3404 Lake Woodard Road Raleigh, NC 27604 (919) 250-0285 (ph); (919) 250-1835 (Fax)

www.deeco.com

REPORT NO: 022224-3317

PROJECT: 23-3317

DATE: February 22, 2024

TYPE: Emission Test Report

Hydrogen Cyanide, Hydrogen Fluoride and Diatomic Chlorine from a Portland Cement Plant

> Buzzi Unicem USA, Inc. Stockertown PA Facility Stockertown, PA

AUTHOR: Scott Steinsberger, Ph.D.

TEST DATES: December 19-20, 2023

FIELD TEAM: Dustin Carpenter, Jeremy Rothenberg, and Scott Steinsberger

PREPARED FOR: Buzzi Unicem USA, Inc.

Stockertown PA Facility 501 Center Avenue Stockertown, PA 18083

TABLE OF CONTENTS

Section	<u>Page</u>
1. INTRODU	JCTION1
2. SUMMAR	Y OF RESULTS
3. SAMPLIN	G AND ANALYTICAL PROCEDURES
3.1	Sampling Point Determination - EPA Method 1
3.2	Flue Gas Velocity and Volumetric Flow Rate - EPA Method 2
3.3	Outlet Flue Gas Composition - EPA Method 3A
	3.3.1 Calibration Gases
	3.3.2 Sampling Procedures
3.4	Flue Gas Moisture Content - EPA Method 4
3.5	Hydrogen Fluoride and Diatomic Chlorine - EPA Method 26A
3.6	Hydrogen Cyanide and Hydrogen Fluoride - EPA Method 320
	3.6.1 Laboratory QA/QC Activities Before Field Test Program
	3.6.2 QA/QCActivities During Field Test Program
4. QA/QC PI	ROCEDURES AND RESULTS
4.1	Sampling Equipment
	4.1.1 Manual Sampling Equipment Calibrations
4.2	Analytical QA/QC Results
Appendix A	- Emission Summary Tables
Appendix B	- Field Data and CEM/FTIR Data
Appendix C	- Ion Chromatography Analytical Report Data
Appendix D	- Plant Process Data
Appendix E	- Calibration Documents
Appendix F	- Test Participants
Appendix G	- RTR Sampling and Analytical Protocol

LIST OF TABLES

Table No.	Page
TABLE 1.1	SUMMARY OF HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND
	DIATOMIC CHLORINE EMISSIONS; BUZZI UNICEM USA, INC.,
	STOCKERTOWN PA FACILITY; DECEMBER 19-20, 2023
TABLE 1.2	SUMMARY OF SAMPLING AND ANALYTICAL PROTOCOLS FOR BUZZI
	UNICEM USA, INC., STOCKERTOWN PA FACILITY4
TABLE 2.1	BUZZI UNICEM USA, INC., STOCKERTOWN PA FACILITY; KILNS 1
	AND 3 MAIN STACK HYDROGEN CYANIDE, HYDROGEN FLUORIDE,
	AND DIATOMIC CHLORINE EMISSIONS; RAW MILL ON; DECEMBER
	19, 2023
TABLE 2.2	
	STACK HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC
	CHLORINE EMISSIONS; RAW MILL OFF; DECEMBER 20, 2023
TABLE 3.1	PAIRED METHOD 26A SAMPLING TRAIN DIATOMIC CHLORINE
	CONCENTRATION COMPARISON RESULTS FOR THE KILN MAIN
	STACK; DECEMBER 19 AND 20, 2023
TABLE 3.2	FTIR PRETEST AND FIELD TEST QA/QC SUMMARY
TABLE 3.3	ETHYLENE CALIBRATION TRANSFER STANDARD (CTS) AND
	HYDROGEN CYANIDE ANALYTE SPIKING TEST RESULTS FOR THE
	KILN MAIN STACK; DECEMBER 19-20, 2023
	LIST OF FIGURES
Figure No.	Page
Figure 3.1	Schematic of the Kiln 1 and 3 Main Stack Sampling Location

1. INTRODUCTION

The United States Environmental Protection Agency (US EPA) has directed the portland cement industry (SIC 3241) to conduct emissions testing as part of the US EPA Risk and Technology Review (RTR). This document provides the emission test results and supporting quality assurance/quality control (QA/QC) measures used to produce standardized data having known precision and accuracy. Collection of accurate, representative, and standardized data for facilities with low emissions is necessary especially in view of MACT standard setting procedures.

The Stockertown facility operates two dry-process, rotary kilns (Kiln 1 and Kiln 3). Kiln 1 is a Gepol Kiln and Kiln 3 has Preheater/Precalciner (PH/PC). The Kiln 1 and Kiln 3 exhausts are combined into a Common Stack. From the standpoint of emissions generation and release, the Stockertown kilns essentially operate as one. The intention was to conduct testing with both Kiln 1 and Kiln 3 in operation. However, Kiln 1 has been temporarily idle due to market conditions and the testing was conducted with only Kiln 3 in operation. This testing condition was confirmed to be acceptable by Brian Storey of the EPA on a conference call on October 11th, 2023.

The Stockertown facility kiln has a Selective Non-Catalytic Reduction (SNCR) system for NO_x control, a Dry Sorbent Injection (DSI) system for acid gas control, and a bag house for Particulate Matter (PM) removal. The SNCR and DSI systems will be used under normal operating conditions.

A more detailed description of the processes is provided in Section 2 of the RTR Sampling and Analytical Protocol reproduced in Appendix

The Buzzi retained DEECO Inc. (DEECO) to conduct emission tests for hydrogen cyanide (HCN), hydrogen fluoride (HF), and diatomic chlorine (Cl₂). All sampling runs were be one hour long. Concurrent measurements to determine volumetric flow rate were made.

A summary of the test results is shown in Table 1.1.

TABLE 1.1 SUMMARY OF HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC CHLORINE EMISSIONS; BUZZI UNICEM USA, INC., STOCKERTOWN PA FACILITY; DECEMBER 19-20, 2023

Test Parameters	Main Stack Raw Mill On	Main Stack Raw Mill Off
Hydrogen Cyanide (FTIR) parts-per-million, dry basis corrected to 7% O ₂ pounds-per-hour pounds-per-ton of clinker	1.5 0.50 0.007	2.0 0.65 0.008
Hydrogen Fluoride (FTIR) parts-per-million, dry basis corrected to $7\%~{\rm O}_2$ pounds-per-hour pounds-per-ton of clinker	<0.077 <0.020 <0.0003	<0.054 <0.013 <0.0002
Hydrogen Fluoride (Method 26A) parts-per-million, dry basis corrected to 7% O ₂ pounds-per-hour pounds-per-ton of clinker	<0.497 <0.128 <0.0017	<0.397 <0.098 <0.0013
Diatomic Chlorine (Method 26A) parts-per-million, dry basis corrected to $7\%~\rm O_2$ pounds-per-hour pounds-per-ton of clinker	<0.110 <0.100 <0.0013	<0.082 <0.072 <0.0009

The sampling and analytical procedures followed are summarized in Table 1.2 and discussed in detail in Section 3.

Testing was performed on the main stack under two conditions, Raw Mill On and Raw Mill Off. Three Raw Mill On runs were conducted on December 19, 2023 and three Raw Mill Off runs were conducted on December 20, 2023.

Sampling was conducted by personnel from DEECO, Inc. of Raleigh, North Carolina. All questions regarding sampling and analytical data should be directed to Dr. Scott Steinsberger of DEECO at (800) 733-3261. The field sampling was completed by Dustin Carpenter, Jeremy Rothenberg, and Scott Steinsberger of DEECO.

The remainder of this document summarizes the results, procedures and quality control measures followed for this program. Section 2 contains tabulated air emission results for each parameter of interest. Section 3 summarizes the air emission sampling and analytical procedures performed by DEECO, with a brief description and/or reference to the applicable methodologies. Section 4 discusses the basic quality control elements in place for this program to assure the collection of representative, accurate air emission data.

The appendices provided in this document contain all of the necessary information to verify the reported results. Included as Appendices are: Appendix A - Emission Summary Tables; Appendix B - Field Data and CEM/FTIR Data; Appendix C - Ion Chromatography Analytical Report Data; Appendix D - Plant Process Data; Appendix E - Calibration Documents; Appendix F - Test Participants; Appendix G - RTR Sampling and Analytical Protocol

TABLE 1.2 SUMMARY OF SAMPLING AND ANALYTICAL PROTOCOLS FOR BUZZI UNICEM USA, INC., STOCKERTOWN PA FACILITY

Location and Frequency	Test Parameter	Sampling Method	Sampling Procedure	Analysis Method	Analysis Procedure
Kiln 1 and 3Main Stack	Volumetric Flow Rate and cyclonic check	EPA Methods 1 and 2	Velocity and temperature traverses	EPA Methods 1 and 2	Manometer for differential pressure and thermocouple for temperature
	Oxygen and Carbon Dioxide and Stratification Check	EPA Method 3A	Continuous; extractive sample	EPA Method 3A	Paramagnetic for O ₂ and NDIR for CO ₂
	Moisture	EPA Method 4	Condensation	EPA Method 4	Gravimetric
	Hydrogen Fluoride and Diatomic Chlorine (Cl ₂)	EPA Method 26A	Isokinetic integrated sample	EPA Method 26A	Ion chromatography
	Hydrogen Fluoride and Hydrogen Cyanide	EPA Method 320	Continuous; extractive sample	EPA Method 320	Fourier Transform Infrared (FTIR) Spectroscopy

2. SUMMARY OF RESULTS

Emissions sampling was conducted at Buzzi's Stockertown PA facility. Sampling was conducted for stack gas flow rate (EPA Methods 1 and 2), stack gas oxygen and carbon dioxide (EPA Method 3A), stack gas moisture (EPA Method 4), stack gas hydrogen fluoride and diatomic chlorine (EPA Method 26A) and stack gas hydrogen cyanide and hydrogen fluoride (EPA Method 320).

Testing was conducted on the main stack under two conditions; Raw Mill On and Raw Mill Off and the results are summarized in Tables 2.1 and 2.2, respectively.

TABLE 2.1 BUZZI UNICEM USA, INC., STOCKERTOWN PA FACILITY; KILNS 1 AND 3 MAIN STACK HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC CHLORINE EMISSIONS; RAW MILL ON; DECEMBER 19, 2023

Test Parameter	Main Stack Raw Mill On Run 1	Main Stack Raw Mill On Run 2	Main Stack Raw Mill On Run 3	Main Stack Raw Mill On Average
Time	10:02-11:12	11:34-12:43	12:59-14:09	December 19, 2023
Flow Rate (dscfm)	190,500	188,600	191,850	190,317
Oxygen	14.9%	14.8%	14.9%	14.9%
Carbon Dioxide	10.4%	10.4%	10.4%	10.4%
Moisture	4.4%	4.4%	4.5%	4.4%
Hydrogen Cyanide (FTIR)				
ppm_{dry} at 7% O_2	1.5	1.5	1.4	1.5
pounds-per-hour	0.51	0.51	0.49	0.50
pounds-per-ton of clinker	0.007	0.007	0.006	0.007
Hydrogen Fluoride (FTIR)				
$\mathrm{ppm}_{\mathrm{dry}}$ at 7% O_2	< 0.078	< 0.076	< 0.078	< 0.077
pounds-per-hour	< 0.020	< 0.020	< 0.020	< 0.020
pounds-per-ton of clinker	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Hydrogen Fluoride (Method 26A)				
$\mathrm{ppm}_{\mathrm{dry}}$ at 7% O_2	< 0.475	< 0.502	< 0.513	< 0.497
pounds-per-hour	<0.122	< 0.130	<0.133	<0.128
pounds-per-ton of clinker	< 0.0016	< 0.0017	< 0.0017	< 0.0017
Diatomic Chlorine (Method 26A)				
${\rm ppm_{dry}}$ at 7% ${\rm O_2}$	< 0.115	<0.106	<0.110	< 0.110
pounds-per-hour	< 0.104	< 0.097	<0.101	<0.100
pounds-per-ton of clinker	< 0.0014	< 0.0013	< 0.0013	< 0.0013

TABLE 2.2 BUZZI UNICEM USA, INC., STOCKERTOWN PA FACILITY; KILNS 1 AND 3 MAIN STACK HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC CHLORINE EMISSIONS; RAW MILL OFF; DECEMBER 20, 2023

Test Parameter	Main Stack Raw Mill Off Run 1	Main Stack Raw Mill Off Run 2	Main Stack Raw Mill Off Run 3	Main Stack Raw Mill Off Average
Time	08:33-09:43	10:00-11:09	11:25-1235	December 20, 2023
Flow Rate (dscfm)	129,300	126,300	122,700	126,100
Oxygen	12.1%	12.1%	12.2%	12.1%
Carbon Dioxide	14.9%	15.1%	14.9%	15.0%
Moisture	5.9%	5.9%	5.5%	5.8%
Hydrogen Cyanide (FTIR)				
ppm _{dry} at 7% O ₂	1.9	2.0	2.0	2.0
pounds-per-hour	0.65	0.67	0.64	0.65
pounds-per-ton of clinker	0.008	0.009	0.008	0.008
Hydrogen Fluoride (FTIR)				
ppm_{dry} at 7% O_2	< 0.054	< 0.054	< 0.054	< 0.054
pounds-per-hour	< 0.014	< 0.013	< 0.013	< 0.013
pounds-per-ton of clinker	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hydrogen Fluoride (Method 26A)				
ppm_{dry} at 7% O_2	< 0.398	< 0.386	< 0.407	< 0.397
pounds-per-hour	<0.102	< 0.096	< 0.098	< 0.098
pounds-per-ton of clinker	< 0.0013	< 0.0013	< 0.0013	< 0.0013
Diatomic Chlorine (Method 26A)				
$\mathrm{ppm}_{\mathrm{dry}}$ at 7% O_2	<0.080	< 0.082	< 0.083	< 0.082
pounds-per-hour	< 0.072	< 0.073	< 0.070	< 0.072
pounds-per-ton of clinker	< 0.0009	< 0.0009	< 0.0009	< 0.0009

3. SAMPLING AND ANALYTICAL PROCEDURES

Table 1.2 presents a summary of the overall sampling and analytical protocols used for the test program for the main stack at Buzzi's Stockertown PA facility. All sampling and analytical methods employed for this test program were performed in accordance with the procedures outlined in the Reference Test Methods contained in the Code of Federal Regulations, Title 40, Part 60, Appendix A (40 CFR 60, Appendix A) and 40 CFR 63, Appendix A.

3.1 Sampling Point Determination - EPA Method 1

The measurement site for the Kiln 1 and 3 Main stack is located in a vertically-oriented round duct. The duct has an inside diameter of 131". The nearest upstream disturbance is a duct breaching (from the ID fan) located about 121 feet (\sim 11 diameters) from the sampling ports. The nearest downstream disturbance is the stack outlet at about 94 feet (\sim 8.5 diameters) from the sampling ports. This sampling location meets the minimum requirements specified by EPA Method 1. Four (4) test ports are located at equidistant positions (every 90°) around the duct. The number and location of the sampling or traverse points were determined according to the procedures outlined in EPA Method 1. The traverse point locations are provided in Appendix B. All points were at least 1.0 inches from the stack wall, per Method 1.

The sampling location met the minimum specifications for selection of a measurement site as outlined in EPA Method 1. Cyclonic flow checks, as described in EPA Method 1 Section 2.4, using the Type-S pitot null procedure and angle measurements at the stack test location were conducted.

A twelve (12) point sampling traverse were made using 3 points in each of 4 sampling ports at the main stack. Each traverse was made at each sampling location using a type-S pitot tube in accordance with EPA Methods 2 procedures. The traverse point locations are provided in Appendix B. Gas temperatures were measured using calibrated Type K thermocouples and digital readout devices. All measurements were performed in accordance with the procedures in EPA Methods 2, and 26A.

A schematic of the main stack is provided in Figure 3-1.

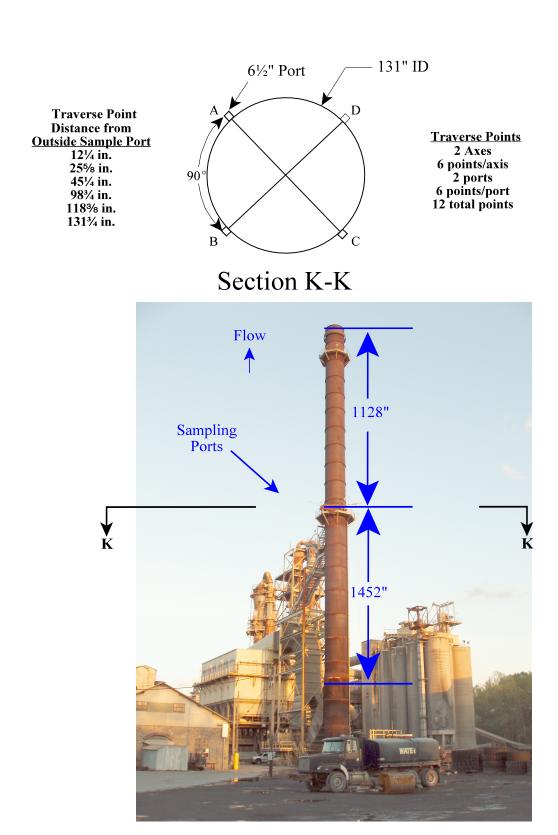


Figure 3.1 Schematic of the Kiln 1 and 3 Main Stack Sampling Location

3.2 Flue Gas Velocity and Volumetric Flow Rate - EPA Method 2

The flue gas velocity and volumetric flow rate were determined according to the procedures outlined in EPA Method 2. Velocity measurements were using type S pitot tubes conforming to the calibration specifications outlined in EPA Method 2, Section 10.1. Each Type-S pitot tube, calibrated according to these standards, had an assigned coefficient. Differential pressures were measured with fluid manometers. Effluent gas temperatures were measured with chromel-alumel thermocouples equipped with digital readouts.

3.3 Outlet Flue Gas Composition - EPA Method 3A

Outlet flue gas analysis for oxygen (O_2) and carbon dioxide (CO_2) concentrations, and the calculation of percent excess air and flue gas dry molecular weight was performed in accordance with EPA Method 3A.

To evaluate the sampling location and points for FTIR and O_2 sampling, a three-point O_2 concentration stratification test on a line passing through the centroidal area at (for stacks is greater than 2.4 meters) at 0.4, 1.2 and 2.0 meters from the stack or duct wall. The procedures in Section 8.1.2 of Method 7E were followed, but oxygen will be used as parameter as allowed by fourth sentence in Section 8.1.2. The plant O_2 CEMS was used as a control. A criteria of <5% variation from combined mean for each point was used as indication of non-stratification to allow single point sampling at the point closest to the mean.

Per EPA Method 3A for determining molecular weight, continuous extractive sampling will be obtain using the Method 320 sampling system described in Section 3.6.

A portion of the hot, wet gas sample was sent through a condensing system to remove the stack moisture. A portion of the moisture-free gas sample was sent to an O_2/CO_2 analyzer.

Calibration procedures were be performed in accordance with EPA methodology. Analyzers were calibrated before and after each test and a calibration check between each test run.

The pretest calibrations consisted of the following steps:

- Internal (direct) calibration of each analyzer to adjust calibration and check linearity.
- External (through the entire sampling system) calibration to check the system bias on zero and span gases.

The post test calibration consisted of an external system bias calibration check.

The analyzer calibrated using a certified zero and span (mid or high range) gas. Zero and span gases were directed to each analyzer through the appropriate plumbing, the calibration gas flow rates were adjusted to the correct flow rate and the analyzer was adjusted with the appropriate span pot.

After the analyzer was properly adjusted the linearity was checked using a low and high range

calibration gas. The maximum allowable limit for linearity is 2% of the analyzer range and all analyzers were shown to be linear within these limits before proceding.

The external calibration bias check were performed by placing the CEM system in sampling mode and injecting a zero and span gas into the sample line at the probe exit. This check showed if there is any sampling system related bias, and also checks the integrity of the sample line.

3.3.1 Calibration Gases

DEECO useed EPA Protocol and/or $\pm 2\%$ NIST Traceable gases for calibration as required by the various reference methods employed in this test program. Calibration gases were selected from previous experience with similar sources and/or from information obtained from the facility engineer prior to sampling. In some cases if the gases that are selected are out of the optimum range of operation then no significant impact of data quality is expected due to the linear nature of the analyzers that were used.

No audit gases from a federal or a state agency were provided.

3.3.2 Sampling Procedures

At the completion of the pretest calibration routine, the CEM system was ready for operation. No further adjustments of sample flow rates, analyzer zero or span adjustments, or other critical CEM operating parameters were made until testing and post test calibration were complete.

Each sampling run was one hour. At the completion for each test run, calibration gases were used to check between test runs. A zero and the upscale calibration gas closest to the actual emission concentrations were used for the pretest and post test calibrations.

3.4 Flue Gas Moisture Content - EPA Method 4

The flue gas moisture content was determined in conjunction with the EPA Method 26A trains according to the sampling and analytical procedures outlined in EPA Method 4. (**NOTE:** In order to maintain isokinetic sampling, the sampling rate used may have been required to temporarily exceed the EPA Method 4-specified maximum sampling rate of 0.75 CFM, based on observed stack gas pitot readings.) The impingers were connected in series and contained reagents as described below. The impingers were contained in an ice bath in order to assure condensation of the moisture in the flue gas stream. Any moisture that is not condensed in the impingers was captured in the silica gel, therefore all moisture was weighed and entered into moisture content calculations.

3.5 Hydrogen Fluoride and Diatomic Chlorine - EPA Method 26A

Sampling and analytical procedures were those outlined in EPA Method 26A to determine primarily diatomic chlorine (Cl₂) emissions and hydrogen fluoride (HF) emissions at main stack outlet sampling locations. Duplicate simultaneous trains (a.k.a "paired trains") for each test run were used to determine precision.

Sample was collected through a heated glass probe, followed by a heated Teflon filter, where stack gas HF and Cl_2 were collected in a series of chilled impingers. The sampling train impingers contained 100 ml of 0.1N sulfuric acid in the first and second, an empty third impinger, 100 ml of 0.1N NaOH in the fourth and fifth and 200 grams of silica gel in the last impinger

Sampling was conducted isokinetically $(\pm 10\%)$ with readings of flue gas parameters recorded at traverse points selected according to EPA Method 1. Leak-checks on the Method 26A sampling train were performed before and after each sampling run and optionally for any port change. The sampling train leak-checks and leakage rate (where applicable) were documented on the field test data sheet for each respective run. All leak checks were acceptable.

The glass button hook nozzle and probe liner was constructed of borosilicate glass. The filter holder will be constructed of borosilicate glass with a Teflon frit filter support and a sealing gasket. A PTFE-bonded glass fiber filter was used. The probe and filter housing were heated to above 248°F and not exceed an upper boundary of 273°F. Probe liners and filter holders were cleaned thoroughly prior to testing.

The Method 26A trains was operated isokinetically for a minimum of 60 minutes and collected a minimum of 1 dry, standard cubic meter (DSCM). Pretest preparations, preliminary determinations, and leak check procedures were those outlined in EPA Method 5.

After completion of sampling the train was leak checked and transferred to the sample recovery trailer. All leak checks were acceptable. The impingers were weighed to determine moisture gain in accordance with EPA Method 4.

Sample recovery involved quantitative recovery of the sulfuric acid impinger contents and the NaOH impinger contents into separate tare-weighed, precleaned polyethylene sample containers.

The nozzle, probe, filter and filter housing were not recovered.

The contents of sulfuric acid impingers, including the contents if any of the empty (2nd knockout or third) impinger were quantitatively transferred to the tare-weighed, precleaned polyethylene sample container, followed by three rinses with deionized (DI) water of the impingers and all connecting glassware (including the connecting glassware to the first impinger) placed in the same H₂SO₄ container. The container was labeled and weighed to determine the final sample volume.

The contents NaOH impingers were quantitatively transferred to a second tare-weighed, precleaned polyethylene sample container, followed by three rinses with DI water of the impingers and all connecting glassware placed in the same NaOH container. The container was labeled and weighed to determine the final sample volume.

Sample recovery from each train included:

- 1. Container No. 1 Contents of H₂SO₄ impingers and knockout impinger and, and DI rinse of impingers and connecting glassware; and
- 2. Container No. 2 Contents NaOH impingers, and DI rinse of impingers and connecting glassware.

Additional quality control consisted of collecting and analyzing a field blank train for every three test runs. The blank train was assembled from a used train, leak checked and sat for a period equal to the sampling time (i.e, 1-hr). The blank train data was to be used to determine the method detection limit for the test program target analytes (ie. The lowest number that could be detected), and compared to stack emissions.

Reagent blanks of 0.1 N H₂SO₄, 0.1N NaOH, and DI water were collected and archived for later analysis should there be any issues with the field blank train samples

The H₂SO₄ impinger solutions were analyzed using ion chromatography techniques for fluoride ions (F) (EPA SW-9057). Duplicate analyses performed on the samples and field blanks. Precision was demonstrated by duplicate injection of each sample, the results of each individual analysis being within 5% of their mean to be acceptable.

The NaOH impinger solutions was treated with sodium thiosulfate to ensure complete conversion of hypochlorous acid (HClO) to chloride ions (Cl⁻). The resulting solution was analyzed using ion chromatography techniques for chloride ions (EPA SW-9057). Duplicate analyses was performed on the samples and field blanks. Precision was demonstrated by duplicate injection of each sample, the results of each individual analysis being within 5% of their mean to be acceptable

All EPA Method 26A HF/Cl₂ samples were analyzed by Element One of Wilmington NC. Refer to Section 1, Figure 1.1 of the RTR Sampling and Analytical Protocol for contact information.

For this test program, the relative deviation (RD) was to be calculated as described in EPA Method 30B between the Cl₂ concentrations measured with the paired trains. A criteria of a less than 10% relative deviation or 0.2 ppm absolute difference was required.

The absolute differences between the Cl_2 concentrations measured with the paired trains is summarized in Table 3.1. For each paired run, Cl_2 concentrations met the 0.2 ppm absolute difference criteria.

TABLE 3.1 PAIRED METHOD 26A SAMPLING TRAIN DIATOMIC CHLORINE CONCENTRATION COMPARISON RESULTS FOR THE KILN 1 AND 3 MAIN STACK; DECEMBER 19 AND 20, 2023

Run	Time	Train A Diatomic Chlorine Concentration (ppm,dry)	Train B Diatomic Chlorine Concentration (ppm,dry)	Absolute Difference (ppm,dry)
December 19, 20	23; Kiln 1 and 3 Ma	nin Stack; Raw Mill On		
Run 1	10:02-11:12	< 0.052	< 0.047	0.005
Run 2	11:34-12:43	<0.048	< 0.045	0.003
Run 3	12:59-14:09	<0.049	<0.045	0.004
December 20, 20	23; Kiln 1 and 3 Ma	nin Stack; Raw Mill Off		
Run 1	08:33-09:43	< 0.051	< 0.050	0.001
Run 2	10:00-11:09	< 0.054	< 0.050	0.004
Run 3	11:25-12:35	< 0.052	< 0.052	0.000

3.6 Hydrogen Cyanide and Hydrogen Fluoride - EPA Method 320

EPA Method 320 was performed to determine emissions of concentrations of HCN and HF. Three, 1-hour sampling runs were conducted under each representative process and control system operating conditions.

The gas sample was extracted from the stack through a glass-lined probe and filter heated to 375° F. For external calibration checks and analyte spikes, the gases were introduced in front of the heated filter. Any excess calibration gas was diverted through the sample probes into the source. Outflow of gas from the heated filter enclosure was transported through a Teflon sample line heated to 375° F. For these sources approximately 300' of sample line was required. The heated sample line was connected directly to the FTIR sample cell. Using heat-traced Teflon tubing the exit of the FTIR cell was connected to a sample pump with a heated stainless steel pump head. The pump discharge was directed to a proprietary chiller-type gas conditioner to remove moisture prior to delivery sample gas to the O₂/CO₂ monitor.

The distribution of the gas sample to the monitors was accomplished using a panel equipped with valves and rotometers. The gas sample was then divided and directed to the O_2/CO_2 analyzer.

FTIR sample cell was maintained at 191°C and connected to a MKS Instruments Multigas 2030 Fourier Transform Infrared Spectrometer and Detector.

The FTIR spectrometer measured vapor phase organic or inorganic compounds which absorb energy in the mid-infrared spectral region, about 400 to 4000 cm $^{-1}$ (25 to 2.5 μ m). Continuous measurement were made by matching sample absorbance bands with bands in reference spectra, and comparing sample band intensities with reference band intensities.

The principle limitation to FTIR spectroscopy are the presence of interfering compounds that also absorb energy in the mid-infrared spectral region. In a cement kiln stack gas matrix, water vapor (H_2O) and carbon dioxide (CO_2) are the primary interferents that must be incorporated into the identification and quantitation method.

The FTIR software performs the computation for a single compound by subtracting all the other compounds (interferants and target) from the absorbance spectra and quantifies the single compound based on the remain absorbance. The FTIR software provides a Standard Error Calculation (SEC) value that is an indication of how well the identification and quantitation has been performed. A high SEC indicates that other interferants have not been accounted for in the analysis method, and a low SEC is indicative of greater confidence measurement.

The instrument is operated with a resolution of 0.5 cm⁻¹ with 4x zero filling. Beer-Norton Medium apodization is used with amplitude phase correction.

For this RTR test program, following specific QA/QC activities for EPA Method 320 were performed and are summarized in Table 3.2

3.6.1 Laboratory QA/QC Activities Before Field Test Program

Before field testing occurs, the following QA/QC activities were conducted;

- Seven consecutive samples of dry nitrogen <u>through the sampling system</u> was acquired and used to calculate the standard deviation for each of the test program target analytes multiplied by a factor of 3. These data were considered representative of detection limits (DL) for this test program and were below the 0.5 ppm required DL for both HCN and HF;
- 2) From these seven dry nitrogen samples, the results for the Signal-to-Noise Ratio (SNR) @ 2500 cm⁻¹ was >2500, at 64 scans and the results for single beam intensity @ 2500 cm⁻¹ was >0.9; and
- 3) The HCN calibration gases was analyzed directly and the FTIR responses agreed with tag value within 5%

3.6.2 QA/QCActivities During Field Test Program

During the field test program, following QA/QC activities were be performed and criterium met;

- 1) On each test day prior to any testing, an instrument background was collected using dry nitrogen directed to the gas cell. The background was collected with at least 128 scans;
- 2) The probe, filter, sample line and all sample system components in contact with effluent were be maintained at or above 375°F or 191°C (consistent with FTIR calibration temperature) to avoid any possible "cold spots;"
- A system zero with all sampling system components at operating temperature was performed by injecting nitrogen at the sample probe and through sample filter and entire measurement system. After zero equilibration was been achieved, all measurement components will be quantified for at least 128 scans;
- 4) The sample probe was position at effluent measurement point and sampling was continue until equilibration of the measurement system has been achieved. At this point, the effluent concentrations was quantified with two consecutive 64-scan samples as the initial native concentration for the dynamic spike;
- Analyte spiking was conducted for HCN before the first test run, and after each successive test run for a minimum of 4 spikes per test condition. These results will be used to determine accuracy and are summarized in Table 3.3;
- The spike gas injections was maintained at 10% or less of total sample volume. The spike gas concentration and flow rate was be selected to approximately double the native effluent concentration. Spike recovery results were within $\pm 20\%$ of the expected value. An SF₆ tracer was used to calculate the exact spike gas dilution ratio of 10% or less;
- 7) After the dynamic spike, nitrogen was sent through the sampling system until all traces of spike gas are removed and lines are proven below DL for target analytes;

TABLE 3.2 FTIR PRETEST AND FIELD TEST QA/QC SUMMARY

Spectrum	HCN	SF6	HF	SNR 2500	sBeam @2500
Seven consecutive samples	of dry nitroger	n for detection lir	nit		
SPC000837.LAB SPC000838.LAB SPC000839.LAB SPC000840.LAB SPC000841.LAB SPC000842.LAB SPC000843.LAB	-0.051 -0.032 0.046 -0.011 0.080 0.059 -0.029		-0.002 -0.000 -0.017 0.016 0.002 -0.012 -0.006	6223.51 5809.30 3759.60 4373.66 5347.95 5012.46 4706.13	1.42 1.42 1.42 1.42 1.42 1.42 1.42
Standard Deviation X 3	0.156		0.032		
Averages				5033.23	1.42
HCN Standard (CC76822	2; 49.9 ppm HC	CN/5.0 ppm SF6)			
SPC155614.LAB SPC155615.LAB	48.14 48.31	4.79 4.76			
Averages	48.23	4.78			
Residuals for Post HCN ar	nalyte spike nat	ive scans			
SPC_155662.LAB Concentration MDC3 MDC3%	0.72 0.11 NA		0.00 0.20 NA		
SPC_155663LAB Concentration MDC3 MDC3%	0.68 0.11 NA		-0.01 0.21 NA		
Final SNR @ 2500 cm ⁻¹ an	d single beam i	ntensity @ 2500	cm ⁻¹	<u>'</u>	
SPC156299.LAB				3014.2	1.26

- The nitrogen purge was discontinued and the sampling system was allowed to equilibrate with stack gas before starting a test run. The first two consecutive 64-scan samples of a sample run was used for the final native concentration. Residual results for HCN and HF were verified to be less than 0.2-0.3 ppm for data acceptance, or less than 5% of the measured value, whichever was least restrictive.
- 9) The final SNR @ 2500 cm⁻¹, at 64 scans, and the results for single beam intensity @ 2500 cm⁻¹ were verified to met the >2500 and >0.9 criterium; respectively.

TABLE 3.3 ETHYLENE CALIBRATION TRANSFER STANDARD (CTS) AND HYDROGEN CYANIDE ANALYTE SPIKING TEST RESULTS FOR THE KILN MAIN STACK; DECEMBER 19-20, 2023

Run	Time	Average Native Hydrogen Cyanide Concentration (ppm,wet)	Spike plus Average Hydrogen Cyanide Native Concentration (ppm,wet)	Hydrogen Cyanide Spike Recovery	CTS Error
December 19,	2023; Main Stac	k Raw Mill On			
Pre Run 1	08:08-08:26	0.59	1.68	101.7%	-3.6%
Post Run 1	11:03-11:18	0.65	1.50	88.6%	
Post Run 2	12:31-12:51	0.55	1.59	101.1%	
Post Run 3	14:00-14:27	0.52	1.59	92.8%	-2.9%
December 20,	2023; Main Stac	k Raw Mill Off			
Pre Run 1	08:02-08:16	1.08	3.72	92.5%	-3.3%
Post Run 1	09:31-09:46	1.30	3.65	86.0%	
Post Run 2	10.56-11:12	1.35	4.15	95.0%	
Post Run 3	12:23-12:43	1.19	4.02	102.4%	-3.3%

4. QA/QC PROCEDURES AND RESULTS

The objective of a quality assurance/quality control (QA/QC) program is to assure that the precision and accuracy of all environmental data generated by DEECO for clients are commensurate with data quality objectives (DQO's). DQO's are based on a common understanding of the intended end use(s) of the data, the measurement process, and the availability of resources. Once DQO's are established, formally or informally, QC protocol can be defined for the measurements.

In this project, the final data user will be Buzzi Unicem. The data quality objectives in this project are to generate scientifically sound data to be used for compliance purposes.

4.1 Sampling Equipment

All of the sampling equipment used was calibrated according to the procedures outlined in the <u>Quality Assurance Handbook for Air Pollution Measurement Systems</u>, Volume III, EPA-600/4-77-027b.

4.1.1 Manual Sampling Equipment Calibrations

For sampling Methods 1, 2, and 4 the procedures and equipment used to measure stack gas velocity and temperature measurements and the metering system used to maintain constant rate sampling conditions and to determine the sample gas volume were subjected to pretest and posttest calibrations and/or inspections as required by the appropriate EPA methods.

Barometer - Barometric pressure values were obtained from a calibrated barometer, verified by phone call to a local airport, and corrected for elevation to sample port level (0.01 inches Hg per 10 ft. elevation).

<u>Pitot Tubes</u> - Each pitot tube used in sampling meets the design specifications for type-S pitot tubes in EPA Method 2. Therefore, a maximum value baseline coefficient (C_p) of 0.84 is assigned to each pitot tube. Calibration by the manufacturer for pitot face-opening alignment included measuring the external tubing diameter (dimension D_t), the base-to-opening plane distance (dimensions P_a and P_b), and the face opening misalignment angles, with all terms as described in EPA Method 2. Pitot tubes were visually inspected for structural integrity at the completion of each test. Inspection sheets for pitot tubes are included in Appendix E.

Calibration Meter and Metering System - The secondary reference meter equipment arrangement for calibration is shown in Figure 5.7 of EPA Method 5. The prescribed procedures were followed. A wet test meter with a 1 ft³/rev capacity and \pm 1 percent accuracy is used as the primary calibrant. The dry gas meter's pump is run for a minimum of 5 minutes at a flow rate of 0.35 cfm to condition the interior surface of the wet test meter. Leak checks are performed and if satisfactory, triplicate runs at each of no less than five different flow rates are done. A calibration curve is prepared and the meter is recalibrated after 200 hours of operation or annually, whichever comes first.

The calibration set-up for the dry gas metering system using the secondary reference meter in lieu of the wet test meter is given in Figure 5.5 of EPA Method 5. A leak check of the metering system before calibration was performed as shown in Figure 5.4 of EPA Method 5. The metering systems's pump is operated for 5 minutes at an orifice manometer setting of 0.5 inches H_20 to heat up the pump and system to stabilize the meter inlet and outlet temperatures. Values for the orifice setting (delta H), wet test meter volume (V_w) , corresponding dry test meter volume (V_d) , dry test meter inlet and outlet gas temperatures (t_{di} and t_{dn}), and time are recorded for the initial calibration. Then the ratio of the wet test meter to the dry test meter (gamma) and the orifice pressure differential that equates to 0.75 cfm at standard conditions (delta H@) are calculated.

A post-test meter calibration was made on the dry gas meter used during the test to check its accuracy against the pre-test calibration. This was performed following EPA Method 5, Section 16.3 or a post-test calibration check was made using the average orifice setting obtained during each test run and setting the vacuum at the maximum value obtained during each test run. These test runs were made against DEECO's secondary reference dry gas meter which was calibrated against a wet test meter. The calibration data sheets for the dry gas meters are included in Appendix E.

<u>Thermocouples and Digital Indicators</u> - Thermocouples were calibrated by comparing them against an ASTM-3F mercury-in-glass thermometer at approximately 32°F (ice water), ambient temperature, and at approximately 220°F. Each thermocouple was calibrated against temperature ranges to which it is typically exposed during test conditions, and they agreed within 1.5 percent (expressed in °R) of the reference thermometer throughout the entire calibration range. Also, thermocouples were checked at ambient temperature at the test site to verify calibration. The calibration data sheets for the thermocouples are included in Appendix E.

<u>Pretest and Posttest Leak Checks of Sampling Trains</u> - Each Method 4 sampling train was subjected to pretest leak checks and posttest leak checks. For all sampling runs the posttest leak checks were acceptable (less than 4% of the sampling rate at the highest vacuum recorded during the test run).

4.2 Analytical QA/QC Results

Analytical measurements of precision and accuracy were made on stack gas samples, and are summarized in a separate report.

