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[bookmark: _Ref517689595]Table S1: LC50 model data attrition during data preparation
	Preparation Step
	Chemicals
	Species
	Experiments

	Initial fish dataset
	4,970
	713
	101,393

	After data set cleaning
	4,829
	659
	95,860

	Model data selection
	3,799
	529
	54,480

	Remove chemicals with incomplete descriptors
	2,825
	364
	35,254

	Combine salts and stereoisomers
	2,656
	364
	35,254

	Only species in Actinopterygii selected
	2,656
	358
	34,645

	Data in training set
	2,124
	345
	29,052




[bookmark: _Ref517689606]Table S2: NOEC model data attrition during data preparation
	Preparation Step
	Chemicals
	Species
	Experiments

	Initial fish dataset
	4,970
	713
	101,393

	After data set cleaning
	4,829
	659
	95,860

	Model data selection
	2,910
	333
	22,965

	Remove chemicals with incomplete descriptors
	2,059
	223
	14,503

	Combine salts and stereoisomers
	1,928
	223
	14,503

	Only species in Actinopterygii selected
	1,926
	221
	14,484

	Data in training set
	1,540
	196
	11,266



[bookmark: _Ref515623743]
Text S1: [bookmark: _Ref522201197]Log Scaling Details
Since features to log scale were chosen based on values in the training set, there was no guarantee that these features would be non-negative in the test set as well. To handle zeroes and negative numbers in a reasonable way should they arise, we used the formula
	
	
	( S1 )



where  is the value to be scaled and  is a scaling factor equal to the smallest non-zero value in the training set for a given feature.



[bookmark: _Ref522201346]Figure S1: First three levels of the LC50 model’s taxonomy tree. Names in bold indicate categories explicitly named as model features. Numbers in parenthesis indicate how many experiment groups belong to that category.


[bookmark: _Ref517689678]

Table S3: LC50 model feature attrition during feature selection
	Feature Selection Step
	Continuous Features
	Binary Features

	Features from PaDEL, OPERA, and taxonomy groups 
	1,455
	1,314

	Remove duplicate features
	1,210
	477

	Remove uninformative features
	1,209
	475

	Remove uncommon binary features
	1,209
	148

	Remove ubiquitous binary features
	1,209
	147

	Remove highly correlated features
	657
	93

	Remove features weakly correlated with endpoint
	471
	83

	Remove multicollinear features
	471
	81

	Experiment groups remaining in training set
	7,202




[bookmark: _Ref517689687]

Table S4: NOEC model feature attrition during feature selection
	Feature Selection Step
	Continuous Features
	Binary Features

	Features from PaDEL, OPERA, taxonomy groups, and dummy variables
	1,455
	1,322

	Remove duplicate features
	1,200
	297

	Remove uninformative features
	1,199
	295

	Remove uncommon binary features
	1,199
	88

	Remove ubiquitous binary features
	1,199
	87

	Remove highly correlated features
	631
	56

	Remove features weakly correlated with endpoint
	449
	47

	Remove multicollinear features
	449
	46

	Experiment groups remaining in training set
	6,233
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[bookmark: _Ref522201387]Figure S2: Distribution of chemicals and species in each model



[bookmark: _Ref522201440]

Table S5: Top ten occurring chemicals and species in the LC50 model data set. Asterisks indicate desalted and stereoisomers referred to by parent name.
	Chemical
	Studies
	Species
	Studies

	TFM*
	1087
	Rainbow Trout
	5702

	Pentachlorophenol*
	1065
	Bluegill
	4600

	Endrin/Dieldrin
	925
	Fathead Minnow
	4591

	Carbaryl
	826
	Channel Catfish
	1465

	Trichlorfon
	616
	Zebra Danio
	1116

	 Glyphosate*
	567
	Common Carp
	961

	p,p-DDT
	555
	Sheepshead Minnow
	953

	Lindane*
	529
	Japanese Medaka
	915

	Fenitrothion
	520
	Guppy
	852

	Malathion
	519
	Goldfish
	789




[bookmark: _Ref522201451]

