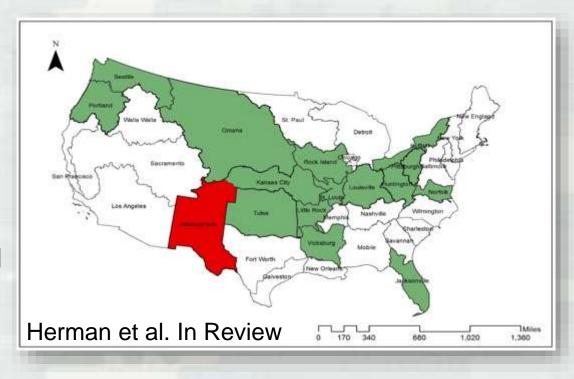
# Managing CyanoHABs and Cyanotoxins in Freshwater systems: Current Research

Kaytee Pokrzywinski<sup>1</sup>, Jodi Ryder<sup>1</sup>, Tony Bednar<sup>1</sup>, Molly Reif<sup>1</sup>, Vic Medina<sup>1</sup>, Andrew McQueen<sup>1</sup>, Martin Page<sup>2</sup>, Ping Gong<sup>1</sup>, Kurt Getsinger<sup>1</sup>

US Army Engineer Research and Development Center

<sup>1</sup>Environmental Laboratory Vicksburg, MS


<sup>2</sup>Construction Engineering Research Laboratory Champaign, IL





# Harmful Algal Blooms (HABs) and the USACE

- The USACE manages over 400 freshwater lakes to provide a variety of services including recreation, fish and wildlife management, and potable water supplies
- Cyanobacteria, the most common group of freshwater harmful/nuisance algae, have been documented in 43 of the continental united states.
- Additionally, a 2014 USACE-wide survey identified cyanobacteria and golden algae as the predominant bloom-forming groups in Corps operated reservoirs.



- The survey also showed a recent increase in the frequency of HAB events at USACE Districts.
- As such, ERDC HAB research and service capabilities are rapidly expanding.





# **ERDC Support...**

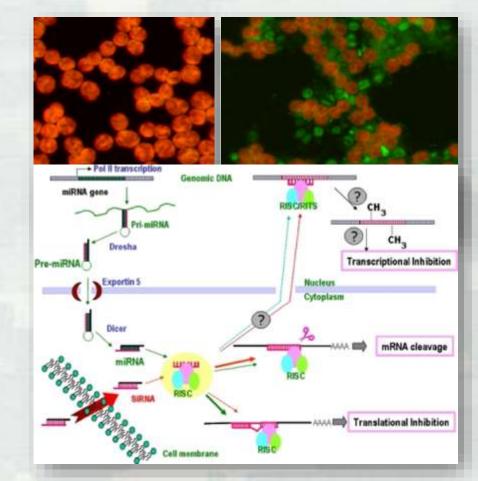
### Technical Areas

- ▶ Water Quality
- ▶ Detection
- ▶ Nutrient Reduction
- ► Risk Assessment
- ► Management
- Ongoing Research Projects
- Previous Research Projects
- Reimbursable services








# **Ongoing HAB Research Projects**

#### Detection

▶ Using HAB indicator estimation in small inland waterbodies: Remote sensing-based software tools to assist with USACE water quality monitoring

### Management

- ▶ Scalable algaecide studies
- ► Small regulatory RNAs for the control of HABs an environmentally benign approach
- ► HABITATS Harmful Algal Bloom Interception, Treatment and Transformation
- ▶ Operational strategies to control HABs



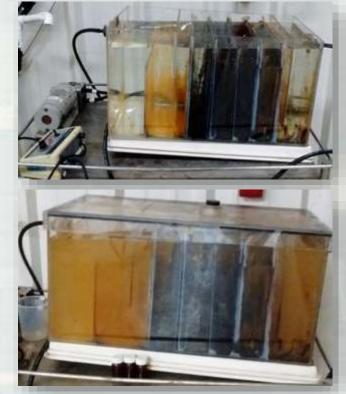
POC: Ping Gong (Ping.Gong@usace.army.mil)





# **Previous HAB Research Projects**

### Detection / Water Quality


- ► Field-based detection using hyperspectral imaging
  - Analysis of historic water quality from bloom and nonbloom lakes
  - Microscopic counts of algae/cyanobacteria
  - Rapid molecular methods for cyanobacteria/cyanotoxins

