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Abstract

Background: Over the past 20 years, an increased focus on detecting environmental chemicals
posing a risk of adverse effects due to endocrine disruption has driven the creation of the U.S.
EPA Endocrine Disruptor Screening Program (EDSP). Thousands of chemicals are subject to the
EDSP, which could require millions of dollars and decades to process using current test batteries.
A need for increased throughput and efficiency motivated the development of methods using in
vitro high-throughput screening (HTS) assays to prioritize chemicals for EDSP Tier 1 screening

(T1S).

Objective: Here we investigate using EPA ToxCast HTS assays for estrogen, androgen,
steroidogenic, and thyroid disrupting mechanisms to classify compounds, and compare ToxCast

results to in vitro and in vivo data from EDSP T1S assays.

Method: An iterative model was implemented that optimized the ability of HTS endocrine-
related assays to predict components of EDSP T1S and related results. Balanced accuracy was

used as a measure of model performance.

Results: ToxCast estrogen and androgen receptor assays predicted the results of relevant EDSP
T1S assays with balanced accuracies of 0.91 (P <0.001) and 0.92 (P < 0.001), respectively.
Uterotrophic and Hershberger assay results were predicted with balanced accuracies of 0.89 (P <
0.001) and 1 (P < 0.001), respectively. Models for steroidogenic and thyroid-related effects

could not be developed with the currently published ToxCast data.

Conclusions: Overall, results suggest that current ToxCast assays can accurately identify
chemicals with potential to interact with the estrogenic and androgenic pathways, and could help

prioritize chemicals for EDSP T1S assays.
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Introduction

Endocrine hormones regulate a diverse set of physiological responses, some of which
include sexual dimorphism, reproductive capacity, glucose metabolism, and blood pressure
(Cooper and Kavlock 1997; de Mello et al. 2011; Dupont et al. 2000; Lodish et al. 2009; Ng et
al. 2001). The wide role of responses regulated by hormones makes them of particular concern
for disruption by xenobiotics (Ankley et al. 1998; Colborn et al. 1992; Soto and Sonnenschein
2010; Tilghman et al. 2010). Endocrine disruption can lead to many adverse consegquences, some
of which include altered reproductive performance, and hormonally mediated cancers (Birnbaum
and Fenton 2003; Kavlock et al. 1996; Soto and Sonnenschein 2010; Spencer et al. 2011).
Endocrine disruption can also have adverse effects on the fetus or newborn due to the delicate
balance of hormones required during critical developmental windows (Bigsby et al. 1999;
Chandrasekar et al. 2011; Cooper and Kavlock 1997; Mahoney and Padmanabhan 2010). For
example, studies have demonstrated that thyroid hormone insufficiency during pregnancy may

lead to adverse neurological outcomes in children (Haddow et al. 1999).

The Federal Food, Drug, and Cosmetic Act (FFDCA), as amended by the Food Quality
Protection Act (FQPA), and the Safe Drinking Water Act (SDWA) requires the U.S.
Environmental Protection Agency (EPA) to determine whether certain substances may have an
effect in humans that is similar to an effect produced by a naturally occurring estrogen, or other
such endocrine effects. In response, the EPA formed the Endocrine Disruptor Screening

Program (EDSP) (www.epa.gov/endo/) (U.S. EPA 2012a). EDSP is a two-tiered program that

requires chemical manufacturers to submit or generate data on a suite of both in vivo and in vitro
assays. The first phase of EDSP assays are designated as the Tier 1 screening battery (T1S)

(www.epa.gov/endo/pubs/assayvalidation/tier1battery.htm) (U.S. EPA 2012b). These tests
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identify chemicals with the potential to interact with endocrine pathways or mechanisms, and
focus on disruption of estrogen, androgen, and thyroid hormone pathways. Based on a weight-of-
evidence approach, chemicals showing positive activity in T1S assays could then be subject to
more complex Tier 2 tests (U.S. EPA 2011a). The European Commission is continuing the
implementation of the European Union’s Community Strategy for endocrine disruptors, which
includes the establishment of a priority list of substances for further evaluation and assay

development and validation. (http://ec.europa.eu/environment/endocrine/index_en.htm)

(European Commission 2012). In addition, the European Commission is working towards
defining specific criteria to identify endocrine disruptors within a legislative framework, drawing

on current scientific opinion (Kortenkamp et al. 2011).

