Contents

Append	lix A. Acceptable Aluminum Toxicity Data for Assessment	A-1
A.1	Acceptable Acute Aluminum Toxicity Data.	A-2
A.2	Acceptable Chronic Aluminum Toxicity Data	A-10
Append	lix B. Test Information, C-R Data and Resulting C-R models for Acute and Chronic Aluminum Toxicity Tests Considered Acceptable, Qualitatively Acceptable, or Unacceptable for TAF and MAF	
	Calculation	B-1
B.1	Test Information, C-R Data and Resulting C-R models for Acute Aluminum Toxicity Tests Acceptable, Qualitatively Acceptable, or Unacceptable for Acute TAF and MAF Calculation.	B-2
B.2	Test Information, C-R Data and Resulting C-R models for Chronic Aluminum Toxicity Tests Acceptable, Qualitatively Acceptable, or Unacceptable for Chronic TAF and MAF Calculation.	B-26
	lix C. Acute LC50:LC15 and LC50:LC10 Ratios and Chronic EC20:EC15 and EC20:EC10 Ratios Based on Quantitatively Acceptable C-R Curves	C-1
C.1	Acute LC ₅₀ :LC ₁₅ ratios from quantitatively-acceptable C-R models used to derive acute LC ₅₀ :LC ₁₅ adjustment factors.	C-2
C.2	Acute LC ₅₀ :LC ₁₀ ratios from quantitatively-acceptable C-R models used to derive acute LC ₅₀ :LC ₁₀ adjustment factors.	C-3
C.3	Chronic EC ₂₀ :EC ₁₅ ratios from quantitatively acceptable C-R models used to derive chronic EC ₂₀ :EC ₁₅ adjustment factors.	C-4
C.4	Chronic EC ₂₀ :EC ₁₀ ratios from quantitatively acceptable C-R models used to derive chronic EC ₂₀ :EC ₁₀ adjustment factors.	C-5
Append	lix D. Appendix D: Acceptable Web-ICE Models for Aluminum Toxicity Data for Assessment	D-1
D.1	Acceptable Web-ICE models for Aluminum Assessment ^a	D-2
	lix E. Concentration-Response Curve Fitting and Model Assessment	E-1
L .1	system.	E-2
Append	lix F1. Discharger Assessment - Monte Carlo Simulation Structure	F-1
Append	lix F2. Discharger Assessment	F-4

Figures

Figure F-1.	Aluminum acute and chronic criteria values calculated at pH, hardness, and DOC occurring at specific Columbia River flows for 50 sample dates, 1994-2000.	F-7
Figure F-2.	Cumulative distribution of vernal pool fairy shrimp EC ₅ values calculated at the pH, hardness, and DOC occurring during the 50 sample dates, 1994-2000. Darker line is the corresponding lognormal simulated distribution	F-10
Figure F-3.	Cumulative distributions of values of the bull trout EC ₅ and other listed salmonids EC ₅ , calculated at the pH, hardness, and DOC occurring during the 50 sample dates, 1994-2000. Darker lines are the corresponding lognormal simulated distributions.	F-11
Figure F-4.	Vernal pool fairy shrimp cumulative distribution (upper percentiles) of HQ predicted at the edge of the chronic mixing zone for hypothetical permit limits.	F-12
Figure F-5.	Bull trout cumulative distribution (upper percentiles) of HQ predicted at the edge of the chronic mixing zone for hypothetical permit limits	F-13
Figure F-6.	Other listed salmonids cumulative distribution (upper percentiles) of HQ predicted at the edge of the chronic mixing zone for hypothetical permit limits.	F-13
Figure F-7.	Aluminum acute and chronic criterion values calculated at pH, hardness, and DOC of the available 119 sampling events in Willamette River near the confluence of Coffee Lake Creek, 2000-2016	F-16
Figure F-8.	Mean monthly flow pattern in the nearby Tualatin River (USGS Gage 14206500 at Farmington, Oregon), indicating portion of year with minimal flow.	F-20
Figure F-9.	Cumulative distribution of vernal pool fairy shrimp EC ₅ values calculated at the pH, hardness, and DOC occurring during the 119 sample dates of waters in the general area, 2000-2016. Darker line is the corresponding simulated lognormal distribution.	F-21
Figure F-10.	Cumulative distributions of values of the bull trout EC ₅ and other listed salmonids EC ₅ , calculated at the pH, hardness, and DOC occurring during the 119 sample dates of waters in the general area, 2000-2016. Darker lines are the corresponding lognormal simulated distributions	F-22
Figure F-11.	Vernal pool fairy shrimp cumulative distribution (upper percentiles) of HQ predicted at point of application of the criterion (end of pipe during dry season, one-third of time; and edge of chronic mixing zone during wet season, two-thirds of time) for hypothetical permit limits based on either the 50 th or 10 th percentile criterion	F-23
Figure F-12.	Bull trout cumulative distribution (upper percentiles) of HQ predicted at point of application of the criterion (end of pipe during dry season, one-third of time; and edge of chronic mixing zone during wet season, two-thirds of	

	time) for hypothetical permit limits based on either the 50 th or 10 th percentile criterion
Figure F-13.	Other listed salmonids cumulative distribution (upper percentiles) of HQ predicted at point of application of the criterion (end of pipe during dry season, one-third of time; and edge of chronic mixing zone during wet season, two-thirds of time) for hypothetical permit limits based on either the 50 th or 10 th percentile criterion
Tables	
Table F-1.	NAC dye study dilution factors, measured during 84,700 cfs Columbia River flow conditions (Note: The dye study conditions completed during a period of relatively low flow to mimic worst-case dilution scenarios, 7Q10 = 74,000 cfs)
Table F-2.	Acute mixing zone dilution factors, acute criteria values corresponding to the 10 th and 50 th percentiles, and corresponding WLA, LTA, MDL, and AML concentrations, assuming CV=0.6, 4 samples/month, and probability targets of 0.99 for attaining the WLA, 0.99 for complying with the MDL, and 0.95 for complying with the AML in the EPA (1991) Technical Support Document procedure
Table F-3.	Listed species estimated chronic EC ₅ values used in the assessmentF-10
Table F-4.	Fujimi effluent dilution factors from DEQ (2012)F-16
Table F-5.	Acute and chronic mixing zone dilution factors, acute and chronic criteria values corresponding to the 10th and 50th percentiles, and corresponding WLA, LTA, MDL, and AML concentrations, assuming CV = 0.6, 4 samples/month, and probability targets of 0.99 for attaining the WLA, 0.99 for complying with the MDL, and 0.95 for complying with the AML in the TSD procedure. In accord with EPA (1991) and Oregon DEQ procedures, values surrounded by thick borders were the more limiting scenarios and would be used to set the permit limits during their respective seasons. Consequently, the values surrounded by thick borders remained the focus of the analysis, with the remaining values presented for comparative purposesF-18
Table F-6.	Listed species estimated chronic EC $_5$ values used in the assessment. Values are for the standard condition pH=7, hardness=100 mg/L, and DOC=1 mg/LF-20
Table F-7.	Predicted percentage of time exceeding the EC ₅ values for vernal pool fairy shrimp, bull trout, and the other listed salmonidsF-24

Bio	logical Evaluation of Fre	shwater Aluminum W	ater Quality Criteria for	Oregon
Appendix A.	Acceptable Al	uminum Toxid	city Data for	
Assessme	ent			

A.1 Acceptable Acute Aluminum Toxicity Data.

Order	Family	Common name (lifestage) / Species	Method ^a	Chemical	Hardness (mg/L as CaCO ₃)	рН	DOC (mg/L)	Normalized LC50 or EC50 (µg/L) ^b	Reference	Species Mean Acute Value (µg/L)	Genus Mean Acute Value (µg/L)	Family Mean Acute Value (µg/L)	Order Mean Acute Value (µg/L)
FRESHWATER													
Tubificida	Naididae	Worm (adult, 1.0 cm), Nais elinguis	R, M, T	Aluminum sulfate	17.89	6.5	3.2	9,224	Shuhaimi-Othman et al. 2012a, 2013	9,224	9,224	9,224	9,224
Basommatophora	Physidae	Snail (adult), Physa sp.	S, M, T	Aluminum chloride	47.4	6.6	1.1	>52,593	Call 1984; Call et al. 1984	41,858	41,858	41,858	41,858
Basommatophora	Physidae	Snail (adult), Physa sp.	S, M, T	Aluminum chloride	47.4	7.6	1.1	27,057	Call 1984; Call et al. 1984				
Basommatophora	Physidae	Snail (adult), Physa sp.	S, M, T	Aluminum chloride	47.4	7.5	1.1	51,539	Call 1984; Call et al. 1984				
Neotaenioglossa	Thiaridae	Snail (adult, 1.5-2.0 cm, 22.5 mg), Melanoides tuberculata	R, M, T	Aluminum sulfate	18.72	6.7	3.2	119,427	Shuhaimi-Othman et al. 2012b, 2013	119,427	119,427	119,427	119,427
Unionoida	Unionidea	Fatmucket (juvenile, 7-8 d, 0.38 mm), Lampsilis siliquoidea	F, M, T	Aluminum nitrate	106.0	6.12	0.48	>29,492	Wang et al. 2016; Wang et al. 2018	>29,492	>29,492	>29,492	>29,492
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, A	Aluminum chloride	50.0	7.4	1.1	1,771	McCauley et al. 1986	5,863	7,770	4,250	4,250
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, A	Aluminum chloride	50.5	7.9	1.1	1,170	McCauley et al. 1986				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, A	Aluminum chloride	50.0	8.1	1.1	1,974	McCauley et al. 1986				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	R, M, T	Aluminum chloride	25	7.5	0.5	1,321	ENSR 1992d				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	R, M, T	Aluminum chloride	49	7.7	0.5	2,516	ENSR 1992d				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum chloride	95	7.9	0.5	2,559	ENSR 1992d				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	R, M, T	Aluminum chloride	193	8.1	0.5	>88,933	ENSR 1992d				

Order	Family	Common name (lifestage) / Species	Method ^a	Chemical	Hardness (mg/L as CaCO ₃)	pН	DOC (mg/L)	Normalized LC50 or EC50 (µg/L) ^b	Reference	Species Mean Acute Value (µg/L)	Genus Mean Acute Value (µg/L)	Family Mean Acute Value (µg/L)	Order Mean Acute Value (µg/L)
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, NR	Aluminum sulfate	90	7.2	0.5	5,243	Fort and Stover 1995				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, NR	Aluminum sulfate	90	7.2	0.5	7,981	Fort and Stover 1995				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, NR	Aluminum sulfate	89	8.2	0.5	3,189	Soucek et al. 2001				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	R, U, T	Aluminum chloride	142	8.2	1.6	77,169	Griffitt et al. 2008				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	6	0.5	2,009	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	6.1	2	7,721	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	6.1	4	10,568	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	6	0.5	1,924	European Al Association 2009; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	6	0.5	4,394	European Al Association 2009; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	6	0.5	5,546	European Al Association 2009; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	5.9	0.5	4,945	European Al Association 2009; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	7	0.5	>5,842	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	7.9	0.5	>9,735	European Al Association 2009				

Order	Family	Common name (lifestage) / Species	Method ^a	Chemical	Hardness (mg/L as CaCO ₃)	pН	DOC (mg/L)	Normalized LC50 or EC50 (µg/L) ^b	Reference	Species Mean Acute Value (µg/L)	Genus Mean Acute Value (µg/L)	Family Mean Acute Value (µg/L)	Order Mean Acute Value (µg/L)
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	6.8	2	>26,061	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	7.8	2	>12,984	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	6.8	4	>18,075	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	7.7	4	>9,538	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	7.9	0.5	>3,793	European Al Association 2009; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	10.6	7.9	0.5	>3,812	European Al Association 2009; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	60	6	0.5	867.5	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	60	6	2	4,376	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	60	5.7	4	34,704	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	60	6.7	0.5	>26,800	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	60	7.8	0.5	>5,975	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	60	6.8	2	>10,615	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	60	7.7	2	>8,154	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	60	6.7	4	>12,073	European Al Association 2009				

Order	Family	Common name (lifestage) / Species	Method ^a	Chemical	Hardness (mg/L as CaCO ₃)	pН	DOC (mg/L)	Normalized LC50 or EC50 (µg/L) ^b	Reference	Species Mean Acute Value (µg/L)	Genus Mean Acute Value (µg/L)	Family Mean Acute Value (µg/L)	Order Mean Acute Value (µg/L)
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	60	7.6	4	>5,487	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	120	6.1	2	6,889	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	120	5.6	4	34,985	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	120	6.9	0.5	>7,361	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	120	7.9	0.5	>4,896	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	120	6.8	2	>11,400	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	120	7.7	2	>6,471	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	120	6.6	4	>9,047	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, U, T	Aluminum nitrate	120	7.6	4	>4,366	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum nitrate	10.6	6	0.5	3,227	European Al Association 2010				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum nitrate	10.6	6	0.5	7,407	European Al Association 2010				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum nitrate	10.6	6	0.5	3,234	European Al Association 2010				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum nitrate	10.6	6.1	0.5	2,273	European Al Association 2010				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum nitrate	10.6	7.1	0.5	>3,528	European Al Association 2010				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum nitrate	10.6	7.8	0.5	>8,625	European Al Association 2010				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum nitrate	10.6	7.5	0.5	322.4	European Al Association 2010				

Order	Family	Common name (lifestage) / Species	M ethod ^a	Chemical	Hardness (mg/L as CaCO ₃)	pН	DOC (mg/L)	Normalized LC50 or EC50 (µg/L) ^b	Reference	Species Mean Acute Value (µg/L)	Genus Mean Acute Value (µg/L)	Family Mean Acute Value (µg/L)	Order Mean Acute Value (µg/L)
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum nitrate	60.0	6	0.5	3,845	European Al Association 2010				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	S, M, T	Aluminum nitrate	60.0	6	0.5	>7,415	European Al Association 2010				
Diplostraca	Daphniidae	Cladoceran (0-24 hr), Ceriodaphnia reticulata	F, M, T	Aluminum chloride	45.1	6.0	1.1	1,967	Shephard 1983	10,299			
Diplostraca	Daphniidae	Cladoceran (0-24 hr), Ceriodaphnia reticulata	F, M, T	Aluminum chloride	4.0	5.5	1.1	53,910	Shephard 1983				
Diplostraca	Daphniidae	Cladoceran (0-24 hr), Daphnia magna	S, U, NR	Aluminum chloride	48.5	7.8	1.1	3,117	Biesinger and Christensen 1972	2,944	2,325		
Diplostraca	Daphniidae	Cladoceran (0-24 hr), Daphnia magna	S, M, T	Aluminum sulfate	220	7.6	1.6	15,625	Kimball 1978				
Diplostraca	Daphniidae	Cladoceran (0-24 hr), Daphnia magna	S, U, T	Aluminum chloride	45.1	7.3	1.1	3,070	Shephard 1983				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Daphnia magna	S, U, T	Aluminum nitrate	168	6	0.5	>2,075	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Daphnia magna	S, U, T	Aluminum nitrate	168	7.9	0.5	713.2	European Al Association 2009				
Diplostraca	Daphniidae	Cladoceran (adult), Daphnia pulex	R, U, T	Aluminum chloride	142	8.2	1.6	1,836	Griffitt et al. 2008	1,836			
Podocopida	Cyprididae	Ostracod (adult, 1.5 mm, 0.3 mg), Stenocypris major	R, M, T	Aluminum sulfate	15.63	6.5	3.2	8,000	Shuhaimi-Othman et al. 2011a, 2013	8,000	8,000	8,000	8,000
Amphipoda	Crangonyctidae	Amphipod (4 mm), Crangonyx pseudogracilis	R, U, T	Aluminum sulfate	50	6.8	1.6	12,901	Martin and Holdich 1986	12,901	12,901	12,901	18,926
Amphipoda	Hyalellidae	Amphipod (juvenile, 7 d, 1.32 mm), Hyalella azteca	F, M, T	Aluminum nitrate	105	6.1	0.48	>27,766	Wang et al. 2016, 2018	>27,766	>27,766	>27,766	
Diptera	Chironomidae	Midge (3rd-4th instar larvae), Chironomus plumosus	S, U, T	Aluminum chloride	80	7.0	1.6	25,216	Fargasova 2001, 2003	25,216	25,216	42,207	42,207

Order	Family	Common name (lifestage) / Species	Method ^a	Chemical	Hardness (mg/L as CaCO ₃)	рН	DOC (mg/L)	Normalized LC50 or EC50 (µg/L) ^b	Reference	Species Mean Acute Value (µg/L)	Genus Mean Acute Value (µg/L)	Family Mean Acute Value (µg/L)	Order Mean Acute Value (µg/L)
Diptera	Chironomidae	Midge (2nd-3rd instar larvae), Paratanytarsus dissimilis	S, M, T	Aluminum sulfate	17.43	7.3	2.8	>70,647	Lamb and Bailey 1981, 1983	>70,647	>70,647		
Salmoniformes	Salmonidae	Rainbow trout (juvenile, 1-3 g), Oncorhynchus mykiss	F, M, T	Aluminum chloride	26.35	7.6	0.5	>7,216	Gundersen et al. 1994	3,312	3,312	8,150	8,150
Salmoniformes	Salmonidae	Rainbow trout (juvenile, 1-3 g), Oncorhynchus mykiss	F, M, T	Aluminum chloride	45.5	7.6	0.5	>5,766	Gundersen et al. 1994				
Salmoniformes	Salmonidae	Rainbow trout (juvenile, 1-3 g), Oncorhynchus mykiss	F, M, T	Aluminum chloride	88.05	7.6	0.5	>5,390	Gundersen et al. 1994				
Salmoniformes	Salmonidae	Rainbow trout (juvenile, 1-3 g), Oncorhynchus mykiss	F, M, T	Aluminum chloride	127.6	7.6	0.5	>5,164	Gundersen et al. 1994				
Salmoniformes	Salmonidae	Rainbow trout (juvenile, 1-3 g), Oncorhynchus mykiss	F, M, T	Aluminum chloride	23.25	8.3	0.5	1,685	Gundersen et al. 1994				
Salmoniformes	Salmonidae	Rainbow trout (juvenile, 1-3 g), Oncorhynchus mykiss	F, M, T	Aluminum chloride	35.4	8.3	0.5	1,680	Gundersen et al. 1994				
Salmoniformes	Salmonidae	Rainbow trout (juvenile, 1-3 g), Oncorhynchus mykiss	F, M, T	Aluminum chloride	83.6	8.3	0.5	2,180	Gundersen et al. 1994				
Salmoniformes	Salmonidae	Rainbow trout (juvenile, 1-3 g), Oncorhynchus mykiss	F, M, T	Aluminum chloride	128.5	8.31	0.5	2,026	Gundersen et al. 1994				
Salmoniformes	Salmonidae	Atlantic salmon (sac fry, ≈0.2 g), Salmo salar	S, U, T	Aluminum chloride	6.8	5.5	0.5	20,749	Hamilton and Haines 1995	8,642	8,642		
Salmoniformes	Salmonidae	Atlantic salmon (sac fry, ≈0.2 g), Salmo salar	S, U, T	Aluminum chloride	6.8	6.5	0.5	3,599	Hamilton and Haines 1995				

Order	Family	Common name (lifestage) / Species	Method ^a	Chemical	Hardness (mg/L as CaCO ₃)	pН	DOC (mg/L)	Normalized LC50 or EC50 (µg/L) ^b	Reference	Species Mean Acute Value (µg/L)	Genus Mean Acute Value (µg/L)	Family Mean Acute Value (µg/L)	Order Mean Acute Value (µg/L)
Salmoniformes	Salmonidae	Brook trout (0.6 g, 4.4-7.5 cm), Salvelinus fontinalis	S, U, T	Aluminum sulfate	40	5.6	1.6	30,038	Tandjung 1982	18,913	18,913		
Salmoniformes	Salmonidae	Brook trout (0.6 g, 4.4-7.5 cm), Salvelinus fontinalis	S, U, T	Aluminum sulfate	18	5.6	1.6	24,514	Tandjung 1982				
Salmoniformes	Salmonidae	Brook trout (0.6 g, 4.4-7.5 cm), Salvelinus fontinalis	S, U, T	Aluminum sulfate	2	5.6	1.6	9,187	Tandjung 1982				
Cypriniformes	Cyprinidae	Rio Grande silvery minnow (larva, 3-5 dph), Hybognathus amarus	R, M, T	Aluminum chloride	140	8.1	0.5	>21,779	Buhl 2002	>21,779	>21,779	>21,937	>21,937
Cypriniformes	Cyprinidae	Fathead minnow (juvenile, 32-33 d), Pimephales promelas	S, M, T	Aluminum chloride	47.4	7.6	1.1	>28,019	Call et al. 1984	>22,095	>22,095		
Cypriniformes	Cyprinidae	Fathead minnow (juvenile, 32-33 d), Pimephales promelas	S, M, T	Aluminum chloride	47.4	8.1	1.1	>17,678	Call et al. 1984				
Cypriniformes	Cyprinidae	Fathead minnow (larva, 4-6 dph), Pimephales promelas	R, M, T	Aluminum chloride	140	8.1	0.5	>21,779	Buhl 2002				
Cyprinodontiformes	Poeciliidae	Guppy, Poecilia reticulata	R, M, T	Aluminum sulfate	18.72	6.68	3.2	9,061	Shuhaimi-Othman et al. 2013	9,061	9,061	9,061	9,061
Perciformes	Centrarchidae	Green sunfish (juvenile, 3 mo.), Lepomis cyanellus	S, M, T	Aluminum chloride	47.4	7.6	1.1	>31,087	Call et al. 1984	>31,087	>31,087	9,637	9,637
Perciformes	Centrarchidae	Smallmouth bass (larvae, 48 hph), Micropterus dolomieu	S, M, T	Aluminum sulfate	12.15	5.1	1.6	2,442	Kane 1984; Kane and Rabeni 1987	2,988	2,988		
Perciformes	Centrarchidae	Smallmouth bass (larvae, 48 hph), Micropterus dolomieu	S, M, T	Aluminum sulfate	12.4	6.3	1.6	>3,655	Kane 1984; Kane and Rabeni 1987				

Order	Family	Common name (lifestage) / Species	Method ^a	Chemical	Hardness (mg/L as CaCO ₃)	рН	DOC (mg/L)	Normalized LC50 or EC50 (µg/L) ^b	Reference	Species Mean Acute Value (µg/L)	Genus Mean Acute Value (µg/L)	Family Mean Acute Value (µg/L)	Order Mean Acute Value (µg/L)
Anura	Hylidae	Green tree frog (tadpole, <1 dph), Hyla cinerea	R, M, T	Aluminum chloride	4.55	5.5	0.5	>18,563	Jung and Jagoe 1995	>18,563	>18,563	>18,563	>18,563

^a S=static, F=flow-through, U=unmeasured, M=measured, A=acid exchangeable aluminum, T=total aluminum, D=dissolved aluminum, NR=not reported.

^b All values expressed as total aluminum, normalized to pH 7, DOC of 1 mg/L and 100 mg/L hardness as CaCO₃; normalized using MLR equations indentified in USEPA (2018).

A.2 Acceptable Chronic Aluminum Toxicity Data.