### Management

 Hydrodynamic cavitation for the management of cyanobacteria blooms

### Nutrient Reduction

 Reducing phosphorous loading using iron sorption mechanisms



3 h of flow resulted in rust

POC: Carina Jung

(Carina.M.Jung@usace.army.mil)



## **HAB Reimbursable Services**

### Water Quality

- ► Routine water quality monitoring program
- Surface water quality modeling

#### Detection

- Analytical cyanotoxin quantitation/detection (ELISA and LC/MS)
- ► Hi-Sensitivity flow cytometry for identification/enumeration

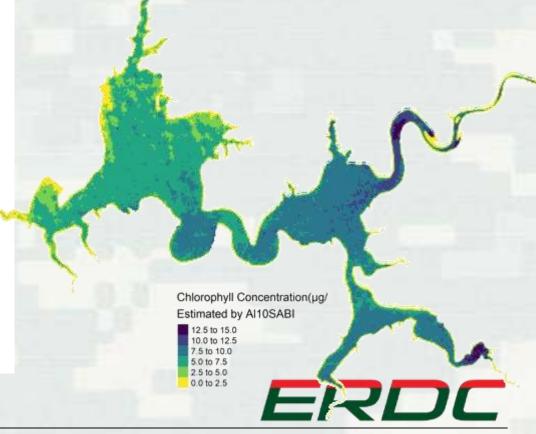
#### Risk Assessment

- ► Site-specific HAB risk framework
- ► Ecological risks of chemical algaecides and treatment efficacy
- ► Ecological and human health risks from algal toxins





# HAB indicator estimation in small inland waterbodies: Remote sensing-based software tools to assist USACE WQ monitoring

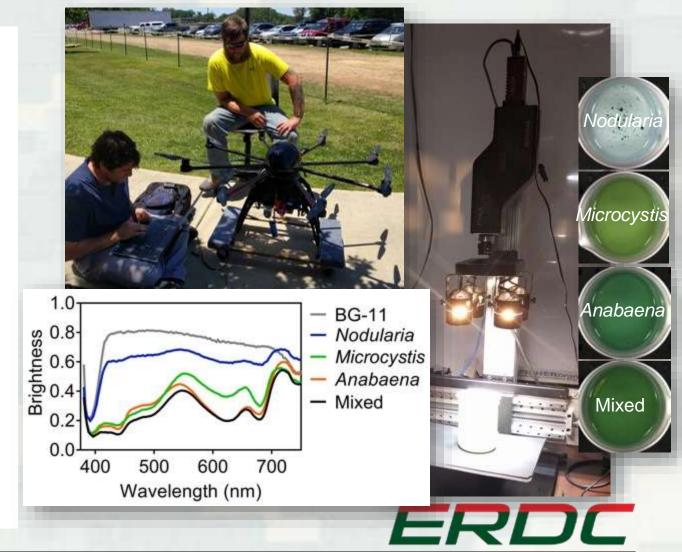

POC: Molly Reif (Molly.K.Reif@usace.army.mil)

**Purpose:** The USACE has the challenge of monitoring hundreds of inland lakes and reservoirs that cover vast geographic areas. Limited resources can lead to reactionary responses to HAB outbreaks.

