DEECO Inc.
3404 Lake Woodard Road
Raleigh, NC 27604
(919) 250-0285 (ph); (919) 250-1835 (Fax)

www.deeco.com

REPORT NO: 012924-3318

PROJECT: 23-3318

DATE: January 30, 2024

TYPE: Emission Test Report

Hydrogen Cyanide, Hydrogen Fluoride and Diatomic Chlorine from a Portland Cement Plant

Holcim Inc. Joppa IL Facility

AUTHOR: Scott Steinsberger, Ph.D.

TEST DATES: December 8, 2023

FIELD TEAM: Lee Harris, Gage Mayer, Michael Powell, and Scott Steinsberger

PREPARED FOR: Holcim Inc.

2500 Portland Road Grand Chain, IL 62941

TABLE OF CONTENTS

Section		Pag	<u>3e</u>
1. INTRODU	JCTION	[1
2. SUMMAF	RY OF R	RESULTS	5
3. SAMPLIN	IG AND	ANALYTICAL PROCEDURES	7
3.1	Sampl	ing Point Determination - EPA Method 1	7
3.2	Flue G	as Velocity and Volumetric Flow Rate - EPA Method 2	9
3.3		Flue Gas Composition - EPA Method 3A	
	3.3.1	Calibration Gases	0
	3.3.2	Sampling Procedures	0
3.4	Flue G	as Moisture Content - EPA Method 4	0
3.5	Hydro	gen Fluoride and Diatomic Chlorine - EPA Method 26A	11
3.6	Hydro	gen Cyanide and Hydrogen Fluoride - EPA Method 320	14
		Laboratory QA/QC Activities Before Field Test Program	
	3.6.2	QA/QCActivities During Field Test Program	15
4. QA/QC PI	ROCED	URES AND RESULTS1	19
4.1	Sampl	ing Equipment	19
	4.1.1	Manual Sampling Equipment Calibrations	19
4.2	Analyt	ical QA/QC Results2	20
Appendix A	_	Emission Summary Tables	
Appendix B	-	Field Data and CEM/FTIR Data	
Appendix C	-	Ion Chromatography Analytical Report Data	
Appendix D	-	Plant Process Data	
Appendix E	-	Calibration Documents	
Appendix F	-	Test Participants	
Appendix G	-	RTR Sampling and Analytical Protocol	

LIST OF TABLES

Figure No. Figure 3.1	Schematic of the Kiln 1 Stack Sampling Location
	LIST OF FIGURES
	KILN 1 MAIN STACK; DECEMBER 8, 2023
111022 3.3	HYDROGEN CYANIDE ANALYTE SPIKING TEST RESULTS FOR THE
TABLE 3.3	ETHYLENE CALIBRATION TRANSFER STANDARD (CTS) AND
TABLE 3.2	FTIR PRETEST AND FIELD TEST QA/QC SUMMARY
	STACK; DECEMBER 8, 2023
TABLE 3.1	CONCENTRATION COMPARISON RESULTS FOR THE KILN 1 MAIN
TADIE 2.1	EMISSIONS; DECEMBER 8, 2023
	CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC CHLORINE
TABLE 2.1	HOLCIM INC., JOPPA, IL FACILITY; KILN 1 MAIN STACK HYDROGEN
	HOLCIM INC, JOPPA, ILLINOIS FACILITY4
TABLE 1.2	SUMMARY OF SAMPLING AND ANALYTICAL PROTOCOLS FOR
	KILN 1; DECEMBER 8, 2023
	DIATOMIC CHLORINE EMISSIONS; HOLCIM INC., JOPPA, IL FACILITY;
TABLE 1.1	SUMMARY OF HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND
Table No.	Page

1. INTRODUCTION

The United States Environmental Protection Agency (US EPA) has directed the portland cement industry (SIC 3241) to conduct emissions testing as part of the US EPA Risk and Technology Review (RTR). This document provides the emission test results and supporting quality assurance/quality control (QA/QC) measures used to produce standardized data having known precision and accuracy. Collection of accurate, representative, and standardized data for facilities with low emissions is necessary especially in view of MACT standard setting procedures.

The Holcim Inc. facility located near Joppa IL has been included in this request. The process tested at the Joppa facility is a "long dry" cement kiln. It produces portland cement without an external preheater/precalciner. There is no inline raw mill. There are two kilns located on-site, however one is used. As of this writing, Kiln System #2 is idled, with gases from Kiln System #1 exhausted through the Kiln #2 stack. Kiln System #2 has been idle all of 2023 and there are no plans to bring the kiln up therefore it will not be tested.

The Holcim Joppa facility operates a number of air pollution control devices which help control and lower stack emissions. Those air pollution control devices include an Electrostatic Precipitator (ESP), Low-NO_x Burners, Selective Catalytic Reduction (SCR), Dry Absorbent Addition (DAA) System and the Kiln #2 Baghouse. A more detailed description of the processes is provided in Section 2 of the RTR Sampling and Analytical Protocol reproduced in Appendix G.

The Holcim Inc. retained DEECO Inc. (DEECO) to conduct emission tests for for hydrogen cyanide (HCN), hydrogen fluoride (HF), and diatomic chlorine (Cl₂). All sampling runs were be one hour long. Concurrent measurements to determine volumetric flow rate were made.

A summary of the test results is shown in Table 1.1.

TABLE 1.1 SUMMARY OF HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC CHLORINE EMISSIONS; HOLCIM INC., JOPPA, IL FACILITY; KILN 1; DECEMBER 8, 2023

Test Parameters	Main Stack
Hydrogen Cyanide (FTIR) parts-per-million, dry basis corrected to 7% O ₂ pounds-per-hour pounds-per-ton of clinker	1.9 0.55 0.008
Hydrogen Fluoride (FTIR) parts-per-million, dry basis corrected to $7\%~\rm O_2$ pounds-per-hour pounds-per-ton of clinker	<0.06 <0.013 <0.0002
Hydrogen Fluoride (Method 26A) parts-per-million, dry basis corrected to $7\%~\rm O_2$ pounds-per-hour pounds-per-ton of clinker	<0.42 <0.093 <0.0014
Diatomic Chlorine (Method 26A) parts-per-million, dry basis corrected to $7\%~{\rm O}_2$ pounds-per-hour pounds-per-ton of clinker	<0.087 <0.069 <0.0011

The sampling and analytical procedures followed are summarized in Table 1.2 and discussed in detail in Section 3.

Testing was performed on the Kiln 1 under one conditions on December 8, 2023.

Sampling was conducted by personnel from DEECO, Inc. of Raleigh, North Carolina. All questions regarding sampling and analytical data should be directed to Dr. Scott Steinsberger of DEECO at (800) 733-3261. The field sampling was completed by Lee Harris, Gage Mayer, Michael Powell, and Scott Steinsberger of DEECO.

The remainder of this document summarizes the results, procedures and quality control measures followed for this program. Section 2 contains tabulated air emission results for each parameter of interest. Section 3 summarizes the air emission sampling and analytical procedures performed by DEECO, with a brief description and/or reference to the applicable methodologies. Section 4 discusses the basic quality control elements in place for this program to assure the collection of representative, accurate air emission data.

The appendices provided in this document contain all of the necessary information to verify the reported results. Included as Appendices are: Appendix A - Emission Summary Tables; Appendix B - Field Data and CEM/FTIR Data; Appendix C - Ion Chromatography Analytical Report Data; Appendix D - Plant Process Data; Appendix E - Calibration Documents; Appendix F - Test Participants; Appendix G - RTR Sampling and Analytical Protocol

TABLE 1.2 SUMMARY OF SAMPLING AND ANALYTICAL PROTOCOLS FOR HOLCIM INC, JOPPA , ILLINOIS FACILITY

Location and Frequency	Test Parameter	Sampling Method	Sampling Procedure	Analysis Method	Analysis Procedure
Kiln 1 Main Stack	Volumetric Flow Rate and cyclonic check	EPA Methods 1 and 2	Velocity and temperature traverses	EPA Methods 1 and 2	Manometer for differential pressure and thermocouple for temperature
	Oxygen and Carbon Dioxide and Stratification Check	EPA Method 3A	Continuous; extractive sample	EPA Method 3A	Paramagnetic for O ₂ and NDIR for CO ₂
	Moisture	EPA Method 4	Condensation	EPA Method 4	Gravimetric
	Hydrogen Fluoride and Diatomic Chlorine (Cl ₂)	EPA Method 26A	Isokinetic integrated sample	EPA Method 26A	Ion chromatography
	Hydrogen Fluoride and Hydrogen Cyanide	EPA Method 320	Continuous; extractive sample	EPA Method 320	Fourier Transform Infrared (FTIR) Spectroscopy

2. SUMMARY OF RESULTS

Emissions sampling was conducted at the Holcim Joppa facility. Sampling was conducted for stack gas flow rate (EPA Methods 1 and 2), stack gas oxygen and carbon dioxide (EPA Method 3A), stack gas moisture (EPA Method 4), stack gas hydrogen fluoride and diatomic chlorine (EPA Method 26A) and stack gas hydrogen cyanide and hydrogen fluoride (EPA Method 320).

Testing was conducted on the Kiln 1 main stack under one condition and the results are summarized in Table 2.1.

TABLE 2.1 HOLCIM INC., JOPPA, IL FACILITY; KILN 1 MAIN STACK HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC CHLORINE EMISSIONS; DECEMBER 8, 2023

=======================================	DECENIDER O			
Test Parameter	Kiln 1 Main Stack Run 1	Kiln 1 Main Stack Run 2	Kiln 1 Main Stack Run 3	Kiln 1 Main Stack Average
Time	13:24-14:34	14:53-16:02	16:20-17:26	December 8, 2023
Flow Rate (dscfm)	120,250	123,750	123,500	122,520
Oxygen	12.9%	12.9%	12.6%	12.8%
Carbon Dioxide	14.2%	13.5%	13.7%	13.8%
Moisture	7.8%	7.9%	7.9%	7.9%
Hydrogen Cyanide (FTIR)				
ppm _{dry} at 7% O ₂	2.0	1.8	1.7	1.9
pounds-per-hour	0.59	0.54	0.54	0.55
pounds-per-ton of clinker	0.009	0.008	0.008	0.008
Hydrogen Fluoride (FTIR)				
ppm _{dry} at 7% O ₂	< 0.06	< 0.06	< 0.06	<0.06
pounds-per-hour	< 0.013	< 0.013	< 0.013	< 0.013
pounds-per-ton of clinker	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hydrogen Fluoride (Method 26A)				
ppm_{dry} at 7% O_2	< 0.41	<0.44	< 0.41	< 0.42
pounds-per-hour	<0.088	< 0.097	< 0.094	< 0.093
pounds-per-ton of clinker	< 0.0014	< 0.0015	< 0.0015	< 0.0014
Diatomic Chlorine (Method 26A)				
$\rm ppm_{dry}$ at 7% $\rm O_2$	< 0.09	<0.09	<0.08	<0.09
pounds-per-hour	< 0.069	< 0.071	< 0.066	< 0.069
pounds-per-ton of clinker	< 0.0011	< 0.0011	< 0.0010	< 0.0011

3. SAMPLING AND ANALYTICAL PROCEDURES

Table 1.2 presents a summary of the overall sampling and analytical protocols used for the test program for the Kiln 1 main stack at Holcim's Joppa, IL facility. All sampling and analytical methods employed for this test program were performed in accordance with the procedures outlined in the Reference Test Methods contained in the Code of Federal Regulations, Title 40, Part 60, Appendix A (40 CFR 60, Appendix A) and 40 CFR 63, Appendix A.