Appendix A Emission Summary Tables

Company: Buzzi Unicem; Stockertown PA Source: Kilns 1 and 3 Main Stack; Raw Mill On Job ID: 23-3317 Train Type: M26A

	1A 12/19/23 1002-1112	1B 12/19/23 1002-1112	2A 12/19/23 1134-1243	2B 12/19/23 1134-1243	3A 12/19/23 1259-1409	3B 12/19/23 1259-1409	Average
Initial Meter Volume, ft³ Final Meter Volume, ft³ Intra-Port Leak Check Volume, ft³ Total Sample Volume, cf DGM Calibration Factor Average DGM Temp, F Average DGM delta H, "H2O Barometric Pressure, "Hg	726.606 771.411 0.000 44.805 1.006 62.8 1.78	931.085 976.971 0.000 45.886 0.988 59.7 1.62	771.623 816.169 0.000 44.546 1.006 62.8 1.76	977.115 1023.049 0.000 45.934 0.988 61.9 1.59	816.374 861.315 0.000 44.941 1.006 63.3 1.81	23.260 71.047 0.000 47.787 0.988 62.3 1.64 29.20	45.650 0.997 62.1 1.70 29.20
Corrected Sample Vol,dscf Corrected Sample Vol,dscm	44.608 1.263	45.116 1.278	44.348 1.256	44.970 1.273	44.704 1.266	46.754 1.324	45.083 1.277
Oxygen, % Carbon Dioxide, %	14.9	14.9	14.8	14.8	14.9	14.9 4.01	10.4
Nitrogen, % Stack Gas Excess Air, % Total Moisture Carch Weight grams	74.7 309.1 43.8	74.7 309.1 43.6	74.8 299.2 41.8	74.8 299.2 46.4	74.7 309.1 41.8	74.7 309.1 49.5	74.7 305.8 45.9
Stack Gas Moisture, % Stack Gas Dry Molecular Weight, Ib/Ibmole Stack Gas Wet Molecular Weight, Ib/Ibmole	45.0 4.4 30.26 29.72	4.3. 4.4 30.26 29.72	41.0 4.2 30.26 29.74	40.4 4.6 30.26 29.69	4.2 4.2 30.26 29.75	43.3 4.7 30.26 29.68	45.9 4.4 30.26 29.72
Average Stack Temp, F Stack Static (Gauge) Pressure, "H2O Stack Gas Actual Pressure, "Hg Average Sqrt delta P Pitot Tube Coefficient Stack Gas Velocity, ft/second	264.2 -0.65 29.15 0.752 0.85 49.96	264.2 -0.65 29.15 0.752 0.85 49.96	261.7 -0.65 29.15 0.743 0.85 49.26	261.7 -0.65 29.15 0.743 0.85 49.30	261.3 -0.65 29.15 0.756 0.85	261.3 -0.65 29.15 0.756 0.85	262.4 -0.65 29.15 0.750 0.85
Nozzle Inside Diameter, inches Total Sample Time, min Isokinetic Rate, %	0.260 60 99.1	0.260 60 100.2	0.260 60 99.4	0.260 60 101.1	0.260 60 98.5	0.260 60 103.4	60 100.3
Stack Dimensions Stack Area, sq ft Stack Gas Flow Rate, acfm Stack Gas Flow Rate, acmm Stack Gas Flow Rate, dscfm Stack Gas Flow Rate, dscfm	131 in. ID 93.60 280,600 7,946 190,500 5,394	131 in. ID 93.60 280,600 7,946 190,500 5,394	131 in. ID 93.60 276,600 7,832 188,900 5,349	131 in. ID 93.60 276,900 7,841 188,300 5,332	131 in. ID 93.60 281,400 7,968 192,200 5,443	131 in. ID 93.60 281,700 7,977 191,500 5,423	93.60 279,633 7,918 190,317 5,389

Company: Buzzi Unicem; Stockertown PA Source: Kilns 1 and 3 Main Stack; Raw Mill On Job ID: 23-3317 Train Type: M26A

"NDQ" denotes values below detection limits Note: Average EXCLUDES Non-detect runs' results	itis ns'results	•	1A 12/19/23 1002-1112	~	18 12/19/23 1002-1112	- =	2A 12/19/23 1134-1243	2B 12/19/23 1134-1243	3A 12/19/23 1259-1409	723 409	3B 12/19/23 1259-1409	.23 409	Ave	lverage	
Hydrogen Fluoride	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm @7% O2 Conc., mg/dscm @12% CO2 Conc., ppmvd Conc., ppmvd Conc., ppmvd @7% O2 Conc., ppmvd @12% CO2 Emission Rate, lb/hr Clinker Rates (tph and lbs/ton)	ğğğğğğğğ	0.223 0.177 0.409 0.204 0.212 0.492 0.245 0.126	 <u> </u>	0.21 0.164 0.381 0.190 0.198 0.458 0.228 0.117		0.227 0.181 0.412 0.209 0.217 0.251 0.251 0.128	0.236 0.185 0.422 0.214 0.223 0.508 0.267 0.131	0.23 0.182 0.421 0.210 0.218 0.506 0.252 0.131	2 - 0 8 9 2 - 8 8 0 - 1 8 9 2 - 8 9 2 - 8 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.247 0.243 0.215 0.224 0.224 0.259 0.259 0.0017		•	0.229 0.179 0.413 0.207 0.215 0.496 0.249 0.128	
Chlorine	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm Conc., mg/dscm @7% O2 Conc., mg/dscm @12% CO2 ND(Conc., ppmvd Conc., ppmvd @12% CO2 ND(Emission Rate, lb/hr ND(Clinker Rates (tph and lbs/lon)	NDC (Specific of Control of Contr	0.193 0.153 0.354 0.176 0.052 0.060 0.060 0.109		0.177 0.138 0.321 0.160 0.047 0.005 0.109 0.099		0.176 0.140 0.319 0.0319 0.048 0.048 0.055 0.099 76.85	0.17 0.134 0.304 0.154 0.005 0.103 0.052 0.094	0.184 0.145 0.337 0.049 0.049 0.057	4 2 5 8 9 4 5 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.177 (0.134 (0.154 (0.045 (0.004 (0.005 (0.096 (0.096 (0.096			0.180 0.141 0.324 0.162 0.048 0.0110 0.056 0.100	

Buzzi Unicem; Stockertown PA Kiins 1 and 3 Stack

HF ppm (10) 191C SF6 (10) 191C Ehyjene (100,3000) 191C H209		CO2% (4			4.170 10.549		•					•	4.165							4.141 10.521	•				4.004 10.524 4.103 10.524			10.608			4.202 10.514			4.162 10.489			4.191 10.484			4.243 10.546 4.249 10.505				4.253 10.568 4.277 10.639	_			4.212 10.535 4.312 10.613		M26
Time HCN PCA 191c R1 191c 1003-46 972 1003-472		hylene (100,3000) 191C H2O% (4																																									4.	4 4						
Time HCN PCA 1916 R1 1910 HCN 00242884 0623 0.729 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.721 0.722 0.729 0.729 0.722 0.722 0.723 0.72		SF6 (10) 191C	-0.003	-0.002	0.000	-0.001	-0.001	-0.001	-0.003	-0.000	6.001	-6.001	0.004	000			-0.003	-0.003	0.001	0.00	0.001	-0.002	-0.002	-0.002	-0.002	0.001	0.001	-0.002	-0.002	-0.003	0.001			-0.002	-0.002	-0.004			-0.002	-0.002	-0.004	-0.003	0.001	-0.00 -0.003	-0.004	-0.003	0.000	-0.002	-0.002	-0.004
Time 10:02:42.884 10:03:46.872 10:04:50.887 10:05:54.682 10:06:58.526 10:06:58.526 10:09:06.376 10:11:42.17 10:11:42.17 10:11:42.17 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:11:42.19 10:25:43.10 10:36:55.47 10:36:55.47 10:36:55.47 10:36:55.47 10:36:55.47 10:36:55.47 10:36:55.47 10:36:55.44 10:36:47.10 10:37:57 10:36:55.44 10:36:47.10 10:37:57 10:36:55.44 10:23:36 10:47:56 10:57:30 10:55:30 11:00:13:59 11:00:13:59 11:00:13:59 11:00:13:59 11:00:13:59 11:00:13:59 11:00:13:59 11:00:17:59 11:00:17:59 11:00:17:59 11:00:17:59 11:00:17:59 11:00:17:59 11:00:17:59		발	-0.083	-0.078	10.07	-0.074	-0.085	-0.074	-0.075	-0.078	-0.059	-0.075	-0.0-	-0.075	-0.073	-0.072	-0.076	-0.082	0.076	-0.05 -0.075	-0.066	-0.078	-0.068	-0.075	-0.064	-0.063	0.080	70.0-	-0.020	-0.039	-0.062	-0.064	-0.079	-0.062	-0.066	-0.079	-0.069 -0.073	-0.086	-0.072	-0.083	-0.068	-0.083	-0.104	-0.05	-0.075	-0.069	-0.089	-0.05	< 0.032	< 0.078
		HCN PCA 191c R1 19	0.023	0.729	0.000	0.453	0.745	0.536	0.754	0.666	0.647	0.582	0.628	0.660	0.496	0.536	0.464	0.610	0.421	0.629	0.629	0.670	0.531	0.723	0.579	0.589	0.539	0.605	0.564	0.952	0.655	0.647	0.613	0.721	0.596	0.721	0.453	0.646	0.823	0.557	0.662	0.726	0.445	0.564	0.797	0.631	0.709	0.183		
	į	Time 10:02:42	10.02.42	20.00	20.00	10:06		10:05	10:10	10:11	10:12	5.55	5 5	10:16	10:17	10:18	10:19	10:50	2.0.5	10:24			10:27			10:31	10:32	20.00	10:35	10:36	10:37	10:39	10:43	10:42	10:44	10:45	10:46	10:48	10:49	10.00	10:52	10:53	30:54	10:57	10:58			11:02		

Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack

	CO2% (40) 191C span	10.570	10.402	10.338	10.433	10.431	10.281	10.734	10.462	10.553	10.604	10.686	10.744	10.544	10.653	10.790	10.330	10.674	10.544	10.435	10.549	10.579	10.503	10.663	10.559	10.5/5	10.342	10.543	10,479	10.467	10.661	10.714	10.648	10.037	10.747	10.934	10.391	10.703	10.485	10.617	10.356	10.594	10.160	10.207	10.488	9.972	10.319	10.443	10.414	10.410	10.242	10.530	MZ6A Moisture	
	Ethylene (100,3000) 191C H2O% (40) 191C	4.205	4.125	4.100	25.4	4.124	4 071	4.097	4.045	4.060	4.034	4.098	4.159	4.196	4.241	4.225	4.021	4.043	4.030	4 092	4.110	4.123	4.119	4.159	4.136	4.136	4.193	4.191	4.198	4.237	4.301	4.248	4.173	4.037	4.173	4.111	4.047	4.128	4.048	4.127	4,145	4.273	4.151	4.151	4.203	4.117	4.130	4.188	4.228	4.102	4.104	4.144	4.4	
		0.204	0.232	0.248	0.220	0.222	0.264	0.277	0.213	0.226	0.209	0.256	0.259	0.272	0.350	0.264	0.231	0.200	0.233	0.183	0.213	0.244	0.216	0.178	0.292	0.232	0.236	0.241	0.234	0.225	0.181	0.229	0.211	0.246	0.157	0.225	0.289	0.253	0.203	0.260	0.235	0.274	0.241	0.220	0.282	0.264	0.245	0.265	0.169	0.451	0.278	0.240	0.571	
	SF6		-0.002															-0.001								-0.003							-0.003					-0.001					0.002						0.001				-0.004	
	HF pp	-0.080	-0.080	-0.083	-0.000 -0.041	620'0-	-0.074	7.0.0-	-0.081	-0.088	0.090	-0.113	-0.073	-0.079	-0.069	-0.065	-0.092	0.003	-0.053 -0.064	-0.072	-0.095	-0.096	170.0-	-0.087	-0.077	0.117	-0.03	-0.086	960.0-	-0.084	-0.075	-0.095	760.0-	10.09	980'0-	-0.055	-0.085	-0.084	-0.005	-0.092	-0.081	-0.064	-0.095	-0.069	-0.077	-0.093	620.0-	-0.045	-0.063	-0.049	-0.045		0.076 0.076	_
	HCN PCA 191c R1 191c	0.668	0.688	0.608	0.000	0.486	0.480	0.867	0.550	0.344	0.371	0.506	0.733	0.842	0.617	0.852	0.350	0.007	0.362	0.558	0.576	0.581	0.595	0.702	0.692	0.828	0.688	0.561	0.578	0.471	0.366	0.560	750.0	0.864	0.579	0.782	0.537	0.608	0.433	0.559	0.724	0.631	0.626	0.026	0.620	0.541	0,925	0.568	0.534	0.433	0.410		- 0	0.007
	Time	V23 11:34:15.805	25.55	11:37	11:38	11:39	11:40	11341	11:42:	11:43	11:44			11:48		11:50	723 11:51:18:193	11.52			11:56	11:57			723 12:00:53.285				12:06	12:07:	12:08:	12:09	723 12:10:28.724	12:12	12:13:	12:14	12:15	723 12:16:51.771	123 12:18:59 567	/23 12:20:03.466	12:21	12:22		12.24	12:26:	12:27:	12:28		723 12:30:42.459 723 12:31:46 354		12:33		% (ppm,dry@/%O2) 86 (lbs/hr)	(lps/
Stack	ω !		1558401 AB 12/19/23				•	•	-	-	_	_	Ψ,	Ψ.	Ψ.		155654.LAB 12/19/23		٠			-	ζ	•	155863.LAB 12/19/23	,	,		,			- ,	155873 4B 12/19/23	,	Υ-	•	, ,	155878.LAB 12/19/23	-	-	•		884.LAB 12/19/23		-	_			891.LAB 12/19/23 892.LAB 12/19/23	•	•	7	188.600	
Mill On Run 2	Spectrum	SPC155838.	SPC 155839.LAB	E	SPC 155842.LAB	SPC 155	SPC 155844.LAB	SPC_155845.LAB	SPC155	SPC155847.LAB	SPC155848.LAB	SPC_155	SPC155850.LAB	SPC155	SPC155852.	SPC_155853.LAB	2PC 133	SPC 1558561 AB	SPC 155	SPC 155	SPC_155859.LAB	SPC_155860.LAB	SPC155	SPC155862.LAB	SPC	SPC 155865 LAB	SPC 155866.LAB	SPC 155	SPC155868.LAB	SPC155869.LAB	SPC155870.LAB	SPC_155871.LAB	SPC 155872 LAB	SPC 155874.LAB	SPC155875.LAB	SPC155	SPC155877.LAB	SPC 155	SPC 155880.LAB	SPC_155881.LAB	SPC155	SPC155883.LAB	SPC_155884.LAB	SPC 155861 AB	SPC 155	SPC155888.LAB	SPC155889.EAB	SPC155	SPC 155891.LAB	SPC 155	SPC_155	Mill On Run	Oxygen	Clinker (tons/hr)

Buzzi Unicem; Stockertown PA Kiins 1 and 3 Stack

Mill On Run 3 Spectrum	Date Time	HCN PCA 191c R1 191c	HF apm (10) 191C	SF6 (10) 191C Ethyler	Ethylene (100,3000) 191C H2O% (40) 191C		CO2% (40) 191C snan
SPC 155917.LAB	9/23	0.437			0.242		10 147
55918	13:00	0.563	-0.057	0.002	0.199	3.987	10.467
SPC155919.LAB	13:01	0.617	-0.036	-0.003	0.239	4.000	10.483
SPC155920.LAB	13:02	0.730	-0.059	-0.000	0.210	4,085	10.460
55921.	13:03	0.577	-0.063	-0.003	0.195	4.123	10.476
SPC_155922.LAB		0.679	-0.055	-0.001	0.184	4.221	10.384
SPC133923.LAB	12/19/23 13:05:57:098	0.536	-0.063	-0.00	0.291	4.290	10.370
SPC 1559253 AR	2 6	0.200	-0.053	0.001	0.215	4.285	10.403
SPC 155926.LAB	13:09	0.630	960:0-	-0.002	0.335	4.204	10.166
SPC_155927.LAB		0.307	-0.051	-0.003	0.238	4,197	10.470
SPC155928.LAB	13:11	0.729	-0.046	0.000	0.233	4.103	10.268
SPC_155929.LAB	13:12	0.552	-0.088	0000-	0.220	3.997	10.494
SPC_155930.LAB		0.876	-0.043	-0.002	0.188	4.022	10.618
SPC_155931.LAB	13:14	0.514	-0.083	0.003	0.245	4.078	10.543
	12/19/23 13:15:32.182	0.008	0.069	5.003 5.003	0.26/	4.146	10.683
	13:17	0.582	-0.042	0.003	0.205	4.153	10.402
SPC155935.LAB	12/19/23 13:18:43.878	0.903	-0.048	-0.001	0.194	4.144	10.539
SPC155936,LAB	12/19/23 13:19:47.860	0.735	-0.067	-0.003	0.275	4.264	10.696
SPC155937,LAB	12/19/23 13:20:51.738	0.585	-0.095	-0.003	0.241	4.224	10.828
SPC_155938.LAB	12/19/23 13:21:55:605	0.459	-0.086	-0.001	0.246	4.115	10.445
	12/19/23 13:22:39:000	0.731	0.07	100.0	0.184	4.163	10.583
SPC 155941.LAB	12/19/23 13:25:07:260	0.632	90.0-	-0.003	0.213	4.121	10.357
SPC_155942.LAB	12/19/23 13:26:11.335	0.598	-0.088	-0.001	0.217	4.186	10.956
SPC155943.LAB	12/19/23 13:27:15.054	0.766	-0.077	-0.002	0.221	4.142	10.403
SPC_155944.LAB	12/19/23 13:28:18.956	0.418	-0.088	-0.002	0.234	4.250	10.690
SPC 155945.LAB	13:29	0.388	-0.093	-0.002	0.245	4.219	10.431
SPC155946.LAB		0.721	-0.091	-0.001	0.266	4.131	10.632
- 1	13:31	0.714	980.0-	0.000	0.223	4.138	10.472
SPC155948.LAB	12/19/23 13:32:34.636	0.797 0.780	060:0-	-0.001	0.12.0 \$95.0	4.185	10.537
SPC_155950.LAB		0.133	-0.095	-0.002	0.163	4.217	10.433
SPC_155951.LAB		0.208	-0.044	-0.000	0.188	4.281	10.648
1	13:36	0.460	-0.052	-0.002	0.198	4.230	10.442
SPC_155953.LAB	13:37	0.749	-0.051	-0.004	0.230	4.186	10.309
SPC155954.LAB		0.472	-0.055	-0.001	0.223	4.265	10.458
SPC155955.LAB		0.411	-0.077	0.000	0.212	4.281	10.436
SPC155850.LAB	12/19/23 13:41:06.068	0.511	0.080	-0.002	0.193 0.36F	4.270	10.452
		0.492	0.03	0000	0.242	4.316	10.430
SPC 155959.LAB		0.547	-0.070	-0.003	0.214	4.211	10,176
SPC155960.LAB	13:45	0.651	-0.096	-0.001	0.217	4.106	10.392
SPC_155961.LAB		0.523	-0.074	-0.000	0.225	3.973	10.234
SPC155962.LAB	12/19/23 13:47:29:156	0.532	-0.042	-0.004 0.004	0.231	3.942	10.324
	13:49	0.727	-0.09 -0.08	-0.00	0.210	3.884	10.100
SPC 155965.LAB	13:50	0.915	-0.086	-0.002	0.258	3.901	10.549
l		0.585	-0.056	-0.002	0.230	3.934	10.497
SPC155967.LAB	13:52	0.598	-0.038	-0.000	0.211	3.985	10.512
SPC155968.LAB	13:53:	0.605	-0.079	0.000	0.198	3.869	10.369
SPC 155969.LAB	12/19/23 13:54:55.403	0.386	-0.07	-0.001	0.293	3,926	10,560
SPC 1559711 AR	13.57	0.570	/60.0- 0-0-0-	-0.003 -0.005	0.192	4.049 3.988	10.022
155972	13:58	0.775	-0.077	-0.002	0.153	3.897	10.263
SPC155973.LAB	12/19/23 13:59:12.030	0.482	-0.087	-0.001	0.203	3.875	10.369
Mill On Run 3	,	Θ,	< 0.032	-0.001	0.226	4.123	10.481
DSCEM	14.3% (ppm,ary @/% U.c.)		0.078	-0.004	0.548	¢.	MZ6A Moisture
Clinker (tons/hr)	76.88 (lbs/ton clinker)	0.006		(00'0-	ŭ. 30		

Company: Buzzi Unicem; Stockertown PA Source: Kilns 1 and 3 Main Stack; Raw Mill Off Job ID: 23-3317 Train Type: M26A

	4A 12/20/23 833-943	4B 12/20/23 833-943	5A 12/20/23 1000-1109	5B 12/20/23 1000-1109	6A 12/20/23 1125-1235	6B 12/20/23 1125-1235	Average
Initial Meter Volume, ft ³ Final Meter Volume, ft ³ Intra-Port Leak Check Volume, ft ³ Total Sample Volume, cf DGM Calibration Factor Average DGM Temp, F Average DGM delta H, "H2O Barometric Pressure, "H9	861.555 904.884 0.000 43.329 1.006 70.6 1.75	71.372 115.305 0.000 43.933 0.988 72.1 1.57 29.70	905.000 948.005 0.000 43.005 1.006 79.3 1.68	115.455 158.955 0.000 43.500 0.988 84.4 1.48	948.186 990.570 0.000 42.384 1.006 89.5 1.55	159.140 202.950 0.000 43.810 0.988 88.0 1.40	43.327 0.997 80.7 1.57 29.70
Corrected Sample Vol,dscf Corrected Sample Vol,dscm	43.226	42.904 1.215	42.203 1.195	41.512	40.808	41.525 1.176	42.030 1.190
Oxygen, %	12.1	12.1	12.1	12.1	12.2	12.2	12.1
Nitrogen, %	73.0	73.0	72.8	72.8	72.9	72.9	72.9
Total Moisture Catch Weight, grams	56.3	57.7	56.5	55.3	51.6	50.3	52.4
Stack Gas Moisture, %	5.8 30.87	6.0 30.87	30.90	5.9 30.90	5.6 30.87	5.4 30.87	5.8 30.88
Stack Gas Wet Molecular Weight, Ib/Ibmole	30.12	30.10	30.14	30.14	30.15	30.18	30.14
Average Stack Temp, F Stack Static (Gauge) Pressure, "H2O	364.3 -0.60	364.3	363.3	363.3	363.7	363.7	363.8
Stack Gas Actual Pressure, "Hg	29.66	29.66	29.66	29.66	29.66	29.66	29.66
Pitot Tube Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Stack Gas Velocity, ft/second	38.53	38.54	37.59	37.59	36.40	36.39	37.51
Nozzle Inside Diameter, inches	0.310	0.312	0.310	0.312	0.310	0.312	;
Total Sample Time, min Isokinetic Rate, %	99.5	97.6	60 99.5	9 9.96	99.1	99.4	98.6
Stack Dimensions Stack Area, sq ft Stack Gas Flow Rate, acfm Stack Gas Flow Rate, acmm Stack Gas Flow Rate, dscfm	131 in. ID 93.60 216,400 6,128 129,400	131 in. ID 93.60 216,400 6,128 129,200	131 in. ID 93.60 211,100 5,978 126,300	131 in. ID 93.60 211,100 5,978 1 26,300	131 in. ID 93.60 204,400 5,788 122,600	131 in. ID 93.60 204,400 5,788 122,800	93.60 210,633 5,965 126,100 3,571
STACK Gas Flow Rate, uscillin	1000	>>>>	5	> 5	1		

Company: Buzzi Unicem; Stockertown PA Source: Kilns 1 and 3 Main Stack; Raw Mill Off Job ID: 23-3317 Train Type: M26A

"NDQ" denotes values below detection limits Note: Average EXCLUDES Non-detect runs' results	its is' results		4A 12/20/23 833-943	4B 12/20/23 833-943	23 43	-	5A 12/20/23 1000-1109	5B 12/20/23 1000-1109	6A 12/20/23 1125-1235	/23 235	6B 12/20/23 1125-1235	OJ.	Average	
Hydrogen Fluoride	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm @7% O2 Conc., mg/dscm @12% CO2 Conc., ppmvd Conc., ppmvd @7% O2 Conc., ppmvd @7% O2 Enission Rate, lb/hr Clinker Rates (tph and lbs/ton)		0.255 0.208 0.329 0.168 0.250 0.396 0.202 0.101	0.256 0.211 0.211 0.213 0.0253 0.0263 0.0263 0.0204 0.00013	00 33 0 33 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>2000000000</u>	0.235 0.197 0.311 0.156 0.236 0.373 0.093 76.87	0.247 0.210 0.332 0.167 0.253 0.399 0.201 0.099	X 0.238 X 0.206 X 0.329 X 0.248 X 0.396 X 0.095 X 0.095	N	0.256 0.218 0.348 0.175 0.262 0.418 0.211 0.00013		0.248 0.208 0.330 0.167 0.250 0.397 0.0013	
Chlorine	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm @7% O2 Conc., mg/dscm @17% O2 Conc., mg/dscm @12% CO2 Conc., ppmvd Conc., ppmvd @37% O2 Conc., ppmvd @37% O2 ND(Conc., ppmvd @12% CO2 ND(Conc., ppmvd W1)	ND(ND(ND(ND(ND(ND(ND(0.184 0.150 0.237 0.051 0.081 0.041 0.073	0.0000	0 - 0 0 - 0 0 - 0 0 - 0 0		0.189 0.158 0.250 0.126 0.054 0.043 0.075 76.87	0.174 0.148 0.234 0.050 0.003 0.079 0.070 0.070	7(0.153 7(0.153 7(0.245 7(0.052 7(0.083 7(0.042 7(0.070	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.18 0.153 0.245 0.123 0.052 0.000 0.083 0.070 0.070		0.181 0.152 0.241 0.122 0.051 0.082 0.003	

Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack

Mill Off Run 1							
Spectrum	Date Time	HCN PCA 1916 R1 1916	HF nom (10) 191C SE6 (10) 191C		Ethylene (100 3000) 1910; H20% (40) 1910; C02% (40) 1910 span	H20% (40) 1910	CO2% (40) 1910 span
SPC 156074,LAB	12/20/23 08:34:09.603	1.122	-0.001		0.243	5 785	14 551
SPC 156075 LAB	08-35-13	0.925	-0.00	-0.004	0.126	2.50	14.265
SPC 156076.LAB		1.164	-0.024	-0.005	0.185	5.673	14 3 18
SPC 156077.LAB		1.147	-0.013	-0.004	0.199	5 796	14 461
SPC 156078 LAB		1 251	-0.001	-0.005	0.75	207.5	14.612
SPC 156079.LAB		1.267	-0.002	-0.005	0.171	5,728	14.578
SPC 156080.LAB		1.147	-0.006	0000	0.197	2,23	14.00
SPC156081.LAB		0.952	-0.002	-0.002	0.264	5.862	14.678
SPC_156082.LAB	12/20/23 08:42:40.864	1.097	-0.006	-0.001	0.225	5.918	14.789
SPC_156083.LAB	12/20/23 08:43:44.768	1.287	0.004	-0.006	0.256	5.965	14.656
SPC156084.LAB		1.055	-0.015	-0.006	0.214	5.879	14.909
SPC156085.LAB		0.863	-0.016	-0.006	0.255	5.946	15.166
SPC156086.LAB		1.316	-0.023	-0.004	0.278	5.981	15.150
SPC156087.LAB		1.225	-0.031	-0.005	0.273	5.776	14.789
SPC_156088.LAB		1.147	-0.005	-0.001	0.178	5.819	14.756
SPC_156089.LAB		0.995	-0.010	-0.005	0.224	5.755	14.718
		1.094	-0.021	-0.004	0.188	5.807	14.731
		0.988	-0.014	-0.005	0.222	5.651	14.369
SPC1560021.AB	12/20/23 06:53:19.85/	1.897	0,005	-0.004	0.273	5.655	14.307
SPC130033,LAD		100.1	-0.029	-0.005	0.297	5.726	14.420
SPC 1560051.AB		0800	100.0	5000	0.248	0.708 1410	14.360
SPC 156096 AB		000.	-0.023	-0.003	0.265	0,7,0	4.409
SPC 156097 I AB		1084	-0.042	0.004	0.203	5,77,7	14.002
SPC 156098.LAB	08:59:43.2	1 205	-0.016	-0.003	0.262	5803	14.432
SPC 156099.LAB		1,106	-0.028	-0.005	0.275	5,902	14 581
SPC_156100.LAB		1.206	-0.018	-0.003	0.237	5.809	14.491
SPC156101.LAB		0.965	-0.043	-0.003	0.238	5.800	14.490
SPC_156102.LAB	12/20/23 09:03:58.960	1.111	-0.036	-0.004	0.168	5.801	14.500
SPC_156103.LAB		1,328	-0.036	-0.001	0.207	5.755	14.324
SPC_156104.LAB		1.235	-0.033	-0.002	0.243	5.752	14.447
SPC_156105.LAB		0.978	-0.041	-0.004	0.171	5.729	14.461
SPC156106.LAB		1.176	-0.032	-0.005	0.247	5.758	14.604
SPC_156107.LAB		1.113	-0.024	900.0-	0.187	5.723	14.494
SPC_156108.LAB		1,045	-0.029	-0.003	0.254	5.814	14.681
SPC_156109.LAB		1.036	-0.037	-0.003	0.257	5.751	14.535
SPC_156110.LAB		1.190	-0.037	-0.003	0.259	5.801	14.554
SPC_156111.LAB		1.075	-0.026	-0.005	0.225	5,795	14.479
SPC_150112.LAB	12/20/23 09:14:3/.914	0.898	-0.040	2007	0.248	5.774	14.428
SPC 156114 LAB		1.088	-0.04	-0.003	0.240	5.885	14.070
SPC_156115.LAB		0.974	-0.026	-0.003	0.260	5.776	14.387
SPC_156116.LAB		0.954	-0.031	-0.005	0.159	5.698	14.275
SPC_156117.LAB		1.211	-0.063	-0.004	0.210	5.761	14.435
SPC 156118.LAB	09:21:01.4	1.006	-0.045	-0.002	0.268	5.748	14,444
		1,433	-0.052	-0.004	0.223	5.685	14.352
SPC_156120.LAB	12/20/23 09:23:09:136	1.278	20.048	-0,002	0.270	5.691	14.414
SPC 156122.LAB		1.153	0.000	-0.003	0.235	0.0 44 44 44 44 44	14.420
SPC_156123.LAB		1.343	-0.054	-0.005	0.195	5.715	14.611
SPC_156124.LAB		096.0	-0.045	-0.006	0.270	5.821	14.707
SPC_156125.LAB	12/20/23 09:28:28.638	1.304	-0.048	-0.002	0.298	5.775	14.364
SPC_156126.LAB	12/20/23 09:29:32.616	1.159	-0.045	-0.002	0.238	5.785	14.725
SPC_156127.LAB	12/20/23 09:30:36.443	1.238	-0.046	-0.004	0.220	5.809	14.802
SPC_156128.LAB	12/20/23 09:31:40.348	1.234	-0.051	-0.005	0.292	5.817	14.816
17	(actual)	1.078	20.052	-0.005	0.239	5.752	14.439
Oxvaen	12.1% (ppm,drv @7% O2)			-0.006	0.388	G 45	M264 Moisture
DSCFM	_		0.014	-0.012	0.139	}	
Clinker (tons/hr)	76.86 (lbs/ton clinker)	0	< 0.0002				

Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack

Mill Off Run 2								
Spectrum	Date	3 me	HCN PCA 191c R1 191c	HF ppm (10) 191C	5	Ethylene (100,3000) 191C H2O% (40) 191C	H2O% (40) 191C C	CO2% (40) 191C span
- 1	12/20/23	999	0.875	-0.035	-0.004	0.246	5.726	14.207
SPC_156155.LAB	12/20/23	10:01	1.322	0.060	-0.006	0.242	5.811	14.441
SPC 156150.LAB	12/20/23	10:02:41.655	0.930	0.046	0.002	0.233	5.815	14.44/
	12/20/23	10:03:40:373	1.95	-0.033	500.0	27.0	5.780	14.300
SPC 156159.LAB	12/20/23	10:05	1.054	0.049	-0.005	0.234	5.875	14.487
SPC 156160.LAB	12/20/23	10:06	1.177	-0.042	-0.004	0.216	5.887	14.802
SPC_156161.LAB	12/20/23	10:08	1.094	-0.050	-0.001	0.262	5.765	14.428
SPC_156162.LAB	12/20/23		1.387	-0.052	-0.005	0.227	5.758	14.567
SPC156163.LAB	12/20/23		1.233	0.044	-0.001	0.262	5.744	14.573
SPC_136164.LAB	12/20/23	10:11:12.596	1.292	-0.047	-0.002 0.005	0.241	5.667	14.36/
SPC130103;LAB	12/20/23		D + +	0.04	0.00	0.261	5.09	14.012
SPC 1561671 AR	12/20/23	10.15	1.155	-0.044	-0.004	0.233	5.648	14.539
SPC 1561681 AB	12/20/23	10.15	1361	-0.074	-0.00	0.325	5.819	14.828
SPC_156169.LAB	12/20/23		1.138	-0.057	-0.006	0.236	5.812	14.839
SPC_156170.LAB	12/20/23		1.082	-0.058	-0.002	0.254	5,746	14.472
SPC_156171.LAB	12/20/23	10:18	1.099	-0.047	-0.001	0.275	5.744	14.511
SPC_156172.LAB	12/20/23	10:19	1.035	-0.057	-0.005	0.323	5.878	14.834
SPC 156173.LAB	12/20/23	10:20	1.328	-0.060	-0.004	0.252	5.877	14.761
SPC 156174.LAB	12/20/23	0.2	1.194	-0.058	-0.002	0.203	5.862	14.773
SPC156175.LAB	12/20/23	10:22	1.074	-0.036	-0.001	0.250	5.737	14.529
SPC1301/0:LAB	12/20/23	10:23:39:310	1,332	-0.052	-0.003	0.192	3.020	14,739
SPC 156178 AB	12/20/22	200	1 143	0.056	0.00	0.254	5,770	14.706
SPC 156179 LAB	12/20/23	10.27	1032	-0.037	-0.00	0.217	5.827	14 883
SPC 156180.LAB	12/20/23	10:28	1.290	-0.048	-0.004	0.320	5.910	14.971
SPC 156181.LAB	12/20/23		1.195	-0.055	-0.003	0.265	5.852	14.928
SPC156182.LAB	12/20/23		1.227	-0,044	-0.005	0.267	5.865	14.918
SPC156183.LAB	12/20/23		1.221	-0.054	-0.005	0.279	6.093	15.149
SPC_156184.LAB	12/20/23		1.171	-0.054	-0.005	0.261	6.005	15.084
SPC_156185.LAB	12/20/23	10:33	1.346	-0.040	-0.006	0.285	5.921	14.869
SPC156186.LAB	12/20/23		1.235	-0.049	-0.003	0.202	5.829	14.519
SPC_156187.LAB	12/20/23		1.164	-0.046	-0.002	0.234	5.805	14.6/4
SPC_150186.LAB	12/20/23	10.30,40,437	1,065	-0.058	0.00	0.195	5.787	14.525
SPC 1561901 48	12/20/23	10.5	1.530	-0.03/ -0.055	-0.003	0.134	5.687	13.978
SPC 156191 AB	12/20/23	0.0	1 178	-0.05	-0.003	0.72	5.658	14.290
SPC 156192.LAB	12/20/23	10:41	1.206	-0.061	-0.003	0.275	5.811	15.229
SPC156193.LAB	12/20/23	10:42	1.243	-0.051	-0.003	0.157	5.574	14.492
SPC_156194.LAB	12/20/23	10:43	1.135	-0.058	-0.003	0.230	5.683	14.591
SPC_156195.LAB	12/20/23	5 6	1.044	-0.052	-0.003	0.248	5.766	14.778
SPC_130190.LAB	12/20/23	40-46-24 EAE	1.005	-0.052	0.000	0.102	5.034 4.065	14.040
SPC 156198 I AB	12/20/23	10.47	1.210	-0.066	-0.005	0.260	5.926	14.947
SPC 156199.LAB	12/20/23	10:48	1.568	-0.063	-0.002	0.293	5.974	14.938
SPC_156200.LAB	12/20/23	10:49	1.395	-0.039	-0.004	0.305	5.940	14.758
SPC156201.LAB	12/20/23	10:50	1.235	-0.058	-0.001	0.267	5.985	14.900
SPC_156202.LAB	12/20/23	10:51	1.240	-0.062	90.0-	0.236	5.983	15.029
SPC 156203.LAB	12/20/23	10:52:45.171	1.4/0	0.063	-0.003	0.264	6.032 F 805	15.045
SPC 156205.LAB	12/20/23	10:54	1.218	-0.057	90.00	0.198	5.795	14.646
SPC 156206.LAB	12/20/23	10:55	1.268	-0.056	-0.004	0.251	5.922	15.088
SPC_156207.LAB	12/20/23		1.255	-0.066	-0.002	0.240	5.734	14.606
- 1	12/20/23		1.060	-0.071	-0.004	0.218	5.814	14.883
156209	12/20/23	10:59	1.151	0900	-0.003	0.240	5.746	14.859
SPC 156210.LAB	12/20/23	11:00	1.029	-0.065	-0.003	0.263	5.810	14.977
Oxygen	12 1%	(actual)	- •	> 0.032	-0.06	0.409	9 5	M264 Moisture
DSCFM	126.300	(ips/hr)			-0.011	0.143	2	
Clinker (tons/hr)	76.87	(lbs/ton clinker)	600.0	_				

Ethylene (100,3000) 191C H2O% (40) 191C CO2% (40) 191C span 5.5.931 5.5.740 0.0277 0.0286 0.0286 0.0297 0.0297 0.0208 HF ppm (10) 191C SF6 (10) 191C 0.000 0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056
0.056 HCN PCA 191c R1 191c 1,155 1,100 (ppm,dry @7% 02) (lbs/hr) (lbs/ton clinker) 12/20/23 11:43:39.404 12/20/23 11:44:42.973 12/20/23 11:46:41.021 12/20/23 11:46:51.02 12/20/23 11:48:68.576 12/20/23 11:61:06.02.471 12/20/23 11:61:06.325 Date Time 12/20/23 11:25:32.757 12/20/23 11:26:36.657 12/20/23 11:27:40.664 12/20/23 11/29/48,431 12/20/23 11/30/52/359 12/20/23 11/30/50/39/4 12/20/23 11/30/39/50/4 12/20/23 11/30/39/4 12/20/23 11/30/39/4 12/20/23 11/30/23/40 12/20/23 11/30/23/40 12/20/23 11/30/23/40 12/20/23 11/30/23/40 12/20/23 11:55:22.113 12/20/23 11:56:25.835 12/20/23 11:57:29.729 12/20/23 11:58:33.628 12/20/23 12:00:41:607 12/20/23 12:01:45:349 12/20/23 12:03:53:120 12/20/23 12:04:57:126 12/20/23 12:04:57:126 12/20/23 12:07:04:998 12/20/23 12:09:12:62 12/20/23 12:09:12:62 12/20/23 12:09:12:62 (actual) 12/20/23 11:53:14.320 12/20/23 11:54:18.033 12/20/23 12:11:20.541 12:12:24.317 12:13:28.338 12:14:32.108 12:17:43.799 12:18:47,702 12:19:51.595 12:20:55.493 12/20/23 12:23:03.289 12/20/23 12:24:07.184 12/20/23 12:25:11.086 12/20/23 11:28:44.633 12/20/23 11:42:35.472 12/20/23 12:21:59.396 12/20/23 11:59:37.531 12:15:36.191 12:16:39.901 Mill Off Run 3 HCN Analyte Spike 12/20/23 12/20/23 12/20/23 12/20/23 12/20/23 12/20/23 2/20/23 2/20/23 12.2% 122,700 76.79 Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack SPC 156233.1AB
SPC 156233.1AB
SPC 156233.1AB
SPC 156233.1AB
SPC 156231.1AB
SPC 156231.1AB
SPC 156241.1AB
SPC 156261.1AB
SPC 156281.1AB
SPC 156281.1AB SPC__156289.LAB Will Off Run 3 Clinker (tons/hr)

15.008 14.771 15.077

14.995

14.697 14.697 14.610 14.569 14.417 14.409 14.513 14.204 14.503 14.204 14.503 11.3926 11.3926 11.383 11.383 11.388 11.733

M26A Moisture

14.967 15.281 15.063 15.432 15.432 15.436 15.14 15.08 15.064 14.753 14.552 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.753 14.733 14.7

Appendix B

Field Data and CEM/FTIR Data

EPA Method 1 Traverse Point Location for Circular Ducts

Plant	Buzzi	Unicem				
City		ertown	State	PA	_	
Location	1	Inline Kiln/Ray	/ Mill System Sta	nck] '	
Stack ID	(inches)	131				
Nipple Le	ength	6.5				
Nearest L	Jpstream	Disturbance (Ber	nd, ID FAN, etc)		,	
Distance	(inches)	1452	Type of Disturbance	Stack Breaching		
Nearest [ownstre	am Disturbance (I	Bend, or Stack Out	let)	,	
Distance	(inches)	1128	Type of Disturbance	Stack Outlet		
Sampler (Mark with a	,	se?	Date 04/13/05) No		
Number o	of Travers	se Points Require	di 6)		

Traverse Point	Fraction of Stack	Stack ID	Diameter Frac.		Nipple Length	Traverse Point Distance
Number	Internal Diam.	(Inches)	Stack ID		(Inches)	from outside Nipple
1	0.044	131	5.76		6.5	12 1/4 in.
2	0.146	131	19.13		6.5	25 5/8 in.
3	0.296	131	38.78		6.5	45 1/4 in.
4	0.704	131	92.22		6.5	98 3/4 in.
5	0.854	131	111.87		6.5	118 3/8 in.
6	0.956	131	125.24	, ,	6.5	131 3/4 in.
						_

Cyclonic Flow Check Data Sheet

PLANT AND CITY	DATE,	SAMPLIN	G LOCATION		SAMPLE	TYPE	RUN NU	MBER
Cherzi htocker tour (1)	12/12/27	Wiln	1.th Ma	in Frech	Cyclonic Flo	w Check		
		I Ama Atasi				L DOM ON	ente de minerale les	2222
OPERATOR Barometric STATIC Pressure (Pb PRESS	AMBIENT TEMP	STACK	PITOT	DGM	DGM	DGM CAL FACTOR		PROBE
(In, Hg) (in, H2O)	(deg. F)	(in.)	Cp	BOX No.	delta H@	(gamma)		NO
DKC AR 25.2 -069	40	10	0.64	145/4	NA	NA		177
	, , , ,	130						912

EPA Method 2 Data

Run Time (24 hr)	Traverse Port Point ID	Pitot Delta P READING * H2O	STACK TEMP deg F	Absolute Angle at null (0) Delta P READING " H2O
122	Al	0,70	264	5
	2	0.65	264	4
***************************************	7	060	765	5
	Bĺ	0.60	763	10
	2	0.55	264	5
	3	0.50	265	5
	Ci	0.60	264	8
	2	0.5	265	4
	3	0.5	2/04	4
	DI	0.6	745	10
	2	Deb	265	5
	3	0.7	265	nt

Pitot Leak C	Check	V		
Averages				

Average of Absolute Angle Readings must be < 20 degrees

_	
1.	
ᆢ	
Ш	
I	
HHH	
ATA	
\Box	
9	
Ξ	
III III	
=	
Ш	
26A	
P	
C	
C	
METHOD,	
$\stackrel{\sim}{}$	
\vdash	
Ш	
=	

(1) A 1 23	JETHOD	26A	FIELD DATA	HS HS	ET	NO	SAMDIE TVDE		PAGE 1 of 1	1 MIMBER	
Blizzi Inicam: St	Stockertown P	, A	13/ 10/ /23	W. 5	140 EOON!		M26A		ST 1 A		
OPERATOR A	R	AMBIENT	STATIC	AMBIENT	FILTER NI IMBER	STACK	PITOT	PROBE LENGTH AND I INFR TYPE	177	NUMBER I DIA	ZLE DIAMETER
		(In. Hg)	(in. Water)	(deg. F)		(In.)	3			1260 301	·
)9a		29,2	75.7	70	AA	13/2 (31	0.85	6' glass	c	000	0000
ASSUMED MOISTURE B	DGM BOX No.	DGM H@	DGM CAL FACTOR (Y)	STACK THERM NO.	STACK PITOT NO.	ORSAT NO.	CHECK (INITIAL)	CHECK CHECK (FINAL)	CONTENT	CONTENT	A PACION
	MS-14	36.1	1 5	5A	5A DASSEN II	EALEN	,00/ CU. FT	CU. FT	10	200	317
TRAVERSE E	ELAPSED		TIOI LEAN OIL	delta P	USOF D	ייייייייייייייייייייייייייייייייייייייי		DGM	FILTER	C C	SAMPLE
PORT/	TEST	CLOCK	DGM READING	VELOCITY	delta H ORIFICE	PROBE	TEMP	TEMP I	TEMP	TEMP	ACE SE
NO.	(MIN)	(24-HR)	Vm (cu. ft.)	(In. H2O)	(In. H2O)	6	-	(deg. r)	(deg. r.)	(near L)	(811-119)
A-1	0	1007	726.606	. ١	2.2	259	2¢ 3	5 7	629	0	-S
2	5		730 74	.63	2.0	259	261	600	200	03	h
m	10		1.00	O එ *	6.1	200	265	0	757	00	b
	15	L. J	138.431	End of Port				0100		1000	
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	AK CHECK? :U. FT)	J - '	1	LEAK RATE:	CU.FT @	@ L	INCHES Hg				2.5
7	7,	FINAL 7026	738:431	55	1. 7 I	2(00)	765	(0)	284	61	V
	200	1_	75.11.99	1,00	3	215	265	2	152	57	a
1 m	25		745.57	747	5-1	754	10°2	63	152	55	2
	30	1035	745,9415	End of Port						No. of Street, or other Party of Street, or	
INTRA-PORT LEAK CHECK?	AK CHECK?	INITIAI		I FAK RATE:	CU.F	@ —	INCHES Hg				
DGINI VOLUME (C	.00.	FINAL			CU.FT @	00	INCHES Hg			ļ	
C-1	30	1030	548.842	.57	1.8	240	200	6.5	2602	5.7	la
2	35		J 9 25L	152	1.60	260	265	(~ 4)	502	5.5	4
8	40		75627	٠ ج	و.	20e 1	20.5	1001	5002	18/	5
	45	1654	759 767	End of Port							
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	AK CHECK? 3U. FT)	INITIAL		LEAK RATE:	CU.FT © CU.FT	@@ - 	INCHES Hg				
D-1	45		754.867	23	1.9	20cc	243	59	260	53	5
2	50		763.72	15.	1.8	252	263	65	200	30	's
က	55		767.56	-57	5.5	240	2002	ec	200	3.1	^
	09	2111	771.411	End of Port							
	TOTAL		DGM	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.			•
	60 Min.								7	\	

Plant Buzzi	Unicem; St	ockertown	PA			ole Date <u>[2-1</u>		
Sample Locat					Reco	very Date <u>12</u>	1 19 123	-
Run NoS					Reco	vered by	105	
Filter Number	r(s) N	lot Applicab	ole		•			
			<u>MO</u>	ISTURE				
Impingers	1	2	3	4	5	6	10.	
imp.mgere	50 ml	100 ml	100 ml	Optional	100 ml	100 ml	Silica gel	
	0.1N H ₂ SO ₄	0.1N H ₂ SO ₄	0.1N H ₂ SO ₄	Knockout	0.1N NaOH	0.1N NaOH (untipped)	(untipped)	- 1
	(knockout)	(tipped)	(tipped)	(untipped)	(untipped)			_
Final weight		769.3	+++1	617.9	749.8	7480	C175.1	g
Initial weight	\times	763.4	758,D	61313	7460	746.6	966.1	g
Net weight		59	19.1	4.6	3.8	1.4	9.0	g
1	V		~ l			11	20	
Description o	f impinger v	vater	Clea	<u></u>				spent
					1	B	, ,	il gel colo
				,	Total moistu	re =	13.8	grams
]	RECOVE	RED SA	MPLE			
								/
H ₂ SO ₄ Impinge	ers and knock	out contents	and water rin	ise		Liquid lev	el 🗸	60.
container no.						marked/se	aled	2
							/	
NaOH Impinge	ers contents a	nd water rins	<u>se</u>	/A		Liquid lev		
container no.	ST	-M26A	-NaOH-	1		marked/se	aled V	
							9	
Samples stored	and locked							85