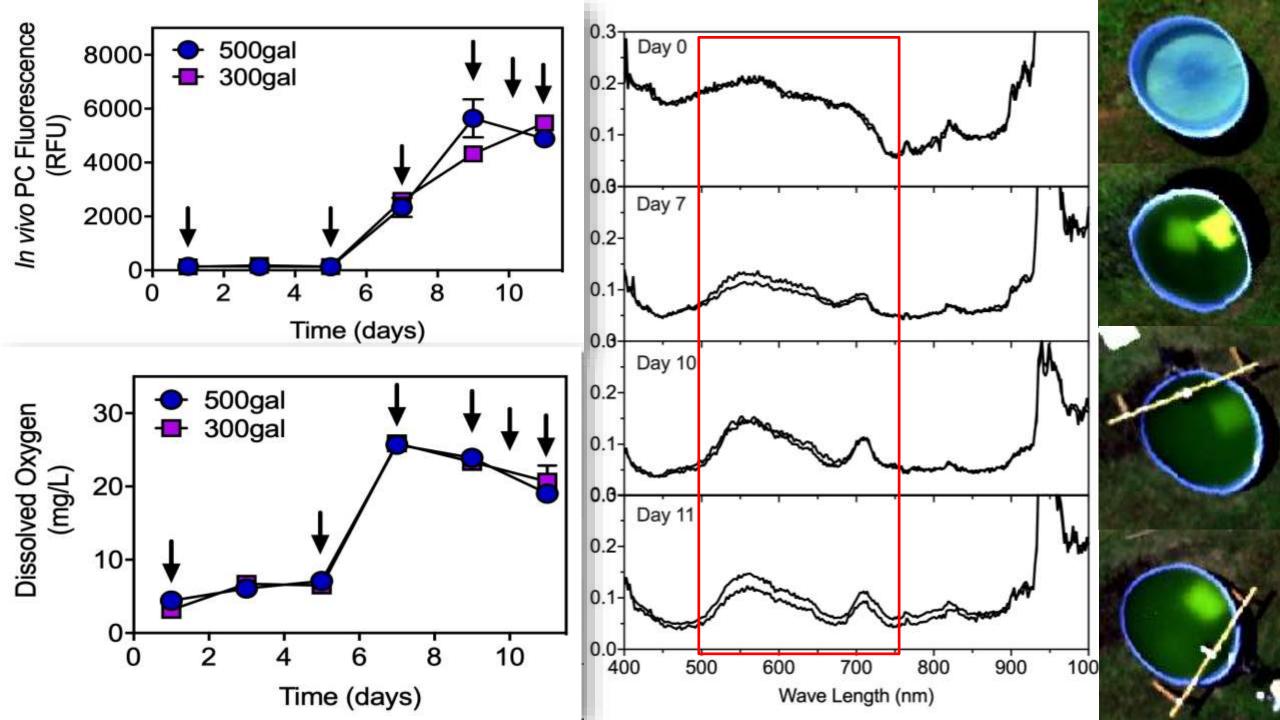
**Results:** Software tools are needed to assist with remote monitoring and prediction of HABs.

#### **Benefits:**

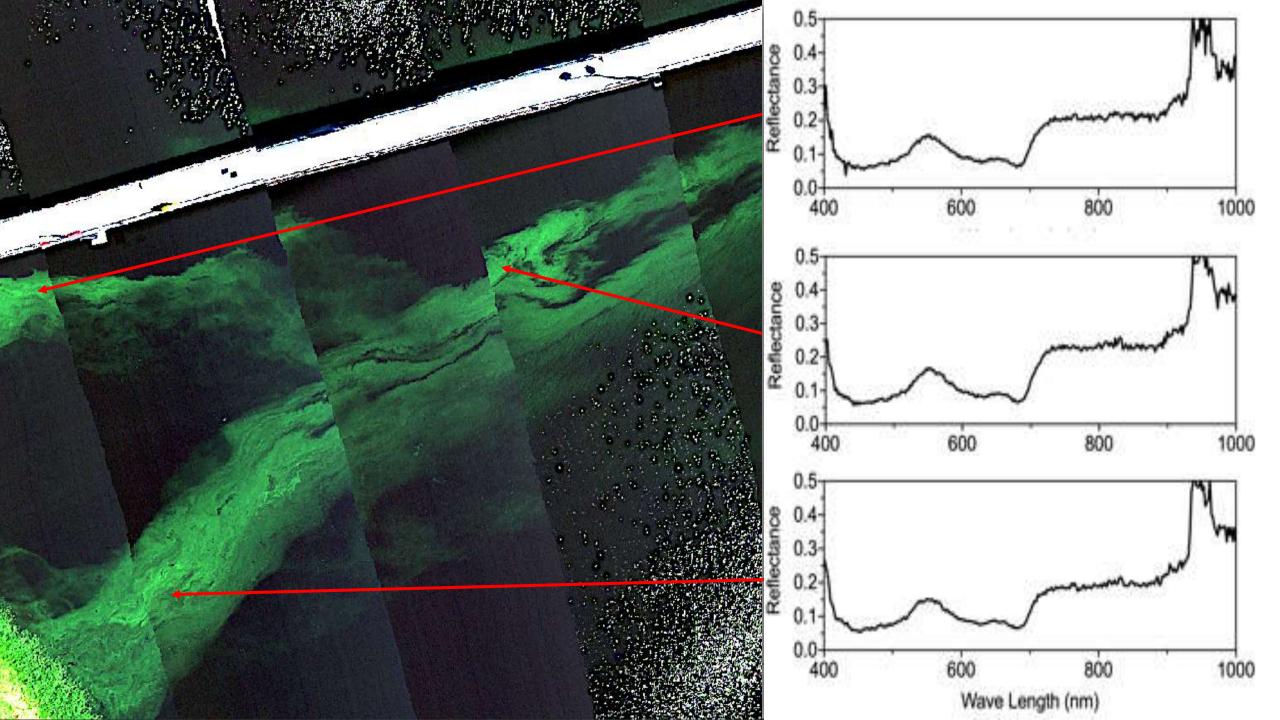
- Hands-on R software package for developing imagebased, relative abundance maps of HAB indicators (Univ of Cincinnati collaboration)
- 2. ArcGIS workflow tool, representing a more streamlined approach with pre-set options for HAB indicator estimation
- A web-based viewer for limited but easy access to HAB indicator estimations, using constrained image types and algorithms