3.1 Sampling Point Determination - EPA Method 1

The Kiln 1 Stack 2 (which is the same stack formerly used for Kiln #2) is vertically-oriented and circular with an inside diameter of 102". The stack gas sampling ports are located more than 7.5 diameters above the ID fan breaching and more than 0.5 diameters below the stack outlet. The location meets the minimum specifications for a measurement site under EPA Method 1. Cyclonic flow checks, as described in EPA Method 1 Section 2.4, using the Type-S pitot null procedure and angle measurements were conducted at the stack test location.

A twelve (12) point sampling traverse was made using three (3) point traverses in each of 4 sampling ports) at the stack. Each traverse were made at each sampling location using a type-S pitot tube in accordance with EPA Methods 2 procedures. Gas temperatures were measured using calibrated Type K thermocouples and digital readout devices. All measurements were performed in accordance with the procedures in EPA Methods 2, and 26A.

A schematic of the Kiln 1 main stack is provided in Figure 3.1.

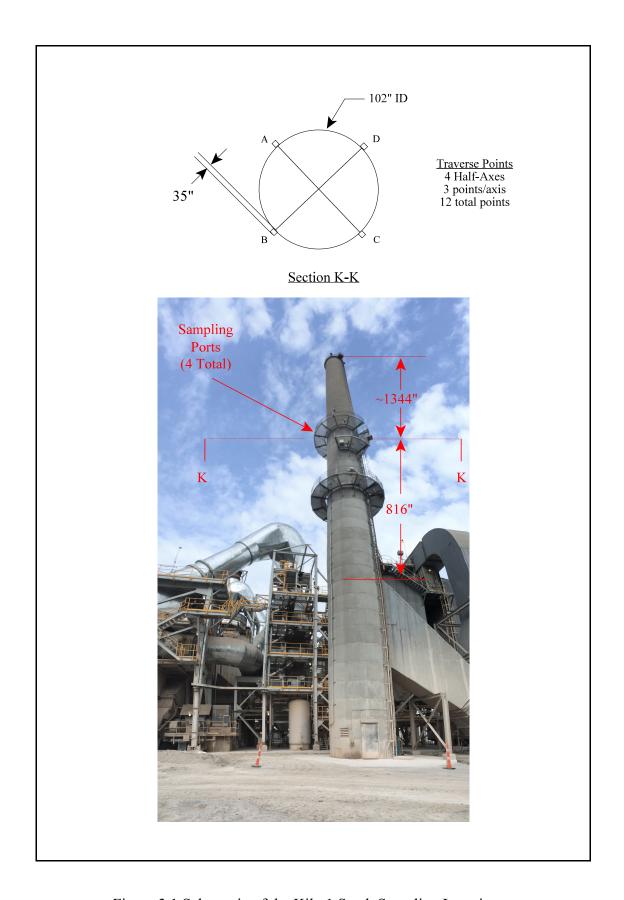


Figure 3.1 Schematic of the Kiln 1 Stack Sampling Location

The number and location of the sampling or traverse points were determined according to the procedures outlined in EPA Method 1. All points were at least 1.0 inches from the stack wall, per Method 1.

3.2 Flue Gas Velocity and Volumetric Flow Rate - EPA Method 2

The flue gas velocity and volumetric flow rate were determined according to the procedures outlined in EPA Method 2. Velocity measurements were using type S pitot tubes conforming to the calibration specifications outlined in EPA Method 2, Section 10.1. Each Type-S pitot tube, calibrated according to these standards, had an assigned coefficient. Differential pressures were measured with fluid manometers. Effluent gas temperatures were measured with chromel-alumel thermocouples equipped with digital readouts.

3.3 Outlet Flue Gas Composition - EPA Method 3A

Outlet flue gas analysis for oxygen (O_2) and carbon dioxide (CO_2) concentrations, and the calculation of percent excess air and flue gas dry molecular weight was performed in accordance with EPA Method 3A.

To evaluate the sampling location and points for FTIR and O_2 sampling, a three-point O_2 concentration stratification test on a line passing through the centroidal area at (for stacks is greater than 2.4 meters) at 0.4, 1.2 and 2.0 meters from the stack or duct wall. The procedures in Section 8.1.2 of Method 7E were followed, using oxygen as allowed by fourth sentence in Section 8.1.2. The plant O_2 CEMS was used as a control. A criteria of <5% variation from combined mean for each point was used as indication of non-stratification to allow single point sampling at the point closest to the mean.

Per EPA Method 3A for determining molecular weight, continuous extractive sampling was obtained using the same Method 320 sampling system described in Section 3.6.

A portion of the hot, wet gas sample was sent through a condensing system to remove the stack moisture. A portion of the moisture-free gas sample was sent to an O_2/CO_2 analyzer.

Calibration procedures were be performed in accordance with EPA methodology. Analyzers were calibrated before and after each test and a calibration check between each test run.

The pretest calibrations consisted of the following steps:

- Internal (direct) calibration of each analyzer to adjust calibration and check linearity.
- External (through the entire sampling system) calibration to check the system bias on zero and span gases.

The post test calibration consisted of an external system bias calibration check.

The analyzer calibrated using a certified zero and span (mid or high range) gas. Zero and span

gases were directed to each analyzer through the appropriate plumbing, the calibration gas flow rates were adjusted to the correct flow rate and the analyzer was adjusted with the appropriate span pot.

After the analyzer was properly adjusted the linearity was checked using a low and high range calibration gas. The maximum allowable limit for linearity is 2% of the analyzer range and all analyzers were shown to be linear within these limits before proceeding.

The external calibration bias check were performed by placing the CEM system in sampling mode and injecting a zero and span gas into the sample line at the probe exit. This check showed if there is any sampling system related bias, and also checks the integrity of the sample line.

3.3.1 Calibration Gases

DEECO useed EPA Protocol and/or $\pm 2\%$ NIST Traceable gases for calibration as required by the various reference methods employed in this test program. Calibration gases were selected from previous experience with similar sources and/or from information obtained from the facility engineer prior to sampling. In some cases if the gases that are selected are out of the optimum range of operation then no significant impact of data quality is expected due to the linear nature of the analyzers that were used.

Specific HCN gases were manufactured for this test program in the range of 50-100 ppm to provide spikes in the 5-10 ppm range, or lower; with an SF_6 or appropriate tracer used to calculate the exact spike gas dilution ratio of 10% or less.

No audit gases from a federal or a state agency were provided.

3.3.2 Sampling Procedures

At the completion of the pretest calibration routine, the CEM system was ready for operation. No further adjustments of sample flow rates, analyzer zero or span adjustments, or other critical CEM operating parameters were made until testing and post test calibration were complete.

Each sampling run was one hour. At the completion for each test run, calibration gases were used to check between test runs. A zero and the upscale calibration gas closest to the actual emission concentrations were used for the pretest and post test calibrations.

3.4 Flue Gas Moisture Content - EPA Method 4

The flue gas moisture content was determined in conjunction with the EPA Method 26A trains according to the sampling and analytical procedures outlined in EPA Method 4. (NOTE: In order to maintain isokinetic sampling, the sampling rate used may have been required to temporarily exceed the EPA Method 4-specified maximum sampling rate of 0.75 CFM, based on observed stack gas pitot readings.) The impingers were connected in series and contained reagents as described below. The impingers were contained in an ice bath in order to assure condensation of the moisture in the flue gas stream. Any moisture that is not condensed in the impingers was captured in the silica gel, therefore all moisture was weighed and entered into moisture content calculations.

3.5 Hydrogen Fluoride and Diatomic Chlorine - EPA Method 26A

Sampling and analytical procedures were those outlined in EPA Method 26A to determine primarily diatomic chlorine (Cl₂) emissions and hydrogen fluoride (HF) emissions at main stack outlet sampling locations. Duplicate simultaneous trains (a.k.a "paired trains") for each test run were used to determine precision.

Sample was collected through a heated glass probe, followed by a heated Teflon filter, where stack gas HF and $\rm Cl_2$ were collected in a series of chilled impingers. The sampling train impingers contained 100 ml of 0.1N sulfuric acid in the first and second, an empty third impinger, 100 ml of 0.1N NaOH in the fourth and fifth and 200 grams of silica gel in the last impinger

Sampling was conducted isokinetically $(\pm 10\%)$ with readings of flue gas parameters recorded at traverse points selected according to EPA Method 1. Leak-checks on the Method 26A sampling train were performed before and after each sampling run and optionally for any port change. The sampling train leak-checks and leakage rate (where applicable) were documented on the field test data sheet for each respective run. All leak checks were acceptable.

The glass button hook nozzle and probe liner was constructed of borosilicate glass. The filter holder was constructed of borosilicate glass with a Teflon frit filter support and a sealing gasket. A PTFE-bonded glass fiber filter was used. The probe and filter housing were heated to above 248°F and not exceed an upper boundary of 273°F. Probe liners and filter holders were cleaned thoroughly prior to testing.

The Method 26A trains was operated isokinetically for a minimum of 60 minutes and collected a minimum of 1 dry, standard cubic meter (DSCM). Pretest preparations, preliminary determinations, and leak check procedures were those outlined in EPA Method 5.

After completion of sampling the train was leak checked and transferred to the sample recovery trailer. All leak checks were acceptable. The impingers were weighed to determine moisture gain in accordance with EPA Method 4.