Order	Family	Common name (lifestage) / Species	Chemical	Test ^a	Hardness (mg/L as CaCO ₃)	рН	DOC (mg/L)	EC20 Endpoint	Normalized EC20 (µg/L) ^b	Reference	Species Mean Chronic Value (µg/L)	Genus Mean Chronic Value (µg/L)	Family Mean Chronic Value (µg/L)	Order Mean Chronic Value (µg/L)
FRESHWATER														
-	Aeolosomatidae	Oligochaete (<24 hr)	Aluminum nitrate	ELS	48	5.95	0.25	Reproduction (population size)	20,514	OSU 2012e; Cardwell et al. 2018	20,514	20,514	20,514	20,514
Ploima	Brachionidae	Rotifer (newly hatched, <2 hr), Brachionus calyciflorus	Aluminum nitrate	LC	100	6.45	0.25	Reproduction (population size)	1,845	OSU 2012c; Cardwell et al. 2018	3,539	3,539	3,539	3,539
Ploima	Brachionidae	Rotifer (newly hatched, <2 hr), Brachionus calyciflorus	Aluminum nitrate	LC	63	6.3	1.39	Reproduction (population size)	4,518	OSU 2018e				
Ploima	Brachionidae	Rotifer (newly hatched, <2 hr), Brachionus calyciflorus	Aluminum nitrate	LC	105	6.3	1.39	Reproduction (population size)	3,844	OSU 2018e				
Ploima	Brachionidae	Rotifer (newly hatched, <2 hr), Brachionus calyciflorus	Aluminum nitrate	LC	114	6.2	2.63	Reproduction (population size)	4,323	OSU 2018e				
Ploima	Brachionidae	Rotifer (newly hatched, <2 hr), Brachionus calyciflorus	Aluminum nitrate	LC	105	6.1	3.77	Reproduction (population size)	6,653	OSU 2018e				

Order	Family	Common name (lifestage) / Species	Chemical	Test ^a	Hardness (mg/L as CaCO ₃)	рН	DOC (mg/L)	EC20 Endpoint	Normalized EC20 (µg/L) ^b	Reference	Species Mean Chronic Value (µg/L)	Genus Mean Chronic Value (µg/L)	Family Mean Chronic Value (µg/L)	Order Mean Chronic Value (µg/L)
Ploima	Brachionidae	Rotifer (newly hatched, <2 hr), Brachionus calyciflorus	Aluminum nitrate	LC	185	6.3	1.33	Reproduction (population size)	2,132	OSU 2018e				
Basommatophora	Lymnaeidae	Great pond snail (newly-hatched, <24 hr), Lymnaea stagnalis	Aluminum nitrate	ELS (30 d)	117	6	0.25	Biomass	5,945	OSU 2012b; Cardwell et al. 2018	3,119	3,119	3,119	3,119
Basommatophora	Lymnaeidae	Great pond snail (newly-hatched, <24 hr), Lymnaea stagnalis	Aluminum nitrate	ELS (30 d)	121	6.15	1.37	Biomass	1,812	OSU 2018f				
Basommatophora	Lymnaeidae	Great pond snail (newly-hatched, <24 hr), Lymnaea stagnalis	Aluminum nitrate	ELS (30 d)	124	6.17	1.45	Biomass	3,902	OSU 2018f				
Basommatophora	Lymnaeidae	Great pond snail (newly-hatched, <24 hr), Lymnaea stagnalis	Aluminum nitrate	ELS (30 d)	117	5.98	3.85	Biomass	2,251	OSU 2018f				
Unionoida	Unionidea	Fatmucket (6 wk, 1.97 mm), Lampsilis siliquoidea	Aluminum nitrate	ELS (28 d)	105.5	6.04	0.40	Biomass	1,026	Wang et al. 2016, 2018	1,026	1,026	1,026	1,026
Diplostraca	Daphniidae	Cladoceran (≤16 hr), Ceriodaphnia dubia	Aluminum chloride	LC	50	7.15	1.1	Reproduction - young/starting adult	2,031	McCauley et al. 1986	1,181	1,181	1,079	1,079
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum chloride	LC	25	7.65	0.5	Reproduction - young/female	2,602	ENSR 1992b				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum chloride	LC	47	7.7	0.5	Reproduction - young/female	1,077	ENSR 1992b				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum chloride	LC	94	8.2	0.5	Reproduction - young/female	709	ENSR 1992b				

Order	Family	Common name (lifestage) / Species	Chemical	Test ^a	Hardness (mg/L as CaCO ₃)	рН	DOC (mg/L)	EC20 Endpoint	Normalized EC20 (µg/L) ^b	Reference	Species Mean Chronic Value (µg/L)	Genus Mean Chronic Value (µg/L)	Family Mean Chronic Value (µg/L)	Order Mean Chronic Value (µg/L)
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum chloride	LC	196	8.45	0.5	Reproduction - young/female	747	ENSR 1992b				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	25	6.34	0.5	Reproduction	292	European Al Association 2010; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	60	6.4	0.5	Reproduction	668	European Al Association 2010; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	120	6.38	0.5	Reproduction	619	European Al Association 2010; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	25	6.34	2	Reproduction	1,315	European Al Association 2010; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	60	6.38	2	Reproduction	1,187	European Al Association 2010; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	120	6.37	2	Reproduction	1,254	European Al Association 2010; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	25	6.33	4	Reproduction	1,460	European Al Association 2010; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	60	6.3	4	Reproduction	981	European Al Association 2010; Gensemer et al. 2018				

Order	Family	Common name (lifestage) / Species	Chemical	Test ^a	Hardness (mg/L as CaCO ₃)	рН	DOC (mg/L)	EC20 Endpoint	Normalized EC20 (µg/L) ^b	Reference	Species Mean Chronic Value (µg/L)	Genus Mean Chronic Value (µg/L)	Family Mean Chronic Value (µg/L)	Order Mean Chronic Value (µg/L)
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	120	6.38	4	Reproduction	679	European Al Association 2010; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	25	6.37	2	Reproduction	1,164	Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	25	6.34	2	Reproduction	1,576	Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	25	6.35	2	Reproduction	1,504	Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	25	7.04	0.5	Reproduction (young/female)	701	CECM 2014; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	120	7.14	0.5	Reproduction (young/female)	1,072	CECM 2014; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	25	7.98	0.5	Reproduction (young/female)	1,029	CECM 2014; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	60	8.03	0.5	Reproduction (young/female)	1,189	CECM 2014; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	120	8.10	0.5	Reproduction (young/female)	880	CECM 2014; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	25	6.34	0.5	Reproduction (young/female)	2,072	CECM 2014; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	120	6.36	0.5	Reproduction (young/female)	1,122	CECM 2014; Gensemer et al. 2018				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	64	6.42	1.87	Reproduction (young/female)	1,463	OSU 2018a				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	133	6.33	8.71	Reproduction (young/female)	1,973	OSU 2018a				

Order	Family	Common name (lifestage) / Species	Chemical	Test ^a	Hardness (mg/L as CaCO ₃)	pН	DOC (mg/L)	EC20 Endpoint	Normalized EC20 (µg/L)b	Reference	Species Mean Chronic Value (µg/L)	Genus Mean Chronic Value (µg/L)	Family Mean Chronic Value (µg/L)	Order Mean Chronic Value (µg/L)
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	138	6.4	12.3	Reproduction (young/female)	2,308	OSU 2018a				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	428	6.3	1.64	Reproduction (young/female)	1,388	OSU 2018a				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	125	7.21	6.57	Reproduction (young/female)	1,614	OSU 2018a				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	127	7.19	12.01	Reproduction (young/female)	1,170	OSU 2018a				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	263	8.17	1.3	Reproduction (young/female)	1,854	OSU 2018a				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	425	8.21	1.2	Reproduction (young/female)	1,372	OSU 2018a				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Ceriodaphnia dubia	Aluminum nitrate	LC	125	8.7	1.04	Reproduction (young/female)	1,530	OSU 2018a				
Diplostraca	Daphniidae	Cladoceran (<24 hr), Daphnia magna	Aluminum nitrate	LC	140	6.3	2	Reproduction (young/female)	985.3	European Al Association 2010; Gensemer et al. 2018	985.3	985.3		
Amphipoda	Hyalellidae	Amphipod (juvenile, 7-9 d), Hyalella azteca	Aluminum nitrate	ELS (28 d)	95	6.35	0.51	Biomass	665.9	OSU 2012h; Cardwell et al. 2018	1,387	1,387	1,387	1,387
Amphipoda	Hyalellidae	Amphipod (juvenile, 7 d, 1.31 mm), Hyalella azteca	Aluminum nitrate	ELS (28 d)	106	6.04	0.33	Biomass	2,890	Wang et al. 2016, 2018				
Diptera	Chironomidae	Midge (1st instar larva, <24 hr), Chironomus riparius	Aluminum sulfate	PLC	11.8	5.58	1.8	Adult midge emergence	1,075	Palawski et al. 1989	5,099	5,099	5,099	5,099
Diptera	Chironomidae	Midge (1st instar larva, <24 hr), Chironomus riparius	Aluminum sulfate	PLC	11.9	5.05	1.8	Adult midge emergence	15,069	Palawski et al. 1989				
Diptera	Chironomidae	Midge (1st instar larva, 3d), Chironomus riparius	Aluminum nitrate	LC	91	6.6	0.51	Reproduction (# of eggs/case)	8,181	OSU 2012f; Cardwell et al. 2018				

Order	Family	Common name (lifestage) / Species	Chemical	Test ^a	Hardness (mg/L as CaCO ₃)	рН	DOC (mg/L)	EC20 Endpoint	Normalized EC20 (µg/L) ^b	Reference	Species Mean Chronic Value (µg/L)	Genus Mean Chronic Value (µg/L)	Family Mean Chronic Value (µg/L)	Order Mean Chronic Value (µg/L)
Salmoniformes	Salmonidae	Atlantic salmon (embryo), Salmo salar	Aluminum sulfate	ELS (60 d)	12.7	5.7	1.8	Biomass	434.4	McKee et al. 1989	434.4	434.4	526.5	526.5
Salmoniformes	Salmonidae	Brook trout (eyed eggs), Salvelinus fontinalis	Aluminum sulfate	ELS (60 d)	12.3	6.55	1.9	Biomass	378.7	Cleveland et al. 1989	638.2	638.2		
Salmoniformes	Salmonidae	Brook trout (eyed eggs), Salvelinus fontinalis	Aluminum sulfate	ELS (60 d)	12.8	5.65	1.8	Biomass	1,076	Cleveland et al. 1989				
Cypriniformes	Cyprinidae	Fathead minnow, Pimephales promelas	Aluminum sulfate	ELS (28 d)	220	7.70	1.6	Biomass	2,690	Kimball 1978	2,407	2,407	1,797	1,797
Cypriniformes	Cyprinidae	Fathead minnow (embryo, <24 hr), Pimephales promelas	Aluminum nitrate	ELS (33 d)	96	6.20	0.25	Fry survival	2,154	OSU 2012g; Cardwell et al. 2018				
Cypriniformes	Cyprinidae	Zebrafish (embryo, <36hpf), Danio rerio	Aluminum nitrate	ELS (33 d)	83	6.15	0.25	Biomass	1,342	OSU 2013; Cardwell et al. 2018	1,342	1,342		
Anura ^c	Ranidae	Wood frog (larva, Gosner stage 25), Rana sylvatica	Aluminum sulfate	Larva - complete metamorph. (43-120 d)	115	4.69	1.6	MATC	10,684	Peles 2013	>10,684	>10,684	>10,684	>10,684

^a LC=Life cycle, ELS=Early life-stage.
^b All values expressed as total aluminum, normalized to pH 7, DOC of 1 mg/L and 100 mg/L hardness as CaCO₃; normalized using MLR equations indentified in USEPA (2018).

^c Other Data that can be used to fulfill missing MDR group.

Riological	Evaluation	of Freshwater	A luminum	Mater	Quality	Critoria	for (regon
Diviogical	⊏vaiuaii∪ii	UI FIESIIWalei	Alullillillilli	vvalei	Quality	Cillella	101 (JIEGUII

Appendix B. Test Information, C-R Data and Resulting C-R models for Acute and Chronic Aluminum Toxicity Tests Considered Acceptable, Qualitatively Acceptable, or Unacceptable for TAF and MAF Calculation

B.1 Test Information, C-R Data and Resulting C-R models for Acute Aluminum Toxicity Tests Acceptable, Qualitatively Acceptable, or Unacceptable for Acute TAF and MAF Calculation.

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.3	1.00							Model: Log Logistic type			
	0.3	1.00							1, 3 para, upper @ 1;			
	2.4	1.00							This model suffers from a			
	2.6	1.00							lack of range of responses, similar to the			
mg/L	5.2	1.00	96 hr	10	Physa sp.	Call et al 1984	Al-Acute 4	Unacceptable (3)	above models. Only one	8.171	7.084	1.154
	5.6	1.00	Survival		, , , , ,			(-,	out of three parameters is			
	12.0	0.20							significant. Large			
	11.6	0.80							standard error with respect to estimate for			
	23.4	0.80							EC10 value.			
	23.5	1.00										
	0.3	1.00										
	0.3 6.4	1.00										
	6.3	1.00										
	12.3	1.00	00 5						Model: Weibull type 2, 2			
mg/L	12.3	1.00	96 hr Survival	10	Physa sp.	Call et al 1984	Al-Acute 5	Acceptable (1)	para; No significant	29.27	18.97	1.543
	24.8	0.40	Carvivar						problems with this model.			
	25.2	1.00										
	50.2	0.20										
	50.4	0.20										
	0.3	1.00										
	0.3	1.00										
	3.1	1.00							Model: Weibull type 2, 2			
		1.00							para; No model produces			
	3.5 6.0 6.4	1.00	96 hr						significant parameters.			
mg/L		1.00	Survival	10	Physa sp.	Call et al 1984	Al-Acute 6	Unacceptable (3)	Large standard errors on EC estimates. Overly	238.5	9.704	24.58
	12.1	0.80							influential observation.			
	12.0	0.80							Poor model.			
	12.4	1.00										
	24.7	1.00										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.3	1.00	•		·			, ,				
	0.3	1.00										
	6	1.00										
	6	1.00										
	9.5	0.60										
	9.5	1.00										
	16.2	1.00	96 hr	10	Dhyon on	Call et al 1984	AL Aquita 7	Acceptable (1)	Model: Log Logistic type 2, 2 para; No significant	61.97	7.391	8.385
mg/L	16.2	1.00	Survival	10	Physa sp.	Call et al 1964	Al-Acute /	Acceptable (1)	problems with this model.	61.97	7.391	0.303
	26	0.60							probleme marane meden			
	26	1.00										
	42.7	0.20										
	42.7	0.80										
	72.1	0.40										
	72.1	0.60										
	0.1	1.00										
	0.1	1.00										
	0.1 0.1	1.00										
		0.80										
	0.41	0.60										
	0.41	0.80										
	0.41	0.60										
	0.41	0.60										
	1.02	0.40										
	1.02	0.20										
	1.02	0.60							Model: Log Logistic type			
mg/L	1.02	0.20	48 hr	20	Ceriodaphnia	ENSR 1992d	Al-Acute 8	Acceptable (1)	2, 2 para; Well performing	0.7379	0.0841	8.773
9, =	2.06	0.20	Survival		dubia				model.	3	3.00.7	
	2.06	0.20										
	2.06	0.60										
	2.06	0.40										
	4.18	0.00										
	4.18	0.00										
		0.00										
	4.18 4.18	0.00										
	7.02	0.00										
	7.02	0.20										
	7.02	0.00										
	7.02	0.00										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.05	1.00	-									
	0.05	1.00										
	0.05	1.00										
	0.05	1.00										
	0.84	0.60										
	0.84	0.80										
	0.84	0.80										
	0.84	0.80										
	2.07	0.40										
	2.07	0.60										
	2.07	0.40										
mg/L	2.07	0.60	48 hr	20	Ceriodaphnia	ENSR 1992d	Al-Acute 9	Acceptable (1)	Model: Log Logistic type 2, 2 para; Well performing	1.898	0.2902	6.541
IIIg/L	4.55	0.40	Survival	20	dubia	LINSK 1992u	Al-Acute 9	Acceptable (1)	model.	1.090	0.2902	0.541
	4.55	0.20										
	4.55	0.40										
	4.55	0.00										
	6.96	0.20										
	6.96	0.00										
	6.96	0.00										
	6.96	0.00										
	15.1	0.20										
	15.1	0.00										
	15.1	0.00										
	15.1	0.00										
	0.13	1.00										
	0.13	1.00										
	0.13	1.00										
	0.13	1.00										
	0.92	1.00										
	0.92	1.00							Madali Waihull tuna 2 2			
mg/L	0.92	0.60	48 hr	20	Ceriodaphnia	ENSR 1992d	Al-Acute 10	Acceptable (1)	Model: Weibull type 2, 2 para; Model performs	2.822	0.2189	12.90
9, _	0.92	0.80	Survival	_0	dubia				well.		0.2100	12.00
	1.04	0.40										
	1.04	0.60										
	1.04	0.40										
	1.04	0.80										
	1.62	0.80										
	1.62	0.60										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	1.62	0.40										
	1.62	0.20										
	8.07	0.60										
	8.07	0.20										
	8.07	0.40										
	8.07	0.80										
	34.7	0.00										
	34.7	0.20										
	34.7	0.00										
	34.7	0.20										
	0.06	1.00										
	0.06	1.00										
	0.06	1.00										
	0.06	1.00										
	5.46 5.46	0.80										
		1.00										
	5.46	0.80										
	5.46	0.80										
	8.10	1.00										
	8.10 8.10	1.00 0.60							Model: Log Logistic type 2, 2 para; Cannot fit a			
	8.10	0.80	40 5		O and a standard a				model with all significant			
mg/L	19.9	0.80	48 hr Survival	20	Ceriodaphnia dubia	ENSR 1992d	Al-Acute 11	Qualitatively	parameters. Large	782.8	0.6008	1,303
	19.9	0.80	Guivivai		dubia				standard errors for EC			
	19.9	0.80							estimates and fitted curve.			
	19.9	0.80							ourve.			
	30.2	1.00										
	30.2	0.60										
	30.2	0.80										
	30.2	0.80										
	99.6	1.00										
	99.6	0.80										
	99.6	0.60										
	99.6	0.60										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0	1.00										
	0	1.00										
	0	1.00										
	0	1.00										
	400	0.80										
	400	0.60										
	400	0.60										
	400	0.80										
	600	0.60										
	600	0.80										
	600	0.60				5 A1			Marial Wallendle			
μg/L	600	0.60	48 hr	20	Daphnia magna	European Al Association	Al-Acute 13	Qualitatively	Model: Weibull type 1, 2 para; Large standard	806.8	102.8	7.850
μg/L	800	0.60	Survival	20	Daprinia magna	2009	Al Acute 15	Acceptable (2)	errors for EC estimates.	000.0	102.0	7.000
	800	0.60										
	800	0.80										
	800	0.60										
	1000	0.00										
	1000	0.20										
	1000	0.20										
	1000	0.60										
	1200	0.60										
	1200	0.00										
	1200	0.20										
	1200	0.60										
	0.0	1.00										
	0.0	0.80										
	0.0	1.00										
	0.0	1.00										
	62.5	0.60							Model: Weibull type 1, 3			
	62.5	0.60				European Al			para; Well performing			
μg/L	62.5	0.80	48 hr	20	Ceriodaphnia	Association	Al-Acute 14	Acceptable (1)	model, although the	72.07	17.30	4.165
	62.5	0.20	Survival		dubia	2009			standard error for EC5 is a bit high relative to the			
	125.0	0.20							estimate.			
	125.0	0.00										
	125.0	0.20										
	125.0	0.20										
	250.0	0.00										
	250.0	0.00										

						014.41	C-R Curve	Curve Acceptability	2 W.	1.050	1.05	LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	250.0	0.00										
	250.0	0.00										
	500.0	0.00										
	500.0											
	500.0 500.0	0.00										
	1000.0	0.00										
	1000.0	0.00										
	1000.0	0.00										
	1000.0	0.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	62.5	0.60										
	62.5	0.20										
	62.5	1.00										
	62.5	0.80										
	125.0	0.20										
	125.0	0.00										
	125.0	1.00							Model: Weibull type 1, 2			
	125.0	0.40	48 hr		Ceriodaphnia	European Al		Qualitatively	para; Model performs			
μg/L	250.0	0.40	Survival	20	dubia	Association 2009	Al-Acute 15	Acceptable (2)	fairly well, although the low EC estimates have	115.0	1.485	77.45
	250.0	0.20				2009			negative lower bounds.			
	250.0	0.60							ŭ			
	250.0	0.20										
	500.0	0.60										
	500.0	0.00										
	500.0	0.20										
	500.0	0.20										
	1000.0	0.00										
	1000.0	0.20										
	1000.0	0.00										
	1000.0	0.00										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	100.0	0.80										
	100.0	1.00										
	100.0	1.00										
	100.0	1.00										
	400.0	1.00										
	400.0	0.60										
	400.0	1.00										
μg/L	400.0	0.80	48 hr	20	Ceriodaphnia	European Al Association	Al-Acute 16	Acceptable (1)	Model: Weibull type 1, 3 para; Model performs	792.4	371.3	2.134
μg/L	700.0	0.40	Survival	20	dubia	2009	Al-Acute 10	Acceptable (1)	well.	192.4	3/1.3	2.134
	700.0	0.80										
	700.0	0.60										
	700.0	0.80										
	1000.0	0.00										
	1000.0	0.20										
	1000.0	0.60										
	1000.0	0.20										
	1300.0	0.00										
	1300.0	0.00										
	1300.0	0.00										
	1300.0	0.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	250.0	1.00										
	250.0	1.00							Madali Walbull time C. C.			
μg/L	250.0	1.00	48 hr	20	Ceriodaphnia	European Al Association	Al-Acute 17	Acceptable (1)	Model: Weibull type 2, 2 para; Model performs	1,005	422.6	2.378
μ9/-	250.0	1.00	Survival	20	dubia	2009	A Addit II	/ toooptable (1)	well.	1,000	722.0	2.070
	500.0	1.00										
	500.0	0.60										
	500.0	1.00										
	500.0	1.00										
	1000.0	0.20										
	1000.0	0.60										

		_					C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	1000.0	0.40										
	1000.0	0.80										
	2000.0	0.40										
	2000.0	0.20										
	2000.0	0.00										
	2000.0	0.00										
	4000.0	0.00										
	4000.0	0.20										
	4000.0	0.00										
	4000.0	0.20										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0	0.40										
	1000.0	0.80										
	1000.0	0.80										
	1000.0	1.00										
	2000.0	0.40										
	2000.0	0.60							Marial Wallending A O			
	2000.0	0.60				European Al			Model: Weibull type 1, 2 para; Model performs			
μg/L	2000.0	1.00	48 hr Survival	20	Ceriodaphnia dubia	Association	Al-Acute 18	Qualitatively	fairly well, although the	3,326	239.6	13.89
	3000.0	0.20	Survivai		dubia	2009		Acceptable (2)	EC estimates have large			
	3000.0	0.60							standard errors.			
	3000.0	0.80										
	3000.0	0.80										
	4000.0	0.40										
	4000.0	0.80										
	4000.0	0.60										
	4000.0	0.80										
	5000.0	0.00										
	5000.0	0.20										
	5000.0	0.20										
	5000.0	0.20										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.0	1.00						, ,				
	0.0	1.00										
	0.0	0.80										
	0.0	1.00										
	1000.0	1.00										
	1000.0	0.80										
	1000.0	0.80										
	1000.0	1.00										
	1300.0	0.60										
	1300.0	0.60										
	1300.0	0.60				Γ Δ1			Madale Walbull turns 4. 0			
μg/L	1300.0	0.80	48 hr	20	Ceriodaphnia	European Al Association	Al-Acute 19	Qualitatively	Model: Weibull type 1, 3 para; One parameter not	1,712	1,400	1.223
P9/ L	1600.0	1.00	Survival	20	dubia	2009	7 ii 7 iodio 10	Acceptable (2)	significant.	1,712	1,400	1.220
	1600.0	0.80										
	1600.0	0.40										
	1600.0	0.60										
	1900.0	0.00										
	1900.0	0.20										
	1900.0	0.00										
	1900.0	0.00										
	2200.0	0.00										
	2200.0	0.00										
	2200.0	0.00										
	2200.0	0.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0	1.00										
	1000.0	1.00				European Al			Model: Weibull type 1, 2			
μg/L	1000.0	1.00	48 hr Survival	20	Ceriodaphnia dubia	Association	Al-Acute 20	Acceptable (1)	para; Model performs	8,801	3,202	2.748
	1000.0	1.00 1.00	Suivival		uubia	2009			well.			
	3000.0											
	3000.0	1.00										
	3000.0	1.00 1.00										
	3000.0 5000.0	0.40										
	5000.0	0.80										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	5000.0	1.00										
	5000.0	0.80										
	10000.0	0.00										
	10000.0	0.40										
	10000.0	0.80										
	10000.0	0.60										
	15000.0	0.00										
	15000.0	0.00										
	15000.0	0.20										
	15000.0	0.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0	1.00										
	1000.0	0.80										
	1000.0	1.00										
	1000.0	1.00										
	3000.0	1.00										
	3000.0	0.80										
	3000.0	1.00				European Al			Model: Weibull type 1, 2			
μg/L	3000.0	1.00	48 hr	20	Ceriodaphnia	Association	Al-Acute 21	Acceptable (1)	para; Model performs	10,636	2,071	5.136
F 9' -	5000.0	0.60	Survival		dubia	2009	7.1.7.10010 2.1	/ toop table (1)	well.	10,000	2,0	000
	5000.0	0.80										
	5000.0	1.00										
	5000.0	1.00										
	10000.0	0.20										
	10000.0	0.20										
	10000.0	1.00										
	10000.0	0.60										
	15000.0	0.40										
	15000.0	0.00										
	15000.0	0.60										
	15000.0	0.20										