The EPA estimates that the statutory requirements and discretionary authorities through
passage of the FQPA and its amendments, and SDWA will require the EDSP to screen as many
as 9700 environmental chemicals, and generating this data required under the current testing
guidelines will be expensive, time-consuming and will require significant animal resources (U.S.
EPA 2011b). To date, chemicals have been nominated for EDSP T1S on the basis of exposure
potential, or registration status. Due to these fiscal and time constraints, EPA is considering
using endocrine-related in vitro high-throughput screening (HTS) assays and in silico models to
prioritize chemicals for testing in T1S (U.S. EPA 2011Db). There has been a significant
improvement in HTS technologies since EPA began work on developing and implementing the
EDSP. In 2007, the National Research Council (NRC) Report ““Toxicity Testing in the 21st
Century: A Vision and a Strategy’’ (NRC 2007) acknowledged these advances and
recommended that the Agency develop a strategy to use modern molecular-based screening

methods to reduce, and ultimately replace, the reliance on whole-animal toxicity testing. The US
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EPA’s ToxCast program (http://epa.gov/ncct/toxcast/) (U.S. EPA 2012c), and the U.S.

government’s cross-agency Tox21 program (http://www.epa.gov/ncct/Tox21/) are using HTS

assays and developing computational tools to predict chemical hazard, to characterize a diverse
set of toxicity pathways, and to prioritize the toxicity testing of environmental chemicals (Huang
et al. 2011, U.S. EPA 2012d). Included in these programs are assays that cover toxicity pathways
involving estrogen, androgen and thyroid hormone receptors, and targets within the
steroidogenesis pathway. The current ToxCast chemical library covers approximately 17% of
chemicals subject to EDSP, and the larger Tox21 chemical library covers approximately 53% of
chemicals subject to EDSP. Assay technologies include competitive binding, reporter gene, and
enzyme inhibition assays. The comparison of HTS assays, endocrine-related modes of action
(MOA) and EDSP T1S is shown in Figure 1. An endocrine MOA consists of a series of
molecular initiating events (MIE) relevant for estrogen, androgen, thyroid, or steroidogenic
pathways. These assays do not represent their respective MOA in its entirety, but used to detect
chemicals capable of perturbing a particular MOA. The present study investigated the predictive
ability of ToxCast HTS assays for endpoints tested in EDSP T1S, and tested the hypothesis that
if a chemical activates the estrogen or androgen receptor in vitro that estrogen and androgen
related effects will occur in in vivo bioassays. Ideally, HTS tests should be highly reproducible,
and yield a minimal number of false positive (specificity) and false negative (sensitivity)

chemicals.

Previous studies have suggested the use of HTS assays for identifying endocrine
disrupting potential. For example, the ReProTect project developed within the 6™ European
Framework Program tested 14 in vitro assays using 10 prototype compounds to determine

feasibility for a reproductive screening program (Schenk et al. 2010). Those in vitro assays were
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grouped into three segments of the reproductive cycle: endocrine disruption, fertility, and
embryonic development. The results of ReProTect showed, at least for a limited number of
reference chemicals, that an appropriate in vitro assay selection can effectively group compounds

based on known reproductive toxicity (Schenk et al. 2010).

HTS assays are useful for identifying toxicological molecular initiating events (MIE)
which represent a series of key events relevant for a given biological or toxicity pathway.
Through a combination of competitive ligand binding, reporter gene, and enzyme inhibition
assays, the ability to predict the potential for chemicals to cause endocrine disruption can be
determined through investigating associations with results from guideline EDSP T1S assays and
other relevant endocrine studies. The aim of the current study was to determine the feasibility of
using HTS in vitro assays for prioritizing chemicals for T1S by investigating the associations
with data captured from guideline and non- guideline endocrine related study reports, and to

determine which endocrine MOA are suitable for more sophisticated model development.

Methods

Chemical Selection. This study used data on the Phase | ToxCast chemical library with data for
309 unique chemical structures (U.S. EPA 2008). The majority of these chemicals are either
current or former food-use pesticide active ingredients designed to be bioactive, or industrial
chemicals and of environmental relevance. Details of the chemical library are given in Judson et
al. (2009). Data on an additional 23 reference chemicals were included that were tested in a
separate study (Judson et al. 2010), 17 of which were not in the ToxCast Phase I library. CAS
registry numbers (CASRN) for the ToxCast Phase 1 and the additional 17 chemicals are

provided as supplemental material (See Supplemental Material, File 1).



196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

Guideline and Non-Guideline Endocrine Assays: Data from guideline endocrine-related in vitro
and in vivo studies were extracted from EDSP Tier 1 validation reports from the EPA EDSP

website (http://www.epa.gov/endo/pubs/assayvalidation/status.htm) (U.S. EPA 2012e). Non-

guideline studies were obtained from open literature by querying PubMed and Google Scholar
resources using the terms {any chemical name or CASRN in the 309} AND {in vitro or in vivo}
AND {estrogen or androgen or uterotrophic or Hershberger or steroidogenesis or thyroid
hormone}. A wide variety of studies were returned from the automated search. The list of studies
was manually curated to remove studies that did not contain data usable for the current analysis
(e.g. studies of mixtures without testing compounds individually, studies that mentioned the
chemical but did not test it in a bioassay, studies measuring bioaccumulation). Studies that
identified their methods as following: The Organization for Economic Co-operation and
Development (OECD) guidelines (Kanno et al. 2001; Kanno et al. 2003; OECD 1999; OECD
2001; OECD 2003; OECD 2007) or EDSP protocols were grouped together with EDSP T1S data
for the guideline analysis. When available, PubMed identifiers (PMID) were used as unique
annotations for each report. For the few instances when no PMID was available or for each
EDSP T1S validation report, a unique identifying number was generated. The citation

information for all documents used in the analysis is provided in Supplemental Material, File 2.