Sample recovery involved quantitative recovery of the sulfuric acid impinger contents and the NaOH impinger contents into separate tare-weighed, precleaned polyethylene sample containers.

The nozzle, probe, filter and filter housing were not recovered.

The contents of sulfuric acid impingers, including the contents if any of the empty (2nd knockout or third) impinger were quantitatively transferred to the tare-weighed, precleaned polyethylene sample container, followed by three rinses with deionized (DI) water of the impingers and all connecting glassware (including the connecting glassware to the first impinger) placed in the same H₂SO₄ container. The container was labeled and weighed to determine the final sample volume.

The contents NaOH impingers were quantitatively transferred to a second tare-weighed, precleaned polyethylene sample container, followed by three rinses with DI water of the impingers

and all connecting glassware placed in the same NaOH container. The container was labeled and weighed to determine the final sample volume.

Sample recovery from each train included:

- 1. Container No. 1 Contents of H₂SO₄ impingers and knockout impinger and, and DI rinse of impingers and connecting glassware; and
- 2. Container No. 2 Contents NaOH impingers, and DI rinse of impingers and connecting glassware.

Additional quality control consisted of collecting and analyzing a field blank train for every three test runs. The blank train was assembled from a used train, leak checked and sat for a period equal to the sampling time (i.e, 1-hr). The blank train data was to be used to determine the method detection limit for the test program target analytes (ie. The lowest number that could be detected), and compared to stack emissions.

Reagent blanks of 0.1 N H₂SO₄, 0.1N NaOH, and DI water were collected and archived for later analysis should there be any issues with the field blank train samples

The H₂SO₄ impinger solutions were analyzed using ion chromatography techniques for fluoride ions (F) (EPA SW-9057). Duplicate analyses performed on the samples and field blanks. Precision was demonstrated by duplicate injection of each sample, the results of each individual analysis being within 5% of their mean to be acceptable.

The NaOH impinger solutions was treated with sodium thiosulfate to ensure complete conversion of hypochlorous acid (HClO) to chloride ions (Cl⁻). The resulting solution was analyzed using ion chromatography techniques for chloride ions (EPA SW-9057). Duplicate analyses was performed on the samples and field blanks. Precision was demonstrated by duplicate injection of each sample, the results of each individual analysis being within 5% of their mean to be acceptable

All EPA Method 26A HF/Cl₂ samples were analyzed by Element One of Wilmington NC. Refer to Section 1, Figure 1.1 of the RTR Sampling and Analytical Protocol for contact information.

For this test program, the relative deviation (RD) was to be calculated as described in EPA Method 30B between the Cl₂ concentrations measured with the paired trains. A criteria of a less than 10% relative deviation or 0.2 ppm absolute difference was required.

The absolute differences between the Cl_2 concentrations measured with the paired trains is summarized in Table 3.1. For each paired run, Cl_2 concentrations met the 0.2 ppm absolute difference criteria.

TABLE 3.1 PAIRED METHOD 26A SAMPLING TRAIN DIATOMIC CHLORINE CONCENTRATION COMPARISON RESULTS FOR THE KILN 1 MAIN STACK; DECEMBER 8, 2023

Run	Time	Train A Diatomic Chlorine Concentration (ppm,dry)	Train B Diatomic Chlorine Concentration (ppm,dry)	Absolute Difference (ppm,dry)
Run 1	13:24-14:34	< 0.05	<0.05	0.00
Run 2	14:53-16:02	<0.06	<0.05	0.01
Run 3	16:20-17:26	< 0.05	< 0.05	0.00

3.6 Hydrogen Cyanide and Hydrogen Fluoride - EPA Method 320

EPA Method 320 was performed to determine emissions of concentrations of HCN and HF. Three, 1-hour sampling runs were conducted under each representative process and control system operating conditions.

The gas sample was extracted from the stack through a glass-lined probe and filter heated to 375° F. For external calibration checks and analyte spikes, the gases were introduced in front of the heated filter. Any excess calibration gas was diverted through the sample probes into the source. Outflow of gas from the heated filter enclosure was transported through a Teflon sample line heated to 375° F. For these sources approximately 300' of sample line was required. The heated sample line was connected directly to the FTIR sample cell. Using heat-traced Teflon tubing the exit of the FTIR cell was connected to a sample pump with a heated stainless steel pump head. The pump discharge was directed to a proprietary chiller-type gas conditioner to remove moisture prior to delivery sample gas to the O_2/CO_2 monitor.

The distribution of the gas sample to the monitors was accomplished using a panel equipped with valves and rotometers. The gas sample was then divided and directed to the O_2/CO_2 analyzer.

FTIR sample cell was maintained at 191 °C and connected to a MKS Instruments Multigas 2030 Fourier Transform Infrared Spectrometer and Detector.

The FTIR spectrometer measured vapor phase organic or inorganic compounds which absorb energy in the mid-infrared spectral region, about 400 to 4000 cm $^{-1}$ (25 to 2.5 μ m). Continuous measurement were made by matching sample absorbance bands with bands in reference spectra, and comparing sample band intensities with reference band intensities.

The principle limitation to FTIR spectroscopy are the presence of interfering compounds that also absorb energy in the mid-infrared spectral region. In a cement kiln stack gas matrix, water vapor (H_2O) and carbon dioxide (CO_2) are the primary interferents that must be incorporated into the identification and quantitation method.

The FTIR software performs the computation for a single compound by subtracting all the other compounds (interferants and target) from the absorbance spectra and quantifies the single compound based on the remain absorbance. The FTIR software provides a Standard Error Calculation (SEC) value that is an indication of how well the identification and quantitation has been performed. A high SEC indicates that other interferants have not been accounted for in the analysis method, and a low SEC is indicative of greater confidence measurement.

The instrument is operated with a resolution of 0.5 cm⁻¹ with 4x zero filling. Beer-Norton Medium apodization is used with amplitude phase correction.

For this RTR test program, following specific QA/QC activities for EPA Method 320 were performed and are summarized in Table 3.2

3.6.1 Laboratory QA/QC Activities Before Field Test Program

Before field testing occurs, the following QA/QC activities were conducted;

- Seven consecutive samples of dry nitrogen <u>through the sampling system</u> was acquired and used to calculate the standard deviation for each of the test program target analytes multiplied by a factor of 3. These data were considered representative of detection limits (DL) for this test program and were below the 0.5 ppm required DL for both HCN and HF;
- 2) From these seven dry nitrogen samples, the results for the Signal-to-Noise Ratio (SNR) @ 2500 cm⁻¹ was >2500, at 64 scans and the results for single beam intensity @ 2500 cm⁻¹ was >0.9; and
- 3) The HCN calibration gases was analyzed directly and the FTIR responses agreed with tag value within 5%

3.6.2 QA/QCActivities During Field Test Program

During the field test program, following QA/QC activities were be performed and criterium met;

- 1) On each test day prior to any testing, an instrument background was collected using dry nitrogen directed to the gas cell. The background was collected with at least 128 scans;
- The probe, filter, sample line and all sample system components in contact with effluent were be maintained at or above 375°F or 191°C (consistent with FTIR calibration temperature) to avoid any possible "cold spots;"
- A system zero with all sampling system components at operating temperature was performed by injecting nitrogen at the sample probe and through sample filter and entire measurement system. After zero equilibration was achieved, all measurement components were quantified for at least 128 scans;
- 4) The sample probe was position at effluent measurement point and sampling was continue until equilibration of the measurement system has been achieved. At this point, the effluent concentrations was quantified with two consecutive 64-scan samples as the initial native concentration for the dynamic spike;
- Analyte spiking was conducted for HCN before the first test run, and after each successive test run for a minimum of 4 spikes per test condition. These results were used to determine accuracy and are summarized in Table 3.3;
- The spike gas injections was maintained at 10% or less of total sample volume. The spike gas concentration and flow rate was be selected to approximately double the native effluent concentration. Spike recovery results were within $\pm 20\%$ of the expected value. An SF₆ tracer was used to calculate the exact spike gas dilution ratio of 10% or less;

TABLE 3.2 FTIR PRETEST AND FIELD TEST QA/QC SUMMARY

Spectrum	HCN	SF6	HF	SNR 2500	sBeam @2500				
Seven consecutive samples	of dry nitroge	n for detection lin	nit						
SPC 000837.LAB	-0.051		-0.002	6223.51	1.42				
SPC 000838.LAB	-0.032		-0.000	5809.30	1.42				
SPC 000839.LAB	0.046		-0.017	3759.60	1.42				
SPC_000840.LAB	-0.011		0.016	4373.66	1.42				
SPC000841.LAB	0.080		0.002	5347.95	1.42				
SPC000842.LAB	0.059		-0.012	5012.46	1.42				
SPC000843.LAB	-0.029		-0.006	4706.13	1.42				
Standard Deviation X 3	0.156		0.032						
Averages				5033.23	1.42				
HCN Standard (CC76822	2; 49.9 ppm HC	CN/5.0 ppm SF6)							
SPC 005757.LAB	49.24	4.86							
SPC 005758.LAB	49.31	4.85							
SPC005759.LAB	49.13	4.85							
Averages	49.23	4.85							
Residuals for Post HCN ar	nalyte spike nat	tive scans							
SPC 005798.LAB									
Concentration	1.27		-0.02						
MDC3	0.22		0.14						
MDC3%	NA		NA						
SPC 005799.LAB				1					
Concentration	1.22		-0.02						
MDC3	0.18		0.15						
MDC3%	NA		NA						
Final SNR @ 2500 cm ⁻¹ and single beam intensity @ 2500 cm ⁻¹									
SPC006044.LAB				5643.1	1.02				

- 7) After the dynamic spike, nitrogen was sent through the sampling system until all traces of spike gas removed and lines proven below DL for target analytes;
- The nitrogen purge was discontinued and the sampling system was allowed to equilibrate with stack gas before starting a test run. The first two consecutive 64-scan samples of a sample run was used for the final native concentration. Residual results for HCN and HF were verified to be less than 0.2-0.3 ppm for data acceptance, or less than 5% of the measured value, whichever was least restrictive.
- 9) The final SNR @ 2500 cm⁻¹, at 64 scans, and the results for single beam intensity @ 2500 cm⁻¹ were verified to met the >2500 and >0.9 criterium; respectively.