# **Aerial Detection using Hyperspectral Imaging**

POC: Kaytee Pokrzywinski (Kaytee.Pokrzywinski @usace.army.mil)


- Purpose: Develop new lab and fieldbased (lake wide) sensors for early HAB detection and monitoring. Guide point sampling efforts.
- Results: Unique hyperspectral signatures can be obtained from cyanobacteria, spectral shifts are associated with changes in nutrient and toxin status.
- **Benefits:** Guidance for point sampling, can reduce the amount of grab samples required and help direct where sampling should occur. Meso-scale linkage of spectra to toxin status can allow assessment of bloom extent and associated risks.





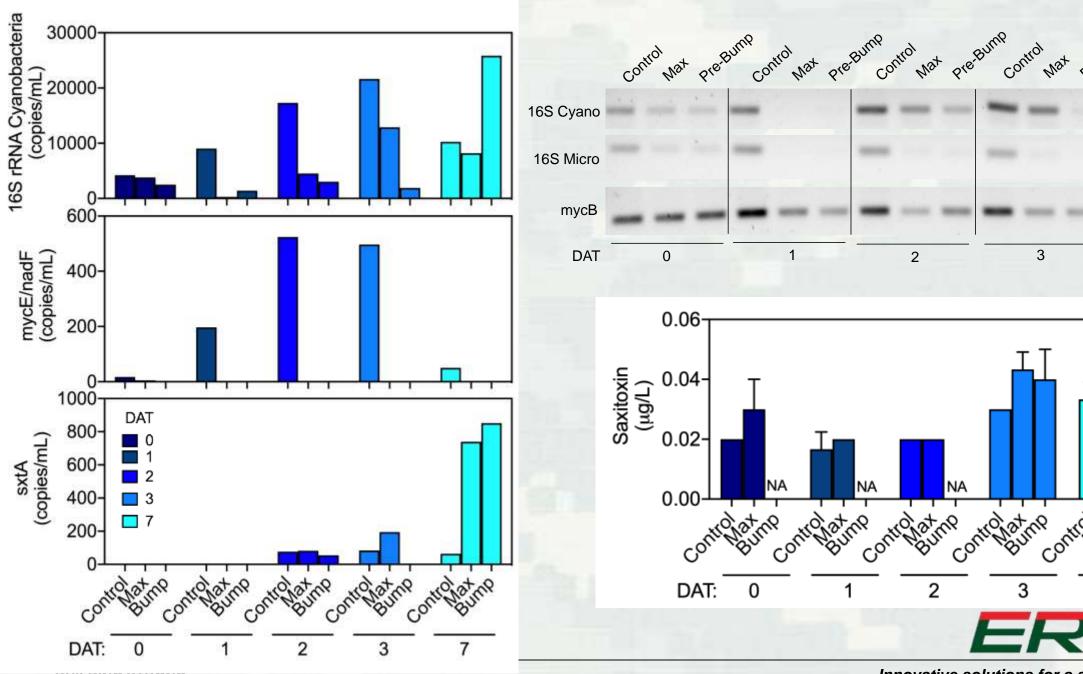






Scalable Algaecide Treatments

POC: Kurt Getsinger (Kurtis.D.Getsinger@usace.army.mil)


**Purpose:** Evaluate a peroxidebased algaecide to control cyanobacteria HABs in a small contained site on Lake Okeechobee

**Results:** Reduction in total cyanobacteria in treatments.

**Benefits:** Assist resource managers in developing an effective and rapid response strategy to control blooms in the lake and connecting waterways







DAT


# **Tiered Management**

POC: Kaytee Pokrzywinski (Kaytee.Pokrzywinski@usace.army.mil)

**Purpose:** Develop a tiered management approach to assess efficacy in the absence of confounding variables.

Results: Integrate cost, feasibility, modeling and risk management into a decision support tool.