Guideline endocrine related assays gathered from EDSP validation reports and OECD
guideline studies were categorized according to whether they tested estrogen, androgen,
steroidogenesis, or thyroid related MOA (Guideline-E, Guideline-A, Guideline-S, Guideline-T,
respectively). Additional information captured included: study type (e.g. amphibian
metamorphosis, reporter gene, etc.), assay type (e.g. serum levels, organ weight, etc.), species,

strain, cell type, target, and whether or not it was an EDSP/OECD guideline study. Chemical
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potency (e.g. AC50, LEC) for a given endpoint was captured in whatever way it was represented
in the study report along with the maximum concentration/dose tested. Additionally, agonist or
antagonist responses were noted when applicable. Data from guideline and non-guideline studies
were dichotomized as either active if a response was observed, or inactive if no response was
observed. If a study investigated multiple endpoints for a given endocrine MOA and produced at
least one statistically significant endpoint, then that study-chemical-MOA combination was
considered active. Activity/Inactivity was determined based on the presence of a statistically
significant response or was based on the study author’s conclusion. Data was further annotated
as either a hit value of 1 or 0, if it was active or inactive, respectively. All guideline and non-
guideline literature studies were combined so as to have a single hit value for each study-
chemical-MOA combination. Data that was conflicting or otherwise unclear was included in the
data table, but was annotated as such, and removed from analyses. The data obtained from
guideline endocrine-related studies and other non-guideline literature reports is included in

Supplemental Material, File 3.

ToxCast In Vitro Assays. HTS Competitive binding, enzyme inhibition, and reporter gene assays
representing estrogen, androgen, steroidogenesis, or thyroid related endpoints (HTS-E, HTS-A,
HTS-S, HTS-T, respectively) were selected as a subset of the >500 HTS assays generated by the

ToxCast program (ToxCastDB v.17) (http://www.epa.gov/ncct/toxcast/data.html) (See

Supplemental Material, File 1). The details and a description of each assay are reported in Table

1.

For chemicals that produced a statistically-significant and concentration-dependent
response in a given assay, the concentration at half-maximum activity (AC50) was recorded.
The criteria for determining the activity of a compound are assay platform dependent and further
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details can be found in Supplemental Material. The data was then dichotomized so that if an
AC50 was present for a given chemical-endpoint concentration a 1 was reported or if no
response was observed then a 0 was reported. Triplicated chemicals were designated 1 or O on a
majority basis. Chemicals run in duplicate with at least one sample producing an AC50 were
designated as a 1. Experimental methods for each assay used are provided in the Supplemental

Material.

Model Development. An iterative, balanced optimization analysis was performed to determine
the ability of ToxCast HTS assays to correctly classify the results of guideline endocrine-related
assays, while maintaining balance between sensitivity and specificity. The process by which this
was performed is illustrated in Figure 2. Because each HTS endocrine MOA may have multiple
ToxCast HTS assays, disjunctive logic employing varied “weight-of-evidence” thresholds were
used to determine optimal predictive performance. This model tested variable thresholds for the
HTS ToxCast assay results represented as un-weighted binary data, while the guideline or non-
guideline endocrine-related assay results remained static. Initially, the model began with a
threshold criterion of 1 positive ToxCast HTS assay out of the total number of ToxCast HTS
assays for a chemical to be considered to perturb a given MOA. Once calculated, the model was
then re-run with increasing increments of 1 assay until all ToxCast HTS assays for a given
endocrine MOA were required to be positive for a chemical to be considered to perturb the given
MOA. As the threshold for a positive call was increased, a larger weight of evidence was
required for a chemical to be considered a “hit” for perturbing the given endocrine MOA. An
exception was made for guideline pubertal studies and the ToxCast NVS_NR_hAR assay.
Guideline pubertal studies test for effects that can arise through multiple different endocrine

related pathways. For this reason, if a chemical was considered positive in the pubertal assay and
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the result conflicted with other guideline studies (e.g. receptor binding, reporter gene), the
pubertal assay was not included in the weight-of-evidence. The ToxCast NVS_NR_hAR assay is
a human androgen receptor binding assay in the LNCaP prostatic cell line. The androgen
receptor in this cell line is known to bind to steroid hormones other than androgens (Veldscholte
et al. 1992). For this reason, if a compound was negative in all other HTS-A assays, the result for

the NVS_NR_hAR assay was not included in the weight-of-evidence.

