

DEPARTMENT OF
ECOLOGY
State of Washington

PM_{2.5} and PM₁₀ Beta Attenuation Monitor Operating Procedure

Revised October 2019

Publication 17-02-005

Publication and Contact Information

This document is available on the Department of Ecology's website at:
<https://fortress.wa.gov/ecy/publications/summarypages/1702005.html>

For more information contact:

Jill Schulte | Beth Friedman
Air Quality Program
P.O. Box 47600
Olympia, WA 98504-7600
Phone: 360-407-6800

Washington State Department of Ecology – www.ecology.wa.gov

- Headquarters, Olympia 360-407-6000
- Northwest Regional Office, Bellevue 425-649-7000
- Southwest Regional Office, Olympia 360-407-6300
- Central Regional Office, Union Gap 509-575-2490
- Eastern Regional Office, Spokane 509-329-3400

To request ADA accommodation including materials in a format for the visually impaired, call Ecology at 360-407-6831 or email ecyadacoordinator@ecy.wa.gov. People with impaired hearing may call Washington Relay Service at 711. People with speech disability may call TTY at 877-833-6341.

PM2.5 and PM10 Beta Attenuation Monitor Operating Procedure

October 2019

Approved by:

Signature: _____ Date: _____
Kathy Taylor, Air Quality Program Manager

Signature: _____ Date: _____
Cullen Stephenson, Technical Services Section Manager

Signature: _____ Date: _____
Jill Schulte, Air Monitoring Coordinator

Signature: _____ Date: _____
Sean Lundblad, Quality Assurance Coordinator

Signatures are not available on the Internet version

This page is purposely left blank

Table of Contents

	<u>Page</u>
List of Figures and Tables.....	2
Figures.....	2
Tables.....	2
1. Introduction.....	3
2. Principles of Operation	5
3. Equipment and Supplies	7
4. Installation Procedure	8
4.1 Siting.....	8
4.2 Installation.....	9
5. Quality Control and Maintenance Procedure.....	15
5.1 Monthly quality control and maintenance	15
5.2 Six-month maintenance	23
5.3 Twelve-month maintenance.....	24
6. Data collection and Storage	25
6.1. Communication software setup.....	25
6.2 Envidas channel configuration.....	26
6.3. Diagnostic data storage	28
7. Data Validation and Quality Assurance.....	30
7.1. Error flags	30
7.2. Negative concentrations.....	31
8. PM ₁₀ Monitoring.....	32
9. References.....	33
10. Appendix.....	34
10.1 Sample BAM QC check form.....	34
10.2 14-day nozzle and vane cleaning instructions	35

List of Figures and Tables

	<u>Page</u>
Figures	
Figure 1: Photo of BAM 1020 (Met One Instruments, 2012).....	4
Figure 2: Schematic diagram of BAM 1020 (Met One Instruments, 2012)	6
Figure 3: Photo of outdoor pump enclosure (photo courtesy of PSCAA).....	9
Figure 4: BAM 1020 home screen.....	12
Figure 5: Multipoint flow calibration screen	12
Figure 6: Spent filter tape from clean nozzle/vane (left) and leaking nozzle/vane (right) (Met One Instruments, 2012)	17
Figure 7: Close-up view of nozzle and vane cleaning (Met One Instruments, 2012)	18
Figure 8: Diagram of PM10 head inlet components (Vaughn, 2009).....	19
Figure 9: Exploded view of VSCC components (Vaughn, 2009)	20
Figure 10: Multipoint flow calibration screen	21
Figure 11: Comet setup screen.....	25
Figure 12: Comet user interface.....	26
Figure 13: Screenshot of BAM 1020 channel configuration in Envidas Ultimate	27
Figure 14: Screenshot of BAM 1020 device settings in Envidas Ultimate	28

Tables

Table 1: Summary of BAM 1020 standard hardware, tools, routine parts, and supplies	7
Table 2: Summary of PM siting criteria (adapted from Vaughn, 2009)	8
Table 3: Summary of post-installation steps.....	10
Table 4: BAM 1020 configuration parameters to review upon installation.	11
Table 5: Summary of monthly quality control and maintenance steps.....	15
Table 6: 14-day nozzle and vane cleaning steps	23
Table 7: Diagnostic parameters available in Envidas	29
Table 8: Summary of critical and operational criteria used to determine data validity.....	30
Table 9: BAM 1020 error flags.....	31

1. Introduction

This document describes the Washington State Department of Ecology's procedures for sampling ambient air for particulate matter with aerodynamic diameter 2.5 μm or less (PM_{2.5}) and aerodynamic diameter 10 μm or less (PM₁₀) using a Met One Instruments Beta Attenuation Monitor 1020 (BAM). It covers the configuration, operation, and maintenance of the BAM. It is intended to be used with the model-specific information and instructions provided by the manufacturer.

When configured for PM_{2.5} monitoring, the BAM provides hourly PM_{2.5} mass concentration measurements in actual conditions. In 2008, EPA designated the BAM as a federal equivalent method (FEM) for measuring PM_{2.5} (73 FR 22362, EQPM-0308-170). To meet the federal requirements for FEM PM_{2.5} measurement, the sampler must be:

- configured with an approved PM₁₀ inlet followed by a BGI, Inc. Very Sharp Cut Cyclone (VSCC) particle size separator;
- running firmware 3.2.4 or later;
- equipped with BX-596 ambient temperature and pressure sensor, BX-961 automatic flow controller in actual conditions, and BX-827 or BX-830 Smart Inlet Heater; and
- operated and maintained in accordance with revision F or later of the BAM 1020 Continuous Particulate Monitor Operation Manual.

When configured for PM₁₀ monitoring, the BAM provides hourly PM₁₀ mass concentration measurements in standard conditions. In 1998, EPA designated the BAM as an FEM for measuring PM₁₀ (63 FR 41253, EQPM-0798-122). To meet the federal requirements for FEM PM₁₀ measurements, the sampler must be:

- equipped with the standard BX-802 PM₁₀ size-selective inlet; and
- configured to report concentrations in standard conditions.

This operating procedure describes the configuration for PM_{2.5} monitoring unless otherwise stated. For instructions on configuring the BAM for PM₁₀ sampling, refer to Section 8.

A photo of the BAM 1020 is shown in Figure 1.

PM_{2.5} and PM₁₀ Beta Attenuation Monitor Operating Procedure

Figure 1: Photo of BAM 1020 (Met One Instruments, 2012)

2. Principles of Operation

The BAM uses the principle of beta ray attenuation to measure the mass concentration of PM in ambient air. An external pump draws ambient air at 16.7 liters per minute (lpm) first through a PM₁₀ inlet and then (for PM_{2.5} monitoring) through a VSCC particle size separator to remove particles greater than 2.5 μm in aerodynamic diameter from the sample stream. The sample stream then passes through a glass fiber filter tape.

A carbon-14 (¹⁴C) element above the filter tape constantly emits beta particles, which are detected and counted by a scintillation detector underneath the filter tape. At the beginning of each hour, the BAM counts the beta rays attenuated by a fresh, unsampled spot of filter tape for 8 minutes. The sample stream is then filtered through that spot of tape for 42 minutes. At the end of the sample period, the BAM counts the beta rays attenuated by the sampled spot of tape. The difference in the degree of attenuation between the pre- and post-sampled filter tape is directly proportional to the mass of PM in the sampled air. This mass can be divided by the total volume of air sampled to derive a mass concentration in mg/m³ or $\mu\text{g}/\text{m}^3$.

A schematic diagram of a typical BAM setup is shown in Figure 2.

PM_{2.5} and PM₁₀ Beta Attenuation Monitor Operating Procedure

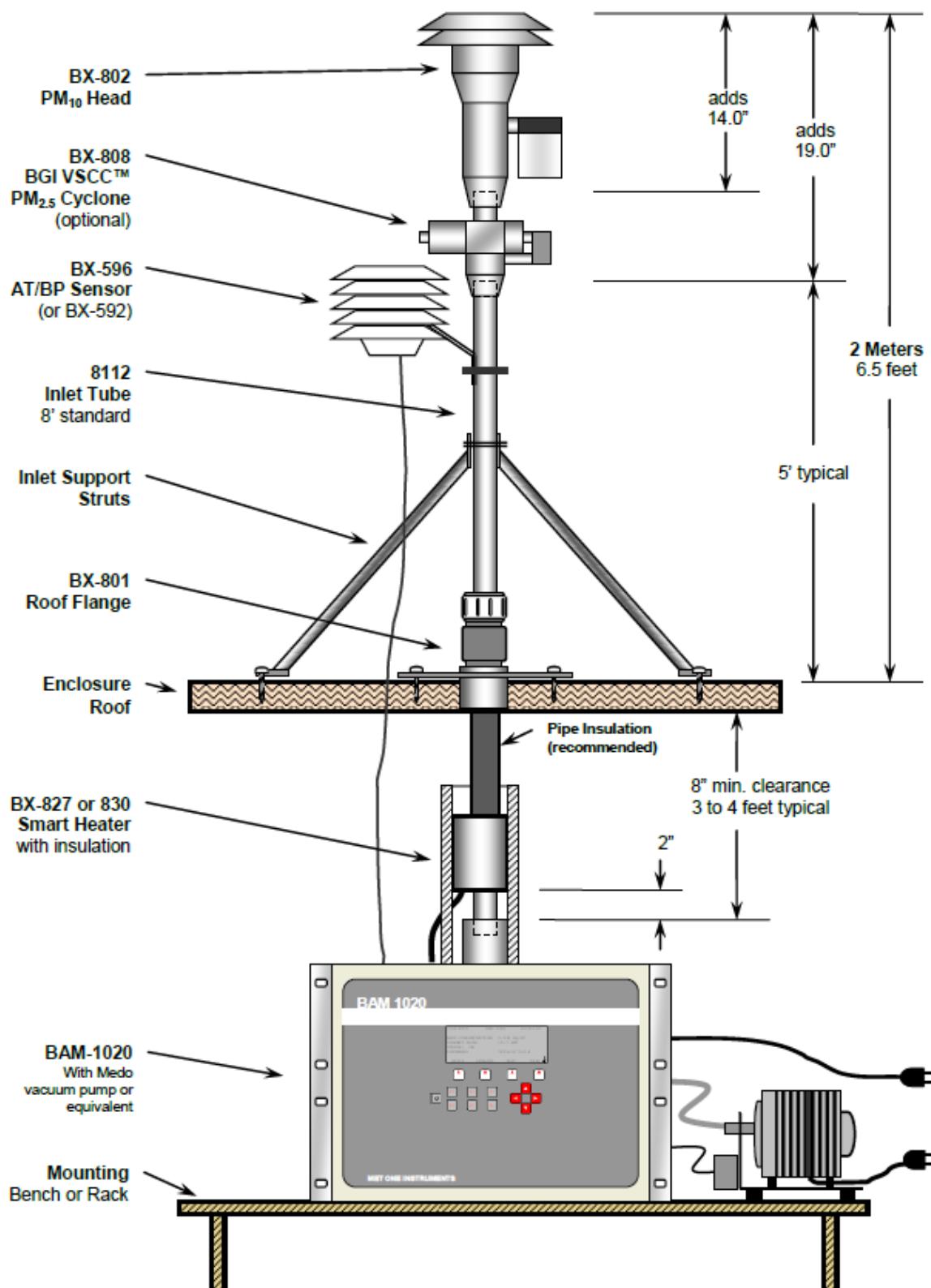


Figure 2: Schematic diagram of BAM 1020 (Met One Instruments, 2012)

3. Equipment and Supplies

The diagnostic tools, parts, and supplies necessary to operate and maintain the BAM 1020 are summarized in Table 1 below.