Table S6: Top ten occurring chemicals and species in the NOEC model data set. Asterisks indicate desalted and stereoisomer groups referred to by parent name.
	Chemical
	Studies
	Species
	Studies

	Atrazine
	293
	Fathead Minnow
	2812

	Pentachlorophenol*
	255
	Rainbow Trout
	2296

	Bisphenol A
	238
	Zebra Danio
	2062

	2,4-Dinitrophenol
	229
	Sheepshead Minnow
	1205

	Diazinon
	209
	Bluegill
	967

	4-Nitrophenol
	197
	Japanese Medaka
	812

	Carbaryl
	180
	Common Carp
	482

	Glyphosate*
	178
	Ide, Silver Or Golden Orfe
	302

	Ethinyl Estradiol
	177
	Carp
	236

	Deltamethrin
	156
	Striped Bass
	226
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[bookmark: _Ref522201472]Figure S3: LC50 model exposure route and species makeups, respectively.
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[bookmark: _Ref522201475]Figure S4: NOEC model exposure route and species makeups, respectively.
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[bookmark: _Ref522201477]Figure S5: NOEC model duration class and endpoint type makeups, respectively.
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[bookmark: _Ref522201572]Figure S6: Feature importance distribution in the full LC50 model divided by the maximum feature importance in each learner. Features are ordered by descending importance.


[bookmark: _Ref517871486]

Table S7: Top ten most important features for the RF and GBT learners in the full LC50 model. All features are PaDEL descriptors unless otherwise indicated.
	RF Top Features
	RF Importance
	GBT Top Features
	GBT Gain

	Water Solubility (OPERA)
	1152.1
	Water Solubility (OPERA)
	32.90

	Bioconcentration Factor (OPERA)
	998.7
	Bioconcentration Factor (OPERA)
	6.92

	Soil Adsorption Coefficient (OPERA)
	698.7
	Average Broto-Moreau autocorrelation - lag 1 / weighted by polarizabilities
	4.72

	Crippen's LogP
	484.3
	Soil Adsorption Coefficient (OPERA)
	3.10

	Largest absolute eigenvalue of Burden modified matrix - n 5 / weighted by relative mass
	295.4
	Complementary information content index (neighborhood symmetry of 2-order)
	2.48

	 Valence path, order 3
	282.0
	 Ghose-Crippen LogKow
	2.46

	Ghose-Crippen LogKow
	280.7
	 Minimum E-State descriptors of strength for potential Hydrogen Bonds of path length 2
	1.01

	 Broto-Moreau autocorrelation - lag 2 / weighted by mass
	272.4
	Otomorpha Taxonomy Group (Metadata)
	1.00

	Largest absolute eigenvalue of Burden modified matrix - n 2 / weighted by relative mass
	244.4
	Static Exposure Route (Metadata)
	0.99

	Average Broto-Moreau autocorrelation - lag 1 / weighted by polarizabilities
	200.6
	Sum of atom-type E-State: =C<
	0.72



[bookmark: _Ref517871558]
Further Performance Measures
To test the model’s effectiveness at prioritization, we simulated searching through the external validation set chemical space for the 10, 20, 50, or 100 most toxic chemicals using the full LC50 model as guidance. Figure S7 compares these hypothetical searches to a random testing regime. Generally, each of these searches would be somewhat successful early on at identifying potent compounds. About sixty of the top 100 chemicals would have been found after testing the first one hundred chemicals; however, only twenty more would be found after testing another hundred. Returns continue to diminish after this point as there are a handful of compounds for which toxicity has been badly underestimated. In contrast, the random search curves approximate a straight line from end to end; a random search would not find every chemical on the list until practically the entire chemical space has been covered. The NOEC model gives similar results.
[image: ]
[bookmark: _Ref522201649]Figure S7: Prioritization performance versus random chance when searching for the 10, 20, 50, and 100 most potent compounds with the full LC50 model.