For a specific set of criteria across all overlapping chemicals, sensitivity, specificity, and
balanced accuracy (BA) were calculated as measures of model performance to compare (see the
contingency table in Figure 2B). The guideline analysis was performed comparing ToxCast HTS
assays and guideline endocrine assays gathered from EDSP validation reports/OECD guideline
studies. A separate non-guideline analysis comparing ToxCast HTS assays with assays from
non-guideline studies was also conducted. Many studies in the EDSP/OECD guideline studies
and non-guideline literature have multiple studies/assays for each chemical-MOA combination.
Because separate studies are not always in agreement relative to a chemical-MOA perturbation,
the model was run using two scenarios: 1) any positive report for a chemical resulted in a
positive call for the chemical-MOA combination, or 2) greater than 50% (threshold > 0.50) of
guideline or non-guideline endocrine-related studies/assays must report the chemical to be active

for a given endocrine MOA.

For each threshold criteria the number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) were calculated. A TP was any chemical that was
determined to be positive with the ToxCast HTS assays and was also positive in guideline
endocrine reports. A FP was any chemical determined to be positive in ToxCast but reported as

negative in the guideline endocrine reports. If a chemical was determined negative in the
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ToxCast HTS assays and positive in the guideline endocrine reports then it was recorded as a
FN. Lastly, a TN was any chemical that was determined to be negative in the ToxCast HTS
assays and reported to be negative in the guideline endocrine reports. At each threshold
combination, all of the available chemicals were classified as TP, FP, TN, or FN and were used

to calculate sensitivity, specificity, and BA as a measure of model performance.

Statistical Analysis. In order to identify statistically significant BA values, a permutation test
was performed. The test randomized which ToxCast assays were associated with guideline
endocrine studies or biomedical literature for each endocrine MOA in order to determine
whether or not a randomly chosen set of assays from the >500 ToxCast endpoints would likely
produce a similar association. The BA calculation based on random assay associations was
performed using the same number of ToxCast assays as the model and with the same threshold
criteria. Assays were permuted 10,000 times to build the random BA population distribution, and
the percentile where the model BA fell among this distribution was calculated to provide a P
value. A P value of < 0.01 was considered statistically significant. The distributions developed

from the permutation tests were used to define the confidence intervals in Figures 3 and 4.

Results

Data Collection. Data covering guideline endocrine-related in vitro and in vivo assays was
extracted from documents used in EDSP Tier 1 validation or conducted according to OECD
guidelines. There were a total of 40 studies covering 154 unique chemicals, resulting in a total of
1246 captured endpoints. Table 2 shows the chemical overlap between the ToxCast chemical
library and the chemicals captured from guideline and non-guideline studies. There were 21

chemicals available from EDSP validation documents and other OECD guideline studies
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covering the Guideline-E MOA that overlapped with the ToxCast HTS-E assays. There were 13
chemicals overlapping in the corresponding Guideline-A assays, 8 in the T assays and 17 in the S
assays. Additional data used in a separate analysis was extracted from a total of 215 non-

guideline studies (See Supplemental Material, File 3).

Model Results. The results presented in Figure 3 demonstrate the predictive ability of ToxCast
HTS-E and HTS-A assays for corresponding endocrine MOA in the guideline endocrine-related
studies. Detailed results from the univariate model with guideline studies are provided in

Supplemental Material, File 4.

HTS and Guideline Endocrine Assay Comparisons: For HTS-E endpoints, an optimal BA of 0.91

(P < 0.001) was obtained with a sensitivity of 0.89 and specificity of 0.92 with a threshold of 2
positives for ToxCast HTS-E assays and >50% for Guideline-E studies (Fig. 3). This means a
minimum of 2 ToxCast HTS-E assays must report an AC50 value for a chemical to be
considered positive; and greater than 50% of Guideline-E assays must be reported as positive in
the EDSP validation reports or OECD guideline studies. A table of overlapping HTS-E and
HTS-A chemicals and corresponding performance in the HTS and guideline studies is provided
in Supplemental Material, Tables 3 and 4. There were 21 Guideline-E related chemicals that
overlapped with the ToxCast Phase | chemicals. One chemical, chlorpyrifos-methyl (5598-13-
0), was misclassified as a positive (FP) and one chemical, prochloraz (67747-09-5), was
misclassified as a negative (FN) by this set of ToxCast assays. If the goal was to optimize
sensitivity, threshold criteria of 1 ToxCast HTS-E assay and >50% of Guideline-E would
produce a perfect sensitivity of 1 but specificity drops to 0.5 across this set of ToxCast HTS-E
assays (See Supplemental Material, File 4). An additional analysis was conducted lowering the

threshold criteria for the Guideline-E assays from >50% to any single positive report resulted in
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a positive call. This lowers the sensitivity from 0.89 to 0.5 and the overall BA drops to 0.75 (Fig.

3).

Figure 3 demonstrates the predictive ability of the ToxCast HTS-A assays with the
Guideline-A results. The optimal predictive ability of the ToxCast HTS-A assays was reached
with a threshold of 1 HTS-A assay and a threshold > 50% for the Guideline-A assays. This set of
criteria produced a BA of 0.92 (P < 0.001) with a sensitivity of 0.83 and specificity of 1 (See
Supplemental Material, Table 4). The results for HTS-S and HTS-T were not statistically
significant among any of the analyses with BA of .56 (P > 0.01) and .50 (P > 0.01), respectively

(See Supplemental Material, File 4).