Table 1: Summary of BAM 1020 standard hardware, tools, routine parts, and supplies

Category	Equipment	Purchase schedule
Tools and Equipment	Approved, certified, NIST-traceable flow standard	Once
	Flow audit adapter	Once
	Tygon® tubing	Once
	NIST-traceable thermometer	Once
	NIST-traceable handheld barometer	Once
	Digital multi-meter	Once
	Rubber shim (part 7440 in BX-308 tool kit)	Once
	Various hand tools (screwdriver, hexagonal wrench, etc.)	Once
Consumables	Filter tape (Sibata; Met One 460130)	Every 60 days
	Chamois swabs	As needed
	Cotton-tip applicators	As needed
	Rubbing alcohol	As needed
	Lint-free lab wipes	As needed

4. Installation Procedure

4.1 Siting

Proper siting is essential to ensure that data collected are representative at the appropriate scale for the monitoring project. The majority of PM_{2.5} and PM₁₀ monitoring in the Washington State Ambient Air Monitoring Network (Washington Network) is conducted at the neighborhood scale. Siting criteria for neighborhood-scale PM monitoring sites are described extensively in 40 CFR Part 58, Appendices D and E; the primary considerations are summarized in Table 2 below. Operators of sites at other monitoring scales should consult Appendices D and E for siting requirements.

Table 2: Summary of PM siting criteria (adapted from Vaughn, 2009)

Parameter	Category	Siting Requirement
Inlet height	General	2-15 m above ground
	On rooftop	2 m above roof
	Collocated samplers	Within 1 vertical m of each other
	Inlet tube length	≤ 16 ft (4.9 m)
Inlet radius clearance	General	≥ 1 m radius clearance
	Collocated samplers	1-4 m with a minimum of 180 degrees of open sample pathway
	Near small obstructions (fences, walls, etc.)	≥ 2 m
	Near large obstructions (buildings, sound walls, billboards, etc.)	Distance ≥ 2x height of obstruction
	Near overhanging trees	≥ 10 m from tree drip line, ≥ 20 m from dripline is recommended
	Arc of air flow	Unrestricted 270° arc that includes prevailing direction of high concentrations
Nearby Air sources	General	As far away as possible from vents
Distance from roadways	< 3,000 vehicles per day*	≥ 5 m from nearest traffic lane
	Elevated roadway (> 25 m high)	≥ 25 m away
	Unpaved roads	As far away as possible

Operators should refer to Ecology's Air Monitoring Project Approval, Site Selection, and Installation Procedure (#95-201B) for further information on site selection.

The BAM can be installed in a walk-in shelter, mobile trailer, or environmentally controlled mini-enclosure. Enclosures should be selected to minimize environmental interference as much as possible. Known types of environmental interference include:

- **Temperature:** The BAM is sensitive to rapid fluctuations in temperature. Shelters must be equipped with both a heater and an air conditioner to ensure that shelter temperature does not

PM_{2.5} and PM₁₀ Beta Attenuation Monitor Operating Procedure

vary by more than $\pm 2^{\circ}\text{C}$ per hour. The shelter temperature set point can be anywhere from 0°C to 50°C. The recommended set point range is 20-30°C.

- **Vibration:** Excess vibration can interfere with the BAM's operation and introduce excessive measurement noise. Wherever possible, the BAM should occupy its own shelter or its own bench to minimize interference from vibration of other instruments. The BAM pump is also a source of vibration, and it should be placed as far as possible from the BAM itself, ideally in a separate outdoor enclosure as shown in Figure 3. Although the photo shows a different style of pump, this enclosure is also compatible with the BAM 1020 Medo pump.

Figure 3: Photo of outdoor pump enclosure (photo courtesy of PSCAA)

By default, the BAM ships with an 8-foot inlet that can only be shortened by the manufacturer. Prior to ordering a new instrument, the operator should work with the Calibration and Repair Laboratory to determine the appropriate inlet length for the BAM enclosure and specify that length when purchasing a new BAM.

4.2 Installation

It is recommended that operators follow the detailed instructions found in the BAM 1020 Operation Manual when installing a new instrument. In addition to the manufacturer's instructions, operators should take the following special precautions when installing the BAM 1020:

- Align the downtube in a straight, vertical line above the inlet of the BAM. If the alignment is not perpendicular, transverse stress on the inlet connections can cause leaks.
- Secure the downtube to the roof with a waterproof roof flange so that the PM10 head and VSCL can be removed without disturbing the instrument.

PM_{2.5} and PM₁₀ Beta Attenuation Monitor Operating Procedure

- Secure the downtube with a tripod or at least two support braces to prevent flexing of the downtube in the wind.
- Tighten the two set screws in the inlet receiver into the downtube hard enough to pierce the anodizing on the downtube. Then loosen the set screws and re-tighten them so they are snug. This process creates a ground connection to prevent the buildup of static electricity on the inlet tube.
- To check the ground after assembly, clear the anodizing from an exposed spot near the bottom of the down tube. Use a digital multimeter to measure the resistance between this spot and the ground connection labeled “CHASSIS” on the back of the BAM to ensure that it measures $< 2\Omega$.
- Connect the BAM-1020 to the data acquisition system using the “Report Port” located on the back of the BAM.
- After installing the instrument, conduct the following steps to begin operation:

Table 3: Summary of post-installation steps

Step	Section
Verify the settings	4.2.1
Install the filter tape	4.2.2
Perform the self-test	4.2.3
Calibrate the ambient temperature, ambient pressure and flows	4.2.4
Perform a leak check	4.2.5
Perform a 72-hour zero test	4.2.6

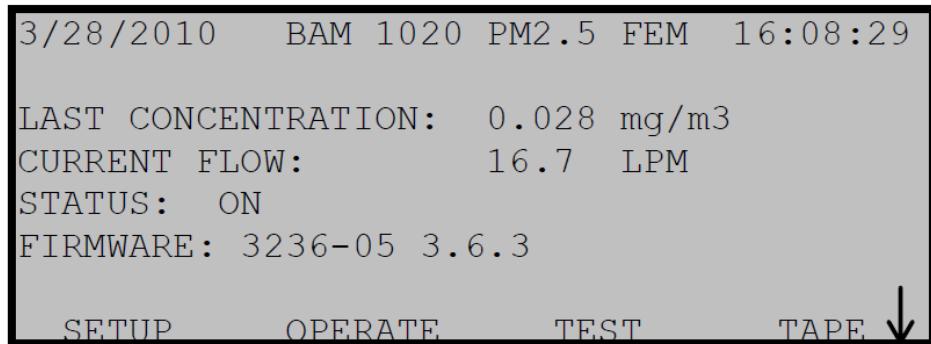
4.2.1 Verify the settings

Verify the following settings in the SETUP menu. The default password for accessing these menus is F1 F2 F3 F4.

Table 4: BAM 1020 configuration parameters to review upon installation.

Menu	Sub-Menu	Setting
SETUP > CLOCK	--	Verify that BAM clock is 2 minutes ahead of data logger clock
SETUP > SAMPLE	BAM SAMPLE	042 MIN
	RANGE	1.000 mg
	OFFSET	-0.015 mg
	CONC UNITS	µg/m ³
	COUNT TIME	8 MIN
SETUP > CALIBRATE	SPAN CHECK	24HR
	FLOW RATE	0016.7
	CONC TYPE	ACTUAL
	FLOW TYPE	ACTUAL
	HEATER CONTROL	AUTO
SETUP > HEATER	RH Control	YES
	RH Setpoint	35%
	Datalog RH	YES (Chan 4)
	Delta-T Control	NO

4.2.2 Install the filter tape


1. Remove the plastic reel covers.
2. Install an empty rubber or cardboard core on the take-up (left) reel.
3. Ensure the pinch rollers are lifted and secured with the latch.
4. Handle the filter tape only by its edges to avoid contaminating the sampling surface. Load the new roll of filter tape on the supply (right) reel and guide the tape into the transport assembly as shown in the drawing on the door of the BAM.
5. Use adhesive tape to fasten the loose end of filter tape to the empty core on the take-up reel.
6. Rotate the reels by hand until the filter tape is taut.
7. Install the plastic reel covers. Tighten them just until the metal plates behind the reels begin to turn.
8. Align the filter tape with the score marks on the edges of the rollers.
9. Unlatch the pinch rollers to lower them onto the tape.
10. Select TENSION > TAPE to set the tension on the tape.

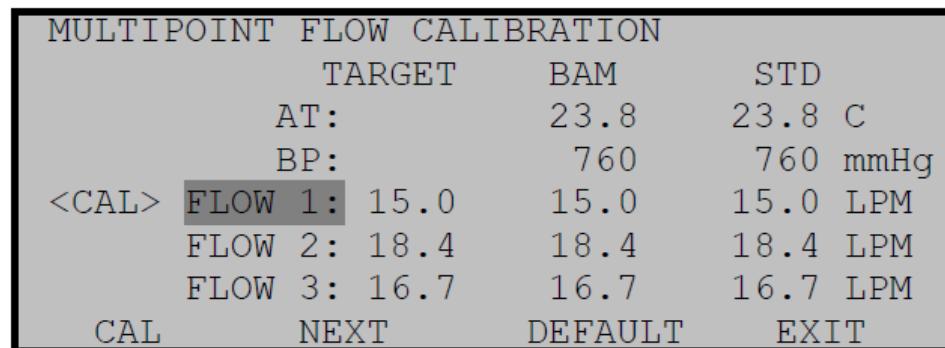
4.2.3 Perform the self-test

The BAM's built-in self-test function automatically tests the tape and flow systems to ensure that the BAM is ready to enter sampling mode. The self-test should be run initially and after any interruption to sampling, such as a quality control check, filter tape change, or performance evaluation.

