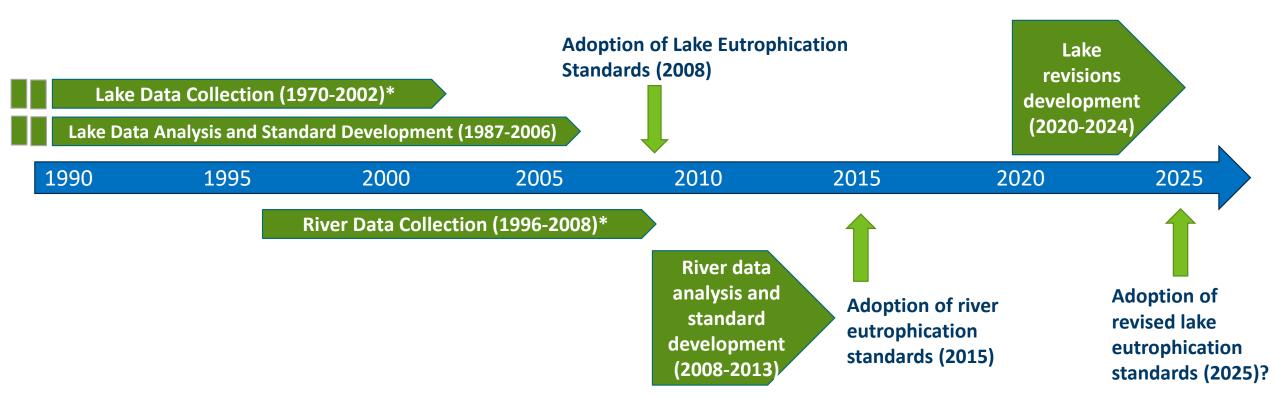
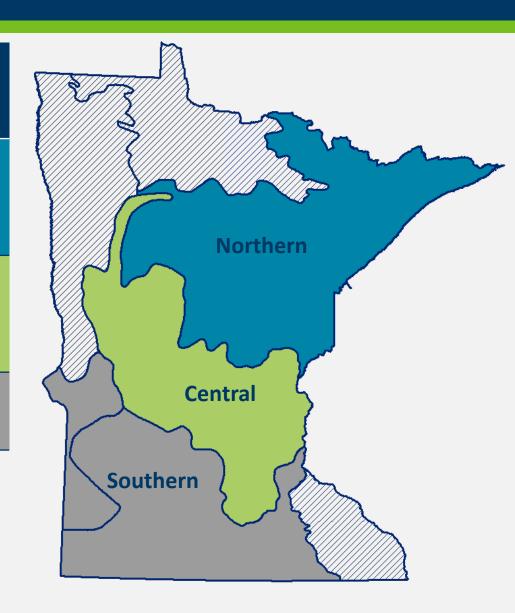


Minnesota's eutrophication standards

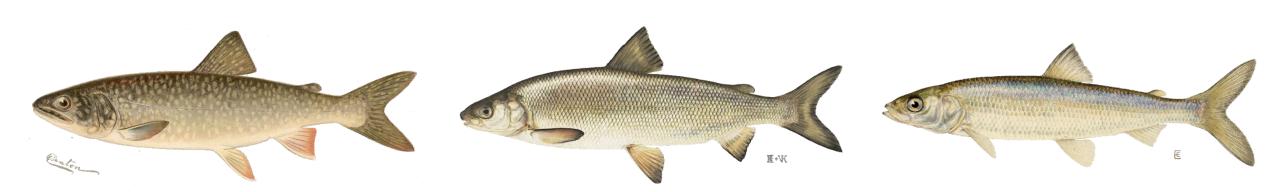

Will Bouchard, MPCA

EPA Region 10 Virtual Nutrients Meeting October 2, 2024

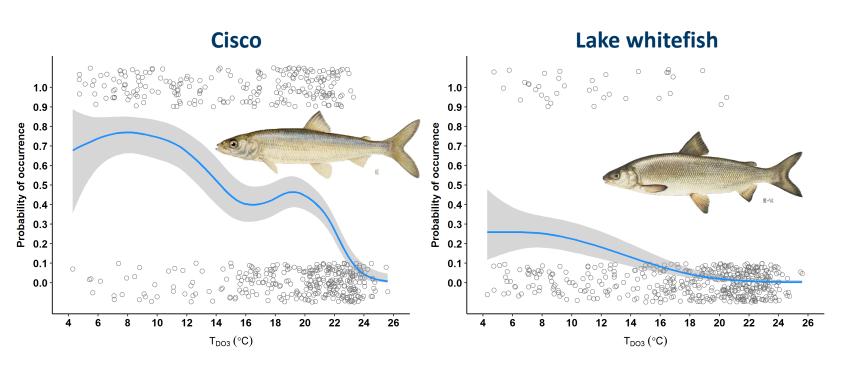
Minnesota's eutrophication standards

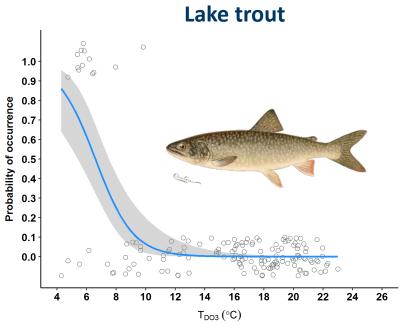

- Minnesota adopted statewide lake eutrophication standards in 2008
- Minnesota adopted statewide river eutrophication standards in 2015
- Currently developing revisions to the lake eutrophication standards