HTS and Uterotrophic and Hershberger Comparisons: A separate analysis was conducted to

determine the predictive capability of the ToxCast HTS-E assays to detect positive and negative
chemicals reported in EDSP/OECD guideline uterotrophic assays (Fig. 3). 18 chemicals were
available for comparison and the optimal thresholds for HTS-E produced a BA of 0.9 (P < 0.001)

with a sensitivity and specificity of 0.88 and 0.9, respectively.

Additionally, the predictive ability of ToxCast HTS-A assays for EDSP/OECD guideline
Hershberger results was determined. Although, only 6 chemicals were available for comparison,
the analysis resulted in a BA of 1 (P < 0.001) with perfect measure of sensitivity and specificity
with thresholds of 1 positive assay required for both HTS-A and EDSP/OECD guideline

Hershberger reports (Fig. 3).

HTS and Non-Guideline Study Comparisons: Predictive modeling results for non-guideline

studies in the biomedical literature are presented in Figure 4. All results from the analysis with

non-guideline studies are provided in supplemental material, File 5. The HTS-E MOA produced
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a maximum BA of 0.74 (P < 0.01) with at least one ToxCast assay being positive (ToxCast HTS-
E threshold of 1) and a literature threshold of >50%. These criteria produced a sensitivity of 0.75
and a specificity of 0.72. Due to the wide range of test conditions, assay technologies, and
species present in the open-literature there was a loss of sensitivity compared to the guideline
studies. This is apparent due to the model optimization occurring with only a single HTS-E assay
required for a positive classification, as opposed to optimizing at two assays in the guideline
analysis. There was an overall concordance of 0.7 between the Guideline-E assay results and the

estrogen-related literature results given the stated thresholds (Data not shown).

The optimal BA reached 0.65 (P > 0.01) with ToxCast HTS-A assays threshold of 1, and
an androgen-related literature threshold >50%. At these thresholds, there was a low sensitivity
(0.3), but a perfect specificity of 1 (Fig. 4). There was a concordance between chemical
classifications for Guideline-A reports and non-guideline reports of 0.77 at the reported

thresholds of >50% (Data not shown).

Discussion

The results of this study demonstrate that ToxCast in vitro assays perform adequately to
prioritize chemicals for further EDSP T1S for estrogen and androgen activity, and these HTS
assays are predictive of the likelihood of a positive or negative finding in more resource-
intensive assays. Additional HTS assays will be needed to predict steroidogenic and thyroid
activity of chemicals. Methods for prioritizing chemicals based on a broad range of ToxCast
HTS assays, in combination with physical-chemical properties, have been previously developed
(Reif et al. 2010). Other efforts are also underway to develop more sophisticated, pathway-

based, predictive models that would be more suitable to support regulatory decision making.
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This study demonstrates what MOA these models would be expected to be successful, and which
areas need additional technologies before a sufficient screening tool would be expected to
succeed. This information could be used for more focused follow-up efforts which can identify

some endocrine related MOAs for prioritization.

The HTS-E and HTS-A assays demonstrate a high degree of association with the
Guideline-E and Guideline-A assays. The two types of misclassifications, FP and FN, are
important because they highlight shortcomings in the model or further specify the domain of
applicability. FP are compounds predicted to be active, but were not active in this analysis based
on the threshold of EDSP/OECD reports or literature data. These are significant because a FP
could lead to unnecessary testing in more resource intensive assays, and a FN is of concern

because they represent potentially active chemicals that would have gone undetected.

The HTS-E model correctly classified 90% of chemicals, and only two out of 21
chemicals were misclassified as FP or FN. Chlorpyrifos-methyl was a FP, meaning that it was
predicted to be estrogenic by ToxCast HTS-E assays but was not positive in the only Guideline-
E report, which was a uterotrophic study by Kang et al. (Kang et al. 2004) (See Supplemental
Material, Table 3). This same chemical was reported to be inactive in all of the extracted non-
guideline-E literature data (active in 0/4 available assays). Chlorpyrifos-methyl was inactive in
all ToxCast HTS-E assays except for the Attagene ERa TRANS and CIS reporter gene assays,

which resulted in the subsequent positive call.