Figure S8 compares the external validation error of the full model, the fast model, and each of the three base learners. In both data sets the stacked model performed better than any of its constituent models, significantly better in some cases. Support vector regression was slightly better than the next best base learner in each case. 
[image: ]
[bookmark: _Ref522201621]Figure S8: Combined error of base learners, fast model, and full model ordered by performance. Error bars are the 95% confidence intervals of .

[bookmark: _Ref517871648]
Health Protective Predictions
For more health protectivity, predictions from each model can be shifted down by the 95% quantile of the estimated error. The corresponding shifts are 1.24 and 1.37 log10(mg/L) based on cross-validated error, putting 96.6% and 95.9% of the test set predictions below the experimental values in the full LC50 and NOEC models, respectively, in practice.



Text S2: [bookmark: _Ref517871660]Bootstrapping Error and Scatter Plots
Bootstrapping generates ranges of predictions reflecting experimental uncertainty propagating through the model. The experimental and predicted LC50’s are shown for fifty randomly chosen chemicals in Figure S9. Error bars in the y direction represent one standard deviation from the prediction mean, while those in the x direction represent the average standard deviation among chemicals in the test set with ten or more entries: 0.48 log10(mg/L). Points colored in red represent cases where these two ranges overlap; points where they do not were colored in black.  A slope one line is shown to represent an ideal fit; a hit occurs when the error box intersects with this line. 
[image: ]
[bookmark: _Ref522201687]Figure S9: Experimental vs. predicted LC50 for fifty randomly chosen chemicals with error bars. There are 36 red points and 14 black points.

Overall, the experimental error bars are three to four times longer than the prediction error bars. This may indicate that there is some noise reduction occurring in this model due to averaging. The squared Pearson correlation between the error and prediction range was less than 0.003 for both models, implying that prediction error is uncorrelated with size of the corresponding prediction range. The full scatter plot for the LC50 external validation set is shown in Figure S10, aggregated at the chemical level. Again, red points represent those with overlapping error bars, which are hidden for clarity. 63.3% of the external validation set was considered a “hit” by this standard. 
[image: ]
[bookmark: _Ref522201700]Figure S10: Scatter plot of the LC50 model external validation set. There are 337 red points and 195 black points.

The corresponding results for the NOEC model are shown in Figure S11 and Figure S12. The NOEC predictions occasionally have a particularly wide distribution. Although predictions for most compounds tend to follow a normal distribution, some widely distributed predictions are distinctly bimodal. This can occur when study covariates have a high importance, and studies with different conditions cluster around different means. Overall, the hit rate for the NOEC model was 75.1% and the average standard deviation of endpoints within the same test set chemical was 0.79 log10(mg/L).
[image: ]
[bookmark: _Ref522201713]Figure S11: Experimental vs. predicted NOEC-type endpoints for fifty randomly chosen chemicals with error bars. There are 38 red points and 12 black points.
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[bookmark: _Ref522201714]Figure S12: Scatter plot of the NOEC model external validation set. There are 290 red points and 96 black points.

Text S3: [bookmark: _Ref517871672]Applicability Domain and Sources of Error
Because of the large data set, each model spanned a substantial portion of the feature space. To visualize the feature space, principal components were computed with respect to the scaled training sets of each model. Training and test sets are plotted with respect to the first two principal components in Figure S13 and Figure S14. The first two principal components only explain 19% and 21% of variance in the LC50 and NOEC models, respectively, so this is not a complete representation of the space. In fact, it takes 14 or more principal components to explain 50% of variance in either model, reflecting the underlying complexity of the system.
[image: ]
[bookmark: _Ref522201734]Figure S13: LC50 model training and test set with respect to the principal components of the training set.