	T 0					0 '' 4'	C-R Curve	Curve Acceptability	2 N.	1.050		LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.0	1.00 1.00										
	0.0	0.80										
	0.0	1.00										
	1000.0	1.00										
	1000.0	1.00										
	1000.0	0.80										
	1000.0	0.80										
	3000.0	0.60										
	3000.0	1.00										
	3000.0	0.80							Model: Weibull type 1, 3			
,	3000.0	0.80	48 hr	00	Ceriodaphnia	European Al			para; One parameter not	45.440	4 000	0.004
μg/L	5000.0	0.80	Survival	20	dubia	Association 2009	Al-Acute 23	Unacceptable (3)	significant. Large	15,142	4,899	3.091
	5000.0	0.80				2000			standard errors.			
	5000.0	1.00										
	5000.0	1.00										
	10000.0	0.80										
	10000.0	0.80										
	10000.0	0.40										
	10000.0	0.80										
	15000.0	0.40										
	15000.0	0.80										
	15000.0	0.20										
	15000.0	0.40										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0 1000.0	1.00 0.80										
	1000.0	0.80	40 5		O a n' a da mb m' a	European Al			Model: Weibull type 1, 2			
μg/L	1000.0	0.60	48 hr Survival	20	Ceriodaphnia dubia	Association	Al-Acute 24	Unacceptable (3)	para; No model fit had	33,051	29.26	1,129
	2000.0	0.60	- Cai vivai			2009			significant parameters.			
	2000.0	1.00										
	2000.0	0.80										
	2000.0	1.00										
	3000.0	0.60										
	3000.0	0.80										

						O't at	C-R Curve	Curve Acceptability		1.050	1.05	LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	3000.0	0.60										
	3000.0	0.60										
	4000.0	0.80 0.80										
	4000.0											
	4000.0	1.00 0.80										
	4000.0 5000.0	0.80										
	5000.0	0.80										
	5000.0	0.60										
	5000.0	0.40										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0	1.00										
	1000.0	0.80										
	1000.0	1.00										
	1000.0	1.00										
	3000.0	0.40							Model: Weibull type 1, 2			
	3000.0	0.40							para; Five models had			
	3000.0	0.80							lower AIC values, but yielded insignificant			
	3000.0	0.60	48 hr		Ceriodaphnia	European Al		Qualitatively	parameters. This model is			
μg/L	5000.0	1.00	Survival	20	dubia	Association 2009	Al-Acute 25	Acceptable (2)	not too bad in terms of	7,790	906.3	8.596
	5000.0	0.60				2003			AIC, but has all significant			
	5000.0	1.00							parameters. Somewhat large standard error on			
	5000.0	0.80							EC estimates.			
	10000.0	0.60										
	10000.0	0.40										
	10000.0	1.00										
	10000.0	0.80										
	15000.0	0.00										
	15000.0	0.00										
	15000.0	0.00										
	15000.0	0.00										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0	1.00										
	1000.0	0.80										
	1000.0	1.00										
	1000.0	1.00										
	3000.0	1.00										
	3000.0	0.60										
	3000.0	1.00							Model: Weibull type 1, 2			
μg/L	3000.0	1.00	48 hr	20	Ceriodaphnia	European Al Association	Al-Acute 26	Qualitatively	para; Poor goodness of fit	17,638	2,121	8.315
μg/L	5000.0	0.80	Survival	20	dubia	2009	Al-Acute 20	Acceptable (2)	and large standard errors	17,030	2,121	0.515
	5000.0	1.00							on EC estimates.			
	5000.0	1.00										
	5000.0	1.00										
	10000.0	0.40										
	10000.0	0.60										
	10000.0	1.00										
	10000.0	1.00										
	15000.0	0.00										
	15000.0	0.00										
	15000.0	1.00										
	15000.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0	1.00										
	1000.0	1.00										
/!	1000.0	0.80	48 hr	20	Ceriodaphnia	European Al	AL Aquita 27		Model: Weibull type 1, 2	04 045	0.767	8.797
μg/L	1000.0	1.00	Survival	∠0	dubia	Association 2009	Al-Acute 27	Acceptable (1)	para; No serious issues with this model.	24,345	2,767	0.797
	3000.0	1.00							uno modon			
	3000.0	1.00										
	3000.0	1.00										
	3000.0	1.00										
	5000.0	0.80										
	5000.0	0.80										

						0'' 4'	C-R Curve	Curve Acceptability	2 W.	1.050	1.05	LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	5000.0	1.00										
	5000.0	1.00										
	10000.0	0.80										
	10000.0	0.60										
	10000.0	1.00										
	10000.0	0.80 0.60										
	15000.0 15000.0	0.80										
	15000.0	0.80										
	15000.0	0.80										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0	1.00										
	1000.0	1.00										
	1000.0	1.00										
	1000.0	1.00										
	3000.0	1.00										
	3000.0	0.80										
	3000.0	1.00										
	3000.0	1.00	48 hr		Ceriodaphnia	European Al			Model: Weibull type 2, 3			
μg/L	5000.0	1.00	Survival	20	dubia	Association 2009	Al-Acute 28	Acceptable (1)	para; No serious issues with this model.	10,766	8,927	1.206
	5000.0	1.00				2009			with this model.			
	5000.0	1.00										
	5000.0	1.00										
	10000.0	0.40										
	10000.0	0.60										
	10000.0	0.80										
	10000.0	1.00										
	15000.0	0.00										
	15000.0	0.00										
	15000.0	0.20										
	15000.0	0.00										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0	1.00										
	1000.0	1.00										
	1000.0	1.00										
	1000.0	1.00										
	3000.0	1.00										
	3000.0	1.00							Model: Log Logistic type 2, 2 para; Not a great fit,			
	3000.0	1.00							one parameter not			
μg/L	3000.0	1.00	48 hr	20	Ceriodaphnia	European Al Association	Al-Acute 29	Unacceptable (3)	significant. Somewhat	23,597	10,679	2.210
μg/L	5000.0	1.00	Survival	20	dubia	2009	Al-Acute 29	. , ,	large standard errors on	23,391	10,079	2.210
	5000.0	1.00							EC estimates. Lacking a good range of response			
	5000.0	1.00							values.			
	5000.0	1.00										
	10000.0	1.00										
	10000.0	1.00										
	10000.0	1.00										
	10000.0	0.80										
	15000.0	0.80										
	15000.0	1.00										
	15000.0	1.00										
	15000.0	0.60										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	1000.0	1.00							Model: Log Logistic type			
	1000.0	1.00							2, 2 para; Model selection			
μg/L	1000.0	1.00	48 hr	20	Ceriodaphnia	European Al Association	Al-Acute 30	Unacceptable (3)	function would not work on this data set. Selected	29,610	2,569	11.53
μg/L	1000.0	1.00	Survival	20	dubia	2009	Al-Acute 30	Onacceptable (3)	the first model able to fit.	23,010	2,309	11.55
	3000.0	1.00							Large standard errors on			
	3000.0	0.80							EC estimates.			
	3000.0	1.00										
	3000.0	0.60										
	5000.0	1.00										
	5000.0	1.00										

Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	C-R Curve Label	Curve Acceptability (score)	Curve Notes	LC50	LC5	LC50:LC 5 Ratio
Units	5000.0	1.00	Enapoint	n/trt.	Species	Citation	Labei	(score)	Curve Notes	LC30	LC3	5 Katio
	5000.0	1.00										
	10000.0	0.60										
	10000.0	0.80										
	10000.0	1.00										
	10000.0	0.60										
	15000.0	0.80										
	15000.0	0.60										
	15000.0	0.60										
	15000.0	0.80										
	0	0.95										
	62.5	0.85							Mandala Walletina a O. O.			
	125	0.45	48 hr		Ceriodaphnia	European Al		Qualitatively	Model: Weibull type 2, 3 para; Large standard			
μg/L	250	0.35	Survival	20	dubia	Association 2009	Al-Acute 40	Acceptable (2)	errors relative to	162.0	36.26	4.468
	500	0.25				2009			estimates.			
	1000	0.10										
	0.0	0.95										
	62.5	0.85							Model: Weibull type 1, 3			
/1	125.0	0.70	48 hr	00	Ceriodaphnia	European Al	A1 A 44	Qualitatively	para; Large standard	047.4	04.44	0.070
μg/L	250.0	0.35	Survival	20	dubia	Association 2009	Al-Acute 41	Acceptable (2)	errors relative to	217.1	31.14	6.972
	500.0	0.15				2003			estimates.			
	1000.0	0.00										
	0	0.95										
	62.5	0.90							Model: Weibull type 2, 3			
μg/L	125	0.50	48 hr	20	Ceriodaphnia	European Al Association	Al-Acute 42	Qualitatively	para; Large standard	135.1	54.89	2.462
µg/L	250	0.15	Survival	20	dubia	2009	Al-Acute 42	Acceptable (2)	errors relative to	133.1	34.09	2.402
	500	0.10							estimates.			
	1000	0.05										
	0.0	1.00										
	400.0	1.00							Model: Weibull type 2, 2			
μg/L	800.0		0.85 48 hr 0.55 Survival 20	Ceriodaphnia	European Al Association	Al-Acute 43	Qualitatively	para; Large standard	2,225	504.4	4.412	
µg/L	1200.0			20	dubia	2009	A Acute 43	Acceptable (2)	errors relative to	2,220	304.4	7.712
	1600.0	0.65		rvivai dub					estimates.			
	2000.0	0.65										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0	1.00							Model: Log Logistic type			
	400	1.00							2, 2 para; Large standard errors relative to			
	800	0.95	48 hr		Ceriodaphnia	European Al			estimates. No parameters			
μg/L	1200	0.95	Survival	20	dubia	Association 2009	Al-Acute 44	Unacceptable (3)	are significant. The data	13,766	1,208	11.40
	1600	0.90				2003			set lacks a sufficient			
	2000	0.95							variety of response values.			
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	0.0	1.00										
	62.0	1.00										
	62.0	0.80										
	62.0	1.00										
	62.0	0.80										
	241.7	0.60										
	241.7	0.80										
	241.7	0.80				A1			Mandal Matheolitica A. O.			
μg/L	241.7	0.60	48 hr	20	Ceriodaphnia	European Al Association	Al-Acute 45	Acceptable (1)	Model: Weibull type 1, 2 para; No serious	309.3	53.37	5.795
μ9/Ε	244.9	0.40	Survival	20	dubia	2010	Al Acute 45	Acceptable (1)	problems with this model.	303.3	55.57	3.733
	244.9	0.20										
	244.9	0.80										
	244.9	0.60										
	433.9	0.00										
	433.9	0.60										
	433.9	0.40										
	433.9	0.80										
	855.9	0.00										
	855.9	0.00										
	855.9	0.00										
	855.9	0.00										

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.7	1.00										
	0.7	1.00										
	0.7	1.00										
	0.7	1.00										
	60.6	1.00										
	60.6	1.00										
	60.6	1.00										
	60.6	1.00										
	123.5	1.00										
	123.5	0.80										
	123.5	0.80							Model: Log Logistic type			
μg/L	123.5	1.00	48 hr	20	Ceriodaphnia	European Al Association	Al-Acute 46	Qualitatively	1, 3 para; Large standard	139.4	110.9	1.256
μg/L	161.5	0.40	Survival	20	dubia	2010	Al-Acute 40	Acceptable (2)	error at the low end of the	139.4	110.9	1.230
	161.5	0.60							fitted curve.			
	161.5	0.40										
	161.5	0.60										
	470.7	0.20										
	470.7	0.40										
	470.7	0.40										
	470.7	0.20										
	931.1	0.60										
	931.1	0.60										
	931.1	0.60										
	931.1	0.40										
	1.0	1.00										
	1.0	1.00										
	1.0	1.00										
	1.0	1.00										
	29.9	1.00										
	29.9	1.00				_						
110/1	29.9	0.80	48 hr	20	Ceriodaphnia	European Al Association	AL Aquita 49	Acceptable (1)	Model: Log Logistic type	120.6	24 24	2 050
μg/L	29.9	1.00	Survival	∠0	dubia	Association 2010	Al-Acute 48	Acceptable (1)	1, 2 para; No problems with this model.	120.6	31.24	3.859
	62.6	0.80							uno modon			
	62.6	0.80										
	62.6	0.80										
	62.6	0.80										
	126.6	0.60										
	126.6	0.40										

		_				A 111	C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	126.6	0.60										
	126.6	0.40										
	253.6	0.20										
	253.6	0.20										
	253.6	0.00										
	253.6	0.20										
	463.7	0.00										
	463.7	0.00										
	463.7	0.20										
	463.7	0.00										
	0.8	1.00										
	0.8	1.00										
	0.8	1.00										
	0.8	1.00										
	34.4	1.00 1.00										
	34.4											
	34.4 34.4	1.00										
		1.00 1.00										
	78.6											
	78.6 78.6	1.00 1.00										
	78.6	1.00	40 5	19 (0.8);	O and a standard a	European Al			Model: Log Logistic type			
μg/L	178.0	0.00	48 hr Survival	20 (all other	Ceriodaphnia dubia	Association	Al-Acute 51	Unacceptable (3)	1, 3 para; Large standard errors relative to	147.0	126.0	1.167
	178.0	0.00	Guivivai	conc)	dubia	2010			estimates.			
	178.0	0.00		,								
	178.0	0.00										
	353.9	0.20										
	353.9	0.00										
	353.9	0.00										
	353.9	0.00										
	718.3	0.00										
	718.3	0.00										
	718.3	0.00										
	718.3	0.20										

		_				0 '' ''	C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.4	0.80										
	0.4	1.00										
	0.4	1.00										
	0.4	1.00										
	34.7	1.00										
	34.7	1.00 1.00										
	34.7	1.00										
	34.7 52.4	0.60										
	52.4	0.60										
	52.4	0.40										
	52.4	0.40	48 hr		Ceriodaphnia	European Al			Model: Weibull type 2, 3			
μg/L	111.2	0.40	Survival	20	dubia	Association	Al-Acute 52	Acceptable (1)	para; No serious	79.27	33.98	2.333
	111.2	0.20				2010			problems with this model.			
	111.2	0.40										
	111.2	0.20										
	231.4	0.20										
	231.4	0.20										
	231.4	0.00										
	231.4	0.40										
	424.3	0.00										
	424.3	0.00										
	424.3	0.00										
	424.3	0.00										
	0.01	1.00							Model: Weibull type 2, 2			
	0.81	1.00							para; Data suffers from a			
mg/L	1.86	1.00	96 hr Survival	20	Oncorhynchus mykiss	Gunderson et al. 1994	Al-Acute 53	Unacceptable (3)	lack of response range. One overly influential	4.174	3.545	1.177
	3.73	0.85	Survivar		IIIyNISS	ai. 1334			observation. One			
	11.96	0.00							parameter insignificant.			

		_	_				C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	0.01	1.00							Model: Log Logistic type 2, 2 para; Data suffer from a lack of response range. Two overly influential observations. QQ problems. – Note:			
mg/L	2.04	1.00	96 hr Survival	20	Oncorhynchus mykiss	Gunderson et al. 1994	Al-Acute 54	Qualitatively Acceptable (2)	Unlike Al-Acute-66 and Al-Acute-68, this salmonid curve was not retroactively considered for quantitative use	5.750	3.565	1.613
	4.32	0.85							because this curve was relatively weaker, as indicated by the limited			
	9.33	0.05							partial effects and larger Cooks Distance in curve acceptability diagnostics.			
	0.01	1.00							Model: Log Logistic type 2, 2 para; Data suffer from a lack of response			
	0.91	1.00							range. Two overly influential observations. QQ problems. – Note: Unlike Al-Acute-66 and			
mg/L	1.92	1.00	96 hr Survival	20	Oncorhynchus mykiss	Gunderson et al. 1994	Al-Acute 55	Qualitatively Acceptable (2)	Al-Acute-68, this salmonid curve was not retroactively considered	7.110	4.194	1.695
	4.17	0.95							for quantitative use because this curve was relatively weaker, as indicated by the limited			
	7.95	0.35							partial effects and larger Cooks Distance in curve acceptability diagnostics.			
	0.01	1.00							Model: Log Logistic type 2, 2 para; Lacking in			
	1.05	1.00							response range. Large			
mg/L	1.68	1.00	96 hr Survival	20	Oncorhynchus mykiss	Gunderson et al. 1994	Al-Acute 56	Unacceptable (3)	standard errors relative to estimates. One	8.589	6.808	1.262
	3.94	1.00							parameter insignificant. Overly influential			
	9.85	0.15							observation.			

Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	C-R Curve Label	Curve Acceptability (score)	Curve Notes	LC50	LC5	LC50:LC 5 Ratio
Units	0	0.95	Enapoint	n/trt.	Species	Citation	Labei	(Score)	Curve Notes	LC30	LUS	5 Katio
	32	0.95										
	56	0.95							Model: Log Logistic type 1, 3 para; One parameter			
	100	0.90	00 h		Minumentania	Kane 1984;			not significant. Very large			
μg/L	180	0.00	96 hr Survival	20	Micropterus dolomieu	Kane and	Al-Acute 62	Unacceptable (3)	confidence band on fit.	112.4	99.78	1.127
	320	0.00	Carritai		dolomod	Rabeni 1987			Poor QQ plot and an overly influential			
	560	0.00							observation.			
	1000	0.00										
	0.2	1.00										
	1.5	0.85										
	2.6	0.05	48 hr		Ceriodaphnia	McCauley et		Qualitatively	Model: Weibull type 1, 2			
mg/L	5.0	0.00	Survival	20	dubia	al. 1986	Al-Acute 63	Acceptable (2)	para; Two overly	1.972	1.207	1.635
	9.6	0.00						()	influential observations.			
	16.2	0.00										
	0.2	1.00										
	1.2	0.75										
	2.2	0.00	48 hr		Ceriodaphnia	McCauley et			Model: Weibull type 1, 2			
mg/L	6.0	0.00	Survival	20	dubia	al. 1986	Al-Acute 64	Unacceptable (3)	para; Poor model fit.	1.387	0.9036	1.535
	10.6	0.00										
	18.6	0.00										
	0.2	1.00										
	1.3	1.00							Model: Weibull type 2, 2			
,,	2.1	0.50	48 hr	00	Ceriodaphnia	McCauley et		Qualitatively	para; Large confidence	0.047	4 400	4 000
mg/L	3.7	0.25	Survival	20	dubia	al. 1986	Al-Acute 65	Acceptable (2)	band on fit. QQ plot not great. One observation	2.317	1.428	1.623
	8.5	0.00							possibly overly influential.			
	17.7	0.00										
	0	1.00							Model: Weibull type 1, 2			
	2	1.00							para; QQ plot has a			
	3.5	1.00							couple of points offline, but otherwise model fit is			
	5	0.60							good. – Note, model was			
	7.5	0.50							retroactively used			
mg/L	10	0.30	96 hr	30	Salvelinus	Tandjung 1982	AL Acuto 66	Qualitatively	quantitatively for salmonids due to limited	8.180	2.934	2.788
I IIIg/L	16	0.00	Survival	30	fontinalis	ranujung 1962	VI-VOUE 00	Acceptable (2)	salmonids due to limited salmonid and vertebrate	0.100	2.334	2.100
	0	1.00							C-R data. Model had			
	2	1.00							many partial effects along			
	3.5	0.90							a range of responses and small Cooks Distance			
	5	0.80							relative to other			
	7.5	0.70							qualitatively-acceptable			

							C-R Curve	Curve Acceptability				LC50:LC
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	Label	(score)	Curve Notes	LC50	LC5	5 Ratio
	10	0.60							salmonid C-R models that			
	16	0.00							were not retroactively selected for quantitative			
	0	1.00							use (i.e., Al-Acute-54, Al-			
	2	1.00							Acute-55, Al-Acute-68).			
	3.5	1.00										
	5	0.60										
	7.5	0.50										
	10	0.40										
	16	0.00										
	0	1.00										
	2	0.70										
	3	0.40							Model: Weibull type 1, 2			
	4	0.30							para; QQ plot has a			
	5	0.20							couple of points offline. Note – Model contains			
	8	0.10							many partial effects and			
	13	0.00							small Cooks Distance;			
	0	1.00							however, partial effects			
	2	0.70							are not across a range of responses. No low-level			
	3	0.50	00 h		Calvaliava			Overlite tive by	effects exist (i.e., no			
mg/L	4	0.40	96 hr Survival	30	Salvelinus fontinalis	Tandjung 1982	Al-Acute 67	Qualitatively Acceptable (2)	observed acute	3.277	0.3839	8.535
	5	0.30	Guivivai		Toritinalis			/ toocptable (2)	responses less than 30%			
	8	0.20							effect). Low-level effects and the shape of the pre-			
	13	0.00							threshold plateau are not			
	0	1.00							adequately described by			
	2	0.70							exposure-response data.			
	3	0.60							As a result, this salmonid curve was not			
	4	0.50							retroactively used in a			
	5.0	0.40							quantitative manner.			
	8	0.30										
	13	0.00										

Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	C-R Curve Label	Curve Acceptability (score)	Curve Notes	LC50	LC5	LC50:LC 5 Ratio
	0	1.00										
	0.1	0.90										
	0.2	1.00							Model: Lea Legistic type			
	0.3	0.80							Model: Log Logistic type 1, 3 para; QQ plot has a			
	0.4	0.30							couple of points offline,			
	0.5	0.00							but otherwise model fit is			
	1	0.00							good. – Note, model was retroactively used			
	0	1.00							quantitatively for			
	0.1	1.00							salmonids due to limited			
	0.2	1.00	96 hr		Salvelinus			Qualitatively	salmonid and vertebrate C-R data. Model had			
mg/L	0.3	0.80	Survival	30	fontinalis	Tandjung 1982	Al-Acute 68	Acceptable (2)	many partial effects along	0.3831	0.2759	1.388
	0.4	0.60							a range of responses and			
	0.5	0.10							small Cooks Distance			
	1	0.00							relative to other qualitatively-acceptable			
	0	1.00							salmonid C-R models that			
	0.1	1.00							were not retroactively			
	0.2	1.00							selected for quantitative			
	0.3	1.00							use (i.e., Al-Acute-54, Al-Acute-55, Al-Acute-68).			
	0.4	0.40										
	0.5	0.10										
	1	0.00										

B.2 Test Information, C-R Data and Resulting C-R models for Chronic Aluminum Toxicity Tests Acceptable, Qualitatively Acceptable, or Unacceptable for Chronic TAF and MAF Calculation.