, W

L	
ſ	ı
L	i
Ξ	Ι
C	ſ.
<	, 1
H	
<	1
(_
Ī	
Ī	l
Ĺ	ı
<	1
C	Š
	1
	_
(
-	Ι
Ě	
Ĺ	<u> </u>

Plant Buzzi Sample Loca Run No. S Filter Numbe	tion <u>Kiln 1 a</u> T	nd 3 Main S	tack 26A- [7]		Reco	ple Date <u>V</u> very Date <u>V</u> vered by	4 67 123	
			MO	ISTURE				
Impingers Final weight Initial weight Net weight Description of	1 50 ml 0.1N H ₂ SO ₄ (knockout)/	2 100 ml 0.1N H ₂ SO ₄ (tipped) 760.1 752.3 7.8	3 100 ml 0.1N H ₂ SO ₄ (tipped) 790.9 773.3 17.6	61814	5 100 ml 0.1N NaOH (untipped) 753.5 751.1	6 100 ml 0.1N NaOH (untipped) 749-R 749-Y ~0.2	10.1	g g g
-					Total moist	ire =	126 S	il gel color grams
]	RECOVE	RED SA	MPLE			
H ₂ SO ₄ Imping container no.	ers and knock	cout contents -M26A-	and water rin	nse B		Liquid lev marked/se		
NaOH Imping container no.	ers contents a	and water rins -M26A	se A-NaOH- ↓	B		Liquid lev marked/se	rel valed	
Samples stored Remarks								• • • • • • • • • • • • • • • • • • •

L	
ŗ	
	÷
Ļ	L
Ξ	I
C	1
Ī	
<	J
H	-
<	1
1	_
Ī	
_	
	L
F	-
L	_
<	1
c	2
ò	$\vec{\ }$
	_
-	Ĕ
-	L
H	_
L	L
	_
	•

DI AKID	7 7 7 7	HOD 26A	FIELD DAI	DATA SHEET			H ICHARO	TVDE	PAGE 1 of 1	1 NIMBED	
PLAIN	Stockortown	V0	10/10/103	SAINIPL	ING LOCAL	ON		וורב	ST 7	NOMBER	
OPERA	OPERATOR A	AMBIENT	STATIC	AMBIENT	FILTER	STACK	PITOT	PROBE LENGTH	NGTH	NOZZLE	ZLE
		(In. Hg)	(in. Water)	(deg. F)	NOMBERA	<u>∃</u> (;	3	AND CINE	1 1 1 1	Zuc - E.	טואובו בע
ŏ	000	707	40	10,65	NA NA	131 132	0.85	6' glass		300	76C
ASSUMED MOISTURE (%)	BOX No.	DGM H@M	DGM CAL FACTOR (Y)	ΧZ	STACK PITOT NO.	ORSAT NO.	CHECK (INITIAL)	CHECK (FINAL)	CONTENT	CONTENT	K FACLOR
C	12-2-17	ا باد	PITOT LEAK CHECK>	۱ ۱	5A PASSED	LEALLED	PH. C) @	(CU.FT CU.FT を / CU.FT を	15	01	217
TRAVERSE PORT/	ELAPSED TEST	CI OCK	DGM	σ \vDash		PRORF	STAC	DGM IN O	FILTER	Sil Gel EXI	SAMPLE
TNIO9/		TIME (24-HR)	READING Vm (cu. ft.)	HEAD (In. H2O)	ORIFICE (In. H2O)	TEMP (dea. F)	TEMP (dea. F)	TEMP (dea. F)	TEMP (dea, F)	TEMP (dea. F)	(in. Ha)
A-1			771622	1120	2.3	500	262	09	242	62	7
2	5	_	775.74	59:	2.1	201	200	10	264	59	7
3	10		77 21	09.	ا ، ط	092	260	, c)	260	55	2
	15	1149	183.643	End of Port	N. A. P.				5-10-15-12		
INTRA-PORT I	INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	INITIAL		LEAK RATE:	CU.F	@ _	INCHES Hg				
		FINAL			CU.FT @	0	INCHES Hg				
B-1	15	1152	753,643	35,	<u> </u>	202	263	63	5072	s e	2
2	20		787.33	155	1.7	2.00	2 6 C	63	192	56	7
3	3 25		190.94	,47	 - \$	763	202	e v	261	53	,
	30	1207	799.433	End of Port			3000日本で	Table Can			
INTRA-PORT I	LEAK CHECK?	INITIAI		I FAK RATE	CUF	T @	INCHES Ha				
	()	FINAL			CU.FT.®	T (0)	INCHES Hg				
C-1	30	1210	794.433	157	1.9	552	202	63	1260	50	7
2	35		798.13	151	1 (2	755	262	63	255	15	2
3	40		50.83	· 50	ولا ن	750	242	63	757	15	7
	45	1225	565.413	End of Port							
INTRA-PORT LEAK CHE DGM VOLUME (CU. FT)	NTRA-PORT LEAK CHECK? JGM VOLUME (CU. FT)	INITIAL		LEAK RATE:	CU.FT	00	INCHES Hg				
Č	18	1774	805112	5 5 3			7 7	100	286	5.3	١
		1	- 'v	, _f ~	\ \ \ \ \	7 20 0	130	25	1 1		
1 8			8.17.66		1.5	250	261	(0, 6, 1	259	5.5	. ^
		11,21	169	End of Port	THE PARTY OF						
	TOTAL		DGM	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.			
	60 Min.								_	\	
									`		

Plant Buzzi Sample Locat					Reco	ole Date 12 / very Date 12	-119 123			
Run No. S'	Γ (2 Λ	-M	26A- 2A	-	Reco	vered by	509			
Filter Numbe	r(s) N	lot Applicat	ole					_		
1 11001 1 1001110		F_			-					
			MC	ISTURE				_		
Impingers	1	2	3	4	5	6				
	50 ml	100 ml	100 ml	Optional Knockout	100 ml 0.1N NaOH	100 ml 0.1N NaOH	Silica gel			
	0.1N H ₂ SO ₄ (knockout) /	0.1N H ₂ SO ₄ (tipped)	0.1N H ₂ SO ₄ (tipped)	(untipped)	(untipped)	(untipped)	(untipped)			
Final weight	1	776.1	764.6		7446	753.7	10282	g		
Initial weight		7-61.2	752.6	670.4	741.9	752.8	1020.4	g		
Net weight		14.9	120	3.1	2.7	0.9	8,2	g		
Description o	of impinger v	vater	ten			80		spent		
Total moisture = $\frac{B/W}{4l.S}$ Sil gel co										
]	RECOVE	RED SA	MPLE					
H ₂ SO ₄ Imping container no.	ers and knock	cout contents -M26A-	and water rin	nse A		Liquid lev marked/se		_		
NaOH Imping container no.				A		Liquid lev marked/se				
Samples stored	d and locked									
Remarks								8		

ŀ	
i	Ĺ
ī	
	Ť
7	7
(J.
<	1
ŀ	_
	1
7	~
L	_
(_
ī	ī
Ī	Ī
Ī Ī	Ī
Ē	1
< (427
< (427
< (427
< (427
< (427
< (427
< (
<	

ETHOD 26A FIELD DATA SHEET	12 19 /23 M26A ST	MBIENT STATIC AMBIENT FILTER STACK PITOT PROBELE	(In. Hg) (in. Water) (deg. F) (In.)	70 2410 -0.1,5 UO NA (3) 1922 0.85 6' glass	IN DGM DGM STACK STACK LEAK	FACTOR (Y) NO. NO. (INITIAL) (FINAL) % %	5A 5A CEM GOVET CU.FT CO.FT S	PITOT LEAK CHECK> TPASSED FAILED @ 10 "Hg @ 10" Hg 10	CLOCK DGM VELOCITY delta H PROBE STACK IN OUT OVEN SII GELEXIT	IIME READING HEAD ORIFICE IEMP I	0 1134 971 115 11 8.0 250 262 58 9151 0	440 74 26 36 364 364 364 364 364	1 745.34 1.60 1.7 247	5 1149 989, 14G End of Port		2 989,196 35 1.6 253	992,91 .55 1,6 242 260 61	h.1	1000, 536 End of Port		FINAL CU.FT.@	742 63 240 HT	31 .51 1.5 239 262 63 255 45	40 1608.11 .50 1.4 240 242 64 257 4S 6	5 1235 1011 256 E	. FT) INITIAL LEAK RATE: CU.FT @ INCHES Hg	27 27 27 27 27 27 27 27 27 27 27 27 27 2	יייי אר של ייי אין אין אין אין אין אין אין אין אין	20 57 1.10 120 2, 24 120 120 120 120 120 120 120 120 120 120	TO TO TO THE END OF THE PORT O	DGM	
METHOD AND AND CITY		OPERATOR AM		J. Rothwhere 2	No		7		TEST		A-1 0	5	10	2	INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT) FINE		-			INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT) INIT			2 35	3 40	2	DGM VOLUME (CU. FT)	-	2 2		8		

Plant Buzzi Sample Loca Run No. S Filter Numbe	tion <u>Kiln 1 a</u> T	and 3 Main S -M	Stack 26A-スピ		Reco	ple Date <u>1</u> 2 overy Date <u>12</u> overed by	2/ 19 /23	<u> </u>
			MO	ISTURE				
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel	
Final weight	\ /	7779		652.0	2525	2452	969.8	
Initial weight	X	762.4	759.3	648.2		744.Z	-959,2	
Net weight		15.5	12.6	3.8	2.8	11/	10,6	g
Description o	f impinger v	vater	Uco		Total moistu	03	/ル Si	spent il gel colo grams
					rotar moista		101	granis
		Ī	RECOVE	RED SAI	MPLE.			
H ₂ SO ₄ Impinge container no						Liquid lev marked/sea	el aled	/
NaOH Impinge container no	ers contents a	nd water rins -M26A	<u>е</u> -NaOH- Z	B		Liquid lev		
Samples stored Remarks	_							

-	1
Н	
i	
L	L
1	
	L
_	Г
7	-
C	Г
_	•
_	1
	4
Н	
•	_
F < 1	1
	_
Ĺ	_
Н	
_	
ī	
L	L
	-
L	L
_	1
7	₹
C	С
č	1
•	•
	_
Ĺ	
7	_
(_
_	ĭ
_	L
Ĺ	
Г	_
ı	L
-	-

PLANT	AETHOD 26A) 26A	FIELD L		I ING LOCATION	NO	APLE	TYPE	힑 [E 1 of 1 RUN NUMBER	
OPERAT	Buzzi Unicem; Stockertown PA OPERATOR F	AMBIENT PRESS	12 / (4 /23 STATIC PRESSURE (in Water)	AMBIENT TEMP (deg. F)	FILTER	STACK ID (In.)	MZ6A PITOT Cp	PROBE LENGTH AND LINER TYPE	NGTH TYPE	NUMBER D	ZLE DIAMETER
DG	2	2052	7.135	NO	NA	134 13	0.85			240	,26°G
ASSUMED MOISTURE (%)	DGM BOX No.	DGM H@	DGM CAL FACTOR (Y)	STACK THERM NO.	STACK PITOT NO.	ORSAT NO.	CHECK (INITIAL)	CHECK CHECK (FINAL)	O2 CONTENT	CONTENT	K FACTOR
72	MSIN	1 Tie	PITOT I FAK CHI	5A -CK> II	5A PASSED II	FAILER	.00) CU. FT	@ 10 "Ha	13	01	2.17
TRAVERSE PORT/ /POINT	ELAPSED TEST TIME (MIN)	CLOCK TIME (24-HR)	DGM READING Vm (cu. ft.)	delta P VELOCITY HEAD (In. H20)	delta H ORIFICE (In. H20)	PROBE TEMP (deg. F)	STAC TEMF (deg. F	DGM IN / OU TEMP (deg. F	FILTER OVEN TEMP (deg. F)	Sil Gel EXIT TEMP (deg. F)	SAMPLE TRAIN VAC (in. Hg)
A-1	0	-	Hr. 374	,72	2-3	262	261	00	259	00)	9
2	5		ויו	ここ プロ	2.1	240	262	00	200	20	0
က	10		424.8%	5 o) .	7.0	202	200	19	263	55	Ø
	15	1314	X	End of Port							
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	EAK CHECK? (CU. FT)	INITIAL		LEAK RATE:	CU.FT	@@	INCHES Hg				
B-1	15		828583	25.	1.8	257	105	63	250	00	9
2	20		857.38	.58	1.4	757	2 tpC	63	252	58	S
3	25		50	.50	و.	757	260	65	255	88	S
	30	1533	539,731	End of Port							
INTRA-PORT LEAK CHE DGM VOLUME (CU. FT)	EAK CHECK? (CU. FT)			LEAK RATE:	CU.FT @	00	INCHES Hg				
C-1	30	_	839.731	.95	1.7	452	192	63	102	SS	e
2	35	_	843.52	.52	- -	240	261	64	200	54	o
3	40		846.82	24.	1.5	265	257	65	205	50	ů
	45	1521	521.058	End of Port							The state of the s
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	EAK CHECK? (CU. FT)	INITIAL		LEAK RATE:	CU.FT @	00	INCHES Hg				
D-1	45		\$50.125	00'	1.9	259	2úes-	65	201	5.7	©
2	92		853.94	,58	1.5	200	245	S	260	500	0
3	52		457.82	,52	١٠٠٠/	257	26 i	(05	260	ر و ر	Q
	09	14,09	2	End of Port							
	TOTAL		DGM	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.			
-	60 Min.										
ਰ		1							1		

Plant Buzzi Sample Locat Run No. S Filter Numbe	tion <u>Kiln 1 a</u> Γ <i>ON</i>	nd 3 Main S -M	tack 26A-3A		Reco	ole Date <u>2</u> very Date <u>2</u> vered by	119 /23		
			<u>MO</u>	ISTURE					
Impingers Final weight Initial weight Net weight	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped) 7-63.1 7446	3 100 ml 0.1N H ₂ SO ₄ (tipped) 766, 4 7549		5 100 ml 0.1N NaOH (untipped) 747L 745.7	6 100 ml 0.1N NaOH (untipped) 757.5 756.6	Silica gel (untipped) 740.2 933.0 7.2	ත්) ත්) ත්)	
Description o	of impinger v	water	lean		Total moist	13/ are =		spent il gel o grams	colo
		ĵ	RECOVE	RED SA	MPLE				
H ₂ SO ₄ Imping container no.	ers contents	-M26A- and water rin	-H2SO4- 3	·/+		Liquid lev marked/so Liquid lev marked/so	ealedvel		
Samples store Remarks	d and locked					marked/se		- - -	

L	
ſ	ı
ì	t
5	_
Ξ	Ι
7	1
٠	•
<	1
ŀ	1
	1
	7
2	
_	_
_	
	<u> </u>
ï	7
L	1
	4
7	727
(Ź
(•
1	_
L	_
(Î
-	Ŧ
÷	
ŀ	_
L	1
-	

	2	NO771 F	SER DIAMETER	260		ENT K FACTOR	421		ທີ		9	e	0					rV.	٠.0	The state of the s			5	N	5				P		The Sale of the Sa		
f 1	RON NUMBER		NUMBER	172-	.260	CONTENT		11	Sil Gel	TEMP (deg. F)	2	47	2				2	9	45				2	20	45	10 Car 1		43	43	77			
PAGE 1 of	ST RUN		3 TYPE		Š	CONTENT	_	2	FILTER	(deg. F)	259	260	263				250	252	255				192	260	265			192	260	260	STATE OF	T	
	IYPE	PROBELE	ίZ	Section 2	6' glass	CHECK	(FINAL)	10 10	DGM IN/OU	TEMP (deg. F)	50	09	00				62	62	63				63	ور	64			64	49	63	The Section	AVE. TEMP.	
	SAMPLE TYPE	MZOA	පි	i i	0.85	CHECK	(INITIAL)	0	STAC	TEMP (deg. F)	261	262	192		INCHES Hg	INCHES Hg	261	26	260		NCHES Hg	INCHES Hg	26	261	157		NCHES HO	265	597	261	1000	AVE. TEMP.	
_	NOI	U)	(lu:)	[3] 132	ORSAT	NO.	IFAILED/	PROBE	TEMP (deg. F)	243	340	54G		T @	00	246	246	242		(e)	00	235	2h2	243		CU.FT.®	239	240	5no	1000	€	
)	SAMPLING LOCATION	THER FILTER	NUMBERS		A A	STACK	S	PASSED	delta H	ORIFICE (In. H2O)	۵.۱	1.9	١. ٢		CU.FT		د	1.7	١.٦		\	CU.FT	ڊ_	1.5	1.3		\setminus	<u> </u>	<u></u>	1.5		AVE delta H	
A SHEE	SAMPL	AMBIENA'	TEMP	(deg. F)	2	STACK	O. K	ECK > #	delta P	HEAD (In. H2O)	.72	.67	.62	End of Port	LEAK RATE:		.57	.58	.50	End of Port	LEAK RATE:		55	. 52	.46	End of Port	LEAK RATE:	, L B	\$5.	.52	End of Port	AVE SQRT delta P	
JETHOD 26A FIELD DATA SHEE	DATE	71 12 143 CTATIO	PRESSURE	(in. Water)	20.105	DGM CAL	FACTOR (Y)	PITOT LEAK CHECK>	DGM	READING Vm (cu. ft.)	23.260	27.54	21.20	36.016	\		36.016	16.68	43.85	47.77b	/		41.77 b	51.88	55.61	59.482		287.65	44.89	67.31	Lho.L	NOLUME VOLUME	
D 26A		ANDIENT	PRESS	(In. Hg)	24.20	DGM H@		1,06	CLOCK	TIME (24-HR)	1259			1314	INITIAL	FINAL	1318	AV No Sc		1333	INITIAL	FINAL	1336			1351	INITIAL	1254			14 09		
JEIHO	PLANT AND CITY	Stockertown P.	5	in in	thormally !	DGM BOX No.		M15-17	ELAPSED TEST	AINE MINE	0	5	10	10			15	20	25				30	35	40	45	CU. FT)	45	20	55	09	TOTAL	60 Min.
J	PLANT	Buzzi Unicem; Stockertown PA	OTENA STATE	9), Kort	MED	(%)	2	TRAVERSE PORT/	/POINT	A-1	2	8		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		B-1	2	က		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		5-	2	3		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT) FINAL	D-1	2	3			-

Plant Buzzi Sample Locat Run No. S' Filter Numbe	tion <u>Kiln 1 a</u> T	nd 3 Main S -M	tack 26A- 3 B		Reco	ole Date <u>L2</u> very Date <u>L2</u> vered by	+ 19 123	<u>i.</u>
			<u>MO</u>	ISTURE				
Impingers Final weight Initial weight	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped) 777-8	3 100 ml 0.1N H ₂ SO ₄ (tipped) 7679	4 Optional Knockout (untipped) 622.0		6 100 ml 0.1N NaOH (untipped) 7490		g g
Net weight		24.3	11.8	2.9	1,7	0.7	8.1	g
Description o	f impinger v		RECOVE				/WS	spent il gel colo grams
H ₂ SO ₄ Imping container no.						Liquid lev marked/se	rel aled	7
NaOH Imping container no.	ers contents a	and water rins -M26A	se -NaOH- 31	3		Liquid lev marked/se		
Samples stored Remarks	d and locked							ts •:

Plant Buzzi Sample Locat Run No. S' Filter Numbe	tion <u>Kiln 1 a</u> Γ <i>(7 γ</i>	nd 3 Main S V -M	Stack 26A- FC	>	Reco	ole Date <u>(27</u> very Date <u>12</u> vered by	2/ 20/23	<u>}</u>
			<u>MC</u>	<u>ISTURE</u>				
Impingers Final weight Initial weight Net weight	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped) 764.5 764.7	3 100 ml 0.1N H ₂ SO ₄ (tipped)	Optional Knockout (untipped) 7/2 67/3	5 100 ml 0.1N NaOH (untipped) 745.7 745.8	6 100 ml 0.1N NaOH (untipped) 751.4	Silica gel (untipped) (028,0	g g
Description o	f impinger v			,	Total moistu		Si	_
		<u>j</u>	RECOVE:	RED SAI	<u>WIPLE</u>			
H ₂ SO ₄ Impinge container no.	ers and knock	cout contents -M26A-	and water rin	ise DUFB		Liquid lev marked/se	el aled	
NaOH Impinge container no				NFI	3	Liquid lev marked/se	el aled	
Samples stored Remarks	and locked	rain Z	4				_	

ŀ	
Ĺ	1
_	<u> </u>
7	1
•	,
<	1
ŀ	1
2	7
L	
	_
ĩ	7
ä	1
L	1
<	1
	ξ
	_
2	
-	I
ŀ	
L	1

	JETHOD	76A	FIELD DATA SHEE	A SHEE			HOVE TIMES		PAGE 1 of	1 of 1	1
Buzzi I Inicem	Inicem: Stockertown P	Δí	DAIE	SAMPLI	SAIMIPLING LOCATION	NO.	M26A	3	ST 4 A	NOMBEN	
OPERA	OPERATOR IA	AMBIENT	STATIC	1300	FIL TER	STACK	PITOT	PROBELE	LENGTH	NOZZLE	ZLE
5	á	PRESS (In. Ha)	PRESSURE (in. Water)		NUMBERS		රී	AND LINER TYPE	TYPE	NUMBER 1910	DIAMETER
00		192	3",	30	NA	132 131	0.85	6' glass		115. 018.	. 310
ASSUMED	-	DGM	DGM	STACK	STACK	TAGOO	LEAK	LEAK	O2 CONTENT	CONTENT	K FACTOR
MOIS ON (%)	BOX NO.	8)	FACTOR (Y)	NO.	NO.	NO.	(INITIAL)	- 5	% %	1	
Q	175.14	1.76	1.00.1	5A	5A	COM	1/2 CI	DIAGO	17	1	5.7
-		X II	PITOT LEAK CH		AASSED	FAILED	@ / DH	(9)		2	E ANNO
TRAVERSE PORT/	Ш	CLOCK	DGM	delta P VELOCITY	delta H	PROBE	STACK	IN/OUT	OVEN	Sil Gel EXIT	SAMPLE
TNION/	E SE	TIME (24-HR)	READING Vm (cu. ft.)	HEAD (In. H2O)	ORIFICE (In. H2O)	TEMP (deg. F)	TEMP (deg. F)	TEMP (deg. F)	TEMP (deg. F)	TEMP (deg. F)	(in. Hg)
A-1		833	861.555	,37	2.1	760	300	67	263	50)	6
2	2		١ -	3	1.0	2000	308	80	000	13	₩
3			S69.24		5-1	258	300	68	255	01	5-
	15	27.00	1131	End of Port	Share Annual						
INTRA-PORT L	INTRA-PORT LEAK CHECK?	1 7		- 0 740		@ +	EH WHICH				
DGM VOLUME	: (CU. FI)	FINAL		LEAN RAIE.	CU.FT	36	NCHES Hg				
B-1	15		873 13 1	.33	15-1	201	300	70	260	55	6
2	20		576.89	. 30	1.7	259	307	71	200	52	4
3	3 25		850.43	-27		255	307	7,1	200	Sc	4
	30	90%	883 175	End of Port						The state of the s	
INTRA-PORT LEAK CHE	LEAK CHECK?			I EAK RATE	C.	© _	INCHES Ha				
DGIMI VOLUME	(00.11)	FINAL			CU.FT	00	INCHES Hg				
C-1	30		883.775	.30	2-1	102	365	70	\$ \$2	25	5
2	35		587 37	- 30	1.7	257	365	7/	258	48	ý
8	3 40		840.8%	. 25	<u>-</u> ارخ	253	363	72	256	49	
	45	516	894.145	End of Port		THE REAL PROPERTY.	STATE OF THE STATE			200	A STATE OF THE STA
INTRA-PORT DGM VOLUME	INTRA-PORT L EAK CHECK? DGM VOLUME (CU. FT)	INITIAL		LEAK RATE:	CU.FT	@@	INCHES Hg				
<u> </u>	15		444.14G	- 2.	X	552	366	73	260	25	6
		-	847.78	761	,	250	300	73	262	55	6
			12	67.	١, '	542	761	73	755	50	2
		943	904.88L	End of Port							
	TOTAL		DGM	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.			
	60 Min.										
		1									

Plant Buzzi Sample Locat Run No. S' Filter Numbe	tion <u>Kiln 1 a</u> Γ Ο C	nd 3 Main S F -M	Stack 26A- 7A	DISTURE	Reco	ole Date <u>C2</u> very Date <u>C2</u> vered by	-/ 20 /23	<u>_</u>	
Final weight Initial weight Net weight Description of	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped) 764. D 751.9 32.1	3 100 ml 0.1N H ₂ SO ₄ (tipped) 776.1 764.2	4 Optional Knockout (untipped) 6173 6154	5 100 ml 0.1N NaOH (untipped) 762.0 759.6 2.4	7479	Silica gel (untipped) 9478 940,1 7.7 5,7 5,8 56.3	g g g spent il gel colo grams	or
RECOVERED SAMPLE									
H ₂ SO ₄ Imping container no	ST ers contents a	-M26A-	<u>H2SO4- Ч</u> se	<u> </u>		Liquid lev marked/se Liquid lev marked/se	ealed	1	
Samples stored Remarks	and locked	coatin	g on	ist im	pinge	inlet s	tan	c =	

ŀ	-
L	1
ī	ī
5	÷
_	L
(ſ
<	1
ŀ	_
	1
7	2
Ĺ	_
,	_
Ĺ	_
_	
L	1
-	
L	1
	1
5	7
(2
Ò	
,	_
L	=
(
-	Ť
ī	_
Г	_
L	1
-	₹

	JETHO	HOD 26A		DATA SHEE					PAGE 1 of 1	1	
Buzzi Unicem; S	Stockertown P	Ą	12/ 20 /23	DAINIL	SAIMIPLING LOCALION	20	M26A	1	ST MB	NOINIDER	
OPERATOR A	OR	AMBIENT		AMBIENT	FILTER	S	PITOT Cp	PROBE LENGTH AND LINER TYPE	LENGTH IER TYPE	NUMBER DIA	ZLE DIAMETER
T, Kothunbere	(esag)	(In. Hg) 29:70	(in. Water)	(deg. F)	NA	(In.)		6' glass		.312.313	212
ASSUMED MOISTURE (%)	DGM BOX No.	DGM H@	DGM CAL FACTOR (Y)	STACK THERM NO.	STACK PITOT NO.	ORSAT NO.	CHECK (INITIAL)	CHECK (FINAL)	CONTENT %	CONTENT %	K FACTOR
20	Ll \Sw	1,60	O.98K PITOT I FAK CHI	Ľ	5A PASSED		.04 CU. FT	.00 CU. FT	12	151	5.
TRAVERSE I PORT/ /POINT	ELAPSED TEST TIME	CLOCK	DGM		delta H ORIFICE	PROBE	STAC	DGM IN / OU TEMP	FILTER OVEN TEMP	Sil Gel EXIT TEMP	SAMPLE TRAIN VAC
NO.	(MIN)	(24-HR)	Vm (cu. ft.)	(In. H2O)	(Jr. H20)	(deg. F)	(deg. F)	(deg. F)	(deg. F)	(deg. F)	(in. Hg)
2	2 2	500	75.57	.33	- 77	137	398	20	260	43	-1
8	10			.33	1.1	137	360	20	255	45	
	15	848	83.059	End of Port		100/45					15
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		INITIAL		LEAK RATE:	CU.FT @	88	INCHES HO				
B-1	15	851	83.059	.33	\	246	346	72	092	તત	7
2	20		8691	. 20	1.5	250	267	7.2	26C	2h	e
3	25		90.45	-2.	۲.۲	251	267	73	092	12	و
54	30	906	94025	End of Port					To the second		
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	CU. FT)	INITIAL		LEAK RATE:	CU.F.	CU.FT.®	INCHES Hg				
		FINAL		,		(0)	INCHES HB		i		*
C-	30	9 B	94.025	200	7.5	Lh2	265	73	\$27.	245	e
2	35		97.73	,3G	Ň	247	365	2	258	52.	9.
က	40		101.24	57.	1.3	250	363	7/3	220	20	0
	45	925	184.72	End of Port				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Charles of the Control of the Contro
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	CU. FT)	INITIAL FINAL		LEAK RATE:	CULF	88	INCHES Hg				
D-1	45	226	104.778	31	ا.	251	364	hL	260	95	Ş
2	50		101.75	62.	1.5	150	360	אר	792	2	ڡ
3	55		18:111	.24	1.5	250	361	73	257	ک	٥
	09	943	115.305	End of Port					AND REAL PROPERTY.		THE STATE SEA
	TOTAL		DGM VOLUME	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.			
	60 Min.										

Plant Buzzi Sample Locat Run No. S' Filter Numbe	tion <u>Kiln 1 a</u> T D 1	nd 3 Main S	tack 26A- 4B ole		Reco	ole Date <u>(2</u> very Date <u>(2</u> vered by	1 20 /23	<u> </u>
				ISTURE	_			
Impingers	1 50 ml	2 100 ml	3 100 ml	4 Optional	5 100 ml	6 100 ml	Silica gel	
	0.1N H ₂ SO ₄ (kmockout)	0.1N H ₂ SO ₄ (tipped)	0.1N H ₂ SO ₄ (tipped)	Knockout (untipped)	0.1N NaOH (untipped)	0.1N NaOH (untipped)	(untipped)	
Final weight		787,5	770.6	6508	743.1	763.1	977.9	g
Initial weight	X	754.3	759.6	6484	7413	762.	9696	g
Net weight	~ \	33-2	11.0	2.4	118	100	8.3	g
Description o	of impinger v	water	Clea		Total moistu		w s	spent il gel colo grams
		1	RECOVE	RED SA	MPLE			
H ₂ SO ₄ Impinge container no.						Liquid lev		<i>/</i> ·
NaOH Impinge container no				3	-	Liquid lev		
Samples stored Remarks	d and locked whv7e	coafi	n ing	nozu	(inter	topy		e E ju

ŀ	
i	ī
i	î
	÷
7	_
(I
<	1
ŀ	_
	1
1	_
	_
(
_	
į	1
i	7
	_
<	1
(75.0
(•
1	_
7	=
_	Ī
	1
ŀ	-
Į	1
•	_

Buzzi Unicem; Stockertown PA OPERATOR											
OPERATO	tokortown PA		DAIE	SAMIT	SAIMITEING LOCATION		M26A	1116	STCA	A	
OFFRAIO	TOCKETTOWN PA		67 07 17)	עוליים ברני בר	21/2/2/2	100	TOTIO	DOODE	END TO	NO7	71.5
	Υ	PRESS	PRESSURE	AMBIEN I TEMP	NUMBERS	N ACK	28	AND LINER TYPE	TYPE	NUMBER	DIAMETER
7500		78.79	(III. Water)	70	NA	13213		6' qlass		310 311	
ASSUMED	DGM	DGM	DGM	STACK	STACK			LEAK	02	C02	KFACTOR
Щ_	BOX No.	E .	CAL FACTOR (Y)	THERM NO.	PITOT NO.	ORSAT , NO.	Y)	CHECK (FINAL)	CONTENT	CONTENT	
	mg-jul	1	رة الم الم	5A	5A		ಠ	19:1 CL	()	-3/	5.7
			PITOT LEAK CHI	-CK> Z	PASSED	FAILED	@ (1) "Hg	© Hg			
RSE	Ω	20010	700	delta P	1 of op		CTACK	DGM N/OIT	FILTER	CIL Col EXI	SAMPLE
FORI/		XX 1	CINICALIO		Gelfari		TEMP	OW H	TEME	TEMP	
S O		(24-HR)	Vm (cu. ft.)	(In. H20)	(ln. H2O)	(deg. F)	(deg. F)	(deg. F)	(deg. F)	(deg. F)	(in. Hg)
A-1	0	1600	0.506	070	2.2	200	362	70	285	00	\$
0	-		90972	bc	1.7	Oct C	36.3	20	200	S	4
1 0	2 5		17.9	100	- (2000	200	7,		\ \ \ \	Ú
0	-	,	- 1	127.			2000	<i>f</i> 3	101	- 100	
	2	1015	281,016	End of Port					The state of the state of		
INTRA-PORT LEAK CHECK?		INITIA		I EAK RATE	<u>.</u>	@	INCHES Ha				
DGINI VOLUNIE (C		FINAL			CU.FT	90	NCHES Hg				
B-1	15	1014	984.0119	18.	1.8	250	263	79	258	09	h
2	20		420.22	٦- ١	1.5	256	363	2,5	260	57	\$
က	25		92357	h2.	7.	258	363	<i>چن</i>	200 j	53	4
	30	1033	558 513	End of Port	7						
INTRA-PORT LE	AK CHECK?	14141		- EAV BATE.	10	@	NOTEN HO				
DGM VOLUME (CU. F1)	.U. FI.)	FINAL		LEAN KAIE	CU.FT	4.1	INCHES Hg				
7	30	1036	G36. 855	30	1.7	268	365	28	702	26	5
2	_		3	36	1.7	260	3002	82	267	50	-5
(m	40		93406	777		258	200	82	247	SO	h
	45	1051		End of Port	`						
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	AK CHECK? SU. FT)	INITIAL		LEAK RATE:	CU.FT (@@	INCHES Hg				
D-1	45	4501	942.750	. 32	1-8	259	300	83	259	5-5	S
2	50		91.10	130	1.7	260	34 J	85	2 400	56	8
m	55		95.141	2.0	5,1	092	36 4	g,	2 ico	55	5
	90	10.2	946.005	End of Port							
	TOTAL	-	DGM	AVF SORT	AVE		AVE.	AVE.			
	TIME		VOLUME	delta P	Р		TEMP.	TEMP.			
_]	PO MIN.		111000						7		
			0 20.1 44								

Plant Buzzi Sample Locat Run No. S Filter Numbe	tion <u>Kiln 1 a</u> Γ	nd 3 Main S	tack 26A- 5 A	DISTURE	Reco	ole Date <u>12</u> , very Date <u>12</u> vered by	+20/23	<u> </u>
Final weight Initial weight Net weight Description o	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped) 862.4 770, 2	3 100 ml 0.1N H ₂ SO ₄ (tipped) 769. 5 2593	4 Optional Knockout (untipped) 670.0	759.2	768.6 	14 S	g g spent il gel color
Total moisture = grams RECOVERED SAMPLE								
H ₂ SO ₄ Imping container no. NaOH Imping container no.	ers contents a	-M26A- and water rins -M26A	H2SO4- 5	4 (*)		Liquid lev marked/se Liquid lev marked/se	vel	Ć
Samples stored Remarks	u and locked	mate	rial a	7 (5)	t imp.	3 fem		# #

_	
ŀ	_
i	i
ĭ	î
Ŀ	_
Ξ	Ι
7	7
•	1
<	1
Ĺ	_
Г	_
<	4
1	2
•	
1	
ī	7
Ŀ	_
ī	ī
ľ	
<	クレン
C	C
ì	₹
•	•
1	_
7	=
(_
_	Ĭ
ī	_
1	ī
L	1
	-

PLAN	PLANT AND CITY		FIELD DATE	DATA SHEE	SAMPLING LOCATION	NOI	SAMPLE TYPE	TYPE	GE	1 of 1 RUN NUMBER	
zzi Unicem;	Buzzi Unicem; Stockertown PA		12/20 123				M26A		ST 6B		
OPERAT	OR	AMBIENT PRESS (In. Hq)	STATIC PRESSURE (in. Water)	AMBIENT TEMP (deg. F)	FILTER NUMBERS	STACK ID (In.)	PITOT Cp	PROBE LENGTH AND LINER TYPE	NGTH	NOMBER DIA	DIAMETER
4, 130th	. Rother Boto	29.70	20,00	207	ΝΑ	332131	0.85	6' glass		7.38.75	512,
ASSÚMED MOISTURE (%)	DGM BOX No.	DGM H@	DGM CAL FACTOR (Y)	STACK THERM NO.	STACK PITOT NO.	ORSAT NO.	CHECK (INITIAL)	LEAK CHECK (FINAL)	CONTENT %	CONTENT	K FACTOR
0	T1.5W	1.10	O.988 5A		5A SASSEN	CATED FAITER	6 CU. FT	.00/CU.FT	(2)	15-	5.1
TRAVERSE	Ш		ברטוסו	4	WOOLD .	- AILLE		DGM			SAMPLE
ORT/ /POINT	TEST	C C C C C C C C C C C C C C C C C C C	DGM READING	VELOCITY HEAD	delta H ORIFICE	PROBE TEMP	STACK TEMP	TEMP TEMP	TEMP	TEMP	Y AC H
A-1	O		115,454	W. HEO.	2.0	727	363	K 1	255	51	R C
2	2	1	29.611	200	\ \ \	562	263	21	352	55	(n
8	10		L7:60)	67.	1.5	236	260	82	652	95	\script{\sinte\sint\sint\sint\sint\sint\sint\sint\sint
	15	(0/5	126.958	End of Port					ET AT WELL		
TRA-PORT L	INTRA-PORT L EAK CHECK? DGM VOLUME (CU. FT)	INITIAL		LEAK RATE:	CU.FT @	@@	INCHES HO				
B-1	15		126.958	18;	9.	249	263		258	24	6
2	20		130.67	LZ:	 -	250	363	85	260	52	S
3	25		124.28	٠ 2 ٢	1.2	250	363	85	261	53	٨
	30	1033	755-161	End of Port							
TRA-PORT L	INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	INITIAL		LEAK RATE:	CU.FT @	8	INCHES Hg				
		MA				(0)	INCHES HG	L	7		(
5	30	1036	127.552	.30	1,5	SS	365	الم	9.7	30	S
2	35		141.13	.30	1.5	1251	208	187	900	2.	(N)
က	40		١٢٠ ١٨١)	11.		151	360	5	796	54	n
3	45	45 1051	147.862	End of Port	S. S. Sandar		R. Co. Co. Co.				200
TRA-PORT L 3M VOLUME	INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	INITIAL		LEAK RATE:	CU.F	CU.FT @	INCHES Hg				
D-1	45	$\overline{}$	293,521	.32	4:	251	366	BC	259	54	6
2	90	-	151.57	.30	1.5	251	367	50	360	57	S
3	55		155.31	92.	1,3	249	36H	86	360	S	W
	09	S	158.953	End of Port	100					Value of the same	TANKE N
	TOTAL		DGM	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.			
	60 Min.								_		

Plant Buzzi Sample Locat Run No. S Filter Numbe	tion <u>Kiln 1 a</u>	nd 3 Main S -M	tack 26A- 5 13			ole Date (<mark>7</mark> very Date <u>(3</u> vered by		
			MO	ISTURE				
Impingers	1 50 ml 0.1N H ₂ SO (knockout)	2 100 ml $0.1 \text{N H}_2 \text{SO}_4$ (tipped)	3 100 ml $0.1 \text{N H}_2 \text{SO}_4$ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel	
Final weight		7882	7744	620.6	7453	754.4	1007.7	g
Initial weight	X	756.0	763.4	6189	744.3	753.9	998.8	g
Net weight						A.		g
Description o	f impinger v	water	Clean		Total moistu	$\frac{\mathcal{B}}{B}$ $\text{are} = \frac{\mathcal{B}}{B}$	Ju s	spent il gel colo grams
RECOVERED SAMPLE								
H ₂ SO ₄ Impinge container no.				ise B		Liquid lev marked/se		
NaOH Impinge container no	ers contents a	and water rins -M26A	e -NaOH- 5	B		Liquid lev marked/se		
Samples stored Remarks	d and locked	to ma	sterial	on I	mp, 1	Talet	- sten	~

L	
ŗ	
L	L
L	L
-	T
7	-
(J,
	1
F <	4
ŀ	
<	1
1	
-	_
1	
•	
ī	ī
4	_
L	Ĺ
_	
<	2
(2
6	$\bar{\ \ }$
	_
Ĺ	
1	
1	=
	1
ŀ	_
i	ı
i	Ë
	-

	AETHOD)D 26A	FIELD DAI	A SHEE	EE I	NO	SAMPIE TYPE	LADE	PAGE 1 of	1 of 1	
Buzzi Unicem:	Stockertown	PA	0/20 /23	Main	4.12 51	ack	MZ6A	J	STUA		
OPERA	OPERATOR A	AMBIENT PRESS	STATIC PRESSURE (in Water)	AMBIENT TEMP	FILTER	STACK ID (In)	PITOT Cp	PROBE LENGTH AND LINER TYPE	NGTH TYPE		ZLE DIAMETER
90	Je	797	(000)		NA	132/3	0.85	6' glass		16 36	1 \
ASSUMED MOISTURE (%)	DGM BOX No.	DGM H@	DGM CAL FACTOR (Y)	STACK THERM NO.	STACK PITOT NO.	ORSAT NO.	CY.	CHECK CHECK (FINAL)	O2 CONTENT	CONTENT	K FACTOR
0	M5 111	1.76	PITOT I FAK CHE	5A >	5A LPASSED	FAILED	@ 100 EU. FT	@ (3 "Ha	2/	15/	5.2
TRAVERSE	Щ.	7000		delta P	1 1 1	1000	O V L	DGM	FILTER	FIVE ION IN	SAMPLE
POINT POINT		S T S S S S S S S S S S S S S S S S S S	READING	HEAD	ORIFICE (In H2O)	TEMP	TEMP	TEMP	TEMP	TEMP	(in Ha)
A-1	C	_	948.186	37	7.4	2.fe0	364	88	261	65	<i>\</i>
2	5	1	2	25.	[]	201	300	88	261	00	\$
0	_		96.55%	.23	<u>.</u>	258	306	88	200	88	7
	15	OT=	959,435	End of Port	,						
INTRA-PORT L DGM VOLUME	INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	INITIAL	8	LEAK RATE:	CU FT @	@@	INCHES HO				
B-1	15		959435	30	1.7	259	364	83	255	55	la
2	20		463.33	.27	1-5-1	26c	363	ciC	250	20	\$
8	25	_	406.59	.25	64	2 LeO	363	16	252	50	5-
	30	1		End of Port	2 2 2 2 2					STATE OF STA	
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	EAK CHECK? (CU. FT)	1158 INITIAL	806.606	LEAK RATE:	CU.FT @	(a)	INCHES Hg				
		FINAL			CU.F	T@	INCHES Hg		(- 1	
C-1	30	1202	909.90B	. 30	1-7	263	363	90	2000	52	6
2	35		3	.25	1. 4	260	359	90	200	50	Ś
3	40		976 96	57-	1.11	255	360	90	257	50	6
	45	1217	980.298	End of Port		1					The State of
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	CU. FT)	INITIAL FINAL		LEAK RATE:	CU.FT	90	INCHES Hg				
1-0	45		980398	. 30	1.7	26c	367	15	707	55	6
2	50	(983.98	:23	1.3	2ºcc	345	90	200	57	5
3	55	-5	17.683	1,20	1. 11	260	3011	320	240	59	lo
	09	1235	075.070	End of Port					10000		
	TOTAL		DGM	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.			
	60 Min.										