In each of these figures, most of the points lie within a heavily populated central cluster. Some edge points are relatively isolated from their neighbors, but not vastly so. These points represent unique experiment groups, not unique chemicals. Tightly grouped clusters appear as darker circles, and these likely represent experiment groups that share chemicals. 
[image: ]
[bookmark: _Ref522201736]Figure S14: NOEC model training and test set with respect to the principal components of the training set.

To identify the applicability domain of these models, the distance between each experimental group in the test set and its nearest neighbor in the training set was calculated. Features were scaled using the mean and standard deviation of each training set feature column. The Manhattan distance was calculated between each experiment group in the test set and the training set and divided by the total number of features:
	
	
	( S2 )



where  is the distance between the -th experiment group in the training set and the -th experiment group in the test set,  is the number of features,  is the feature column, is the training set model matrix, and  is the test set model matrix. This scaling lends itself to easy interpretation: a distance of one between two points means that their features differ by an average of one standard deviation. Distances aggregated at the chemical level were taken to be the mean distance to the nearest neighbor of each associated experiment group.

These distances are plotted in Figure S15 against the prediction error for a given chemical. A least squares fit between these quantities is also shown as a guide to a perfect correlation. The Pearson correlations r2 for the LC50 and NOEC models were .002 and .047, respectively. These low values for r2 indicate that this estimation of the applicability domain is not very effective at identifying poorly predicted chemicals. Other methods used to compute applicability domain, such as leverage, were no more correlated. 
[image: ]
[bookmark: _Ref522201757]Figure S15: Prediction error versus average distance to nearest neighbor. One outlier was removed from the left figure: Biobor, with a prediction error of 0.88 and a nearest neighbor distance of 18.3.

Table S8 and Table S9 list the ten mostly poorly predicted chemicals and their nearest neighboring studies in the training set aggregated by chemical. In most cases, the chemical structure dominates the distance calculation, so most chemicals have only one nearest neighboring chemical. However, in the cases of Sal 1 and Tolfenpyrad there are two training chemicals that are nearly equidistant from the test chemical, so study covariates break the tie. In several cases the distance to the nearest neighbor is not large, but the absolute difference between the endpoints of the neighboring chemicals is. This indicates that many large prediction errors are due to local activity cliffs: similar chemicals with very dissimilar toxicity. These could represent real properties of the chemical space or artifacts stemming from experimental error. 

[bookmark: _Ref517697759]Table S8: Ten most poorly predicted test chemicals in LC50 model with their nearest neighbors (for each study). Mean distance is distance to nearest neighbor averaged over all studies. Asterisks denote desalted base chemicals.
	Test Chemical
	Nearest Neighbor 
	Number of Studies/ Total
	Mean Distance to Nearest Neighbor
	Absolute Prediction Error
	|Test LC50 -Neighbor LC50|

	1,2,3,4,5,6,7,8-Octachloronaphthalene
	Pentac
	2/2
	0.42
	4.01
	3.52

	Tetramine
	Methenamine
	2/2
	0.60
	3.12
	5.67

	Retinol
	all-trans-Retinoic acid
	1/1
	0.15
	3.02
	3.16

	1,3,5-Trihydroxybenzene
	1,3-Benzenediamine
	1/1
	0.36
	2.56
	1.08

	2-(2-(4-((2-Chloroethyl)methylamino)phenyl)ethenyl)-1,3,3-trimethyl-3H-Indolium, Chloride
	2-[(4-methoxybenzyl)carbonohydrazonoyl]-1,3,3-trimethyl-3H-indolium acetate
	4/4
	0.20
	2.36
	0.13

	Sal 1
	Halofenozide
	15/19
	0.37
	2.34
	2.99

	Sal 1
	3'-Chloro-3-nitrosalicylanilide
	4/19
	0.39
	2.34
	1.70

	3,3,5-Trimethylcyclohexyl salicylate
	2-Ethylhexyl salicylate
	1/1
	0.24
	2.28
	0.00