						Di	chotomous Dat	a				
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	2.2	1.00										
	2.2	0.73										
	2.2	0.87										
	2.2	0.73										
	79.2	0.73										
	79.2	0.87										
	79.2	0.67										
	79.2	0.87										
	164.3	0.73							Model: Weibull type 1, 3 para;			
	164.3	0.60							This model is the best out of the top 3 AIC candidates in			
	164.3	0.93				00110040			terms of p-values on			
μg/L	164.3	0.73	Survival	15	Pimephales	OSU 2012g; Cardwell et al	Al-Chronic 31	Qualitatively	parameter estimates.	451.5	367.4	1.229
µg/L	308.1	0.46	Guivivai	10	promelas	2018	741 011101110 01	Acceptable (2)	Goodness of fit test indicates	401.0	007.4	1.220
	308.1	1.00							poor fit. Significant variation in response at down slope of			
	308.1	0.86							the curve. Non-constant			
	308.1	1.00							variance in residuals.			
	558.1	0.15										
	558.1	0.33										
	558.1	0.20										
	558.1	0.50										
	1104.6	0.00										
	1104.6	0.00										
	1104.6	0.00										
	1104.6	0.00										
	4.5	0.575										
	14.6	0.725	proportion						Model: Brain-Cousens, 5 para; Good p-values on			
μg/L	34.8	0.445	adult	200	Chironomus	Palawski et al.	Al-Chronic 43	Qualitatively	parameters. Poor goodness	36.95	33.88	1.090
1.3.4	61.4	0.135	emergence		riparius	1989		Acceptable (2)	of fit p-value. One overly			
	128.7	0.005							influential observation.			
	259.2	0.045										

						Di	chotomous Dat	a				
Units	Test Conc.	Response	Endpoint	n/trt.	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	4.2	0.22							Model: Brain-Cousens, 4			
	15.6 0.44	0.445							para; Good p-values on			
ug/l	32.5	0.43	proportion	200	Chironomus	Palawski et al.	Al-Chronic 44	I CHAIITATIVAIV	parameter estimates. Standard errors on EC	141.6	125.8	1.125
μg/L	56.9	0.455	adult	200	riparius	1989	Al-Chionic 44	Accentable (2)	estimates and goodness of fit	141.0	123.0	1.123
	111.4	0.165	emergenee						p-value are not great. Non-			
	235.2	0.065							constant residual variance.			

							Continuous Da	nta				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	8		280.275						Model: Weibull type 1, 4 para;			
	29		269.235		Salvelinus	Classalara di ak			The Weibull model ranks 3rd. The two lower AIC models (2			
μg/L	68	mg	251.64	Biomass	fontinalis	Cleveland et al. 1989	Al-Chronic 8	Unacceptable (3)	Brain-Cousens models) were	720.7	327.2	2.203
	142		215.67						unable to calculate EC estimates. This model performs			
	292		37.125						poorly on all measures.			
	4		359.08						Model: Log Logistic type 1, 3 para; Model performs well. Two			
	57		346.704						observations are possibly overly influential. – Note, no other qualitatively- or quantitatively-			
μg/L	88	mg	348.365	Biomass	Salvelinus fontinalis	Cleveland et al. 1989	Al-Chronic 9	Qualitatively Acceptable (2)	acceptable chronic salmonid models are available. Curve	162.3	95.70	1.696
	μg/L 88		277.42						was used quantitatively due to salmonid data limitations and the relatively robust fit of the			
	350		105.06						modal compared to other qualitatively-acceptable models.			
	0		0.1232									
	2300		0.1144									
/1	4700		0.1178	D'	Pimephales	Kimball	A L Ob	A (-1-1- (4)	Model: Weibull type 2, 3 para;	0.400	F F00	4.400
μg/L	7100 11900	g	0.0784	Biomass	promelas	1978	Al-Chronic 24	Acceptable (1)	Model performs well.	6,428	5,503	1.168
	23100		0.0154									
	53800		0									

							Continuous Da	nta				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
μg/L	200 1400 2600 5000 10000 17200	count	2.5 3.4 0.2 0 0	avg #young/starting adult	Ceriodaphnia dubia	McCauley et al. 1986	Al-Chronic 25	Unacceptable (3)	Model: Weibull type 2, 3 para; This model was 3rd in rank, but better AIC models produced not EC estimates. This model performs poorly on all metrics.	1,791	1,663	1.077
μg/L	3 33 71 124 264	mg	85.824 71.25 61.971 56.865 20.979	Biomass	Salmo salar	McKee et al. 1989	Al-Chronic 26	Unacceptable (3)	Model: Michaelis-Menten, 3 para; This model performs poorly on all metrics.	460.7	96.99	4.750
μg/L	5 5 5 5 5 5 5 5 5 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2 175.2	mg	32.17 23.94 20.02 35.07 31.45 36.11 29.77 30.06 52.9 8.48 38.05 31.52 41.98 50 36.29 6.04 0 33.54 36.18 26.67 38.19 11.09 65.3 42.27 39.71	Biomass	Lymnaea stagnalis	OSU 2012b; Cardwell et al. 2018	Al-Chronic 27	Unacceptable (3)	Model: Weibull type 2, 3 para; This model performs well on most metrics, but the EC estimates produce 2 negative lower bounds. This is the best model to be found in the top 5 or 6.	754.7	400.7	1.884

							Continuous Da	nta				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	309.6		14.37									
	309.6		19.76									
	309.6		18.8									
	309.6		40.62									
	596.3		38.8									
	596.3		22.18									
	596.3		33.48									
	596.3		43.02									
	596.3		41.5									
	596.3		0									
	596.3		29.23									
	596.3		22.31									
	596.3 596.3		42.8									
	1092.6		14.36 18.13									
	1092.6		17.28									
	1092.6		0									
	1092.6		0									
	1092.6		24.57									
	1092.6		0									
	1092.6		32.41									
	1092.6		24									
	1092.6		40.64									
	2099.2		22.95									
	2099.2		16.46									
	2099.2		7.35									
	2099.2		9.87									
	2099.2		18.27									
	2099.2		17.37									
	2099.2		13.48									
	2099.2		8.76									
	2099.2		23.47									
	2099.2		18.57									

							Continuous [)ata				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 233 233 233 233 233		384 337 278 333 389 352 540 90 169 281 428 414		Species	Citation	Label	Curve Acceptability	Curve Notes	EC20	EC5	Ratio
μg/L	233 490.4 490.4 490.4 490.4 490.4 490.4 490.4 1100.2 1100.2 1100.2 1100.2 1100.2 1100.2 1100.2 112.7 2132.7 2132.7 2132.7 2132.7 2132.7	avg. count	317 485 285 308 372 440 330 224 351 407 264 258 90 254 369 380 285 317 294 334 320 350 187	avg. # of eggs/case	Chironomus riparius	OSU 2012f; Cardwell et al. 2018	Al-Chronic 30	Qualitatively Acceptable (2)	Model: Log Logistic type 2, 3 para; One parameter estimate is not significant and the EC estimate standard errors are so large that estimates might not be practical.	3,235	488.8	6.618

							Continuous D)ata				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	4281.8		231									
	4281.8		253									
	4281.8		307									
	4281.8		230									
	4281.8		345									
	4281.8		272									
	4281.8		250									

							Continuous D	Pata				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	2.2		0.46									
	2.2		0.517									
	2.2		0.509									
	2.2		0.307									
	2.2		0.448									
	2.2		0.488									
	2.2		0.321 0.514									
	30.9		0.314									
	30.9		0.276									
	30.9		0.415									
	30.9		0.415			OSU 2012h;		Qualitatively	Model: Log Logistic type 1, 3 para;			
μg/L	30.9	mg	0.384	Biomass	Hyalella azteca	al. 2018	Al-Chronic 32	Accontable (2)	EC standard errors slightly large. Goodness of fit test is marginal.	314.8	199.6	1.577
	30.9		0.445			ai. 2010			Goodness of he test is marginal.			
	30.9		0.466									
	30.9		0.485									
	53.1		0.452									
	53.1		0.528									
	53.1		0.5									
	53.1		0.528									
	53.1 53.1		0.491 0.442									
	53.1		0.442									
	53.1		0.503									

							Continuous D)ata				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	123.2		0.468									
	123.2		0.479									
	123.2		0.507									
	123.2		0.59									
	123.2		0.621									
	123.2		0.601									
	123.2		0.193									
	123.2		0.429									
	232.6 232.6		0.255 0.499									
	232.6		0.499									
	232.6		0.404									
	232.6		0.449									
	232.6		0.371									
	232.6		0.329									
	232.6		0.434									
	453.8		0.233									
	453.8		0.273									
	453.8		0.238									
	453.8		0.243									
	453.8		0.314									
	453.8		0.25									
	453.8		0.254									
	453.8		0.175									
	2.8		1.64									
	2.8		1.626									
	2.8		1.597									
	2.8		1.754									
	35.5		1.486			OSU 2013;			Model: Weibull type 2, 3 para; No			
μg/L	35.5 35.5	mg	1.324 1.412	Biomass	Danio rerio	Cardwell et	Al-Chronic 33	Unacceptable (3)	model yields non-negative EC estimates. This is the best	279.7	93.06	3.006
	35.5		1.412			al. 2018			performing model given that defect			
	71.5		1.421									
	71.5		1.726									
1	71.5		1.557									
	71.5		1.51									

							Continuous I	Data				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	139.4		1.465									
	139.4		1.303									
	139.4		1.628									
	139.4		1.335									
	258		1.21									
	258		1.35	1								
	258		1.356	1								
	258		1.321									
	548.3		1.242									
	548.3		0.939									
	548.3 548.3		0.896	-								
	0.9		42.5									
	6.5		32.6	-								
	62.5		30.3	4					Model: Weibull type 1, 3 para; No			
	128.5			avg # of	Ceriodaphnia				model yields all significant			
μg/L	264.5	count	25.8	young/female	dubia	OSU 2018	Al-Chronic 34	Unacceptable (3)	parameters and non-negative EC	224.3	39.77	5.639
	529		26	4					estimates. This model performs best among many bad models.			
	1043		21.7						, , , , , , , , , , , , , , , , , , , ,			
	2136		1.4									
	1.5		22.6									
	315.3		27.9						Model: Log Logistic type 1, 3 para;			
μg/L	706	count	27	avg # of	Ceriodaphnia	OSU 2018	Al-Chronic 35	Qualitatively	Only 2 out of 3 parameters are significant. Wide confidence	3,903	3,190	1.224
µg/L	1412.7	Count		young/female	dubia	030 2018	Al-Chionic 33	Acceptable (2)	bands. Overly influential	3,903	3,190	1.224
	2801.3		32.1						observation.			
	5702.3		4.3									
	19		35.6									
	953.7		37.5						Model: Weibull type 1, 4 para; 3			
μg/L	2099.3	count	36.9	avg # of	Ceriodaphnia	OSU 2018	Al-Chronic 36	Qualitatively	out of 4 parameters significant.	6,735	5,407	1.246
	4876.7			young/female	dubia			Acceptable (2)	Wide confidence bands. Overly influential observation.			
	10536		2.9						and observation.			
	23041		2.5		l							

							Continuous D	Data				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	5.5		35									
	690		36.3						Model: Weibull type 1, 3 para;			
μg/L	1367	count		avg # of	Ceriodaphnia	OSU 2018	Al-Chronic 37	Unacceptable (3)	Each model yields at least one	1,705	601.9	2.832
	2684.7			young/female	dubia				negative EC estimate. Some overly influential observations	,		
	5666.7		10.4						overly minderitian observations			
	10933.7 8.3		2.1 34.4									
	681.7		34.4						Model: Weibull type 2, 3 para;			
	1331.3			avg # of	Cariadanhaia			Ouglitativaly	Two other models had lower AICs but they were unable to produce			
μg/L	2804.7	count	36.3	young/female	Ceriodaphnia dubia	OSU 2018	Al-Chronic 38	Qualitatively Acceptable (2)	EC estimates. One point off QQ	6,187	4,115	1.504
	5406		30.8	,				,	line and a couple overly influential			
	10858.7		17.8						observations.			
	7.3		37.4									
	840		35.7									
	1618.7	- count -	38.1	avg # of	Ceriodaphnia	00110040	A.I. Olamani'a 00		Model: Weibull type 2, 3 para;	0.000	0.055	4.055
μg/L	3161.3	count		young/female	dubia	OSU 2018	Al-Chronic 39	Unacceptable (3)	Performs poorly on all metrics.	6,600	6,255	1.055
	6592.3		30.1									
	12762.7		0									
	1.6		37.6									
	530.7		36.2						Model: Weibull type 2, 3 para;			
μg/L	1058.7	count		avg # of	Ceriodaphnia	OSU 2018	Al-Chronic 40	Qualitatively	This model performs just well	3,809	1,810	2.104
P-9-	2116.7			young/female	dubia			Acceptable (2)	enough to be considered for estimation.	5,555	1,010	
	4491		27.8						Communicini.			
	8740.3		20.7									
	1.6 1054.3		32.7 33.8						Model: Weibull type 1, 3 para; The			
	2127.7			avg # of	Cania dambusia				best ranked models either produce			
μg/L	4438.3	count	10.0	young/female	Ceriodaphnia dubia	OSU 2018	Al-Chronic 41	Unacceptable (3)	no EC estimates or they produce	2,576	821.2	3.137
	8949		12.7	, g,					EC estimates with negative lower bounds.			
	17544		1.6						bourius.			
	1.6		31.3									
	128.3		31.3						Model: Log Logistic type 1, 3 para;			
	267.3		31.3	avg # of	Ceriodaphnia	00110040	Al Chartie 40	Qualitatively	Only 2 out of 3 parameters are	4.005	4.000	4 4 4 4 0
μg/L	565.3	count	30.9	young/female	dubia	OSU 2018	Al-Chronic 42	Acceptable (2)	significant. Wide confidence bands. Overly influential	1,905	1,660	1.148
	1107.3		31.7						observations.			
	2212		13.3									

							Continuous E	ata				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	3.7		21									
	52		19.2						Model: Weibull type 1, 4 para;			
110/1	92	92 mg	19.29	Biomass	Lampsilis	Wang et al.	Al-Chronic 45		Wide confidence bands and overly influential observation, but model	182.2	103.5	1.761
μg/L	203 441	16.06	DIUITIASS	siliquoidea	2016, 2018	Al-Chionic 45	LACCENTABLE ('A)	performs well enough to be	102.2	103.5	1.761	
		5.34						considered for estimation.				
	1103		3.68									

							Continuous D)ata				
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	0		4.28									
	64		3.67									
110/1	150	ma	4.06	Biomass	Hyalalla aztasa	Wang et al.	Al-Chronic 46		Model: Weibull type 1, 3 para; One overly influential observation	586.5	340.9	1.720
µg/L	220 600	mg	3.88	DIUITIASS	Hyalella azteca	2016, 2018	Al-Chionic 46		but otherwise model is adequate.	366.5	340.9	1.720
			3.16									
	1004		1.53									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	0.03		18									
	0.03		16									
	0.03		17									
	0.03		14									
	0.03		8									
	0.03		7									
	0.03		20	# of	Ceriodaphnia	CECM 2014;			Model: Weibull type 1, 2 para:			
mg/L	0.03	count		# of young/female	dubia	Gensemer et	Al-Chronic 1	Acceptable (1)	Model: Weibull type 1, 3 para; Model performs well on all metrics.	0.2636	0.1668	1.580
	0.03		21	y cangricinal	332. 3	al. 2018			l l l l l l l l l l l l l l l l l l l			
	0.03		17									
	0.092		14									
	0.092		20									
	0.092		16									
	0.092		14									
	0.092		15									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	0.092		20									
	0.092		15									
	0.092		14									
	0.092		18									
	0.092		8 12									
	0.164 0.164		11									
	0.164		14									
			20									
	0.164 0.164		13									
	0.164		18									
	0.164		18									
	0.164		13									
	0.164		18									
	0.164		15									
	0.286		12									
	0.286		14									
	0.286		9									
	0.286		8									
	0.286		10									
	0.286		16									
	0.286		10									
	0.286		14									
	0.286		17									
	0.286		6									
	0.548		0									
	0.548		0									
	0.548		2									
	0.548		5									
	0.548		0									
	0.548		0									
	0.548		4									
	0.548		2									
	0.548		0									
	0.548		2									
	1.079		0									
	1.079		0									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
()	1.079	(3)	0	•				. ,				
	1.079		0									
	1.079		0									
	1.079		0									
	1.079		0									
	1.079		0									
	1.079		0									
	1.079		0									
	0.03		16									
	0.03		18									
	0.03		14 7									
	0.03		19									
	0.03		17									
	0.03		20									
	0.03		14									
	0.03		14									
	0.03		16									
	0.089		11									
	0.089		19									
	0.089		15						Model: Log Logistic type 1, 3 para;			
	0.089		8	# of	Ceriodaphnia	CECM 2014;		Qualitatively	Only 2 out of 3 parameters are significant. Wide confidence bands			
mg/L	0.089	count	12	young/female	dubia	Gensemer et	Al-Chronic 2	Acceptable (2)	in area of interest (use some	0.5222	0.4750	1.099
	0.089		11	, canginame		al. 2018		(=)	caution), but otherwise model			
	0.089		20						performs well.			
	0.089		19									
	0.089		16									
	0.089 0.156		10 9									
	0.156		19									
	0.156		15									
	0.156		13									
	0.156		14									
	0.156		17									
	0.156		20									
	0.156		12									
	0.156		11									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	0.156		10									
	0.284		19									
	0.284		6									
	0.284		18									
	0.284		9									
	0.284		13									
	0.284		20									
	0.284		13									
	0.284		15									
	0.284		24									
	0.284		11									
	0.549		6									
	0.549		10									
	0.549		12									
	0.549		4									
	0.549		9									
	0.549		7									
	0.549		10									
	0.549		10									
	0.549		13									
	0.549		12									
	1.064		0									
	1.064		0									
	1.064		0									
	1.064		0									
	1.064		0									
	1.064		0									
	1.064		0									
	1.064		0									
	1.064		0									
	1.064		0									

							Count Data					
Units (x)		Jnits (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
Units (x)	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	Jnits (y)	Response 17 19 20 17 18 18 15 2 12 17 18 13 14 13 12 19 20 16 22 9 10 9 10 9 12 17 10 0 10 10 13 16 19 6 0 0 0	# of young/female	Species Ceriodaphnia dubia	CECM 2014; Gensemer et al. 2018		Curve Acceptability Qualitatively Acceptable (2)	Model: Log Logistic type 1. 3 para; Only 2 out of 3 parameters are significant. Wide confidence bands in area of interest (use some caution), but otherwise model performs well.	EC20 0.2936	EC5	EC20: EC5 Ratio

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	0.542 0.542		0									
	0.542		0									
	1.018		0									
	1.018		0									
	1.018		0									
	1.018		0									
	1.018		0									
	1.018		0									
	1.018		0									
	1.018		0									
	1.018		0									
	1.018		0									
	2.035		0									
	2.035 2.035		0									
	2.035		0									
	2.035		0									
	2.035		0									
	2.035		0									
	2.035		0									
	2.035		0									
	2.035		0									
	0.03		21									
	0.03		19									
	0.03		20									
	0.03		17									
	0.03		19 19									
	0.03			# of	Cariadanhaia	CECM 2014;			Madali Waikull tura 4 2 nami			
mg/L	0.03	count	20		Ceriodaphnia dubia	Gensemer et	Al-Chronic 4	Acceptable (1)	Model: Weibull type 1, 3 para; Model performs well on all metrics.	0.9313	0.5631	1.654
	0.03		11	y carrighterman	442.4	al. 2018			meder perioritie neil ein all medicel			
	0.03		13									
	0.149		19									
	0.149		16									
	0.149		18									
	0.149		17									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	0.149		14									
	0.149		17									
	0.149		21									
	0.149		19									
	0.149		16									
	0.149		18									
	0.273		18									
	0.273		18									
	0.273		17									
	0.273		19									
	0.273		18									
	0.273		14									
	0.273		22									
	0.273		18									
	0.273		17 16									
	0.273											
	0.507 0.507		9 21									
	0.507		19									
	0.507		18									
	0.507		20									
	0.507		16									
	0.507		20									
	0.507		17									
	0.507		18									
	0.507		17									
	0.976		15									
	0.976		17									
	0.976		19									
	0.976		11									
	0.976		10									
	0.976		16									
	0.976		15									
	0.976		8									
	0.976		18									
	0.976		10									
	1.978		4									

							Count Data					
Units	Test	Units	_				C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	1.978 1.978		4									
	1.978		2									
	1.978		4									
	1.978		0									
	1.978		2									
	1.978		0									
	1.978		4									
	1.978		0									
	0.03		14									
	0.03		22									
	0.03		17									
	0.03		18									
	0.03		19 14									
	0.03		18									
	0.03		17									
	0.03		19									
	0.03		29									
	0.54		22									
	0.54		16									
	0.54		20									
mg/L	0.54	count	18	# of	Ceriodaphnia	CECM 2014; Gensemer et	Al-Chronic 5	Acceptable (1)	Model: Weibull type 2, 3 para;	0.8331	0.7096	1.174
1119/2	0.54	count		young/female	dubia	al. 2018	Al Official 5	Acceptable (1)	Model performs well on all metrics.	0.0001	0.7000	1.174
	0.54		20									
	0.54		19									
	0.54		24 18									
	0.54 0.54		21									
	1.02		7									
	1.02		12									
	1.02		12									
	1.02		8									
	1.02		0									
	1.02		19									
	1.02		9									
	1.02		14									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	1.02		0									
	1.02		15									
	2.07		0									
	2.07		0									
	2.07		0									
	2.07		6									
	2.07		0									
	2.07		0									
	2.07		4									
	2.07		0									
	2.07		0									
	2.07		0									
	4.11		0									
	4.11		0									
	4.11		0									
	4.11		0									
	4.11		0									
	4.11		0									
	4.11		0									
	4.11		0									
	4.11		0									
	4.11		0									
	8.26		0									
	8.26		0									
	8.26		0									
	8.26		0									
	8.26		0									
	8.26		0									
	8.26		0									
	8.26		0									
	8.26		0									
	8.26		0									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
()	0.03	(3)	26		•			, ,				
	0.03		17									
	0.03		19									
	0.03		20									
	0.03		14									
	0.03		24									
	0.03		27 22									
	0.03		10									
	0.03		21									
	0.03		21									
	0.5		20									
	0.5		18									
	0.5		22									
	0.5		23									
	0.5		23									
	0.5		18									
	0.5		18	4 -4	Ceriodaphnia	CECM 2014;						
mg/L	0.5	count	22		dubia	Gensemer et	Al-Chronic 6	Acceptable (1)	Model: Weibull type 1. 3 para	1.022	0.6149	1.661
	0.5		18			al. 2018						
	0.97		18									
	0.97		25									
	0.97		12									
	0.97		10									
	0.97 0.97		15 14									
	0.97		19									
	0.97		20									
	0.97		21									
	0.97		12									
	1.91		0									
	1.91		4									
	1.91		4									
	1.91		6									
	1.91		3									
	1.91		8									
	1.91		7									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	1.91		7									
	1.91		8 5									
	1.91		0									
	4.15 4.15		0									
	4.15		0									
	4.15		0									
	4.15		0									
	4.15		0									
	4.15		0									
	4.15		0									
	4.15		0									
	4.15		0									
	7.92		0									
	7.92		0									
	7.92		0									
	7.92		0									
	7.92		0									
	7.92		0									
	7.92		0									
	7.92		0									
	7.92		0									
	7.92		0									
	0.03		20									
	0.03		18 13									
	0.03		19									
	0.03		23									
	0.03		16									
	0.03			# of	Ceriodaphnia	CECM 2014;		Qualitatively	Model: Weibull type 1, 3 para; QQ			
mg/L	0.03	count			dubia	Gensemer et	Al-Chronic 7	Acceptable (2)	plot has some outliers, but	0.9066	0.5339	1.698
	0.03		21	, 0		al. 2018			otherwise the model performs well.			
	0.03		17									
	0.48		22									
	0.48		16									
	0.48		22									
	0.48		17									