**Benefits:** Assist resource managers in routinely planning for and managing algal blooms in their districts.



# Algaecide Decision Support - Future

POC: Kaytee Pokrzywinski (Kaytee.Pokrzywinski @usace.army.mil)

**Purpose:** Develop cyanoHABsspecific algaecide decision support tool to assist with rapid response.

#### **Results:**

- Screening of chemical algaecides against monocultures of cyanoHABs.
- · Algaecides applied at various rates and densities to assess concentration limitations on efficacy.

|                    | Chemical A | Chemical B | Chemical C | Chemical D |
|--------------------|------------|------------|------------|------------|
| Microcystis        | 0          | 0          | 0          | 0          |
| Anabaena           | 0          | 0          | 0          | 0          |
| Aphanizomenon      | 0          | 0          | 0          | 0          |
| Cylindrospermopsis | 0          | 0          | 0          | 0          |
| Oscillatoria       | 0          | 0          | 0          | 0          |
| Planktothrix       | 0          | 0          | 0          | 0          |

#### **Benefits:**

- Results of these studies form the foundation of a targeted decision support tool for resource managers to rapidly respond to cyanoHAB events and assess risk.
- These results can also be incorporated into site-specific modeling efforts to pre-determine efficacy at a larger scale.





#### Harmful Algal Bloom Interception, Treatment, and Transformation System (HABITATS)

POC: Martin Page (Martin.A.Page @usace.army.mil)







#### INTERCEPTION

Selectively remove algae from the water, rather than treating all the water.

#### TREATMENT

Clarify and oxidize the water to allow for safe discharge back into the environment, and concentrate the algae into a thick paste to minimize waste volumes.

#### TRANSFORMATION

AND

Recover resources from the concentrated algae while destroying any potential toxins.

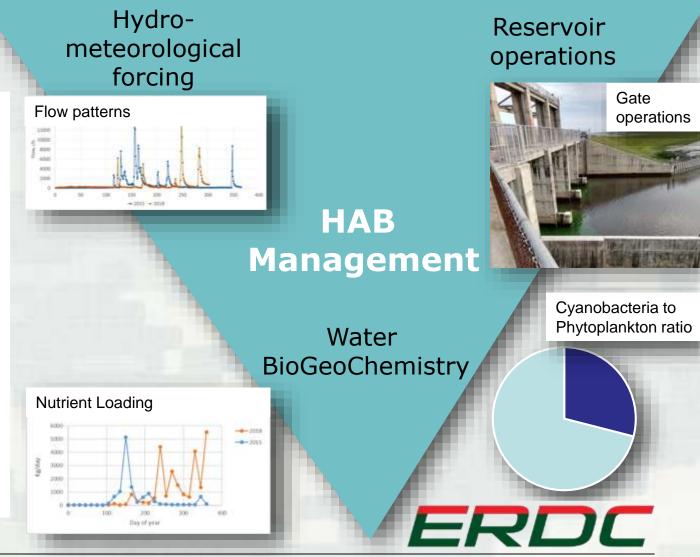
|   | rear i | baseline pilot study           |  |  |
|---|--------|--------------------------------|--|--|
|   | Year 2 | Optimized, integrated pilot st |  |  |
| 1 | Year 3 | 1 MGD demonstration            |  |  |

Deceline pilet study

US Army Corps of Engineers • Engineer Research and Developm

UNCLASSIFIED

# Operational Strategies to Control HABs in Inland Reservoirs


POC: Jodi Ryder (Jodi.L.Ryder@usace.army.mil)

**Purpose:** Provide guidance on operational management techniques and procedures. le withholding or release of water, the use of targeted flow strategies like horizontal flushing or hypolimnetic withdrawls. etc.

#### Results:

- A systematic historical study of the influence of reservoir control options on HABs.
- The development of modeling tools and protocols to allow reservoir managers to test the projected effects of operational changes.

**Benefits:** With increasing frequency of geographic distribution of HABs there is a need to understand what effects, if any, previous attempts to operationally manage HABs have been successful in reducing bloom extent, duration and expression of toxins.