	6H-Dibenzo[c,e][1,2]oxaphosphinine 6-oxide
	2-Phenylphenol.Sodium 2-phenylphenate
	1/1
	0.30
	2.15
	1.86

	Tolfenpyrad
	Tebufenpyrad
	1/2
	0.24
	2.11
	1.17

	Tolfenpyrad
	Pyraclostrobin
	1/2
	0.27
	2.11
	1.21

	Squoxin
	C.I. Solvent Yellow 6
	1/1
	0.31
	2.10
	0.83




[bookmark: _Ref517697768]

[bookmark: _GoBack]Table S9: Ten most poorly predicted test chemicals in NOEC model with their nearest neighbors (for each study). Mean distance is average distance of all studies.
	Test Chemical
	Nearest Neighbor 
	Number of Studies/ Total
	Mean Distance to Nearest Neighbor
	Absolute Prediction Error
	|Test Endpoint -Neighbor Endpoint|

	Iodoacetamide
	Bromoacetic acid
	2
	0.81
	3.70
	2.28

	Terbuthylazine 2-hydroxy
	Terbutylazine
	3
	0.30
	3.54
	3.78

	Bis(2,4-dichlorophenyl)peroxyanhydride
	Bifenox
	1
	0.32
	3.53
	3.17

	Dinoprost
	6-(3,5,5-trimethylhexanamido)hexanoic acid
	1
	0.37
	3.52
	5.67

	N,N-Dimethylaniline
	Cumene
	1
	0.23
	3.45
	3.15

	Docosane
	1-Octadecene
	1
	0.19
	3.19
	3.32

	2-Hydroxyatrazine
	Simazine
	3
	0.27
	3.11
	3.21

	Decane
	1-Decene
	1
	0.16
	3.00
	3.32

	Microcystin LR
	Rifampicin
	1
	0.84
	2.90
	1.92

	Desethylterbuthylazine
	Deethylatrazine
	3
	0.21
	2.74
	2.22




S2

Text S4: Supplementary Files
“Supplemental Data.xlsx” contains six worksheets:
· “toxval_eco_summary_2018-08-02” – toxicity data as drawn from ToxValDB, after attaching DSSTox IDs, reconciling some known species misspellings and miscategorizations, and selecting only those categorized as “fish”.
· “fullycleandata” – toxicity data after undergoing the entire cleaning process
· “trainingsetlc50” & “testsetlc50” – The training set used to build the LC50 model for Table 1 and the test set kept separate to generate EV error statistics. All columns except casrn, AVERAGE_MASS, and endpoint are machine learning features. Each row corresponds to one experiment group, often with several corresponding toxicity endpoints (one for each study) that are averaged prior to learning.
· “trainingsetnoec” & “testsetnoec.”  - Training and test sets for the NOEC model, used to generate Table 2.
Text S7: Curation of Chemical Identifiers and Structures
All chemical structures were prepared using the methodology described in Mansouri et al.1. We start with chemical names and Chemical Abstracts Registry Numbers (CASRN) associated with the toxicity data. These are mapped to the EPA DSSTox chemical database using an automated processing procedure summarized as follows2:
1. Name and CASRN already map to a curated pair in DSSTox: accept as is and assign a DSSTox Generic Substance ID (DTXSID) (DSSTox already contains ~750,000 curated pairs)
2. Perform CASRN checksum check – if fail, flag for manual curation
3. Check if name matches a known synonym with the CASRN. If so, map to standard DSSTox name
4. Remaining pairs of name and CASRN are manually curated against Chemical Abstracts Database, potentially fixing misspelled names and CASRN, and assigned an DTXSID
5. Name-CASRN pairs are mapped to a complete structure as a MolBlock (molfile format) and SMILES using DTXSID-to-structure mapping where available. Where not available, query the Chemical Abstracts Database
6. Where Name, CASRN, and structure (SMILES, MolBlock) cannot be uniquely defined, discard this chemical record from further use.
Once chemicals have been assigned CASRN, name, DTXSID and SMILES, convert to a QSAR-ready SMILES using the procedure outlined in Mansouri et al.3. This is implemented in a KNIME workflow and performed the following steps: 
· Removal of salt counterions (while retaining salt information in a separate field for potential later use)
· Removal of stereochemistry
· Standardization of tautomers and nitro groups
· Correction of valences
· Neutralization of structures when possible
This workflow is available as a GitHub download from https://github.com/kmansouri/QSAR-ready.

