derived here against data representing the 
full range of operating conditions will be the focus of future analyses. 

After deriving mass rates, we estimated national on-road vehicle NH3 
emissions inventories for four calendar years, using the default MOVES3 
emission rates (MOVES3 reference case) and the updated NH3 emission 
rates, referred to as Sensitivity case (see Section S2). Fig. 1 compares the 
national NH3 emissions between MOVES3 and the Sensitivity cases by 
vehicle type and fuel type for four calendar years. Light-duty gasoline 
vehicles contribute between 79% and 87% of on-road vehicle NH3 
emissions in MOVES3, with a similar range (74%–93%) for the Sensi
tivity case. Overall, the modeled emissions indicate a decreasing trend in 
NH3 with calendar year; this is largely explained by the fleet turnover of 
LD gasoline vehicles (Section S4), which are the major contributors to 
the NH3 inventory. 

The on-road vehicle NH3 emissions estimated in the sensitivity case 
were higher than MOVES3 for all four years evaluated. The largest in
crease in NH3 emissions in the sensitivity case occurs in calendar years 

2010, 2017, and 2024 due to the substantial increase in NH3 emission 
rates for the model year 2000–2016 light-duty gasoline vehicles 
(Figure S-3). Heavy-duty diesel vehicles make up an increasing share of 
NH3 emissions in future years due to the penetration of model year 2010 
and later heavy-duty diesel vehicles. These vehicles use selective cata
lytic reduction aftertreatment systems, which have higher NH3 emission 
rates (g/km) than comparable model year gasoline vehicles (Figure S-4). 
Additional details on the MOVES simulations are discussed in the sup
porting information. 

For evaluating the impact of these increased on-road NH3 emissions 
on ambient air pollution concentrations using photochemical models, 
we developed average nationwide, calendar year (CY) specific on-road 
vehicle NH3 emissions scaling factors (SF) using Equation (1): 

NH3 SFCY =

(
MOVES3NH3emissions,CY,Sensitivity

MOVES3NH3emissions,CY,Baseline

)

Equation 1 

Calculations using Equation (1) were performed for the vehicle 
groups presented in Fig. 1 and then grouped into on-road diesel and non- 
diesel SF for purposes of the air quality sensitivity simulation (see Sec
tion S3). National on-road NH3 emissions for the sensitivity cases were 
1.8, 2.1, 1.8, and 1.6 times higher than those developed using MOVES3 
in calendar years 2010, 2017, 2024, and 2035, respectively (Tables S–4). 
These factors agree with the low end of the range of NH3 underestima
tion presented by studies suggesting low NH3 onroad inventories using 
different methodologies. In particular, Sun et al. measured on-road NH3: 
CO2 ratios and estimated that the US national on-road NH3 inventory for 
2011 was at least a factor of 2 low (Sun et al., 2017); Cao et al. suggested 
that vehicle NH3 emissions in the US were underestimated by a factor 
ranging between 1.8 and 4.9 using satellite observations and fuel-based 
inventories (Cao et al., 2022). Fenn et al. (2018) used on-road mea
surements to estimate that vehicular NH3 emissions are 2.9 times greater 
than those estimated in the 2011 NEI; Walters et al. (2022) did not 
propose a factor, but suggested that the source characterization of NH3 
in the 2014 NEI might be underestimating vehicular contribution and 
overestimating residential combustion sources for a location in the 
northeast US. For the purposes of our air quality simulation, the NH3 SF 
developed using Equation (1) were 2.1 for on-road non-diesel and 1.5 for 
on-road diesel sources (Section S3). 

