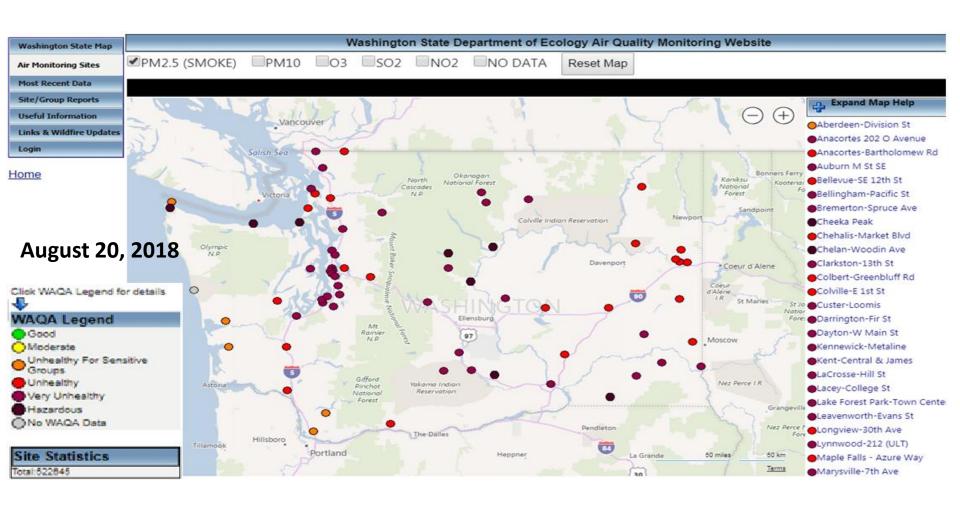
Washington Wildfire Smoke Mortality Study


EPA Smoke Management Conference 29-30 May 2019, Seattle, WA

Study Design

1.	 Concentration-Response Factor Approach Apply mortality estimates from a previous epidemiologic study Incorporate Washington data for 2006-2017: PM2.5 concentrations Baseline mortality rate Population 	EXPECTED COUNTS
2.	Validate results with Washington mortality data from 2006-2017	OBSERVED COUNTS

Daily PM2.5 levels surge with wildfire smoke

Wildfire Smoke Day Definition

• Any day over 20.4 μg/m³

- Any day between 9 and 20.4 μ g/m³ if:
 - Part of an event with 2 of 3 consecutive days are greater than 9 μ g/m³ and one or more days greater than 15 μ g/m³
 - For urban areas (Seattle, Tacoma, Spokane), at least 50% of the area monitors greater than 9 μg/m³

Washington 2006-2017, June through September

	Daily average PM2.5 (μg/m³)	SE
Wildfire smoke	23.4	2.4
Non-wildfire smoke	5.3	0.1
Increase	18.1	2.5

Smoke Concentration-Response Factor approach

$\Delta Mortality = y_0(e^{-\beta \Delta X} - 1)Pop$

- Δ Mortality > an estimate of excess mortalities attributable to PM_{2.5}
- y_0 > baseline mortality rate
- e > Euler's number, the natural log root
- β > concentration—response factor
- ΔX > change in PM_{2.5} concentration

Pop > size of the exposed population

Search for wildfire smoke health effect epidemiology

Select studies that reported daily average PM_{2.5} concentrations together with quantified changes in mortality odds ratios

Multi-year studies of daily average wildfire PM_{2.5} concentrations and natural cause mortality rates

Environmental Research 151 (2016) 351-358

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

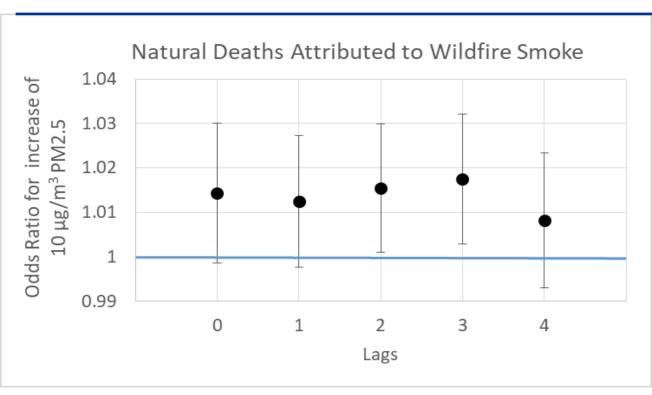
Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland

Virpi Kollanus ^a, Pekka Tiittanen ^a, Jarkko V. Niemi ^{b,c}, Timo Lanki ^{a,d}

Sarah B. Henderson and Jiayun Yao

The association between fine particulate matter (PM2.5) and cardio-pulmonary mortality on days with high wildfire activity

Environmental Health
Submitted


^a Department of Health Protection, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland

b Helsinki Region Environmental Services Authority, P.O. Box 100, FI-00066 HSY, Helsinki, Finland

C Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 University of Helsinki, Helsinki, Finland

d Unit of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland

Henderson & Yao, Wildfire Smoke Study, Submitted

- British Columbia 2004-2015
- All natural mortalities
- All ages, male & female
- Case-crossover, logistic regression
- Lags 0-4 days
- PM_{2.5} concentration model capped at
- 150 μg/m³

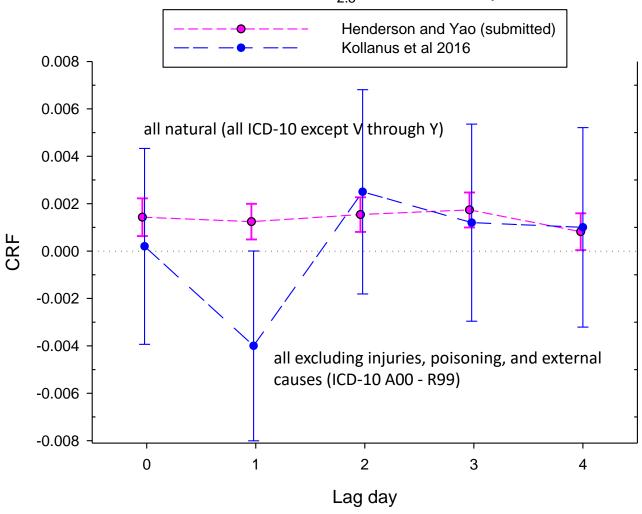
Henderson SB, Yao J. The association between fine particulate matter (PM_{2.5}) and cardiopulmonary mortality on days with high wildfire activity. *Environmental Health*. *Submitted*.

Concentration–Response Factor
$$= \beta = \frac{\ln (OR)}{\Delta PM}$$

(CRF) the estimated slope, β , of the log-linear relation between concentration and mortality)

CRFs express odds ratios or relative risks per unit PM2.5

Wildfire PM_{2.5} linked mortality Henderson and Yao (submitted) 0.008 0.006 all natural (all ICD-10 except V through Y) 0.004 0.002 0.000 -0.002 -0.004 -0.006 -0.008


2

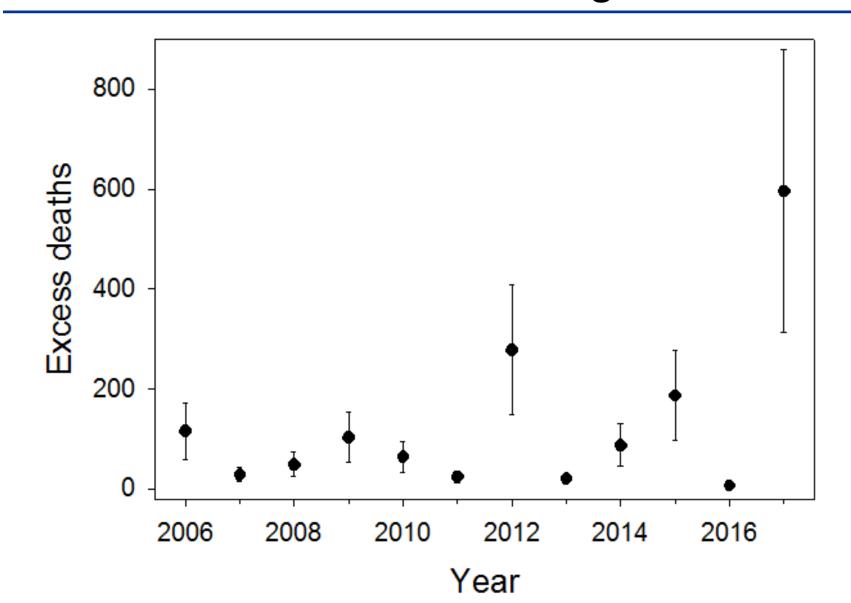
Lag day

3

0

Wildfire PM_{2.5} linked mortality

Washington 2006-2017, June through September


Baseline = Non-wildfire smoke day levels from in study years

Non-wildfire smoke day avg. mortality: 1.75 per 100,000 (SE 0.0198)