Text S8: Curation of Toxicity Data
The quantitative toxicity data is taken from the EPA ToxValDB database which is a compilation of data from 39 distinct sources, most of which are themselves compilations of data from the primary literature, regulatory toxicology study submissions or results of government studies (e.g. NTP). There are several types of quantitative information included, but for this manuscript, the classes that are used are Point of Departure (LOAEL, NOAEL, BMD, etc.) and Lethality Effect Level (LD50, LC50, etc.). The minimal data for each record in ToxValDB includes:
· Name
· CASRN
· Source
· Toxval type (e.g. LOAEL, LD50)
· Numeric value
· Units
· Study type
· Study duration
· Species
· Exposure route
· Year
· Reference information
What follows is a description of the state of ToxValDB curation as of September 23, 2019. Since the data used here was pulled from the database on August 2, 2018, some of these steps—namely, unit and species mappings and corrections—had to be performed by the authors independently and are described in the main text. 
The chemical information is curated as described in Text S7 and each record is assigned a DTXSID and a QSAR-ready SMILES, or it is discarded from further analysis. Because different sources use different terminology, all terms are mapped to common values using a set of defined vocabularies or ontologies. For the case of studies on fish, all units are mapped to mg/L, and if this mapping is not possible, the record is discarded from further use. The database contains both the original and final values for each field to allow tracing back to the original source values. Species assignments are critical to the current work, so we describe further the species curation process. Typically, a data source will provide either a common or a scientific species name, and these names can be variants or can contain misspellings. We have developed a dictionary of input names to final common and scientific names, starting with a dictionary developed by the EPA ECOTOX project (https://cfpub.epa.gov/ecotox/ ). Where the input name did not match either of the common or scientific names in the dictionary, new records were added. The current dictionary contains 7272 distinct scientific names. A key input to this process is the NCBI taxonomy dictionary (https://www.ncbi.nlm.nih.gov/taxonomy ). Study types and durations in the original sources use various terminologies, so all records are assigned a term called risk_assessment_class which is a unique final term for study type and duration.
The ToxValDB database contains ~740,000 records, meaning that 100% manual QC is not possible. However, we carried out sample comparison of the data in ToxValDB against the source data. For each record, we checked for a match of items listed below. All records for a set of 215 chemicals were manually checked, totaling ~9000 ecotoxicology records where the primary source was available. The following criteria were checked: 
1. The chemical must match (CASRN and /or name) but a CASRN number in a primary source was not required for passing QC review. However, reviewers were required to note if the CASRN was absent in the primary source.
2. The type of value (toxval_type, e.g. NOAEL) must match
3. POD qualifier (e.g. =, >), POD value and POD units must match.
4. The risk_assessment_class (generic study type) needs to be correct to the extent that acute and non-acute studies are distinguished.
5. Species (species_original) must match.
6. Exposure route (exposure_route_original) must match. 
The majority of records used in the current study are taken from the EPA ECOTOX database. All records in ECOTOX are extracted from primary literature by a team of trained annotators using standard operative procedures. The mismatch rate for ECOTOX (comparing ToxValDB to the original literature) was 1.6%.
ToxValDB is available via two routes. The first is the through the CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard). One searches by chemical and at the chemical specific page, ToxValDB data is viewed in the Hazard tab. Alternatively, an extract of the database is available from ftp://newftp.epa.gov/COMPTOX/STAFF/rjudson/datasets/ToxValDB/. Included are a README, and excel files with different data domains, such as ecotoxicological data. 
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