1. Select TAPE > SELF TEST.

2. Read the “Status” line when the self-test is complete. If it displays SELF TEST PASSED, select EXIT to return to the home screen (Figure 4 2).
3. If the status displays ERROR OCCURRED, look for an error in the individual test parameters. Resolve the error and repeat the self-test until it passes, then select EXIT to return to the home screen (Figure 4 2).

Figure 4: BAM 1020 home screen


Note: A quick way to ensure the BAM is left on the home screen is to ensure that there is not an EXIT button at the bottom of the screen. The home screen is the only screen without an EXIT option.

4.2.4. Calibrate the ambient temperature, ambient pressure, and flows.

The ambient temperature, ambient pressure, and flows must be calibrated upon installation and relocation of the BAM 1020.

1. Select TEST > FLOW to enter the MULTIPPOINT FLOW CALIBRATION screen. The default password is F1 F2 F3 F4.

The MULTIPPOINT FLOW CALIBRATION screen allows the user to view and calibrate the ambient conditions and flows. For each parameter, the BAM column shows the instrument’s indicated value. The STD column is identical to the BAM column by default and can be programmed with actual values from transfer standards to calibrate the BAM.

Figure 5: Multipoint flow calibration screen

2. Measure the actual ambient temperature inside the radiation shield using a certified, NIST-traceable thermometer. Use the soft arrow keys to program it into the STD column of the ambient temperature (AT) line.
3. Select NEXT to navigate to the barometric pressure (BP) line. Measure the actual BP at the BAM inlet using a certified BP standard and program it into the STD column of the BP line.
4. Remove the PM10 head and install the flow audit adapter. Ensure that the valve is in the open position (parallel to the inlet). Connect tubing between the flow audit adapter and an approved, certified flow transfer standard.
5. Select NEXT to navigate to the three flow points. At each point, allow the flow to stabilize and read the actual volumetric flow from the flow transfer standard and program it into the STD column.
6. Select CAL to store the results and recalibrate the BAM.
7. Select EXIT to return to the home screen (Figure 4).

4.2.5. Perform a leak check

1. Select TEST > TAPE. Press FWD to advance the tape to a clean, unsampled spot.
2. Ensure that the flow audit adapter is installed above the VSCC in place of the PM10 head. Turn the flow audit adapter valve to the closed position (perpendicular to the inlet).
3. Select TEST > PUMP and turn the pump on.
4. Allow the pump to stabilize for 20-30 seconds.
5. Read the flow rate on the BAM display and record it in the As-Found Leak Check section of the BAM QC form. The flow rate must be ≤ 1.5 lpm for the leak check to pass.
6. Turn off the pump and slowly open the flow audit adapter valve.

4.2.6. Perform a 72-hour zero test

In order to meet EPA requirements for federal equivalency, all PM_{2.5} BAM units must undergo a 72-hour zero background test when first deployed and annually thereafter. Each BAM has a programmable background value (BKGD) to compensate for site-specific characteristics such as grounding, radon, or radio-frequency interference.

The 72-hour zero test should only be performed when the BAM is installed in its permanent location and fully configured for sampling. Before performing the 72-hour zero test, contact the Calibration and Repair Laboratory (360-407-6030).

The following is a brief set of instructions for performing the 72-hour zero test. For additional information, operators should refer to the detailed instructions that accompany the BX-302 Zero Filter Kit included with all BAM units.

1. Before performing the 72-hour zero test, retrieve the current settings file using Comet (see section 6.1). Copy and paste the settings file into the electronic logbook.

PM_{2.5} and PM₁₀ Beta Attenuation Monitor Operating Procedure

2. Select SETUP > CALIBRATE and use the NEXT button to navigate to the BKGD setting. Record the current BKGD setting in the electronic logbook.
3. Use the soft arrow keys to set the BKGD value to 0.0000. Save and select EXIT to return to the home screen (Figure 3).
4. Remove the PM10 head.
5. Install the BX-302 0.2 μm filter kit above the VSCC.
6. In Envidas Ultimate, right-click the BAM channel and set the analyzer flag to Zero.
7. Allow the BAM to warm up with the BX-302 kit installed for 24 hours before starting the 72-hour zero test.
8. Allow the BAM to sample for at least 72 continuous hours, not including the 24-hour warm-up period. If any error flags are shown or if shelter temperatures change by more than $\pm 2^\circ\text{C}$ per hour, the results are invalid and the test must be restarted.
9. Calculate the mean hourly concentration recorded during the 72-hour zero test in mg/m³ and subtract this number from 0. This value should normally be within ± 0.002 mg/m³ of prior BKGD values on the same instrument.
10. In the SETUP > CALIBRATE menu, program the resulting value (the negative of the mean 72-hour concentration in mg/m³) into the BKGD field.
11. Ensure that the standard deviation of the recorded concentrations is less than 2.4 $\mu\text{g}/\text{m}^3$. If the standard deviation exceeds 2.4 $\mu\text{g}/\text{m}^3$, contact the Calibration and Repair Laboratory for assistance.
12. Remove the BX-302 filter, reinstall the PM10 head, and remove the flags from the BAM channel to enter normal sampling mode.
13. Record the new BKGD value and calculated standard deviation in the electronic logbook.

Contact the Quality Assurance unit for assistance with analyzing and interpreting 72-hour zero test data.

5. Quality Control and Maintenance Procedure

In order to ensure proper operation of the BAM 1020 and meet the requirements of 40 CFR, Part 58, Appendix A, routine quality control (QC) maintenance must be conducted at regular intervals. The QC and maintenance procedure must be performed every 30 days with the exception of the filter tape change, which takes place every 60 days.

Additional maintenance steps must be performed every 6 months and every 12 months. The 12-month maintenance is performed by the Calibration and Repair Laboratory unless other arrangements are made.

5.1 Monthly quality control and maintenance

Operators are required to perform a QC check and monthly maintenance every 30 days. The monthly QC/maintenance procedure consists of:

Table 5: Summary of monthly quality control and maintenance steps

Procedure	Frequency	Section
As-found leak check	Every 30 days	5.1.2
Filter tape inspection	Every 30 days	5.1.3
Nozzle and vane cleaning	Every 30 days	5.1.4
Filter tape change	Every 60 days	5.1.5
Clean the PM ₁₀ inlet	Every 30 days	5.1.6
Clean the VSCC	Every 30 days or as needed	5.1.7
As-left leak check	Every 30 days	5.1.8
Ambient temperature and pressure verification	Every 30 days	5.1.9
Three-point flow verification	Every 30 days	5.1.10
Temperature/pressure flow calibration	As needed	5.1.11
Clock verification	Every 30 days	5.1.12
Self-test	Every 30 days	5.1.13

All operators of PM_{2.5} and PM₁₀ BAMs in the Washington Network are required to record the results of monthly QC checks on the appropriate Washington State Department of Ecology FEM PM BAM Quality Control Check Results form (see Appendix 10.1).

5.1.1.Preparation

Using the Envidas Ultimate Reporter, create a log book entry noting the time you began the QC check, the instruments you intend to service, and the names of people onsite.

Note: It is not necessary to take the BAM 1020 channels off scan when performing a quality control check. The BAM will flag any data collected while in “maintenance” mode and Envidas

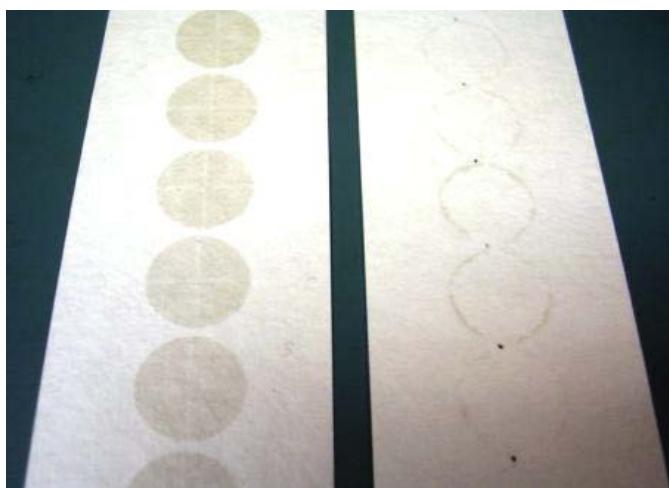
Ultimate will automatically invalidate this data. To verify the BAM is in “maintenance” mode, exit to the main screen and verify that STATUS indicates MAINTENANCE.

5.1.2. As found leak check

The most common cause of invalid data from the BAM is a leak where the nozzle contacts the filter tape. Particularly in wet and humid conditions, filter tape debris can build up on the nozzle over time and cause a leak at the contact point. Frequent leak checks are useful for detecting small leaks as they develop and preventing data loss. At sites where leak check failures are common, it is recommended that operators increase the frequency of the leak check and nozzle and vane cleaning to once every 14 days as described in Section 5.1.14.

1. Select TEST > TAPE to put the BAM in maintenance mode and suspend sampling. Press FWD to advance the tape to a clean, unsampled spot.
2. Remove the PM10 head and replace it with the flow audit adapter. Do not remove the VSAC. Turn the flow audit adapter valve to the closed position (perpendicular to the inlet).
3. Select TEST > PUMP and turn the pump on.
4. Allow the pump to stabilize for 20-30 seconds.
5. Read the flow rate on the BAM display and record it in the As-Found Leak Check section of the BAM QC form. The flow rate must be ≤ 1.5 lpm for the leak check to pass.
6. Turn off the pump and slowly open the flow audit adapter valve.
7. Press EXIT to return to the home screen (Figure 3).

If the result of the leak check is greater than 1.5 lpm, an advanced leak check is required. Conduct an advanced leak check by following the steps below. Full details regarding the advanced leak check procedure are available in the Met One document “BAM-1020-9804 Leak Check Rev A.pdf”.