Non-guideline estrogen-related literature for prochloraz reported observations of ERa
antagonism in some reporter gene and proliferation assays (Bonefeld-Jorgensen et al. 2005;

Kjaerstad et al. 2010), but other studies did not observe activity in reporter gene assays
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(Andersen et al. 2002; Kojima et al. 2004; Lemaire et al. 2006; Petit et al. 1997) or proliferation
assays (Andersen et al. 2002; Vinggaard et al. 1999) (See Supplemental Material, File 3).
Prochloraz was a FN in this analysis, as it was active in the NCGC ERa antagonist assay, but
negative in all other ToxCast HTS-E binding and reporter gene assays (See Supplemental
Material, File 1). Prochloraz tested positive in the only Guideline-E assay available (See
Supplemental Material, Table 3). This EDSP/OECD fathead minnow assay showed altered
fecundity, vitellogenin, and oocyte atresia after prochloraz treatment (U.S. EPA 2007).
Prochloraz is known to disrupt steroidogenesis through CYP 17 hydroxylase and aromatase
inhibition, preventing the critical conversion of progesterone to 17a-hydroxyprogesterone and
testosterone to 17p-estradiol, respectively (Blystone et al. 2007; Sanderson et al. 2002). The
fathead minnow assay likely detected this non-receptor mediated mechanism of estrogen
disruption- and this mechanism of action would not have been expected to be detected in the
current set of ToxCast HTS-E assays. Prochloraz was the only compound misclassified in the
HTS-A analysis, and the effects observed in the male fish reproductive study are likely a result
of the same steroidogenic perturbations. Prochloraz was correctly identified by ToxCast

aromatase enzyme inhibition assay which was grouped with the HTS-S related MOA.

Although a limited number of chemicals were available for comparison, we found a
strong association between the ToxCast HTS-E and HTS-A assays with EDSP/OECD guideline
uterotrophic and Hershberger studies. 18 chemicals were available for comparison between
ToxCast HTS-E and guideline uterotrophic assays and only 2 were misclassified (See
Supplemental Material, Table 3). There were 6 chemicals available for analysis between ToxCast
HTS-A assays and Hershberger responses, and all chemicals were classified correctly for a

perfect BA of 1 (See Supplemental Material, Table 4).
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There are several explanations for why a chemical may be misclassified by the ToxCast
HTS models. In some scenarios a chemical may not have been tested to very high
concentrations, at which they may exhibit a response in ToxCast assays. Inconsistencies could
also result from species, tissue, or cell-type differences between the ToxCast versus guideline
studies. Most of the ToxCast assays use human cell lines or reporter constructs, and some areas
of misclassification may be due to species differences between these assays and the rodent
bioassays. Not only should interspecies differences be taken into consideration, but the
intraspecies differences may also be quite substantial. For example, studies have highlighted not
only the importance of tissue and cell distribution and context within an organism for both ER
and AR (Kolasa et al. 2003; Zhou et al. 2002), but also the presence of ERa and ER splice
variants (Saunders et al. 2002). Most in vitro assays are limited in their metabolic capabilities,
so chemicals that require metabolic activation in order to be active may not be detected.
However, methoxychlor and vinclozolin, which become more active with metabolism, were both
detected in the HTS-E (See Supplemental Material, Table 3) and HTS-A (See Supplemental
Material, Table 4) assays, respectively. Furthermore, in vivo assays may detect chemicals that
perturb endocrine related endpoints elicited via toxicity in other organs, such as the liver (Leffert
and Alexander 1976; Masuyama et al. 2000; Xie et al. 2003). The assays selected for this study
comprise only a small portion of the overall endocrine pathway domain. Alterations in
neuroendocrine or other pathways, as well as some feedback mechanisms, could be affected by a
compound and would not be detected by these assays. The methods used to classify compounds
in this study may result in different conclusions than those obtained by EDSP (U.S. EPA 2011a).
Despite these limitations, evidence from this study indicates that very few chemicals that are

active in EDSP T1S go undetected by ToxCast HTS-E and HTS-A assays. The majority of
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misclassifications appear to be from downstream estrogenic and androgenic effects caused by
alterations of upstream steroidogenic enzymes. The majority of active Guideline-E and
Guideline-A chemicals in this dataset appear to operate through receptor mediated pathways and

are detectable in vitro.

The non-guideline literature analysis demonstrated that ToxCast HTS assays are also
predictive of a broader range of endocrine-related assays. As expected, there was a loss of
accuracy in predicting the non-guideline literature analysis when compared to the EDSP/OECD
guideline studies due to the wide variety of species tested, assay protocols, and technologies
implemented in the non-guideline literature reports. An additional factor that led to the loss of
sensitivity in the HTS-A non-guideline analysis was the imbalance of positive to negative
reports. The guideline study had 6 positives out of 13 total chemicals (46%) at >50% threshold
and the non-guideline report had 47 positives out of 59 total chemicals (80%) at the same

threshold. The sensitivity would be expected to improve with a more balanced dataset.

