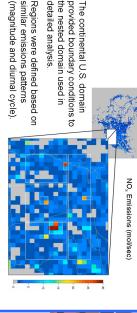


Resolving NO_x Emission Inventory Biases Using Discrete Kalman Filter Inversion, Direct Sensitivities, and Satellite-based NO $_2$ Columns

Sergey L. Napelenok¹, Robert W. Pinder¹, Alice B. Gilliland¹, Randall Martin² Atmospheric Sciences Modeling Division, Air Resources Laboratory, NOAA, Research Triangle Park, NC, USA On Assignment to the National Exposure Research Laboratory, USEPA

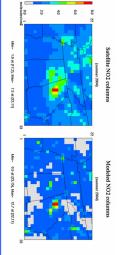
²Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada



Abstract

computed using the Decoupled Direct Method in 3D. emissions and NO₂ concentrations was represented with sensitivities the southeastern United States during the summer months of 2004 predefined geographic regions. The relationship between NO, performed to arrive at possible emission biases across several drive the air quality model, discrete Kalman filter inversion was were due to the uncertainties in the NO_x emission inventory used to major discrepancies between NO₂ observations and model predictions were matched with the results of the CMAQ model. Assuming that the Column NO₂ concentrations observed by the SCIAMACHY satellite in

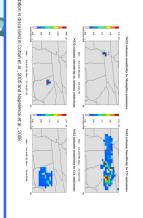
inventories for regional-scale air quality modeling applications models and/or inert species. Here, a method is presented that can be The majority of work in inverse modeling has involved global scale used as an additional tool for examining the quality of emission


Modeling Domain and Source Regions

Observed and Modeled NO₂ Columns

coverage during each day between June 1, 2004 and August 31, 2004 were computed taking into account only the geographical extend of the Summertime averages during the time of the satellite overpass (1600)

with low emissions and higher model predictions in the urban centers The comparison revealed lower NO₂ model predictions in rural areas



Decoupled Direct Method in 3D

perturbations in an input field (here, regional emissions of NO_x) DDM 3-D computes first-order, semi-normalized sensitivities to

$$S_{NO_2,NO_{x,r}}(\bar{x},t) = \frac{\partial C_{NO_2}(\bar{x},t)}{\partial p_{NO_{x,r}}}$$

concentrations as the model progresses in time. DDM 3-D provides gridded sensitivity fields simultaneously with

Discrete Kalman Filter

applying the technique iteratively discrete time series and states that are governed by sets of linear differential equations. The linearity assumption is overcome by The Kalman Filter is an optimization technique used to estimate

The emissions vector evolves as follows:

$$\overline{E}_{t,k+1} = \overline{E}_{t,k} + \mathbf{G}_{t,k} (\overline{\chi}_t^{-obs} - \overline{\chi}_t^{\text{mod}})$$

Gain matrix is computed from

 $\frac{-\text{mod}}{\chi_i} = \text{Modeled value vector}$ $\mathbf{C}_{i,k} = \text{Covariance of error of emissions}$ P_i = Normalized sensitivity

Observations vector

$$\mathbf{G}_{t,k} = \mathbf{C}_{t,k} \mathbf{P}_t^T (\mathbf{P}_t \mathbf{C}_{t,k} \mathbf{P}_t^T + \mathbf{N}_t)^{-1}$$

The covariance of error matrix is updated after each iteration:

$$\mathbf{C}_{t,k+1} = \mathbf{C}_{t,k} - \mathbf{G}_{t,k} \mathbf{P}_t \mathbf{C}_{t,k}$$

Results

decreased. general, rural emissions are increased and urban emissions are The method converges on a solution with only a few iterations. In

cules/cr		4																	4
	\triangleright	NO _x fields	NO ₂ Columns from Initial	Average hourly rate during the time of satellite overpass in only the 1st layer of the model	Coordina	Alahama	Mississippi	Tennessee	Surrounding Areas	Macon, GA	Atlanta, GA	Birmingham, AL	Nashville, TN	Memphis, TN	Urban Centers		Region		
			tial	ne of satel													š		
ecules/cr 3		1	z	Ite overpass in only to	10.0	1810	152 B	369.2		25.3	155.3	35.6	28.8	36.5		(mol/sec)	NO _x Emissions		
			IO ₂ Colu	he f ^{at} layer													Š O N		
•		NO _x fields	NO ₂ Columns from Adjusted	of the model.	207.0	307	2227	663.9		13.1	131.3	30.5	27.7	33.2		(mol/sec)	NO _x Emissions	Adjusted	
			sted																

Discussion

This method was able to efficiently adjust regional emissions of NO $_{\!\!\!\!/}$ in order to closer match CMAQ modeled NO $_{\!\!\!\!2}$ levels with those observed by the SCIAMACHY satellite in southeastern United States during the summer of 2004

avoided by introducing more finely defined source regions. region averages. For example, in the area near Chattanooga, TN, emissions Concentrations in parts of some regions were pushed much higher than satellite were increased with the rest of the Tennessee region. This problem can be observations. This occurred near cells with emissions significantly higher than

meteorological predictions also contribute, but were assumed to be negligible chemical processes, emissions aloft from lightning sources and airplanes, and solely to estimations of emissions at the ground level. Uncertainties in the Discrepancies in the modeled and observed NO $_{\scriptscriptstyle 7}$ concentrations are not due

available OMI satellite instrument has daily coverage and will help alleviate this averages (days), instead of the entire summer, inconsistent satellite coverage makes it difficult to constrain the optimization equations. The more recently Furthermore, while it is possible to perform a similar analysis for shorter time

Disclaimer: The research presented here was performed under the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce's National Oceanic approved for publication, it does not necessarily reflect their policies or view ind Armospheric Administration (NOAA) and under agreement number Dwi 3921548. In its work constitutes a contribution to the NOAA Air Quality Program. Although it has been reviewed by EPA and NOAA and

References

Cohan, D.S., Hakami, A., Hu, Y., Russell, A.G., 2005. Nonlinear analysis. *Environmental Science & Tech*nology 39, 6739-6748. vapelenok, S.L., Cohan, D.S., Hu, Y., Russell, A.G., 2006. Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM)
4tmospheric Environment 40, 6112-6121. Silliand, A , Abbit, PJ , 2001. A sensitivity study of the discrete Kalman fiter (DKF) to initial condition Research 106, 17939-17962.