1. Ensure that the flow audit adapter is installed above the VSAC and in the open position.
2. Connect tubing between the flow audit adapter and an approved, certified flow transfer standard.
3. Navigate to the TEST > PUMP menu. Press NOZZLE to raise the nozzle if needed, remove the filter tape from beneath the nozzle, and insert the Nozzle Seal Tool with the hole positioned beneath the nozzle.
4. Press NOZZLE to lower the nozzle.
5. Verify the LEAK status is set to LEAK OFF.
6. Press PUMP to start the pump.
7. Allow at least 2-3 minutes for the flow to stabilize. After the flow rate stabilizes, note the flow rate as measured by the certified flow transfer standard. This is the “Without Tape” value.
8. Stop the pump and raise the nozzle. Remove the Nozzle Seal Tool, and place a piece of filter tape (approximately 3 inches long) directly below the nozzle.
9. Press PUMP to start the pump and lower the nozzle.
10. When the flow rate stabilizes, note the value on the certified flow transfer standard. This is the “With Tape” value.
11. Stop the pump, raise the nozzle, and remove the piece of filter tape.
12. Subtract the “With Tape” value from the “Without Tape” value. The advanced leak check passes if the difference is 0.3 lpm or less.

13. If the difference is greater than 0.3 lpm, an out of tolerance leak exists at the nozzle/tape interface. Thoroughly clean the nozzle and conduct the advanced leak check again. If the advance leak check is still greater than 0.3 lpm, contact the Calibration and Repair Laboratory.

5.1.3. Filter tape inspection

Examine the spent filter tape for holes. Holes in the filter tape usually indicate a spot of hard debris on the nozzle punching into the tape. Such debris may require additional cleaning.

Figure 6 shows spent filter tape from a BAM with a clean nozzle and vane on the left, and from a leaking nozzle and vane on the right. The leaking BAM likely has a buildup of debris on the nozzle causing the pinholes visible in the photo.

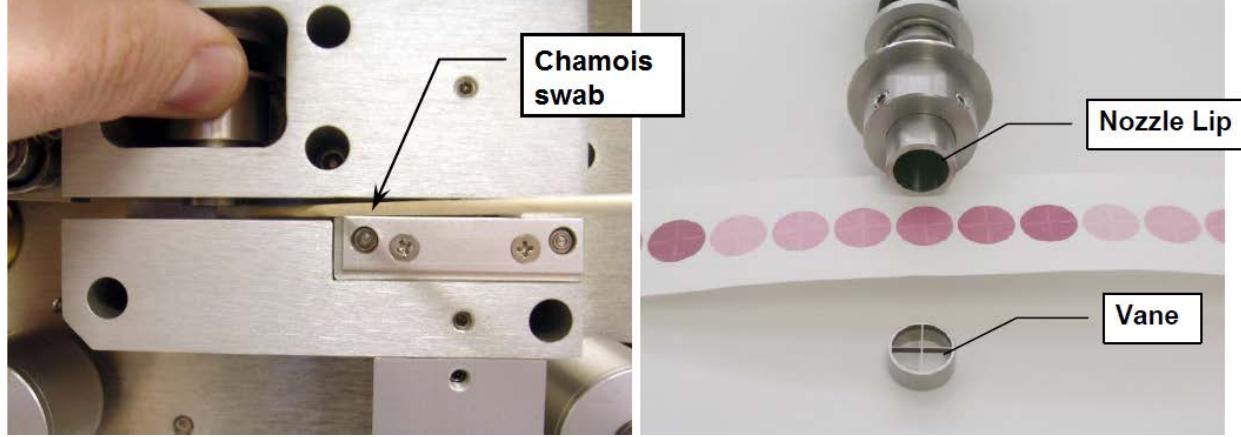
Figure 6: Spent filter tape from clean nozzle/vane (left) and leaking nozzle/vane (right) (Met One Instruments, 2012)

5.1.4. Nozzle and vane cleaning

Note: Although the BAM 1020 Operation Manual recommends cotton-tip applicators for nozzle and vane cleaning, these have been found to leave lint debris in the nozzle and vane, causing subsequent leaks. Operators should instead use lint-free chamois swabs designed for cleaning electronic equipment. If necessary, the Calibration and Repair Laboratory can provide these.

1. Raise the pinch rollers and latch them in the open position.
2. Select TEST > PUMP and select MOVE NOZZLE to raise the nozzle.
3. If the filter tape is due for replacement:
 - Remove the knobs on the take-up and supply reels and remove the roll of tape from both sides.

If the filter tape is not due for replacement:


- Remove the knob on the take-up (left) reel and turn tape clockwise to relieve the tape tension.
- Slide the tape out from around the rollers and allow it to hang loosely in front of the BAM.

PM_{2.5} and PM₁₀ Beta Attenuation Monitor Operating Procedure

4. Inspect the vane with a flashlight and clean any debris with a chamois swab dipped in rubbing alcohol.
5. Select TEST > PUMP and select MOVE NOZZLE to lower the nozzle.
6. Use a finger to raise the nozzle and insert an alcohol-dipped chamois swab. Release the nozzle and allow it to press down on the swab.
7. Rotate the nozzle several times with the swab in place.
8. If there is visible debris on the swab, repeat with a fresh swab until the swab comes out clean.
9. Inspect the capstan shaft and pinch rollers. Clean with a cotton swab or water and a lint-free wipe if there is any visible debris. Rubbing alcohol is not recommended for cleaning the pinch rollers as it can cause the rubber to dry out.
10. If the filter tape is due for replacement:
 - Proceed to step 1 of the filter tape change steps described in section 5.1.5.

If the filter tape is not due for replacement:

- Select MOVE NOZZLE to lift the nozzle, then proceed to step 4 of the filter tape change steps described in section 5.1.5.

Figure 7: Close-up view of nozzle and vane cleaning (Met One Instruments, 2012)

5.1.5. Filter tape change (every 60 days)

1. Remove the used filter tape from the rubber or cardboard core on the take-up (left) reel and discard it. Reinstall the empty rubber or cardboard core on the take-up reel.
2. Handle the filter tape only by its edges to avoid contaminating the sampling surface. Load the new roll of filter tape on the supply (right) reel and guide the tape into the transport assembly as shown in the drawing on the inside of the door of the BAM.
3. Use adhesive tape to fasten the loose end of filter tape to the empty core on the take-up reel.
4. Rotate the reels by hand until the filter tape is taut.
5. Install the plastic reel covers. Tighten them just until the metal plates behind the reels begin to turn.
6. Align the filter tape with the score marks on the edges of the rollers.

7. Unlatch the pinch rollers to lower them onto the tape.
8. If the leak check adapter is installed on the downtube, ensure that it is open. Select TENSION > TAPE to set the tension on the tape.

Note: It is strongly recommended that operators change the filter tape during every other QC check in the sequence described here. However, in the event that it is necessary to change the filter tape outside of a normal QC check, the filter tape change should always be followed by an as-left leak check (section 5.1.8) and self-test (section 5.1.13).

5.1.6. Clean the PM10 inlet

1. Remove the condensation jar.
2. Unscrew the collector assembly from the acceleration assembly as shown Figure 8.
3. Remove the four screws on the underside of the top plate of the acceleration assembly and separate the top plates from the insect screen and assembly body.
4. Clean using brushes, a lint-free cloth, and/or compressed air. It is possible to clean the parts with water as long as they are thoroughly dry before reassembly.
5. Using a brush, lint-free cloth, and/or cotton swabs, clean the collector plate and the walls around the three vent tubes. Run a wet cloth through the three vent tubes.
6. Wipe out the bottom of the collector assembly where the O-rings are located.
7. Grease the O-rings with silicone grease (never use other types of grease) and inspect for damage. Replace if necessary.
8. Wipe out the condensation jar and lid. Grease the seal inside the lid.

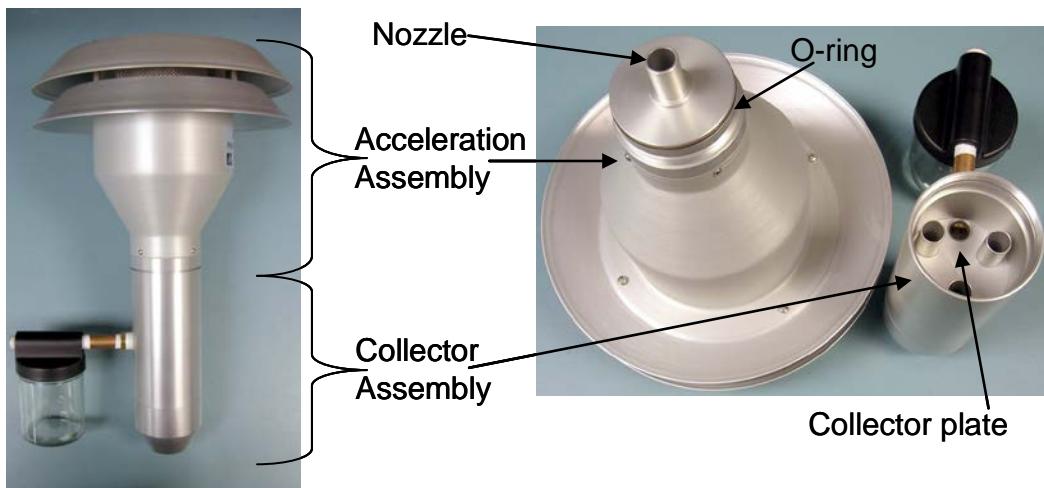
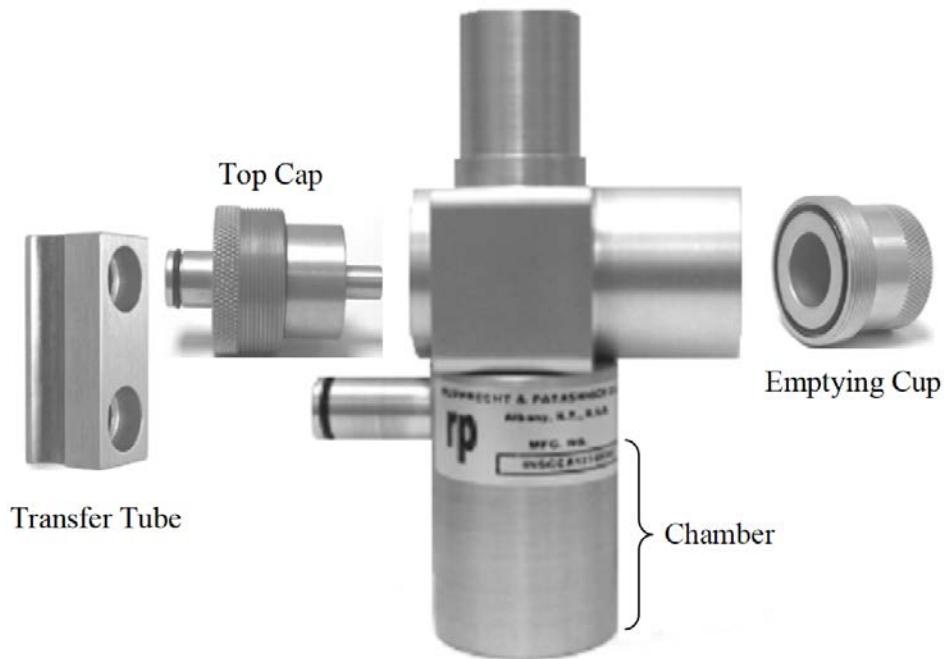



Figure 8: Diagram of PM10 head inlet components (Vaughn, 2009)

5.1.7. Clean the VSCC

1. Remove the top cap and the emptying cup as shown in Figure 9.
2. Use a damp, lint-free wipe to remove visible dirt and debris, paying special attention to the emptying cup and the cone inside the top cap.
3. Inspect the O-rings for damage and adequate lubrication. Replace O-rings and/or apply silicone grease if necessary.
4. Reinstall the VSCC on the inlet.