TABLE 3.3 ETHYLENE CALIBRATION TRANSFER STANDARD (CTS) AND HYDROGEN CYANIDE ANALYTE SPIKING TEST RESULTS FOR THE KILN 1 MAIN STACK; DECEMBER 8, 2023

Run	Time	Average Native Hydrogen Cyanide Concentration (ppm,wet)	Spike plus Average Hydrogen Cyanide Native Concentration (ppm,wet)	Hydrogen Cyanide Spike Recovery	CTS Error
Pre Run 1	13:05-13:16	1.16	4.75	85.1%	-2.0%
Post Run 1	14:23-14:43	1.12	4.34	83.8%	
Post Run 2	15:56-16:12	1.24	4.12	82.1%	
Post Run 3	17:38-17:54	1.00	3.71	83.3%	-2.5%

4. QA/QC PROCEDURES AND RESULTS

The objective of a quality assurance/quality control (QA/QC) program is to assure that the precision and accuracy of all environmental data generated by DEECO for clients are commensurate with data quality objectives (DQO's). DQO's are based on a common understanding of the intended end use(s) of the data, the measurement process, and the availability of resources. Once DQO's are established, formally or informally, QC protocol can be defined for the measurements.

In this project, the final data user is Holcim. The data quality objectives in this project are to generate scientifically sound data to be used for compliance purposes.

4.1 Sampling Equipment

All of the sampling equipment used was calibrated according to the procedures outlined in the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, EPA-600/4-77-027b.

4.1.1 Manual Sampling Equipment Calibrations

For sampling Methods 1, 2, and 4 the procedures and equipment used to measure stack gas velocity and temperature measurements and the metering system used to maintain constant rate sampling conditions and to determine the sample gas volume were subjected to pretest and posttest calibrations and/or inspections as required by the appropriate EPA methods.

<u>Barometer</u> - Barometric pressure values were obtained from a calibrated barometer, verified by phone call to a local airport, and corrected for elevation to sample port level (0.01 inches Hg per 10 ft. elevation).

<u>Pitot Tubes</u> - Each pitot tube used in sampling meets the design specifications for type-S pitot tubes in EPA Method 2. Therefore, a maximum value baseline coefficient (C_p) of 0.84 is assigned to each pitot tube. Calibration by the manufacturer for pitot face-opening alignment included measuring the external tubing diameter (dimension D_t), the base-to-opening plane distance (dimensions P_a and P_b), and the face opening misalignment angles, with all terms as described in EPA Method 2. Pitot tubes were visually inspected for structural integrity at the completion of each test. Inspection sheets for pitot tubes are included in Appendix E.

Calibration Meter and Metering System - The secondary reference meter equipment arrangement for calibration is shown in Figure 5.7 of EPA Method 5. The prescribed procedures were followed. A wet test meter with a 1 ft³/rev capacity and \pm 1 percent accuracy is used as the primary calibrant. The dry gas meter's pump is run for a minimum of 5 minutes at a flow rate of 0.35 cfm to condition the interior surface of the wet test meter. Leak checks are performed and if satisfactory, triplicate runs at each of no less than five different flow rates are done. A calibration curve is prepared and the meter is recalibrated after 200 hours of operation or annually, whichever comes first.

The calibration set-up for the dry gas metering system using the secondary reference meter in lieu of the wet test meter is given in Figure 5.5 of EPA Method 5. A leak check of the metering system before calibration was performed as shown in Figure 5.4 of EPA Method 5. The metering systems's pump is operated for 5 minutes at an orifice manometer setting of 0.5 inches H_20 to heat up the pump and system to stabilize the meter inlet and outlet temperatures. Values for the orifice setting (delta H), wet test meter volume (V_w), corresponding dry test meter volume (V_d), dry test meter inlet and outlet gas temperatures (t_{di} and t_{dn}), and time are recorded for the initial calibration. Then the ratio of the wet test meter to the dry test meter (gamma) and the orifice pressure differential that equates to 0.75 cfm at standard conditions (delta H@) are calculated.

A post-test meter calibration was made on the dry gas meter used during the test to check its accuracy against the pre-test calibration. This post-test calibration check was made using the average orifice setting obtained during each test run and setting the vacuum at the maximum value obtained during each test run. These test runs were made against DEECO's secondary reference dry gas meter which was calibrated against a wet test meter. The calibration data sheets for the dry gas meters are included in Appendix E.

Thermocouples and Digital Indicators - Thermocouples were calibrated by comparing them against an ASTM-3F mercury-in-glass thermometer at approximately 32°F (ice water), ambient temperature, and at approximately 220°F. Each thermocouple was calibrated against temperature ranges to which it is typically exposed during test conditions, and they agreed within 1.5 percent (expressed in °R) of the reference thermometer throughout the entire calibration range. Also, thermocouples were checked at ambient temperature at the test site to verify calibration. The calibration data sheets for the thermocouples are included in Appendix E.

<u>Pretest and Posttest Leak Checks of Sampling Trains</u> - Each Method 4 sampling train was subjected to pretest leak checks and posttest leak checks. For all sampling runs the posttest leak checks were acceptable (less than 4% of the sampling rate at the highest vacuum recorded during the test run).

4.2 Analytical QA/QC Results

Analytical measurements of precision and accuracy were made on stack gas samples, and are summarized in a separate report.

Appendix A Emission Summary Tables

Company: Holcim Joppa IL Source: Kiln 1 Main Stack Job ID: 23-3318 Train Type: M26A

Average	44.060 0.980 68.2 1.64 29.30	42.424	12.8 13.8 73.4 194.9 78.4 7.8 30.72	307.9 -0.70 29.25 0.850 0.85	60 96.1	56.75 197,733 5,599 122,517 3,469
3B 12/08/23 1620-1726	551.315 596.537 0.000 45.222 0.975 72.8 1.66 29.30	42.950 1.216	12.6 13.7 73.7 183.8 78.8 7.9 30.70	307.8 -0.70 29.25 0.857 0.85 58.56	0.250 60 96.6	102 in. ID 56.75 199,400 5,646 123,500 3,497
3A 12/08/23 1620-1726	655.456 699.652 0.000 44.196 0.985 71.3 1.67	42.527 1.204	12.6 13.7 73.7 183.8 76.4 7.8 30.70	307.8 -0.70 29.25 0.857 0.85	0.250 60 95.6	102 in. ID 56.75 199,300 5,644 123,600 3,500
2B 12/08/23 1453-1602	505.252 551.159 0.000 45.907 0.975 69.6 1.70 29.30	43.868 1.242	12.9 13.5 73.6 197.5 79.9 7.9 30.68	308.3 -0.70 29.25 0.859 0.85	0.250 60 98.4	102 in. ID 56.75 200,000 5,663 123,700 3,503
2A 12/08/23 1453-1602	611.434 655.269 0.000 43.835 0.985 70.0 1.67	42.283 1.197	12.9 13.5 73.6 197.5 76.5 7.8 30.68	308.3 -0.70 29.25 0.859 0.85	0.250 60 94.8	102 in. ID 56.75 199,900 5,661 123,800 3,506
1B 12/08/23 1324-1434	462.289 504.750 0.000 42.461 0.975 65.1 1.58	40.911 1.158	12.9 14.2 72.9 203.3 70.2 7.5 30.79 29.83	307.5 -0.70 29.25 0.835 0.85	0.250 60 94.2	102 in. ID 56.75 193,800 5,488 120,600 3,415
1A 12/08/23 1324-1434	568.751 611.492 0.000 42.741 0.985 60.1 1.58	42.003 1.189	12.9 14.2 72.9 203.3 79.1 8.1 30.79	307.5 -0.70 29.25 0.835 0.85 56.98	0.250 60 97.2	102 in. ID 56.75 194,000 5,493 119,900 3,395
	Initial Meter Volume, ft³ Final Meter Volume, ft³ Intra-Port Leak Check Volume, ft³ Total Sample Volume, cf DGM Calibration Factor Average DGM Temp, F Average DGM delta H, "H2O Barometric Pressure, "Hg	Corrected Sample Vol,dscf Corrected Sample Vol,dscm	Oxygen, % Carbon Dioxide, % Nitrogen, % Stack Gas Excess Air, % Total Moisture Catch Weight, grams Stack Gas Moisture, % Stack Gas Dry Molecular Weight, Ib/Ibmole Stack Gas Wet Molecular Weight, Ib/Ibmole	Average Stack Temp, F Stack Static (Gauge) Pressure, "H2O Stack Gas Actual Pressure, "Hg Average Sqrt delta P Pitot Tube Coefficient Stack Gas Velocity, ft/second	Nozzle Inside Diameter, inches Total Sample Time, min Isokinetic Rate, %	Stack Dimensions Stack Area, sq ft Stack Gas Flow Rate, acfm Stack Gas Flow Rate, acmm Stack Gas Flow Rate, dscfm Stack Gas Flow Rate, dscfm

pass

pass

pass

pass

pass

pass

ALT-009 Post Test Calibration

Company: Holcim Joppa II. Source: Kiln 1 Main Stack Job ID: 23-3318 Train Type: M26A "ND()" denotes values below detection limits Note: Average EXCLUBES Non-detect runs' results