							Count Data					
Units	Test	Units	_				C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	0.48		18									
	0.48		19									
	0.48		27 18									
	0.48 0.48		22									
	0.48		19									
	0.48		22									
	0.98		19									
	0.98		10									
	0.98		18									
	0.98		6									
	0.98		12									
	0.98		7									
	0.98		10									
	0.98		23									
	0.98		15									
	1.95		5									
	1.95		0									
	1.95		0									
	1.95		4									
	1.95		13									
	1.95		2									
	1.95		0									
	1.95		6									
	1.95		0									
	1.95		0									
	3.87		0									
	3.87		0									
	3.87		0									
	3.87		0									
	3.87		0									
	3.87		0									
	3.87		0									
	3.87 3.87		0									
			0									
	3.87											
	7.48		0							1		

							Count Data					
Units	Test	Units				011 11	C-R Curve	Curve	• "	5000		EC20: EC5
(x)	Conc. 7.48	(y)	Response 0	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	7.48		0									
	7.48		0									
	7.48		0									
	7.48		0									
	7.48		0									
	7.48		0									
	7.48		0									
	7.48		0									
	0.1		30									
	0.1		26									
	0.1		23 31									
	0.1 0.1		28									
	0.1		27									
	0.1		24									
	0.1		25									
	0.1		26									
	0.1		20									
	0.18		25									
	0.18		26									
	0.18		21						Model: Weibull type 1, 3 para; 1 out of 3 parameters are			
mg/L	0.18	count	25	# of	Ceriodaphnia	ENSR 1992b	Al-Chronic 10	Qualitatively	insignificant and wide confidence	1.617	1.255	1.288
	0.18			young/female	dubia			Acceptable (2)	band in area of interest. Otherwise			
	0.18 0.18		23 26						model performs well.			
	0.18		22									
	0.18		26									
	0.18		21									
	0.24		17									
	0.24		29									
	0.24		25									
	0.24		22									
	0.24		24									
	0.24		25									
	0.24		23									
	0.24		19									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	0.24		26									
	0.24		26									
	0.45		28									
	0.45		11									
	0.45		24									
	0.45		26									
	0.45		25									
	0.45		18									
	0.45		26									
	0.45		16									
	0.45		27									
	0.45		23									
	1.02		25									
	1.02		29									
	1.02		25									
	1.02		25									
	1.02		24									
	1.02		22									
	1.02		24									
	1.02		22									
	1.02		22									
	1.02		24									
	1.88		14									
	1.88		18									
	1.88		21									
	1.88		17									
	1.88		8									
	1.88		6									
	1.88		17									
	1.88		12									
	1.88		14									

							Count Data					
Units Te		Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	0.13		26	•	•							
	0.13		26									
	0.13		22									
	0.13		20									
	0.13		19									
	0.13		20									
	0.13		18									
	0.13		18									
	0.13		24									
	0.13		28									
	0.14		21 20									
	0.14		20									
	0.14		20									
	0.14		25									
	0.14		18									
	0.14		24									
	0.14		26									
		count	23	# of	Ceriodaphnia dubia	ENSR 1992b	Al-Chronic 11	Acceptable (1)	Model: Log Logistic type 1, 3 para;	0.8081	0.3946	2.048
	0.14		26	young/female	dubia			,	Model performs well on all metrics.			
	0.28		25									
	0.28		20									
	0.28		17									
	0.28		29									
	0.28		21									
	0.28		18									
	0.28		18									
	0.28		21									
	0.28		26									
	0.28		25									
	0.47		20									
	0.47		21									
	0.47		18 20									
	0.47		20									
	0.47		18									
	0.47		18									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
. ,	0.47		21		•							
	0.47		22									
	0.47		25									
	0.94		15									
	0.94		12									
	0.94		13									
	0.94		15									
	0.94		17									
	0.94		18									
	0.94		17									
	0.94		21									
	0.94		20									
	0.94		18									
	2.42		6									
	2.42		6									
	2.42		5									
	2.42		10									
	2.42		5									
	2.42		6									
	2.42		8									
	2.42		4									
	2.42		4									
	2.42		6									

		Count Data											
Units	Test Conc.	Units	Basmanas	Endneint	Chasias	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio	
(x)	0.05	(y)	Response 24	Endpoint	Species	Citation	Labei	Acceptability	Curve Notes	EC20	ECS	Ratio	
	0.05		25	-									
	0.05		28										
	0.05		32										
	0.05		12										
	0.05		31										
	0.05		28					1					
	0.05		31										
	0.05		24										
	0.05		14										
	0.34		30										
	0.34	28 27											
	0.34		28										
	0.34												
	0.34 0.34		26										
	0.34		28 29	# of young/female									
	0.34		23										
mg/L	0.34	count			Ceriodaphnia	ENSR 1992b	Al-Chronic 12	-Chronic 12 Acceptable (1) Model: Weibull type 2, 3 para; Model performs well on all metrics.	Model: Weibull type 2, 3 para;	0.5968	0.4496	1.327	
IIIg/L	0.34	Count	13		dubia	LINGIN 1552B	Al Official 12		0.5500	0.4430	1.521		
	0.76		10										
	0.76	19 17 22 19 12 12											
	0.76												
	0.76												
	0.76												
	0.76		12										
	0.76												
	0.76												
	0.76		24 13 7 5 4										
	0.76												
	1.39												
	1.39												
	1.39												
	1.39		2										
	1.39		1										
	1.39		8										
	1.39		2										

							Count Data					
Units	Test	Units	_				C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	1.39		1									
	1.39 3.32		0									
	3.32		2									
	3.32		1									
	3.32		0									
	3.32		1									
	3.32		1									
	3.32		2									
	3.32		2									
	3.32		2									
	3.32		3									
	7.78		0									
	7.78		0									
	7.78		0									
	7.78		0									
	7.78		0									
	7.78		0									
	7.78		0									
	7.78		0									
	7.78		0									
	7.78 0.12		22									
	0.12		29									
	0.12	3	31									
	0.12		26									
	0.12		30									
	0.12		25									
	0.12		26						Model: Log Logistic type 1, 3 para;			
mg/L	0.12	count	28	# of young/female	Ceriodaphnia dubia	ENSR 1992b	Al-Chronic 13	Qualitatively Acceptable (2)	QQ plot has some outliers, but	0.7613	0.5135	1.483
	0.12		27	young/remale	uusia			Acceptable (2)	otherwise the model performs well.			
	0.12		30									
	0.46		17									
	0.46		27									
	0.46		24	I								
	0.46		20									
	0.46		29									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	0.46		27									
	0.46		24									
	0.46		22									
	0.46		29									
	0.46		29									
	0.93		13									
	0.93		18									
	0.93		18									
	0.93		19									
	0.93		11									
	0.93		17									
	0.93		17									
	0.93		17									
	0.93		18									
	0.93		19									
	1.84		4									
	1.84		5									
	1.84		1									
	1.84		5									
	1.84		1									
	1.84		4									
	1.84		1									
	1.84		6									
	1.84		5									
	1.84		0									
	4.1		0									
	4.1		0									
	4.1		0									
	4.1		0									
	4.1		0									
	4.1		0									
	4.1		0									
	4.1		0									
	4.1		0									
	4.1		0									
	8.32		0									
	8.32		0									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
· · ·	8.32		.,				, ,					
	8.32		0									
	8.32		0									
	8.32		0									
	8.32		0									
	8.32		0									
	8.32		0									
	8.32		0									
	5.5		34									
	5.5	19										
	5.5 5.5		16 21									
	5.5		28									
	5.5		24									
	5.5		25									
	5.5		46									
	5.5		36									
	5.5	40										
	31.8		30									
	31.8		16									
	31.8		29			European Al		Qualitatively Acceptable (2)	Model: Weibull type 2, 3 para; EC standard errors are higher than other models, but otherwise model performs well.	69.53	69.53 27.22	
	31.8		24	u - t	O a ni a da mb mi a	Association	Al-Chronic 14					2.554
μg/L	31.8	count	16	# of young/female	Ceriodaphnia dubia	2010;						
	31.8		19	y our ig/rorrialo	dubia	Gensemer et al. 2018						
	31.8		46			ai. 2016						
	31.8		25									
	31.8		32								1	
	31.8		29									
	59.8		31									
	59.8 59.8	17 18 20 23										
	59.8											
	59.8											
	59.8		21									
	59.8		21									
	59.8		36									
	59.8		18									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	59.8		33									
	120.3		26									
	120.3		20									
	120.3		18									
	120.3		19									
	120.3		18									
	120.3		16									
	120.3		19									
	120.3		25									
	120.3		11									
	120.3		17									
	249		18									
	249		6									
	249		16									
	249		16									
	249		9									
	249		13									
	249		20									
	249		24									
	249		15									
	249		16									
	526.6		14									
	526.6		11									
	526.6		0									
	526.6		11									
	526.6		16									
	526.6		6									
	526.6		6									
	526.6		15									
	526.6		6									
	526.6		9									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	8.2	,	19									
	8.2		32									
	8.2		24									
	8.2		33									
	8.2		36									
	8.2		40									
	8.2		38									
	8.2		43									
	8.2 8.2		15 18									
	66.3		15									
	66.3		32									
	66.3		27									
	66.3		32									
	66.3		39									
		66.3 23 33 66.3 66.3 41 # of young/female Ceriodaphn dubia										
				European Al Association			Model: Weibull type 1, 3 para; EC					
μg/L	66.3		Ceriodaphnia dubia	2010;	Al-Chronic 15	Qualitatively Acceptable (2)	standard errors are higher than other models, but otherwise model	432.4	217.4	1.989		
	66.3		28		dubia	Gensemer et		Acceptable (2)	performs well			
	124		13			al. 2018						
	124		18									
	124		24									
	124		19									
	124		33									
	124		42									
	124		19									
	124		30									
	124		41									
	124		32									
	243.3	243.3										
			16									
	243.3 243.3		23									
	243.3		27									
	243.3		24									
	243.3		20									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
(^)	243.3	(3)	23	Liidpoiiit	Openies	Ontation	Lubei	Acceptability	Curve rioles	2020	200	ratio
	243.3		30									
	243.3		38									
	517.8		7									
	517.8		17									
	517.8		14									
	517.8		27									
	517.8		25									
	517.8		16									
	517.8		37									
	517.8		23									
	517.8		23									
	517.8		28									
	1036.7		4									
	1036.7		2									
	1036.7		4									
	1036.7		8									
	1036.7		8									
	1036.7		13 5									
	1036.7 1036.7		0									
	1036.7		10									
	1036.7		11									
	11.3		26									
	11.3		29									
	11.3		39									
	11.3		21									
	11.3		27									
	11.3		25			European Al			Madali Waihull tuna 2 2 narai FC			
	11.3			# of	Cariadanhaia	Association		Qualitatively	Model: Weibull type 2, 3 para; EC standard errors are higher than			
μg/L	11.3	count			dubio.	2010; Gensemer et	Al-Chronic 16	Acceptable (2)	other models, but otherwise model	774.5	631.7	1.226
	11.3		39			al. 2018			performs well			
	11.3		32									
	128.2		34									
	128.2		39									
	128.2		32									
	128.2		31									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	128.2		20									
	128.2		28									
	128.2		26									
	128.2		36									
	128.2		29									
	128.2		33									
	254.2		21									
	254.2		33									
	254.2		36									
	254.2		32									
	254.2		21									
	254.2		23									
	254.2		35									
	254.2		36									
	254.2		36									
	254.2		38									
	489.4		11									
	489.4		27									
	489.4		22									
	489.4		22									
	489.4		39									
	489.4		33									
	489.4		29									
	489.4		34									
	489.4		24									
	489.4		25									
	985.5		12									
	985.5		17									
	985.5		32									
	985.5		14									
	985.5		20									
	985.5		9									
	985.5		20									
	985.5		11									
	985.5		14									
	985.5		13									
	2163.6		0									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	2163.6		3									
	2163.6		0									
	2163.6		1									
	2163.6		0									
	2163.6		8									
	2163.6		1									
	2163.6		4									
	2163.6		1									
	2163.6		2									
	4.3		26									
	4.3		25									
	4.3		17									
	4.3		17 25									
	4.3 4.3		18									
	4.3		20									
	4.3		19									
	4.3		18									
	4.3		19									
	58.4		29									
	58.4		25									
	58.4		17			European Al						
	58.4			# of	Ceriodaphnia	Association			Model: Weibull type 2, 3 para;			
μg/L	58.4	count	24	young/female	dubia	2010; Gensemer et	Al-Chronic 17	Acceptable (1)	Model performs well on all metrics.	185.0	111.8	1.655
	58.4		19			al. 2018						
	58.4		17									
	58.4		19									
	58.4		19									
	58.4		16									
	116	16 17 16 20 16 21 16 15										
	116											
	116											
	116											
	116		19									
	116											
	116		18									
	116		13									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	116		21									
	116		18									
	247.7		15									
	247.7		21									
	247.7		10									
	247.7		6									
	247.7		10									
	247.7		18									
	247.7		15									
	247.7		11									
	247.7		13									
	247.7		20									
	543.8		11									
	543.8		9									
	543.8		3									
	543.8		6									
	543.8		9									
	543.8		4									
	543.8		7									
	543.8 543.8											
	543.8		9									
	1110.5 1110.5		3									
	1110.5		3									
	1110.5		4									
	1110.5											
	1110.5		5 5									
	1110.5		5									
	1110.5		0									
	1110.5		0									
			5									
	1110.5		5									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
(^)	4.1	(У)	23	Enapoint	Species	Citation	Labei	Acceptability	Curve notes	EG20	E03	Ratio
	4.1		24									
	4.1		23									
	4.1		24									
	4.1		27									
	4.1		21									
	4.1		17									
	4.1		21									
	4.1		25									
	4.1		17									
		63.5 23 63.5 24 63.5 20 63.5 25 63.5 20 63.5 18										
	63.5		15									
	63.5		16			European Al Association			Model: Weibull type 1, 3 para; EC			
μg/L	63.5	count	22	# of	Ceriodaphnia	2010;	Al-Chronic 18	Qualitatively	standard errors are high, but	655.9	381.5	1.720
	63.5		15	young/female	dubia	Gensemer et		Acceptable (2)	otherwise model performs well			
	121.1		13			al. 2018						
	121.1		17									
	121.1		16									
	121.1		24									
	121.1		19									
	121.1		21									
	121.1		15									
	121.1		28									
	121.1		16									
1	121.1		24									
	182 182		22 15									
	182		20									
	182		16									
	182		28									
1	182		21									
	182		25									

							Count Data					
Units	Test	Units				2 11 11	C-R Curve	Curve		5000		EC20: EC5
(x)	Conc. 182	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	182		24 15									
	182		16									
	530.4		14									
	530.4		19									
	530.4		20									
	530.4		8									
	530.4		23									
	530.4		15									
	530.4		19									
	530.4		23									
	530.4		26									
	530.4		15									
	1004.7		11									
	1004.7		2									
	1004.7		8									
	1004.7		8									
	1004.7		13									
	1004.7		10									
	1004.7											
	1004.7		13 20									
	1004.7		11									
	1004.7		4									
	8.1 8.1		21 24									
	8.1		14									
	8.1		27									
	8.1		18									
						European Al						
		8.1 18 8.1 22 8.1 22 8.1 22 4 4 5 5 6 4 7 6 8 6 8 7 8 6 8 7 9 6 10 6 10 6 10 6 10 6 10 6 10 7 10 <td>Cariadanhaia</td> <td>Association</td> <td></td> <td>Qualitatively</td> <td>Model: Weibull type 1, 3 para: QQ</td> <td></td> <td></td> <td></td>	Cariadanhaia	Association		Qualitatively	Model: Weibull type 1, 3 para: QQ					
μg/L			dubio.	2010;	Al-Chronic 19	Acceptable (2)	plot has some outliers but	595.2	259.1	2.297		
				Gensemer et al. 2018		,	otherwise the model performs well					
	8.1		19			2010						
	365.8		26									
	365.8		23									
	365.8		23									
	365.8		25									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	365.8		13									
	365.8		17									
	365.8		21									
	365.8		23									
	365.8		22									
	365.8		13									
	1013.6		9									
	1013.6		20									
	1013.6		8									
	1013.6		13									
	1013.6		11 14									
	1013.6											
	1013.6		11 12									
	1013.6		16									
	1013.6 1013.6		0									
	2552.6		1									
	2552.6		0									
	2552.6		3									
	2552.6		0									
	2552.6		0									
	2552.6		0									
	2552.6		5									
	2552.6		2									
	2552.6		0									
	2552.6		1									
	4634.1		0									
	4634.1		0									
	4634.1		0									
	4634.1		0									
	4634.1		0									
	4634.1		0									
	4634.1		0									
	4634.1		0									
	4634.1		0									
	4634.1		0									
	7994.5		0									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
	7994.5		0	•								
	7994.5		0									
	7994.5		0									
	7994.5		0									
	7994.5		0									
	7994.5		0									
	7994.5		0									
	7994.5		0									
	7994.5		0									
	0.7		20									
	0.7		22									
	0.7		26									
	0.7 0.7		20 20									
	0.7		25									
	0.7		20									
	0.7		20 21 23									
	0.7											
	0.7		21									
	44.8		21									
	44.8		22									
	44.8		22			European Al						
	44.8			# of	Ceriodaphnia	Association		Qualitatively	Model: Weibull type 2, 3 para: QQ			
μg/L	44.8	count	25	young/female	dubia	2010; Gensemer et	Al-Chronic 20	Acceptable (2)	plot has some outliers but otherwise the model performs well.	171.3	82.52	2.076
	44.8		22			al. 2018			otherwise the model performs well.			
	44.8		19									
	44.8		23									
	44.8		23									
	44.8		29									
	86.9		16									
		86.9 20 86.9 24 86.9 24 86.9 19										
	86.9		28									
	86.9		22									
	86.9		23									

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	86.9		22									
	86.9		30									
	174.6		20									
	174.6		19									
	174.6		11									
	174.6		2									
	174.6		17									
	174.6		0									
	174.6		16									
	174.6		22									
	174.6		23									
	174.6		31									
	359.3		18									
	359.3		19									
	359.3		19									
	359.3		0									
	359.3		10									
	359.3		13									
	359.3		13									
	359.3		18									
	359.3		14									
	359.3		17									
	795		4									
	795		10									
	795		3									
	795		13									
	795		11									
	795		5									
	795		5									
	795		10									
	795		8									
	795		9									

							Count Data					
Units (x)	Test Conc.	Units (y)	Response	Endpoint	Species	Citation	C-R Curve Label	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
, ,	6.4		18	•								
	6.4		16									
	6.4		17									
	6.4		26									
L	6.4		14									
	6.4		26									
	6.4		25									
	6.4		28									
	6.4		27									
-	6.4		26									
-	158.4 158.4		19 17									
-	158.4		22									
 	158.4		25									
 	158.4		26									
-												
		158.4 18 24 158.4 27 # of Ceriodaphni										
				European Al Association								
μg/L	158.4			2010;	Al-Chronic 21	Acceptable (1)	Model: Weibull type 1, 3 para:	438.8	154.8	2.835		
	158.4		27	young/female	dubia	Gensemer et		, , ,	Model performs well on all metrics			
	314.5		18			al. 2018						
	314.5		17									
	314.5		23									
	314.5		24									
	314.5		26									
	314.5		22									
	314.5		18									
	314.5		18									
	314.5		25									
-	314.5		18									
-		1023.1 28										
-	1023.1		19									
-	1023.1 1023.1 1023.1		19 23									
-			19									
-	1023.1		0									
	1023.1		11									

							Count Data					
Units	Test	Units	D	For decident	0	Olication	C-R Curve	Curve	Orania Nata	F000	F05	EC20: EC5
(x)	Conc. 1023.1	(y)	Response 19	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	1023.1		19									
	1023.1		15									
	1759.4		0									
	1759.4		0									
	1759.4		0									
	1759.4		0									
	1759.4		0									
	1759.4		2									
	1759.4		0									
	1759.4		1									
	1759.4		0									
	1759.4 3993.2		3 0									
	3993.2		0									
	3993.2		1									
	3993.2		0									
	3993.2		2									
	3993.2		1									
	3993.2		3									
	3993.2		0									
	3993.2		0									
	3993.2		0									
	6.6		35									
	6.6		22									
	6.6		34									
	6.6		34									
	6.6		28			AI						
	6.6		33			European Al Association 2010; Gensemer et al. 2018			Model: Log Logistic type 1, 3 para;			
μg/L	6.6 6.6	count	22		Ceriodaprinia		Al-Chronic 22	Qualitatively Acceptable (2)	QQ plot is off but otherwise model	947.5	623.3	1.520
	6.6		35	, carry, remaie				, 1000ptable (2)	performs well.			
	6.6		23									
	318.8		27									
	318.8		35									
	318.8		20									
	318.8		36									

	Count Data												
Units	Test	Units					C-R Curve	Curve				EC20: EC5	
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio	
	318.8		29										
	318.8		40										
	318.8		28										
	318.8		34										
	318.8		26										
	318.8		24										
	748		23										
	748		20										
	748		19										
	748		37										
	748		26										
	748		27										
	748		25										
	748		29										
	748		29										
	748		18										
	1779.4		8										
	1779.4		0										
	1779.4		2										
	1779.4		16										
	1779.4		5										
	1779.4		23										
	1779.4		14										
	1779.4		6										
	1779.4		5										
	1779.4		4										
	4604.3		0										
	4604.3		2										
	4604.3		0										
	4604.3		1										
	4604.3		0										
	4604.3		0										
	4604.3		0										
	4604.3		0										
	4604.3		0										
	4604.3		0										
	7984.9		0										

							Count Data					
Units	Test Conc.	Units	Beenenee	Endneint	Species	Citation	C-R Curve	Curve Acceptability	Curve Notes	EC20	EC5	EC20: EC5 Ratio
(x)	7984.9	(y)	Response 0	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	ECS	Ratio
	7984.9		0									
	7984.9		0									
	7984.9		0									
	7984.9		0									
	7984.9		0									
	7984.9		0									
	7984.9		0									
	7984.9		0									
	2.1		104 108									
	2.1		108									
	2.1		85									
	2.1		114									
	2.1		107									
	2.1		88									
	2.1		98									
	2.1		96									
	2.1		101									
	127.5		113									
	127.5		120									
	127.5		89			European Al Association			Model: Weibull type 1, 3 para; QQ			
μg/L	127.5 127.5	count	118	# of young/female	Daphnia magna	2010;	Al-Chronic 23	Qualitatively Acceptable (2)	plot is off and there is some uncertainty in area of interest but	781.3	591.5	1.321
	127.5		108	y our ig/romaio	magna	Gensemer et al. 2018		/ 1000ptable (2)	otherwise model performs well.			
	127.5		91			ai. 2010						
	127.5		103									
	127.5		96									
	127.5		79									
	349		129									
	349		107									
	349		104									
	349		100									
	349 349		87 110									
	349		93									
	349		98									

	Count Data												
Units	Test	Units					C-R Curve	Curve				EC20: EC5	
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio	
	349		99										
	349		74										
	539.3		94										
	539.3		99										
	539.3		90										
	539.3		113										
	539.3		96										
	539.3		94										
	539.3		99										
	539.3		97										
	539.3		93										
	539.3		100										
	1106.4		16										
	1106.4		12										
	1106.4		42										
	1106.4		17										
	1106.4		63										
	1106.4		22										
	1106.4		32										
	1106.4		12										
	1106.4		21										
	1106.4		10										
	2401.6		0										
	2401.6		0										
	2401.6		0										
	2401.6		0										
	2401.6		0										
	2401.6		0										
	2401.6		0										
	2401.6		0										
	2401.6		0										
	2401.6		0										

							Count Data					
Units	Test	Units					C-R Curve	Curve				EC20: EC5
(x)	Conc.	(y)	Response 19	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio
	5 5		24									
	5		27									
	5		21									
	97		20									
	97		27									
	97		17									
	97		20									
	200		32									
	200		21		Calvoiflarus			Qualitatively Acceptable (2)	Model: Log Logistic type 1, 3 para; EC standard errors are a bit large but otherwise model performs well.	400.8		
	200		18	final # of		OSU 2012c;	Al-Chronic 28					
μg/L	405	count	25	individuals		Cardwell et al. 2018					162.8	2.463
	405		16									
	405 405		20 21									
	820	0 14 0 8 0 8										
	820											
	820											
	820		11									
	1636		2									
	1636		10									
	1636		8									
	1636		7									
	0.5		61									
	0.5		64									
	0.5		73									
	0.5		63									
	84.5		68 76									
	84.5 84.5			final # of		OSU 2012e;		OverPress and	Model: Log Logistic type 1, 3 para;			
μg/L	84.5	count	74	individuals	Aeolosoma sp. Car	Cardwell et al.	Al-Chronic 29	Qualitatively Acceptable (2)	QQ plot has a few outliers,	1,316	858.9	1.533
	480.6		73			2018		/ 1000p100710 (<u>_</u>)	otherwise model perform well.			
	480.6		75									
1	480.6											
1	480.6		92									
	962.5		46									
	962.5		76									

	Count Data												
Units	Test	Units					C-R Curve	Curve				EC20: EC5	
(x)	Conc.	(y)	Response	Endpoint	Species	Citation	Label	Acceptability	Curve Notes	EC20	EC5	Ratio	
	962.5		80										
	962.5		58										
	2156.9		19										
	2156.9		30										
	2156.9		26										
	2156.9		35										
	4460.6		2										
	4460.6		7										
	4460.6		1										
	4460.6		3										

Appendix C. Acute LC₅₀:LC₁₅ and LC₅₀:LC₁₀ Ratios and Chronic EC₂₀:EC₁₅ and EC₂₀:EC₁₀ Ratios Based on Quantitatively Acceptable C-R Curves

C.1 Acute LC₅₀:LC₁₅ ratios from quantitatively-acceptable C-R models used to derive acute LC₅₀:LC₁₅ adjustment factors.