Figure 9: Exploded view of VSCC components (Vaughn, 2009)

5.1.8. As left leak check

The leak check must be repeated after the nozzle and vane cleaning (and filter tape change, if applicable) to ensure that any debris at the vane/nozzle was successfully removed and that no new leaks were introduced.

1. Repeat the leak check procedure in section 5.1.2.
2. Record the results in the As-Left Leak Check section of the BAM QC form.

If a leak greater than 1.5 lpm persists, repeat the nozzle and vane cleaning procedure in section 5.1.3. If the leak persists after thorough nozzle and vane cleaning, repeat the leak check with a rubber shim (part 7440 from BX-308 tool kit) under the nozzle. If the leak check passes with the rubber shim, the leak is in the probe line. Check the flow audit adapter, VSCC, and BAM inlet for signs of leaks. If the leak check fails with the rubber shim, the leak is internal to the BAM body. Contact the Calibration and Repair Laboratory for troubleshooting assistance.

5.1.9. Ambient temperature and pressure verification

1. Select TEST > FLOW to enter the calibration menu for ambient conditions and flows. The default password is F1 F2 F3 F4.

The MULTIPROCESS FLOW CALIBRATION screen allows the user to view and calibrate the ambient conditions and flows. For each parameter, the BAM column shows the instrument's indicated value. The STD column is identical to the BAM column by default, although operators can input actual values from their transfer standards to recalibrate the BAM when needed.

MULTIPOINT FLOW CALIBRATION			
	TARGET	BAM	STD
AT:	23.8	23.8	C
BP:	760	760	mmHg
<CAL>	FLOW 1: 15.0	15.0	15.0 LPM
	FLOW 2: 18.4	18.4	18.4 LPM
	FLOW 3: 16.7	16.7	16.7 LPM
CAL	NEXT	DEFAULT	EXIT

Figure 10: Multipoint flow calibration screen

Note: Operators should complete a full initial QC before making any changes to the STD column. If recalibration is needed, record the results of the initial QC and label the QC form “as found.” Calibrate the necessary parameters following the steps in section 5.1.11. Then repeat the QC check and record the results in a separate QC form labeled “as left.”

Select NEXT to navigate through the MULTIPOINT FLOW CALIBRATION screen. The soft arrow keys are used to adjust the values in the “STD” column and should only be pressed when recalibration is necessary.

2. Record the indicated ambient temperature (AT) from the BAM column on the QC form.
3. Measure the actual ambient temperature inside the radiation shield using a certified, NIST-traceable thermometer and record it on the QC form.
4. Select NEXT to navigate to the barometric pressure (BP) line and record the indicated BP on the QC form.
5. Measure the actual BP at the BAM inlet using a certified BP standard and record it on the QC form.

5.1.10. Ambient temperature and pressure verification

Although the BAM operates at a flow rate of 16.7 lpm, the QC check tests the BAM at three flows between 15.0 and 18.4 lpm. Testing three flows ensures not only that the operating and design flows are accurate but also that the slope of the BAM’s mass flow sensor is properly calibrated.

14. Ensure that the flow audit adapter is installed above the VSAC and in the open position.
15. Connect tubing between the flow audit adapter and an approved, certified flow transfer standard.
16. Following the ambient temperature and pressure check, select NEXT to navigate to the “Flow 1” line (15.0 lpm) on the MULTIPOINT FLOW CALIBRATION screen and record the BAM’s indicated flow.
17. Read the transfer standard’s actual flow and record it on the QC form.
18. Select NEXT to navigate to flows 2 (18.4 lpm) and 3 (16.7 lpm), and record the indicated and actual flows on the QC form.
19. Select EXIT to return to the home screen (Figure 4 2).

5.1.11. Temperature/pressure/flow calibration (as needed)

Note: Operators should complete a full initial QC before making any changes to the STD column. The acceptance limits for ambient temperature are $\pm 2^{\circ}\text{C}$ and for ambient pressure are ± 10 mm Hg. Flows must be within 4% of the reference standard and 5% of the design flow (16.7 lpm). If recalibration is needed, record the results of the initial QC and label the QC form “as found.” Calibrate the necessary parameters following the steps below. Then repeat the QC check and record the results in a separate QC form labeled “as left.”

1. Select TEST > FLOW to return to the MULTIPONT FLOW CALIBRATION screen.
2. Use the NEXT key to navigate through the parameters. Adjust the STD values using the soft arrow keys to match the actual readings from the transfer standard(s).
3. When all necessary parameters have been updated in the STD column, select CAL to store the results and recalibrate the BAM.
4. Select EXIT to return to the home screen (Figure 4 2).

5.1.12. Clock verification

1. Verify that the BAM clock is 2 minutes ahead of the data logger clock (e.g., BAM says 13:02 and data logger says 13:00).
2. Record the data logger time and as-found BAM time in the Clock Verification section of the BAM QC form.
3. If the BAM is not 2 minutes ahead of the data logger, adjust the BAM clock in the SETUP > CLOCK menu and record the results on the QC form as the as-left BAM time.

5.1.13. Perform the self test

The BAM’s built-in self-test function automatically tests the tape and flow systems to ensure that the BAM is ready to return to sampling mode. The self-test should be run after every QC check and any other interruption to sampling, such as a filter tape change or performance evaluation.

4. If the leak check adapter is installed, ensure that the valve is open.
5. Select TAPE > SELF TEST.
6. Read the “Status” line when the self-test is complete. If it displays SELF TEST PASSED, select EXIT to return to the home screen (Figure 4 2).
7. If the status displays ERROR OCCURRED, look for an error in the individual test parameters on the BAM screen. Resolve the error and repeat the self-test until it passes, then select EXIT to return to the home screen (Figure 4 2).
8. Remove the leak check adapter.

Note: Always return to the home screen (Figure 4 2) following any sampling interruption, including QC checks and maintenance. Entering the TEST or TAPE menus automatically puts the BAM into MAINTENANCE mode. The home screen will display STATUS: MAINTENANCE when these menus have been accessed in the previous hour. The BAM will automatically return to sampling (ON) mode at the top of the next hour as long as the home screen is displayed.

It is not necessary to enter the OPERATE menu to suspend or restart sampling. It is not recommended to enter the OPERATE menu at all, but even if the OPERATE menu is used to

turn operation off, the BAM will still automatically return to ON mode and begin sampling at the top of the hour.

Before leaving the site, always verify that the flow audit adapter is removed, the VSAC and PM10 head are installed, the BAM displays the home screen (Figure 4 2), and the results of all QC checks and maintenance are recorded in the electronic logbook.

5.1.14. 14-day nozzle and vane cleaning (optional)

The 14-day nozzle and vane cleaning is recommended in particularly dusty or humid environments or at sites with a history of leak check failures. Cleaning every 14 days can reduce the likelihood of leak check failures and minimize data loss when they do occur.

The following is a quick guide to the necessary steps for 14-day nozzle and vane cleaning. The detailed instructions can be found in the linked sections in Table 5 2 and in Appendix 10.2.

Table 6: 14-day nozzle and vane cleaning steps

Step	Section/Notes
As-found leak check	5.1.2
Filter tape inspection	5.1.3
Nozzle and vane cleaning	5.1.4
As-left leak check	5.1.8
Self-test	5.1.13
Log book entry	Document as-found and as-left leak check values in the electronic log book. Filling out a QC form is not necessary.

5.2 Six-month maintenance

5.2.1. Clean/replace the pump muffler

The BAM's standard Medo pump has a gray plastic muffler, which may clog with dust and debris over time. Clean or replace this muffler every 6 months or if the pump is unable to draw 16.7 lpm. The muffler can also be replaced with a 30-inch length of Tygon tubing, which will not clog and may improve pump performance.

5.2.2. Test the filter temperature sensor

1. Select TEST > FILTER-T. This will raise the nozzle and turn on the pump.
2. Allow the pump to warm up for 5 minutes and the reference thermometer to equilibrate to room temperature. If the Smart Heater has recently been running, allow additional time for the inlet to cool to room temperature.
3. Compare the filter temperature displayed to the ambient room temperature on the reference thermometer. The acceptance limit is $\pm 1^{\circ}\text{C}$.
4. If necessary, calibrate the sensor by entering the ambient temperature from the reference thermometer in the REFERENCE field, then select CALIBRATE.
5. Select EXIT to return to the TEST menu.

5.2.3. Test the smart heater

1. Select TEST > HEATER.
2. If the heater is on, select OFF and allow it to equilibrate to room temperature.
3. Select ON and verify that the heater warms to the touch after several minutes.
4. Select EXIT to return to the home screen. The heater will automatically turn off.

Record the maintenance steps completed in the electronic logbook.

5.3. Twelve-month maintenance

The 12-month maintenance is performed by the Calibration and Repair Laboratory unless other arrangements are made. The Calibration and Repair Laboratory will retain records of 12-month maintenance completed. This maintenance consists of the following steps:

- Clean/replace the internal debris filter.
- Check the membrane span foil.
- Test the filter RH sensor.
- Test the beta detector count rate and dark count.
- Clean the inlet tube.
- Test/replace lithium battery on circuit board.
- Rebuild the vacuum pump.
- Replace the nozzle O-ring.
- Replace the pump tubing.
- Repeat the 72-hour zero test.

The Calibration and Repair Laboratory will work with operators to arrange the annual 72-hour zero test at the operating site and update the BKGD value as necessary.

6. Data collection and Storage

6.1. Communication software setup

Comet is a software program that allows users to download data, settings, and diagnostic information from the BAM over a serial connection. The serial cable should be connected from the COM port of the data acquisition system to the “Report Port” on the back of the instrument. Comet version 1.2.12 should be installed on all data loggers with BAMs. When installing the software, the BAM1020.dll plugin should be updated according to the directions in Comet_V1.2.12\Comet_Plugin\Read Me.txt.