Hydrogen Fluoride

Chlorine

tverage	0.243) 0.202) 0.347) 0.176) 0.243) 0.217) 0.212)	0.179) 0.149) 0.256) 0.051) 0.068
¥.		
38 12/08/23 1620-1726	0.248 0.204 0.342 0.179 0.245 0.215 0.094	0.176 0.145 0.242 0.127 0.002 0.082 0.043
	~~~~~~~ <u>z</u>	****
3A 12/08/23 1620-1726	0.241 0.200 0.335 0.175 0.241 0.241 0.093 64.40	0.168 0.140 0.234 0.122 0.047 0.079
	ğğğğğğğğğ	
2B 12/08/23 1453-1602	0.26 0.209 0.364 0.186 0.252 0.224 0.097	0.17 0.137 0.238 0.122 0.046 0.081 0.081
	<u> </u>	
2A 12/08/23 1453-1602	0.251 0.210 0.210 0.364 0.252 0.224 0.097 64.40	0.202 0.169 0.293 0.150 0.057 0.099 0.099
	$\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}$	
~ 4		
18 12/08/23 1324-1434	0.227 0.196 0.341 0.166 0.236 0.410 0.199 0.089	0.178 0.154 0.267 0.030 0.001 0.091 0.069
	222222222	
8 g		
1A 12/08/23 1324-1434	0.23 0.193 0.336 0.163 0.233 0.404 0.197 0.087 64.40	0.181 0.152 0.264 0.052 0.090 0.090 0.094
		ND( ND( ND( ND( ND( ND( ND( ND(
aetecton innis On-detect runs' results	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm Conc., mg/dscm @1% O2 Conc., ppmvd Conc., ppmvd @7% O2 Conc., ppmvd @12% CO2 Conc., ppmvd @12% CO2 Emission Rate, lb/hr Cilrker Rates (tph and lbs/ton)	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm Conc., mg/dscm @7% O2 ND( Conc., mg/dscm @12% CO2 ND( Conc., ppwvd Absolute Difference, ppmvd (<0.2 required) Conc., ppmvd @7% O2 ND( Emission Rate, bb/d) Conc., ppmvd @12% CO2 ND( Emission Rate, bb/d) Conc., ppmvd @12% CO2 ND( Conc., ppmvd W1) ND( Conc., ppmvd W1) ND( Conc., ppmvd W1)
aetecton ilmus on-detect runs' i		

1		
Holcim; Joppa	Main Stack	

C02%	12.402	12.468	12.575	12.835	12.606	12.659	12.855	13.114	12.6/7	12.604	12.805	12.974	12.964	13.000	13.001	12.989	13.113	13.090	13.213	13.273	13.190	13.051	13.044	13.335	13.099	13.064	13.098	13.127	10.864	11.325	11.529	12.031	12.277	12.573	12.479	12.578	12.663	12,512	12.532	12.170	12.866	12.839	12.873	13.141	13.079	13.196	13.205	12.886	12.717	M26A Moisture	
H2O% (40) 1910 4.513	5.219 4.066	3.829	3.770	3.751	3.870	3,741	3.674	3.659	4.461	4.377	5.446	4.041	3.714	3.858	3.841	878.6	3.933	3.872	3.858	4.270	4.108	4.155	4.056	3.843	3.803	3.712	4.505	3.791	15.919	15.870	13.629	10.857	8.900	7.942	7.654	7.207	6.650	6.629	6.377	6.151	6 178	5.824	5.666	5.425	5.361	5.344	5.348	5.475	5.896	7.8	
Ethylene (	0.764	0.784	0.729	0.852	0.792	0.832	0.810	0.846	0.810	0.870	0.885	0.838	0.825	0.839	0.795	0.822	0.815	0.822	0.871	0.844	0.901	0.882	0.887	0.917	0.855	0.828	0.875	0.873	0.819	0.995	1.012	0.963	0.996	1.028	1,000	0.969	0.939	0.927	0.998	0.995	0.960	0.811	0.912	0.948	0.940	0.919	0.970	0.908	0.879	0.501	
SF6	0.006	0.004	0.008	0.005	0.004	0.004	0.005	0.003	0.004	0.007	0.005	0.002	900.0	0.004	0.004	0.003	0.003	0.000	0.003	0.003	0.003	0.003	0.000	0.003	0.001	0.005	0.004	0.005	0.003 400 400	-0.002	-0.002	0.001	0.003	0.003	0.002	0.004	0.003	0.003	0.004	0.003	0.000	0.006	0.003	0.004	0.003	0.003	0.004	0.003	0.004	0.010	
HF ppm (10) 191C -0.012	0.009	-0.019	-0.015	-0.008	0.001	-0.018	-0.017	0.030	670.0	0.000	-0.008	-0.023	-0.014	-0.012	-0.007	-0.013	-0.007	-0.012	600:0-	-0.012	-0.018	0.019	0.0.0	0.019	-0.025	-0.020	0.002	-0.017	0.130	-0.004	-0.011	0.002	-0.042	-0.050	0.00	-0.003	-0.023	-0.013	-0.027	-0.035 4.004	0.00	-0.039	-0.046	-0.054	-0.037	-0.039	0.041	-0.037	0.060	0.013	0.0002
HCN PCA 191c R1 191c	1.131	1.064	1.172	0.997	1.142	1.012	1.152	0.877	1.27	1 083	1.101	1.266	1.194	0.922	1.256	1.301	9060	1.049	0.910	1.118	1.206	1.187	1.143	0.991	1.034	1.084	1.100	1.163	2.818	1.333	0.758	0.767	0.894	0.719	1.040	1.110	706.0	1.128	0.910	0.094	0.873	1.196	1.255	1.197	1.137	1.095	1.082	1.011	1.082 <	0	> 60000
'	3 13:24:46.338 3 13:25:50:227	· ~	·	3 13:29:01.945		***	·- ·	3 13:34:21.850			. 4	4	4	'	- 1	3 13:45:00.587		$\overline{}$	_	~	<b>-</b>	₹- ₹	3 13:52:27.935	* 4~	· 4	~	$\overline{}$	<b>₹</b>	3 14:00:59 194		-	4	<b></b> 1	3 14:06:18.970 2 14:07:22 622			$\overline{}$	Ψ,		3 14:13:46:025	•	4	Υ-	Ψ,	3 14:20:09:435			14:24	(actual) (ppm.drv @7% O2)		(Ibs/ton clinker)
Date 12/08/23	12/08/23	12/08/2	12/08/2	12/08/23	12/08/2	12/08/2	12/08/2	12/08/2	12/00/21	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/2	12/08/23	12.9%	120,250	64.40
. 🛵 📗	SPC_005807.LAB	SPC_005809.LAB	SPC_005810.LAB	SPC 005811.LAB	SPC_005813.LAB	SPC_005814.LAB	SPC_005815.LAB	SPC_005816.LAB	SPC_003617.LAB	SPC 0058191 AB	SPC 005820.LAB	SPC_005821.LAB	SPC_005822.LAB	SPC 005823.LAB	SPC 005824.LAB	SPC_005826.LAB	SPC 005827.LAB	SPC_005828.LAB	SPC_005829.LAB	SPC 005830.LAB	SPC_005831.LAB	SPC_005832.LAB	SPC_005833.LAB	SPC 005835.LAB	SPC_005836.LAB	SPC_005837.LAB	SPC_005838.LAB	SPC_005839.LAB	SPC_005840.LAB	SPC 005842.LAB	SPC 005843.LAB	SPC_005844.LAB	SPC_005845.LAB	SPC_005846.LAB	SPC 005848 LAB	SPC 005849.LAB	SPC_005850.LAB	SPC_005851.LAB	SPC_005852.LAB	SPC_0058541AB	SPC 005855.LAB	SPC 005856.LAB	SPC_005857.LAB	SPC_005858.LAB	SPC_005859.LAB	1	SPC 005862.LAB	5863	Main Ouf Run 1 Oxygen	DSCFM	Clinker (tons/hr)

Ethylene (100,3000) 191C H2O% (40) 191C CO2% (40) 191C 0.0544
0.0553
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563
0.0563 SF6 (10) 191C 0.0094 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0. HF ppm (10) 191C 0.0003 HCN PCA 191c R1 191c 0.0866 0.1002 0.0804 0.0807 0.0807 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0.0808 0. (ppm,dry @7% O2) (lbs/hr) (lbs/ton clinker) Date Time

12/08/23 14:55:00.917

12/08/23 14:55:04.391

12/08/23 14:55:04.391

12/08/23 14:56:08.331

12/08/23 14:56:08.232

12/08/23 15:05:23 16:05:23.892

12/08/23 15:05:23 897

12/08/23 15:05:23 897

12/08/23 15:05:23 897

12/08/23 15:05:23 897

12/08/23 15:05:23 897

12/08/23 15:05:23 897

12/08/23 15:05:23 897

12/08/23 15:05:23 897

12/08/23 15:05:23 897

12/08/23 15:10:10:3467

12/08/23 15:10:33 467

12/08/23 15:10:34 687

12/08/23 15:10:34 687

12/08/23 15:10:34 687

12/08/23 15:10:34 687

12/08/23 15:10:34 687

12/08/23 15:10:34 687

12/08/23 15:23:50.287

12/08/23 15:23:50.287

12/08/23 15:23:50.287

12/08/23 15:23:50.287

12/08/23 15:23:50.287

12/08/23 15:23:50.287

12/08/23 15:23:50.287

12/08/23 15:32:31.17

12/08/23 15:36:31.17

12/08/23 15:36:31.17

12/08/23 15:36:31.17

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:36:31.280

12/08/23 15:41:56.885

12/08/23 15:41:56.885

12/08/23 15:41:56.885

12/08/23 15:41:56.885

12/08/23 15:41:56.885

12/08/23 15:41:56.885 (actual) 15:47:16.171 15:51:31.825 15:52:35.701 15:49:23.983 15:50:27.883 12/08/23 1 12/08/23 1 12/08/23 1 12/08/23 1 12.9% 123,750 64.40 SPC 000913.LAB SPC 000914.LAB SPC 000914.LAB SPC 000916.LAB SPC 0005919.LAB SPC 000592.LAB SPC 000592.LAB SPC 000592.LAB SPC 000592.LAB SPC 0005924.LAB SPC_005932.LAB SPC_005931.LAB SPC_005934.LAB SPC_005935.LAB SPC_005936.LAB SPC_005937.LAB Spectrum SPC_005890.1AB SPC_005891.1AB SPC_005893.1AB SPC_005894.1AB SPC_005894.1AB SPC_005894.1AB SPC_005894.1AB SPC_005894.1AB SPC_005899.1AB SPC_005899.1AB SPC_005900.1AB SPC_005900.1AB SPC_005900.1AB SPC_005900.1AB SPC_005900.1AB SPC_005900.1AB SPC_005900.1AB SPC_005900.1AB SPC_005900.1AB SPC_005939.LAB SPC_005940.LAB SPC_005941.LAB SPC_005942.LAB SPC_005944.LAB SPC_005945.LAB Main Out Run 2 SPC_005943.LAB SPC_005911.LAB SPC_005912.LAB Clinker (tons/hr) Holcim: Joppa II. Main Stack Oxygen DSCFM Run 2