Acute LC_{50} : LC_{15} adjustment factors are intended to be applied to listed species acute toxicity values (i.e., representative LC_{50} value) in the same manner as acute TAFs and the acute MAF to derive a corresponding LC_{15} value.

Order	Family	Species	LC ₅₀ (µg/L)	LC ₁₅ (µg/L)	LC ₅₀ : LC ₁₅	C-R Curve Label ^a	Citation	Species- level TAF (LC ₅₀ :LC ₁₅)	Genus- level TAF (LC ₅₀ :LC ₁₅)
Basommatophora	Physidae	Physa sp.	29,267	21,718	1.348	Al-Acute 5	Call et al 1984	2.172	2.172
Basommatophora	Physidae	Physa sp.	61,966	17,706	3.500	Al-Acute 7	Call et al 1984	2.172	2.172
Diplostraca	Daphniidae	Ceriodaphnia dubia	737.9	205.3	3.594	Al-Acute 8	ENSR 1992d		
Diplostraca	Daphniidae	Ceriodaphnia dubia	1,898	627.8	3.023	Al-Acute 9	ENSR 1992d		
Diplostraca	Daphniidae	Ceriodaphnia dubia	2,822	486.1	5.806	Al-Acute 10	ENSR 1992d		
Diplostraca	Daphniidae	Ceriodaphnia dubia	72.07	32.55	2.214	Al-Acute 14	European Al Association 2009		
Diplostraca	Daphniidae	Ceriodaphnia dubia	792.4	519.4	1.525	Al-Acute 16	European Al Association 2009		
Diplostraca	Daphniidae	Ceriodaphnia dubia	1,005	553.8	1.815	Al-Acute 17	European Al Association 2009		
Diplostraca	Daphniidae	Ceriodaphnia dubia	8,801	5,011	1.756	Al-Acute 20	European Al Association 2009	2.354	2.354
Diplostraca	Daphniidae	Ceriodaphnia dubia	10,636	4,275	2.488	Al-Acute 21	European Al Association 2009		
Diplostraca	Daphniidae	Ceriodaphnia dubia	24,345	7,250	3.358	Al-Acute 27	European Al Association 2009		
Diplostraca	Daphniidae	Ceriodaphnia dubia	10,766	9,464	1.138	Al-Acute 28	European Al Association 2009		
Diplostraca	Daphniidae	Ceriodaphnia dubia	309.3	116.2	2.661	Al-Acute 45	European Al Association 2010		
Diplostraca	Daphniidae	Ceriodaphnia dubia	120.6	54.42	2.216	Al-Acute 48	European Al Association 2010		
Diplostraca	Daphniidae	Ceriodaphnia dubia	79.27	44.26	1.791	Al-Acute 52	European Al Association 2010		

^a Raw empirical acute toxicity data and model output for all C-R models are provided in Appendix B.1. C-R models from two brook trout (*Salvelinus fontinalis*) acute tests (Al-Acute 66 and Al-Acute 68) that were used to derive an acute salmonid LC₅₀ to LC₁₅ adjustment factor are not shown in the table because they were scored to be qualitatively acceptable and were, therefore, excluded from MAF derivation. The Salmonidae family-level LC₅₀ to LC₁₅ acute adjustment factor is 1.466, calculated as the geometric mean of 1.770 (Al-Acute 66) and 1.213 (Al-Acute 68; see Supplemental Information A).

C.2 Acute LC₅₀:LC₁₀ ratios from quantitatively-acceptable C-R models used to derive acute LC₅₀:LC₁₀ adjustment factors.

Acute LC_{50} : LC_{10} adjustment factors are intended to be applied to listed species acute toxicity values (i.e., representative LC_{50} value) in the same manner as acute TAFs and the acute MAF to derive a corresponding LC_{10} value.

Order	Family	Species	LC ₅₀ (µg/L)	LC ₁₀ (µg/L)	LC ₅₀ :	C-R Curve Label ^a	Citation	Species- level TAF (LC ₅₀ :LC ₁₀)	Genus- level TAF (LC ₅₀ :LC ₁₀)
Basommatophora	Physidae	Physa sp.	29,267	20,507	1.427	Al-Acute 5	Call et al 1984	0.044	0.044
Basommatophora	Physidae	Physa sp.	61,966	12,677	4.888	Al-Acute 7	Call et al 1984	2.641	2.641
Diplostraca	Daphniidae	Ceriodaphnia dubia	737.9	145.9	5.056	Al-Acute 8	ENSR 1992d		
Diplostraca	Daphniidae	Ceriodaphnia dubia	1,898	467.4	4.061	Al-Acute 9	ENSR 1992d		
Diplostraca	Daphniidae	Ceriodaphnia dubia	2,822	346.6	8.143	Al-Acute 10	ENSR 1992d		
Diplostraca	Daphniidae	Ceriodaphnia dubia	72.07	25.67	2.807	Al-Acute 14	European Al Association 2009	1	
Diplostraca	Daphniidae	Ceriodaphnia dubia	792.4	457.9	1.731	Al-Acute 16	European Al Association 2009		
Diplostraca	Daphniidae	Ceriodaphnia dubia	1,005	493.8	2.035	Al-Acute 17	European Al Association 2009		
Diplostraca	Daphniidae	Ceriodaphnia dubia	8,801	4,235	2.078	Al-Acute 20	European Al Association 2009	2.942	2.942
Diplostraca	Daphniidae	Ceriodaphnia dubia	10,636	3,256	3.267	Al-Acute 21	European Al Association 2009	1	
Diplostraca	Daphniidae	Ceriodaphnia dubia	24,345	5,048	4.823	Al-Acute 27	European Al Association 2009	-	
Diplostraca	Daphniidae	Ceriodaphnia dubia	10,766	9,233	1.166	Al-Acute 28	European Al Association 2009		
Diplostraca	Daphniidae	Ceriodaphnia dubia	309.3	86.74	3.565	Al-Acute 45	European Al Association 2010		
Diplostraca	Daphniidae	Ceriodaphnia dubia	120.6	44.01	2.739	Al-Acute 48	European Al Association 2010		
Diplostraca	Daphniidae	Ceriodaphnia dubia	79.27	39.57	2.003	Al-Acute 52	European Al Association 2010	1	

^a Raw empirical acute toxicity data and model output for all C-R models are provided in Appendix B.1. C-R models from two brook trout (*Salvelinus fontinalis*) acute tests (Al-Acute 66 and Al-Acute 68) that were used to derive an acute salmonid LC₅₀ to LC₁₅ adjustment factor are not shown in the table because they were scored to be qualitatively acceptable and were, therefore, excluded from MAF derivation. The Salmonidae family-level LC₅₀ to LC₁₅ acute adjustment factor is 1.638, calculated as the geometric mean of 2.100 (Al-Acute 66) and 1.277 (Al-Acute 68; see Supplemental Information A).

C.3 Chronic EC₂₀:EC₁₅ ratios from quantitatively acceptable C-R models used to derive chronic EC₂₀:EC₁₅ adjustment factors.

Chronic EC_{20} : EC_{15} adjustment factors are intended to be applied to listed species chronic toxicity values (i.e., representative EC_{20} value) in the same manner as chronic TAFs and the chronic MAF to derive a corresponding EC_{15} value.

Order	Family	Species	EC ₂₀ (µg/L)	EC ₁₅ (µg/L)	EC ₂₀ : EC ₁₅	C-R Curve Label ^a	Citation	Species- level TAF (EC ₂₀ :EC ₁₅)	Genus- level TAF (EC ₂₀ :EC ₁₅)
Diplostraca	Daphniidae	Ceriodaphnia dubia	263.6	238.8	1.104	Al-Chronic 1	CECM 2014; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	931.3	835.6	1.115	Al-Chronic 4	CECM 2014; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	833.1	798.5	1.043	Al-Chronic 5	CECM 2014; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	1,022	915.6	1.116	Al-Chronic 6	CECM 2014; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	808.1	688.4	1.174	Al-Chronic 11	ENSR 1992b	1.126	1.126
Diplostraca	Daphniidae	Ceriodaphnia dubia	596.8	553.7	1.078	Al-Chronic 12	ENSR 1992b		
Diplostraca	Daphniidae	Ceriodaphnia dubia	185.0	161.9	1.143	Al-Chronic 17	European Al Association 2010; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	438.8	350.5	1.252	Al-Chronic 21	European Al Association 2010; Gensemer et al. 2018		
Cypriniformes	Cyprinidae	Pimephales promelas	6,428	6,169	1.042	Al-Chronic 24	Kimball 1978	1.042	1.042

^a Raw empirical chronic toxicity data and model output for all C-R models are provided in Appendix B.2.The C-R model from a brook trout (*Salvelinus fontinalis*) chronic test (Al-Chronic-9) that was used to derive a chronic salmonid EC₂₀ to EC₁₅ adjustment factor is not shown in the table because the model was scored to be qualitatively acceptable and was, therefore, excluded from chronic MAF derivation. The Salmonidae family-level EC₂₀ to EC₁₅ chronic adjustment factor is 1.125, based on the brook trout EC₂₀:EC₁₅ ratio (Al-Chronic 9; see Supplemental Information A).

C.4 Chronic EC₂₀:EC₁₀ ratios from quantitatively acceptable C-R models used to derive chronic EC₂₀:EC₁₀ adjustment factors.

Chronic EC_{20} : EC_{10} adjustment factors are intended to be applied to listed species chronic toxicity values (i.e., representative EC_{20} value) in the same manner as chronic TAFs and the chronic MAF to derive a corresponding EC_{10} value.

Order	Family	Species	EC ₂₀ (µg/L)	EC ₁₀ (µg/L)	EC ₂₀ : EC ₁₀	C-R Curve Label ^a	Citation	Species- level TAF (EC ₂₀ :EC ₁₀)	Genus-level TAF (EC ₂₀ :EC ₁₀)
Diplostraca	Daphniidae	Ceriodaphnia dubia	263.6	208.7	1.263	Al-Chronic 1	CECM 2014; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	931.3	720.4	1.293	Al-Chronic 4	CECM 2014; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	833.1	759.5	1.097	Al-Chronic 5	CECM 2014; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	1,022	788.4	1.296	Al-Chronic 6	CECM 2014; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	808.1	556.5	1.452	Al-Chronic 11	ENSR 1992b	1.317	1.317
Diplostraca	Daphniidae	Ceriodaphnia dubia	596.8	506.9	1.177	Al-Chronic 12	ENSR 1992b		
Diplostraca	Daphniidae	Ceriodaphnia dubia	185.0	138.4	1.337	Al-Chronic 17	European Al Association 2010; Gensemer et al. 2018		
Diplostraca	Daphniidae	Ceriodaphnia dubia	438.8	257.8	1.702	Al-Chronic 21	European Al Association 2010; Gensemer et al. 2018		
Cypriniformes	Cyprinidae	Pimephales promelas	6,428	5,878	1.094	Al-Chronic 24	Kimball 1978	1.094	1.094

^a Raw empirical chronic toxicity data and model output for all C-R models are provided in Appendix B.2.The C-R model from a brook trout (*Salvelinus fontinalis*) chronic test (Al-Chronic-9) that was used to derive a chronic salmonid EC₂₀ to EC₁₀ adjustment factor is not shown in the table because the model was scored to be qualitatively acceptable and was, therefore, excluded from chronic MAF derivation. The Salmonidae family-level EC₂₀ to EC₁₀ chronic adjustment factor is 1.316, based on the brook trout EC₂₀:EC₁₀ ratio (Al-Chronic 9; see Supplemental Information A).

Biological Evaluation of Freshwater Aluminum Water Quality Criteria for Or	egon
Appendix D. Appendix D: Acceptable Web-ICE Models for	
Aluminum Toxicity Data for Assessment	

D.1 Acceptable Web-ICE models for Aluminum Assessment^a.

Common name	Scientific Name	Family	Service		
Vernal pool fairy shrimp	Branchinecta lynchi	Branchinectidae	FWS		Green shading indicates model selected
Sturgeon, green	Acipenser medirostris	Acipenseridae	NOAA Fisheries		Green shading indicates model selected
Pacific eulachon	Thaleichthys pacificus	Osmeridae	NOAA Fisheries	No species, genu	is or family ICE model available

SPECIES LEVEL ESTIMATE (Used for FWS Effects Assessment)

Prediction	Surrogate species	Surrogate Acute Value (µg/L)	Predicted Acute Value (µg/L)	95% CI LL	95% CI UL	Pred ÷ 95%CI LL	95%CI UL ÷ Pred	Intercept:	Slope:	Degrees of Freedom (N-2):	R²:	p-value:	Average value of surrogate:	Minimum value of surrogate:	Maximum value of surrogate:
Branchinecta lynchi	Ceriodaphnia dubia	5,863	9,730	3,019.1	31,357	3.2	3.2	0.57218	0.9065	5	0.94452	0.00025	2573.99	15.7	2398168.99
Branchinecta lynchi	Daphnia magna	2,944	2728.4	1369.4	5435.83	2.0	2.0	0.310762	0.9009	5	0.98043	0.00002	5273.85	6.97	8511644.41
Branchinecta lynchi	Lampsilis siliquoidea	29,492	50760.89	20859.9	123522.3	2.4	2.4	0.003122	1.05	5	0.97505	0.00003	3018.01	19.01	3121124.59

Mean Square Error (MSE):	Sum of Squares (S_{xx}) :	Cross-validation Success (%):	Taxonomic Distance:
0.264893	27.43	43	4
0.093448	28.84	100	4
0.119109	21.03	100	6

GENUS LEVEL ESTIMATE (Used for NOAA Fisheries Effects Assessment)

Prediction	Surrogate species	Surrogate Acute Value (µg/L)	Predicted Acute Value (µg/L)	95% CI LL	95% CI UL	Pred ÷ 95%Cl LL	95%CI UL ÷ Pred	Intercept:	Slope:	Degrees of Freedom (N-2):	R²:	p-value:	Average value of surrogate (log value):	Minimum value of surrogate (log value):	Maximum value of surrogate (log value):
Acipenser medirostris	Oncorhynchus mykiss	3,312	3592.81	1532.97	8420.41	2.3	2.3	-0.347756	1.1	4	0.97669	0.00021	369.95	29	95857.69
Acipenser medirostris	Pimephales promelas	22,095	9702.77	1245.39	75593.41	7.8	7.8	-1.35	1.23	3	0.94453	0.00564	1661.29	76.49	140225.29

Mean Square Error (MSE):	Sum of Squares (S _{xx}):	Cross-validation Success (%):	Taxonomic Distance:
0.066636	9.08	100	4
0.205375	6.92	60	4

^a LC₅₀ values expressed as total aluminum, normalized to pH 7, DOC of 1 mg/L and 100 mg/L hardness as CaCO₃; normalized using MLR equations indentified in USEPA (2018).

В	iological Evaluation of	Freshwater Alumin	um Water Quality Cri	teria for Oregon
	. Concentrati	on-Respons	e Curve Fittin	g and
Model As	ssessment			

E.1 Concentration-Response (C-R) curve fitting methodology and C-R curve scoring system.

1. Fitting Concentration Response Data in R

Raw concentration-response data (expressed as log[treatment concentration] paired organismal responses) were obtained from quantitatively-acceptable toxicity studies that reported raw data. In many scenarios, toxicity studies reported treatment-level mean concentrations and mean organismal responses; however, individual-replicate data were also available in many scenarios (See Appendix B.1 and B.2). When fitting C-R curves, replicate-level data were preferred over treatment-level data, if both types of data were available. Within R, the drc package was employed to fit 22 mathematical models to each set of raw C-R data.

a. Fitting Acute Mortality Data

i. Dichotomous Data

Dichotomous data are binary in nature (e.g. live/dead or 0/1) and are typical of survival experiments. They are usually represented as a proportion survived.

b. Fitting Chronic Growth, Reproduction, and Survival Data

i. Continuous Data

Continuous data take on any value along the real number line (e.g. biomass).

ii. Count Data

Count data take on only integer values (e.g. number of eggs hatched).

iii. Dichotomous Data

Dichotomous data are binary in nature (e.g. live/dead or 0/1) and are typical of survival experiments. They are usually represented as a proportion survived.

2. Determining Most Robust Model Fit for Each C-R curve

The R drc package was used to fit 22 different models to each individual C-R dataset. A single model was then selected from the 22 models to serve as the representative C-R model. The selected model represented the most statistically-robust model available. To determine the most-statistically-robust model for a C-R dataset, all individual model fits were assessed on a suite of statistical metrics.

a. Selecting Candidate Models

Initially, models were ranked according to the Akaike information criteria (AIC). The AIC provides a measure of how close a model's fitted values tend to be to the true expected values, as summarized by a certain expected distance between the two. That is, the model with the lowest AIC is generally the optimal model because it is the model fit that tends to have its fitted values closest to the true outcome probabilities. In some instances, however, the model with the lowest AIC may possesses a questionable characteristic that suggests the model with the lowest AIC

may not be the most appropriate. Rather than selecting a model based solely on the lowest AIC, the AIC ranking step was first used to identify several candidate models that were more closely examined before selecting a model fit for each C-R dataset

b. Assessment of Candidate Models to Determine the Most Appropriate Model

Candidate models (i.e., models with low AIC scores relative to other models produced for a particular C-R dataset) were further evaluated based on additional statistical metrics to determine a single, statistically robust curve for each quantitatively-acceptable toxicity tests. These additional statistical metrics were evaluated relative to the other candidate curve fits produced for each C-R dataset. These additional statistical metrics include:

Comparison of residual standard errors

As with AIC, smaller values were desirable. Residual standard errors were judged relative to other models.

ii. Width of confidence intervals for EC estimates

Confidence intervals were assessed on standard error relative to estimate and confirming that the intervals are non-negative. Judged in absolute and relative to other models.

iii. Width of confidence bands around the fitted model

General visual inspection of the confidence bands for the fitted model. Wide bands in the area of interest were undesirable. Judged in absolute and relative to other models.

iv. P-values of parameters estimates and goodness of fit tests

Hypothesis tests of parameter values determined whether an estimate was significantly different from zero. Goodness of fit tests judged the overall performance of the model fit. Typically, the level of significance was set at 0.05. There were occasional instances where the 0.05 criterion was not met, but there was little recourse for choosing another model. Judged in absolute terms.

v. Residual plots

Residuals were examined for homoskedacity and biasedness. Judged in absolute and relative to other models.

vi. Overly influential observations

Observations were judged on Cook's distance and leverage. When an observation was deemed overly influential, it was not reasonable to refit the model and exclude any overly influential observations given the limited data available. Judged in absolute terms.

Of these statistical metrics, residual standard errors, confidence intervals relative to effects concentration estimates, and confidence bands carried the most weight in determining the most appropriate model to be representative of an individual C-R dataset.

3. Determining Curve Acceptability for use in Taxonomic Adjustment Factor (TAF) or Mean Adjustment Factor (MAF) Derivation

The final curve fits that were selected for each of the quantitatively-acceptable toxicity tests were further evaluated and scored to determine whether the curves are: 1) quantitatively-acceptable for use, 2) qualitatively acceptable for use, or 3) unacceptable. To determine curve acceptability for use in deriving an acute or chronic TAF and/or MAF, each individual curve was reconsidered based on the statistical metrics described above. Instead of evaluating curves fits relative to other curve fits for the same data (as was previously done to select the most-robust curve for each test), curve fit metrics were used to assign each curve a score:

- 1 = Quantitatively Acceptable Model. Model performed well on most/all statistical metrics. Models that scored a 1 were used to derive TAFs and MAFs.
- 2 = Qualitatively Acceptable Model. Model generally performed well on statistical metrics; however, the model presented some characteristic(s) that may call estimates into question. Such models should be considered with caution. These problems consisted of any number of issues such as a parameter with a high p-value, poor goodness of fit p-value, wide confidence bands for fit or estimate interval, or residuals that indicated model assumptions are not met. Models that scored a 2 were used as supportive information and were included in TAF derivation if they provided data for listed species, or closely-related surrogates, that would otherwise not be available.
- 3 = **Unacceptable Model**. Model poorly fit to the data. Models should not be used for TAF or MAF derivation.

While the scoring system may contain a subjective component, it provides a classification mechanism to aid in evaluating models to inform their quantitative or qualitative use in a relatively repeatable manner. Individual model fits and the corresponding curve acceptability scores for each set of available C-R data are described in Appendix B.1 (acute C-R data) and B.2 (chronic C-R data).

Biological Evaluation of Freshwater Aluminum Water Quality Criteria for Oregon							

Appendix F1. Discharger Assessment - Monte Carlo Simulation Structure

The analysis was performed on an Excel spreadsheet with 10,000 simulated events, one event per row, considering the following parameters.

- The event-specific (i.e., time-variable, random) effluent Al concentration followed the distribution of effluent concentrations that would attain the hypothetical permit limit.
- The upstream dilution flow was specified as follows (not random):
 - o For the NAC discharge, the mixing zone dilution specified by the DEQ (undated) fact sheet was held constant over all events.
 - For the Fujimi discharge, one-third of trial events were assigned zero upstream flow, the DEQ (2012) dry-season dilution. The other two-thirds were assigned the DEQ (2012) wet-season mixing-zone dilution.
- The downstream Al concentration was calculated from the above parameters.
- The event-specific listed species EC₅ values were assumed to follow a lognormal distribution having the observed geometric mean and natural log standard deviation of the values calculated from observed pH, hardness, and DOC of waters representative of the discharge site. Each simulated event had three EC₅ values, one for vernal pool fairy shrimp, one for bull trout, and one for the other listed salmonids.
- The event-specific Hazard Quotients, HQ, were calculated as the ratio of the event-specific downstream Al concentration and event-specific EC₅ values.