Avg. Population 2006 - 2017: 6,722,824 (SD 259,430)

CRF-based estimates of smoke-attributable deaths in Washington

Mortality Associated with Wildfire Smoke Exposure in Washington State

Annie Doubleday, MPHc May 23, 2019

BACKGROUND

Literature Background

- Evidence for association between wildfire smoke exposure and non-traumatic mortality is **mixed**
 - A few studies find an association with all non-traumatic mortality among ages 65+
 - Some find association with respiratory or cardiovascular mortality
- No mortality studies in WA
 - 2 hospitalization studies from 2012
 - Gan et al. 2017¹
 - DOH 2012 report²

¹Gan, R. W., Ford, B., Lassman, W., Pfister, G., Vaidyanathan, A., Fischer, E., et al. (2017). Associations with cardiopulmonary-related hospital admissions, 1(3), 122–136. https://doi.org/10.1002/2017GH000073.

²Washington State Department of Health. (2012). Surveillance Investigation of the Cardiopulmonary Health Effects of the 2012 Wildfires in North Central Washington State.

Goal

Epidemiological analysis of wildfire smoke exposure and non-traumatic mortality in Washington, 2006-2017

METHODS

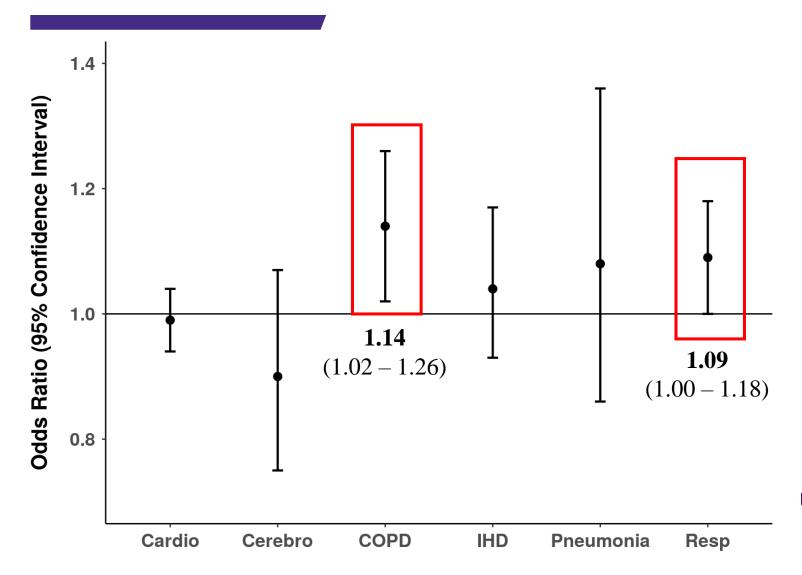
Methods

- Exposure metric
 - 24-hour average PM_{2.5} and humidex data from air quality monitoring network combined with modeled PM_{2.5} from the AIRPACT model
- Health outcome
 - Non-traumatic mortality in Washington State
 - June-September, 2006-2017
- Time-stratified case-crossover design
 - Cases compared to themselves to control for confounding
 - Compare exposure on day of death to exposure on referent days
 - Estimate odds ratio day of death, and on the four days prior to death