12.945 12.466 12.426 12.426 12.149 12.104 12.104 12.263 11.827 11.891 11.891 11.891 11.891 11.891 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11.893 11

5.353 5.755 5.755 7.381 7.282 7.381 7.282 7.381 7.282 7.282 7.210 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211 7.211

M26A Moisture

Holcim; Joppa It. Main Stack

C CO2% (40) 191C 12.889	12.820	12.636	12.804	12.741	12.456	12.826	12.596	12.515	12.388	12.643	12.566	12.620	12.587	12.455	12.555	12.557	12.399	12.032	11.828	12.295	12.319	12.669	12.488	12.459	12.634	12.527	12.331	12.303	12.358	12.111	12.283	12.341	12.238	12.300	12.207	12.151	12.315	12.311	12.240	12.238	12.387	12.346	12.287	12.384	12.463	12.455	M26A Moisture	
Ethylene (100,3000) 191C H2O% (40) 191C 0.978	7.070	7.658	7.278	7.744	8.586	7.888	8.550	7.887	8.689	7.571	7.086	6.920	7.522	8.345	7.672	7.261	7.354	10.210	11.323	8.435	6.357	6.367	6.170	6.148	6.244	7.446	7.137	6.735	6.977	7.971	7.471	7.225	7.918	7.770	7.613	8 250	8.099	7.740	7.699	7.316	7.494	7.129	9.013	7.980	7.168	909.7	7.9	
Ethylene (100,3000) 1 0.978	0.924	0.936	1.059	1.070	1.026	1.006	0.976	7.067	1.005	0.954	0.956	0.904	0.950	0.952	0.973	0.904	1.896	0.864	0.890	0.978	0.980	0.930	0.999	0.969	0.872	0.885	0.911	0.954	0.917	0.923	0.304	0.896	0.896	0.917	0.867	0.940	0.936	0.866	0.890	0.919	0.857	0.911	1.007	0.934	0.964	1,719	0.554	
91C SF6 (10) 191C 0.002	0.004	0.003	0.003	0.004	0.004	0.002	0.004	0.003	0.000	0.003	90.00	0.001	0.009	0.001	0.004	0.003	0.003	-0.003	0.001	0.001	0.005	0.003	0.006	0.005	0.003	0.002	9000	0.006	0.003	0.001	0.004	0.006	0.003	0.000	0.001	0.00	0.001	0.002	0.004	0.002	0.003	0.004	0.003	-0.002	0.001	0.005	0.009	
1c HF ppm (10) 191C -0.022	-0.018	-0.026	-0.028	-0.037	-0.058	-0.055	-0.051	0.058	-0.066	-0.038	-0.039	-0.029	-0.031	-0.033	-0.026	-0.031	0.031	-0.031	-0.020	-0.050	-0.024	-0.034	-0.028	-0.014	-0.018	-0.048	-0.033	-0.034	-0.017	-0.031	-0.037	-0.036	-0.031	-0.046	0.048	-0.038	-0.043	-0.038	-0.034	-0.024	-0.034	-0.044	-0.057	-0.077	0.040	< 0.058		< 0.0002
HCN PCA 191c R1 191c 1.035	0.956	0.919	1.096	0.873	0.823	0.903	1.026	0.913	0.942	0.979	0.925	0.961	0.987	0.874	0.980	0.993	0.762	0.840	0.701	1.016	1.057	1.112	0.895	1.035	1.027	0.892	1,172	0.897	0.951	0.873	1.029	0.963	0:630	1.097	0.992	1.081	0.962	1.070	0.952	1.053	1.035	1,056	0.880	0.927	1.007	1.731	0.537	0.008
Time 16:40:19.930	, ,	16:42:28.091	_	~ ,	16:47:47.609	_	- 1	16:50:58.989		•	•		16:58:26:657	-			17:02:41.928		-		17:08:03:510	-	-			17:14:24.847		-	•	17:19:44.356	,				17:26:07.767			•		17:32:31.185			_		17:38	(actual) (ppm.drv @7% O2)		(lbs/ton clinker)
Date 12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	•		•	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12/08/23	12.6%	123,550	64.40
Run 3 Spectrum SPC_005989.LAB	SPC_005990.LAB	SPC 0059921.AB	SPC_005993.LAB	SPC_005994.LAB		SPC_005997.LAB	SPC_005998.LAB	SPC_005999.LAB	SPC 006001.LAB	SPC_006002.LAB	SPC_006003.LAB	SPC_006004.LAB	SPC_006005.LAB	SPC_006007.LAB	SPC006008.LAB	SPC_006009.LAB	SPC 006010.LAB	SPC 006012.LAB	SPC_006013.LAB	SPC_006014.LAB	SPC_UNGUIS.LAB	SPC_006017.LAB	SPC_006018.LAB	SPC_006019.LAB	SPC_006020.LAB	SPC_006021.LAB	SPC 006023.LAB	SPC_006024.LAB	SPC_006025.LAB	SPC_006026.LAB		SPC 006029.LAB		SPC_006031.LAB	SPC_006032.LAB	SPC 006034 LAB	SPC 006035.LAB	SPC_006036.LAB	SPC_006037.LAB	SPC_006038.LAB	SPC 006040.LAB	SPC 006041.LAB	SPC_006042.LAB	SPC_006043.LAB	SPC006044.LAB		DSCFM	Clinker (tons/hr)

Appendix B

Field Data and CEM/FTIR Data

# EPA Method 1 Traverse Point Location for Circular Ducts

Plant	LaFar	ge Joppa Plant				Exar	nole	e For	
City	Grand	Chain		itate	Illinois		ynt		4
Location		Kiln 2 Stack						Downstream	
Stack ID (ir	nches)	102							
Nipple Len	gth	35					•	Port Level	
Nearest Up	stream	Disturbance (Ben	d, ID FAN, etc	)					
Distance (i	nches)	816	Type of Disturba	ice	Stack Breaching				
Nearest Do	wnstre	am Disturbance (E	Bend, or Stack	Out	let)			Upstream	
Distance (i	nches)	1344	Type of Disturbat	ice	Stack Outlet		ſΊ		ZINTI - RI
Sampler	scs		Date 12/18/1	7			Flow		
(Mark with an	"x")					Stack Sch	emat	tic (Draw by ha	and after printing)
Particulate	articulate Traverse?				No				
							_		
Number of	Travers	e <u>Points</u> Require	d	6					

Traverse Point	Fraction of Stack	Stack ID	Diameter Frac.	Nipple Length	Traverse Point Distance
Number	Internal Diam.	(Inches)	Stack ID	 (Inches)	from outside Nipple
1	0.044	102	4.49	35	39 1/2 in.
2	0.146	102	14.89	35	49 7/8 in.
3	0.296	102	30.19	35	65 1/4 in.
4	0.704	102	71.81	35	106 <u>3/4</u> in.
5	0.854	102	87.11	35	122 1/8 in.
6	0.956	102	97.51	 35	132 1/2 in.
					· .

## Cyclonic Flow Check Data Sheet

PLAN	T AND CITY		DATE,		3 LOCATION		SAMPLE	TYPE	RUN N	UMBER
Holes	a Jepp	Ce IL	12/08/23	Na	insta	cls_	Cyclonic Flo	w Check		
Street Street Control of the Street S	Barometric Pressure (Pb (In. Hg)	STATIC PRESS (in. H2O)	AMBIENT TEMP (deg. F)	STACK ID (in.)	PITOT Cp	DGM BOX No.	DGM delta H@	DGM CAL FACTOR (gamma)		PROBE ID NO
W/6/4	25.30	-0.70	70	102	0183	11521	NA	NA		5 A

#### EPA Method 2 Data

Run Time (24 hr)	Traverse Port Point	Pitot Delta P READING "H2O	STACK TEMP deg F	Absolute Angle at null (0) Delta P READING "H2O
	Ai	c.80	316	10
	2	0.70	317	5
	3	0.52	315	9
	3 1	6,71	316	10
`	3	0.55	316	15
	C (	0.27	315	5
	2	0-59	317	10
	2,	0,50	316	5
	DI	0.64	317	0
	7	0.90	318 316	10
Pitot Leak (	L Check			
Averages				

Average of Absolute Angle Readings must be < 20 degrees



	N.	UAWEIEK	L	- K FACIOR	1	上2.7	SAMPLE	- HAIN	(in. Hg)	3	3	3			6	1,	2	3				7	1	*			//	<b>r</b> ],	4	5			
T of 1	ON	NUMBER .250 .350	052.	CONTENT	%	15%		SE GELEX	(deg. F)	hS	25	65				200	22	h\$				56	25	36			13.4	20	74	<i>E</i> \$			
PAGE 1 of RUNT		7 / / / / / / / / / / / / / / / / / / /	X ( M. Clink	CONTENT	%	12%	FILTER	A CALL	(deg. F)	156	100	233			000	727	158	260				256	252	7.59			2	12.1	957	1.50			loun
	PROBE LE	AND LINER	2119	CHECK	Ž	© 17 CU. FT	DGM	IN/OCI	(deg. F)	19	63	63			67	8	cs.	63				65	99	89			47	3	£,	F		AVE. TEMP.	
SAMPLE TYPE	PITOT	3	0,3% 0.84	CHECK	120	@ 11 CU. FT		STACK	(deg. F)	308	308	303		INCHES Hg	INCHES Hg	501	311	306		INCHES Ha	NCHES Hg	308	308	303		INCHES Hg	INCHES Hg	202	317	3095		AVE. TEMP.	
No	STACK	(In.)	791	ORSAT	SC.	FAILED		PROBE	(deg. F)	552	352	35.		(a)	<b>a</b>	707	253	256		@	(0)	252	252	159		@(	3)	22	451	33			
T NG KOCATION	FITTER .	NOIMIDERA	7177	PITOT	ŠĆ.	PASSED []		delta H	(in: H2O)	ص	ف	ج.		CU.FT	11		9.	رغ رغ		CUF	CU.FT @	1.9	<u>ی</u>	٠,		CU.FT	-1	5.	جه	٩		AVE delta H	
	AMBIENT	(deg.F)	2,2	THERM	89	CK>	delta P	VELOCITY	(II, H20)	08.	, 0	<b>,</b> 53	End of Port	LEAK RATE:	77	<u>\$</u>	Ē.	,55	End of Port	I EAK RATE		tt:	.69	F	End of Port	LEAK RATE:		٠,	18.	5t.	End of Port	AVE SORT delta P	
METHOD 26A FIELD DATA SH	STATIC	(in. Water)	4,00	CAL	FACTOR (Y)	PITOT LEAK CHE		DGM	Vm (cu. ft.)	568 751	572. Ha	575.69	578.878		0000	570.0AB	582.14	585.14	588.834			P88.884	597.96	596.64	599.959			299.75.1	663.77	607.63	611.493	DGM VOLUME	611.49B
D 26A	AMBIENT	子 (音 (音)	29.3	₩ ₩ ₩ ₩		.61		2 2 3 4	(24-HR)	13:14			13:39	INITIAL	FINAL				13:58	INITIA	FINAL	10:41			H.15	INITIAL	IN I	7. 7.			- (£; £)		
METHO PLANT AND CITY	OR /	, M.	]/ [my]	BOX No.		112-5111	ELAPSED	TEST	(MIN)	0	5	10	15	AK CHECK? CU. FT)		12	20	25	30	AK CHECK?	· · · · · · · · · · · · · · · · · · ·	30	35	40	45	SAK CHECK? CU. FT)		45	20	55	9	TOTAL TIME	60 Min.