Minnesota's current lake eutrophication standards

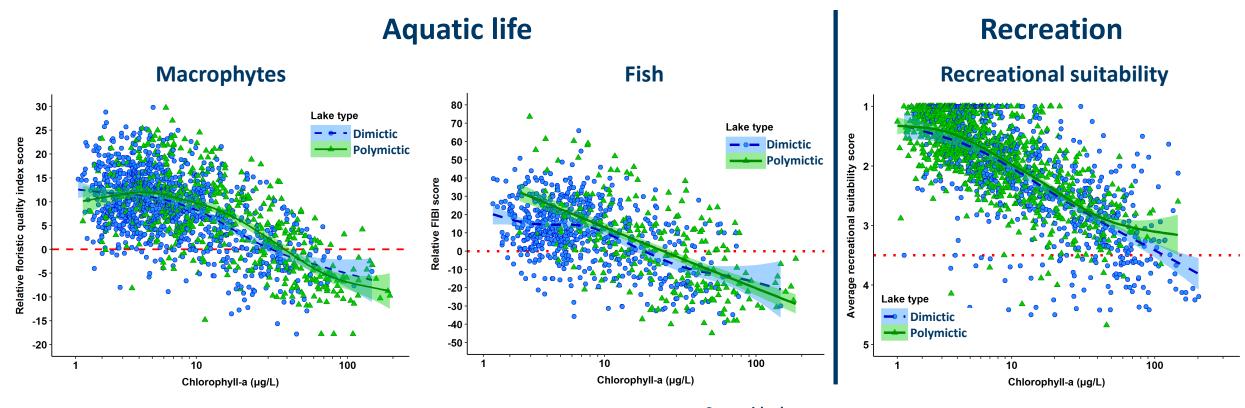

Lake type*	Total phosphorus (μg/L)	Chlorophyll- <i>a</i> (µg/L)	Secchi depth (m)
Northern lake trout lakes	12	3	≥4.8
Northern stream trout lakes	20	6	≥2.5
Northern lakes	30	9	≥2.0
Central stream trout lakes	20	6	≥2.5
Central (dimictic) lakes	40	14	≥1.4
Central shallow (polymictic) lakes	60	20	≥1.0
Southern (dimictic) lakes	65	22	≥0.9
Southern shallow (polymictic) lakes	90	30	≥0.7

- Impairment requires TP and at least one response variable (chl-a, Secchi depth) to exceed the criteria
- Requires a minimum of 8 samples during the summer index period (June to September) over 2 years




Lake water quality standards revisions

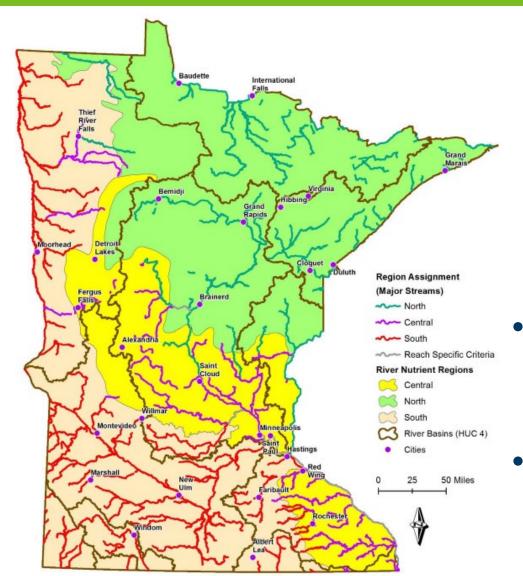
- 1) Development of a separate eutrophication standards for northern polymictic (shallow) and dimictic lakes
- 2) Protections for non-trout, cold water fishes in lakes oxythermal habitat and lake eutrophication



Oxythermal habitat - T_{DO3}

Beneficial use endpoints used for standards development

Statewide dataset
Generalized additive models (GAM) with 90% confidence intervals
R version 3.6.3 [R Development Core Team 2020]; "mgcv" package (Wood 2019)


Draft revised lake eutrophication criteria framework

Thermal			T _{DO3}	Total phosphorus	Chlorophyll-a	Secchi depth
habitat	Region/type	Stratification	(°C)	(μg/L)	(µg/L)	(m)
Cold	Lake trout	Dimictic	8.8	12 → 7	3	$4.8 \rightarrow 3.3$
Cold	Lake whitefish	Dimictic	17.2	12	5	2.6
Cold	Cisco (north/central)	Dimictic	21.5	25	12	1.4
Cold	Stream trout	-	-	20 → 15	6	2.5 → 2.4
Warm	Northern	Dimictic	-	30 → 20	9	2.0 → 1.8
Warm	Northern	Polymictic	-	30	9 → 16	$2.0 \rightarrow 1.1$
Warm	Central	Dimictic	-	40	14	1.4
Warm	Central	Polymictic	-	60	20	1.0
Warm	South	Dimictic	-	65	22	0.9
Warm	South	Polymictic	-	90	30	0.7