2.2. Air quality model simulations 

The impact of increased on-road NH3 emissions on ambient air 
quality was estimated using a CMAQ v5.3.2 annual 2017 Ammonia 
Mobile Emissions Sensitivity simulation, hereafter referred to as AMES. 
We selected the calendar year 2017 for our air quality simulation to 
leverage previous work done by Benish et al. (2022) which is based on 
EPA’s EQUATES project and incorporates the most up to date under
standing of simulated deposition trends in the US, thus serving as base 
case for our sensitivity analysis. Mobile on-road NH3 emission rates were 
adjusted using the Detailed Emissions Scaling, Isolation and Diagnostic 
(DESID) (Murphy et al., 2021) tool available in CMAQ v5.3.2. The 
DESID tool allows for the adjustment of emissions based on the emission 
sector and/or geographic region. We represent the updates to on-road 
NH3 emissions by applying the fuel-specific SF developed from na
tional estimates for the year 2017 to the onroad sector, as described 
previously. The on-road diesel and on-road non-diesel mobile emission 
rates for NH3 for 2017 were increased by 1.5 and 2.1, respectively 
(Section S3) for the conterminous US portion of the domain. With the 
exception of NH3 emission factors for on-road mobile sources, this 
simulation was identical to the EQUATES model simulation for 2017 
described in Benish et al. (2022), which serves as the base case. Annual 
2017 CMAQv5.3.2 simulations were completed for the contiguous U.S. 
domain using 12 km horizontal grid spacing and 35 vertical layers. 
Anthropogenic emission inputs were based on the 2017 National 
Emission Inventory (NEI) (US EPA, 2021) and biogenic emissions were 

Fig. 1. Annual national on-road vehicle NH3 emissions estimated from 
MOVES3 and Sensitivity cases by calendar year and vehicle group. The vehicle 
groups are a combination of vehicle type and fuel type. HD = heavy-duty; LD =
light-duty. CNG = compressed natural gas; E85 = ethanol-gasoline blend with 
~85% ethanol. Note that the modeling uses default MOVES3 national activity 
in both cases. 
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run inline using the Biogenic Emission Inventory System (BEIS) (Bash 
et al., 2016), following methods used in the EQUATES simulations. 
Meteorological inputs were generated from the Weather Research 
Forecasting (WRF) model version 4.1.1 and lateral boundary conditions 
were provided by the EQUATES simulations. The Surface Tiled Aerosol 
and Gaseous Deposition (STAGE) option in CMAQ v5.3.2 was used to 
estimate atmospheric dry deposition rates utilizing the bidirectional 
exchange option for NH3 from natural and agricultural land uses (Appel 
et al., 2021; Galmarini et al., 2021). Annual 2017 CMAQ v5.3.2 modeled 
results were evaluated against Cross Infrared Sounder (CrIS) satellite 
(Shephard et al., 2020), Ammonia Monitoring Network (AMoN) surface 
NH3 observations, the U.S. EPA’s Air Quality System (AQS) ambient 
PM2.5, Chemical Speciation Network (CSN) ambient nitrate (NO3

− ) 
PM2.5, Interagency of PROtected Visual Environments (IMPROVE) 
monitoring network ambient NO3

− PM2.5 and the National Atmospheric 
Deposition Program (NADP) National Trends Network (NTN) for wet 
deposition of ammonium (NH4

+) observations. Estimated model ambient 
concentrations and deposition totals were paired in space and time with 
these observations using the Atmospheric Model Evaluation Tool (Appel 
et al., 2011) version 1.5. 

3. Results and discussion 

3.1. Air quality sensitivity - including updated ammonia and particulate 
matter concentrations 

The AMES case resulted in an increase in modeled ambient NH3 
concentrations in the model domain, primarily in urban areas and 
transportation corridors (Fig. 2a, Figure S-6a). These increases were 
relatively consistent over the year with a maximum increase in monthly 
mean ambient NH3 concentration of 2.3 ppbv in January and 3.0 ppbv in 
July (Figure S-11) in Southern California around Los Angeles, likely due 
to the combination of high traffic emissions and higher temperatures. 
The increase in NH3 emissions resulted in increases in modeled PM2.5 
concentrations and in wet and dry deposition in urban regions 
(Fig. 2b–d, Figure S-6b-d). The modeled increased aerosol load was 

predominantly composed of NH4NO3 in agreement with the findings of 
Kim et al. (2023), which is modeled in thermodynamic equilibrium with 
ambient NH3 and HNO3 (Meng and Seinfeld, 1996). Therefore, PM2.5 
increases were largely limited to the cooler months when conditions 
favored NH4NO3 formation (see Table 1 and Fig. 3). Increases in at
mospheric NH3 were proportionally larger than the increase in the at
mospheric aerosol burden (Figure S-6) due to the conditions favoring 
NH4NO3 formation and dry and wet deposition losses of NH3. On a 
population-weighted basis, which refers to the average exposure of the 
national population, annual average PM2.5 concentrations increased 
most in the greater New York City region (0.2–0.3 μg m− 3), with 
wintertime increases approximately 50% higher. Modeling studies have 
indicated that aerosol formation in the Northeastern US is NH3 limited 
(Pye et al., 2009) in agreement with the simulations presented here. In 
southern California, where ambient ammonia concentrations featured 
the largest increases, annual average PM2.5 concentrations increased 0.1 
μg m− 3. 