PLANT	OPERATOR/	1	2	AND NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW		111.11	TRAVERSE ELAPSED	PORT/	<u> </u>	A-1	2	က		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	0	מל	2	3		INTRA-PORT LEAK CHECK?		C-1	2	ဗ		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		0-7	2	က		F vine and a second	

# EPA METHOD 26A RECOVERY AND INTEGRITY DATA SHEET

Sample Local Run No.	Sample Location Most Stack Run No. — Not Applicable  MOISTURE  Sample Date 12/8/12  Recovery Date 12/8/12  Recovered by 12/5													
		_	<u>MC</u>	<u>ISTURE</u>										
Impingers	1 50 ml 0.1 N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H₂SO₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel							
Final weight	Final weight 794.4 779.1 620.6 764.8 748.6 1001.5 g													
Initial weight	Initial weight 755.6 758.4 616.5 761.4 797.0 991.0 g													
Net weight	initial weight													
Description o	f impinger v		clea RECOVE		Fotal moistu	re = 3	/42 S	spent il gel colo grams						
		1	XECO VE.	KED SAI	VIII I.I.									
H ₂ SO ₄ Impinge container no.	ers and knock	cout contents -M26A-H	and water rin 2SO4- //A	ise		Liquid lev marked/se	. /							
NaOH Impinge container no	ers contents a	nd water rins -M26A-N	e IaOH /A-			Liquid lev marked/se								
Samples stored	_													

Щ	_
Щ	
I I I I I I I I I I I I I I I I I I I	)
_1	
DAT/	
7	
	)
	1
Щ	J
ı	
◁	•
œ	
26A	
	1
$\overline{c}$	)
Ť	_
F	
ĽΨ	ا
>	
	•

MIE I HO PLANT AND CIT  L fly 1-10/2 a  OPERATOR  A 1P ASSUMED DGM MOISTIBE ROY NA	OLD ZOA NY SAMBIENT AMBIENT PRESS (In. Hg) 29.50 DGM	MIE   MOD ZOA FIELD DATA S   AND CITY   DATE   S   MAD CITY   STATIC   AMB   AMBIENT   STATIC   AMB   PRESS   PRESSURE   TE   (In. Hg) (in. Water)   (de   29.55   0.57   74   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111	A SHEEL SAMPLIN AMBIENT TEMP N (deg. F)	SAMPLING LOCATION BIENT FILTER S' EMP NUMBERS EG. F) P.S. FOR STACK TACK STACK TACK STACK TACK STACK	STACK ID (In.)	inil 4	PROBETEN AND LINER	AGE CALL		TE DIAMETER ASS A
245V		PR CH	.   Þ	h	NO.	(INITIAL) 0.03, CU.FT (8 10, "Ha	(FINAL) 0.001 CU.FT	; % 	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3.4.5
TRAVERSE ELAPSEL PORT/ TEST (POINT TIME NO. (MIN)	CLOCK TIME (24-HR)	DGM READING Vm (cu. ft.)	1 ≥ . 6	delta H ORIFICE (In. H2O)	PROBE TEMP (deg. F)	STAC TEMF deg. I	IN DGM IN / OU TEMP (deg. F	FILTER OVEN TEMP (deg. F)	Sil Gel EXIT TEMP (deg. F)	SAMPLE TRAIN VAC (in. Hg)
A-1	0 1334	86			35.6	80€	0	256	58	Si
2 6	υ C	-165.93 CITA -11	r, 9	٥ /	200	30%	\$ × ° ° °	9% 936	26	7 1
	15 1339	175.54	End of Port	(.4	165			200		2
INTRA-PORT L <u>ÉAK CHECK?</u> DGM VOLUME (CU. FT)			LEAK RATE:	CU.FT	88	INCHES Hg	Action proof to a proposition of the Management	Addition of the face of the state of the sta	No. of Alban Alban and a later	ANY STATE OF THE PARTY OF THE P
B-1	15 13 UB	473.84.	,74	٠. ح	35.1	327	69	355	50	5
2 2	20	C12217	: 1:	3	283	>	63	3.5%	5.2	٠٦
3	25	124 4 4 4 Maria	\$\$.	7	95°C	306	63	೨೯೦	)~ <u>(</u>	
3) INTRA-PORT L <u>EAK CHECK?</u> DGM VOLUME (CU. FT)	30   55% ?? INITIAL FINAL	495.456	End of Port	CULFT	0 1	INCHES Hg				
C-1	30 ftp:	763.436	11.	13	ye.j.	35	6.5	95K	50	La
2 3	35	-185.34	.69	is:	255	3.O3	٥٥	754	ر ق	(n
3 4	40	450.67	.54	নি	કેટન	₹0€	85	351	56	5.
4	15 1416	4,94.073	End of Port							2000
DGM VOLUME (CU. FT)	: INITIAL FINAL		LEAK RATE:	CU.FT	1.00	INCHES HE				
D-1	45 (4)9	C194073	1%.	6.1	6	30% 	<b>5</b> 7	757	∴	5
2 5	50	447.56	18.	1,3	255	313	3°	350	2,4	~
3 5	55	59.105	ct.	.0.	200	303	1	239	52	2
9	175171 09	252'405	End of Port							
TOTAL		DGM VOLUME	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.	7		
60 Min.										

# EPA METHOD 26A RECOVERY AND INTEGRITY DATA SHEET

Plant Sample Local Run No Filter Numbe	tion M	-M2		Samp Reco Reco	ole Date <u>[//</u> very Date <u> /</u> vered by	1 8 123 14 8 123 1455	.a.						
	<u></u>		MO	DISTURE									
Impingers	l 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel						
Final weight 758.0 784.3 615.3 756.9 749.5 946.5 8													
Initial weight 7549 767.2 612.6 753.2 748.2 934.2 g													
Net weight		33-1	17.1	2.7	3.7	<u>1.3</u>	12,3	g					
Description o	of impinger v	vater <i></i>	Lea	· 	Total moistu		5 % Si 70.2	spent l gel color grams					
		<u> 1</u>	<u>RECOVE</u>	RED SA	MPLE								
H ₂ SO ₄ Imping container no.	ers and knock	out contents -M26A-H	and water rir	ise		Liquid lev marked/se	rel aled						
NaOH Imping container no.	ers contents a	nd water rins -M26A-N	e IaOH ()			Liquid lev marked/se	rel valed						
Samples stored	d and locked												

		ZIE Injanereo	Y I I I I I I I I I I I I I I I I I I I	, 2SA	KFACIOR	2.29		SAMPLE	TRAIN	(in. Hg)	5	4	1			7	4	4				6	S	5									
1 of 1	2 At	ZZON , ,	159 - 159 159		CONTENT	e 22	• • • •		Sil Gel EX	(deg. F)	B	25	51		9	53	23	45				55	272	24				65	23	29			
PAGE 1 of		NGTH TYPE	Carried Street	1 Langelle	CONTENT	17%	17.	FILTER	OVEN	(deg. F)	75%	157	28×			252	251	248				151	255	233				258	156	153			
YPE	1	PROBE LENGTH		5/4,44	CHECK CHECK	dov CU. FT		DGM		(deg. F)	49	4.4	89			50	22	7				20	12	4				7-1	73	73		AVE.	LEMP.
SAMPLE TYPE	M26A	PITOT	}	0,43,434	CHECK	CU. FT	PH.		SIACK TEMP	(deg. F)	309	308	804		INCHES Hg	304	E	28.7		INCHES Hg	INCHES Hg	306	30%	<b>X</b>		INCHES Ho	INCHES Hg	308	300	313		AVE.	I EMF.
	1	* STACK	(ln.)	102	ORSAT	CEN	FAILED	T 0 0 0	FROBE	(deg. F)	152	15.7	150			35%	352	£\$1		@(	3	248	150	3/18		@ 1	00	255	755	15h			×
IGI OCA	3	FILTER NUMBERS		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A PICE	5A	PASSED [		ORIEICE		1.4	1.8	1.7		CU.FT @	11	드	1.3		CU.FT.®	- 1	آ جن	<u>ا</u> بې	[.5		CU.F	CU.FT @	1.7	المبيء	~. ~.			della H
A SHEET	111000	AMBIENT	(deg. F)	× /5	THERM	5A	ECK> II	delta P	VELOCITY HEAD	(In. H20)	<b>3</b> 2.	.81	.73	End of Port	LEAK RATE:	18	20.	.58	End of Port	LEAK RATE:		500	.\$0	Æ	End of Port	LEAK RATE:		.81	gr.	.53	End of Port	AVE SORT	delta P
FIELD DATA	1/8 /23	STATIC	(in. Water)	# 1750 THE TOTAL	CAL THERM FACTOR (Y) NO	\$86.	PITOT LEAK CH	700	DGM RFADING	Vm (cu. ft.)	611.434	615.41	618.84	611.843		Cts 17	626.45	630.44	93.4吨			6.53.704	ا ــــــــــــــــــــــــــــــــــــ	_	OH 4. 59%			644.528	649.09	653.49	655209	DGM	VOLUME
D 26A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AMBIENT	(ln. Hg)	2.5		1.64	8	7000	TIME TIME	(24-HR)	0 14:53	5	0	5 24:15:08	INITIAL		0	2	0 12:39	INITIAL	FINAL.	15: 19	10		5 15.44	INITIAL	FINAL	5 15.46	0	2	0 16:04		
METHO PLANT AND CITY	000	¶OR ∧	11/1/11	W. J. C.	BOX No.	WE-IV		TELAFOEL	- INTE				10	15	INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	15	20	25	30	IN I KA-POKT LEAK CHECK? DGM VOLUME (CU. FT)			35		45	(CU FT)	,	45	50	55	09	TOTAL	60 Min.
PLAN	D.	OPERATOR	1/2	ACCIMEN	MOISTURE (%)	" !!!		DOMACEROE	/POINT	NO.	A-1	2	3		INTRA-PORT I DGM VOLUME	B-1	2	3		INI KA-POKI LEAK CHI DGM VOLUME (CU. FT)		<u>?</u>	2	8	Taca varia	DGM VOLUME (CU. FT)		D-1	2	3			

Plant Toppe Holein Toppe IL Sample Date 124 8 /23  Sample Location Main Grack Recovery Date 124 8 /23  Run No. Toppe Holein Toppe IL Sample Date 124 8 /23  Recovered by Light Recovered												
			<u>MO</u>	<u>ISTURE</u>								
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel					
Final weight		757,2	774.4	(50.7	762.3	762.5	474.3	g				
Initial weight		747.5	1563			761.6	962.2	g				