Plant Buzzi	the state of the s				Samp	ole Date (2) very Date/2 vered by	L 20/23	<u>.</u> !
Sample Locat	10n <u>Kiin I a</u>	nd 3 Main S	OLACK		Reco	vered by	G 5	<u>-</u>
Run No. S'	r(c) N	Iot Applicab	le		RCCO	vered by	/	_
ritter Numbe	1(8)1	NOT Applicat	ic		•:			
			MO	ISTURE				
Impingers	1	2	3	4	5	6		
lpgere	50 ml	100 ml	100 ml	Optional	100 ml	100 ml	Silica gel	
	0.1N H ₂ SO ₄ (knockout)	0.1N H ₂ SO ₄ (tipped)	0.1N H ₂ SO ₄ (tipped)	Knockout (untipped)	0.1N NaOH (untipped)	0.1N NaOH (untipped)	(untipped)	
Final weight	1knockout)	788.8	763.1	672.4	747.0	7519	962.7	g
Initial weight	X	757.7	753.1	670,0	745.0	7571	23/1	g
Net weight		U I	hat the	0.22		1. K.		g
Description o	f impinger v	water	clear	^				spent
Total moisture = $\frac{77.6}{51.6}$ grams								
RECOVERED SAMPLE								
H ₂ SO ₄ Impingers and knockout contents and water rinse container no. ST -M26A-H2SO4- 6 marked/sealed								
NaOH Imping container no.	ers contents a	and water rins -M26A	se A-NaOH- 6	A		Liquid lev marked/se	vel ealed	÷
Samples stored					PII	w/ax /	· de an	•)
Remarks	4 hite	marces	ial a	1 In	of I to	2	Tere	= 2:

L	_
ï	1
Ĺ	
Ξ	Ī
7	ſ
<	1
ŀ	_
<	1
	_
(_
L	1
Ī	ī
	764 11
(\overline{c}
(1
(
(
-	
ŀ	
ļ	1
-	-

PLAN	PLANT AND CITY	D 26A	HELD DATA SHEE	A SHEE SAMPL	SAMPLING LOCATION	NO	SAMPLE TYPE	TYPE	PAGE 1 of	1 of 1 RUN NUMBER	
Buzzi Unicem;	Stockertown F	Υc	12/ 20 /23				M26A		ST 10D		
OPERATOR A	O. RO	AMBIENT PRESS	STATIC PRESSURE	500	FILTER	S	PITOT Cp	PROBE LENGTH AND LINER TYPE	NGTM ? TYPE	NOMBER DI	ZLE DIAMETER
T. Kg	Karhen	79'7'S	10,60	(deg. r)	NA	432/3;	0.85	6' glass		J. 518.	212
ASSÚMED MOISTURE	DGM / BOX No.	DGM H@	DGM CAL FACTOR (Y)	STACK	STACK PITOT	ORSAT	CHECK	CHECK	O2 CONTENT	COZ CONTENT	K FACTOR
9	M5-17	09:1	0.988	5A	5A	1000	100 or	100.	5	1	هن
TOAVEDOR	CI ABSER	92	PIIOI LEAK CH	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PASSED	FAILED	9 (e)	型 2 2 9	EII TER		SAMPLE
PORT/ /POINT	TEST	CLOCK	DGM READING	VELOCITY HEAD	delta H ORIFICE	PROBE	STACK	IN / OUT	TEMP	Sil Gel EXITEMP	TRAIN
NO.	(MIN)	(24-HR)	Vm (cu. ft.)	(In. H2O)	(ln. H2O)	(deg. F)	(deg. F)	(deg. F)	(deg. F)	(deg. F)	(in. Hg)
A-1	0	1125	041.651	٦٤.	٥,	238	364	25	796	5	W
2	5		81.691	.30	1.5	2ŭ7	264	85	و پ	55	2
က	10		16.991	.13	6	247	366	4	260	እያ	2
	15	641	170.0L1	End of Port		S. All of L. S.					
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	EAK CHECK? (CU. FT)	4		LEAK RATE:	CU.FT @	8	INCHES Hg				
	,	FINAL			CU.F	\ @ 	INCHES Hg				
B-1	15	1143	120.625	.30	1.5	22	364	7	255	53	6
2	20		04.461	۲۵,	١.५	タイプ	263	88	250	25	S
3	25		18-22	.25	1,3	SYL	363	J	257	25	2
30 [30	1158	181.21	End of Port							
INTRA-PORT L	EAK CHECK?	IVILIN		FAK PATE.	310	@	NOHEN HO				
DGIMI VOLOIME	(00. 51)	FINAL			CU.FT	36	NCHES Hg				
C-1	30	1302	112:15	.30	1.5	asy	563	38	<u>م</u> ار ا	56	S
2	35	_	18401	.25	1.3	250	359	88	09 B	96	S
3	40		188.61	.25	۷۰۶	251	360	69	957	55	N
	45	しなり	191,953	End of Port		100					
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	EAK CHECK? (CU. FT)	INITIAL		LEAK RATE:	CU.FT	88	INCHES HO				
D-1	45		191.953	.30	1.5		367	90	26	55	7
2	20		192.61	.23	ત.	353	365	90	260	55	<u>۷</u>
3			199.35	77	1.2	253	364	(b)	200	51	5
	09	60 1235	102930	End of Port	ĕ			Para la	The course		
	TOTAL TIME		DGM	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.			
	60 Min.										

Plant Buzzi Sample Locat		nd 3 Main S	tack)		ole Date <u>(?)</u> very Date <u>[2</u> vered by		
Run No. S			26A- 61)	Reco	vered by	407	
Filter Number	r(s)N	Not Applicab	le		-			
			na varia					
_			MC	DISTURE				
Impingers	1	2	3	4	5	6		
	50 ml	100 ml	100 ml	Optional	100 ml	100 ml	Silica gel	
	0.1N H ₂ SO ₄ (knockout)	0.1N H ₂ SO ₄ (tipped)	0.1N H ₂ SO ₄ (tipped)	Knockout (untipped)	0.1N NaOH (untipped)	0.1N NaOH (untipped)	(untipped)	
l	(KHOCKOUL)	803.2	796.5	6004	760,0	771.6		
Final weight		7751	7000	COV.	750 7	77/11	9400	<u> </u>
Initial weight	-	+13.4	766 B	2776	174.7	TTUET	1700	g
Net weight		29.8	9,7	1.8	0.3	1,2	167	g
Description o	of impinger v	water	clea	_		- G	7.	spent
				,	Total moistu	re =/	50.3	grams
							SE: 15:	
]	RECOVE	RED SA	MPLE			
					/			
H ₂ SO ₄ Impingers and knockout contents and water rinse					Liquid lev			
container no.	ST	-M26A-	H2SO4-			marked/se	ealed	
NaOH Imping	ers contents a	and water rins	se.			Liquid lev	vel /	
container no.			-NaOH-			marked/se		
Samples stored	d and locked							<u>.</u>
Remarks	Whale	matai	al on	Tup	1 pole	* ster	n	-

Plant Buzzi Sample Locat Run No. S' Filter Numbe	tion <u>Kiln 1 a</u> T	nd 3 Main S	Stack 26A- FØ	3	Reco	ole Date <u>/</u> z very Date <u>/</u> z vered by	21 20 123	<u>}</u> _
			<u>MC</u>	ISTURE				
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel	
Final weight		749,3	A		751.3		947.4	g
Initial weight	V	7496	763.4	6126	751.1	752.4	9474	g
Net weight			, ,		V	,		g
Description o	f impinger v	vater					0 'W Si	
					Total moistu	re ==		grams
]	RECOVE	RED SA	MPLE			
	H ₂ SO ₄ Impingers and knockout contents and water rinse container no. ST -M26A-H2SO4- OFF FB					Liquid lev marked/se	el ealed	
NaOH Impinge container no	ers contents a	and water rins -M26A	s <u>e</u> L-NaOH- <i>©</i>	HFF) >	Liquid lev marked/se	el aled	
Samples stored Remarks	and locked	1 4 A	vsed					

Client: Buzzi Unicem Stockertown Test Location: Kiin 1 and 3 Stack Date: Dec 19, 2023 Start Time: 10:02:06 Run number 1 One Minute Averages

	O2 %,dry	CO2 %,dry
10:03:04 AM 10:04:04 AM 10:05:04 AM 10:05:04 AM 10:08:04 AM 10:09:04 AM 10:09:04 AM 10:10:04 AM 10:11:04 AM 10:11:04 AM 10:13:04 AM 10:15:04 AM 10:20:04 AM 10:22:04 AM 10:22:04 AM 10:22:04 AM 10:23:04 AM 10:23:04 AM 10:23:04 AM 10:23:04 AM 10:25:04 AM 10:35:04 AM 10:45:04 AM 10:45:04 AM 10:45:04 AM 10:55:04 AM	14.8 14.9 14.8 14.9 14.8 14.9 14.8 14.9 14.8 14.9 14.8 14.9 14.8 14.9 14.8 14.9 15.0 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9	10.2 10.4 10.3 10.1 10.1 10.2 10.4 10.1 10.3 10.4 10.3 10.4 10.2 10.5 10.7 10.3 10.4 10.2 10.2 10.5 10.1 10.4 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.3 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
Initial Zero Final Zero Initial cal. Final Cal.	0.1 0.1 12.0 12.1	0.2 0.2 10.0 10.0

Corrected Average 14.9 10.4

Client: Buzzi Unicem Stockertown Test Location: Kiln 1 and 3 Stack

Date: Dec 19 23 Start Time: 11:34:14

Run number 2 One Minute Averages

•		
	O2 %,dry	CO2 %,dry
11:35:12 AM 11:36:12 AM 11:36:12 AM 11:39:12 AM 11:40:12 AM 11:41:12 AM 11:41:12 AM 11:42:12 AM 11:43:12 AM 11:45:12 AM 11:45:12 AM 11:45:12 AM 11:45:12 AM 11:45:12 AM 11:45:12 AM 11:51:12 AM 11:51:	14.8 15.0 14.9 15.0 14.9 15.0 14.8 14.8 14.8 14.8 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9	10.4 10.1 10.2 10.3 10.3 10.1 10.5 10.2 10.3 10.4 10.4 10.5 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3
Cal Gas Initial Zero Final Zero Initial cal. Final Cal	12.1 0.1 0.2 12.1	10.1 0.2 0.2 10.0
Final Cal. Corrected Average	12.3 14.8	10.0

Client: Buzzí Unicem Stockertown Test Location: Kiln 1 and 3 Stack
Date: Dec 19 23 Start Time: 12:59:04

Run number 3
One Minute Averages

One Millato Average	.5	
	O2 %,dry	CO2 %,dry
1:00:02 PM 1:01:02 PM 1:02:02 PM 1:03:02 PM 1:04:02 PM 1:05:02 PM 1:06:02 PM 1:06:02 PM 1:06:02 PM 1:07:02 PM 1:08:02 PM 1:09:02 PM 1:10:02 PM 1:11:02 PM 1:11:02 PM 1:11:02 PM 1:11:02 PM 1:15:02 PM 1:15:02 PM 1:15:02 PM 1:15:02 PM 1:15:02 PM 1:15:02 PM 1:13:02 PM 1:13:02 PM 1:13:02 PM 1:13:02 PM 1:13:02 PM 1:13:02 PM 1:20:02 PM 1:21:02 PM 1:21:02 PM 1:23:02 PM 1:25:02 PM 1:25:02 PM 1:25:02 PM 1:25:02 PM 1:35:02 PM 1:33:02 PM 1:33:02 PM 1:35:02 PM 1:35:02 PM 1:35:02 PM 1:35:02 PM 1:35:02 PM 1:44:02 PM 1:45:02 PM 1:45:02 PM 1:45:02 PM 1:45:02 PM 1:55:02 PM	15.3 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.1 15.0 15.0	9.9 10.2 10.3 10.2 10.3 10.0 10.3 10.0 10.3 10.4 10.3 10.4 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.1 10.5 10.5
Initial Zero Final Zero Initial cal. Final Cal.	0.2 0.2 12.3 12.2	0.2 0.2 10.0 10.0
Corrected Average	14.9	10.4

Buzzi Unicen	Buzzi Unicem; Stockertown PA		Main Stack: Raw Mill On	ck: Raw	/ Mill On			Decemb	December 19, 2023	2023		Operator Green	Rel	ایا					
				<u></u>	Run No.	ļ.	10:02-11:02			Run No.	2	11:34-12:34			Run No. 3	6	12:59-13:59	6	
					Pre Run	Percent	Percent Post Run Percent Percent	Percent	Percent	Pre Run	_	⊊		Percent	Pre Run	Percent	Pre Run Percent Post Run Percent		Percent
Cylinder ID	Gas Type	Value	Response	Error	Bias	Bias	Bias	Bias	Drift	Bias	Bias	Bias	Bias	Oriff	Bias	Bias	Bias	Bias	Öriff
	O2 Zero	Zero N2	%0.0	0.00%	0.1%	0.46%	0.1%	0.46%	%00.0	0.1%	0.46%	0.2%	0.91%	0.46%	0.2%	0.91%	0.2%	0.91%	0.00%
EB0070764	O2 Mid	12.1%	12.0% -0.37%	-0.37%	12.0%	0.00%	12.1%	0.46%	0.46%	12.1%	0.46%	12.3%	1.37%	0.91%	12.3%	1.37%	1.37% 12.2%	0.91%	-0.46%
ALM056015	O2 Span	21.9%	21.9%	%00.0												VANCOUS AND		***************************************	WILESAND.
	CO2 Zero	Zero N2	%0.0	%00.0	0.2%	1.10%	0.2%	1.10%	0.00%	0.5%	1.10%	0.2%	1.10%	0.00%	0.2%	1.10%	0.2%	1.10%	0.00%
EB0070764	CO2 Mid	10.1%	10.0%	-0.77%	10.0%	0.00%	10.0%	%00'0 %00'0	0.00%	10.0%	%00:0	10.0%	0.00%	0.00%	10.0%	0.00%	10.1%	0.55%	0.55%
ALM056015	CO2 Span	18.2%	18.2% 18.2%	0.17%										-30					

Client: Buzzi Unicem Stockertown Test Location: Kiln 1 and 3 Stack Date: Dec 20 23 Start Time: 08:33:06 Run number 1

One Minute Averages

	O2 %,dry	CO2 %,dry
8:34:04 AM 8:35:04 AM 8:36:04 AM 8:37:04 AM 8:38:04 AM 8:39:04 AM 8:40:04 AM 8:41:04 AM 8:42:04 AM 8:43:04 AM 8:45:04 AM 8:46:04 AM 8:45:04 AM 8:50:04 AM 8:55:04 AM 9:07:04 AM 9:01:04 AM 9:01:04 AM 9:01:04 AM 9:01:04 AM 9:05:04 AM 9:11:04 AM 9:13:04 AM 9:22:04 AM 9:23:04 AM 9:23:04 AM 9:23:04 AM 9:23:04 AM 9:23:04 AM 9:33:04 AM 9:33:04 AM Run Avgs	12.0 12.2 12.4 12.2 12.1 12.0 12.0 12.1 12.0 12.1 12.0 12.1 12.0 12.1 12.0 12.1 12.1	14.8 14.6 14.7 14.6 14.7 14.6 14.9 14.6 15.3 15.5 14.9 16.5 16.7 16.5 16.7 16.5 16.7 16.5 16.7 16.5 16.7 16.5 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3
Cal Gas Initial Zero Final Zero Initial cal.	12.1 0.2 0.2 12.1	10.1 0.2 0.2 10.0
Final Cal.	12.1	10.0
Corrected Average	12.1	14.9

Client: Buzzi Unicem Stockertown
Test Location: Kiln 1 and 3 Stack
Date: Dec 20 23 Start Time: 10:00:04

Run number 2

One Minute Averages

One willow / werage	•	
	O2 %,dry	CO2 %,dry
10:01:02	12.4	14.3
10:02:02	12.2	14.6
10:03:02	12.1	14.6
10:04:02	12.2	14.5
10:05:02	12.4	14.2
10:06:02 10:07:02	12.3 12.0	14.5 14.9
10:08:02	12.0	14.8
10:09:02	12.3	14.5
10:10:02	12.1	14.7
10:11:02	12.2	14.6
10:12:02 10:13:02	12.3 12.1	14.5 14.8
10:14:02	12.1	14.7
10:15:02	12.2	14.7
10:16:02	11.8	15.1
10:17:02	11.8	14.9
10:18:02	12.2	14.6
10:19:02 10:20:02	12.2 12.0	14.6 15.0
10:21:02	12.0	14.9
10:22:02	11.9	15.0
10:23:02	12.2	14.6
10:24:02	12.1	14.9
10:25:02 10:26:02	12.3 12.2	14.7 14.8
10:27:02	12.1	14.9
10:28:02	11.9	15.1
10:29:02	11.8	15.2
10:30:02	12.0	14.9
10:31:02	11.8	15.2
10:32:02 10:33:02	11.6 11.6	15.3 15.3
10:34:02	11.9	15.0
10:35:02	12.2	14.6
10:36:02	12.1	14.8
10:37:02	12.2	14.6
10:38:02 10:39:02	12.4 12.7	14.4 14.0
10:40:02	12.6	14.1
10:41:02	12.0	15.3
10:42:02	12.2	14.8
10:43:02	12.4	14.6
10:44:02 10:45:02	12.3 12.0	14.7 14.9
10:46:02	11.8	15.1
10:47:02	11.7	15.2
10:48:02	11.8	15.1
10:49:02	11.7	15.1
10:50:02 10:51:02	11.9 11.8	14.9 15.1
10:52:02	11.8	15.1
10:53:02	11.8	15.2
10:54:02	11.8	15.1
10:55:02	12.1	14.7
10:56:02 10:57:02	11.9 12.1	15.2 14.8
10:58:02	12.1	14.9
10:59:02	12.1	15.0
11:00:02	12.1	15.0
Run Avgs	12.1	14.8
Cal Gas	12.1	10.1
Initial Zero	0.2	0.2
Final Zero	0.2	0.2 10.0
Initial cal. Final Cal.	12.1 12.1	10.0 10.0
Corrected Average	12.1	15.1

Client: Buzzi Unicem Stockertown Test Location: Kiln 1 and 3 Stack

Date: Dec 20 23 Start Time: 11:25:06 Run number 3

One Minute Averages

One Minute Average	es .	
	O2 %,dry	CO2 %,dry
11:26:04 AM 11:27:04 AM	11.9 12.1	14.8 14.8
11:28:04 AM	12.0	14.9
11:29:04 AM	12.2	14.7
11:30:04 AM	12.3	14.7
11:31:04 AM	12.3	14.6
11:32:04 AM 11:33:04 AM	12.5	14.4 14.7
11:34:04 AM	12.3 12.5	14.7
11:35:04 AM	12.5	14.4
11:36:04 AM	12.6	14.2
11:37:04 AM	12.6	14.2
11:38:04 AM 11:39:04 AM	12.3 12.3	14.6 14.7
11:40:04 AM	13.0	13.5
11:41:04 AM	13.4	12.8
11:42:04 AM	13.2	13.6
11:43:04 AM	13.2	13.8
11:44:04 AM	14.7	11.2
11:45:04 AM 11:46:04 AM	14.5 13.4	11.4 13.6
11:47:04 AM	12.4	14.9
11:48:04 AM	12.1	15.4
11:49:04 AM	11.9	15.6
11:50:04 AM	11.9	15.6
11:51:04 AM 11:52:04 AM	12.1 12.0	14.9 15.1
11:53:04 AM	12.1	15.0
11:54:04 AM	12.1	15.1
11:55:04 AM	12.0	15.1
11:56:04 AM	11.9	15.1
11:57:04 AM 11:58:04 AM	11.9 11.6	15.1 15.4
11:59:04 AM	11.8	15.2
12:00:04 PM	11.7	15.4
12:01:04 PM	11.6	15.6
12:02:04 PM	11.6	15.5
12:03:04 PM 12:04:04 PM	11.4 11.8	15.8 15.2
12:05:04 PM	11.8	15.3
12:06:04 PM	11.9	15.2
12:07:04 PM	12.0	15.1
12:08:04 PM	12.3	14.7
12:09:04 PM 12:10:04 PM	12.4 12.3	14.6 15.1
12:11:04 PM	12.2	14.9
12:12:04 PM	12.3	14,7
12:13:04 PM	12.2	14.8
12:14:04 PM 12:15:04 PM	12.3 12.1	14.6 14.9
12:16:04 PM	11.8	15.2
12:17:04 PM	11.8	15.2
12:18:04 PM	11.9	14.9
12:19:04 PM	12.1	14.8
12:20:04 PM	12.1	14.9
12:21:04 PM 12:22:04 PM	12.2 11.9	14.9 15.2
12:23:04 PM	12.2	14.8
12:24:04 PM	12.2	14.9
12:25:04 PM	12.4	14.5
Run Avgs	12.3	14.7
Cal Gas	12.1	10.1
Initial Zero Final Zero	0.2 0.3	0.2 0.2
Initial cal.	12.1	10.0
Final Cal.	12.2	10.0
Corrected Average	12.2	14.9

Buzzi Unicen	Buzzi Unicem; Stockertown PA		Main Stack: Raw Mill Off	3ck: Ray	v Mill Off			December 20, 2023	er 20, 2	023		Operator 115	10	\ \					
					Run No.	-	08:33-09:33	_	4	Run No. 2		10:00-11:00	ļ		Run No. 3		11:25-12:25	\$O	
			Internal	Cal	Pre Run	Percent	Post Run Percent Pre Run	Percent	Percent	Pre Run	Percent	Post Run	Percent	Percent	Pre Run	Percent Pre Run Percent Post Run Percent Percent	Post Run	Percent	Percent
Cylinder ID	Gas Type	Vafue	Response	Error	Bias	Bias	Bias	Bias	Drift	Bias	Bias	Bias	Bias	Drift	Bias	Bias	Bias	Bias	Drift
	O2 Zero	Zero N2	%0.0	0.00%	0.2%	0.91%	0.2%	0.91%	%00:0	0.2%	0.91%	0.2%	0.91%	0.00%	0.2%	0.91%	0.3%	1.37%	0.46%
EB0070764	O2 Mid	12.1%	12.1%	0.09%	12.1%	0.00%	12.1%	%00.0	0.00%	12.1%	0.00%	12.1%	0.00%	0.00%	12.1%	0.00%	12.2%	0.46%	0.46%
ALM056015	O2 Span	21.9%	21.9%	%00:0															
	CO2 Zero	Zero N2	0.0%	0.00%	0.2%	1.10%	%2.0	1.10%	0.00%	0.2%	1.10%	0.2%	1.10%	0.00%	0.2%	1.10%	0.2%	1.10%	%00.0
EB0070764	CO2 Mid	10.1%	10.1%	-0.22%	10.0%	-0.55%	10.0%	-0.55%	%00.0	10.0%	-0.55%	10.0%	-0.55%	0.00%	10.0%	-0.55%	10.0%	-0.55%	0.00%
AL M056015	CO2 Span	18.2%	18.2% 18.2% 0.17%	0.17%						edeles de d	2001/0000								

Buzzi Stockertown PA Kiln 1 and 3 Main Stack; Mill On HCN Analyte Spikes

	Date	12/19/23	12/19/23	12/19/23	12/19/23
	Time	08:08-08:26	11:03-11:18	12:31-12:51	14:00-14:27
		Main Pre 1	Main Post 1	Main Post 2	Main Post 3
		HCN	HCN	HCN	HCN
Cs	Spike Direct, ppm	48.22	48.22	48.22	48.22
	SF6 Tracer Direct, ppm	4.78	4.78	4.78	4.78
SF6	Diluted SF6 Tracer, ppm	0.107	0.098	0.106	0.120
	Diluted SF6 Tracer, ppm	0.108	0.094	0.101	0.111
	Average Diluted SF6 Tracer, ppm	0.108	0.096	0.104	0.116
DF	Dilution Ratio	44.44	49.76	46.15	41.36
	Total, ppm	1.677	1.558	1.589	1.659
	Total, ppm	1.684	1.436	1.594	1.526
Ct	Average Total, ppm	1.681	1.497	1.592	1.593
	Pre Spike Native , ppm	0.525	0.634	0.534	0.632
	Pre Spike Native , ppm	0.434	0.658	0.525	0.617
	Post Spike Native , ppm	0.722	0.575	0.560	0.463
	Post Spike Native , ppm	0.681	0.739	0.570	0.379
Cn	Average Native , ppm	0.591	0.652	0.547	0.523
	Spike Recovery	101.7%	88.6%	101.1%	92.8%
	CTS Direct (CC426155)				
	Ethylene Expected (ppm)	75.47			75.48
	Ethylene Measured (ppm)	72.76			73.26
	CTS Error	-3.6%			-2.9%

Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack; Mill On Pre Run 1 HCN Analyte Spike

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC155644.LAB	12/19/23	08:06:01.629	0.429	0.072	-0.000
SPC155645.LAB	12/19/23	08:07:05.536	0.565	0.058	-0.002
SPC155646.LAB	12/19/23	08:08:09.435	0.525	0.023	-0.005
SPC155647.LAB	12/19/23	08:09:13.336	0.434	0.030	-0.003
SPC155648.LAB	12/19/23	08:10:17.424	0.379	0.020	-0.001
SPC155649.LAB	12/19/23	08:11:21.140	0.199	-0.007	-0.003
SPC155650.LAB	12/19/23	08:12:25.222	0.356	0.004	-0.001
SPC155651.LAB	12/19/23	08:13:28.950	0.608	-0.012	-0.003
SPC155652.LAB	12/19/23	08:14:33.030	0.757	-0.014	0.006
SPC155653.LAB	12/19/23	08:15:36.750	1.582	0.005	0.113
SPC155654.LAB	12/19/23	08:16:40.658	1.677	-0.003	0.107
SPC155655.LAB	12/19/23	08:17:44.558	1.684	-0.002	0.108
SPC155656.LAB	12/19/23	08:18:48.459	3.768	0.029	0.298
SPC155657.LAB	12/19/23	08:19:52.372	0.653	-0.033	-0.004
SPC155658.LAB	12/19/23	08:20:56.365	0.675	-0.042	-0.004
SPC155659.LAB	12/19/23	08:22:00.205	-0.156	-0.039	-0.006
SPC155660.LAB	12/19/23	08:23:04.071	0.413	-0.008	-0.002
SPC155661.LAB	12/19/23	08:24:08.070	0.883	-0.018	-0.003
SPC155662.LAB	12/19/23	08:25:11.954	0.722	0.004	-0.003
SPC155663.LAB	12/19/23	08:26:15.806	0.681	-0.006	-0.003
SPC155664.LAB	12/19/23	08:27:19.710	0.647	-0.010	-0.000
SPC155665.LAB	12/19/23	08:28:23.611	0.469	-0.020	-0.001

Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack Post Run 1 HCN Analyte Spike

Post Run 1 HCN Ana	alyte Spike					
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	
SPC155809.LAB	12/19/23	11:02:21.309	0.183	-0.071	-0.003	
SPC155810.LAB	12/19/23	11:03:25.208	0.634	-0.076	0.002	
SPC155811.LAB	12/19/23	11:04:29.113	0.658	-0.083	-0.001	
SPC 155812.LAB	12/19/23	11:05:33.008	1.273	-0.096	0.087	
SPC 155813.LAB	12/19/23	11:06:36.949	1.454	-0.072	0.107	
SPC155814.LAB	12/19/23	11:07:40.812	1.558	-0.050	0.098	ı
SPC155815.LAB	12/19/23	11:08:44.807	1.436	-0.029	0.094	
SPC 155816.LAB	12/19/23	11:09:48.714	3.355	-0.066	0.260	
SPC 155817.LAB	12/19/23	11:10:52.505	0.370	-0.042	0.001	
SPC 155818.LAB	12/19/23	11:11:56.400	0.299	-0.029	0.001	
SPC155819.LAB	12/19/23	11:13:00.300	0.334	-0.004	0.001	
SPC155820.LAB	12/19/23	11:14:04.232	-0.046	-0.026	-0.009	
SPC 155821.LAB	12/19/23	11:15:08.145	0.594	-0.072	-0.006	
SPC 155822.LAB	12/19/23	11:16:12.044	0.653	-0.083	0.001	
SPC 155823.LAB	12/19/23	11:17:15.940	0.575	-0.091	-0.001	
SPC 155824.LAB	12/19/23	11:18:19.983	0.739	-0.086	-0.003	

Buzzi Unicem; Stockertown PA

Kilns 1 and 3 Stack

Kilns 1 and 3 Stack						
Post Run 2 HCN Ana	alyte Spike					
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	
SPC155890.LAB	12/19/23	12:29:38.642	0.568	-0.045	-0.001	
SPC155891.LAB	12/19/23	12:30:42.459	0.534	-0.063	0.001	
SPC155892.LAB	12/19/23	12:31:46.354	0.525	-0.049	-0.002	
SPC155893.LAB	12/19/23	12:32:50.251	0.433	-0.049	-0.002	
SPC155894.LAB	12/19/23	12:33:54.192	0.410	-0.045	-0.002	
SPC155895.LAB	12/19/23	12:34:58.088	0.498	-0.043	-0.003	
SPC155896.LAB	12/19/23	12:36:01.988	0.855	-0.041	-0.002	
SPC155897.LAB	12/19/23	12:37:05.853	0.524	-0.044	-0.000	
SPC155898.LAB	12/19/23	12:38:09.851	0.868	-0.065	0.055	
SPC155899.LAB	12/19/23	12:39:13.646	1.589	-0.069	0.106	
SPC155900.LAB	12/19/23	12:40:17.887	1.594	-0.068	0.101	
SPC155901.LAB	12/19/23	12:41:21.444	3.246	-0.062	0.259	
SPC155902.LAB	12/19/23	12:42:25.343	0.408	-0.068	0.001	
SPC155903.LAB	12/19/23	12:43:29.240	0.430	-0.044	-0.001	
SPC155904.LAB	12/19/23	12:44:33.132	-0.071	-0.013	-0.004	
SPC155905.LAB	12/19/23	12:45:37.031	0.066	-0.016	-0.007	
SPC155906.LAB	12/19/23	12:46:40.939	0.211	-0.044	-0.004	
SPC155907.LAB	12/19/23	12:47:44.833	0.454	-0.078	-0.003	
SPC155908.LAB	12/19/23	12:48:48.835	0.519	-0.098	-0.001	
SPC155909.LAB	12/19/23	12:49:53.001	0.560	-0.087	-0.002	
SPC155910.LAB	12/19/23	12:50:56.524	0.570	-0.073	-0.002	
SPC155911.LAB	12/19/23	12:52:00.603	0.552	-0.081	-0.001	

Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack Post Run 3 HCN Analyte Spike and CTS

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C
SPC155974.LAB		14:00:15.959	0.632	-0.097	-0.002	0.274
SPC155975.LAB		14:01:19.827	0.617	-0.078	-0.003	0.302
SPC155976.LAB		14:02:23.682	0.645	-0.090	-0.002	0.249
SPC155977.LAB	12/19/23	14:03:27.586	0.469	-0.079	-0.000	0.239
SPC155978.LAB	12/19/23	14:04:31.481	1.040	-0.045	0.061	0.215
SPC155979.LAB	12/19/23	14:05:35.670	1.659	-0.085	0.120	0.192
SPC155980.LAB	12/19/23	14:06:39.281	1.526	-0.090	0.111	0.176
SPC155981.LAB	12/19/23	14:07:43.174	1.318	-0.082	0.104	0.136
SPC155982.LAB	12/19/23	14:08:47.146	1.965	-0.081	0.168	0.214
SPC155983.LAB	12/19/23	14:09:51.013	2.305	-0.043	0.158	0.124
SPC155984.LAB	12/19/23	14:10:54.898	0.281	-0.025	0.000	0.090
SPC155985.LAB	12/19/23	14:11:58.795	0.442	-0.031	-0.007	-0.008
SPC155986.LAB	12/19/23	14:13:02.670	0.066	-0.069	-0.003	0.142
SPC155987.LAB	12/19/23	14:14:06.599	0.653	-0.094	-0.000	0.245
SPC 155988.LAB	12/19/23	14:15:10.792	0.781	-0.102	-0.005	0.247
SPC155989.LAB	12/19/23	14:16:14.358	0.463	-0.075	0.000	0.243
SPC 155990.LAB	12/19/23	14:17:18.246	0.379	-0.059	-0.004	0.057
SPC 155991.LAB	12/19/23	14:18:22.276	0.559	-0.010	-0.001	0.047
SPC 155992.LAB	12/19/23	14:19:26.043	~0.022	-0.011	-0.000	-0.010
SPC155993.LAB	12/19/23	14:20:30.194	0.263	-0.023	0.001	0.087
SPC 155994.LAB	12/19/23	14:21:33.828	0.330	-0.007	0.002	0.036
SPC 155995.LAB	12/19/23	14:22:37.781	-0.090	-0.000	~0.011	63.873
SPC 155996.LAB	12/19/23	14:23:41.622	-0.073	-0.010	-0.013	72.800
SPC155997.LAB	12/19/23	14:24:45.700	0.048	-0.014	-0.013	72.949
SPC 155998.LAB		14:25:49.425	0.139	-0.007	-0.013	73.175
SPC 155999.LAB		14:26:53.315	0.190	-0.010	-0.012	73.335
SPC156000.LA8		14:27:57.320	0.124	-0.026	-0.013	68.995

Ethylene (100,3000) 191C 47.609 72.775 72.753 73.017 72.782 72.526 68.131 62.466 13.787 -0.014-0.438-0.606 0.000 0.005 HF ppm (10) 191C SF6 (10) 191C -0.013 -0.013-0.013-0.014-0.010 -0.009 -0.002 -0.020 0.000 3.450 4.792 4.762 0.001 4.777 -0.012 -0.003 -0.000 0.012 -0.000 -0.022-0.007 -0.003 0.000 0.004 0.012 0.029 -0.007HCN PCA 191c R1 191c 33.872 48.142 48.307 48.225 -0.006 -0.423-0.1280.000 0.134 0.163 0.084 0.297 0.167 0.063 12/19/23 07:28:30.119 12/19/23 07:29:34.020 12/19/23 07:19:58.889 12/19/23 07:23:10.589 12/19/23 07:25:18.419 12/19/23 07:18:54.993 12/19/23 07:22:06.692 12/19/23 07:24:14.490 07:15:22.833 12/19/23 07:17:45:097 12/19/23 07:21:02.787 12/19/23 07:26:22.337 12/19/23 07:27:26.221 12/19/23 07:14:13.044 12/19/23 HCN Analyte Spike (CC768222) Date Ethylene CTS (CC426155) CTS and HCN Spike Direct SPC__155602BKG.LAB SPC__155603.LAB SPC_155604BKG.LAB SPC_155605.LAB SPC_155606.LAB SPC_155607.LAB SPC_155608.LAB SPC_155609.LAB SPC_155610.LAB SPC_155611.LAB SPC_155612.LAB SPC_155613.LAB SPC_155614.LAB Spectrum

Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack; Mill On Buzzi Stockertown PA Kiln 1 and 3 Main Stack; Mill Off HCN Analyte Spikes

	Date	12/20/23	12/20/23	12/20/23	12/20/23
	Time	08:02-08:16	09:31-09:46	10:56-11:12	12:23-12:43
		Main Pre 1	Main Post 1	Main Post 2	Main Post 3
		HCN	HCN	HCN	HCN
Cs	Spike Direct, ppm	48.61	48.61	48.61	48.61
	SF6 Tracer Direct, ppm	4.80	4.80	4.80	4.80
SF6	Diluted SF6 Tracer, ppm	0.299	0.262	0.304	0.290
	Diluted SF6 Tracer, ppm	0.279	0.296	0.294	0.268
	Average Diluted SF6 Tracer, ppm	0.289	0.279	0.299	0.279
DF	Dilution Ratio	16.60	17.19	16.04	17.19
	Total, ppm	3.794	3.562	4.089	4.031
	Total, ppm	3.653	3.746	4.207	4.002
Ct	Average Total, ppm	3.724	3.654	4.148	4.017
	Pre Spike Native , ppm	1.183	1.238	1.268	1.288
	Pre Spike Native , ppm	1.042	1.234	1.255	1.059
	Post Spike Native , ppm	1.066	1.393	1.317	1.144
	Post Spike Native , ppm	1.023	1.329	1.378	1.268
Cn	Average Native , ppm	1.079	1.299	1.354	1.190
	Spike Recovery	92.5%	86.0%	95.0%	102.4%
	CTS Direct (CC426155)				
	Ethylene Expected (ppm)	75.47			75.47
	Ethylene Measured (ppm)	73.00			72.96
	CTS Error	-3.3%			-3.3%

Buzzi Unicem; Stockertown PA

 $\propto A$

Buzzi Unicem; Stockerto	wn PA				
Kilns 1 and 3 Stack					
Mill Off Pre Run 1 HCN A	Analyte Spik	e			
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC156044.LAB	12/20/23	08:01:20.634	1.042	0.130	-0.005
SPC156045.LAB	12/20/23	08:02:24.540	1.183	0.130	-0.004
SPC156046.LAB	12/20/23	08:03:28.398	1.042	0.140	-0.004
SPC156047.LAB	12/20/23	08:04:32.342	1.162	0.121	-0.005
SPC156048.LAB	12/20/23	08:05:36.251	0.950	0.120	-0.003
SPC156049.LAB	12/20/23	08:06:40.072	3.076	0.089	0.208
SPC156050.LAB	12/20/23	08:07:44.016	3.794	0.081	0.299
SPC156051.LAB	12/20/23	08:08:48.070	3.653	0.060	0.279
SPC156052.LAB	12/20/23	08:09:51.770	3.138	0.043	0.251
SPC156053.LAB	12/20/23	08:10:55.762	0.165	-0.012	-0.007
SPC156054.LAB	12/20/23	08:11:59.586	-0.105	-0.006	-0.010
SPC156055.LAB	12/20/23	08:13:03.498	0.794	0.082	-0.014
SPC156056.LAB	12/20/23	08:14:07.488	1.135	0.072	-0.003
SPC156057.LAB	12/20/23	08:15:11.670	1.066	0.048	-0.006
SPC156058.LAB	12/20/23	08:16:15.312	1.023	0.046	-0.007
SPC156059.LAB	12/20/23	08:17:19.117	1.153	0.031	-0.005

Buzzi Unicem; Stockertown PA

Kilns 1 and 3 Stack

Mill Off Post	Run 1	HCN.	Analyt	e S	pike
---------------	-------	------	--------	-----	------

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC156126.LAB	12/20/23	09:29:32.616	1.159	-0.045	-0.002
SPC156127.LAB	12/20/23	09:30:36.443	1.238	-0.046	-0.004
SPC156128.LAB	12/20/23	09:31:40.348	1.234	-0.051	-0.005
SPC156129.LAB	12/20/23	09:32:44.326	1.078	-0.052	-0.005
SPC156130.LAB	12/20/23	09:33:48.183	1.160	-0.046	-0.001
SPC156131.LAB	12/20/23	09:34:52.090	3.562	-0.057	0.262
SPC156132.LAB	12/20/23	09:35:55.958	3.746	-0.051	0.296
SPC156133.LAB	12/20/23	09:36:59.895	3.641	-0.048	0.277
SPC156134.LAB	12/20/23	09:38:03.817	2.878	-0.013	0.211
SPC156135.LAB	12/20/23	09:39:07.680	-0.154	-0.007	-0.013
SPC156136.LAB	12/20/23	09:40:11.919	-0.028	0.004	-0.005
SPC156137.LAB	12/20/23	09:41:15.500	1.018	-0.026	-0.008
SPC156138.LAB	12/20/23	09:42:19.695	0.978	-0.016	-0.005
SPC156139.LAB	12/20/23	09:43:23.263	1.393	-0.058	-0.003
SPC156140.LAB	12/20/23	09:45:39.060	1.329	-0.055	-0.005
SPC 156141.LAB	12/20/23	09:46:42.957	1.142	-0.021	-0.004

Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack

Mill Off Post Run 2	HCN Analy	yte Spike
---------------------	-----------	-----------

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC156205.LAB	12/20/23	10:54:52.681	1.218	-0.057	-0.006
SPC156206.LAB	12/20/23	10:55:56.545	1.268	-0.056	-0.004
SPC156207.LAB	12/20/23	10:57:00.481	1.255	-0.066	-0.002
SPC156208.LAB	12/20/23	10:58:04.381	1.060	-0.071	-0.004
SPC156209.LAB	12/20/23	10:59:08.277	1.151	-0.060	-0.003
SPC156210.LAB	12/20/23	11:00:12.142	1.029	-0.065	-0.003
SPC156211.LAB	12/20/23	11:01:16.128	1.251	-0.047	-0.005
SPC156212.LAB	12/20/23	11:02:19.947	1.396	-0.066	0.016
SPC156213.LAB	12/20/23	11:03:23.843	4.089	-0.069	0.304
SPC156214.LAB	12/20/23	11:04:27.743	4.207	-0.048	0.294
SPC156215.LAB	12/20/23	11:05:31.632	3.020	-0.017	0.236
SPC156216.LAB	12/20/23	11:06:35.527	0.197	-0.020	-0.006
SPC156217.LAB	12/20/23	11:07:39.426	0.035	-0.014	-0.006
SPC156218.LAB	12/20/23	11:08:43.345	1.220	-0.058	-0.009
SPC156219.LAB	12/20/23	11:09:47.367	1.317	-0.057	-0.004
SPC156220.LAB	12/20/23	11:10:51.248	1.378	-0.077	-0.005
SPC156221.LAB	12/20/23	11:11:55.044	1.354	-0.058	-0.002

1

Buzzi Unicem; Stockertown PA

Kilns 1 and 3 Stack

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C
SPC156286.LAB	12/20/23	12:21:59.396	0.992	-0.052	-0.003	0.233
SPC156287.LAB	12/20/23	12:23:03.289	1.288	-0.043	-0.003	0.294
SPC156288.LAB	12/20/23	12:24:07.184	1.059	-0.067	-0.003	0.289
SPC156289.LAB	12/20/23	12:25:11.086	1.076	-0.050	-0.002	0.319
SPC156290.LAB	12/20/23	12:26:14.979	1.156	-0.042	-0.002	0.293
SPC156291.LAB	12/20/23	12:27:18.878	2.648	-0.073	0.168	0.189
SPC156292.LAB	12/20/23	12:28:22.884	4.031	-0.064	0.290	0.226
SPC156293.LAB	12/20/23	12:29:26.799	4.002	-0.066	0.268	0.249
SPC156294.LAB	12/20/23	12:30:30.557	2.592	-0.007	0.207	0.181
SPC156295.LAB	12/20/23	12:31:34.459	0.120	-0.016	-0.008	0.038
SPC156296.LAB	12/20/23	12:32:38.351	0.069	-0.024	-0.009	0.047
SPC156297.LAB	12/20/23	12:33:42.283	0.334	0.002	-0.008	0.266
SPC156298.LAB	12/20/23	12:34:46.521	1.029	-0.051	-0.004	0.336
SPC156299.LAB	12/20/23	12:35:50.096	1.144	-0.062	-0.006	0.502
SPC156300.LAB	12/20/23	12:36:53.994	1.268	-0.055	-0.006	0.344
SPC156301.LAB	12/20/23	12:37:58.212	0.160	-0.024	-0.009	0.107
SPC156302.LAB	12/20/23	12:39:01.776	0.143	0.000	-0.000	0.066
SPC156303.LAB	12/20/23	12:40:05.720	0.053	-0.010	-0.001	-0.022
SPC156304.LAB	12/20/23	12:41:09.534	-0.045	-0.020	-0.022	39.253
SPC156305.LAB	12/20/23	12:42:13.424	-0.042	-0.015	-0.014	72.922
SPC156306.LAB	12/20/23	12:43:17.321	-0.164	0.010	~0.013	72.994
SPC156307.LAB	12/20/23	12:44:21.322	-0.074	-0.004	-0.016	72.870

Buzzi Unicem; Stockertown PA Kilns 1 and 3 Stack Mill Off CTS and HCN Analyte Spike

and of control of the	aryte opine				
	Date Time	HCN PCA 191c R1 191c	HF ppm (10) 191C S	SF6 (10) 191C	Ethylene (100,3000) 191C
SPC_156001BKG.LAB	12/20/23 07:03:44.687	0.000	0.000	0.000	0.000
SPC156002.LAB	12/20/23 07:04:54.584	0.212	0.009	-0.002	-0.028
SPC156003BKG.LAB	12/20/23 07:07:24.861	0.000	0.000	0.000	0.000
SPC156004.LAB	12/20/23 07:08:34.748	-0.025	-0.011	0.001	-0.001
SPC156005.LAB	12/20/23 07:09:38.650	-0.107	-0.006	0.002	-0.000
SPC_156006BKG.LAB	12/20/23 07:11:58.103	0.000	0.000	0.000	0.000
SPC156007.LAB	12/20/23 07:13:07.819	0.085	-0.006	-0.000	-0.044
SPC156008.LAB	12/20/23 07:14:11.842	0.059	-0.019	-0.001	-0.034
SPC_156009BKG.LAB	12/20/23 07:17:06.538	0.000	0.000	0.000	0.000
SPC_156010.LAB	12/20/23 07:18:16.340	0.032	0.004	-0.002	0.008
SPC156011.LAB	12/20/23 07:19:20.354	-0.079	-0.002	-0.000	-0.028
SPC156012BKG.LAB	12/20/23 07:22:16.585	0.000	0.000	0.000	0.000
SPC156013.LAB	12/20/23 07:23:26.431	0.088	-0.008	-0.000	-0.064
SPC_156014.LAB	12/20/23 07:24:30.274	-0.103	-0.001	0.001	-0.020
SPC156015.LAB	12/20/23 07:25:34.363	0.013	-0.000	0.000	-0.024
SPC156016.LAB	12/20/23 07:26:38.263	-0.033	-0.007	0.001	-0.044
SPC156017.LAB	12/20/23 07:27:42.170	-0.022	-0.006	-0.001	-0.023
SPC_156018.LAB	12/20/23 07:28:45.904	-0.026	0.014	0.002	-0.037
SPC156019BKG.LAB	12/20/23 07:31:14.252	0.000	0.000	0.000	0.000
SPC_156020.LAB	12/20/23 07:32:24.260	-0.071	0.003	0.002	0.001
SPC156021.LAB	12/20/23 07:33:28.161	-0.060	0.007	0.001	-0.042
SPC_156022.LAB	12/20/23 07:34:31.886	-0.023	0.022	-0.018	35.457
SPC156023.LAB	12/20/23 07:35:35.901	0.123	0.004	-0.011	73.051
SPC156024.LAB	12/20/23 07:36:39.831	-0.018	0.016	-0.007	72.954
Ethylene CTS (CC426155	2)				73.002
SPC_156025.LAB	12/20/23 07:37:43.609	22.472	0.003	2.111	35.906
SPC156026.LAB	12/20/23 07:38:47.522	48.312	0.004	4.802	-0.471
SPC156027.LAB	12/20/23 07:39:51.423	48.486	0.014	4.788	-0.468
SPC156028.LAB	12/20/23 07:40:55.404	48.642	0.017	4.807	-0.463
SPC156029.LAB	12/20/23 07:41:59.424	48.701	0.011	4.797	-0.484
HCN Analyte Spike (CC768222	(68222)	48.610		4.797	

Appendix C

Ion Chromatography Analytical Report Data

Deeco, Inc.

