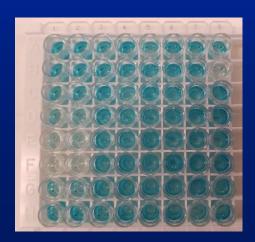


Solid Phase Adsorption Toxin Trackers (SPATTs) for Detection of Cyanotoxins in Freshwater

Kurt Carpenter, Research Hydrologist
US Geological Survey
Oregon Water Science Center
kdcar@usgs.gov

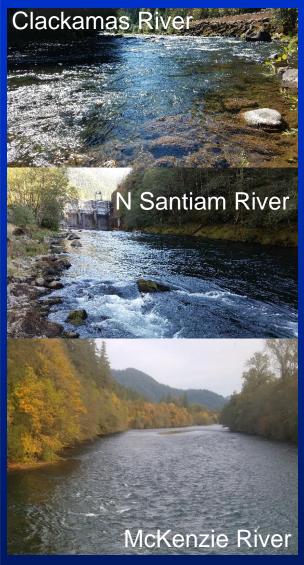
US EPA Region 10 HAB Workshop Seattle WA October 16-18, 2019

U.S. Department of the Interior U.S. Geological Survey


from Roué and others, 2018 *Toxins* 2018, 10, 167

<u>SPATTs - Solid Phase Adsorption Toxin Trackers</u>

- Time-integrating (hours to weeks) passive sampler
- Microbead resins (e.g., HP20 "Diaion") adsorb toxins
- Resins washed with 50% methanol to desorb toxins
- Extracts filtered (1.2 µm), evaporated and reconstituted (< 2.5% MeOH)
- Four cyanotoxins analyzed using ELISA
- Positive detection when filtrate concentration exceeds the lowest standard
- Extract concentrations normalized to 10-day period

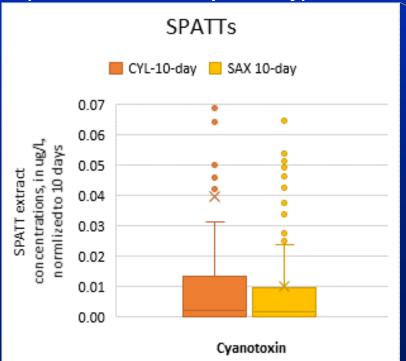


2016-18 USGS Study Characterized Cyanotoxins in Three Cascade River Basins Used for Drinking Water

Multiple Sampling Approaches

- SPATTs (122 deployments)
- Benthic Cyanobacteria (direct testing of colonies and mats, 78 samples)
- River Seston (plankton net collections, 84 samples)
- Reservoir Cyanobacteria
 (plankton net collections,
 5 samples)

Results by Sampling Approach


- 544 cyanotoxin detections in 289 samples from 59 sites
- Anatoxin-a and microcystins were detected in 63% and 60% of SPATTs
- All 4 cyanotoxins detected in 8% of samples (all sample types)

		Total (ADDA)			
		Microcystins/	Cylindro-		
		Nodularins	spermopsin	Anatoxin-a	Saxitoxin
All 289 samples	Detections	202	78	135	129
	% detection	70%	27%	47%	45%
84 net tows	Detections	66	21	23	66
	% detection	79%	25%	27%	79%
122 SPATTs	Detections	73	21	77	32
	% detection	60%	17%	<u>63%</u>	26%
78 Cyanobacteria	Detections	59	32	34	31
colonies/mats	% detection	76%	41%	44%	40%
5 Planktonic		4	4	1	0
cyanobacteria		80%	80%	20%	0%
	Color Legend:	> 50%	40-50%	15-30%	0%
ELICCC			JSGS Provision	al Data Subject	to Revision

SPATT Extract Concentrations (10-d Normalized)

- Highest median and maximum extract concentrations were for anatoxin-a (ANX) - highest in Clackamas Basin
- Microcystins (MC) were a close second
- Saxitoxin (SAX) and Cylindrospermopsin (CYL) concentrations were lower, with lower detection frequencies (26% and 17%, respectively)