# Physicochemical Treatment of Cyanobacteria/Toxins by Hydrodynamic Cavitation

POC: Victor Medina (Victor.F.Medina@usace.army.mil)

### **Purpose:**

 Assess hydrodynamic cavitation to remove cyanobacteria cells and toxins from water through the generation of microbubbles in contaminated water.

#### **Results:**

Hydroxyl radicals were generated when microbubbles imploded.

• After 2 hours of cavitation, *Microcystis* and microcystins were reduced 48% and 68%, respectively.

#### **Benefits:**

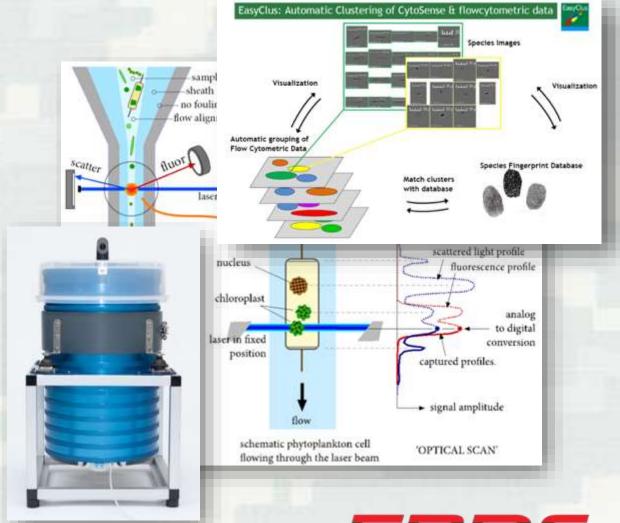
- Hydrodynamic cavitation can be used to effectively treat cyanobacteria in a minimally invasive, energy efficient, cost effective way.
- This technology could be used effectively in problematic areas and small coves for spottreating harmful algae.

Microcystis was cultured in tanks and treated for 2 hrs. Samples were collected every 30 min.

| collected every 30 min.              |         |       |             |  |  |
|--------------------------------------|---------|-------|-------------|--|--|
| Parameters                           | Initial | Final | % Reduction |  |  |
| Turbidity                            | 0.15    | 0.02  | 87          |  |  |
| Chlorophyll a                        | 9.60    | 0.50  | 95          |  |  |
| Cell Count (10 <sup>8</sup> cell/mL) | 121     | 39    | 68          |  |  |
| Microcystin                          | 0.535   | 0.281 | 48          |  |  |

# **High-Sensitivity Flow Cytometry**

- In Development

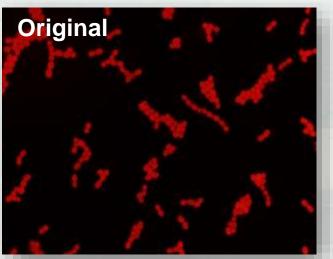

POC: Kaytee Pokrzywinski

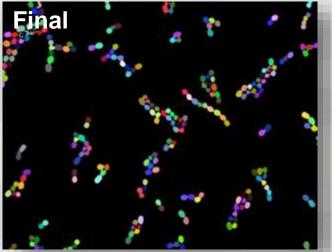
Purpose: Develop rapid, routine monitoring network to screen for cyanobacteria.

#### **Results:**

- Automated fingerprinting of phytoplankton communities, mostly cyanobacteria.
- Does not replace taxonomic efforts streamlines monitoring for management.

**Benefits:** Set total cyanobacteria and genusspecific thresholds for monitoring/management alerts. Allows for early detection and rapid response.




# Automated Algae/Cyanobacteria Cell Count

POC: Kaytee Pokrzywinski (Kaytee.Pokrzywinski@usace.army.mil)

- **Purpose**: Develop method to count cyanobacteria to validate other detection strategies as filaments and colonies in cyanobacteria can make counting challenging.
- **Results:** Use R-programming to automate image counting of cells including filaments/colonies
- **Benefit:** Automated image processing method that can count cells/particles in minutes vs hours









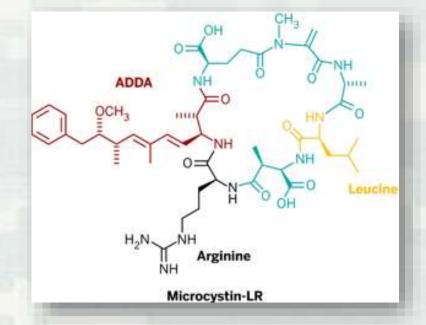
# Molecular Identification of Cyanobacteria/Toxin Genes