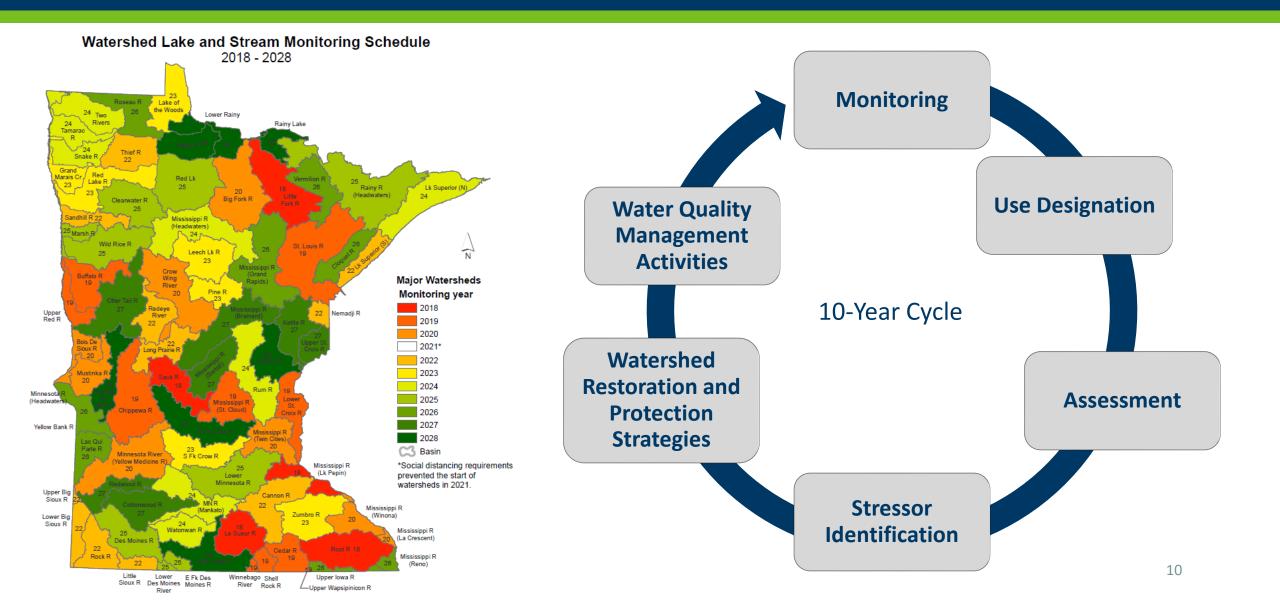
Blue highlight = new standard or lake type

Yellow highlight = modification to existing standard

Minnesota's River Eutrophication Standards

Region	TP (μg/L)	Chl-a (µg/L)	DO Flux (mg/L)	BOD ₅ (mg/L)
North	50	7	3.0	1.5
Central	100	18	3.5	2.0
South	150	35	4.5	3.0

- Impairment requires TP and at least one response variable (chl-a, DO Flux, or BOD₅) to exceed the criteria
- Requires a minimum of 12 samples during the summer index period (June to September) over 2 years


Site-specific eutrophication standards

- Site-specific standards are developed for reservoirs (<14 d residence time) and lakes in Lake Agassiz Plains, Northern Minnesota Wetlands, or Driftless Area ecoregions
- A small subset of rivers and lakes have site-specific standards

River site-specific standards				
	TP	Chl-a	DO flux	BOD ₅
River Reach	(µg/L)	(µg/L)	(mg/L)	(mg/L)
Mississippi River - Pool 1	100	35	-	-
Mississippi River - Pool 2	125	35	-	-
Mississippi River - Pool 3	100	35	-	-
Mississippi River - Lake Pepin	100	28	-	-
Mississippi River - Pools 5-8	100	35	-	-
Crow Wing River	75	13	3.5	1.7
Crow River	125	27	4.0	2.5

Lake site-specific standards
Lake Byllesby
Lake Hiawatha
Lake Nokomis
Lake Winona
Lake Zumbro
Zumwalde Lake
Great Northern Lake
Knaus Lake
Krays Lake
Horseshoe North Lake
Koetter Lake
Bolfing Lake
Cedar Island Lake
Horseshoe South Lake
Horseshoe West Lake
Spring Lake

Intensive Watershed Monitoring (IWM)

Thank You

Will Bouchard

Research Scientist

Minnesota Pollution Control Agency

520 Lafayette Road

Saint Paul, MN 55155-4194

phone: 651-757-2333

email: will.bouchard@state.mn.us