Recent ambient observations have indicated approximately two-fold 
increase in total nitrogen deposition in urban areas largely composed of 
ammonia and ammonium relative to their corresponding upwind rural 
background (Decina et al., 2020). This sensitivity increased modeled 
NHx (gaseous NH3 + aerosol NH4

+) deposition in urban areas (areas with 
higher levels of onroad emissions) up to 1.3 kg N ha− 1 year− 1 resulting 
in a mean 15% and 9% increase in modeled NHx and total N deposition 
in urban areas, respectively. The maximum deposition increase is 
approximately equivalent to the threshold at which lichen communities 
display adverse ecological effects, (Geiser et al., 2021) known as the 
ecosystems critical load, and approximately 20%–25% of the critical 
load for sensitive tree species (Pavlovic et al., 2023). 

3.2. Evaluation against CrIS satellite and ground-based network 
observation 

The contribution of the AMES case to the modeled mean annual NH3 
urban concentrations were as large as 144% and with a mean increase of 
approximately 17% for urban areas over the model domain (Fig. 2). We 

Fig. 2. Annual model differences (AMES – EQUATES) in surface layer NH3 concentrations in ppbv (a), PM2.5 in μg m− 3 (b), NHx, NH3 + Aerosol NH4
+, dry deposition 

in kg ha− 1 (c), NHx wet deposition in kg ha− 1 (d). 

C. Toro et al.                                                                                                                                                                                                                                    



Atmospheric Environment 327 (2024) 120484

5

compared our results to observations from the Cross-track Infrared 
Sounder (CrIS) satellite which provides global observations of ambient 
NH3 concentrations twice a day (1330 and 0130 local time). The annual 
2017 CMAQ AMES case compared well against CrIS satellite NH3 ob
servations (Shephard et al., 2020) and broadly captured both magnitude 
and spatial variability of the observations (Figure S-7). Mobile NH3 
emissions differences between AMES and EQUATES were small 
compared to agricultural sector NH3 emissions in the modeling domain 
on a national level, leading to relatively small model differences in NH3 
and PM2.5 concentrations between the AMES and EQUATES cases during 
the midday CrIS overpass. Thus, evaluation against CrIS observations 
largely illustrates the general ability to capture the large spatial features 
and magnitudes of the observed concentration fields by the CMAQ 
modeled NH3 concentration fields. The AMES simulation had a larger 
impact when comparing to surface network NH3, PM2.5 and wet depo
sition observations because these networks sites are typically not located 
in heavily agricultural areas (Table 1). (Cao et al., 2022) Modeled NH3 
concentrations in the AMES case were generally improved when eval
uated against AMoN surface observations in the contiguous United 
States, with a model bias reduction of 5.8% in the Northeast and 2.3% 
for all observations. The AMES case also resulted in small improvements 
in model predictions of NH4+ wet deposition when compared to obser
vations at National Atmospheric Deposition Program (NADP) National 
Trends Network (NTN) monitoring sites. The small differences in model 

evaluations for the NADP and AMoN networks are likely due to the 
underrepresentation of urban areas in monitoring networks that were 
initially designed to represent more regional patterns (Bettez and 
Groffman, 2013). Over the contiguous U.S., PM2.5 and NO3

− PM2.5 model 
biases were lower in the AMES simulation at AQS monitoring sites, 
though the improvements were not uniform (Table 1). For example, 
there were increased PM2.5 biases at times and locations where PM2.5, 
and specifically the NO3

− component, were already overestimated in the 
EQUATES simulation (Figures S-8 to S-10). This is most clear during the 
winter months where NO3

− formation is more likely due to lower tem
peratures. The location of monitoring network sites impacted the model 
evaluation against observed values. For example, CSN aerosol observa
tions are largely located in more urban areas while IMPROVE observa
tions are located in more rural sites and the impact of the AMES 
sensitivity on the model evaluation are largest at CSN sites reflecting the 
larger contribution of mobile emissions in urban areas (Table 1). 