POC: Kaytee Pokrzywinski (Kaytee.Pokrzywinski @usace.army.mil)

- **Purpose**: Develop laboratory and fieldbased rapid screening tools for cyanobacteria and associated toxins
- **Results:** PCR/qPCR methods targeting sequences specific to
  - ▶ toxin genes: microcystin/nodularin, cylindrospermopsin, saxitoxin and anatoxin.
  - ▶ 16S rRNA total cyanobacteria and genus-level - Microcystis, Anabaena, Aphanizomenon, Oscillatoria, Nodularia, Cylindrospermopsis
- **Benefits:** Rapid identification of cyanobacteria to genus-level and indication of potentially toxic blooms. Required for early detection and rapid response.






# **Analytical Cyanotoxin Detection/Quantitation**

POC: Lee Moores (Lee.C.Moores @usace.army.mil)

**Purpose:** Develop in-house analytical capabilities for detecting cyanotoxins to promote faster sample processing.

#### **Results:**

- ► Enzyme linked immunosorbent assays (ELISAs) for microcystins/nodularins, anatoxin-A, saxitoxins and cylindrospermopsin.
- ► LC/MS/MS in development for microcystins/nodularins, saxitoxins, anatoxins and cylindrospermopsin (in development).
- Benefits: Rapidly (< 2 days) determine if a cyanobacteria bloom is toxic and how treatment can impact toxin release.





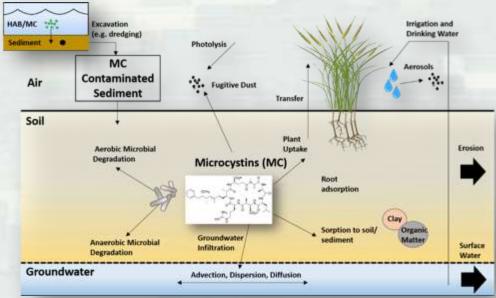


## Risk Assessment

POC: Andrew McQueen (Andrew.D.Mcqueen @usace.army.mil)

### Treatment Efficacy

- ▶ Identify potential treatment solutions
- ► Provide site-specific algal response data


### Ecological Risks/ Toxicity Testing

- ▶ Define risks to fish and invertebrates
- ▶ Define margin-of-safety for non-target organisms

### Algal Toxins

- ► Technical support for ecological and human health risk
- **Risk Communication**

#### **Fate and Transport of Toxins**



McQueen et al. 2019





### **HAB Risk** Management **Steps**

**HAB Problem Identification** 

Formulate Problem Solution

- Identify problematic HABs: species, location, density
- Identify Goals:
- Cell density < Target</li>
- [toxin] < Guideline

Chemical ~ Physical -Biological\*

Control Plan

 Identify site-specific control options

**Risk Management Action** 

 Implement control (e.g., algaecide application)

Measurement of Control Success

 Document control efficacy and sustainability.





## Conclusions

- There is an increase in frequency and duration in freshwater HAB events
- HAB research at ERDC has been rapidly expanding; advancing our capabilities, technical areas and research facilities.
- Focused on issues directly facing the Corps and often receive input from districts and customers.
- Technical areas include:
  - Water quality (modeling and monitoring)
  - ▶ Detection (molecular methods to remote sensing)
  - ▶ Nutrient reduction
  - ► Risk assessment
  - Management (physico-chemical, biological and chemical)
- Primarily aimed at applied research for early detection and rapid response.



## **Contact Information**

Kaytee Pokrzywinski

Jodi Ryder

Tony Bednar

Molly Reif

Victor Medina

Andrew McQueen

Martin Page

Ping Gong

Carina Jung

Email: Kaytee.Pokrzywinski@usace.army.mil

Email: Jodi.L.Ryder@usace.army.mil

Email: Anthony.J.Bednar@usace.army.mil

Email: Molly.K.Reif@usace.army.mil

Email: Victor.F.Medina@usace.army.mil

Email: Andrew.D.Mcqueen@usace.army.mil

Email: Martin.A.Page@usace.army.mil

Email: Ping.Gong@usace.army.mil

Email: Carina.M.Jung@usace.army.mil

Phone: (601)634-3716

Phone: (601)634-4205

Phone: (601)634-3652

Phone: (228)252-1134

Phone: (601)634-4283

Phone: (217)373-4541

Phone: (601)634-3521

Phone: (601)634-7247