Based on this analysis, there is a clear need to develop HTS assays capable of detecting
steroidogenesis and thyroid disrupting compounds. The current HTS-S related assay within
ToxCast is limited to a single cell-free aromatase enzyme activity assay. Aromatase is a key
enzyme in the biosynthesis of estrogens from androgens (Schuurmans et al. 1991; Stoker et al.
2000a). However, in addition to aromatase inhibition there are other mechanisms of
steroidogenesis that may be impacted by environmental chemicals that are not tested in our
current HTS battery (Stoker et al. 2000a; Stoker et al. 2000b). Additional assay technologies that
may provide a more comprehensive set of steroidogenesis endpoints are currently being

assessed.
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The ToxCast HTS-T assays used in this analysis are composed of thyroid hormone
receptor binding and reporter gene assays. Only a limited number of chemicals were available
for comparison between the HTS-T assays and the guideline studies. The inability of the
ToxCast HTS-T assay results to associate with compounds thought to disrupt thyroid
homeostasis in EDSP/OECD guideline studies, suggest that most of these compounds are not
acting through thyroid hormone receptor-mediated mechanisms (Paul et al. 2010; Zorrilla et al.
2009). Thyroid hormone homeostasis has been shown to be altered through enhanced or
suppressed clearance of thyroid hormone by metabolic enzymes (Saghir et al. 2008; Zorrilla et
al. 2009) . ToxCast contains HTS assays measuring nuclear receptor activation and metabolic
enzyme activity, which could be relevant for thyroid hormone metabolism. However, many
chemicals that activated these in vitro ToxCast assays were not associated with adverse
outcomes in the in vivo literature captured by this study, and the subsequent lack of specificity

for thyroid active chemicals led to their exclusion from this analysis (Data not shown).

From these findings, we can conclude that most chemicals chosen to validate EDSP T1S
assays alter estrogen and/or androgen related endpoints through nuclear receptor-mediated
mechanisms and are capable of being efficiently detected by the ToxCast HTS assays. For the
purpose of prioritization, it is important to establish sufficient confidence that the assays being
utilized are specific and sensitive so that chemicals prioritized for EDSP T1S include those most
likely to be active. Although further efforts are needed to improve the ability to detect
steroidogenic and thyroid-disrupting chemicals with in vitro test systems; these results indicate
that ToxCast endocrine assays are highly predictive of chemicals with estrogenic and androgenic
receptor-based endocrine MOA, and their use for endocrine testing would allow efficient

prioritizing of chemicals for further testing.
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Table 1

Summary of Endocrine Literature Survey

No. of
Chemicals No. of
No. of Overlapping overlapping
Unique with active
Assigned Chemicals EDSP/OECD chemicals in
MOA  Species Assay Target Assay Technology Tested Reports ToxCast
ToxCast Assay
ATG_AR_TRANS HTS-A  Human Androgen Receptor-Agonist Multiplexed reporter gene assay 309° 13 0
NCGC_AR_Agonist HTS-A  Human Androgen Receptor-Agonist GAL4 BLAM Reporter gene assay 309 13 0
NCGC_AR_Antagonist HTS-A Human Androgen Receptor-Antagonist GAL4 BLAM Reporter gene assay 309 13 5
NVS_NR_hAR HTS-A  Human Androgen Receptor Competitive Binding 309 13 6
NVS_NR_rAR HTS-A Rat Androgen Receptor Competitive Binding 309 13 1
ATG_ERa_TRANS HTS-E Human Estrogen Receptor-alpha Multiplexed reporter gene assay 326" 21 12
ATG_ERE_CIS HTS-E Human Estrogen Receptor Response Element Multiplexed reporter gene assay 326" 21 11
ATG_ERRa_TRANS HTS-E Human  Estrogen Related Receptor-alpha Multiplexed reporter gene assay 326" 21 0
ATG_ERRg_TRANS HTS-E Human Estrogen Related Receptor-gamma Multiplexed reporter gene assay 326" 21 0
NCGC_ERalpha_Agonist HTS-E Human  Estrogen Receptor-alpha-Agonist GAL4 BLAM Reporter gene assay 326" 21 7
NCGC_ERalpha_Antagonist HTS-E Human Estrogen Receptor-alpha-Antagonist ~ GAL4 BLAM Reporter gene assay 309 15 4
NVS_NR_bER HTS-E Bovine Estrogen Receptor Competitive Binding 316" 17 1
NVS_NR_hER HTS-E Human Estrogen Receptor Competitive Binding 326° 21 4
NVS_NR_mERa HTS-E  Mouse Estrogen Receptor-alpha Competitive Binding 316" 17 1
NVS _ADME_hCYP19A1 HTS-S Human Aromatase Enzyme Inhibition 309 17 1
NCGC_TRbeta Agonist ~ HTS-T Human Y70 HO”X;Z‘;ESCEptOF'bEta' GAL4 BLAM Reporter gene assay 309 8 0
NCGC_TRbeta_Antagonist HTS-T Human 70 HOX:;r;Zriesfemor'bEta' GAL4 BLAM Reporter geneassay 309 8 0
NVS_NR_hTRa HTS-T Human | TroidHormone Receptor-alpha- Receptor Activation 309 8 0
Antagonist

a Additional reference compounds from Judson et al. 2010 were run but not included because this is the only androgen-related HTS assay that tested these chemicals
b Includes additional reference compounds from Judson et al. 2010
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Table 2