When opening Comet for the first time, users should select “Create” to set up a new station. Provide the station short name, select “BAM 1020” from the drop-down list, select the COM port assigned to the BAM, and ensure that the baud rate is 9600.

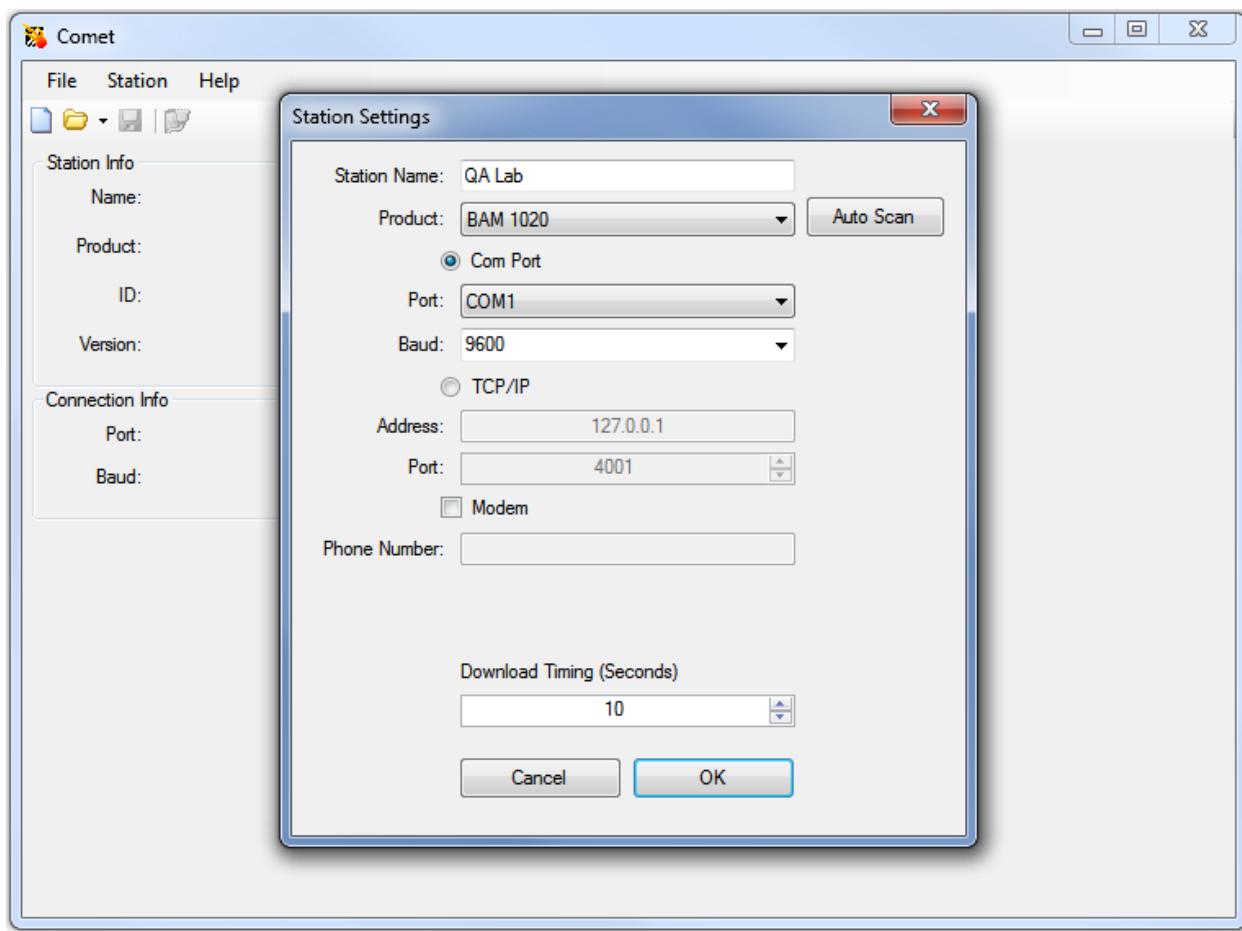


Figure 11: Comet setup screen

Users can then select “Retrieve Current” from Comet to retrieve the BAM’s data, settings, diagnostic information, alarm history, and factory (internal diagnostic) data. Upon setting up Comet, users should immediately download a settings file, which will capture all the configuration parameters in the BAM’s internal menus. In the event that settings are

PM_{2.5} and PM₁₀ Beta Attenuation Monitor Operating Procedure

inadvertently or incorrectly changed in the future, the downloaded settings file can serve as a useful record of historical settings.

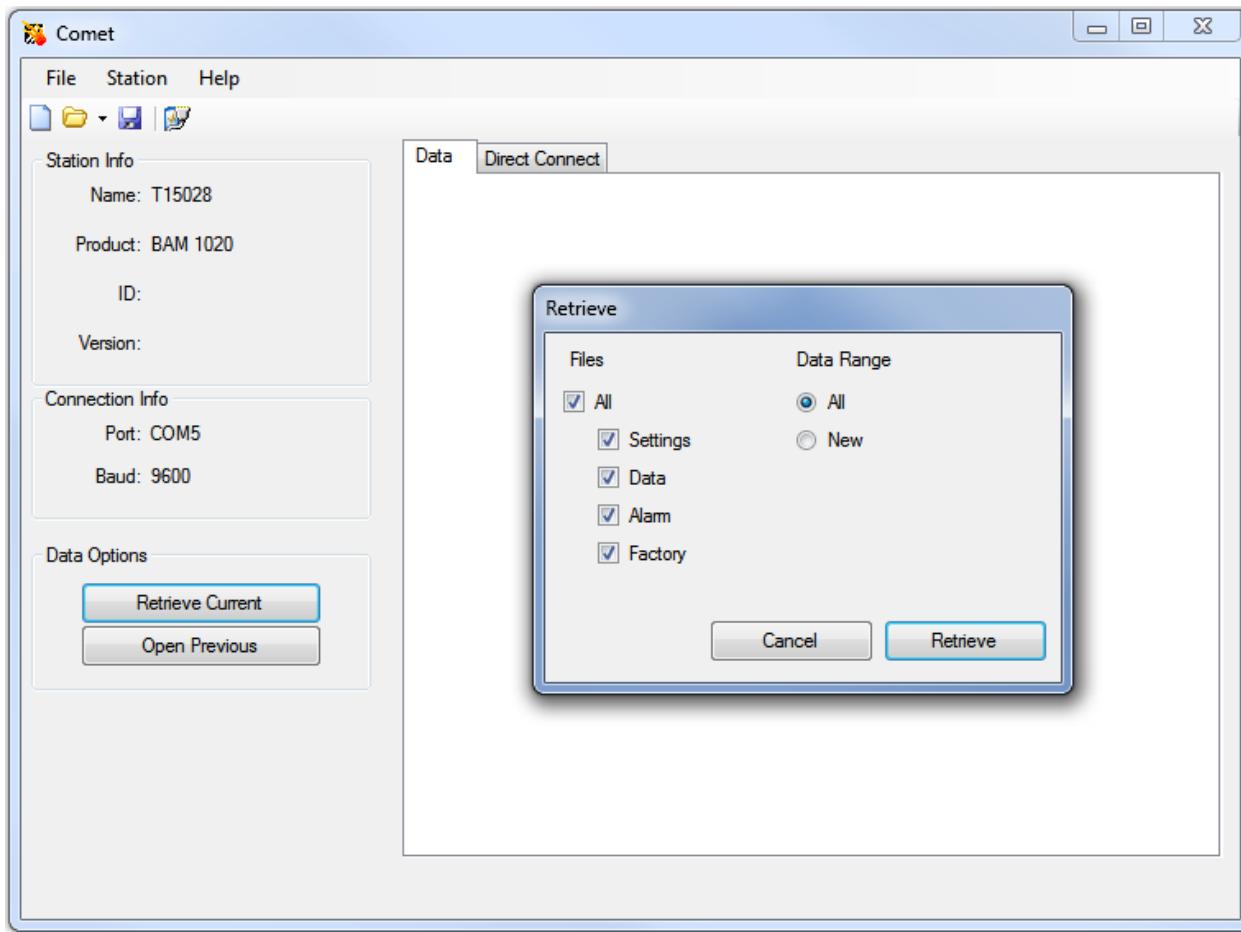


Figure 12: Comet user interface

6.2 Envidas channel configuration

6.2.1. Set average type to “Last Sample”

The BAM computes an hourly average PM concentration at 58 minutes (:58) past each hour. In order to collect the correct hourly average concentration, Envidas must be configured to collect data in “Last Sample” mode. In the BAM channel configuration in Envidas Ultimate Setup, select “Last Sample” under the “Average” drop-down menu as shown in Figure 6 3.