4. Conclusions 

This study explores the sensitivity of modeled PM2.5 to the increase 
in onroad ammonia emissions resulting from updating ammonia emis
sion rates for light and heavy-duty vehicles in MOVES, using on-road 
remote sensing observations. The modeled PM2.5 increases resulting 
from updated on-road NH3 emission rates in the 2017 sensitivity case 

Table 1 
Modeled 2017 normalized annual mean biases (%) of the Ammonia Mobile Emissions Sensitivity (AMES) and EQUATES simulations compared against air quality 
monitoring network observations for the contiguous United States for December, January, and February (DJF), March, April, and May (MAM), June, July, and August 
(JJA), and September, October, and November (SON). Negative values indicate an underestimate and positive values indicate an overestimate of the observed values 
by the AMES simulation.  

Season AMoN 
NH3 

CSN 
PM2.5 NO3

−

IMPROVE 
PM2.5 NO3

−

AQS 
PM2.5 

NADP 
NH4

+ Wet Deposition 

AMES EQUATES AMES EQUATES AMES EQUATES AMES EQUATES AMES EQUATES 

Winter (DJF) − 46.3 − 50.0 1.8 − 5 1.4 − 6.2 − 11.0 − 12.6 − 52.9 − 55.5 
Spring (MAM) − 43.3 − 45.1 − 3 − 11.6 − 21 − 25.7 − 1.8 − 3.0 − 41.8 − 42.7 
Summer (JJA) − 8.9 − 10.7 − 17.9 − 24 − 39.2 − 40.9 − 18.0 − 18.3 − 11.7 − 15.0 
Fall (SON) − 15.5 − 18.9 27 14.6 − 11.3 − 17.7 − 8.4 − 9.4 − 37.5 − 39.1  

Fig. 3. Seasonal model differences (AMES – EQUATES) in surface layer PM2.5 concentrations μg m− 3 December, January, and February (a), March, April, and May 
(b), June, July, and August (c), September, October, and December (d). 
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result in increases of up to 0.3 μg m− 3 (5%) in modeled annual average 
PM2.5 concentrations. Although our study is based on national scale 
factors that might differ depending on the local fleet, the highest PM2.5 
values were modeled as occurring in the greater New York City region 
(0.2–0.3 μg m− 3), with wintertime increases approximately 50% higher. 
In Southern California, where modeled ambient ammonia concentra
tions featured the largest increases, the model predicted an increase of 
0.1 μg m− 3 in annual average PM2.5 concentrations. The AMES case 
presented here shows moderate improvements in the bias between 
modeled NH3 concentrations and AMoN surface observations, particu
larly in urban areas in the Northeastern region, and to a smaller degree 
for modeled winter and spring PM2.5 and NH4

+ wet deposition across the 
country. Many of the areas that exhibited the largest changes in the 
model simulations, particularly in ambient NH3 and wet deposition, 
were not well represented by network observations and highlight the 
need for additional monitoring of PM2.5 composition and NH3. The 
siting of PM2.5 observations has an impact on the model evaluation, 
Table 1, with a larger impact observed at urban CSN than rural 
IMPROVE sites. This highlights the need for additional network obser
vations of PM2.5 and particulate matter precursors. Despite the paucity 
of urban monitoring for NH3 and wet deposition, the updates to NH3 
emission rates in MOVES using this bottom-up emissions approach are 
supported by the improvement in air quality modeling estimates when 
evaluated against network observations. Since on-road mobile NH3 is 
emitted primarily during running operation, it is possible to leverage the 
roadside measurements available for thousands of vehicles for this 
purpose, albeit limited to low speed and acceleration conditions. This 
limitation can potentially result in an underestimation of the scaling 
factors derived here, and highlights the need of emissions measurements 
across the range of operating conditions. While our air quality analysis 
focused on 2017, we expect that the impact of updated onroad NH3 
emissions will decrease in future years as the vehicular fleet evolves, 
removing older light-duty vehicles which are the major contributors to 
the urban NH3 inventory. The results presented in this work provide an 
insight into the impact of new urban ammonia inventories developed 
with MOVES4 and future versions of the NEI on modeling of PM2.5. 
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