3404 Lake Woodard Drive Raleigh, NC 27604

Project No: 23-3323 Buzzi Unicem

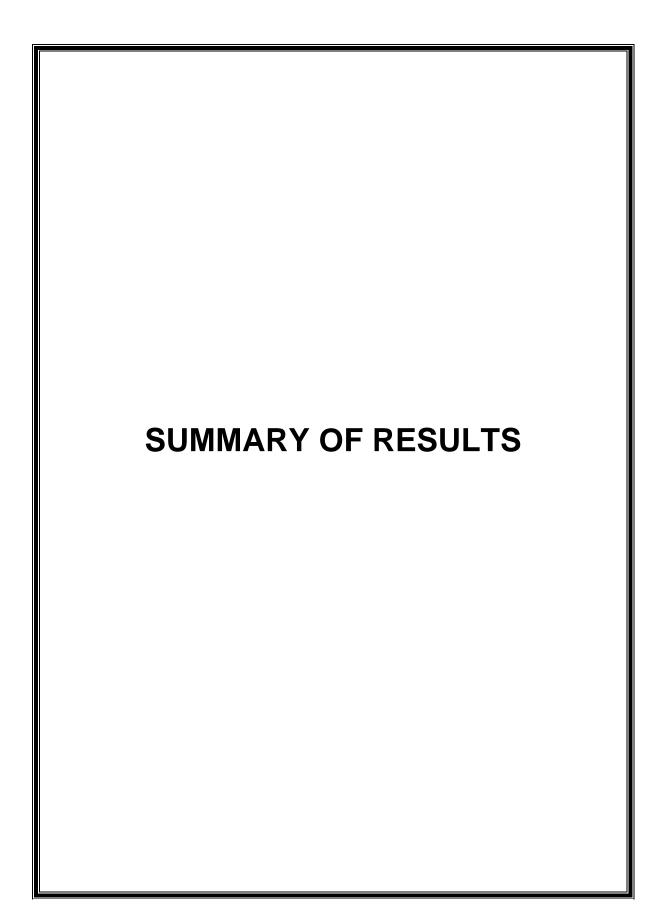
Hydrogen Fluoride & Chlorine

EPA Method 26A Analysis

Analytical Report 41822

Element One, Inc.

6319-D Carolina Beach Rd., Wilmington, NC 28412 910-793-0128 FAX: 910-792-6853 e1lab@e1lab.com


The following data for Analytical Report 41822 has been reviewed for completeness, accuracy, adherence to method protocol, and compliance with quality assurance guidelines.

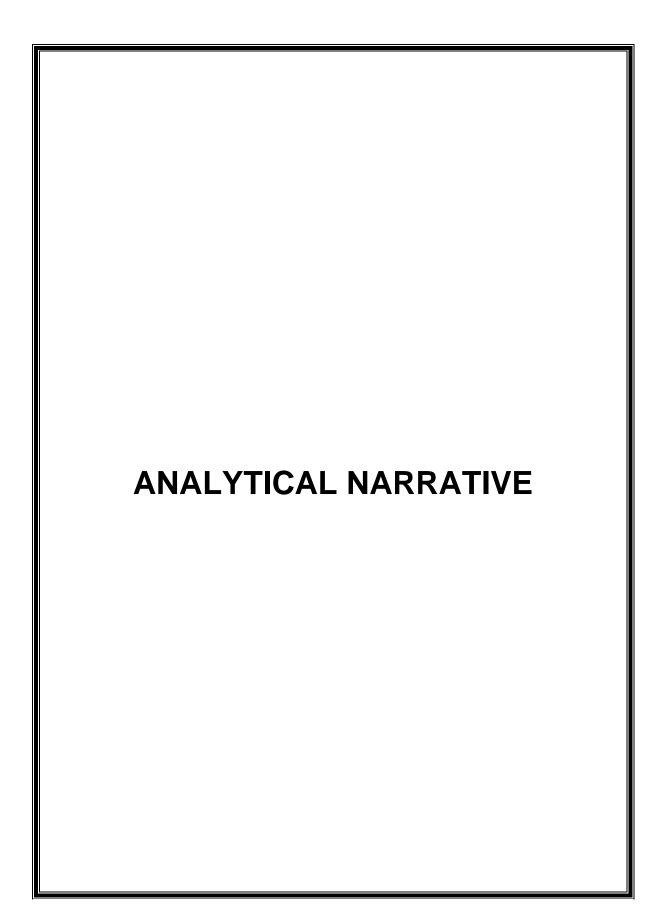
Review by:

Linda Ann Webb, M.S. Analytical Chemist January 12, 2024

Report Reviewed and Finalized by:

Ken Smith, Laboratory Director January 12, 2024

Summary of Analysis


Summary of Method 26A Analysis

Element	ST- M26A-R1A ^{e41822-1} Total mg	ST- M26A-R2A ^{e41822-2} Total mg	ST- M26A-R3A ^{e41822-3} Total mg
HF	< 0.223	< 0.227	< 0.230
Cl ₂	< 0.193	< 0.176	< 0.184
Element	ST- M26A-R4A e41822-4 Total mg	ST- M26A-R5A e41822-5 Total mg	ST- M26A-R6A e41822-6 Total mg
HF	< 0.255	< 0.235	< 0.238
Cl ₂	< 0.184	< 0.189	< 0.177
Element	ST- M26A-R1B e41822-7 Total mg	ST- M26A-R2B e41822-8 Total mg	ST- M26A-R3B e41822-9 Total mg
HF	< 0.210	< 0.236	< 0.247
Cl ₂	< 0.177	< 0.170	< 0.177
Element	ST- M26A-R4B e41822-10 Total mg	ST- M26A-R5B e41822-11 Total mg	ST- M26A-R6B e41822-12 Total mg
HF	< 0.256	< 0.247	< 0.256
Cl ₂	< 0.179	< 0.174	< 0.180

ST-	ST-
M26A-FBON	M26A-FBOFF
e41822-13	e41822-14
Total mg	Total mg
< 0.224	< 0.227
< 0.185	< 0.184
	M26A-FBON e41822-13 Total mg

elementOne

Certification: NJ NELAP NC009 41822 Deeco M26A Report Packet Page 4 of 27

Element One Analytical Narrative

Client:	Deeco, Inc.	Element One #:	41822
Client ID:	23-3323 Buzzi Unicem	Analyst:	LAW
Method:	M26A	Dates Received:	01.03.24
Analytes:	HF, Cl ₂	Dates Analyzed:	01.10-12.24

Summary of Analysis

The samples were prepared and analyzed according to Method 26A protocol. The samples were analyzed for fluoride and chloride on Metrohm 861/788 and 881/858 chromatograph systems respectively.

Detection Limits

The Metrohm reporting limit was 0.1 µg/mL for fluoride and chloride.

Analysis QA/QC

Duplicate analyses relative percent difference (RPD), spike recovery and second source verification data are summarized in the Quality Control section. All QA/QC data was within the criteria of the method.

Additional Comments

The reported results have not been corrected for any blank values or spike recovery values. Due to the sample matrix, it was necessary to analyze all samples at a minimum five-fold dilution to reduce interferences and to preserve the anion column. The reported results relate only to the items tested or calibrated.

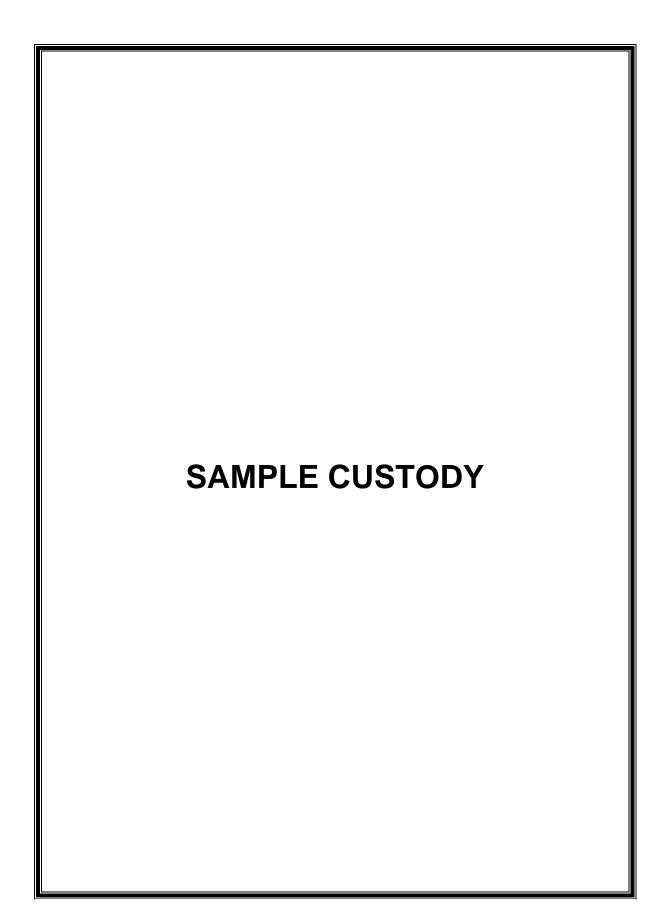
Summary of Quality Control Data

Summary of Method 26A Duplicate Analysis RPD

	(Method 26A C	C limits: <5% for RPD)	
	ST-	ST-	ST-
	M26A-R1A	M26A-R2A	M26A-R3A
Element	RPD 	RPD 	RPD
HF	NA	NA	NA
Cl_2	NA	NA	NA
	ST-	ST-	ST-
	M26A-R4A	M26A-R5A	M26A-R6A
Element	RPD	RPD	RPD
HF	NA	NA	NA
Cl ₂	NA	NA	NA
	ST-	ST-	ST-
	M26A-R1B	M26A-R2B	M26A-R3B
Element	RPD	RPD	RPD
HF	NA	NA	NA
Cl ₂	NA	NA	NA
	ST-	ST-	ST-
	M26A-R4B	M26A-R5B	M26A-R6B
Element	RPD	RPD	RPD
HF	NA	NA	NA
Cl ₂	NA	NA	NA
	S	T- S	Т-
	M26A	-FBON M26A-	FBOFF

	ST-	ST-
	M26A-FBON	M26A-FBOFF
Element	RPD	RPD
HF	NA	NA
Cl ₂	NA	NA

Summary of Quality Control Data

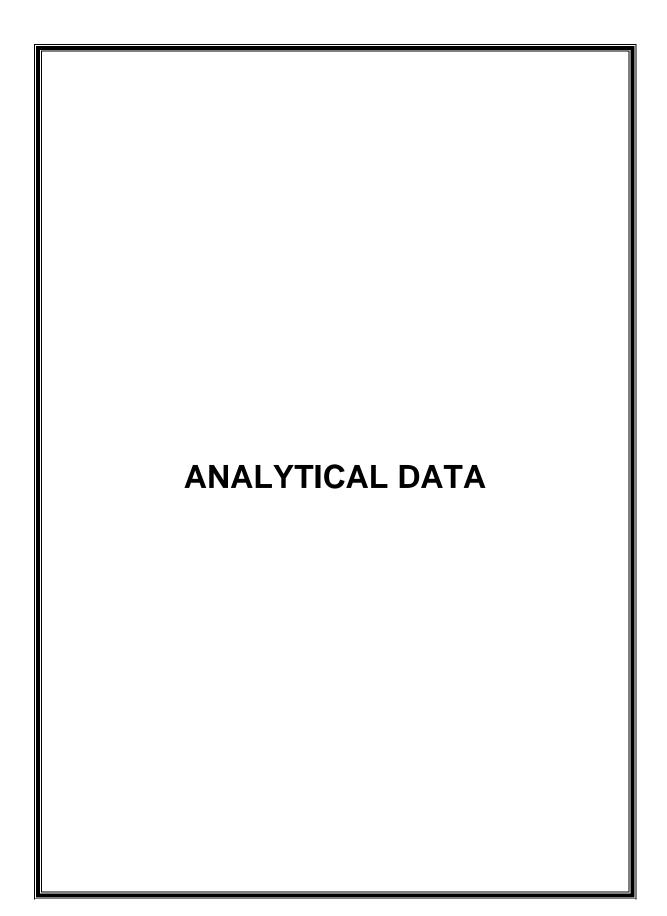

Summary of Method 26A Spike Recoveries (Method 26A QC limits: 90-110% for Spike Recoveries)

	ST-	ST-
	M26A-R3A	M26A-R3B
Element	Recovery	Recovery
HF	110%	106%
Cl ₂	105%	106%

Second Source Calibration Verification

(*Laboratory QC limits: 90-110%)

	DL 0.1mg/L	*QC 5.0mg/L
Element	Recovery	Recovery
HF	109%	107%
Cl ₂	103%	101%


			DEECO, In(35	ካ _	8
			3404 Lake Woodard Dr. Raleigh, NC 27604 919-250-0285			Date: Lab: Train:	Date: 12/22/23 Lab: Element One Train: EPA Method 26A
Plant Name: Buzzi Unicem			Plant Location: Stockertown PA			Project Name:	23-3323
Relinquished by: (Signature)		Date/Time	1-3-24 Kecelved by: (Signature)		Date/Time しる。 より	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample	Special Notes	Lab
ST-1A-H ₂ SO ₄	12/19/23	Сошр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 424.2 mL Element One	Element One
ST-1A-NaOH	12/19/23	Comp.	Chloride ion as Chlorine (Cl ₂)	EPA Method 26A	0.1N NaOH and DI Rinses	0.1N NaOH Final Volume 386.7 mL and DI Sodium thiosulfate Rinses NOT ADDED!	Element One
ST-1B-H ₂ SO ₄	12/19/23	Сошр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO _d and DI Rinses	Final Volume 399.4 m.L.	Element One
ST-1B-NaOH	12/19/23	Comp.	Chloride ion as Chlorine (Cl ₂)	EPA Method 26A	аОН	Final Volume 354.3 mL Sodium thiosulfate NOT ADDED!	Element One
ST-2A-H ₂ SO ₄	12/19/23	Сошр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 431.3 mL	Element One
ST-2A-NaOH	12/19/23	Сотр.	Chloride ion as Chlorine (Cl ₂)	EPA Method 26A	0.1N NaOH and DI Rinses	Final Volume 352.1 mL Sodium thiosulfate NOT ADDED!	Element One
ST-2B-H ₂ SO ₄	12/19/23	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 447.8 mL Element Onc	Element One
ST-2B-NaOH	12/19/23	Comp.	12/19/23 Comp. Chloride ion as Chlorine (Cl ₂) EPA Method and 26A Rins	EPA Method 26A	N NaOH DI	Final Volume 340.9 mL Sodium thiosulfate NOT ADDED!	Element One

Certification: NJ NELAP NC009 41822 Deeco M26A Report Packet Page 11 of 27

			DEECO, In(3404 Lake Woodard Dr. Raloigh, NC 27604 919-250-0285			C- S Date: Lab: Train:	ロートタスス (Date: 12/22/23 Lab: Element One Train: EPA Method 26A
Plant Name: Buzzi Unicem			Plant Location: Stockertown PA			Project Name:	23-3323
Relinquished by: (Signature)		1-3-24	Date/Time Received by: (Signature)		Date/Time	Comments	
Refinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample	Special Notes	Lab
ST-3A-H ₂ SO ₄	12/19/23	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H _z SO ₄ and DI Rinses	Final Volume 436.2 mL	Element One
ST-3A-NaOH	12/19/23	Comp.	Chloride ion as Chlorine (Cl ₂)	EPA Method 26A	0.1N NaOH and DI Rinses	0.1N NaOH Final Volume 368.8 mL and DI Sodium thiosulfate Rinses NOT ADDED!	Element One
ST-3B-H ₂ SO ₄	12/19/23	Сошр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 470.2 mL	Element Onc
ST-3B-NaOH	12/19/23	Сотр,	Chloride ion as Chlorine (Cl ₂)	EPA Method 26A	0.1N NaOH and DI Rinses	Final Volume 353.2mL Sodium thiosulfate NOT ADDED!	Element One
ST-4A-H ₂ SO ₄	12/20/23	Сотр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 484.9 mL.	Element One
ST-4A-NaOH	12/20/23	Comp.	Chloride ion as Chlorine (Cl ₂)	EPA Method 26A	0.1N NaOH and DI Rinses	0.1N NaOH Final Volume 367.8 mL and DI Sodium thiosulfate Rinses NOT ADDED!	Element One
ST-4B-H ₂ SO ₄	12/20/23	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₆ and DI Rinses	Final Volume 485.8 mL Element One	Element One
ST-4B-NaOH	12/20/23	Comp.	Chloride ion as Chlorine (Cl ₂)	EPA Method 26A	0.1N NaOH and DI Rinses	0.1N NaOH Final Volume 358.8 mL and DI Sodium thiosulfate Rinses NOT ADDED!	Element One

Certification: NJ NELAP NC009 41822 Deeco M26A Report Packet Page 12 of 27

_			DEECO, In(7	184A(
			3404 Lake Woodard Dr. Raleigh, NC 27604		*	Date:	12/22/23
			919-250-0285			Train	11111
Plant Name: Buzzi Unicem			Plant Location: Stockertown PA			Project Name:	23-3323
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Date/Time Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Date/Time Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample Description	Special Notes	Lab
ST-FBON-H ₂ SO ₄	12/20/23	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 426.5 mL Element One	Element One
ST-FBON-NaOH	12/20/23	Сотр.	Chloride ion as Chlorine (Cl ₂)	EPA Method 26A	0.1N NaOH and DI Rinses	0.1N NaOH Final Volume 369.8 mL and DI Sodium thiosulfate NOT ADDED!	Element One
ST-FBOFF-H ₂ SO ₄	12/20/23	Сотр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	-	Element One
ST-FBOFF-NaOH	12/20/23	Сотр.	Chloride ion as Chlorine (Cl ₂)	EPA Method 26A	0.1N NaOH and DI Rinses	0.1N NaOH Final Volume 368.1 mL and DI Sodium thiosulfate Rinses NOT ADDED!	Element One

Analytical Calculations

HF-

Total HX (mg) = [X Results (μg/mL)*Dilution*Beginning Vol (mL)]*Correction Factor 1000

Where-

X Results= Raw sample concentration (ppm) — IC Data Sheet

Dilution= <u>Diluted Volume</u>—IC Run Sheet Aliquot

Beginning Volume--Sample Submission

1.053= Correction factor for hydrogen fluoride

Cl₂ -

Total X_2 (mg) = X Results (μ g/mL)*Dilution*Beginning Volume (mL) 1000

Where-

X Results= Raw sample concentration (ppm)—Cl2 IC Data Sheet

Dilution= <u>Diluted Volume</u>—IC Run Sheet Aliquot

Beginning Volume--Sample Submission

Analytical Calculations

Spike Recovery-

Spike (%) = (Spiked Result (
$$\mu$$
g/mL) – Sample Result (μ g/mL)) X100
Spike Amount (μ g/mL)

Where-

Spike Result = Raw sample concentration (ppm)--IC-Data Sheet

Sample Result = Raw sample concentration (ppm)--IC-Data Sheet

Spike Amount—IC-Data Sheet

Duplicate Analysis RPD-

RPD (%) = (Duplicate Result (
$$\mu$$
g/mL) - Sample Result (μ g/mL)) X100
Average (μ g/mL)

Where-

Sample Result and Duplicate Results=Raw sample concentration (ppm)--IC-Data Sheet

Average= (<u>Duplicate + Sample Results</u>)
2

elementOne AIR TESTING SAMPLE SUBMISSION FORM Lab ID 41822 Analysis Due Date 01.13.24 Out of Hold 01.16-17.24 QA/QC/Report Due Date 01.15.24 Deeco, Inc. Date Rec 01.03.24 Project No 23-3323 Time Rec 1100 Volume Marked Volume Loss FH pH < 2 BH pH > 8 Ref. Method: (N) (N) N (N) 26A Sample Identification 1 ST-M26A-R1A · 7 ST-M26A-R1B 13 ST-M26A-FBON · 2 ST-M26A-R2A 8 ST-M26A-R2B 14 ST-M26A-FBOFF 3 ST-M26A-R3A · 9 ST-M26A-R3B ST-M26A-R3A Spike ST-M26A-R3B Spike · 4 ST-M26A-R4A - 10 ST-M26A-R4B · 5 ST-M26A-R5A •11 ST-M26A-R5B · 6 ST-M26A-R6A 12 ST-M26A-R6B Samples 1-14 HF Analyses Requested Samples 1-14 Cl2 Runs/FB FH Impinger 1 BH Impinger 4 FH Impinger 2 FH Impinger 3 BH Impinger 5 (or Combined Imp) (or Combined Imp) Lab ID BV, ml FV, ml BV, ml FV, ml BV, ml FV, ml FV, ml BV, ml FV, ml BV, ml 414.2 386.7 431.3 352.1 3.8 434.2 3489 4 984.9 349.8 5 444.3 377.2 6 951.9 35A.1 7 399.4 354.3 8 447.4 340.9 9.5 490.2 353.2 10 485.8 358.8 11 408.9 348.3 12 495. W 359.7 13 Alle.5 349.8 14 431.5 368.1 Lab Communications Volumes on COC & bottles NacH implinger pH: le Rec Runs/FB: H2SO4; NaOH; No RB received---01.03.24 LLB Imp 1, 2, &3 Prep By / Date MIND (AND 01-10-24) Imp 4 & 5 Prep By / Date MIND (AND 01-10-24) Labeled By/Date (L1) 1.3-24 ID Verification By/Date MMb (-3-24

M26A-HF IC Data Sheet

Lab ID #: 41822

Client: Deeco

Column: IonPac AS14A

Date: 01.12.24

Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW

Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml): 0.10

F to HF factor: 1.053

Sample ID	F ⁻ µg/ml	Dilution		HF, Total mg	Spike, µg/ml	% Recovery/ RPD	File Name	Date Time
LRB	0.000	1	10	< 0.001			2024-01-11	1/11/2024 15:30
LRB	0.000	1	10	< 0.001		NA	2024-01-11	1/11/2024 15:49
LRB SPK	5.236	1	10	0.055	5.00	105%	2024-01-11	1/11/2024 16:07
LRB SPK	5.294	1	10	0.056	5.00	106%	2024-01-11	1/11/2024 16:26
41822-1	0.000	5	424.2	< 0.223			2024-01-11	1/11/2024 16:45
41822-1 DUP	0.000	5	424.2	< 0.223		NA	2024-01-11	1/11/2024 17:03
41822-2	0.000	5	431.3	< 0.227			_2024-01-11_	1/11/2024 17:22
41822-2 DUP	0.000	5	431.3	< 0.227		NA	2024-01-11	1/11/2024 17:41
41822-3	0.000	5	436.2	< 0.23			2024-01-11	1/11/2024 19:52
41822-3 DUP	0.000	5	436.2	< 0.23		NA	2024-01-11	1/11/2024 20:11
41822-3 SPK	5.486	5	436.2	12.6	5.00	110%	2024-01-11	1/11/2024 20:30
41822-3 SPK DUP	5.447	5	436.2	12.5	5.00	109%	2024-01-11	1/11/2024 20:48
41822-4	0.000	5	484.9	< 0.255			2024-01-11	1/11/2024 18:00
41822-4 DUP	0.000	5	484.9	< 0.255		NA	2024-01-11_	1/11/2024 18:18
41822-5	0.000	5	446.3	< 0.235			2024-01-11_	1/11/2024 21:07
41822-5 DUP	0.000	5	446.3	< 0.235		NA	_2024-01-11_	1/11/2024 21:26
41822-6	0.000	5	451.9	< 0.238			_2024-01-11_	1/11/2024 21:45
41822-6 DUP	0.000	5	451.9	< 0.238		NA	_2024-01-11_	1/11/2024 22:03
41822-7	0.000	5	399.4	< 0.21			_2024-01-11_	1/11/2024 22:22
41822-7 DUP	0.000	5	399.4	< 0.21		NA	_2024-01-11_	1/11/2024 22:41
41822-8	0.000	5	447.8	< 0.236			_2024-01-12_	1/12/2024 0:14
41822-8 DUP	0.000	5	447.8	< 0.236		NA	_2024-01-12_	1/12/2024 0:33
41822-9	0.000	5	470.2	< 0.247			_2024-01-12_	1/12/2024 0:52
41822-9 DUP	0.000	5	470.2	< 0.247		NA	_2024-01-12_	1/12/2024 1:11
41822-9 SPK	5.243	5	470.2	13.0	5.00	105%	_2024-01-12_	1/12/2024 1:29
41822-9 SPK DUP	5.331	5	470.2	13.2	5.00	107%	_2024-01-12_	1/12/2024 1:48
41822-10	0.071	5	485.8	< 0.256			_2024-01-12_	1/12/2024 2:07
41822-10 DUP	0.000	5	485.8	< 0.256		NA	_2024-01-12_	1/12/2024 2:26
41822-11	0.000	5	468.7	< 0.247			_2024-01-12_	1/12/2024 2:44
41822-11 DUP	0.000	5	468.7	< 0.247		NA	_2024-01-12_	1/12/2024 3:03
41822-12	0.000	5	485.6	< 0.256			_2024-01-12_	1/12/2024 4:37
41822-12 DUP	0.000	5	485.6	< 0.256		NA	_2024-01-12_	1/12/2024 4:55
41822-13 FB ON	0.000	5	426.5	< 0.224			_2024-01-12_	1/12/2024 5:14
41822-13 FB ON DUP	0.000	5	426.5	< 0.224		NA	_2024-01-12_	1/12/2024 5:33
41822-14 FB OFF	0.000	5	431.5	< 0.227			_2024-01-12_	1/12/2024 5:52
41822-14 FB OFF DUP	0.000	5	431.5	< 0.227		NA	_2024-01-12_	1/12/2024 6:10

HF Data 1 of 2

elementOne e 41822-HF

elementOne M26A-HF IC Data Sheet Lab ID #: 41822

Client: Deeco Column: IonPac AS14A

Date: 01.12.24 Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml): 0.10 F to HF factor: 1.053

Standards	F' µg/ml Dilution	QC, µg/ml	% Relative Error	% Recovery	File Name	Date Time
0	0.000				2024-01-11	1/11/2024 11:45
0.1	0.099		-1.0%	99%	2024-01-11	1/11/2024 12:04
1	1.024		2.4%	102%	2024-01-11	1/11/2024 12:22
3	2.943		-1.9%	98%	2024-01-11	1/11/2024 12:41
5	5.039		0.8%	101%	2024-01-11	1/11/2024 13:00
10	9.995		-0.1%	100%	2024-01-11	1/11/2024 13:19
0.1	0.099		-1.0%	99%	2024-01-12	1/12/2024 9:18
1	1.049		4.9%	105%	2024-01-12	1/12/2024 9:36
3	3.178		5.9%	106%	2024-01-12	1/12/2024 9:55
5	5.393		7.9%	108%	2024-01-12	1/12/2024 10:14
10	10.597		6.0%	106%	_2024-01-12_	1/12/2024 10:33
Correlation-	0.9998					
QC	5.337	5.00		107%	_2024-01-11_	1/11/2024 13:37
QC	5.347	5.00		107%	2024-01-11	1/11/2024 13:56
QC	5.443	5.00		109%	_2024-01-11_	1/11/2024 18:37
QC	5.374	5.00		107%	_2024-01-11_	1/11/2024 18:56
QC	5.488	5.00		110%	_2024-01-11_	1/11/2024 22:59
QC	5.412	5.00		108%	_2024-01-11_	1/11/2024 23:18
QC	5.221	5.00		104%	_2024-01-12_	1/12/2024 3:22
QC	5.446	5.00		109%	_2024-01-12_	1/12/2024 3:40
QC	5.456	5.00		109%	_2024-01-12_	1/12/2024 8:21
QC	5.188	5.00		104%	_2024-01-12_	1/12/2024 10:51
DL	0.109	0.10		109%	_2024-01-11_	1/11/2024 14:52
DL	0.108	0.10		108%	_2024-01-11_	1/11/2024 15:11
DL	0.110	0.10		110%	_2024-01-12_	1/12/2024 8:40
DL	0.110	0.10		110%	_2024-01-12_	1/12/2024 11:10
BLK	0.000				_2024-01-11_	1/11/2024 14:15
BLK	0.000				_2024-01-11_	1/11/2024 14:34
BLK	0.000				_2024-01-11_	1/11/2024 19:15
BLK	0.000				_2024-01-11_	1/11/2024 19:33
BLK	0.000				_2024-01-11_	1/11/2024 23:37
BLK	0.000				_2024-01-11_	1/11/2024 23:56
BLK	0.000			,	_2024-01-12_	1/12/2024 4:18
BLK	0.000				_2024-01-12_	1/12/2024 8:59
BLK	0.000				_2024-01-12_	1/12/2024 11:29

elementOne e 41822-HF

HF Data 2 of 2

Pate: 01/024 Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃ Lot# 16 1/99-3

Batch name: 01/024-01659 10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 100 mM H₃PO₄ Lot # [C][1][1] Flow Rate: 1.0 mL/min. Method: 300/26A

		1		Results	Results	Method: 3	Wt (g) /
AS LOC.	Sample ID	Client	Analyte	(ug/mL)	(ug/mL)	Dilution	FV (mL)
1	0.0			Qc	Mans	Rs	
2	0.1		F-	BBC10574	Sigma aldula	1,9998	
3	1.0				1 200%		
4	3.0						
5	5.0						
(e	0.0						
7	QC						
8	QC						
9	BUC						
(0	BUK						
11	DL						
12	PL						
13	LRB						
14	LRB						
15	LEBE						
16	Lest						
17	41822-1	Deleo	HF			5x	
18	-1d	1					
101	- 2				-		
20	-2d				<u></u>		
21	- A					\$	
22	- 4d	4	1		_	6	
13	QC						
24	QC						
25	BUC					-	

Manual integrations noted by M	
Curve IC Lot # ICII-IIZ-1 Comments: pg 10 F 3	2308942-250 HP
Spike 50 uL from 1000 ug/mL Std. to 10mL sample Lot #s: IC ME Solution 2303019-750IC NO2 Solution	ion part of
QC: Spike 50 uL from 1000 ug/mL F, Cl, Br, and SO ₄ Std. to 10mL sample; lot #'s listied above.	
QC: Spike 20 uL from 1000 ug/mL NO ₂ , NO ₃ , and PO ₄ Std. to 10mL sample; lot #'s listed above.	
Submitted for QC- Date: nt.12.2 12 Time: 1270 By: LAW QC Review- Date: Time:	By:

Lab ID #: 41822 IC Sample Sheet/Digestion Worksheet elementOne Instrument: &1 |28% Date: 01/10/24 Column: IonPac AS14A Lot# 1011.99.3 Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃ Analyst: LAW

Batch name: O11024 - 41522 10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant; 100 mM H₃PO₄ Lot # (

Flow Rate: 1.0 mL/min.

AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
26	BLK						
27	41822-3	Deeco	HF		-	5x	
28	- 3d	1	1		_	1	
29	-3+				5.486		
30	-3+ d				5.447		
31	-5				_		
37	- 5d						
33	- 6						
34	- led				-		
35	-7						
36	- 7 d	V	4			4	
37	QC						
38	QC						
39	BLK						
40	BUK						
41	41822-8	DKKCO	HE			Sx	
42	-8d		1			-	
43	-9						
44	-90						
45	-9+			5.24	3 533T	m 01.12	
4le	-9+d				5331		
47	-10				_		
48	-100						
49	-(1						
50	-11 d	4	d			4	

Manual integrations noted	d by M		3.C3		
Curve IC Lot #	Comments:		20(-)	_	
Spike 50 uL from 1000 up	g/mL Std. to 10mL samp	le Lot #s: IC ME		C NO2 Solution	pa 20+
QC: Spike 50 uL from 10	00 ug/mL F, Cl/Br, and	SO ₄ Std. to 10mL	. sample; lot #'s listled above.		
QC: Spike 20 uL from 10	00 ug/mL NO2, NO3, and	PO4 Std. to 10m	nL sample; lot #'s listed above		
Submitted for QC- Date:		By:	QC-Review- Date:	Time:	By:

Lab ID #: 41822 IC Sample Sheet/Digestion Worksheet elementOne Instrument: 361 488 Column: IonPac AS14A Date: 01-10-24 Lot# 1011-99.3 Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Analyst: ພ

Batch name: 01 10 24 - 41822 10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 100 mM H₃PO₄ Lot # [Flow Rate: 1.0 mL/min. Met Lot # \C\\-\\\-2 Method: 300/26A

AS LOC.	Sample ID	Client	Analyte	: 1.0 mL/min. Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
S١	QO						
52	QU						
53	BUK						
54	BUK						
55	41822-12	prido	HF			SX	
SU	-120		1			1	
57	-13 FBON				<u>_</u>		
58	-13 FBON d						
59	-14 FBOFF				_		
40	- 19 FB OFF d	1			41	P	į.
lel	40034-4QC			€ 3662	(PASKO)	20x	F. F. V
ur	40034-4 acd		7	3674	(0540)	9 1	1111011
UB	QC						
4.4	DL						
45	BLK						
00	0.1						
47	1.0						
B	3.0						
601	5.0						
70	(6.0						
41	QC						
72	DL						
73	bik						

Manual integrations noted by M	i con	2.	co .			
Curve IC Lot #	Comments:		10	50-00)		
Spike 50 uL from 1000 ug/mL S	itd. to 10mL samp	ole Lot #'s: IC ME S	Solution	IC NO2 Solution	PO 3 01	
QC: Spike 50 uL from 1000 ug/					.]	
QC: Spike 20 uL from 1000 ug/	mL NO ₂ , NO ₃ , and	d PO4 Std. to 10 mb	sample; lot #'s listed al	bove.		
Submitted for QC- Date:	Time:	Ву	QC Review- Date:	:Time:	By:	

0.10

elementOne

M26A-Cl₂ IC Data Sheet

Lab ID #: 41822

Client: Deeco

Column: IonPac AS14A

Date: 01.12.24

Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW

Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml):

Sample ID	Cl' µg/ml	Dilution	Final Vol, ml	Cl ₂ , Total mg	Spike, µg/ml	% RPD/ Recovery	File Name	Date Time
LRB	0.00	1	10	< 0.001			749a1733:18cf389dea8:-748f	1/10/2024 22:03
LRB	0.041	1	10	< 0.001		NA	749a1733:18cf389dea8:-748d	1/10/2024 22:26
LRB SPK	5.13	1	10	0.051	5.00	102%	749a1733:18cf389dea8:-7a44	1/10/2024 22:50
LRB SPK	5.53	1	10	0.055	5.00	110%	749a1733:18cf389dea8:-7a42	1/10/2024 23:13
41822-1	0.091	5	386.7	< 0.193			749a1733:18cf389dea8:-7a40	1/10/2024 23:37
41822-1 DUP	0.091	5	386.7	< 0.193		NA	749a1733:18cf389dea8:-7a3e	1/11/2024 0:00
41822-2	0.069	5	352.1	< 0.176			749a1733:18cf389dea8:-7a2c	1/11/2024 3:31
41822-2 DUP	0.058	5	352.1	< 0.176		NA	749a1733:18cf389dea8:-7a2a	1/11/2024 3:55
41822-3	0.088	5	368.8	< 0.184			749a1733:18cf389dea8:-7a3c	1/11/2024 0:24
41822-3 DUP	0.067	5	368.8	< 0.184		NA	749a1733:18cf389dea8:-7a3a	1/11/2024 0:47
41822-3 SPK	5.37	5	368.8	9.91	5.00	106%	749a1733:18cf389dea8:-7a38	1/11/2024 1:11
41822-3 SPK DUP	5.26	5	368.8	9.70	5.00	104%	749a1733:18cf389dea8:-7a36	1/11/2024 1:34
41822-4	0.090	5	367.8	< 0.184			749a1733:18cf389dea8:-7a28	1/11/2024 4:18
41822-4 DUP	0.099	5	367.8	< 0.184		NA	749a1733:18cf389dea8:-7a26	1/11/2024 4:42
41822-5	0.064	5	377.2	< 0.189			749a1733:18cf389dea8:-7a24	1/11/2024 5:05
41822-5 DUP	0.083	5	377.2	< 0.189		NA	749a1733:18cf389dea8:-7a22	1/11/2024 5:29
41822-6	0.078	5	354.1	< 0.177			749a1733:18cf389dea8:-7a20	1/11/2024 5:52
41822-6 DUP	0.076	5	354.1	< 0.177		NA	749a1733:18cf389dea8:-7a1e	1/11/2024 6:16
41822-7	0.085	5	354.3	< 0.177			749a1733:18cf389dea8:-7a1c	1/11/2024 6:39
41822-7 DUP	0.090	5	354.3	< 0.177		NA	749a1733:18cf389dea8:-7a1a	1/11/2024 7:03
41822-8	0.065	5	340.9	< 0.17			749a1733:18cf389dea8:-78db	1/11/2024 9:00
41822-8 DUP	0.087	5	340.9	< 0.17		NA	749a1733:18cf389dea8:-78d9	1/11/2024 9:24
41822-9	0.068	5	353.2	< 0.177			749a1733:18cf389dea8:-78d7	1/11/2024 9:47
41822-9 DUP	0.031	5	353.2	< 0.177		NA	749a1733:18cf389dea8:-78d5	1/11/2024 10:11
41822-9 SPK	5.33	5	353.2	9.41	5.00	105%	749a1733:18cf389dea8:-78d3	1/11/2024 10:34
41822-9 SPK DUP	5.33	5	353.2	9.41	5.00	106%	749a1733:18cf389dea8:-78d1	1/11/2024 10:58
41822-10	0.076	5 `	358.8	< 0.179			749a1733:18cf389dea8:-78cf	1/11/2024 11:21
41822-10 DUP	0.083	5	358.8	< 0.179		NA	749a1733:18cf389dea8:-78cd	1/11/2024 11:45
41822-11	0.077	5	348.3	< 0.174			749a1733:18cf389dea8:-78cb	1/11/2024 12:08
41822-11 DUP	0.087	5	348.3	< 0.174		NA	749a1733:18cf389dea8:-78c9	1/11/2024 12:32
41822-12	0.068	5	359.7	< 0.18			749a1733:18cf389dea8:-74da	1/11/2024 14:29
41822-12 DUP	0.088	5	359.7	< 0.18		NA	749a1733:18cf389dea8:-74d8	1/11/2024 14:53
41822-13 FB ON	0.035	5	369.8	< 0.185			749a1733:18cf389dea8:-74d6	1/11/2024 15:16
41822-13 FB ON DUP	0.035	5	369.8	< 0.185		NA	749a1733:18cf389dea8:-74d4	1/11/2024 15:40
41822-14 FB OFF	0.056	5	368.1	< 0.184			749a1733:18cf389dea8:-74d2	1/11/2024 16:03
41822-14 FB OFF DUP	0.059	5	368.1	< 0.184		NA	749a1733:18cf389dea8:-74d0	1/11/2024 16:27

elementOne e 41822-Cl₂

Cl₂-Data 1 of 2

Lab Arus

elementOne

M26A-Cl₂ IC Data Sheet

Lab ID #: 41822

Client: Deeco

Column: IonPac AS14A

Date: 01.12.24

Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW

Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml): 0.10

Standards	Cl' µg/ml	Dilution	QC µg/ml	%Relative Error	% Recovery	File Name	Date Time
0.0	0.00					740-4720-40-400-40-740-	4400004470
0.1	0.102			2.004	4000/	749a1733:18cf389dea8:-749b	1/10/2024 17:2
1.0	0.971			2.0%	102% 97%	749a1733:18cf389dea8:-7499	1/10/2024 17:4
3.0	2.99			-2.9%	100%	749a1733:18cf389dea8:-7497	1/10/2024 18:0
5.0	5.05			1.1%	101%	749a1733:18cf389dea8:-7495	1/10/2024 18:3
10.0	9.98			-0.2%	100%	749a1733:18cf389dea8:-7493	1/10/2024 18:5
0.1	0.105			5.0%	105%	749a1733:18cf389dea8:-7491	1/10/2024 19:1
1.0	1.04					749a1733:18cf389dea8:-74c4	1/11/2024 18:4
3.0	3.17			4.4%	104%	749a1733:18cf389dea8:-74c2	1/11/2024 19:1
5.0				5.8%	106%	749a1733:18cf389dea8:-74c0	1/11/2024 19:3
10.0	5.26 10.6			5.2%	105%	749a1733:18cf389dea8:-74be	1/11/2024 19:5
10.0	10,6			5.8%	106%	749a1733:18cf389dea8:-74bc	1/11/2024 20:2
Correlation-	0.999966						
QC	5.03		5.00		101%	749a1733:18cf389dea8:-7a54	1/10/2024 19:43
QC	4.94		5.00		99%	749a1733:18cf389dea8:-7a52	1/10/2024 20:05
QC	5.35		5.00		107%	749a1733:18cf389dea8:-7a34	1/11/2024 1:58
QC	5.38		5.00		108%	749a1733:18cf389dea8:-7a32	1/11/2024 2:21
QC	5.33		5.00		107%	749a1733:18cf389dea8:-7a18	1/11/2024 7:26
QC	5.35		5.00		107%	749a1733:18cf389dea8:-7a16	1/11/2024 7:50
QC	5.38		5.00		108%	749a1733:18cf389dea8:-74e2	1/11/2024 12:5
QC	5.29		5.00		106%	749a1733:18cf389dea8:-74e0	1/11/2024 13:19
QC	5.38		5.00		108%	749a1733:18cf389dea8:-74ca	1/11/2024 17:37
QC	5.34		5.00		107%	749a1733:18cf389dea8:-74ba	1/11/2024 20:45
DL	0.103		0.10		103%	749a1733:18cf389dea8:-7a4c	1/10/2024 21:16
DL	0.104		0.10		104%	749a1733:18cf389dea8:-7a4a	1/10/24 21:39
DL	0.105		0.10		105%	749a1733:18cf389dea8:-74c8	1/11/2024 18:01
DL	0.092		0.10		92%	2331bcbc:18ccab694ba:-783f	1/3/2024 16:24
BLK	0.041					749a1733:18cf389dea8:-7a50	1/10/2024 20:29
BLK	0.026					749a1733:18cf389dea8:-7a30	1/11/2024 2:45
BLK	0.030					749a1733:18cf389dea8:-7a2e	1/11/2024 3:08
BLK	0.043					749a1733:18cf389dea8:-7a14	1/11/2024 8:13
BLK	0.022					749a1733:18cf389dea8:-7a12	1/11/2024 8:37
BLK	0.020					749a1733:18cf389dea8:-74de	1/11/2024 13:42
BLK	0.043					749a1733:18cf389dea8:-74dc	1/11/2024 14:06
BLK	0.011					749a1733:18cf389dea8:-74c6	1/11/2024 14:00
BLK	0.009					749a1733:18cf389dea8:-74b6	1/11/2024 21:32

elementOne e 41822-Cl₂

Cl₂-Data 2 of 2

elementOne

-	-	-	4	-	tO	1	

IC Sample Sheet/Digestion Worksheet

Lab ID #: 41822

Date: 0109.24

Column: IonPac AS14A

Instrument: 881 1858 Lot# (C11 -99-3

Analyst: Lw

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Batch name: 010924-41822

10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 100mM $\rm H_3PO_4$ Lot # \ C\\ -\08-3 Flow Rate: 1.0 mL/min. Method: 26A NaOH

AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
1	0.0			OC.	mase	22	اننوس
2	61		CIT	4308559	RICCA	.999976	999966
3	1.0				1		711100
4	30						
5	50						
Ь	10.0						
7	G-C						
8	GC		,				
9	BIK						
10	BIL						
11	DL						
12	DL						
13	426						
14	UB						
15	UB+						
16	LABA						
13	41922-1	Deeco	Cl2		~	5×	
18	-10	1	1		7	1	
19	-3						
20	-3D						
21	-3+				5374		
22	-3+D				5,258		
23	60		- V		0,000	V	
24	600						
25	BIL						

Manual integra		
Curve IC Lot # 10.11.111.3	Sodium Thiosulfate Lot # 101-73-4 Comments: pg 10/-3	
Spike 50 uL from 1000 ug/mL Std.	to 10mL sample Lot #s: IC ME Solution 2303029-250 Hpj	
QC: Spike 50 uL from 1000 ug/mL	Br Std. to 10mL sample: lot #'s listled above	
Submitted for QC- Date: 01.1224	4 Time: IN'OU By: QC Review- Date: Time: By:	

-1	-		10	
ei	en	lei	ILO	ne

IC Sample Sheet/Digestion Worksheet

Lab ID #: 41822

Date: 01.09-24

Column: IonPac AS14A

Instrument: 381 |858 Lot# | CII -99-3

Analyst: U/w

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Flow Rate: 1.0 mL/min. AS LOC Sample ID Client Analytic Results Results					Method: 26A NaC		
AS LOC.	Sample ID	Client	Analyte	(ug/mL)	(ug/mL)	Dilution	Wt (g) / FV (mL)
26	BIL			A.,			
27	41822-2	Doero	Clz			5X	
28	-ZD	1	1			1	
29	-4				-		
30	-4D)		
3(-5				-		
32	-5D						
33	-6						
34	-6D)		
35	-2				_		
36	- 7D	1	J)	7	
37	Ø€						
38	6€						
39	BIL						
46	BIL						
41	41822-8	Deeco	Cb.			5×	
42	-80		1		_	1	
43	-9				_		
чч	-9D				J		-
45	-91				5,329		
46	-9+D				5.325		
44	-10						
48	-loD				_		
49	-11 .				_		
SO	-IID	1/	1		1		

No. 11 Control and April 2015				
fate Lot #	Comprents:	00 7 NE	3	
ot #s: IC ME Solution	/_	13	-	Т
ample; lot #'s listied above	е. /			
		Time:	Bv:	
	/	-50101000		
	ot #s: IC ME Solution _ ample; lot #'s listled above	ot #s: IC ME Solution	ot #s: IC ME Solutionample; lot #s listied above.	ot #'s: IC ME Solution

elementOne

Lab ID #: 41 822

D1.09.24 Date:

Column: IonPac AS14A

Instrument: 881/858

Analyst: (Au) Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Lot# 1011-99-3

Batch name: 010929 - 41822 Regenerant: 100mM H₃PO₄ Lot # 1CII-108-3 Flow Rate: 1.0 mL/min. Method: 26A National Regenerants and matching the second seco

Method: 26A NaOH

AS LOC.	Sample ID	Client	v Rate: 1.0 m Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
51	60						
52	E						
53	BIK			-			
54	BL						
55	41822-12	Deeco	Clz			5X	
56	72D	1	1		_	1	
52	-13FB00				_		
58	-13 FBOND				-	× 1	
59	-14 FB OFF						
60	-14 FB UFFD	1					
6	40024-7 -GE	9		wony ac		10>	TV=78.0
62	-7- GC	-	V	allowed H	ei, Itc	7	
63	GE						
64	DL						
65	BIL						
66	0-1						
67	1.0						
69	30						
69	50						
70	10.0						
71	G(
72	DL						
73	BIVC						
74	Les						
75	LICES						

Manual integrations noted I	by M				
Curve IC Lot #	Sodium Thiosulfate Lot #) Comments:	Pg 3	oF3	
Spike 50 uL from 1000 ug/s	nL Std. to 10mL sample Lot #'s: IC ME S	Solution /	****	200	
QC: Spike 50 uL from 1000	ug/mL/Br Std. to 10mL sample; lot #'s li	stied above.			
Submitted for QC- Date:		QC Review- Date:	Time:	By:	_

Appendix D

Plant Process Data

	Kiln: K3
Buzzi Unicem	Clinker
Stockertown PA Kiln	(TNHR)
1 and 3 Stack	Expression
Date/Time	Value
Start Run 1	
12/19/2023 10:02	76.69
12/19/2023 10:03	76.37
12/19/2023 10:04	76.88
12/19/2023 10:05	77.52
12/19/2023 10:06	77.71
12/19/2023 10:07	76.75
12/19/2023 10:08	77.13
12/19/2023 10:09	76.43
12/19/2023 10:10	76.31
12/19/2023 10:11	76.69
12/19/2023 10:12	76.62
12/19/2023 10:13	77.32
12/19/2023 10:14	77.26
12/19/2023 10:15	76.05
12/19/2023 10:16	76.31
12/19/2023 10:17	76.18
12/19/2023 10:18	77.07
12/19/2023 10:19	76.94
12/19/2023 10:20	76.37
12/19/2023 10:21	76.75
12/19/2023 10:22	77.90
12/19/2023 10:23	76.37
12/19/2023 10:24	76.69
12/19/2023 10:25	76.18
12/19/2023 10:26	77.07
12/19/2023 10:27	76.94
12/19/2023 10:28	76.75
12/19/2023 10:29	77.96
12/19/2023 10:30	76.50
12/19/2023 10:31	76.56
12/19/2023 10:32	76.31
12/19/2023 10:33	76.62
12/19/2023 10:34	77.13
12/19/2023 10:35	76.62
12/19/2023 10:36	76.82
12/19/2023 10:37	77.32
12/19/2023 10:38	76.37
12/19/2023 10:39	77.13
12/19/2023 10:40	76.94
12/19/2023 10:41	76.31

	Kiln: K3
Buzzi Unicem	Clinker
Stockertown PA Kiln	
1 and 3 Stack	Expression
Date/Time	Value
12/19/2023 10:42	77.26
12/19/2023 10:43	76.56
12/19/2023 10:44	77.20
12/19/2023 10:45	76.56
12/19/2023 10:46	76.88
12/19/2023 10:47	76.82
12/19/2023 10:48	76.69
12/19/2023 10:49	76.82
12/19/2023 10:50	77.52
12/19/2023 10:51	76.50
12/19/2023 10:52	76.94
12/19/2023 10:53	77.01
12/19/2023 10:54	76.88
12/19/2023 10:55	77.07
12/19/2023 10:56	76.50
12/19/2023 10:57	76.75
12/19/2023 10:58	76.62
12/19/2023 10:59	76.62
12/19/2023 11:00	77.39
12/19/2023 11:01	76.62
12/19/2023 11:02 12/19/2023 11:03	76.24 76.75
12/19/2023 11:04	76.69
12/19/2023 11:04	77.32
12/19/2023 11:06	77.07
12/19/2023 11:07	77.71
12/19/2023 11:08	76.11
12/19/2023 11:09	76.75
12/19/2023 11:10	76.88
12/19/2023 11:11	76.56
Run 1 Average	76.82
12/19/2023 11:12	76.94
12/19/2023 11:13	77.07
12/19/2023 11:14	77.58
12/19/2023 11:15	77.13
12/19/2023 11:16	77.20
12/19/2023 11:17	76.62
12/19/2023 11:18	77.01
12/19/2023 11:19	77.52
12/19/2023 11:20	76.31
12/19/2023 11:21	77.07

.

	Kiln: K3
Buzzi Unicem	Clinker
Stockertown PA Kiln	(TNHR)
1 and 3 Stack	Expression
Date/Time	Value
12/19/2023 11:22	77.32
12/19/2023 11:23	77.20
12/19/2023 11:24	77.45
12/19/2023 11:25	76.31
12/19/2023 11:26	76.31
12/19/2023 11:27	77.07
12/19/2023 11:28	76.69
12/19/2023 11:29	77.20
12/19/2023 11:30	78.03
12/19/2023 11:31	77.26
12/19/2023 11:32	76.05
12/19/2023 11:33	76.69
Start Run 2	
12/19/2023 11:34	76.43
12/19/2023 11:35	77,01
12/19/2023 11:36	77.45
12/19/2023 11:37	76.75
12/19/2023 11:38	77.39
12/19/2023 11:39	77.13
12/19/2023 11:40	76.37
12/19/2023 11:41	76.31
12/19/2023 11:42	76.75
12/19/2023 11:43	76.56
12/19/2023 11:44	76.82
12/19/2023 11:45	77.32
12/19/2023 11:46	75.61
12/19/2023 11:47	76.50
12/19/2023 11:48	76.82
12/19/2023 11:49	76.31
12/19/2023 11:50	76.69
12/19/2023 11:51	77.39
12/19/2023 11:52	76.82
12/19/2023 11:53	76.43
12/19/2023 11:54	76.88
12/19/2023 11:55	76.31
12/19/2023 11:56	76.94
12/19/2023 11:57	76.75
12/19/2023 11:58	77.45
12/19/2023 11:59	77.13
12/19/2023 12:00	76.24
IL/ID/LOLG IL.OC	

	Kiin: K3
Buzzi Unicem	Clinker
Stockertown PA Kiln	(TNHR)
1 and 3 Stack	Expression
Date/Time	Value
12/19/2023 12:02	76.69
12/19/2023 12:03	76.18
12/19/2023 12:04	76.88
12/19/2023 12:05	77.58
12/19/2023 12:06	77.32
12/19/2023 12:07	76.11
12/19/2023 12:08	76.69
12/19/2023 12:09	76.69
12/19/2023 12:10	77.01
12/19/2023 12:11	76.82
12/19/2023 12:12	77.58
12/19/2023 12:13	76.75
12/19/2023 12:14	76.31
12/19/2023 12:15	76.88
12/19/2023 12:16	76.56
12/19/2023 12:17	77.32
12/19/2023 12:18	77.52
12/19/2023 12:19	76.43
12/19/2023 12:20	76.18
12/19/2023 12:21	76.94
12/19/2023 12:22	76.94
12/19/2023 12:23	76.50
12/19/2023 12:24	77,45
12/19/2023 12:25	76.05
12/19/2023 12:26	76.31
12/19/2023 12:27	76.56
12/19/2023 12:28	77.20
12/19/2023 12:29	76.94
12/19/2023 12:30	76.82
12/19/2023 12:31	77.64
12/19/2023 12:32	76.24
12/19/2023 12:33	76.56
12/19/2023 12:34	76,18
12/19/2023 12:35	77.01
12/19/2023 12:36	76.88
12/19/2023 12:37	76.88
12/19/2023 12:38	77.58
12/19/2023 12:39	76.24
12/19/2023 12:40	77.32
12/19/2023 12:41	77.07
12/19/2023 12:42	76.94
	, , ,,,, ,

	Kiln: K3
Buzzi Unicem	Clinker
Stockertown PA Kiln	(TNHR)
1 and 3 Stack	Expression
Date/Time	Value
Run 2 Average	76.85
12/19/2023 12:43	77.07
12/19/2023 12:44	76.62
12/19/2023 12:45	77.01
12/19/2023 12:46	77.32
12/19/2023 12:47	76.43
12/19/2023 12:48	76.56
12/19/2023 12:49	76.43
12/19/2023 12:50	77.20
12/19/2023 12:51	76.75
12/19/2023 12:52	76.56
12/19/2023 12:53	77.96
12/19/2023 12:54	76.82
12/19/2023 12:55	77.20
12/19/2023 12:56	76.56
12/19/2023 12:57	76.82
12/19/2023 12:58	77.52
Start Run 3	
12/19/2023 12:59	76.69
12/19/2023 13:00	77.01
12/19/2023 13:01	77.20
12/19/2023 13:02	77.01
12/19/2023 13:03	76.82
12/19/2023 13:04	76.56
12/19/2023 13:05	76.94
12/19/2023 13:06	77.26
12/19/2023 13:07	76.82
12/19/2023 13:08	77.13
12/19/2023 13:09	77.32
12/19/2023 13:10	76.18
12/19/2023 13:11	76.69
12/19/2023 13:12	76.88
12/19/2023 13:13	76.43
12/19/2023 13:14	76.37
12/19/2023 13:15	76.88
12/19/2023 13:16	76.62
12/19/2023 13:17	76.43
12/19/2023 13:18	77.58
12/19/2023 13:19	77.39
12/19/2023 13:20	76.11
12/19/2023 13:21	77.13
TELTALEDES TOUR	1 /1.23

		Kiln: K3
:	Buzzi Unicem	Clinker
	Stockertown PA Kiln	(TNHR)
	1 and 3 Stack	Expression
	Date/Time	Value
	12/19/2023 13:22	76.43
	12/19/2023 13:23	77.01
	12/19/2023 13:24	76.82
	12/19/2023 13:25	77.32
	12/19/2023 13:26	76.24
	12/19/2023 13:27	76.18
	12/19/2023 13:28	77.07
	12/19/2023 13:29	77.32
	12/19/2023 13:30	77.13
	12/19/2023 13:31	77.26
	12/19/2023 13:32	76.56
	12/19/2023 13:33	76.37
	12/19/2023 13:34	77.45
	12/19/2023 13:35	77.26
	12/19/2023 13:36	77.96
	12/19/2023 13:37	76.24
	12/19/2023 13:38	76.43
ì	12/19/2023 13:39	77.07
	12/19/2023 13:40	76.50
	12/19/2023 13:41	76.37
	12/19/2023 13:42	76.75
	12/19/2023 13:43	76.94
	12/19/2023 13:44	77.32
	12/19/2023 13:45	77.45
	12/19/2023 13:46	76.62
	12/19/2023 13:47	76.37
	12/19/2023 13:48	76.82
	12/19/2023 13:49	77.32
	12/19/2023 13:50	77.96
	12/19/2023 13:51	77.32
	12/19/2023 13:52	76.50 76.18
	12/19/2023 13:53	76.18
	12/19/2023 13:54 12/19/2023 13:55	76.62
	12/19/2023 13:56	77.07
	12/19/2023 13:57	77.13
	12/19/2023 13:58	77.71
	12/19/2023 13:59	76.56
	12/19/2023 14:00	76.69
Ĵ	12/19/2023 14:01	76.69
	12/19/2023 14:02	77.26

Buzzi Unicem Stockertown PA Kiln 1 and 3 Stack Date/Time	Kiln: K3 Clinker (TNHR) Expression Value
12/19/2023 14:03	76.75
12/19/2023 14:04	77.01
12/19/2023 14:05	77.45
12/19/2023 14:06	76.69
12/19/2023 14:07	76.31
12/19/2023 14:08	76.82
Run 3 Average	76.88

Buzzi Unicem Stockertown PA Kiln 1 and 3 Stack	Kiln: K3 Clinker (TNHR) Expression
Date/Time	Value
Start Run 1	
12/20/2023 08:33	77.39
12/20/2023 08:34	76.05
12/20/2023 08:35	76.31
12/20/2023 08:36	76.43
12/20/2023 08:37	76.94
12/20/2023 08:38	77.32
12/20/2023 08:39	77.52
12/20/2023 08:40	76.94
12/20/2023 08:41	76.62
12/20/2023 08:42	76.31
12/20/2023 08:43	76.56
12/20/2023 08:44	77.45
12/20/2023 08:45	76.05
12/20/2023 08:46	77.32
12/20/2023 08:47	77,71
12/20/2023 08:48	76.69
12/20/2023 08:49	76.37
12/20/2023 08:50	77.20
12/20/2023 08:51	76.82
12/20/2023 08:52	76.94
12/20/2023 08:53	76.82
12/20/2023 08:54 12/20/2023 08:55	76.94 77.13
12/20/2023 08:56	76.37
PER ENGLISHMENT OF STREET AND ADDRESS OF STR	76.75
12/20/2023 08:57 12/20/2023 08:58	77.20
12/20/2023 08:59	77.26
12/20/2023 09:00	76.69
12/20/2023 09:01	76.94
12/20/2023 09:02	76,82
12/20/2023 09:03	77.32
12/20/2023 09:04	76.37
12/20/2023 09:05	76.50
12/20/2023 09:06	76.56
12/20/2023 09:07	76.88
12/20/2023 09:08	77.64
12/20/2023 09:09	76.11
12/20/2023 09:10	76.82
12/20/2023 09:11	76.56
12/20/2023 09:12	76.94
12/20/2023 09:13	77.20

	Kiln: K3
Buzzi Unicem	Clinker
Stockertown PA Kiln	
1 and 3 Stack	Expression
Date/Time	Value
12/20/2023 09:14	77.20
12/20/2023 09:15	77.52
12/20/2023 09:16	76.31
12/20/2023 09:17	76.94
12/20/2023 09:18	76.56
12/20/2023 09:19	77.39
12/20/2023 09:20	76.69
12/20/2023 09:21	76.50
12/20/2023 09:22	77.26
12/20/2023 09:23	76.69
12/20/2023 09:24	77.45
12/20/2023 09:25	77.07
12/20/2023 09:26	76.43
12/20/2023 09:27	76.75
12/20/2023 09:28	77.39
12/20/2023 09:29	76.56
12/20/2023 09:30	76.69
12/20/2023 09:31	77.32
12/20/2023 09:32	77.45
12/20/2023 09:33	77.64
12/20/2023 09:34	76.18
12/20/2023 09:35	76.31
12/20/2023 09:36	76.18
12/20/2023 09:37	76.75
12/20/2023 09:38	77.71
12/20/2023 09:39	77.45
12/20/2023 09:40	76.31
12/20/2023 09:41	76.43
12/20/2023 09:42	76.56
Run 1 Average	76.86
12/20/2023 09:43	76.75
12/20/2023 09:44	77.07
12/20/2023 09:45	76.43
12/20/2023 09:46	77.58
12/20/2023 09:47	77.58
12/20/2023 09:48	77.01
12/20/2023 09:49	76.56 76.24
12/20/2023 09:50	76.24 76.75
12/20/2023 09:51	76.75 77.45
12/20/2023 09:52 12/20/2023 09:53	77.43 76.05
	77.58
12/20/2023 09:54	17.30

	Kiln: K3
Buzzi Unicem	Clinker
Stockertown PA Kiln	
1 and 3 Stack	Expression
Date/Time	Value
12/20/2023 09:55	76.24
12/20/2023 09:56	76.43
12/20/2023 09:57	77.64
12/20/2023 09:58	77.13
12/20/2023 09:59	77.01
Start Run 2	
12/20/2023 10:00	76.82
12/20/2023 10:01	77.58
12/20/2023 10:02	76.43
12/20/2023 10:03	77.20
12/20/2023 10:04	77.58
12/20/2023 10:05	76.94
12/20/2023 10:06	76.31
12/20/2023 10:07	76.50
12/20/2023 10:08	77.01
12/20/2023 10:09	76.56
12/20/2023 10:10	77.58
12/20/2023 10:11	76.62
12/20/2023 10:12	76.18
12/20/2023 10:13	77.26
12/20/2023 10:14	76.88
12/20/2023 10:15	76.88
12/20/2023 10:16	77.13
12/20/2023 10:17	76.88
12/20/2023 10:18	76.50
12/20/2023 10:19	77.39
12/20/2023 10:20	76.37
12/20/2023 10:21	77.52
12/20/2023 10:22	76.37
12/20/2023 10:23	77.26
12/20/2023 10:24	76.11
12/20/2023 10:25	77.45
12/20/2023 10:26	77.64
12/20/2023 10:27	76.37
12/20/2023 10:28	76.94
12/20/2023 10:29	77.39
12/20/2023 10:30	77.26
12/20/2023 10:31	76.37
12/20/2023 10:32	76.56
12/20/2023 10:33	77.58
12/20/2023 10:34	76.82
12/20/2023 10:35	76.88

Buzzi Unicem	Kiln: K3 Clinker
Stockertown PA Kiln	(TNHR)
1 and 3 Stack	Expression
Date/Time	Value
12/20/2023 10:36	76.69
12/20/2023 10:37	76.69
12/20/2023 10:38	77.64
12/20/2023 10:39	76.56
12/20/2023 10:40	76.82
12/20/2023 10:41	77.20
12/20/2023 10:42	76.88
12/20/2023 10:43	76.82
12/20/2023 10:44	76.69
12/20/2023 10:45	76.94
12/20/2023 10:46	76.82
12/20/2023 10:47	76.82
12/20/2023 10:48	76.94
12/20/2023 10:49	77.01
12/20/2023 10:50	77.07
12/20/2023 10:51	76.11
12/20/2023 10:52	76.43
12/20/2023 10:53	77.01
12/20/2023 10:54	77.32
12/20/2023 10:55	76.82
12/20/2023 10:56	77.07
12/20/2023 10:57	76.11
12/20/2023 10:58	76.37
12/20/2023 10:59	76.75
12/20/2023 11:00	77.07
12/20/2023 11:01	76.43
12/20/2023 11:02	77.26
12/20/2023 11:03	76.56
12/20/2023 11:04	76.31
12/20/2023 11:05	77.32
12/20/2023 11:06	77.01
12/20/2023 11:07	76.88
12/20/2023 11:08	76.50
Run 2 Average	76.87
12/20/2023 11:09	76.56
12/20/2023 11:10	77.32
12/20/2023 11:11	78.22
12/20/2023 11:12	76.31
12/20/2023 11:13	75.99
12/20/2023 11:14	76.56
12/20/2023 11:15	76.69
12/20/2023 11:16	77.20

Buzzi Unicem	Kiln: K3 Clinker
Stockertown PA Kiln	
1 and 3 Stack	Expression
Date/Time	Value
12/20/2023 11:17	76.82
and the second control of the second control	76.94
12/20/2023 11:18	
12/20/2023 11:19	76.88
12/20/2023 11:20	76.69
12/20/2023 11:21	77.26
12/20/2023 11:22	76.88
12/20/2023 11:23	77.26
12/20/2023 11:24	76.24
Start Run 3	7604
12/20/2023 11:25	76.24
12/20/2023 11:26	76.56
12/20/2023 11:27	77.13
12/20/2023 11:28	76.82
12/20/2023 11:29	76.62
12/20/2023 11:30	75.99
12/20/2023 11:31	77.07
12/20/2023 11:32	75.99
12/20/2023 11:33	77.45
12/20/2023 11:34	76.88
12/20/2023 11:35	76.50
12/20/2023 11:36	76.24
12/20/2023 11:37	76.62
12/20/2023 11:38	77.01.
12/20/2023 11:39	77.13
12/20/2023 11:40	76.82
12/20/2023 11:41	76.82
12/20/2023 11:42	76.56
12/20/2023 11:43	76.31
12/20/2023 11:44	76.37
12/20/2023 11:45	76.82
12/20/2023 11:46	77.96
12/20/2023 11:47	75.86
12/20/2023 11:48	76.62
12/20/2023 11:49	76.62
12/20/2023 11:50	77.39
12/20/2023 11:51	76,88
12/20/2023 11:52	76.94
12/20/2023 11:53	77.20
12/20/2023 11:54	77.64
12/20/2023 11:55	75.99
12/20/2023 11:56	76.69
12/20/2023 11:57	77.01

	Kiln: K3
Buzzi Unicem	Clinker
Stockertown PA Kiln	
1 and 3 Stack	Expression
Date/Time	Value
12/20/2023 11:58	76.69
12/20/2023 11:59	76.88
12/20/2023 12:00	76.18
12/20/2023 12:01	77.26
12/20/2023 12:02	76.88
12/20/2023 12:03	76.75
12/20/2023 12:04	77.77
12/20/2023 12:05	77.07
12/20/2023 12:06	76.56
12/20/2023 12:07	77.01
12/20/2023 12:08	76.94
12/20/2023 12:09	76.94
12/20/2023 12:10	77.13
12/20/2023 12:11	77.07
12/20/2023 12:12	76.50
12/20/2023 12:13	75.99
12/20/2023 12:14	77.20
12/20/2023 12:15	76.94
12/20/2023 12:16	77.71
12/20/2023 12:17	76.75
12/20/2023 12:18	76.18
12/20/2023 12:19	77.32
12/20/2023 12:20	76.94
12/20/2023 12:21	77.32
12/20/2023 12:22	76.31
12/20/2023 12:23	75.99
12/20/2023 12:24	76.94
12/20/2023 12:25	76.37
12/20/2023 12:26	76.82
12/20/2023 12:27	77.26
12/20/2023 12:28	76.31
12/20/2023 12:29	77.07
12/20/2023 12:30	76.82
12/20/2023 12:31	77.13
12/20/2023 12:32	76.69
12/20/2023 12:33	76.56
12/20/2023 12:34	76.62
Run 3 Average	76.79

Appendix E Calibration Documents

Pitot Tube Inspe	ection Sheet
------------------	--------------

Pitot Tube Inspection Sneet		
	Date	01/03/23
OLevel	Tube Assembly Level?	Yes
	Ports Damaged?	No
Bullseye Level	-10 deg < a1 < +10 deg	2
	-10 deg < a2 < +10 deg	1
	-5 deg < B1 < +5 deg	1
al	-5 deg < B2 < +5 deg	1
8 a2	Y (gamma)	1
	0 (theta)	1
	A (alpha)	0.951
B1	$Z = A (\sin y) < 0.125$ "?	yes
	W = A (sin 0) < 0.031"?	yes
B2	Pa =	0.475
\Rightarrow	Pb =	0.476
Y	Tube Diameter (Dt) =	0.376
	Pa = Pb +- 0.063"?	yes
	(1.05 x Dt)?	0.3948
	(1.50 x Dt)?	0.564
Pa A	(1.05 x Dt)< P < (1.50 x Dt)	? yes
Pb		
Eligible for Default Pitot Calibra	ation Factor (Cp = 0.84)?	Yes

Thermocouple Calibration

Type of Reference Thermometer?	Mercury	Date	01/03/23
Barometeric Pressure?	29.52	Ambient Temperature?	68

Source	Reference Temp, F	Thermocouple Temp, F	Absolute Temp Difference
cold air	37	38	-0.20%
medium air	215	215	0.00%
hot air	325	325	0.00%

Windtunnel Calibration

Pitot Reading	Reference (0.99)	5A S-Type Pitot	ેડ ે Cp % ∜ેડ્
ΔP_1	0.31	0.44	0.84
ΔP_2	0.31	0.43	0.85
ΔΡ3	0.31	0.43	0.85
	Average Pitot	Tube Calibration Factor>	0.85

Thermocouple Calibration Check (EPA ALT-011 Procedure), performed on 1/3/23

Source	Ref. Temp. F	Thermocouple Temp. F	± 2 deg F?
Ambient	68	66.9	Yes

Pitot Tu	be Insp	ection	Sheet
----------	---------	--------	-------

Pitot T	ube Inspection Sheet		
į		Date	01/03/23
	O Level	Tube Assembly Level?	Yes
		Ports Damaged?	No
	Bullseye Level	-10 deg < a1 < +10 deg	1
		-10 deg < a2 < +10 deg	2
		-5 deg < B1 < +5 deg	1
	al .	-5 deg < B2 < +5 deg	2
	8	Y (gamma)	1
A COURT OF THE COU		0 (theta)	1
		A (alpha)	0.94
	B1	$Z = A (\sin y) < 0.125$ "?	yes
		W = A (sin 0) < 0.031"?	yes
	B2	Pa =	0.47
		Pb =	0.47
	, in the second	Tube Diameter (Dt) =	0.376
a sa a control de la sa		Pa = Pb +- 0.063"?	yes
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		
		(1.05 x Dt)?	0.3948
		(1.50 x Dt)?	0.564
	Pa A Pb	(1.05 x Dt)< P < (1.50 x Dt)?	yes
	Eligible for Default Pitot Calibration	Factor (Cp = 0.84)?	Yes

Thermocouple Calibration

The indecouple datibliation			
Type of Reference Thermometer?	Mercury	Date	01/03/23
Barometeric Pressure?	29.52	Ambient Temperature?	69.9

Source	Reference Temp, F	Thermocouple Temp, F	Absolute Temp Difference
cold air	37	38	-0.20%
medium air	215	215	0.00%
hot air	325	324	0.13%

Windtunnel Calibration

Pitot Reading	Reference (0.99)	5B S-Type Pitot	Cp Cp
ΔΡ1	0.31	_0.44	0.84
ΔP_2	0.31	0.43	0.85
ΔP_3	0.31	0.44	0.84
	Average Pitot	Tube Calibration Factor>	0.84

Thermocouple Calibration Check (EPA ALT-011 Procedure), performed on 1/3/23

Thermocouple Cambration Check (EFA ALT-011 Procedure), personned on 1/3/23											
Source	Ref. Temp. F	Thermocouple Temp. F	±2 deg F?								
Ambient	69.9	69.4	Yes								

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

, t

ENVIRONMENTAL SUPPLY COMPANY

ality - Service - Reliability

- Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
 Record barometric pressure before and after calibration procedure.
- 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
 - necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record data and information in the CREEN cells, YELLOW cells are calculated.

						ΔH@						1,73	1.72			1.86	<u>4</u>			1.72	1.72						_
	IF Y VARIATION EXCEEDS 2.00%,	ORIFICE SHOULD BE RECALIBRATED	/	7	>	VARIATION (%)									-0.99				0.04				0.95				
	VARIATION EX	SHOULD BE R			(3)	>						0.995	0.998		0.997	1.006	1,008		1.007	1.016	1.016		1.016				
	ΥĦ	ORIFICE			(2)	Vcr (STD)					AVG =	5.5690	5.5690		AVG =	6.8654	6.8654		AVG =	8.7759	8.7759		AVG ==				AVG = [
					Ξ	V _m (STD)						5.5977	5.5791			6.8231	6.8138			8.6358	8.6391						
AVG (Pbar)	30.65				DGM ∆H	(in H ₂ O)						0.91	0.91			1.5	1.5			2.3	2.3						
FINAL	30.65			ELAPSED	TIME (MIN)	Ф						10.00	10.00			10.00	10.00			10.00	10.00						
INITIAL	30.65				DGM	AVG		0	0	0		57.5	09	0		63.75	67.25	0		70.25	72.25	0		0	0	0	
	(in Hg):			IL.	UTLET	FINAL						57	59			62	æ			29	69						
	BAROMETRIC PRESSURE (in Hg):			TEMPERATURES °F	DGM OUTLET	INITIAL FINAL						99	57			29	8			88	29						
	TRIC PR			EMPERA	DGM INLET	INITIAL FINAL						8	65			70	74			77	78						
	SAROME			_		INITIAL						22	8			2	8			72	75						
	w				AMBIENT							48	84			48	84			4	4						
	m5-14	14315			£	NET (Vm)		0.000	0.000	0.000		5.343	5.351	0.000		6.582	6.617	0.000		8.418	8.453	0.000		0.000	0.000	0.000	
	METER SERIAL #:	SET SERIAL #:			DGM READINGS (FT3)	FINAL						688.152	693.503			700.279	706.896			715.739	724.192						
	100 M	CRITICAL ORIFICE SET SERIAL #:			DG.	INITIAL						682.809	688.152			693.697	700.279			707.321	715.739						
		ß		TESTED	VACUUM	(in Hg)						18	18	8		18	18	18		48	18	8					
	12/14/23	m5-14		ŝ _×	FACTOR	(AVG)	-	0.3283				0.4094	0.4094	0.4094		0.5047	0.5047	0.5047	•	0.6426	0.6426	0.6426		0.8587			
	DATE	'ART#:	L			RUN#	L	l		n			- 7	ო		 -	1	₁		l	~	ო			7	<u>.</u> «	
		METER PART #:				ORIFICE #			12				1								ຊ				32		

88

젊

2 2

73 22

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr (std), and the DGM calibration factor, Y. These equations are automatically calculated in the

(1)
$$Vm_{vol.} = K_1 * Vm * \frac{Pbar + (\Delta H / 13.6)}{Tm}$$

1.006

AVERAGE DRY GAS METER CALIBRATION FACTOR, Y =

1.76

AVERAGE AH@ =

Jifference =
Absolute [
Avg

$$Y = \frac{V_{C\xi, ab}}{V_{M_{\xi, ab}}}$$

ල

 $Vcr_{coll} = K* Pbur * \Theta$

ন্ত

DGM calibration factor

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

ENVIRONMENTAL SUPPLY COMPANY

- 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
 - 2) Record barometric pressure before and after calibration procedure.
- 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet.
- Record data and information in the GREEN cells, YELLOW cells are calculated.

						ΔН						1.57	1.56			1.64	1.61			1.62	1.61						
	CEEDS 2.00%,	ECALIBRATED	_	*	>	VARIATION (%)									-0.39				90.0				0.32				
	IF Y VARIATION EXCEEDS 2.00%,	ORIFICE SHOULD BE RECALIBRATED			(3)	.>-						0.992	0.997		0.994	0.999	6.989		0.989	0.889	1.004		1.001				
	FY	ORIFICE			8	Ver (STD)					AVG =	5.4469	5.4469		AVG =	6.7214	6.7478		AVG =	8.5578	8.5915		AVG =				AVG =
					3	Vm (STD)				***************************************		5.4918	5,4640			6.7295	6.7554			8,5651	8.5601				••••		
AVG (Pour)	30.125				DGM ∆H	(in H ₂ O)						0.81	0.81			1.3	6.			2.1	2.1						l
FINAL	30.13			ELAPSED	TIME (MIN)	9						10.00	10.00			10.00	10.00			10.00	10.00						
INITIAL	30.12				DGM	AVG		0	0	0		61.25	65.75	0		67.5	72.5	0		72.25	72.5	0		0	0	0	
	n Hg):				TLET	FINAL						61	2			65	69			89	69						
	BAROMETRIC PRESSURE (in Hg):			TEMPERATURES *F	DGM OUTLET	INITIAL FINAL						61	æ			3	8			99	88						
	RIC PRI			MPER	NLET	INITIAL FINAL						62	70			72	76			78	78						
	AROMET			F	DGM INLET	INITIAL						64	99			8	92			76	75						
	0				AMBIENT							53	53			25	48			52	48						
	M5-17	14315			9	NET (Vm)		0.000	0.000	0.000		5.373	5.392	0.000		6.655	6.744	0.000		8.530	8.529	0.000		0.000	0.000	0.000	
_	METER SERIAL #:	SET SERIAL #:			DGM READINGS (FT3)	FINAL						864.468	875.174			882.018	930.302			914.812	923.341						
	MEI	CRITICAL ORIFICE SET SERIAL #:			DGN	INITIAL						859.095	869.782			875.363	923.558	*****		906.282	914.812						
		O		TESTED	VACUUM	(in Hg)						18	18			80	82			18	8						
	12/07/23	M5-17		¥	FACTOR	(AVG)		0.3283				0.4094	0.4094			0.5047	0.5047			0.6426	0.6426			0.8587			
L	DATE	'ART#:	Ĺ			RUN#	ı	-	7	₀		*	~			···	~~	د	L	τ-	7	က	·	-	~		
		METER PART #:				ORIFICE #			12				ن				<u></u>				23				32		

57

65

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr (std), and the DGM calibration factor, Y. These equations are automatically calculated in the

AVERAGE DRY GAS METER CALIBRATION FACTOR, Y =

0.998

@ 0 F @ 500 F @ 1000 F AVERAGE AH@ = 1.60 968 97 (per manufacturer procedure) Potentiometer Check, °F

Net volume of gas sample passed through DGM, corrected to standard conditions

Tn = Absolute DGM avg. temperature (°R - English, °K - Metnc) K₁ = 17,64 ^oR/m, Hg (English), 0.3858 ^oK/mm Hg (Metric)

 $Vm_{vol} = K_1 * Vm * \frac{Pbar + (\Delta H/13.6)}{}$ Ê

 $Vcr_{(v,t)} = K^{**} \frac{Pbar * \Theta}{t-}$

8

 $Y = \frac{Vc_{U,n,0}}{Vm_{cont}}$

ල

⇒ DGM calibration factor

= Volume of gas sample passed through the critical orifice, corrected to standard conditions T_{amb} = Absolute ambient temperature (°R - English, °K - Metric)

K' = Average K' factor from Critical Orifice Calibration

Avg Absolute Difference =

0.1%

Company: Buzzi Unicem; Stockertown PA Source: Kilns 1 and 3 Main Stack; Raw Mill Off Job ID: 23-3317 Train Type: M26A

M5-17 Average		0.988	0.971	1.73%
M5.14 Average		1.006	0.997	0.96%
M5-17 6B 12/20/23 1125-1235	43.81 548 29.7 1.4 1.6 30.872 1.18062183	0.988	0.949	3.96%
M5-14 6A 12/20/23 1125-1235	42.384 549.5 29.7 1.55 1.76 30.872 1.2418716	1.006	0.985	2.11%
M5-17 5B 12/20/23 1000-1109	43.5 544.4 29.7 1.48 1.6 30.9 1.21128378	0.988	0.977	1.15%
M5-14 5A 12/20/23 1000-1109	43.005 539.3 29.7 1.68 1.76 30.9 1.29099502	1.006	0.999	0.70%
M5-17 4B 12/20/23 833-943	43.933 532.1 29.7 1.57 1.6 30.868 1.25016276	0.988	0.987	0.09%
M5-14 4A 12/20/23 833-943	43.329 530.6 29.7 1.75 1.76 30.868 1.32109636	1.006	1.007	0.08%
Alt-009 Alternate Post Test Calibration Data	Vm Tm Pb Havg H@ Md (Havg)^0.5 Run Time, Min	Meter Gamma	Calculated Gamma (Yqa)	% difference from Actual Y

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number:

E04NI77E15A3796

EB0070764 Cylinder Volume:

Reference Number: 122-402389886-1

Cylinder Number: Laboratory:

124 - Durham (SAP) - NC

151.0 CF

PGVP Number:

Cylinder Pressure: 2015 PSIG

B22022

Valve Outlet:

590

Certification Date:

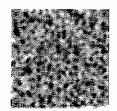
Mar 23, 2022

Gas Code:

CO,CO2,O2,BALN

Expiration Date: Mar 23, 2030

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.


Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

		ANALYTICAI	RESULTS		
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON MONOXIDE	65.00 PPM	62.51 PPM	G1	+/- 0.6% NIST Traceable	03/23/2022
CARBON DIOXIDE	10.00 %	10.14 %	G1	+/- 0.6% NIST Traceable	03/23/2022
OXYGEN	12.00 %	12.08 %	G1	+/- 0.4% NIST Traceable	03/23/2022
NITROGEN	Balance				

	CALIBRATION STANDARDS							
Type	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date			
NTRM	09010213	KAL004779	98.48 PPM CARBON MONOXIDE/NITROGEN	+/- 0.5%	Oct 16, 2024			
NTRM	19060402	6162642Y	11.105 % CARBON DIOXIDE/NITROGEN	+/- 0.6%	Dec 04, 2025			
NTRM	10010616	K014963	9.967 % OXYGEN/NITROGEN	+/- 0.3%	Apr 19, 2022			

i			
		ANALYTICAL EQUIPMENT	
	Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration
Ì	Horiba VA-5001 CO2 BF89GV17	Nondispersive Infrared (NDIR)	Mar 01, 2022
	Horiba VIA510 CO 1G46EA07	Nondispersive Infrared (NDIR)	Mar 09, 2022
	Siemens Oxymat 61 M3299 O2	Paramagnetic	Mar 01, 2022

Triad Data Available Upon Request

Approved for Release

Airgas Specialty Gases Airgas USA LLC 630 United Drive Durham, NC 27713 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number:

E04NI59E15A38X3

ALM-056015

Cylinder Number: Laboratory:

124 - Durham (SAP) - NC

PGVP Number: Gas Code:

B22022

CO,CO2,O2,BALN

Reference Number: 122-402389885-1A

Cylinder Volume: Cylinder Pressure:

143.7 CF 2016 PSIG

Valve Outlet:

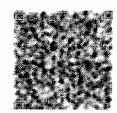
590

Certification Date:

Mar 28, 2022

Expiration Date: Mar 28, 2030

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.


Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

	ANALYTICAL RESULTS						
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates		
CARBON MONOXIDE	120.0 PPM	116.5 PPM	G1	+/- 0.3% NIST Traceable	03/28/2022		
CARBON DIOXIDE	18.00 %	18.17 %	G1	+/- 0.7% NIST Traceable	03/28/2022		
OXYGEN	22.00 %	21.90 %	G1	+/- 0.5% NIST Traceable	03/28/2022		
NITROGEN	Balance						

			CALIBRATION STANDARDS		
Type	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRM	13010207	KAL003102	246.9 PPM CARBON MONOXIDE/NITROGEN	+/- 0.2%	Oct 16, 2024
NTRM	12061508	CC354696	19.87 % CARBON DIOXIDE/NITROGEN	+/- 0.6%	Jan 11, 2024
NTRM	08010220	K013155	23.20 % OXYGEN/NITROGEN	+/- 0.4%	Jun 01, 2024

	ANALYTICAL EQUIPME	ENT
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration
Horiba VA-5001 CO2 BF89GV17	Nondispersive Infrared (NDIR)	Mar 01, 2022
Horiba VIA510 CO RS2EGL6K	Nondispersive Infrared (NDIR)	Mar 01, 2022
Siemens Oxymat 61 M3299 O2	Paramagnetic	Mar 01, 2022

Triad Data Available Upon Request

Approved for Release

Airgas Specialty Gases Airgas USA LLC 630 United Drive Durham, NC 27713 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Part Number:

X02NI99C15A54F5 CC426155

Reference Number: Cylinder Volume:

122-402705571-1

Cylinder Number: Laboratory:

124 - Durham (SAP) - NC

Cylinder Pressure: 2015 PSIG

144.0 CF

Analysis Date: Lot Number:

Mar 28, 2023 122-402705571-1 Valve Outlet:

350

Expiration Date: Mar 28, 2031

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS							
Component	Req Conc	Actual Concentration	Analytical				
		(Mole %)	Uncertainty				
ETHYLENE	75.00 PPM	75.47 PPM	+/- 2%				
NITROGEN	Balance						

Approved for Release

CERTIFICATE OF ACCURACY: GMACS-c Calibration Standard

CUSTOMER INFORMATION

IRGAS SPECIALTY GASES

Exploratory Products Group

6141 Easton Road

Plumsteadville, PA 18949

Work Order #: 160-402845897-1

Sales Order #: 1123601913

PO #: 7100179560

Customer: DEECO Inc.

Address 1: 3404 Lake Woodard Road

Address 2:

City / State / Zip: Raleigh, NC 27604

PRODUCT INFORMATION

COMPOSITION

Hydrogen Cyanide Sulfur Hexafluoride

Nitrogen

CONCENTRATION

49.9 PPM 5.0 PPM Balance

UNCERTAINTY (Abs)

2.3 PPM 0.07 PPM UNCERTAINTY (Rel)

4.6 %

1.3 %

CYLINDER #: CC768222

CYLINDER TYPE: 150A Aluminum

CGA: 350 SS

CYLINDER PRESSURE: 2000 psig

AIRGAS PART #: X03NI99C15AC0W8

CERTIFICATION DATE: 7-Sep-2023 EXPIRATION DATE: 7-Mar-2024

MIXTURE DEW POINT: N/A

CERTIFICATION DATA

BLENDING PROCESS: GravStat™ Gravimetry

CONCENTRATION

50.02 PPM

5.02 PPM

UNCERTAINTY (Abs)

0.9 PPM 0.07 PPM **UNCERTAINTY (Rel)**

1.8 % 1.3 %

CONFIRMING ANALYSIS: FTIR Spectroscopy

INSTRUMENT / MODEL: CAI Model 700 FTIR

COMPONENT

Hydrogen Cyanide

COMPONENT

Hydrogen Cyanide

Ifur Hexafluoride

CONCENTRATION 49.8 PPM

UNCERTAINTY (Abs)

2.1 PPM

UNCERTAINTY (Rel)

4.2 %

REFERENCE STANDARD: GMPS-c 50 PPM Hydrogen Cyanide

CYLINDER NUMBER: CC768196

EXPIRATION DATE: 2/29/2024

CONCENTRATION

UNCERTAINTY (Abs)

UNCERTAINTY (Rel)

Hydrogen Cyanide

COMPONENT

48.9 PPM

1.7 PPM

3.4 %

CALIBRATION CURVE DATA

Point-to-Point Matching Std

Curve Order

Correlation

Slope (X2)

Slope (X)

Intercept

Linear / Direct Ratio

N/A

N/A

N/A

N/A

INTERLOCK STATISTICS

CONCENTRATION

UNCERTAINTY (Abs) 0.9 PPM

UNCERTAINTY (Rel) 1.8 %

BLEND RESULT: ANALYSIS RESULT:

INTERLOCK RESULT:

50.02 PPM 49.8 PPM 49.9 PPM

2.1 PPM 2.3 PPM

4.2 % 4.6 %

COMMENTS / SPECIAL INSTRUCTIONS

A GMACS-c ("Candidate GMACS") is made and certified according to the EPA GMACS Procedure (Alt-114) found at: https://cfpub.epa.gov Do not use this standard if pressure is less than 200 psig.

ર્ડ. Do not use or store this product at or below the stated dew point.

APPROVED BY:	

Client: Buzzi Unicem Stockertown Test Location: Kiln 1 and 3 Stack

Date: Dec 19, 2023 Start Time: 10:02:06

Run number Stratification Check

One Minute Averages

	Reference	Plant
	O2	02
	%,dry	%,dry
10:03:04 AM	14.9	16.4
10:04:04 AM	14.8	16.4
10:05:04 AM	14.8	16.4
10:06:04 AM	14.9	16.4
10:07:04 AM	14.9	16.4
Point A	14.9	16.4
10:08:04 AM	14.9	16.5
10:09:04 AM	14.8	16.4
10:10:04 AM	14.9	16.3
10:11:04 AM	14.8	16.4
10:12:04 AM	14.9	16.4
Point B	14.9	16.4
10:13:04 AM	14.9	16.3
10:14:04 AM	14.8	16.4
10:15:04 AM	14.8	16.3
10:16:04 AM	14.8	16.2
10:17:04 AM	14.8	16.3
Point C	14.8	16.3

Buzzi Unicem	Kiln: O2 Raw
Stockertown PA Kiln	(PCT)
1 and 3 Stack	Raw
Date/Time	Value
12/19/2023 10:02	16.44
12/19/2023 10:03	16.40
12/19/2023 10:04	16.40
12/19/2023 10:05	16.36
12/19/2023 10:06	16.40
12/19/2023 10:07	16.46
12/19/2023 10:08	16.38
12/19/2023 10:09	16.27
12/19/2023 10:10	16.40
12/19/2023 10:11	16.36
12/19/2023 10:12	16.33
12/19/2023 10:13	16.40
12/19/2023 10:14	16.29
12/19/2023 10:15	16.23
12/19/2023 10:16	16.27
12/19/2023 10:17	16.29

Analysis Validation Report

Sample Filename: F:\Stockertown\Stockertown December 2023\December 19\SPC___155662.LAB

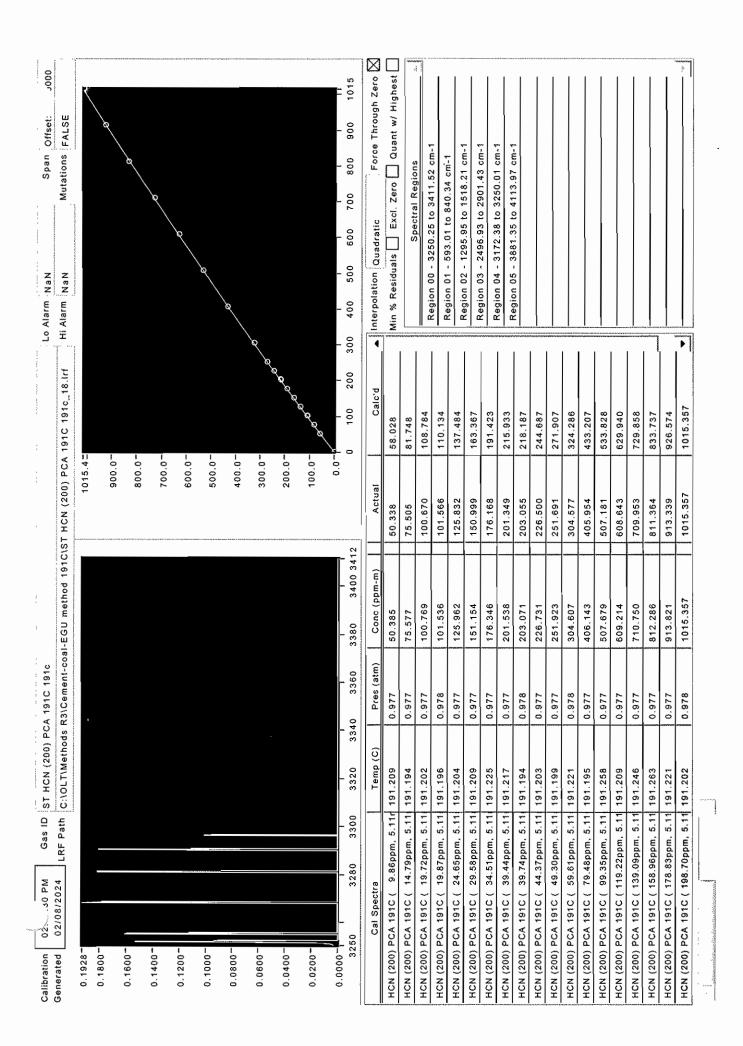
Filename for noise: F:\Midlothian on Renta\November 14\SPC_000837.LAB Interferences Filenames: C:\Midlothian on Renta\November 15\SPC_001464.LAB
C:\Midlothian on Renta\November 15\SPC_001465.LAB
C:\Midlothian on Renta\November 15\SPC_001466.LAB
C:\Midlothian on Renta\November 15\SPC_001466.LAB
C:\Midlothian on Renta\November 15\SPC_001466.LAB
C:\Midlothian on Renta\November 15\SPC_001467.LAB
C:\Midlothian on Renta\November 15\SPC_001469.LAB
C:\Midlothian on Renta\November 15\SPC_001469.LAB
C:\Midlothian on Renta\November 15\SPC_001469.LAB

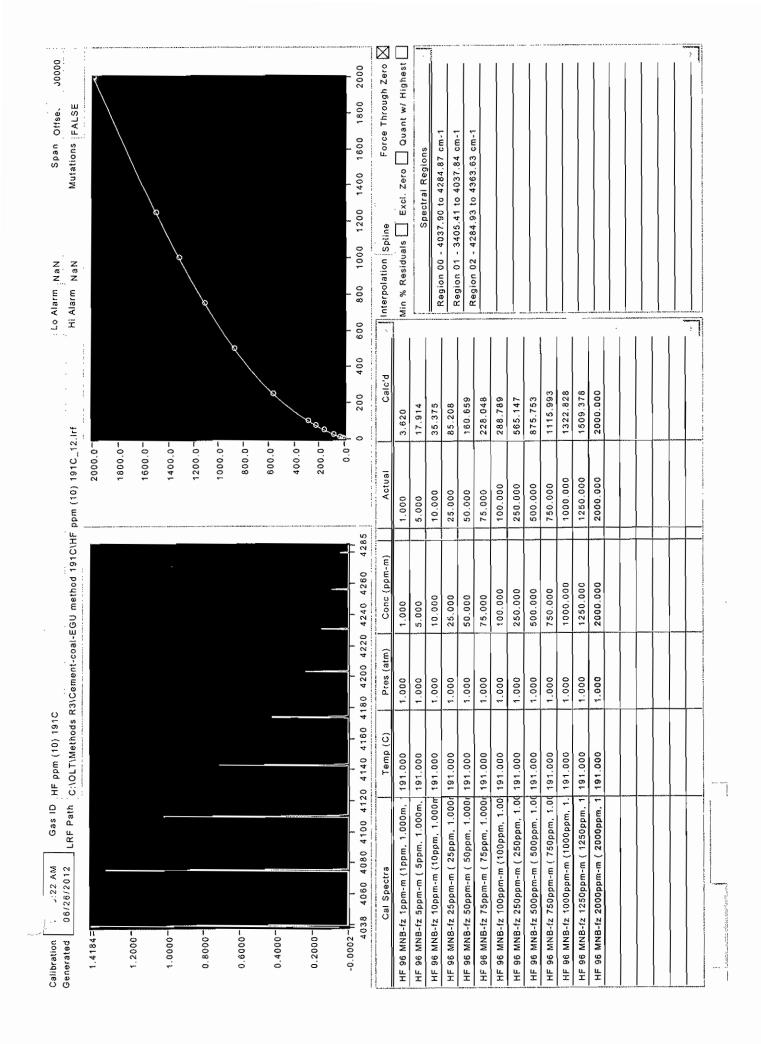
Recipe path: C:\OLT\recipes\Cement Testing R3.MGRCP

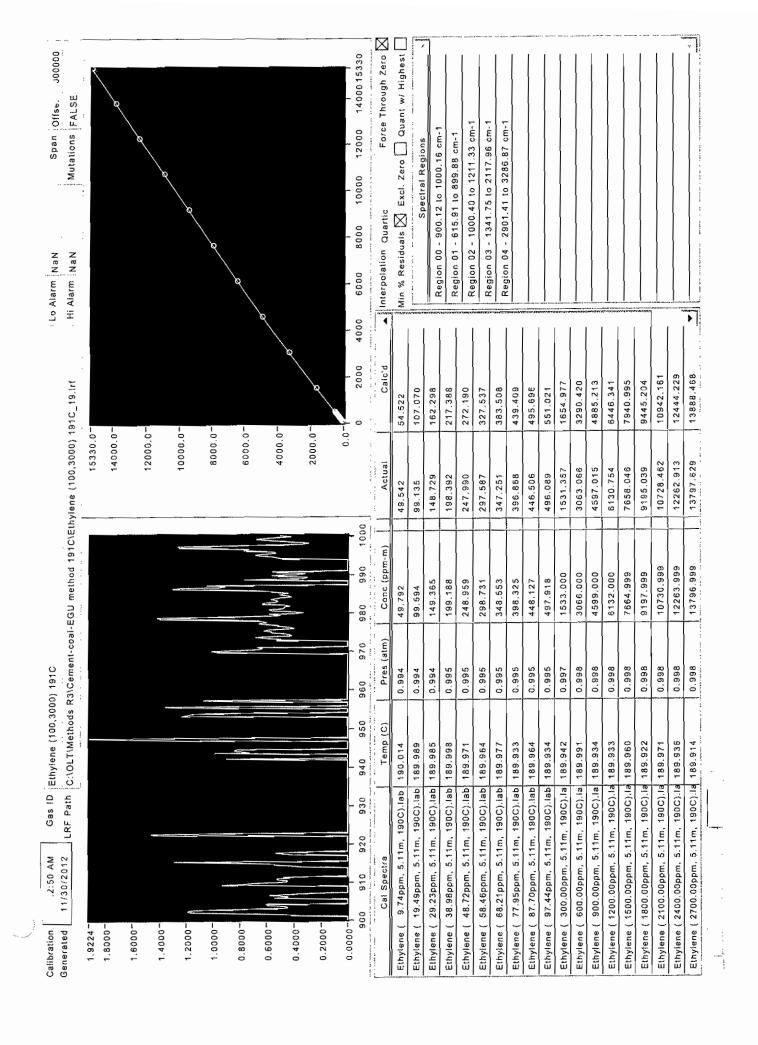
	7	7	7			7						7			7	겁	占	거			건	7	7		7	7	건	_C
Comment	Close to	Close to	Close to I	Good	Good	Close to	Good	Good	Good	Good	Good	Close to I	Check it!	Check it!	Close to	Close to	Close to I	Close to I	Good	Check it!	Close to I	Close to I	Close to [Check it!	Close to I	Close to I	Close to I	Close to I
Span		,			1	,			,	,	,	,	,	,			ι	,			ı	,	,	,	,		ı	1
Range 0-200	0-10	0-10	0-3000	0-40	0-40	0-100	0-1000	0-3000	0-300	0-200	0-1	0-70	0-1000	0-250	0-100	0-100	0-150	0-2000	0-300	0-3000	0-3000	0-1000	0-1000	0-100	0-200	0-20	0-10	0-150
Sigma	0.02		0.11			0.02	0.12	0.07	0.01		0	0.09	0.08	0.02	0.14	90.0	0.01	0.68	0.02	0.12	0.11	0.05	90.0	0.01	0.11	0.0	0.05	0.23
	0.02	•	0.75	'	'	0.01	0.42	0.23	0.11	•	0	0.04	0.35	0.01	0.3	0.02	0.01	1.78	0.02	0.09	0.27	90.0	0.3	0	0.22	0.25	0.03	0.44
~ CL ,	0.17	0.01	1.08	0.08 -	0.2 -	0.42	5.2	2.34	0.49	3.84 -	0	0.37	1.57	0.81	0.72	3.13	0.2	4.76	0.08	3.8	6.18	1.55	2.07	0.1	0.82	0.29	0.25	1.14
D.	0.07	,	1.08			90.0	0.79	0.45	0.15		0	0.33	0.59	90.0	0.72	0.19	0.05	3.81	0.07	0.44	0.61	0.21	0.49	0.02	0.54	0.29	0.17	1.14
ocu 0.37	0.37	0.02	1.72	0.15	0.15	1.01	2.76	3.82	1.24	9.46	0	0.68	2.21	2.96	0.79	7.7	0.24	7.16	0.13	9.3	12.06	2.24	2.92	0.17	1.13	0.14	0.44	0.35
FMU*R (0.13																												
AU 0.37	0.07	0	0.29	0.02	0.02	0.28	0.27	0.35	0.2	0.43	0	0.24	0.38	0.7	0.14	1.39	0.03	1.12	0.05	2.25	1.81	0.37	0.5	0.02	0.22	0.05	0.16	0.04
MDC1 M 0.31	0.04	0	0.17	0.01	0.01	0.15	0.14	0.26	0.12	0.2	0	0.2	0.35	0.26	0.12	0.68	0.02	0.88	0.04	1.19	1.	0.31	0.43	0.02	0.2	0.05	0.14	0.03
MDC2	0.05		0.33									0.28																
MDC3 N 0.11 -	0.2	0.02 -	0.99	0.07 -	0.11 -	0.55	1.45	2.78	0.73	4.67 -	0	0.56	2.03	1.12	0.67	3.79	0.23	5.62	0.12	4.93	7.32	1.84	2.5	0.12	1.01	0.13	0.38	0.32
Conc N 0.72	0	0	0.3	4.24	9.77	0.16	256.9	114.97	4.83	192.1	0.02	0.39	3.71	1.86	-0.48	-0.22	0.27	-0.59	0.99	5.54	2.89	0.15	0.57	0.16	0.18	0.1	-0.2	-4.36
Gas calibration Name ST HCN (200) PCA 191C 191C	HF PPM (10) 191C	SF6 (10) 191C	ETHYLENE (100,3000) 191C	H2O% (40) 191C	CO2% (40) 191C	HCL PPM (100) 191C	SO2 (1000) 191C	NO (350,3000) 191C	NH3 (300) 191C (10F2)	CO (500) 191C (10F2)	CO% (1) 191C (20F2)	FORMALDEHYDE (70) 191C	ACETALDEHYDE (1000) 191C	CH4 (250) 191C (10F2)	PROPANE (100) 191C	HBR (100) 180C	NO2 (150) 191C (10F2)	NO2 (2000) 191C (20F2)	N2O (100,200,300) 191C	NH3 (3000) 191C (20F2)	CH4 (3000) 191C (20F2)	ACETYLENE (1000) 191C	PROPYLENE (200,1000) 191C	COS (100) 150C	ETHANE (500) 191C	H2SO4 (50) 150C	MEOH (10) 191C	SO3 (150) 191C

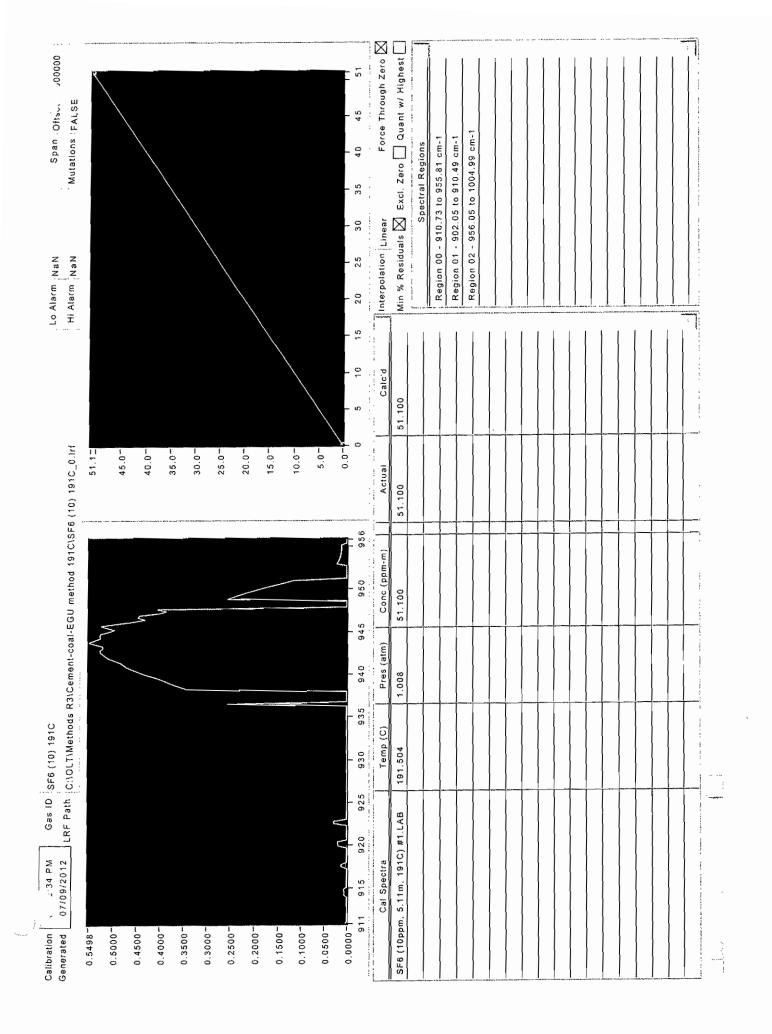
Analysis Validation Report

Sample Filename: F:\Stockertown\Stockertown December 2023\December 19\SPC___155663.LAB


Filename for noise: F:Midlothian on RentalNovember 14\SPC_000837.LAB Interferences Filenames: C:Midlothian on RentalNovember 15\SPC_001463.LAB C:Midlothian on RentalNovember 15\SPC_001465.LAB C:Midlothian on RentalNovember 15\SPC_001466.LAB C:Midlothian on RentalNovember 15\SPC_001466.LAB C:Midlothian on RentalNovember 15\SPC_001466.LAB C:Midlothian on RentalNovember 15\SPC_001467.LAB C:Midlothian on RentalNovember 15\SPC_001468.LAB C:Midlothian on RentalNovember 15\SPC_001469.LAB C:Midlothian on RentalNovember 15\SPC_001469.LAB C:Midlothian on RentalNovember 15\SPC_001469.LAB


Recipe path: C:\OLT\recipes\Cement Testing R3.MGRCP


Comment Good	Close to DL	Close to DL	Close to DL	Good	Good	Close to DL	Good	Good	Good	Good	Good	Close to DL	Check it!	Check it!	Close to Dt.	Close to DL	Close to DL	Close to DL	Good	Check it!	Close to DL	Close to DL	Close to DL	Check it!	Close to DL	Close to DL	Close to DL	Close to DL
Span	,	,	,	,	,	,	,	,		,	,	,	,	,	1		ı	,		,			,	,		ı	1	ı
Range 0-200	0-10	0-10	0-3000	0-40	0-40	0-100	0-1000	0-3000	0-300	0-200	0-1	0-70	0-1000	0-250	0-100	0-100	0-150	0-2000	0-300	0-3000	0-3000	0-1000	0-1000	0-100	0-200	020	0-10	0-150
Sigma -	0.02		0.11			0.02	0.12	0.07	0.01		0	0.09	0.08	0.02	0.14	90.0	0.01	0.68	0.02	0.12	0.11	0.05	0.06	0.01	0.11	0.01	0.05	0.23
Bias	0.02	'	0.75	'	'	0.01	0.42	0.23	0.11	'	0	0.04	0.35	0.01	0.3	0.05	0.01	1.78	0.05	0.09	0.27	90.0	0.3	0	0.22	0.25	0.03	0.44
, CL. ~	0.18	0.01 -	1.08	0.08 -	0.2 -	0.41	5.14	2.26	0.48	3.85 -	0	0.35	1.55	0.79	0.72	3.04	0.2	4.69	0.08	3.93	6.12	1.57	2.08	0.1	0.84	0.29	0.28	1.14
급.	0.07		1.08			90.0	0.79	0.45	0.15		0	0.33	0.59	90.0	0.72	0.19	0.05	3.81	0.07	0.44	0.61	0.21	0.49	0.02	0.54	0.29	0.17	1.14
0.37	0.38	0.02	1.74	0.15	0.15	0.98	2.76	3.76	1.23	9.55	0	99.0	2.19	2.89	0.8	7.52	0.24	7.08	0.15	9.58	11.96	2.26	2.94	0.17	1.15	0.14	0.48	0.34
FMU*R OC 0.13	0.38	0.05	1.74	0.15	0.15	0.98	2.76	3.76	1.23	9.55	0	99.0	2.19	2.89	0.8	7.52	0.24	7.08	0.15	9.58	11.96	2.26	2.94	0.17	1.15	0.14	0.48	0.34
AU 0.37	0.07	0	0.29	0.02	0.02	0.28	0.27	0.35	0.2	0.43	0	0.24	0.38	0.7	0.14	1.39	0.03	1.12	0.05	2.25	1.81	0.37	0.5	0.02	0.22	0.05	0.16	0.04
MDC1 M 0.31	0.04	0	0.17	0.01	0.01	0.15	0.14	0.26	0.12	0.2	0	0.2	0.35	0.26	0.12	0.68	0.02	0.88	0.04	1.19		0.31	0.43	0.05	0.2	0.05	0.14	0.03
)C2	0.05		0.33			0.05	0.37	0.22	0.03		0	0.28	0.23	0.05	0.42	0.17	0.04	2.03	0.05	0.35	0.34	0.15	0.19	0.02	0.32	0.04	0.14	0.7
MDC3 ME 0.11 -	0.21	0.01	4	0.07	0.11	0.54	1.45	2.75	0.73	4.71 -	0	0.55	2.01	7,	0.67	3.7	0.22	5.52	0.13	5.08	7.26	1.86	2.51	0.12	1.03	0.13	0.41	0.31
Conc N 0.68	-0.01	0	0.28	4.22	9.8	0.15	254.01	110.98	4.84	192.65	0.02	0.3	3.78	1.9	-0.47	-0.24	0.27	-0.63	1.04	6.03	2.9	0.1	0.69	0.16	0.21	0.08	-0.14	-4.16
Gas calibration Name ST HCN (200) PCA 191C 191C	HF PPM (10) 191C	SF6 (10) 191C	ETHYLENE (100,3000) 191C	H2O% (40) 191C	CO2% (40) 191C	HCL PPM (100) 191C	SO2 (1000) 191C	NO (350,3000) 191C	NH3 (300) 191C (10F2)	CO (500) 191C (10F2)	CO% (1) 191C (20F2)	FORMALDEHYDE (70) 191C	ACETALDEHYDE (1000) 191C	CH4 (250) 191C (10F2)	PROPANE (100) 191C	HBR (100) 180C	NO2 (150) 191C (10F2)	NO2 (2000) 191C (20F2)	N2O (100,200,300) 191C	NH3 (3000) 191C (2OF2)	CH4 (3000) 191C (20F2)	ACETYLENE (1000) 191C	PROPYLENE (200,1000) 191C	COS (100) 150C	ETHANE (500) 191C	H2SO4 (50) 150C	MEOH (10) 191C	SO3 (150) 191C


Buzzi Unicem; Stockertown PA
Kilns 1 and 3 Stack
Mill Off Run 3 HCN Analyte Spike
Spectrum Date Time
SPC__156299.LAB 12/20/23 12:35:50.096

SNR 2500 sBeam @ 2500 3014.157959 1.255054

Appendix F

Test Participants

Scott Steinsberger Project Manager and FTIR Operator

Dustin Carpenter Sampling Technician

Jeremy Rothenberg Sampling Technician

Antonio Pineda Buzzi Plant Contact

Appendix G RTR Sampling and Analytical Protocol

PROTOCOL TO PERFORM A SAMPLING AND ANALYTICAL TESTING PROGRAM AS PART OF THE US EPA RISK AND TECHNOLOGY REVIEW

at

Buzzi Unicem USA, Inc. Stockertown PA Facility 501 Center Avenue Stockertown, PA 18083

Submitted By: DEECO, INC. 3404 Lake Woodard Road Raleigh, NC 27604

October 11, 2023

Copy # 1

TABLE OF CONTENTS

Sec	tion_			<u>Page</u>			
1.0	INTROD	UCTIO]	N	. 1-1			
	1.1	SUMMARY OF TEST PROGRAM. 1-					
	1.2 PLANT NAME, ADDRESS, AND CONTACT						
	1.3						
	1.4						
	1.5						
	1.6	POLL	UTANTS TO BE MEASURED	. 1-2			
	1.7	EXPE	CTED TEST DATES	. 1-2			
	1.8	TEST	PROGRAM ORGANIZATION	. 1-2			
2.0	SOURCE	DESC	RIPTION	. 2-1			
	2.1		CESS DESCRIPTION				
	2.2	CONT	TROL EQUIPMENT DESCRIPTION	. 2-1			
3.0	TEST PR	ROGRA	M	. 3-1			
	3.1	OBJE	CTIVES	. 3-1			
	3.2		MATRIX				
	3.3	TEST	COORDINATION	. 3-2			
4.0	SAMPLI	NG LO	CATION DESCRIPTIONS	. 4-1			
	4.1		PLING LOCATION DESCRIPTION				
5.0	SAMPLI	NG AN	D ANALYTICAL PROCEDURES	. 5-1			
	5.1		METHODS.				
		5.1.1	SAMPLING POINT DETERMINATION - EPA METHOD 1				
		5.1.2	FLUE GAS VELOCITY AND VOLUMETRIC FLOW RATE -				
			METHOD 2.	. 5-1			
		5.1.3	OUTLET FLUE GAS COMPOSITION - EPA METHOD 3A	. 5-1			
			5.1.3.1 Calibration Gases	. 5-2			
			5.1.3.2 Sampling Procedures	. 5-2			
		5.1.4	FLUE GAS MOISTURE CONTENT - EPA METHOD 4				
		5.1.5	HYDROGEN FLUORIDE AND DIATOMIC CHLORINE - EPA MET	HOD			
			26A	. 5-3			
		5.1.6	HYDROGEN CYANIDE AND HYDROGEN FLUORIDE - EPA MET				
			320	. 5-5			
			5.1.6.1 Laboratory QA/QC Activities Before Field Test Program				
			5.1.6.2 QA/QCActivities During Field Test Program				

TABLE OF CONTENTS (continued)

6.0	QUALIT	Y ASSURANCE/QUALITY CONTROL ACTIVITIES 6-1
	6.1	QA/QC PROCEDURES
	6.2	SAMPLE IDENTIFICATION AND CUSTODY 6-2
7.0	SAMPLE	CUSTODY
	7.1	FIELD SAMPLING OPERATIONS
	7.2	ANALYTICAL OPERATIONS
8.0		AL QUALITY CONTROL CHECKS
	8.1	EQUIPMENT INSPECTION AND MAINTENANCE 8-1
	8.2	EQUIPMENT CALIBRATION 8-1
	8.3	SAMPLING QUALITY CONTROL PROCEDURES 8-3
	8.4	ANALYTICAL QUALITY CONTROL PROCEDURES 8-5
9.0	REPORT	ING AND DATA REDUCTION REQUIREMENTS
	9.1	DATA REPORTING9-1
	9.2	REPORT CONTENTS
	9.3	DATA REDUCTION
	9.4	DATA VALIDATION9-1
10.0) PLANT	ENTRY AND SAFETY
	10.1	SAFETY RESPONSIBILITIES
	10.2	SAFETY PROGRAM
	10.3	SAFETY REQUIREMENTS
		LIST OF TABLES
Tak	ole	Page
_	BLE 3-1	PROGRAM OUTLINE AND TENTATIVE TEST SCHEDULE FOR BUZZI
		UNICEM USA, INC, STOCKERTOWN, PA
TA	BLE 6-1	QA/QC PROCEDURES AND REQUIREMENTS 6-1
		LIST OF FIGURES
Fig	ure	Page
		ganizational Chart
		ckertown Process Schematic
_		nematic of Common Stack Sampling Location. 4-2

1.0 INTRODUCTION

1-1

October 11, 2023

1

Page:

Date:

Revision No:

1.1 SUMMARY OF TEST PROGRAM

The United States Environmental Protection Agency (US EPA) has directed the portland cement industry (SIC 3241) to conduct emissions testing as part of the US EPA Risk and Technology Review (RTR). This document provides the overall test program approach and specifies minimum sample collection procedures, data quality objectives, and quality assurance/quality control measures to be used by the source testing firms selected by the cement companies performing tests. The test program is designed to be a comprehensive and robust test of each facility. The quality assurance and quality control (QA/QC) measures are designed to produce standardized data having known precision and accuracy. Collection of accurate, representative, and standardized data for facilities with low emissions is necessary especially in view of MACT standard setting procedures.

Cement kiln pyro-processing systems located throughout the US are included in the RTR request. Individual facilities have a wide range of kiln system configurations and air pollution control (APC) trains. Site-specific considerations will be required to capture emissions profiles for the target analytes that represent the extent of control or possible emissions increases from these controls.

1.2 PLANT NAME, ADDRESS, AND CONTACT

Buzzi Unicem USA, Inc. Stockertown PA Facility 501 Center Avenue Stockertown, PA 18083

Antonio Pineda

Office: 610-882-5038 Mobile: 610-704-3592

E-Mail Antonio.Pineda@buzziunicemusa.com

1.3 PROCESS OF INTEREST

The Stockertown facility operates two dry-process, rotary kilns (Kiln 1 and Kiln 3). Kiln 1 is a Gepol Kiln and Kiln 3 has Preheater/Precalciner (PH/PC). The Kiln 1 and Kiln 3 exhausts are combined into a Common Stack. From the standpoint of emissions generation and release, the Stockertown kilns essentially operate as one. The intention is to conduct testing with both Kiln 1 and Kiln 3 in operation. However, in the event that Kiln 1 is temporarily idle due to market conditions, the test will proceed with only Kiln 3 in operation. This testing condition was confirmed to be acceptable by Brian Storey of the EPA on a conference call on October 11th, 2023.

1.4 AIR POLLUTION CONTROL EQUIPMENT

The Stockertown facility kiln has a Selective Non-Catalytic Reduction (SNCR) system for NO_x control, a Dry Sorbent Injection (DSI) system for acid gas control, and a bag house for Particulate Matter (PM) removal. The SNCR and DSI systems will be used under normal operating conditions.

Page:

Date:

Revision No:

1-2

October 11, 2023

1.5 EMISSION POINTS AND SAMPLING LOCATIONS

The Common Stack will be the only location sampled for the RTR program. Details of this sampling location are provided in Section 4.

1.6 POLLUTANTS TO BE MEASURED

Emission testing will be conducted for hydrogen cyanide (HCN), hydrogen fluoride (HF), and diatomic chlorine (Cl₂). Concurrent measurements to determine volumetric flow rate will be made. The sampling and analytical procedures to be followed are discussed in detail in Section 5.

1.7 EXPECTED TEST DATES

The test is currently scheduled for the week of December 18, 2023. A detailed test schedule is provided in Table 3-1.

1.8 TEST PROGRAM ORGANIZATION

The test program organizational chart is presented in Figure 1.1.

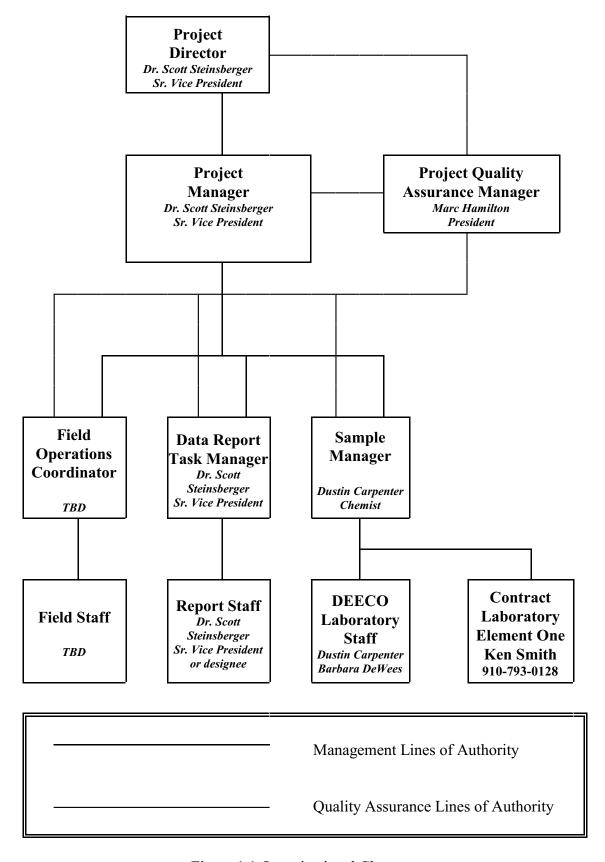


Figure 1.1 Organizational Chart

2.0 SOURCE DESCRIPTION

2-1

October 11, 2023

Page:

Date:

Revision No:

2.1 PROCESS DESCRIPTION

Buzzi Unicem's Stockertown plant operates two dry-process, rotary kilns (Kiln 1 and Kiln 3) to produce portland cement at their facility in Stockertown, PA.

Raw feed from the kiln feed silos provides a common feed source to both kilns, and coal/coke from the fuel storage bin provides a common fuel source. Kiln feed is introduced to the top of Kiln 1's vertical shaft and at the top of Kiln 3's preheater tower. Fuel is introduced at the burning zone or discharge end of the rotary kilns. Fuel is also introduced in to the vertical shaft of Kiln 1 and at the calciner burner located toward to bottom of the preheater tower of Kiln 3. All alternative fuels are introduced in the vertical shaft of Kiln 1 and the calciner burner of Kiln 3. Exhaust gases from the kilns are drafted into a common duct with an induced-draft fan and ultimately vent to a single baghouse. From the standpoint of emissions generation and release, the Stockertown kilns essentially operate as one.

The raw mill at the facility is an in-line mill (as defined in 40 CFR 63.1341) since a portion of the exhaust gases from the kiln system is used for processing raw materials in the mill. In the mill, raw materials are combined and ground. Kiln exhaust gas is used to dry the materials during grinding, which provides for greater fuel efficiency in the kiln system. Prepared kiln feed is stored in silos until fed to the kiln system.

2.2 CONTROL EQUIPMENT DESCRIPTION

Stack gases from the kiln systems are mainly composed of combustion products, carbon dioxide from calcination, excess air, and particulate matter. To remove the PM, exhaust gases from the kilns are routed through a fabric filter dust collector (i.e., the main baghouse). Once cleaned, the exhaust gases from the baghouse discharge to the atmosphere through a single exhaust stack.

A schematic of the Stockertown process, including control equipment is shown below in Figure 2.1.

Page: 2-2 Revision No: 1 Date: October 1?, 2023

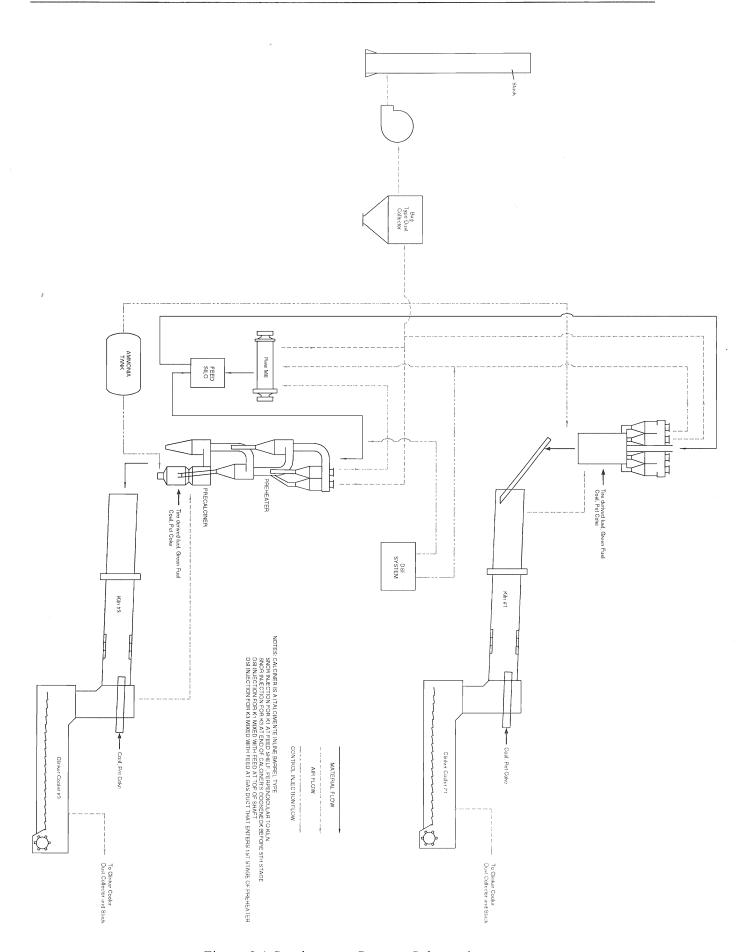


Figure 2.1 Stockertown Process Schematic

3.0 TEST PROGRAM

3-1

October 11, 2023

1

Page:

Date:

Revision No:

3.1 OBJECTIVES

An air emissions sampling and analytical program will be conducted on the Kilns 1 and 3 Common Stack at the Buzzi Unicem USA Inc. cement facility located in Stockertown, PA. All testing will be performed following accepted EPA methodology. The test program is to provide a standardized data set to the EPA and the cement industry so that reliable facility inter-comparisons of emissions can be made.

All testing will be performed in strict accordance with specifications stipulated in 40 CFR 60, Appendix A for flow rate following EPA Method 1, 2, 3A, and 4 and hydrogen fluoride (HF) and diatomic chlorine (Cl₂) following EPA Method 26A and in 40 CFR 63, Appendix A for hydrogen cyanide (HCN) and (HF) following EPA Method 320. All sampling runs will be one hour long.

The source emission test will be performed the week of January 1, 2024. Testing will be conducted under representative process and control system operating conditions. This facility has an inline raw mill and testing will be performed while operating in the "Mill On" and "Mill Off" conditions.

3.2 TEST MATRIX

Table 3-1 presents the sampling and analytical matrix and proposed test schedule.

TABLE 3-1 PROGRAM OUTLINE AND TENTATIVE TEST SCHEDULE FOR BUZZI UNICEM USA, INC, STOCKERTOWN, PA.

UNICEM USA, INC, STOCKERTOWN, PA.						
Sampling Location	No. of runs	Sample/Type Pollutant	Sampling Method	Sample Run Times (min)	Analytical Method	Analytical Laboratory
Day 1						
Stack	Arrive on-site and set up test equipment					
Day 2 (Raw Mill On or Off, depending on production)						
Stack	3	O ₂ /CO ₂	EPA Method 3A	60	Paramagnetic (O2) NDIR (CO2)	DEECO
	3	HF and Cl ₂	EPA Method 26A ¹	60	Ion Chromatograph	Element One
	3	HCN and HF	EPA Method 320	60	FTIR (Method 320)	DEECO
Day 3 (Raw Mill On or Off, depending on production)						
Stack	3	O ₂ /CO ₂	EPA Method 3A	60	Paramagnetic (O2) NDIR (CO2)	DEECO
	3	HF and Cl ₂	EPA Method 26A ¹	60	Ion Chromatograph	Element One
	3	HCN and HF	EPA Method 320	60	FTIR (Method 320)	DEECO
Day 4 Contingency Day/Demobilization						

¹ Stack gas flow rate and moisture measurement may be taken from concurrent Method 26A isokinetic sampling trains.