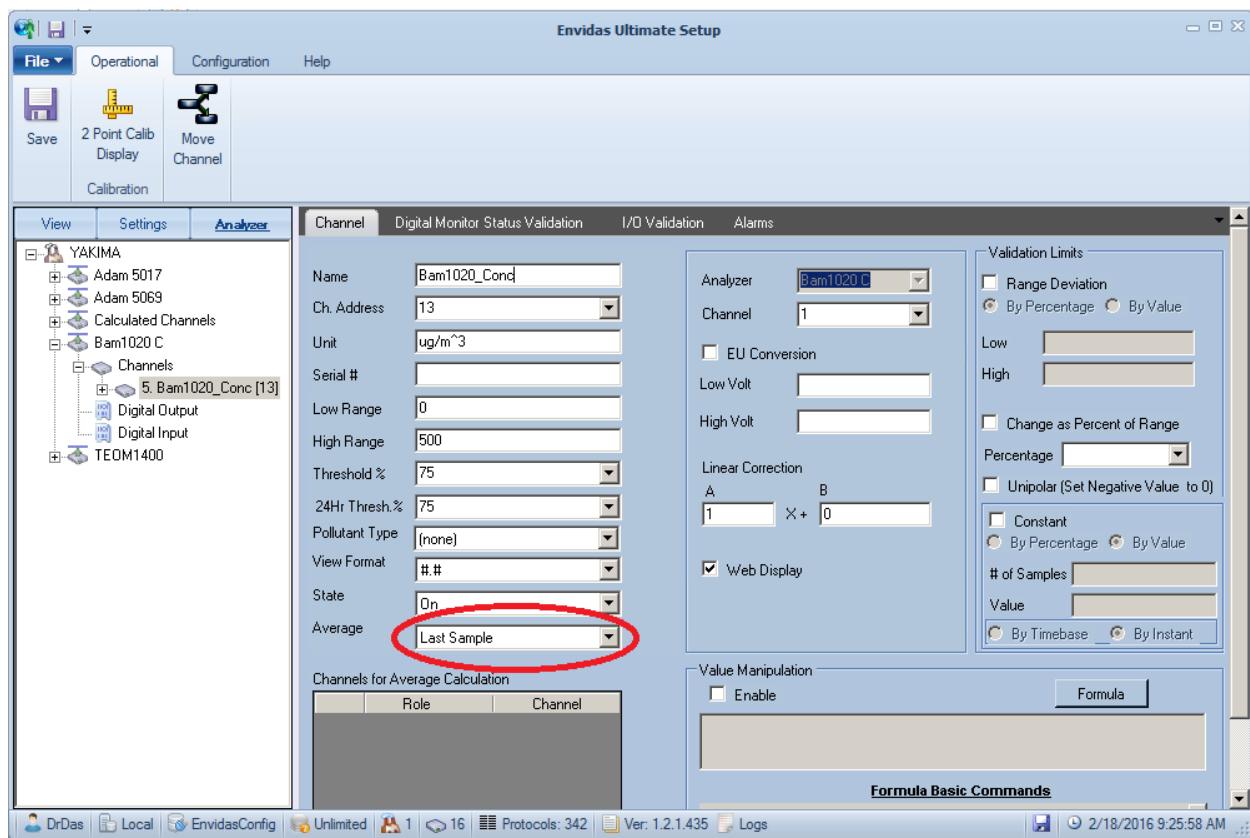


Figure 13: Screenshot of BAM 1020 channel configuration in Envidas Ultimate

6.2.2. Enable the Sync Clock setting

The BAM clock must be set 2 minutes ahead of the data logger clock in order for its hourly concentrations to be associated with the correct timestamp in Envidas. Envidas Ultimate should be configured to automatically reset the BAM time 2 minutes ahead once per day. This setting can be found in Envidas Ultimate Setup under Settings > Communication > Leased > Port # > BAM 1020 > Device. Ensure that the “Sync Clock” box is checked, enter “-2” under “Minute Offset,” and enter “1440” under “Check Every _ Minutes.” The correct configuration of this screen is shown in Figure 14.

The BAM clock must be verified upon installation and at each monthly station visit to ensure that it is 2 minutes ahead of the data logger, as described in section 5.1.12.

6.2.3. Set up automatic invalidation of errors

The BAM will record a full-scale value (985 µg/m³) whenever it detects an error that interferes with valid, accurate data collection. Envidas should be configured to automatically flag concentrations of 985 µg/m³ as invalid. In the same “Device” screen as above, check the “Set Value to Invalid” box and enter “985” as shown in Figure 14.

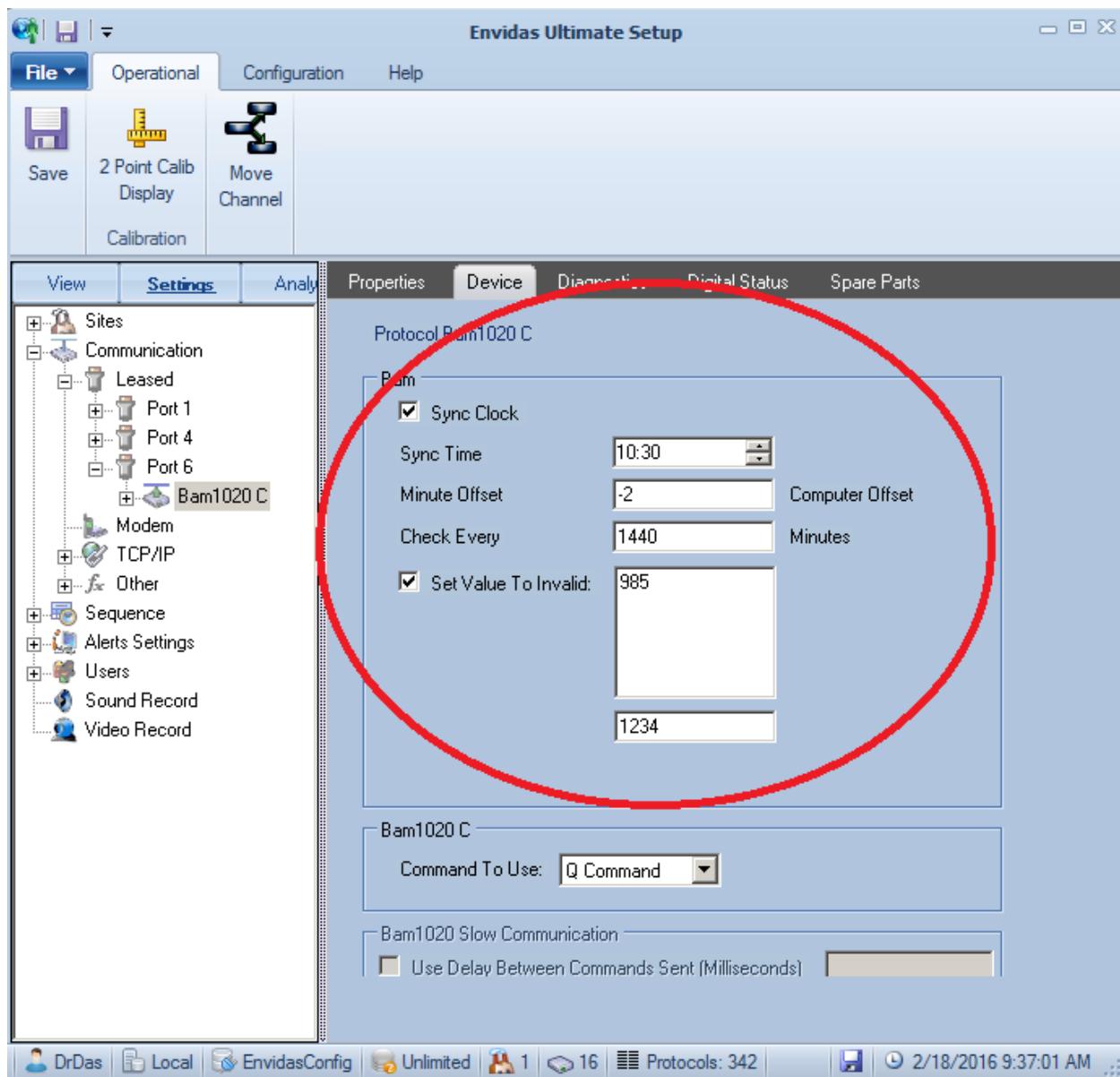


Figure 14: Screenshot of BAM 1020 device settings in Envidas Ultimate

6.3. Diagnostic data storage

Envidas is configured to collect a subset of the BAM's available diagnostic parameters through the Diagnostic Report menu. Diagnostic polling must be set up directly by the Information Technology (IT) Unit using a PowerShell script and cannot be customized or modified by non-IT staff. The following parameters can be obtained in Envidas Ultimate Reporter or EnvistaARM by selecting the “Diagnostic” icon on the Operational tab:

Table 7: Diagnostic parameters available in Envidas

Parameter	Unit	Meaning	Target Value
Qtot	m3	Total flow volume collected during the previous hour	0.7
RH	%	Relative humidity of sample air downstream of heater	<35 %
AT	°C	Ambient temperature at BAM inlet	Actual ambient temperature
E	--	External/Interface Reset	0
U	--	Telemetry/Interface Fault	0
M	--	Maintenance Alarm	0
I	--	Internal Error/Coarse Link Down	0
L	--	Power Failure/Processor Reset	0
R	--	Reference Error/Membrane Timeout	0
N	--	Nozzle Error/Delta-T Alarm	0
F	--	Flow Error	0
P	--	Pressure Drop/Delta-Pressure Alarm	0
D	--	Deviant Membrane Density/BAM CAL Alarm	0
C	--	Count/Data Error	0
T	--	Tape System/Filter Tape Error	0

The single-letter flags (rows 3-12) have a binary output, with 0 indicating normal operation and 1 indicating that an error of that type has occurred. For further information on alarm descriptions and troubleshooting steps, see Section 7.1 or the BAM 1020 Operation Manual. A flag value of 1 corresponds to a reported concentration of the BAM's full-scale value (985 µg/m³), which is automatically flagged "Invalid" by Envidas.

If further troubleshooting is needed, the following additional diagnostic parameters can be obtained from the factory report in Comet: filter temperature (°C), filter pressure (mmHg), barometric pressure (mmHg), reference membrane value, stability, and total mass. Contact the Quality Assurance Unit for assistance obtaining and interpreting these data

7. Data Validation and Quality Assurance

The Ecology Quality Assurance unit is responsible for final data validation. Data validity is evaluated using a number of criteria, including, but not limited to, the results of quality control checks and performance audits and the diagnostic parameters in Table 6 1. Table 7 1 summarizes the tolerance limits for critical and operational criteria. Criteria that trigger invalidation outside of tolerance limits are marked with a ✓; the validity of data outside of the remaining limits is evaluated using a weight-of-evidence approach. The full table of critical and operational criteria can be found in EPA's Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II.

Table 8: Summary of critical and operational criteria used to determine data validity

Criteria	Frequency	Tolerance limits	Invalid
Flow check	Monthly QC; semi-annual audit	± 4% actual flow; ± 5% design flow	✓
Leak check	Monthly QC; semi-annual audit	≤ 1.5 lpm	✓
Temperature verification	Monthly QC; semi-annual audit	± 2°C	Weight-of-evidence
Pressure verification	Monthly QC; semi-annual audit	± 10 mm Hg	Weight-of-evidence
Clock verification	Monthly QC; semi-annual audit	2-3 minutes ahead	✓
Status	Hourly	Error flag	✓

7.1. Error flags

The error flags are collected as binary codes in the hourly diagnostic report as described in Section 6.3. Table 7 2 below summarizes the possible error flags and codes. In the event of an error flag, operators should consult the BAM 1020 Operation Manual for more detailed diagnostic and troubleshooting information.