For each event a random number, generated using the function RAND(), was used to set the effluent concentration as follows:

$$ln(C_{eff}) = ln(GM_{Ceff}) + \sigma_{Ceff}*NORMSINV(RAND())$$

Because the RAND() function generated decimals in the range 0-1 (in this case representing a cumulative probability value), NORMSINV(RAND()) generated a normal distribution z-value. The approach was thus applying the lognormal distribution formula,

$$ln(x) = \mu + \sigma z$$

where μ is the mean of natural logs (i.e., ln(GM) where GM is the geometric mean of the distribution) and σ is the standard deviation of natural logs. Using relationships incorporated into the EPA (1991) permit derivation approach, the GM was calculated from the permit derivation's arithmetic mean or long-term average, LTA, as follows:

$$GM = LTA/sqrt(1 + CV^2)$$

The standard deviation of natural logs, σ , was given by

$$\sigma = \operatorname{sqrt}(\ln(1 + \operatorname{CV}^2))$$

Al concentration at the edge of the mixing zone – that is, the downstream concentration C_{dn} , was calculated by dividing by the DEQ Fact Sheet's specified dilution factor, Q_{dn}/Q_{eff} :

$$C_{dn} = C_{eff}/(Q_{dn}/Q_{eff})$$

For each event a second random number, again produced by the RAND() function and again representing a cumulative probability, was used to generate lognormally distributed EC₅ values, in manner corresponding to how the effluent concentration was generated:

$$ln(EC_5) = ln(GM_{EC5}) + \sigma_{EC5}*NORMSINV(RAND())$$

The comparison of the Al concentration at the edge of the mixing zone with the listed species EC₅ was done as Hazard Quotients, HQ:

$$HQ = C_{dn}/EC_5$$

Each of the above concentrations, EC₅, and HQ values occupies one column of the Excel spreadsheet, and their values specific to each randomly generated event occupy one row, moving down the spreadsheet. Considering the distribution of HQ over all events, various percentiles of their distribution were calculated by the Excel function PERCENTILE.EXC. This is equivalent to assigning the HQ for each event a rank and calculating percentile by the Weibull formula, $\frac{1}{1}$ rank/(N+1), in accord with past EPA practice.

The spreadsheet held 10,000 rows (10,000 events). For each condition with specified design inputs, results for five sets of 10,000 events were recorded and the median of the five was presented. Differences between the five sets were negligible.

	Biological Eva	luation of Fres	hwater Aluminu	ım Water Qual	lity Criteria for	Oregon
Appendix	F2. Disch	arger Ass	essment			

Discharger Assessment

Abstract

A discharger assessment was completed to analyze how the aluminum aquatic life criteria (USEPA 2018) may be incorporated into regulated dischargers through the National Pollutant Discharge Elimination System (NPDES) where a facility discharge is found to have reasonable potential to cause or contribute to an excursion above the aluminum aquatic life criteria (USEPA 2018). Broadly, EPA identified facilities in Oregon whose NPDES permits contain effluent limitations or monitoring requirements for aluminum using the Integrated Compliance Information System NPDES program (ICIS-NPDES) database, examining data from the past ten years. EPA identified two existing facilities in Oregon with a NPDES permit limit for aluminum (n = 2); these permit limits are based on translating Oregon's toxics narrative criterion given that no numeric aluminum criteria for aquatic life are currently in effect for Clean Water Act purposes in Oregon). Analysis of the available data for the two facilities indicated that no exceedances of projected effluent limits are expected based on EPA's aluminum aquatic life criteria (USEPA 2018). These facilities will not have reasonable potential to cause or contribute to an exceedance above the aluminum aquatic life criteria when promulgated by EPA, and therefore, will not require water-quality based effluent limits in order to meet the promulgated criteria.

In order to conduct a hypothetical discharger assessment of EPA's aluminum aquatic life criteria as an analytical exercise for purposes of this effects assessment, EPA derived hypothetical NPDES permits assuming these two facilities were found to have reasonable potential to cause, or contribute to an exceedance above the aluminum aquatic life criteria (USEPA 2018; i.e., would require a water-quality based effluent limit, derived from and complying with the aluminum aquatic life criteria, in a NPDES permit in order to meet the promulgated criteria). EPA chose these two facilities for this hypothetical NPDES permit demonstration because facility-specific data were available to conduct this assessment. The calculation of these hypothetical NPDES permit limits was conducted to highlight, as an example, how future NPDES permit limits for facilities that are found to have reasonable potential to cause or contribute to an exceedance of EPA's aluminum aquatic life criteria could be implemented in NPDES permits.

EPA relied on receiving stream flows and representative water chemistry data (pH, DOC, and hardness) to conduct this hypothetical assessment. The protectiveness of these two hypothetical permits were examined by considering time-variable factores in a Monte-Carlo analysis to simulate receiving stream Al concentrations relative to the chronic low effect threshold values of listed species that were identified to be sensitive to chronic Al exposures (based on screening level chronic effects assessment). Simulated receiving stream Al concentrations relative to chronic low effect thresholds were used to create distributions of Hazard Quotients (HQ = Receiving stream / Al concentration/chronic low effect threshold). Hazard Quotient distributions were used to determine the probability of each permitted discharger to cause receiving stream Al to reach concentrations that may affect sensitive listed species though chronic exposures.

Northwest Aluminum Company (NAC)

Permit Considerations: NAC

This assessment shows a hypothetical calculation of a permit limit for the aluminum discharge of Northwest Aluminum Specialties - Northwest Aluminum Company (NWAS-NAC, SAPA Extrusions), on the Columbia River in Oregon. Using pH, hardness, and DOC data from the Columbia River monitoring station at Warrendale, acute and chronic values from EPA's 2018 aluminum criteria were calculated for 50 sampling events¹. The 10th and 50th percentiles of the distribution of criteria values were considered as possible bases for effluent limits. EPA considered the 50th percentile of criteria to represent a worst-case implementation scenario and the 10th percentile to represent a scenario that is meant to capture most exposure conditions where Al may be most bioavailable/toxic.

Effluent dilution at the edge of the 30-foot acute mixing zone (also called a zone of initial dilution or ZID) and 300-foot chronic mixing zone were taken from the Oregon Department of Environmental Quality (DEQ) Permit Evaluation document, which presented the range of dilution factors measured by fluorescene dye studies at the site. Because dilution at the edge of the acute mixing zone (ZID, 30 feet) was significantly less than that at the edge of the chronic mixing zone (300 feet), permit limits based on the acute criterion were found to be substantially more limiting, such that they are expected to be used for setting the permit limits when following EPA or Oregon DEQ procedures for this discharger. Assuming the concentrations of toxic (bioavailable) forms of aluminum are negligible in upstream waters (thereby maximizing potential Al inputs from the simulated discharger), four possible effluent limits were calculated, by combining the following factors: (a) 10th or 50th percentile criteria values and (b) the lowest or average dilution factors.

Approach for Calculating Hypothetical Permit Limits

The following approach was used to explore the derivation of a hypothetical permit limit for aluminum discharged to the Columbia River by Northwest Aluminum Specialties - Northwest Aluminum Company (NWAS-NAC) at River Mile 189.

- Fifty event-specific EPA (2018a and 2018b) aluminum criteria values were calculated using simultaneously measured pH, hardness, and DOC available at the USGS station on the Columbia River at Warrendale, 40-50 miles downstream during the period 1994-2000². The 10th and 50th percentile values of the distribution of criteria values were applied at the edge of their respective mixing zones.
- Mixing zone dilution factors presented in the Oregon DEQ (undated) document "NPDES Wastewater Discharge Permit Evaluation" were coupled with either the 10th or 50th percentile acute and chronic criteria values to obtain Waste Load Allocation (WLA) target effluent concentrations. For these calculations, it was assumed that the upstream

¹ The USGS NWIS at Warrendale, OR, is nearly 45 river miles downstream from the NAC discharger. Columbia River water chemistry at Warrendale was used to represent the Columbia River at the NAC discharger because: (1) only one other sample from the Columbia River was available in the RL-dataset (sample ID 35335-40052; CMC = 2,900 μg/L; CCC = 1,300) that was spatially closer to the NAC discharge and (2) the USGS NWIS data also reported flow which was used to consider relationships between flow and criterion magnitudes.

² The number of samples per year ranged from zero in 1995 to 15 in 1997. Although all months of the year are represented in the dataset, May and June samples were somewhat more common than other months.

- concentration of toxic or bioavailable forms of aluminum was zero to maximize the influence of the simulated discharge on changing in-stream Al concentrations.
- Assuming a typical degree of effluent variability (coefficient of variation [CV] = 0.6, from EPA 1991), the Long-Term Average (LTA) concentration was calculated such that 99% of the allowable distribution of effluent concentrations would be below the acute- or chronic-based WLA concentrations, using the EPA (1991) TSD approach. Then the associated Maximum Daily Limit (MDL) and Average Monthly Limit (AML) were calculated, assuming that 99% of effluent concentrations would comply with the MDL and 95% with the AML. After comparing acute- and chronic-based effluent limitations, the more stringent would be applied, reflecting the approach of EPA (1991) and Oregon DEQ (undated).

Calculation of Criteria Values

Using the EPA (2018b) aluminum criteria calculator, acute and chronic criteria magnitudes were calculated for the 50 events for which pH, hardness, and DOC were measured in the Columbia River. **Figure F-1** shows the range of values and their relationship with streamflow.

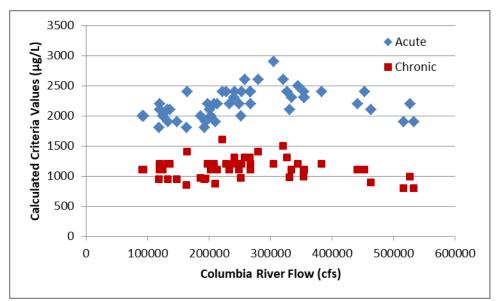


Figure F-1. Aluminum acute and chronic criteria values calculated at pH, hardness, and DOC occurring at specific Columbia River flows for 50 sample dates, 1994-2000.

NAC Aluminum Discharge

Because the flow of the NAC effluent is relatively low compared to flow of the Columbia River, the only information relevant to the hypothetical permit limit was the mixing zone dye study results. Taken from page 5 of the DEQ (undated) evaluation document, these results are shown in **Table F-1**. This analysis interpreted them as downstream dilution ratios. For illustration of hypothetical permit limit alternatives, the lowest and the average dilution factors were used.

Table F-1. NAC dye study dilution factors, measured during 84,700 cfs Columbia River flow conditions (Note: The dye study conditions completed during a period of relatively low flow to mimic worst-case dilution scenarios, 7Q10 = 74,000 cfs).

	Observed Dilution Factors				
Mixing Zone Type	Lowest	Highest	Average		
Acute mixing zone (zone of initial dilution)	20:1	1,667:1	141:1		
Chronic mixing zone	185:1	11,136:1	2,040:1		

Hypothetical Permit Limits

The acute criterion was typically two times greater than the chronic criterion (**Figure F-1**). However, because the dilution factors at the edge of the 30-foot acute mixing zone were 9 - 14 times lower than those for the 300-foot chronic mixing zone, application of the acute criterion produced a lower long-term average (LTA) than the LTA based on the chronic criterion magnitude and chronic mixing zone. Consequently, the permit limits based on the chronic criterion were not further considered and the following hypothetical permit limits and analyses are based on the acute criterion. **Table F-2** shows the four sets of potential permit limits, based on combinations of the following options: (a) lowest or average dilution factors, and (b) 10th or 50th percentile acute criterion values.

Table F-2. Acute mixing zone dilution factors, acute criteria values corresponding to the 10th and 50th percentiles, and corresponding WLA, LTA, MDL, and AML concentrations, assuming CV=0.6, 4 samples/month, and probability targets of 0.99 for attaining the WLA, 0.99 for complying with the MDL, and 0.95 for complying with the AML in the EPA (1991) Technical Support Document procedure.

Acute mixing zone dilution factor		Criterion Percentile	Acute criterion (µg/L)	WLA (μg/L) C = A*B	LTA ^a (μg/L) D = 0.321021*C	MDL ^b (μg/L) E = 3.115058*D	AML ^c (μg/L) F = 1.552358*D
1	20	10%	1,900	38,000	12,199	38,000	18,937
Lowest		50%	2,200	44,000	14,125	44,000	21,927
Average	141	10%	1,900	267,900	86,002	267,900	133,505
		50%	2,200	310,200	99,581	310,200	154,585

^a LTA values have a consistent relationship with WLA, given the 1- and 4-day averaging periods, assumed CV, and the 0.99 probability target (z=NORMSINV(0.99)):

 $AML_{acute} = LTA_{acute} * exp(z\sigma_n - 0.5\sigma_n^2) = 1.552358 LTA_{acute}$ where $\sigma_n^2 = ln (1 + CV^2/n)$, with n = 4 samples/month and z = NORMSINV(0.95)

 $LTA_{acute} = WLA_{acute} * exp(0.5\sigma^2 - z\sigma) = 0.321021 WLA_{acute}$ where $\sigma^2 = In (1 + CV^2)$

^b MDL values have a consistent relationship with the LTA (and hence WLA), given the assumed 4 samples/month, the assumed CV, the 0.99 probability target for complying with the MDL:

 $MDL_{acute} = LTA_{acute} * exp(z\sigma - 0.5\sigma^2) = 3.115058 LTA_{acute} = WLA_{acute}$ with z = NORMSINV(0.99)

^c AML values have a consistent relationship with the LTA (and hence WLA), given the assumed 4 samples/month, the assumed CV, the 0.95 probability target for complying with the AML:

In **Table F-2**, note the large difference in permit limits (as Maximum Daily Limits [MDL] and Average Monthly Limits [AML]) that resulted from the choice of the lowest versus average mixing zone factor, compared to the relatively minimal impact that resulted from the application of the 10^{th} versus 50^{th} percentile criterion magnitude. For example, application of the lowest mixing zone dilation factor reduced permit limits by 85.8% relative to limits based on the average mixing zone dilution factor (regardless on criterion percentile used), while permit limits based on the 10^{th} percentile criterion were 13.6% lower than permits based on the 50^{th} percentile criterion magnitude (regardless of dilution factor). Linking together multiple protection needbased assumptions to produce the least environmentally-conservative hypothetical NAC permit limits resulted from application of the lowest (presumptive worst-case) mixing zone dilution factor and the 50^{th} percentile criterion magnitude. Hypothetical limits for such a decision resulted in MDL = $44,000 \,\mu\text{g/L}$ and AML = $21,900 \,\mu\text{g/L}$.

Approach for Assessing the Protectiveness of the Hypothetical Permit Limits

The protectiveness of the hypothetical permit limits was examined by considering time-variable factors in a Monte-Carlo analysis involving five sets of 10,000 trials for each scenario examined. The focus of this work was to evaluate the simulated aluminum concentrations at the edge of the chronic mixing zone relative to listed species chronic low-effect EC₅ threshold concentrations. The edge of the chronic mixing zone was considered the most appropriate spatial point to evaluate simulate Al concentrations relative to species EC₅ values because (1) EPA (1991) describes application of acute criteria in acute mixing zones as concerning brief exposure of organisms drifting through the mixing zone, (2) the edge of the chronic mixing zone represents the spatial point in which the Al criteria in consultation become applicable, and (3) the direct biological effects assessment indicated species are more sensitive to long-term chronic Al exposures than brief acute exposures.

This assessment considered several time-variable parameters: (1) the effluent aluminum concentration, (2) sensitive species EC₅ values, calculated from time-variable pH, hardness, and DOC of the Columbia River, and (3) the dilution at the edge of the mixing zone.

- (1) **Effluent Aluminum Concentration.** Concentrations were assumed to be lognormally distributed, having LTA values listed in **Table F-2**, and CV = 0.6, the degree of variability used in derivation of the **Table F-2** permit limits³.
- (2) *Listed Species EC*₅ *Values.* Table F-3 shows the estimated EC₅ values for listed species that were sensitive to long-term chronic Al exposures.

³ The geometric mean, GM, of a lognormal distribution is given by GM = LTA/sqrt(1 + CV²). Its standard deviation of natural logs, σ , is given by σ = sqrt(ln(1 + CV²)). These relationships are incorporated into the EPA (1991) permit derivation approach.

-

Table F-3. Listed species estimated chronic EC₅ values used in the assessment.

Species	EC ₅ ^a			
Vernal pool fairy shrimp	433.4			
Bull trout	376.3			
Lahontan cutthroat trout				
Chum salmon				
Coho salmon				
Sockeye salmon	310.4			
Chinook salmon				
Steelhead trout				
Pacific eulachon				

^a All values expressed as total aluminum, normalized to pH 7, DOC of 1 mg/L and 100 mg/L hardness as CaCO₃; normalized using MLR equations identified in USEPA (2018).

Figure F-2 shows the vernal pool fairy shrimp EC₅ value renormalized to the paired pH, hardness, and DOC values from the 50 observations taken from the Columbia River at Warrendale, plotted as cumulative probability. Similarly, **Figure F-3** shows the EC₅ values for bull trout and for the other listed salmonids renormalized to the paired pH, hardness, and DOC values from the 50 observations taken from the Columbia River at Warrendale, plotted as cumulative probability. The EC₅ distributions are consistent with lognormal distributions having the following properties:

- Fairy shrimp: geometric mean = 777.3 μ g/L; standard deviation of natural logs = 0.116
- **Bull trout**: geometric mean = 995.8 μ g/L; standard deviation of natural logs = 0.155
- Other salmonids: geometric mean = $821.6 \mu g/L$; standard deviation of natural logs = 0.155.

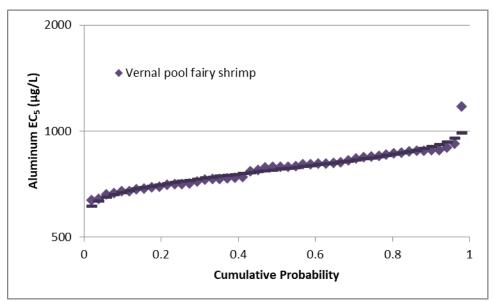


Figure F-2. Cumulative distribution of vernal pool fairy shrimp EC₅ values calculated at the pH, hardness, and DOC occurring during the 50 sample dates, 1994-2000. Darker line is the corresponding lognormal simulated distribution.

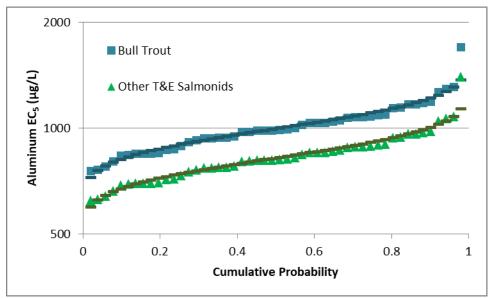


Figure F-3. Cumulative distributions of values of the bull trout EC₅ and other listed salmonids EC₅, calculated at the pH, hardness, and DOC occurring during the 50 sample dates, 1994-2000. Darker lines are the corresponding lognormal simulated distributions.

(3) Dilution at Edge of Mixing Zone. Although the dilution at the edge of the chronic mixing zone was a key factor, estimating the time variability of the dilution at the end of the mixing zone compared to the constant dilution identified from the single episode dye study in the permit fact sheet was problematic⁴. The dye study (see Table F-1) was performed under a relatively low flow condition (84,700 cfs) similar to the 7Q10 (74,000 cfs). Compared to the low flow conditions under which the dye study was done, it is logical to assume consideration of time-variable dilution would have provided additional dilution, thereby lowering the Al concentrations that were simulated to occur at the edge of the mixing zone in this analysis. Therefore, the assumption of time-invariant mixing-zone dilution provided an environmentally conservative outcome. The results shown below are based on applying the environmentally-conservative low and average dilution factors shown in Table F-1 as constant conditions.

Results: Simulated Aluminum concentrations Vs. Listed Species EC₅ Values

Figures G-4, **G-5**, and **G-6** show cumulative probability curves for Al concentrations relative to species EC₅ values predicted at the edge of the chronic mixing zone. In each figure, the x-axis is the cumulative fraction of predicted values and the y-axis is chronic Hazard Quotients (HQ), expressed as the event-specific aluminum concentration at the edge of the chronic mixing zone divided by the event-specific listed species EC₅ value. **Figures G-4**, **G-5**, and **G-6** each show four curves (e.g., Hazard Quotient distributions) to correspond to each of the four possible hypothetical permit limits (see **Table F-2**). These four curves reflect combinations of the following factors: (a) criterion percentile, 10th or 50th (see **Table F-2**), and (b) lowest versus average observed dye study dilution (see **Table F-1**), where the permit limit is based on the acute mixing-zone dilution and the chronic HQ is based on the chronic mixing-zone dilution to

-

⁴ Complete mixing with the vast flow of the Columbia River yielded no risk and was not considered here.

simulate effects at the point where the acute and chronic criteria are applicable. **Figure F-4** displays the vernal pool fairy shrimp Hazard Quotient distribution, **Figure F-5** displays the bull trout Hazard Quotient distribution, and **Figure F-6** displays the Hazard Quotient distribution applicable to other listed salmonids in Oregon.

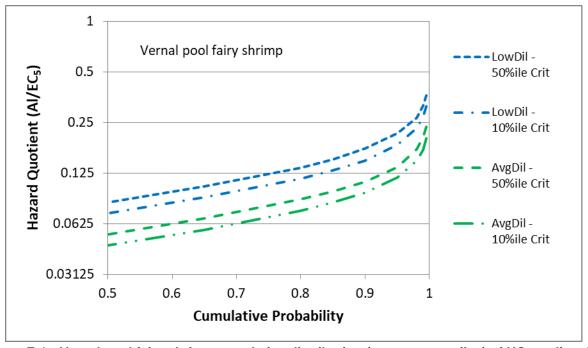


Figure F-4. Vernal pool fairy shrimp cumulative distribution (upper percentiles) of HQ predicted at the edge of the chronic mixing zone for hypothetical permit limits.

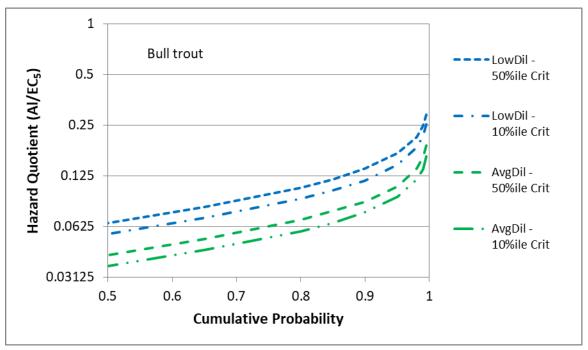


Figure F-5. Bull trout cumulative distribution (upper percentiles) of HQ predicted at the edge of the chronic mixing zone for hypothetical permit limits.

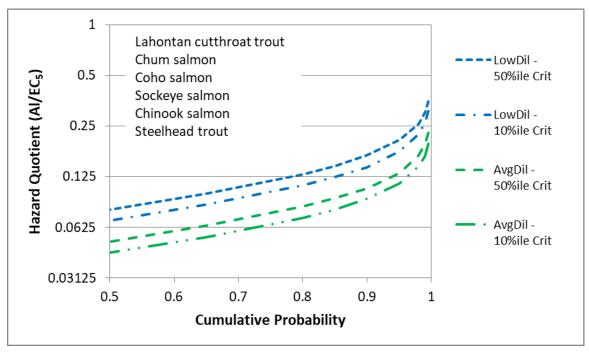


Figure F-6. Other listed salmonids cumulative distribution (upper percentiles) of HQ predicted at the edge of the chronic mixing zone for hypothetical permit limits.

The patterns are similar in all three figures. Because permit limits based on the 50^{th} percentile criteria values are slightly higher than those based on the 10^{th} percentile criteria values, they yield slightly higher HQ distribution. On the log scale (y axis) of the figures, the 10^{th} and 50^{th} percentile curves maintain a fixed distance from each other, reflecting the ratio between 10^{th} percentile criterion (1,900 μ g/L) and 50^{th} percentile criterion (2,200 μ g/L) shown in **Table F-2**. The HQ distributions predicted for low mixing-zone dilution were higher than HQ distributions based on average mixing-zone dilution. For all species, the 99^{th} centile of the HQ distribution based on the worst-case scenario (i.e., 50^{th} centile criterion magnitude, low dilution) never exceeded 0.5. This means that for 99 percent of the time, the hypothetical permitted discharge concentration for this facility would result in maximum aluminum ambient concentrations at the edge of the mixing zone that are less than half of the estimated EC₅ low effect level for the listed species considered, and thus are protective of the considered listed species.