3.3 TEST COORDINATION

Mr. Antonio Pineda the Stockertown facility contact, will serve as the test coordinator and will be responsible for:

3-2

October 11, 2023

Page:

Date:

Revision No:

- 1. Scheduling the start of all testing
- 2. Principal contact with the agency officials concerning the tests
- 3. Principal contact with DEECO concerning the tests
- 4. Recording the process data during the testing
- 5. Providing copies of any field test data to the agency

If there is a temporary equipment malfunction in the middle of a test, radio contact will be made with the test crew in order to delay the test. When problems have been corrected, the test will continue from the point where it was delayed. If the malfunction or upset condition results in an extended test delay, then the affected test run(s) may be aborted and a new run(s) conducted when the malfunction has been corrected or process upset cleared. Any samples or field data from aborted runs may be discarded.

4.0 SAMPLING LOCATION DESCRIPTIONS

Page:

Date:

Revision No:

4-1

October 11, 2023

4.1 SAMPLING LOCATION DESCRIPTION

The measurement site for the Kiln 1 and 3 Systems common stack is located in a vertically-oriented round duct. The duct has an inside diameter of 131". The nearest upstream disturbance is a duct breaching (from the ID fan) located about 121 feet (~11 diameters) from the sampling ports. The nearest downstream disturbance is the stack outlet at about 94 feet (~8.5 diameters) from the sampling ports.

This sampling location meets the minimum specifications for selection of a measurement site as outlined in EPA Method 1. Four (4) test ports are located at equidistant positions (every 90°) around the duct. A schematic of the stack sampling location is shown in Figure 4.1. Cyclonic flow checks, as described in EPA Method 1 Section 2.4, using the Type-S pitot null procedure and angle measurements will be conducted at the Kiln 1 and 3 Systems stack test location.

For the Kiln 1 and 3 Systems stack, a total of 12 velocity/isokinetic traverse points will be used, with three points on each of the four ports. An S-type pitot tube is used in accordance with EPA Method 2 to measure the flue gas velocity. Gas temperatures are measured using calibrated Type K thermocouples and digital readout devices. These measurements are performed in accordance with the procedures in EPA Methods 2, 5, and 26A.

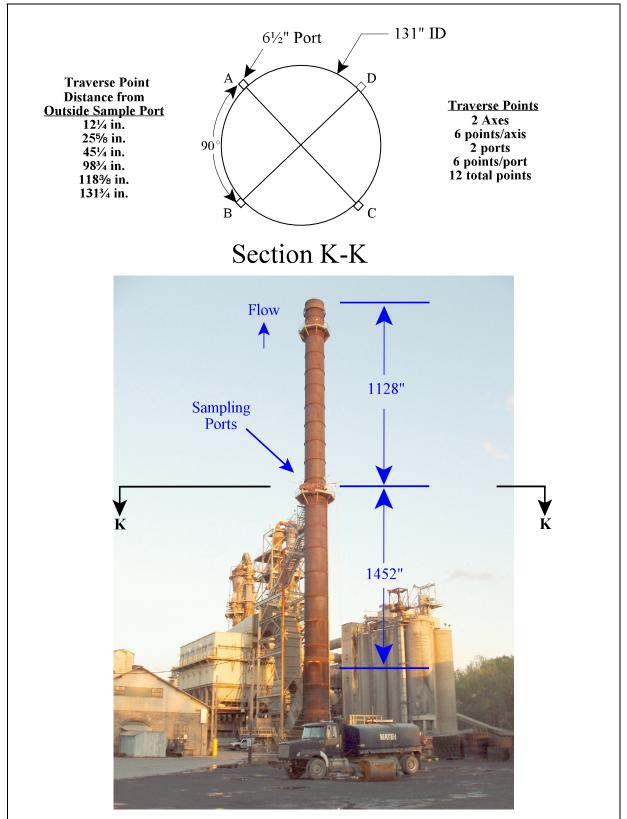


Figure 4.1 Schematic of Common Stack Sampling Location

5.0 SAMPLING AND ANALYTICAL PROCEDURES

Page:

Date:

Revision No:

5-1

October 11, 2023

This section contains a brief description of the sampling and analytical procedures for each method that will be employed during the test program. All equipment, procedures, and quality assurance measures necessary for completion of the test program will meet or exceed the specifications of the appropriate methods. Any deviations from the methods to ensure quality representativeness of the results are also discussed.

5.1 TEST METHODS

The methods for the test program are described below, and apply to all process operating conditions (e.g. where there is an inline raw mill, testing will be performed while operating in the "Mill On" and "Mill Off" conditions). Table 3-1 outlines expected operating conditions for this test.

5.1.1 SAMPLING POINT DETERMINATION - EPA METHOD 1

The number and location of the sampling or traverse points will be determined according to the procedures outlined in EPA Method 1. The sample location will be inspected to insure EPA Method 1 criteria is met. All points will be at least 1.0 inches from the stack wall, per Method 1.

5.1.2 FLUE GAS VELOCITY AND VOLUMETRIC FLOW RATE - EPA METHOD 2

The flue gas velocity and volumetric flow rate will be determined according to the procedures outlined in EPA Method 2. Velocity measurements will be made using type S pitot tubes conforming to the calibration specifications outlined in EPA Method 2, Section 10.1. Each Type-S pitot tube, calibrated according to these standards, will have an assigned coefficient. Differential pressures will be measured with Magnehelic gauges of appropriate range or with fluid manometers. Effluent gas temperatures will be measured with chromel-alumel thermocouples equipped with digital readouts.

5.1.3 OUTLET FLUE GAS COMPOSITION - EPA METHOD 3A

Outlet flue gas analysis for oxygen (O_2) and carbon dioxide (CO_2) concentrations, and the calculation of percent excess air and flue gas dry molecular weight will be performed in accordance with EPA Method 3A.

To evaluate the sampling location and points for FTIR and O_2 sampling, a three-point O_2 concentration stratification test on a line passing through the centroidal area at 16.7, 50.0 and 83.3 percent of the measurement line (or for stacks is greater than 2.4 meters (7.8 ft) at 0.4, 1.2 and 2.0 meters from the stack or duct wall). The procedures in Section 8.1.2 of Method 7E will be followed, but oxygen will be used as parameter as allowed by fourth sentence in Section 8.1.2. The plant O_2 CEMS as a control. A criteria of <5% variation from combined mean for each point will be used as indication of non-stratification and allowing single point sampling at the point closest to the mean. Otherwise, sampling for equal periods at the three test points during test run will be conducted.

Per EPA Method 3A for determining molecular weight, integrated sampling will be obtain using the Method 320 sampling system described in Section 5.1.6.

A portion of the hot, wet gas sample will be sent through a condensing system to remove the

stack moisture, A portion of the moisture-free gas sample will be snt to a CAI Model 200 O₂ (or equivalent) analyzer measures using the paramagnetic technique. An oxygen molecule, because of its sp3 electron orbital distribution, has an unpaired electron and hence displays a magnetic orientation. Since other elements that display this magnetic phenomenon are not common gasses

Page:

Revision No:

5-2

Calibration procedures will be performed in accordance with EPA methodology. Analyzers will be calibrated before and after each test and a calibration check between each test run.

at normal temperatures, the paramagnetic measurement technique is virtually specific for oxygen. The sample gas flows through a detection cell located in a very strong magnetic field. The concentration of O_2 gas present induces a pressure differential in the detector cell. The amount of

The pretest calibrations will consist of the following steps:

- Internal (direct) calibration of each analyzer to adjust calibration and check linearity.
- External (through the entire sampling system) calibration to check the system bias on zero and span gases.

The post test calibration will consist of an external system bias calibration check.

differential pressure is proportional to the concentration of O₂ gas present.

The analyzer will be as calibrated using a certified zero and span (mid or high range) gas. Zero and span gases were directed to each analyzer through the appropriate plumbing, the calibration gas flow rates will be adjusted to the correct flow rate and the analyzer will be adjusted with the appropriate span pot.

After the analyzer is properly adjusted the linearity will be checked using a low and high range calibration gas. The maximum allowable limit for linearity is 2% of the analyzer range. All analyzers will be shown to be linear within these limits before proceding.

The external calibration bias check will be performed by placing the CEM system in sampling mode and injecting a zero and span gas into the sample line at the probe exit. This check shows if there is any sampling system related bias, and also checks the integrity of the sample line.

<u>5.1.3.1 Calibration Gases-DEECO</u> will use EPA Protocol and/or $\pm 2\%$ NIST Traceable gases for calibration as required by the various reference methods employed in this test program. Calibration gases will be selected from previous experience with similar sources and/or from information obtained from the facility engineer prior to sampling. In some cases if the gases that are selected are out of the optimum range of operation then no significant impact of data quality is expected due to the linear nature of the analyzers that were used.

Audit gases, if available from a federal or a state agency, will be analyzed.

<u>5.1.3.2 Sampling Procedures</u>-At the completion of the pretest calibration routine, the CEM system will be ready for operation. No further adjustments of sample flow rates, analyzer zero or span adjustments, or other critical CEM operating parameters will be made until testing and post test calibration were complete.

Each sampling run will be one hour. At the completion for each test run, calibration gases

Page: 5-3 Revision No: 1 Date: October 11, 2023

will be used to check between test runs. A zero and the upscale calibration gas closest to the actual emission concentrations will be used for the pretest and post test calibrations.

5.1.4 FLUE GAS MOISTURE CONTENT - EPA METHOD 4

The flue gas moisture content will be determined in conjunction with the EPA Method 26A trains according to the sampling and analytical procedures outlined in EPA Method 4. (NOTE: In order to maintain isokinetic sampling, the sampling rate used may be required to temporarily exceed the EPA Method 4-specified maximum sampling rate of 0.75 CFM, based on observed stack gas pitot readings.) The impingers will be connected in series and will contain reagents as described below. The impingers will be contained in an ice bath in order to assure condensation of the moisture in the flue gas stream. Any moisture that is not condensed in the impingers is captured in the silica gel, therefore all moisture can be weighed and entered into moisture content calculations.

5.1.5 HYDROGEN FLUORIDE AND DIATOMIC CHLORINE - EPA METHOD 26A

Sampling and analytical procedures will be similar to those outlined in EPA Method 26A to determine primarily diatomic chlorine (Cl_2) emissions and hydrogen fluoride (HF) emissions at main stack outlet sampling locations. Duplicate simultaneous trains (a.k.a "paired trains") for each test run will be used to determine precision.

Sample is collected through a heated glass probe, followed by a heated quartz fiber filter, where stack gas HF and Cl₂ are collected in a series of chilled impingers. The sampling train impingers will contain 50 ml of 0.1N sulfuric acid in the first impinger (optional should high moisture warrant a modified short stem), 100 ml of 0.1N sulfuric acid in the second and third, a fourth empty impinger, 100 ml of 0.1N NaOH in the fifth and sixth and 200 grams of silica gel in the last impinger. (**NOTE**: For plants with scrubbers, the optional cyclone may be used since the gas stream may be saturated with moisture.)

Sampling will be conducted isokinetically ($\pm 10\%$) with readings of flue gas parameters recorded at traverse points selected according to EPA Method 1. Leak-checks on the Method 26A sampling train will be are performed before and after each sampling run and optionally for any port change. In the event that any portion of the train needed to be disassembled and reassembled (i.e., due to filter or resin changes), leak-checks are performed. The sampling train leak-checks and leakage rate (where applicable) are documented on the field test data sheet for each respective run. All leak checks will be acceptable.

The glass button hook nozzle and probe liner will be constructed of borosilicate glass or quartz. The filter holder will be constructed of borosilicate glass with a Teflon frit filter support and a sealing gasket. A heated quartz fiber filter, for sources above 210°C, or PTFE-bonded glass fiber filter will be used. The probe and filter housing will heated to above 248°F and not exceed an upper boundary of 273°F. Probe liners and filter holders will be cleaned thoroughly prior to testing.

The Method 26A trains will be operated isokinetically for a minimum of 60 minutes and collect a minimum of 1 dry, standard cubic meter (DSCM). Pretest preparations, preliminary determinations, and leak check procedures will be those outlined in EPA Method 5.

After completion of sampling the train will be leak checked and transferred to the sample recovery trailer. All leak checks will be acceptable. The impingers will be weighed to determine

Revision No: 1
Date: October 11, 2023

5-4

Page:

moisture gain in accordance with EPA Method 4.

Sample recovery will involve quantitative recovery of the sulfuric acid impinger contents and the NaOH impinger contents into separate tare-weighed, precleaned polyethylene sample containers. The nozzle, probe, filter and filter housing will not be recovered.

The contents of sulfuric acid impingers, including the contents if any of the empty (2^{nd} knockout or fourth) impinger will be quantitatively transferred to the tare-weighed, precleaned polyethylene sample container, followed by three rinses with deionized (DI) water of the impingers and all connecting glassware (including the connecting glassware to the first impinger) placed in the same H_2SO_4 container. The container will be labeled and weighed to determine the final sample volume. The liquid level will be marked on the sample container.

The contents NaOH impingers will be quantitatively transferred to a second tare-weighed, precleaned polyethylene sample container, followed by three rinses with DI water of the impingers and all connecting glassware placed in the same NaOH container. The container will be labeled and weighed to determine the final sample volume. The liquid level will be marked on the sample container

Sample recovery from each train will include:

- 1. Container No. 1 Contents 1st knockout, H₂SO₄ impingers, and 2nd knockout and, and DI rinse of impingers and connecting glassware; and
- 2. Container No. 2 Contents NaOH impingers, and DI rinse of impingers and connecting glassware.

Additional quality control consists of collecting and analyzing a field blank train for every three test runs. The blank train is to be assembled from a used train, leak checked and sit for a period equal to the sampling time (i.e, 1-hr). The blank train data will be used to determine the method detection limit for the test program target analytes (ie. The lowest number that could be detected), and compared to stack emissions.

Reagent blanks of $0.1 \text{ N} \text{ H}_2\text{SO}_4$, 0.1 N NaOH, and DI water will be collected and archived for later analysis should there be any issues with the field blank train samples

The H_2SO_4 impinger solutions will be analyzed using ion chromatography techniques for fluoride ions (F) (EPA SW-9057). Duplicate analyses will be performed on the samples and a reagent blank. Precision will be demonstrated by duplicate injection of each sample, the results of each individual analysis must be within 5% of their mean to be acceptable. If the precision criteria is not met, analysis of the sample is repeated until consecutive injections meet the criteria.

The NaOH impinger solutions will be treated with sodium thiosulfate to ensure complete conversion of hypochlorous acid (HClO) to chloride ions (Cl⁻). The resulting solution will be analyzed using ion chromatography techniques for chloride ions (EPA SW-9057). Duplicate analyses will be performed on the samples and a reagent blank. Precision will be demonstrated by duplicate injection of each sample, the results of each individual analysis must be within 5% of their mean to be acceptable. If the precision criteria is not met, analysis of the sample is repeated until consecutive injections meet the criteria.

Date: October 11, 2023

Revision No:

5-5

Page:

All EPA Method 26A $\rm HF/Cl_2$ samples will be analyzed by Element One of Wilmington NC. Refer to Section 1, Figure 1.1 for contact information.

The relative deviation (RD)will be calculated as described in EPA Method 30B between the Cl₂ concentrations measured with the paired trains.

5.1.6 HYDROGEN CYANIDE AND HYDROGEN FLUORIDE - EPA METHOD 320

EPA Method 320 will be performed to determine emissions of concentrations of HCN and HF. Three, 1-hour sampling runs will be conducted under representative process and control system operating conditions.

The gas sample will be extracted from the stack through a glass-lined probe and filter heated to 375° F. For external calibration checks and analyte spikes, the gases will be introduced in front of the heated filter. Any excess calibration gas will be diverted through the sample probes into the source. Outflow of gas from the heated filter enclosure was transported through a Teflon sample line heated to 375° F. For this source approximately 100' of sample line will be required. The heated sample line will be connected directly to the FTIR sample cell. Using heat-traced Teflon tubing the exit of the FTIR cell will be connected to a sample pump with a heated stainless steel pump head. The pump discharge will be directed to a proprietary chiller-type gas conditioner to remove moisture prior to delivery sample gas to the O_2/CO_2 monitors.

The distribution of the gas sample to the monitors will be accomplished using a panel equipped with valves and rotometers. The gas sample was then divided and directed to the analyzers.

FTIR sample cell will be maintained at 191°C and connected to a MKS Instruments Multigas 2030 Fourier Transform Infrared Spectrometer and Detector.

The FTIR spectrometer will measure vapor phase organic or inorganic compounds which absorb energy in the mid-infrared spectral region, about 400 to 4000 cm $^{-1}$ (25 to 2.5 μ m). Continuous measurement will be made by matching sample absorbance bands with bands in reference spectra, and comparing sample band intensities with reference band intensities.

The principle limitation to FTIR spectroscopy are the presence of interfering compounds that also absorb energy in the mid-infrared spectral region. In a cement kiln stack gas matrix, water vapor (H_2O) and carbon dioxide (CO_2) are the primary interferents that must be incorporated into the identification and quantitation method.

The FTIR software performs the computation for a single compound by subtracting all the other compounds (interferants and target) from the absorbance spectra and quantifies the single compound based on the remain absorbance. The FTIR software provides a Standard Error Calculation (SEC) value that is an indication of how well the identification and quantitation has been performed. A high SEC indicates that other interferants have not been accounted for in the analysis method, and a low SEC is indicative of greater confidence measurement.

The instrument is operated with a resolution of 0.5 cm⁻¹ with 4x zero filling. Beer-Norton Medium apodization is used with amplitude phase correction.

For this RTR test program, following specific QA/QC activities for EPA Method 320 will be performed and criterium met.

5.1.6.1 Laboratory QA/QC Activities Before Field Test Program- Before field testing occurs, the following QA/QC activities will be conducted;

Page:

Date:

Revision No:

5-6

October 11, 2023

- Seven consecutive samples of dry nitrogen <u>through the sampling system</u> will be acquired and used to calculate the standard deviation for each of the test program target analytes multiplied by a factor of 3. These data will be considered representative of detection limits for this test program and are to be compared to the 0.5 ppm required DL;
- 2) From these seven dry nitrogen samples, the results for the Signal-to-Noise Ratio (SNR) @ 2500 cm⁻¹ should be >2500, at 64 scans and the results for single beam intensity @ 2500 cm⁻¹ should be >0.9; and
- Upon receipt of HCN calibration gases a direct analysis will be performed to verify FTIR response agrees with tag value within 5%. Analysis results will be reported to PCA to assess need for modified reference spectra and/or change to direct analysis criterion:

<u>5.1.6.2 QA/QCActivities During Field Test Program</u>- During the field test program, following QA/QC activities will be performed and criterium met;

- 1) On each test day prior to any testing, an instrument background will be collected using dry nitrogen directed to the gas cell. The background will be collected with at least 128 scans;
- 2) The probe, filter, sample line and all sample system components in contact with effluent will be maintained at or above 375°F or 191°C (consistent with FTIR calibration temperature) to avoid any possible "cold spots;"
- 3) Heated sample lines will be ≤100 feet wherever possible, and not longer than 200 feet, without prior approval for unusual test circumstances;
- A system zero with all sampling system components at operating temperature will be performed by injecting nitrogen at the sample probe and through sample filter and entire measurement system. After zero equilibration has been achieved, all measurement components will be quantified for at least 128 scans;
- 5) Ambient air will be sampled until equilibration of the measurement system has been achieved and all measurement components will be quantify for at least 128 scans;
- The sample probe will be position at effluent measurement point and sampling will continue until equilibration of the measurement system has been achieved. At this point, the effluent concentrations will be quantified with two consecutive 64-scan samples as the initial native concentration for the dynamic spike;
- Analyte spiking will be conducted for HCN before the first test run, and after each successive test run for a minimum of 4 spikes per test condition. (Additional spikes would be required before and after corrective action for the sampling or analysis system and/or before and after removing the sampling system from the stack.) These results will determine accuracy;
- 8) The spike gas injections will be maintained at 10% or less of total sample volume. The spike gas concentration and flow rate will be selected to approximately double the native effluent concentration, or the spike will be conducted to add 3-4 ppm to native concentration, whichever results in greater spiked concentration. Spike recovery results will be within $\pm 20\%$ of the expected value or ± 0.5 ppm, whichever is least restrictive. (Specific HCN gases will be manufactured for this test program in the range of 50-100 ppm to provide spikes in the 5-10 ppm range, or lower. An SF₆ or appropriate tracer will be used to calculate the exact spike gas dilution ratio of 10% or less;)
- 9) After the dynamic spike, nitrogen will be sent through the sampling system until all traces

of spike gas are removed and lines are proven below DL for target analytes;

10) The nitrogen purge will be discontinued and the sampling system will be allowed to equilibrate with stack gas before starting a test run. The first two consecutive 64-scan samples of a sample run will be used for the final native concentration. Residual results for HCN and HF will be verified to be less than 0.2-0.3 ppm for data acceptance, or less than 5% of the measured value, whichever is least restrictive. Calculate the standard deviation for each of the test program target analytes for seven consecutive sample spectra from Run 1, multiplied by a factor of 3. These data will be compared to the pre-test system nitrogen standard deviation results and also included in the facility test report;

Page:

Date:

Revision No:

5-7

October 11, 2023

The SNR @ 2500 cm⁻¹, at 64 scans, and the results for single beam intensity @ 2500 cm⁻¹ will be verified to met the >2500 and >0.9 criterium; respectively. The analyte spiking for HCN and subsequent system nitrogen injection will be conducted after each test run. Continue sequence until at least three valid runs per test condition are completed.

Revision No: 1 Date: October 11, 2023

6-1

Page:

6.0 QUALITY ASSURANCE/QUALITY CONTROL ACTIVITIES

6.1 QA/QC PROCEDURES

The QA/QC procedures for this RTR test program are summarized in Table 6-1.

TABLE 6-1 QA/QC PROCEDURES AND REQUIREMENTS

Target Analyte	Test Method	Detection Limit	QA/QC	
HCN	EPA Method 320	0.5 ppm	Increase scans if needed to achieve detection limits. Increasing to 400 from relative 64 (gives a 2.5 S/N advantage). HCN spiking before and after each run by adding 10% or less spike to approximately double the native effluent	
			concentration, or conduct spike to add 3-4 ppm to native concentration, whichever results in greater spiked concentration.	
			Spike recovery results shall be within $\pm 20\%$ of the expected value or ± 0.5 ppm, whichever is least restrictive	
			5% pre-to-post run calibration transfer standard (CTS) requirement	
HF		0.2-0.3 ppm	Rely on CTS (5%), HCN and tracer gas responses to validate HF FTIR data	
Cl ₂	EPA Method 26A	$\sim 0.07 \text{ mg/m}^3$ ($\sim 0.2 \text{ ppm}$)	Duplicate Simultaneous Trains; Collect minimum of 1 dscm for each sample train. Acceptance criteria for paired samples: 10% Relative Deviation or 0.2 ppm absolute difference, whichever is least restrictive. Insert dry impinger between acid and base impingers	
Effluent Flow Rate	EPA Methods 1-4	Not Applicable	As per M26A isokinetic testing or separately by Methods 1-3. FTIR measurements for $\mathrm{H}_2\mathrm{O}$. Wind Tunnel calibrated pitot tube having a Cp of 0.84 or less is required for all flow measurements. Compare preliminary velocity traverse measurements and sample run flow rate measurements to installed certified flow rate monitor. Investigate and resolve differences greater than 10% of average flow rate.	
O_2	EPA Method 3A	Not Applicable	Analyte concentrations corrected @ 7% O ₂ Span is 10%, 15%, or 20% (for co-mingled stacks only) Acceptance criteria are 0.2% O ₂ difference for analyzer calibration error, and 0.3% O ₂ for system bias checks, and zero and upscale drift checks.	

6.2 SAMPLE IDENTIFICATION AND CUSTODY

Sample custody procedures for this program are based on EPA recommended procedures. Since samples will be analyzed by one or more laboratories as well as in the field, the custody procedures emphasize careful documentation of sample collection and field analytical data and the use of chain of custody records for samples being transported. The procedures which will be used are discussed below.

Page:

Date:

Revision No:

6-2

October 11, 2023

The project manager will be responsible for ensuring that proper custody and documentation procedures are followed for the field sampling and field analytical efforts. He will be assisted in this effort by key sampling personnel involved in sampling recovery.

Samples will be collected, transported, and stored in clean containers which are constructed of materials inert to the analytical matrix such as glass jars. Only containers which allow air tight seals will be used. Amber glass jars will be employed when containers are needed to inhibit photochemical reactions.

All sampling data, including information regarding sampling times, locations, and any specific considerations associated with sample acquisition will be recorded on preformatted data sheets. All samples will be given unique, identifying alphanumeric sample codes which will serve to track samples from the field to the laboratory.

Samples will be stored for transport from the lab to the field to the lab in storage boxes constructed in a fashion which minimizes movement and thus prevents breakage of containers. For example, boxes used for transporting glass containers will have foam inserts with form-fitting cutouts. Sample transport boxes will be locked except when in use. Vans containing equipment and samples will be locked whenever they are left unattended.

A daily activity log will be maintained by the project supervisor. This will be an informal log used to record various types of information, such as minor problems which arise, sketches of sampling locations, names and phone numbers of plant contacts. daily activity summaries, etc.

This section provides information regarding the organization of the sampling and analytical program. The following details the key positions and their responsibilities. Once personnel have been assigned to these positions, their qualifications will be provided as an addendum.

The organization of the project team, including QA functions, is shown in the project organization chart (see Figure 1.1).

7.0 SAMPLE CUSTODY

Page:

Date:

Revision No:

7-1

October 11, 2023

Sample custody procedures for this program are based on EPA recommended procedures. Since samples will be analyzed by one or more laboratories as well as in the field, the custody procedures emphasize careful documentation of sample collection and field analytical data and the use of chain of custody records for samples being transported. The procedures which will be used are discussed below.

7.1 FIELD SAMPLING OPERATIONS

The project manager will be responsible for ensuring that proper custody and documentation procedures are followed for the field sampling and field analytical efforts. He will be assisted in this effort by key sampling personnel involved in sampling recovery.

Samples will be collected, transported, and stored in clean containers which are constructed of materials inert to the analytical matrix such as glass jars. Only containers which allow air tight seals will be used. Amber glass jars will be employed when containers are needed to inhibit photochemical reactions.

All sampling data, including information regarding sampling times, locations, and any specific considerations associated with sample acquisition will be recorded on preformatted data sheets. All samples will be given unique, identifying alphanumeric sample codes which will serve to track samples from the field to the laboratory.

Samples will be stored for transport from the lab to the field to the lab in storage boxes constructed in a fashion which minimizes movement and thus prevents breakage of containers. For example, boxes used for transporting glass containers will have foam inserts with form-fitting cutouts. Sample transport boxes will be locked except when in use. Vans containing equipment and samples will be locked whenever they are left unattended.

A daily activity log will be maintained by the project supervisor. This will be an informal log used to record various types of information, such as minor problems which arise, sketches of sampling locations, names and phone numbers of plant contacts. daily activity summaries, etc.

7.2 ANALYTICAL OPERATIONS

Analytical operations will be performed on-site in the laboratory as well as in the remote laboratories. Samples analyzed by outside laboratories are transported with a Change of Custody form. This form will list sample identifications, analytical parameters, sample matrices, anticipated date of results, and other relevant information necessary to ensure the appropriate analyses are performed and to document the progress of the samples.

8.0 INTERNAL QUALITY CONTROL CHECKS

Page:

Date:

Revision No:

8-1

October 11, 2023

Specific quality control (QC) procedures will be followed to ensure the continuous production of useful and valid data throughout the course of this test program. The QC checks and procedures described in this section represent an integral part of the overall sampling and analytical scheme. Strict adherence to prescribed procedures is quite often the most applicable QC check. A discussion of both the sampling and analytical QC checks that will be utilized during this program is presented below.

8.1 EQUIPMENT INSPECTION AND MAINTENANCE

Each item of field test equipment will be assigned a unique, permanent identification number. An effective preventative maintenance program is necessary to ensure data quality. Each item of equipment returning from the field will be inspected before it is returned to storage. During the course of these inspections, items are cleaned, repaired, reconditioned, and recalibrated where necessary.

Each item of equipment transported to the field for this test program will be inspected again before being packed to detect equipment problems which may originate during periods of storage. This minimizes lost time on the job site due to equipment failure.

Occasional equipment failure in the field is unavoidable despite the most rigorous inspection and maintenance procedures. For this reason, replacement equipment for all critical sampling train components will be transported to the job site.

8.2 EQUIPMENT CALIBRATION

New items for which calibration is required will be calibrated before initial field use. Equipment whose calibration status may change with use or time will be inspected in the field before testing begins and again upon return form each field use. When an item of equipment is found to be out of calibration, it will be repaired and recalibrated or retired from service. All equipment will be periodically recalibrated in full, regardless of the outcome of these regular inspections.

Calibrations will be conducted in a manner, and at a frequency, which meets or exceeds U.S. EPA specifications. The calibration procedures outlined in the EPA Methods will be followed. When these methods are inapplicable, methods such as those prescribed by the American Society for Testing Materials (ASTM) will be used.

Data obtained during calibrations will be recorded on standardized forms, which will be checked for completeness and accuracy by the quality assurance manager. Data reduction and subsequent calculations will be performed using computer facilities. Calculations will be checked at least twice for accuracy. Copies of calibration forms will be included in the test or projects reports.

Emissions sampling equipment requiring calibration includes pitot tubes, pressure gauges, thermometers, dry gas meters and barometers. The following sections elaborate on the calibration procedures to be followed for these items of equipment.

A: Pitot Tubes. All Type S pitot tubes used, whether separate or attached to a sampling

probe, will be constructed in-house or by a third-party vendor. Each new pitot will be calibrated in accordance with Section 10.1 of EPA Method 2. Each Type-S pitot tube, calibrated according to these standards, will have an assigned coefficient. This coefficient should not change as long as the pitot tube is not damaged.

Page:

Date:

Revision No:

8-2

October 11, 2023

Each pitot tube will be inspected visually upon return from the field. If a cursory inspection indicates damage or raises doubt that the pitot remains in accordance with the EPA geometry standards, the pitot tube will be refurbished as needed and recalibrated.

- **B:** Differential Pressure Gauge. All meter consoles used are equipped with 10-inch water column (W.C.) inclined-vertical manometers. Fluid manometers do not require calibration other than leak checks. Manometers will be leak checked in the field prior to each test series, and again upon return from the field.
- C: Impinger Thermometer. Prior to the start of testing, the thermometer used to monitor the temperature of the gas leaving the last impinger will be compared with a mercury-in-glass thermometer which meets ASTM E-1 No. 63F specifications. The impinger thermometer is adjusted if necessary until is agrees within 2°F of the reference thermometer. If the thermometer is not adjustable, it is labeled with a correction factor.
- **D: Dry Gas Meter Thermometer.** The thermometer used to measure the temperature of the metered gas sample will be checked prior to each field trip against an ASTM mercury-in-glass thermometer. The dry gas meter thermometer is acceptable if the values agree within \pm 5.4°F. Thermometers not meeting this requirements will be adjusted or labeled with a correction factor.
- **E:** Flue Gas Temperature Sensor. All thermocouples employed for the measurement of flue gas temperature are calibrated upon receipt. Initial calibrations will be performed at three points (ice bath, boiling water, and hot oil). An ASTM mercury-in-glass thermometer will be used as a reference. The thermocouple is acceptable if the agreement is within 1.5 percent (absolute) at each of the three calibration points.

Before and after each field use, the reading from the flue gas thermocouple-potentiometer combination will be compared with an ASTM mercury-in-glass reference thermometer at ambient conditions. If the two agree within \pm 1.5 percent (absolute), the thermocouple and potentiometer are considered to be in proper working order.

F: Dry Gas Meter and Orifice. Two procedures will be used to calibrate the dry gas meter and orifice simultaneously. The full calibration will be a complete laboratory procedure used to obtain the calibration factor of the dry gas meter. Full calibrations will be performed over a wide range of orifice settings. A simpler procedure, the post-test calibration, will be designed to check whether the calibration factor has changed.

A dry gas meter that is calibrated annually against a spirometer or a set of calibrated critical orifices will be used as a transfer standard. During the annual calibration,

Revision No: 1 Date: October 11, 2023

8-3

Page:

triplicate calibration runs will be performed at seven flow rates ranging from 0.25 to 1.40 cfm.

G: Dry Gas Meter. Each metering system receives a full calibration at the time of purchase and a post-test calibration after each field use. If the calibration factor, γ , deviates by less than five percent from the initial value, the test data are acceptable. If γ deviates by more than 5 percent, the meter is recalibrated and the meter coefficient (initial or recalibrated) that yields the lowest sample volume for the test runs is used.

EPA Method 5 requires another full calibration anytime the post-test calibration check indicates that γ changed by more than 5 percent. Standard practice is to adjust and recalibrate the dry gas meter anytime γ is found to be outside the range of 0.96 to 1.04. Post-test calibrations will be performed after each field test series per EPA Method 5, section 16.3 procedures.

- **H:** Orifice. An orifice calibration factor will be calculated for each flow setting during a full calibration. If the range of values does not vary by more than 0.20 in H₂O over a range of 0.4 to 4.0 in H₂O, the arithmetic average of the values obtained during the calibration is used.
- **I: Barometer.** Each field barometer will be adjusted before each test series to agree within \pm 0.1 inches of a reference aneroid barometer. The reference barometer will be checked against the station pressure value (corrected for elevation difference) reported by the National Weather Service.

8.3 SAMPLING QUALITY CONTROL PROCEDURES

The following pretest QC checks will be conducted:

- All sampling equipment will be thoroughly checked to ensure clean and operable components.
- Equipment will be inspected for possible damage from shipment.
- The oil manometer or Magnehelic gauge used to measure pressure across the Type S pitot tube will be leveled and zeroed.
- The number and location of the sampling traverse points will be checked before taking measurements.
- The temperature measurement system will be visually checked for damage and operability by measuring the ambient temperature prior to each traverse.

In addition to the general QC procedures listed above, QC procedures specific to each sampling method will also be incorporated into the sampling scheme. These methods and specific procedures are discussed below.

Page: 8-4
Revision No: 1
Date: October 11, 2023

A: Sampling Train QC checks. The following QC procedures will be emphasized:

Prior to Start of Tests

- Keep all cleaned glassware and sample train components sealed until train assembly.
- Assemble the sampling trains in an environment free from uncontrolled dust.
- Visually inspect each sampling train for proper assembly.
- Perform pretest calculations to determine the proper sampling nozzle size.

Prior to Each Test Run

- Visually inspect the sampling nozzle.
- Visually inspect the Type S pitot tube.
- Leak check each leg of the Type S pitot tube.
- Leak check the entire sampling train.

During Each Test Run

- Readings of temperature and differential pressure will be taken at each transverse point.
- All sampling data and calculations will be recorded on preformatted data sheets.
- All calibration data forms will be reviewed for completeness and accuracy.
- Any unusual occurrences will be noted during each run on the appropriate data form.
- The project supervisor will review sampling data sheets daily during testing.
- Properly maintain the roll and pitch axis of the Type S pitot tube and the sampling nozzle.
- Leak check the train before and after any move from one sampling port to another during a run (at DEECO's option) or if a filter change takes place.
- Conduct additional leak checks if the sampling time exceeds 4 hours.
- Maintain the probe, filter, and impingers at the proper temperatures.
- Maintain ice in the ice bath at all times.
- Make proper readings of the dry gas meter, delta P and delta H, temperature, and pump vacuum during sampling at each traverse point.
- Maintain isokinetic sampling within $\pm 10\%$ of 100%.

After Each Test Run

- Visually inspect the sampling nozzle.
- Visually inspect the Type S pitot tube.
- Leak check each leg of the Type S pitot tube.
- Leak check the entire sampling train.

B: QC for Volumetric air flow rate determinations

Flue Gas Velocity. Data required to determine the flue gas velocity will be collected using the methodology specified in EPA Method 2. Quality control procedures are as follows.

Page:

Date:

Revision No:

8-5

October 11, 2023

- Visually inspect the Type S pitot tube before and after sampling.
- Leak check both legs of the pitot tube before and after sampling.
- Check the number and location of the sampling traverse points before taking measurements.

Flue Gas Molecular Weight. In the event that that integrated bag samples are to be used for determination of flue gas molecular weight, EPA Method 3 will be the sampling technique specified. Quality control will focus on the following procedures:

- The sampling train will be leak checked before and after each run.
- A constant sampling rate will be used in withdrawing a sample.
- The sampling train will be purged prior to sample collection.
- The sampling port will be properly sealed to prevent air in-leakage.

Moisture Content. The moisture content of the gas stream will be determined using the technique specified in EPA Method 4. The following QC checks will be performed:

- The sampling train will be leak checked before and after each run.
- Ice will be maintained in the ice bath throughout each run to insure an exit temperature (after the silica gel impinger) of $\leq 67^{\circ}$ F.

8.4 ANALYTICAL QUALITY CONTROL PROCEDURES

All analyses for this program will be performed using accepted laboratory procedures in accordance with the specified analytical protocols. Adherence to prescribed QC procedures will ensure data of consistent and measurable quality. Analytical QC will focus upon the use of control standards to provide a measure of analytical precision and accuracy. Also, specific acceptance criteria are defined for various analytical operations including calibrations, control standard analyses, drift checks, blanks, etc. The following general QC procedures will be incorporated into the analytical effort:

- The on-site project manager will review all analytical data and QC data on a daily basis for completeness and acceptability.
- Analytical QC data will be tabulated using the appropriate charts and forms on a daily basis
- Copies of the QC data tabulation will be submitted to the quality assurance manager following the completion of the test program.
- All hard copy raw data (i.e., chromatograms, computer printouts, etc.) will be maintained in organized files.

Page: 8-6 Revision No: 1 Date: October 11, 2023

Specific analytical QC procedures for the Orsat analyzer (if used) are listed below.

- The analyzer will be leveled and the fluid levels zeroed prior to use.
- The analyzer will be leak checked prior to use.
- The analyzer will be thoroughly purged with sample prior to use.
- The analyzer will be checked by analyzing an ambient air sample.

EPA Method 26A Sample Analysis QC Checks are listed below.

- Calibration curve consisting of 4 calibration levels that bracket the expected sample range. Dilute samples as necessary to reach the calibration range;
- Duplicate analysis of calibration standards, before and after sample analysis, with duplicate injections being within 5% of their mean;
- Duplicate analysis of reagent blanks, quality control samples and field samples with duplicate injections being within 5% of their mean;
- Matrix spike samples may be prepared and analyzed. Matrix spike recoveries should be 90-110%
- A field blank will be carried through the procedure and analyzed with the field samples.
- An audit sample will be analyzed for if available from two or more independent, Approved Audit Sample Providers no less than 60 days prior to the test effort.

9.0 REPORTING AND DATA REDUCTION REQUIREMENTS

Page:

Date:

Revision No:

9-1

October 11, 2023

9.1 DATA REPORTING

The reporting units for HCN, HF, and Cl_2 will be in parts-per-million by volume, wet basis (ppm_{v,d}), parts-per-million by volume, dry corrected to 7% oxygen (ppm_{v,d}@7%O₂), pounds-per-hour (lbs/hr), and pounds-per-ton of clinker (lbs/ton). Additional supporting data for CO_2 , O_2 , and H_2O concentrations and volumetric flow rates (actual cubic feet-per-minute, wet,standard cubic feet-per-minute, and dry,standard cubic feet-per-minute) will be reported. The clinker production, in short tons-per-hour (TPH) will be reported.

Any data that is not acceptable because of technical difficulties will be indicated, and an explanation of the technical problem will be given. All related QC and calibration data will be in the final report.

9.2 REPORT CONTENTS

Copies of the test report will be submitted after the test series has been completed. Results reported will include, but not be limited to emission rates and concentrations of gaseous pollutants, and process sample determinations, any liquid stream constituents determinations, and any other type of data requested. This report will also include a list of all personnel present during testing, summary results, descriptions of test procedures used, a description of the source and its operation during testing, test locations drawings, example calculations, raw field data, and equipment calibrations.

9.3 DATA REDUCTION

Care will be exercised to ensure hand recorded data is written accurately and legibly. Additionally, the use of prepared data recording forms, conveniently formatted, is an important aid to verify that all necessary data items are recorded. The collected field and laboratory data will be reviewed by the analyst and the Project Manager.

The Project Manager will reduce and validate all of the sampling and analytical data that is collected. The sampling data will include flow measurements, calibrations, etc. Each laboratory will reduce all analytical results prior to their submission to the Project Manager. The analytical data will be used to determine concentrations and emission rates of the compounds of interest.

Data reduction follows guidelines published in EPA Reference Methods, where applicable, and by guideline documents where EPA Reference Methods are not available. Validated computer programs will be used to calculate all reported values.

9.4 DATA VALIDATION

A second technical review of the data will be performed and documented by a qualified scientist other than the one who performed the actual analyses. The second reviewer will include evidence (e.g., check marks, recalculations, etc.) that show which data points were checked. Finally, the second reviewer will sign and date the cover page of the data packet or the record that was reviewed.

9-2

Page:

In-situ measurements will be validated by demonstrated acceptable post-test leak checks and calibration verifications according to the referenced method used.

Analysis data may be validated according to defined criteria by a secondary reviewer or by the analyst. At a minimum and if applicable, analysis data will be validated according to the following criteria (additional method-specific criteria or project requirements may apply):

- Sampling records complete and traceable
- All appropriate QC samples included with the analytical batch and reported with the sample results
- Routine tuning, calibration and inspection of analytical instrumentation documented and performed prior to analyses
- Initial and continuing calibration criteria met
- Method/reagent blanks confirm no background contamination
- Surrogate recoveries within criteria
- Qualitative sample results (e.g., retention times, mass spectra, isotopic ratios) consistent with standard data
- Sample data within the calibrated range of the instrument
- Chromatograms or other raw data consistent with computer-generated quantitation reports
- Accuracy of intermediate data manipulations, transcribed numbers and/or final reported results verified
- Reference standards, instrumentation, sample identification, analysts, methodology, and sequence of processing clearly identified and traceable in the project records
- Lost data or corrective actions documented (e.g., loss of sample, reanalysis, redilutions, additional cleanup steps, alternative calculations etc.)
- Data that does not meet the validation requirements flagged accordingly
- Data reported in the correct units (e.g., "ppm" should not be used without specifying volume or mass units; "ug/g" are preferred units for data reporting)

10.0 PLANT ENTRY AND SAFETY

Page:

Date:

Revision No:

10-1

October 11, 2023

10.1 SAFETY RESPONSIBILITIES

The Project Manager is responsible for ensuring compliance with plant entry, health, and safety requirements. The Facility Contact (refer to Section 1.2) as the authority to impose or waive facility restrictions. The Project Manager has the authority to negotiate with facility person any deviations from the facility restrictions.

10.2 SAFETY PROGRAM

DEECO has a comprehensive health and safety program that satisfies Federal OSHA and MSHA requirements. The basic elements include: (1) written policies and procedures, (2) routine training of employees and supervisors, (3) medical monitoring, (4) use of personal protection equipment, (5) hazard communication, (6) pre-mobilization meetings with Holcim personnel and DEECO test team personnel, and (7) routine surveillance of the on-going test work.

10.3 SAFETY REQUIREMENTS

All test personnel will adhere to the following standard safety and precautionary measures as follows:

- 1) Confine activities to test area only;
- 2) Wear hard hats at all times on-site, except inside sample recovery trailers and mobile CEM laboratory;
- 3) Wear protective shoes or boots in test area:
- 4) Wear protective glasses or goggles at the outlet test sites, and other areas as designated;
- 5) Have readily available first aid equipment and fire extinguishers.

Before or on the first day on-site, the Project Manager will fill out the Emergency Response Procedure form and provide copies to be posted at each test site.