Table 9: BAM 1020 error flags

Warning	Decimal	Letter code	Explanation
External/Interface reset	2048	E	The BAM was unable to reset its clock following a clock synchronization signal from an external data logger
Telemetry/Interface Fault	1024	U	The BAM was unable to transmit data to an external data logger
Maintenance Alarm	512	M	The sample cycle was stopped because the BAM was put in SETUP or TEST mode.
Internal Error/Coarse Link Down	256	I	The BAM encountered an internal error and could not calculate a valid concentration.
Power Failure/Processor Reset	128	L	AC power was lost.
Reference Error/Membrane Timeout	64	R	Span reference membrane was not extending or withdrawing properly.
Nozzle Error/Delta-T Alarm	32	N	The nozzle motor was not operating correctly. Alternately, the Delta-T set point was exceeded by more than 1 degree.
Flow Error	16	F	Flows were outside the specification limits. Alternately, ambient temperature or barometric pressure values were outside the sensor's range.
Pressure Drop/Delta-Pressure Alarm	8	P	The pressure drop across the filter tape has exceeded the acceptable limit, typically due to heavy particulate loading.
Deviant Membrane Density/BAM CAL Alarm	4	D	The reference membrane span check was outside the acceptable $\pm 5\%$ limits.
Count/Data Error	2	C	The beta particle counting system is not operating properly.
Tape System/Filter Tape Error	1	T	The filter tape was exhausted, broken, improperly aligned, or improperly tensioned.

7.2. Negative concentrations

A BAM that is operating under normal, valid conditions will typically have a noise band of $\pm 3 \mu\text{g}/\text{m}^3$ in its hourly concentrations. As a result of this noise band, the BAM will occasionally report negative concentrations when the true ambient PM concentration is below $3 \mu\text{g}/\text{m}^3$. These concentrations must not be invalidated or forced to 0, as this would cause upward bias in 24-hour average concentrations.

If the BAM consistently reports negative concentrations for several hours at a time, if 24-hour concentrations are negative, or if hourly concentrations are below $-10 \mu\text{g}/\text{m}^3$, there may be a problem with the BAM's operation. Operators should carefully examine the spent filter tape for holes and thoroughly clean the nozzle if any holes are found. If excessive negative values persist, operators should verify that the BKGD value is programmed correctly, look for sources of electrical noise, and verify that the inlet tube is grounded. Operators can contact the Calibration and Repair Laboratory for assistance with these troubleshooting steps.

8. PM₁₀ Monitoring

The procedure for monitoring PM10 with the BAM 1020 is nearly identical to the procedure for monitoring PM2.5. Sections 1-7 of this procedure are also applicable to PM10 monitoring with the exception of the following points:

- When monitoring PM10, the BAM should be configured without the VSCC particle size separator.
- In the SETUP > CALIBRATE menu, the CONC TYPE must be set to STD to collect data in standard conditions. Ensure that the STD TEMP is set to the default value of 25 C. Note that the FLOW TYPE should still be set to ACTUAL, as with PM2.5 monitoring. This ensures that the flow is regulated to the correct PM10 inlet cut point.
- The 72-hour zero test is optional for PM10 monitoring. If electing to skip the 72-hour zero test, simply set the BKGD value to 0 in the SETUP > CALIBRATE menu.

9. References

BGI, Inc. Very Sharp Cut Cyclone (VSCC) Instructions for Use and Maintenance. Waltham, MA: BGI, Inc., 2013 (Version 1.3).

“Correction to the Description of Equivalent Method EQPM-0308-170 MetOne Instruments, Inc.’s BAM-1020 Beta Attenuation Mass Monitor.” Federal Register 73:81 (25 April 2008) pp. 22,362-22,363.

Met One Instruments, Inc. BAM-1020 Continuous Particulate Monitor Operation Manual. Grants Pass, OR: Met One Instruments, 2012 (BAM-1020-9800 REV K).

Met One Instruments, Inc. BX-302 Zero Filter Calibration Kit Manual. Grants Pass, OR: Met One Instruments, 2007 (BX-302-9800 Manual REV F).

“Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring.” Code of Federal Regulations Title 40, Pts. 50, 53 and 58, 2013 ed.

U.S. Environmental Protection Agency. Office of Air Quality Planning and Standards. “List of Designated Reference and Equivalent Methods.” <https://www3.epa.gov/ttnamti1/files/ambient/criteria/reference-equivalent-methods-list.pdf>

U.S. Environmental Protection Agency. Office of Air Quality Planning and Standards. Quality Assurance Handbook for Air Pollution Measurement Systems Volume II: Ambient Air Quality Monitoring Program. Research Triangle Park, 2013 (EPA-454/B-13-003).

Vaughn, David L. Standard Operating Procedure for the Continuous Measurement of Particulate Matter: Met One BAM-1020 PM_{2.5} Federal Equivalent Method EQPM-0308-170. Petaluma: Sonoma Technology, 2009 (STI-905505.05-3645-SOP).

10. Appendix

10.1 Sample BAM QC check form

The BAM QC Check form is shown below. All operators of PM_{2.5} and PM₁₀ BAMS in the Washington Network are required to use this form. Contact the Ecology Quality Assurance unit for a copy of this form as a fillable spreadsheet.

Washington State Department of Ecology
FEM BAM Quality Control Check Results

Revised 04022019

AQS No. _____	Date _____
Location _____	Operator _____
Sampler Serial No. _____	QC Start Time _____
State Tag No. _____	QC Stop Time _____
Model No. PM2.5 BAM 1020	PST
Flow Std. Model _____	Temp Std. Serial No. _____
Flow Std. Serial No. _____	Temp Std. Cert. Date _____
Flow Std. Cert. Date _____	Pressure Std. Serial No. _____
Pressure Std. Cert. Date _____	Pressure Std. Cert. Date _____

As-Found Leak Check		As-Left Leak Check	
Indicated flow (≤ 1.5 lpm)	Pass/Fail	Indicated flow (≤ 1.5 lpm)	Pass/Fail

Advanced Leak Check
Perform only if As-Found Leak Check Fails

Indicated flow (≤ 0.3 lpm)	Pass/Fail
----------------------------------	-----------

Clock Verification	
Data logger time	BAM time
BAM time adjusted?	

Temperature QC	
Ambient Temp $\pm 2^\circ\text{C}$	Act: ${}^\circ\text{C}$
	Ind: ${}^\circ\text{C}$
	Diff: ${}^\circ\text{C}$

Pressure QC	
Barometric Pressure $\pm 10\text{mmHG}$	Act: mmHg
	Ind: mmHg
	Diff: mmHg

Flow QC			
Sampler Design Flow Rate	Indicated Flow Rate (BAM) lpm	Actual Flow Rate (STD) lpm	% Difference ($\pm 4\%$)
Flow 1			
Flow 2			
Flow 3			
PM10 only (STD)		Design Flow Difference ($\pm 5\%$)	

QC Result:

Comments:

10.2 14-day nozzle and vane cleaning instructions

The 14-day nozzle and vane cleaning is recommended in particularly dusty or humid environments or at sites with a history of leak check failures. Cleaning every 14 days can reduce the likelihood of leak check failures and minimize data loss when they do occur.

10.2.1 As-found leak check

1. Select TEST > TAPE to put the BAM in maintenance mode and suspend sampling. Press FWD to advance the tape to a clean, unsampled spot.
2. Remove the PM₁₀ head and replace it with the flow audit adapter. Do not remove the VS_{CC}. Turn the flow audit adapter valve to the closed position (perpendicular to the inlet).
3. Select TEST > PUMP and turn the pump on.
4. Allow the pump to stabilize for 20-30 seconds.
5. Read the flow rate on the BAM display and record it in the As-Found Leak Check section of the BAM QC form. The flow rate must be ≤ 1.5 lpm for the leak check to pass. If the leak check fails, conduct an advanced leak check as described in section 5.1.2.
6. Turn off the pump and slowly open the flow audit adapter valve.
7. Press EXIT to return to the home screen (Figure 4-2).

10.2.2 Filter tape inspection

Examine the spent filter tape for holes. Holes in the filter tape usually indicate a spot of hard debris on the nozzle punching into the tape. Such debris may require additional cleaning.

10.2.3 Nozzle and vane cleaning

Note: Although the BAM 1020 Operation Manual recommends cotton-tip applicators for nozzle and vane cleaning, these have been found to leave lint debris in the nozzle and vane, causing subsequent leaks. Operators should instead use lint-free chamois swabs designed for cleaning electronic equipment, which can be obtained from the Calibration and Repair Laboratory.

1. Raise the pinch rollers and latch them in the open position.
2. Select TEST > PUMP and select MOVE NOZZLE to raise the nozzle.
3. Remove the knob on the take-up (left) reel and turn tape clockwise to relieve the tape tension.
4. Slide the tape out from around the rollers and allow it to hang loosely in front of the BAM.
5. Inspect the vane with a flashlight and clean any debris with a chamois swab dipped in rubbing alcohol.
6. Select TEST > PUMP and select MOVE NOZZLE to lower the nozzle.

7. Use a finger to raise the nozzle and insert an alcohol-dipped chamois swab. Release the nozzle and allow it to press down on the swab.
8. Rotate the nozzle several times with the swab in place.
9. If there is visible debris on the swab, repeat with a fresh swab until the swab comes out clean.
10. Inspect the capstan shaft and pinch rollers. Clean with a cotton swab or water, and a lint-free wipe if there is any visible debris. Rubbing alcohol is not recommended for cleaning the pinch rollers as it can cause the rubber to dry out.
11. Select MOVE NOZZLE to lift the nozzle.
12. Rotate the reels by hand until the filter tape is taut.
13. Install the plastic reel covers. Tighten them just until the metal plates behind the reels begin to turn.
14. Align the filter tape with the score marks on the edges of the rollers.
15. Unlatch the pinch rollers to lower them onto the tape.
16. If the leak check adapter is installed on the downtube, ensure that it is open. Select TENSION > TAPE to set the tension on the tape.

10.2.4 As-left leak check

The leak check must be repeated after the nozzle and vane cleaning to ensure that any debris at the vane/nozzle was successfully removed and that no new leaks were introduced.

1. Repeat the leak check procedure in section 10.2.1.
2. Record the results in the As-Left Leak Check section of the BAM QC form.

If a leak greater than 1.5 lpm persists, repeat the nozzle and vane cleaning procedure in section 10.2.3. If the leak persists after thorough nozzle and vane cleaning, repeat the leak check with a rubber shim (part 7440 from BX-308 tool kit) under the nozzle. If the leak check passes with the rubber shim, the leak is in the probe line. Check the flow audit adapter, VSAC, and BAM inlet for signs of leaks. If the leak check fails with the rubber shim, the leak is internal to the BAM body. Contact the Calibration and Repair Laboratory for troubleshooting assistance.

10.2.5 Record results in the electronic log book

Record the as-found and as-left leak check results in the electronic log book. It is not necessary to fill out a QC form.