Summary of Endocrine Literature Survey

No. of Unique No. Chemicals
Chemicals from Overlapping with
Endocrine Modes of No. of Data Literature ToxCast for
Action No. of Documents* Points* Survey* Comparison*
Estrogenecity 18 (108) 410 (979) 104 (158) 21 (143)
Androgenecity 22 (54) 571 (301) 60 (73) 13 (59)
Steroidogenesis 10 (32) 123 (251) 44 (61) 17 (55)
Thyroid 7 (48) 142 (190) 27 (57) 8 (47)
ALL 40 (215) 1246 (1721) 154 (182) 35 (157)

* Guideline (Non-Guideline)

29



679
680 Figures Legends:
681

Steroid Synthesis
E A ) Androgen Estrogen

In Vitro

o ///////V///////V/////
/ ]

Receptor Binding T

. /7/’/’/’/’//’/’/’//’
= i = z /
Transcriptional Activation ////%ﬂ///// )

Ilillillilillillilillil Illillilillillilillill

Steroidogenesis
Aromatase

In Vivo
Uterotrophic
Hershberger
Pubertal Male
Pubertal Female
Fish Reproductive Screen
Amphibian Metamorphosis

e R

ToxCast Phase |

Both Tier 1 and ToxCast Phase |

Not Applicable
682
683 Figure 1. Overlap between EDSP Tier 1 assays and ToxCast Phase | assays by endocrine modes of action
684 (MOA). Colors illustrate the type of endocrine MOA data (top) that was captured from the various study
685 types (side).
686

30



687
688

689
690
691
692
693
694
695
696
697
698

(A)
ToxCast HTS in vitro Assays Guideline Endocrine-Related Assays

Chemical X Chemical X

Standard

StaticThreshold:
_ (e.g. 2 50%
\ "~

Chemical X

DynamicThreshold:
(e.g. = 2 assays)

Chemical X

HTS+ Guideline +

- Positive for Endpoint True Positive

- Negative for Endpoint

(B) All Chemicals for given endocrine MOA at Designated Cutoff

Guideline Endocrine Assays

TP
T - Sensitivity =
TP+FN
2 | TP Fp -
T
9 Specificity =
S TN+FP
X FN TN
= Sensitivity + Specificity
Balanced Accuracy =

2

Figure 2. Graphical representation of the balanced optimization model used to analyze predictive capacity
of endocrine related ToxCast assays. Multiple assays and study reports were available for each chemical-
mode of action (MOA) combination. To determine whether a chemical was classified as active or inactive
for ToxCast High-throughput screening (HTS) assays, a variable threshold was iteratively optimized to
range from any positive assay to all positive assays required for a chemical to be classified as positive. Two
scenarios were used to classify chemicals with data from EDSP/OECD guideline reports with either any
single positive report or >50% of reports required for a chemical to be classified as positive. All chemicals
were then tabulated in a two-by-two contingency table to calculate sensitivity, specificity, and balanced
accuracy were used as a measure of model performance. Panel A provides a snapshot of a step in this
modeling/optimization process. Chemical X is positive in 3 of 5 HTS assays and 2 of 3 guideline reports. In
this example, the dynamic HTS threshold is “at least 2 positive assays” and the guideline threshold is “at
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least 50% positive reports”, so Chemical X is considered a true positive (TP). Panel B shows how results for
all chemicals are tabulated (e.g. Chemical X would be counted in the true positive portion of the
contingency table) to arrive at an estimate of balanced accuracy for each set of threshold parameters.
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Figure 3. A forest plot illustrating the performance, as measured by sensitivity, specificity, and balanced
accuracy (BA), of ToxCast endocrine related assays for predicting outcomes captured in EDSP/OECD
guideline studies is graphically represented for comparison. Circles represent the optimal BA obtained
across all threshold combinations with the corresponding sensitivity and specificity at the same threshold.
Gray boxes indicate 95% confidence intervals around permuted BA distributions. Analyses designated
“ALL” include all available assays for the stated endocrine mode of action. If the “Required Guideline
Positives” column is >50%, then greater than 50% of the studies had to report a positive result for a
chemical to be considered a positive in the analysis. If the “Required Guideline Positives” column is
designated “1” then any study reporting a positive resulted in the chemical being considered positive in the
analysis. A separate analysis comparing only uterotrophic and Hershberger analyses has also been included.
The number of chemicals classified as true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) are tabulated along the side.
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Figure 4. A forest plot illustrating the performance, as measured by sensitivity, specificity, and balanced
accuracy (BA), of ToxCast endocrine related assays for predicting outcomes captured in non-guideline
endocrine studies is graphically represented for comparison. Circles represent the optimal BA obtained
across all threshold combinations with the corresponding sensitivity and specificity at the same threshold.
Gray boxes indicate 95% confidence intervals around permuted BA distributions. If the “Required Non-
Guideline Positives” column is >50%, then greater than 50% of the studies had to report a positive result for
a chemical to be considered a positive in the analysis. If the “Required Non-Guideline Positives” column is
designated “1”, then any study reporting a positive resulted in the chemical being considered positive in the
analysis. The number of chemicals classified as true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) are also tabulated.
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