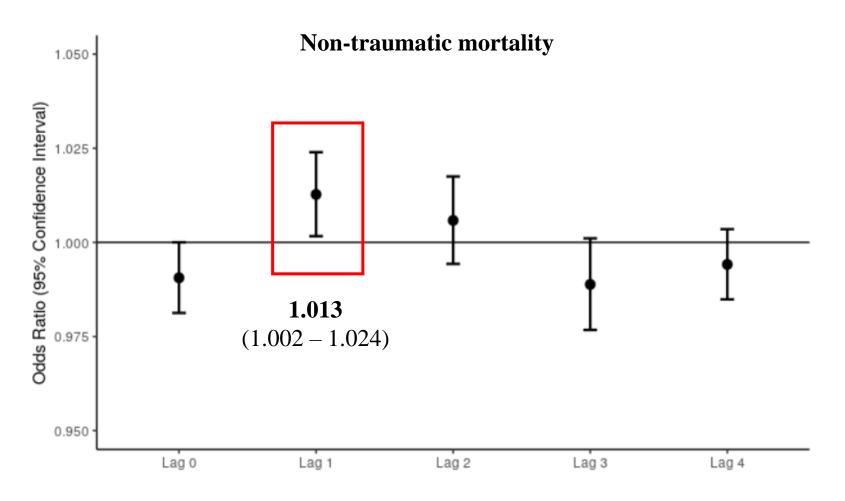
Analyses specified a priori

- A priori, we wanted to examine:
 - All same-day non-traumatic mortality
 - Causes of death: cardiovascular and respiratory
 - Age group, with emphasis on adults 65 and over
 - Effect of exposure on the four days preceding death (lag analysis)

RESULTS



Results: Primary Analysis


Category	Adjusted OR (95% CI)	N (%)		
All non-traumatic	1.01 (0.99, 1.04)	171,804 (100)		
Cause of death				
Cardiovascular	0.99 (0.94, 1.04)	44,565 (25.9)		
Respiratory	1.09 (1.00, 1.18)	16,286 (9.5)		
Age group (years)				
65-84	1.02 (0.98, 1.06)	75,110 (43.4)		
85+	1.00 (0.96, 1.05)	57,618 (33.3)		

Results: Primary Analysis

Results: Lag Analysis

Results: Secondary Analysis

Category	Adjusted OR (95% CI)	N (%)				
All non-traumatic	1.01 (0.99, 1.04)	171,804 (100)				
Respiratory causes, by age group						
0-4	1.52 (0.58, 3.97)	119 (0.7)				
5-14	-	28 (0.2)				
15-44	0.91 (0.45, 1.84)	217 (1.3)				
45-64	1.35 (1.09, 1.67)*	2,152 (13.2)				
65-84	1.08 (0.96, 1.21)	8,489 (52.1)				
85+	1.00 (0.86, 1.16)	5,281 (32.4)				
COPD causes, by age group						
45-64	1.33 (1.00, 1.78)	1,281 (13.4)				
65-84	1.14 (0.99, 1.31)	5,654 (59.1)				
85+	1.04 (0.85, 1.28)	2,584 (27.0)				

DISCUSSION

Discussion

- Overall effect estimates for primary analysis are similar to what other studies have found for mortality
- Other studies find effects for ages 65+
 - No other studies find increase in any cause of mortality for ages 45-64
 - Possible explanation: older worker effect
- Evidence for a lagged effect seen in many studies
- No other studies have examined COPD mortality
 - Evidence in literature for association between wildfire smoke exposure and an increase in COPD morbidity

Limitations

- Challenge of separating anthropogenic PM_{2.5} and wildfire smoke PM_{2.5}
- PM₂₅ area monitors
 - Assuming area exposure equals personal exposure
- Inclusion of 2018 data would increase power and tighten confidence intervals of effect estimates

CRF approach

- Results are not age- or heat-adjusted
- PM_{2.5} levels in WA exceeded upper limit used in the BC study

Methods Comparison

CRF approach

- Like other human health impact decision-support tools
- Differing exposure characterization

Epidemiological analysis

- More robust approach
- Controls for confounders and seasonality

Conclusion

- Both approaches indicate evidence for some association between wildfire smoke exposure and mortality in WA in recent years
- The effect estimates are sensitive to exposure definition
- Research needed to determine a gold standard method for wildfire smoke exposure
- Research needed to further explore subgroups, to examine less severe endpoints, and to explore long term exposure
- There is currently insufficient information to determine if there is a safe level of population exposure to wildfire smoke

Thank you!

Annie Doubleday

doubleda@uw.edu

Matt Kadlec

matt.kadlec@ecy.wa.gov

Main Study Contributors:

Matt Kadlec
Jill Schulte
Ranil Dhammapala

Annie Doubleday Lianne Sheppard Tania Busch Isaksen Julie Fox