No matter which option is used for the hypothetical permit limit, concentrations at the edge of the chronic mixing zone, under all water chemistry conditions, were predicted to be below the estimated EC₅ values. If the NAC aluminum discharge permit limits were to be updated to be based on EPA's 2018 Al criteria (US EPA 2018), Al concentrations at the edge of the chronic mixing zone, where the proposed criteria would be applied, would not affect sensitive listed species.

Fujimi Cooperation

Permit Considerations: Fujimi Corp.

This assessment shows a hypothetical calculation of a permit limit for the aluminum discharge of Fujimi Corporation. The Fujimi Corp. discharges Al into an unnamed drainage ditch that flows into Coffee Lake Creek, which is in turn a tributary to the Willamette River in Oregon. Paired samples of pH, hardness, and DOC data from nearby waterbodies were used to calculate acute and chronic Al criteria magnitudes for each of the 119 sampling events. The 10th and 50th percentiles of the distribution of criteria values were considered as possible bases for hypothetical effluent limits applicable to the Fujimi Corp. Effluent dilution was taken from the Oregon Department of Environmental Quality (DEQ) Permit Evaluation and Fact Sheet (DEQ 2012), which presented model-predicted effluent dilution at the end of the acute (1 m) and chronic (10 m) mixing zones under wet and dry season conditions. Hypothetical effluent limits were calculated based the 10th and 50th percentile acute and chronic criteria concentrations for both the wet and dry season dilutions, to be applied on a seasonal basis as intended by DEQ (2012). During the wet season, the permit values calculated from the acute criterion were found to be more limiting. During the dry season, the permit values based on the chronic criterion were found to be more limiting.

Approach for Calculating Hypothetical Permit Limits

Fujimi Corporation is involved with aluminum through manufacture of aluminum oxide abrasives and coatings. At the time of permit issuance, the discharge was a new source; the company was ending its discharge to the sanitary sewer and beginning its discharge directly to a drainage ditch that flows 1.6 miles to Coffee Lake Creek, which in turn flows 1.8 miles to the Willamette River. Fujimi Corp. discharges a relatively small volume, averaging 0.070-0.085

mgd, with maximum 0.125 mgd (DEQ 2012, page 4). The following approach was used to derive hypothetical permit limits for aluminum based on EPA's 2018 aluminum criteria.

- No water quality data (pH, hardness, and DOC) were available for the drainage ditch or Coffee Lake Creek; therefore, water quality data collected by Oregon Department of Environmental Quality at various locations were used to calculate acute and chronic criteria magnitudes. Water quality at these sites is expected to be reasonably representative of conditions at the discharge site:
 - Willamette River at Canby Ferry (112 observations; about 5.7 miles upstream of the confluence of Willamette River and Coffee Lake Creek)
 - Willamette River 0.5 miles downstream of I-5 (Wilsonville; 1 observation; about
 9.2 miles upstream of the confluence of Willamette River and Coffee Lake Creek)
 - Willamette River at Hebb Park Boat Ramp (3 observations; about 5.2 miles upstream of the confluence of Willamette River and Coffee Lake Creek)
 - Molalla River at River Mile 0.2 (3 observations; about 7.2 miles upstream of the confluence of Willamette River and Coffee Lake Creek)
- Event-specific aluminum acute and chronic criteria magnitudes were calculated using the simultaneously measured pH, hardness, and DOC at the above Oregon DEQ sampling stations.
- Although the Fujimi facility produces aluminum oxide particles, which are insoluble, the effluent total recoverable aluminum was assumed to be in the form of aluminum hydroxides, which are the mildly soluble, floc-forming chemical species in the toxicity tests underlying the aluminum criterion. It was not clear whether the Fujimi Corp. aluminum oxide production processes actually produce the aluminum hydroxides addressed by the criterion (and that would be targeted for measurement by a milder pH 4 extraction procedure). But this assessment maintained the implicit worst-case assumption that all effluent total recoverable aluminum was in the toxic form intended to be covered by the criterion.
- Receiving water dilution was obtained from the DEQ (2012) Fact Sheet.
 - During the dry season, there is no dilution, and the criterion is to be met at the end
 of the pipe. Under this condition there was no assumption required about an
 upstream aluminum concentration.
 - O During the wet season, the Fact Sheet (page 11) assigns a 1-m acute mixing zone with a dilution factor of 4, and a 10-m chronic mixing zone with a dilution factor of 14. Under this condition this analysis assumes zero upstream concentration of toxic forms of aluminum. Assuming the concentrations of toxic (bioavailable) forms of aluminum are negligible in upstream waters maximizes potential Al inputs from the simulated discharger.
- The dry and wet season dilutions were coupled with the 10th and 50th percentile acute and chronic criteria magnitudes to obtain Waste Load Allocation (WLA) target effluent concentrations for the eight scenarios:
 - 1. 10th centile CCC X Dry Season Dilution
 - 2. 50th centile CCC X Dry Season Dilution
 - 3. 10th centile CCC X Wet Season Dilution
 - 4. 50th centile CCC X Wet Season Dilution
- 5. 10th centile CMC X Dry Season Dilution
- 6. 50th centile CMC X Dry Season Dilution
- 7. 10th centile CMC X Wet Season Dilution
- 8. 50th centile CMC X Wet Season Dilution

• Assuming a typical degree of effluent variability (CV = 0.6, from EPA 1991), the prospective Long-Term Average (LTA) concentration was calculated such that 99% of the allowable distribution of effluent concentrations would be below the acute- or chronic-based WLA concentrations, using the EPA (1991) TSD approach. Then the associated Maximum Daily Limit (MDL) and Average Monthly Limit (AML) were calculated, assuming 99% of effluent concentrations would comply with the MDL and 95% with the AML. After comparing prospective acute- and chronic-based effluent limits, the more stringent would be incorporated into the permit, reflecting the approach of EPA (1991) and Oregon DEQ (2012).

Calculation of Criteria Values and Dilution Factors

Acute and chronic criteria magnitudes were calculated for the 119 sampling events for which pH, hardness, and DOC were measured. **Figure F-7** shows the range of values. **Table F-4** shows the dilution factors for the drainage ditch, taken from page 11 of DEQ (2012).

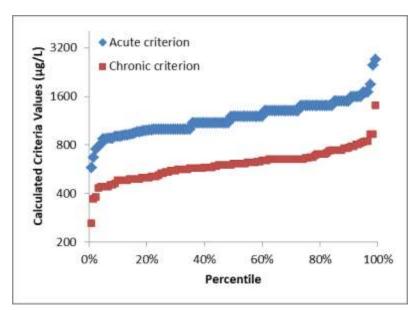


Figure F-7. Aluminum acute and chronic criterion values calculated at pH, hardness, and DOC of the available 119 sampling events in Willamette River near the confluence of Coffee Lake Creek, 2000-2016.

Table F-4. Fujimi effluent dilution factors from DEQ (2012).

	Dilution Factors		
Mixing Zone Type	Dry Season	Wet Season	
Acute mixing zone (zone of initial dilution)	1	4	
Chronic mixing zone	1	14	

Fujimi Corp. Aluminum Discharge

Table F-5 shows potential permit limits based on the 2018 aluminum criteria, for either 10th or 50th percentile acute and chronic criteria magnitudes, coupled with dry and wet season dilution factors. Briefly, for dry-season conditions, the acute and chronic dilution factors were the same: undiluted effluent⁵ in the receiving water. Therefore, governing limits for the dry season were based on the chronic criterion. For wet-season conditions, the 3.5-fold difference in the acute and chronic dilution factors (i.e., dry season dilution factor of 4 versus the wet season dilution factor of 14) outweighs the roughly 2-fold difference in the acute and chronic criteria concentrations, such that the permit limits are based on the acute criterion. Overall, choosing the 50th percentile criterion values increased the permit limit around 30 percent compared to permit limits based on the 10th percentile criteria magnitudes.

-

⁵ Although the effluent is undiluted during the dry season, lack of information on its pH, hardness, and DOC prevents calculation of criterion concentrations based on effluent water quality. Therefore, the water chemistry collected from various sites in the Willamette River served as a surrogate measure of the undiluted effluent chemistry, even though the chemistry between the Willamette River and the Fujimi Corp. effluent are likely different from one another.

Table F-5. Acute and chronic mixing zone dilution factors, acute and chronic criteria values corresponding to the 10th and 50th percentiles, and corresponding WLA, LTA, MDL, and AML concentrations, assuming CV = 0.6, 4 samples/month, and probability targets of 0.99 for attaining the WLA, 0.99 for complying with the MDL, and 0.95 for complying with the AML in the TSD procedure. In accord with EPA (1991) and Oregon DEQ procedures, values surrounded by thick borders were the more limiting scenarios and would be used to set the permit limits during their respective seasons. Consequently, the values surrounded by thick borders remained the focus of the analysis, with the remaining values presented for comparative purposes.

Mixing	Zone D Factor	Dilution			Based on Acute Criterion				Based on Chronic Criterion				
	Acute	Chronic	Criterion Percentile	Acute Criterion (µg/L)	WLA (µg/L)	LTAª (µg/L)	MDL ^b (µg/L)	AML ^c (μg/L)	Chronic Criterion (µg/L)	WLA (µg/L)	LTA ^a (µg/L)	MDL ^b (µg/L)	AML ^c (μg/L)
Season	Α	В		С	D = A*C	E = 0.321021*D	F = 3.115058*E	G = 1.552358*E	н	J = B*H	K = 0.52738*J	L = 3.115058*K	M = 1.552358*K
Season		В	10%	900	900	289	900	449	480	480	253	789	393
Dry	1	1	1070	900	900	209	300	443	400	400	233	709	393
			50%	1,200	1,200	385	1,200	598	610	610	322	1,002	499
Wet	4	14	10%	900	3,600	1,156	3,600	1,794	480	6,720	3,544	11,040	5,502
vvet	4	14	50%	1,200	4,800	1,541	4,800	2,392	610	8,540	4,504	14,030	6,992

^a LTA values have a consistent relationship with their WLA, given the assumed CV, the 0.99 probability target (z = NORMSINV(0.99)), and the 1- and 4-day averaging periods:

 $LTA_{acute} = WLA_{acute} \times exp(0.5\sigma^2 - z\sigma) = 0.321021 WLA_{acute} \text{ where } \sigma^2 = \ln(1 + CV^2)$

 $MDL = LTA * exp(z\sigma - 0.5\sigma^2) = 3.115058 LTA where z = NORMSINV(0.99)$

 $AML = LTA * exp(z\sigma_0 - 0.5\sigma_0^2) = 1.552358 LTA$ where $\sigma_0^2 = ln (1 + CV^2/n)$, with n = 4 samples/month and z = NORMSINV(0.95)

 $LTA_{chronic} = WLA_{chronic} x \exp(0.5 \sigma_n^2 - z\sigma_n) = 0.52738 WLA_{chronic}$ where $\sigma_n^2 = \ln(1 + CV^2/n)$, with n = 4 days averaging period.

^b MDL values (acute or chronic-based) have a consistent relationship with their LTA (and hence WLA), given the assumed 4 samples/month, the assumed CV, the 0.99 probability target for complying with the MDL:

^c AML (acute or chronic-based) values have a consistent relationship with their LTA (and hence WLA), given the assumed 4 samples/month, the assumed CV, the 0.95 probability target for complying with the AML:

Approach for Assessing the Protectiveness of the Hypothetical Permit Limits

The protectiveness of the hypothetical permit limits was examined by considering time-variable factors in a Monte-Carlo analysis involving five sets of 10,000 trials for permit limits based on either the 10th or 50th percentile criteria concentrations. This work evaluated the aluminum concentrations calculated to occur at the edge of the chronic mixing zone relative to listed species chronic low effect EC₅ thresholds. The edge of the chronic mixing zone was considered the most appropriate spatial point to evaluate simulate Al concentrations relative to species EC₅ values because (1) EPA (1991) describes application of acute criteria in acute mixing zones as concerning brief exposure of organisms drifting through the mixing zone, (2) the edge of the chronic mixing zone represents the spatial point in which the Al criteria in consultation become applicable, and (3) the direct biological effects assessment indicated species are more sensitive to long-term chronic Al exposures than brief acute exposures.

This assessment considered three time-variable parameters: (1) the effluent aluminum concentration, (2) the dilution at the edge of the chronic mixing zone, and (3) sensitive species EC₅ values calculated from time-variable pH, hardness, and DOC representative of the receiving water.

- (1) **Effluent Aluminum Concentration.** Concentrations are assumed to be lognormally distributed, having LTA values listed in **Table F-5** (thick-outlined), and CV = 0.6, the degree of variability used in derivation of the **Table F-5** permit limits⁶.
- (2) Dilution at the Edge of the Mixing Zone. Consistent with DEQ (2012), two of dilution factors were considered, corresponding to wet and dry seasons, with dilution shown in **Table F-4**. Because DEQ (2012) does not consider within-season (i.e., dry or wet) gradations in the level of dilution, no such gradations were considered here. DEQ (2012), page 19, describes the dry season as summer. Based on the monthly pattern of streamflow in this area of Oregon, shown in **Figure F-8** for the nearby Tualatin River, it was assumed that the dry-season dilution occurs in one-third of the year (June 15 October 15), and wet-season dilution occurs for the remaining two-thirds of the year.
- (3) Listed Species EC₅ Values. Table F-6 shows the estimated EC₅ values for listed species that were sensitive to long-term chronic Al exposures.

F-19

⁶ The geometric mean, GM, of a lognormal distribution is given by GM = LTA/sqrt(1 + CV²). Its standard deviation of natural logs, σ , is given by σ = sqrt(ln(1 + CV²)). These relationships are incorporated into the EPA (1991) permit derivation approach.

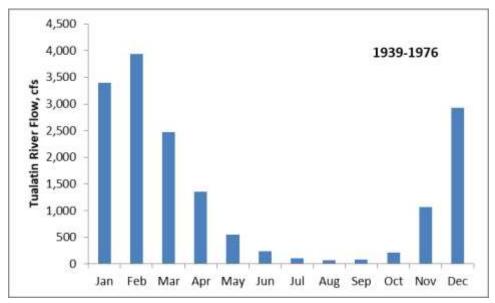


Figure F-8. Mean monthly flow pattern in the nearby Tualatin River (USGS Gage 14206500 at Farmington, Oregon), indicating portion of year with minimal flow.

Table F-6. Listed species estimated chronic EC₅ values used in the assessment. Values are for the standard condition pH=7, hardness=100 mg/L, and DOC=1 mg/L.

Species	Chronic EC ₅ ^a
Vernal pool fairy shrimp	433.4
Bull trout	376.3
Lahontan cutthroat trout	
Chum salmon	
Coho salmon	
Sockeye salmon	310.449
Chinook salmon	
Steelhead trout	
Pacific eulachon	

^a All values expressed as total aluminum, normalized to pH 7, DOC of 1 mg/L and 100 mg/L hardness as CaCO₃; normalized using MLR equations identified in USEPA (2018).

Figure F-9 shows the vernal pool fairy shrimp EC₅ value renormalized to the paired pH, hardness, and DOC values from the 119 observations taken in the Willamette River near the confluence of Coffee Lake Creek, plotted as cumulative probability. Similarly, **Figure F-10** shows bull trout EC₅ values and EC₅ values for the other salmonids renormalized to the paired pH, hardness, and DOC values from the 119 observations taken from the Willamette River, plotted as cumulative probability. The EC₅ distributions are consistent with lognormal distributions having the following properties:

- **Fairy shrimp**: geometric mean = $414.4 \mu g/L$; standard deviation of natural logs = 0.271
- **Bull trout**: geometric mean = $544.6 \mu g/L$; standard deviation of natural logs = 0.215
- Other salmonids: geometric mean = $449.3\mu g/L$; standard deviation of natural logs = 0.215.

The same EC₅ distributions are applied to both wet and dry seasons, consistent with the application of the same criteria values to wet and dry seasons.⁷

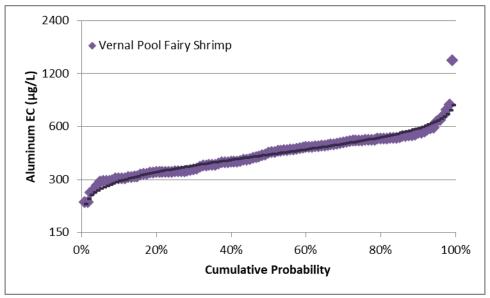


Figure F-9. Cumulative distribution of vernal pool fairy shrimp EC₅ values calculated at the pH, hardness, and DOC occurring during the 119 sample dates of waters in the general area, 2000-2016. Darker line is the corresponding simulated lognormal distribution.

_

 $^{^7}$ For the 119 water quality observations for which criterion and EC₅ values were calculated, the arithmetic mean chronic criterion was 601 μg/L among 71 wet-season observations and 631 μg/L among 48 dry-season observations. This difference is not statistically significant. Furthermore, the final results would be insensitive to whether the assessment had or had not discerned any slight differences in criteria and EC₅ values applicable to wet and dry seasons, because the slight increase in the allowed dry-season effluent concentrations would generally match the slight increase in the dry season EC₅ values.

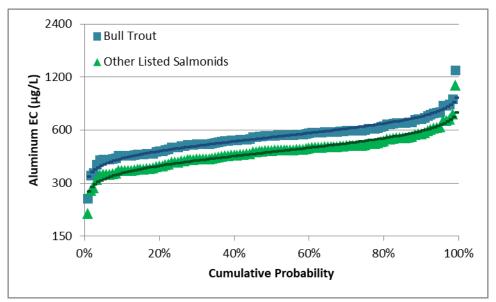


Figure F-10. Cumulative distributions of values of the bull trout EC₅ and other listed salmonids EC₅, calculated at the pH, hardness, and DOC occurring during the 119 sample dates of waters in the general area, 2000-2016. Darker lines are the corresponding lognormal simulated distributions.

Results: Simulated Aluminum concentrations Vs. Listed Species EC₅ Values

Figures G-11, **G-12**, and **G-13** show cumulative probability curves for toxicity to listed species predicted at the edge of the chronic mixing zone. In each figure the x-axis is cumulative fraction of predicted values, and the y-axis is chronic Hazard Quotient (HQ), expressed as the event-specific aluminum concentration at the edge of the chronic mixing zone divided by the event-specific listed species EC₅. Each graph shows two curves, one corresponding to the permit limit based on the 10th percentile criterion, and one corresponding to the permit limit based on the 50th percentile criterion. As previously discussed, the assessment assumed the following:

- One-third of time dry, applying the dry-season **Table F-5** thick-outlined limits and measuring HQ at the end of the pipe (no dilution);
- Two-thirds of time wet, applying the wet-season **Table F-5** thick-outlined limits and measuring HQ at edge of the chronic mixing zone (i.e., 14-fold dilution).

Assuming vernal pool fairy shrimp, bull trout, or other listed salmonids were to occur in the unnamed drainage ditch that the Fujimi Corp. dischargers into, then results of the discharge simulation indicates Al concentrations at the edge of the chronic mixing zone may exceed listed species chronic low effect threshold values (i.e., EC₅) under very limited circumstances, less than 10% of the time for all considered species.

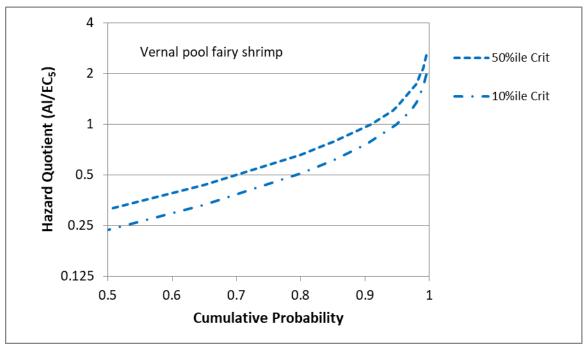


Figure F-11. Vernal pool fairy shrimp cumulative distribution (upper percentiles) of HQ predicted at point of application of the criterion (end of pipe during dry season, one-third of time; and edge of chronic mixing zone during wet season, two-thirds of time) for hypothetical permit limits based on either the 50th or 10th percentile criterion.

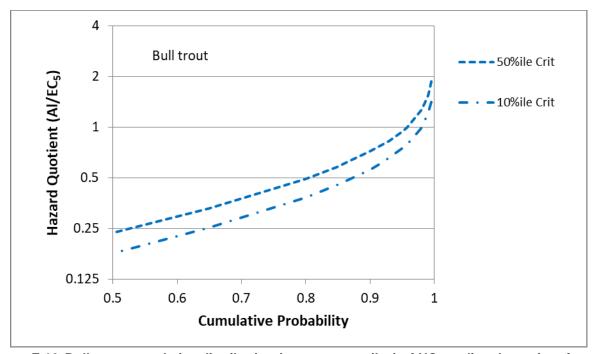


Figure F-12. Bull trout cumulative distribution (upper percentiles) of HQ predicted at point of application of the criterion (end of pipe during dry season, one-third of time; and edge of chronic mixing zone during wet season, two-thirds of time) for hypothetical permit limits based on either the 50th or 10th percentile criterion.

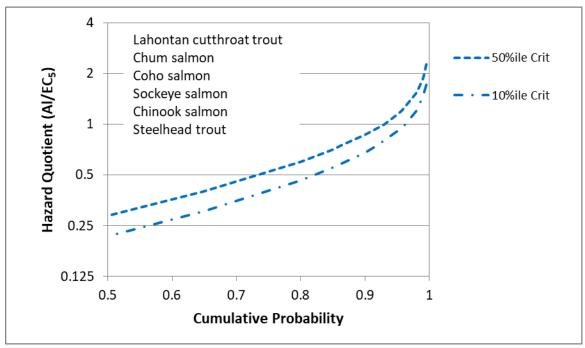


Figure F-13. Other listed salmonids cumulative distribution (upper percentiles) of HQ predicted at point of application of the criterion (end of pipe during dry season, one-third of time; and edge of chronic mixing zone during wet season, two-thirds of time) for hypothetical permit limits based on either the 50th or 10th percentile criterion.

Results of **Figures G-11**, **G-12**, and **G-13** are summarized in **Table F-7**, which presents the predicted percentage of time Al concentrations at the edge of the chronic mixing zone exceeded EC_5 values for vernal pool fairy shrimp, bull trout, and the other listed salmonids in Oregon (i.e., percentage of the time $HQ \ge 1$). The percent of the time Al exceeded listed species EC_5 values at the edge of the mixing zone does not fully imply effects are expected to occur under such circumstances. Overall, the probability that sensitive listed species occur at edge of the mixing zone, simultaneously with the low percent of time the EC_5 could possibly be exceeded, suggest an over low theoretical probability of effects.

Table F-7. Predicted percentage of time exceeding the EC₅ values for vernal pool fairy shrimp, bull trout, and the other listed salmonids.

	Predicted Percentage of Time that Hazard Quotients Exceed 1.0					
Permit limits based on:	Vernal pool fairy shrimp Bull trout		Other listed salmonids			
10 th percentile criterion	5.0%	2.0%	3.8%			
50th percentile criterion	9.1%	4.3%	7.1%			

Discharger Assessment – Final Statement:

The information above provides readers with a better understanding of how discharger permitting may operate in Oregon as part of the Al criteria implementation. Because these are implementation procedures not subject to criteria promulgation, EPA did not consider this as part of its effects analysis. Moreover, EPA was not able to acquire site-specific data for the analysis. Therefore, Appendix F is provided as supplemental information and can be considered potentially representative of future permitting activities in Oregon