Net weight		39.7	18,1	<u> </u>	2.4	09	1201	g				
Description o	f impinger v	vater	Clea		 Гotal moistu	55 		spent l gel color grams				
Total moisture = 76,5 grams  RECOVERED SAMPLE												
H ₂ SO ₄ Impinge container no.	ers and knock	cout contents -M26A-H	and water rin <b>2SO4</b> - とん	4		Liquid lev marked/se	rel raled					
NaOH Impinge container no	ers contents a	nd water rins -M26A-N	e IaOH 2/	i		Liquid lev marked/se	17					
Samples stored Remarks												

Continue   Color   C		METHC	D 26A	METHOD 26A FIELD DATA SH	A SHEET	_				PAGE 1 of	τ	
PROBE LENGTH   PROB	LAN /	אואר כון	ř	מום /	SAMPL	ING LOCAL	22	NACA	77	NON (	NUMBER	
The pressor   Pressure   Pressu	7 - 1	1000	J + .					MZOA		3.5		
DGM	OPERA OPERA	<del>5</del>	AMBIEN PRESS (In. Ho)	STATIC PRESSURE (in, Water)	AMBIEN- TEMP (dea, F)	NUMBERS		_ විරි ස්	PROBELE AND LINEF		NOZ NUMBER 3 44	ZLE DIAMETER
DCAN	3/	41.	2930	-0.7	75	1/1/	(07	0.84	1 1 the Cho	25/0/2	.65	ri ose
Cube   Fig.   Factor   Fig.   Factor   Fig.   Factor   Fig.   Factor   Fa	0.0000 N	DGM	DGM ::@	DGM	STACK	STACK	14000	LEAK	TEXK		-	KFACTOR
Cartes   1.64   Pay 15   Pay 15   Pay 15   Pay 16   Pay		BOA NO.	<u>,</u>	CAL FACTOR (Y)	SEK SO.	<u>_</u> 28	SSON NO.	CHECK (INITIAL)	CHECK (FINAL)	CONFIN		
Cartest Color	=	21-SW	1.68	0.475		S#	CFM	ਹ 	1.00.		+	3.2.5
TEST   CLOCK   PGIM   VENERAL   FROBE   STACK   N. / OWN   TEMP	TDAVEDSE			PIIOI LEAK CH	Σ-[	PASSED	FAILED	일	2	Ellarco	1	E MADE E
TIME   TIME   READING   TEMP	L CAVENSE DODT/	TEST	אטט וט	MOG		Dieter II		STACK			17.0 E	SAMPLE
1452   505.353   1.9   355   507   66g.F)   (deg.F)	/POINT		TIME	READING	VELOCI I	ORIFICE	TEMP	TEMP	TEMP	TEMP	TEMP	YAC
1453   505.353   .85   .19   355   .507   .508   .67   .455   .50   .50   .67   .45   .50   .50   .67   .45   .50   .50   .67   .45   .50   .50   .67   .45   .50   .50   .67   .45   .50   .50   .60   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .50   .5	NC.	(MIN)	(24-HK)	Vm (cu. ft.)	(In. H2O)	(In. H2O)	(deg. F)	(deg. F)	(deg. F)	(deg. F)	(deg. F)	(in. Hg)
1505    593.16   .3\$   .1\$   357   502   67   351   50       1505    513.34   .4\$   .4\$   3.1   .357   5.04   6.8   3.54   5.1   5.0       1505    513.34   .4\$   .4\$   .4\$   .3\$   .4\$   .5\$   .5\$   .5\$   .5\$   .5\$   .5\$     1518.4   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$   .4\$	A-1	0	- 1	505.252	.85	1,0	3.55	207	<u> </u>	255	50	O
15.05  513.47 13  13  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11  15  3.11	2	5		53.16	ē	•	357	308	29	15%	50	٥
NCHES Ho	3	10		513.2/	₹ <i>ħ</i> .	ris.	5	304	63	354	31	(ي
NCHES Ho		15		517. 199								
Sal.35   S	INTRA-PORT LE DGM VOLUME (	EAK CHECK? CU. FT)					@@	INCHES HO				
Sau-ibp   Saliaz   Th	B-1	15		5 17.184	000		256	309		056	53	S
S246   S2468   S38375   End of Port	2	20		581.37	न्द	1.7	4.5.b	304	69	150	57	0
1526   53&375   End of Port	8	25		89.48S	\$5.	1.3	42%	307		Ω,	ا کرا	وا
NITTAL		30		Sagazs	End of Port							
1524   524.275	INTRA-PORT LE	SAK CHECK?	INITIAL		LEAK RATE:	CUF	/ @1	INCHES Ho				
S34,275	)	·	FINAL			CUF	000	INCHES Hg				
S36.54   S36.54   .80   1.8   3-50   3-50   7-1   3-55   57   6	C-1	30	L	528.375	.83	1.9	ado	308	12	355	35	9
SS6.56   .6%   1.5   24%   30%   70   35%   59   6   6   15444   SS4.666   End of Port	2	35		532.05	, 86	1.8	9.50 -	308	{ }		57	و
5 154μ         534.666         End of Port         CU.FT @ CU.FT @ INCHES Hg INCHES H	3	40		35.355	.63	1.5	248	303		355	59	٩
FINAL   LEAK RATE:   CU.FT @   INCHES Hg   INCHES Hg   INCHES Hg   I.8   S/5   S/2   T/2   S/4   S/5   S/4   T/2   T/		45		999.655								
FINAL         FINAL         CUFT @         INCHES Hg         70         3-58         5q           5 15-4 c         539.66         -81         1.8         303         70         3-58         5q           0         543.4 g         -72         1.6         3-55         303         71         3-56         58           5         547.3 g         -55         1.2         3-56         313         7 a         3-5         5-6           0         160 l         55.1 g         Find of Port         AVE         AVE         AVE           VOLUME         delta P         delta H         TEMP.         TEMP.         TEMP.	INTRA-PORT LI	EAK CHECK?	INITIA		I FAK RATE	i.	8	CH WHICK				
45         15 -16         53 q.666         . δ1         1. δ         45 β         70         348         5 q           50         543.4 δ6         . 73         1. δ         3.5         30 γ         71         35 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β         5 β	DGINI VOLGINIE	(20.17)	FINAL			1 1	96	INCHES Hg				
50         S43-4\$         -72         1.6         3.55         313         71         356         58           55         S473-6         .55         1.2         3.5         7 α         3.5         3.6           60         f6ο1         S1.6 γ         End of Port         AVE         AVE         AVE         AVE           TIME         VOLUME         delta P         delta H         TEMP.         TEMP.         TEMP.	D-1	45		539.666	-8.		45.}	308	07	85₹	59	و
55         SH736         .55         1.2         3.56         3.15         7 α         3.5 β         3.6           60         16 ο 1         \$1.6 β         End of Port         AVE         AVE         AVE           TIME         VOLUME         delta P         delta H         TEMP.         TEMP.	2	50		8 6-545	٤٢٠	1.6	3.55	304		256		ا ف
60 IÇo I S I II I End of Port  DGM AVE SQRT AVE AVE.  VOLUME delta P delta H. TEMP.	3	52		34772	55,	4.2	2.5b	313	7 8			g
DGM AVE AVE AVE.  VOLUME delta P delta H TEMP.		09		65175	End of Port							
עסרטאוב מפונפ דו ניפונפ דו		TOTAL		MSG	AVE SORT	1000		AVE.	AVE.			
		IIME		VOLOME	מפומים			- EMIT	IEML.			

PlantSample Local Run No Filter Numbe	Depa	Lan 5		Sample Date 121 6 123 Recovery Date 121 6 123 Recovered by 61					
	ı		<u>MO</u>	<u> ISTURE</u>					
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel		
Final weight		784.7	786.6	6729	731.0	751.0	939.0	g	
Initial weight		7445	₹68.4	6689	7285	749.8	974.8	g	
Net weight		40.2	17.8	4.0	2.5	1,2	14.2	g	
Description o	Si	spent il gel colo grams							
		]	RECOVE		Total moistu MPLE				
H ₂ SO ₄ Impingent container no.	ers and knock	out contents -M26A-H	and water rir 2SO4- 2	<u>ise</u> 3		Liquid lev marked/se			
NaOH Imping container no.	ers contents a	nd water rins	e laOH Z (	3		Liquid lev marked/se			
Samples stored	and locked								

										É	Ĭ.	8			<b>&gt;</b>																	
		ZLE DIAMETER	.280	K FÁČŤOR	2.24		SAMPLE	VAC (in. Hg)	3	~	~			:	4	4	2			,	3	4	77				4	4	4			
1 of 1 RUN NUMBER	3	NUMBER	050	CONTENT	15%		Sil Gel EXIT	TEMP (deg. F)	**	64	29			,	63	25	3				88	22	24				hS	24	54			
PAGE 1 of		ENGTH ER TYPE	2100	CONTENT	12		OVEN	TEMP (deg. F)	252	153	226			,	7.57	992	763				252	252	2%				<i>\$</i> \$7	252	797		•	7
∃dX		PROBE LENGTH AND LINER TYPE	EN 011	CHICK STATES	100·	6H. 7.1 @	NON TUO/N	TEMP (deg. F)	69	140	40				- T-	4- (A)	मुञ			í	7	<u>,</u>	7				22	22	26		AVE. TEMP.	Alla Calabara de la companya del companya de la companya del companya de la compa
SAMPLE TYPE	M26A	PITOT	70,47,-0,84	CHECK	O LOO	@ 17 @	STACK	TEMP (deg, F)	33	80%	30%		INCHES Hg	INCHES Hg	304	308	, 300	ر بر	INCHES Hg	INCHES HG	3/2	304	356		INCHES ES	INCHES Hg	30%	307	50%		AVE. TEMP.	100 A
NO		STACK ID	(In.)	ORSAT	15.	FAILED	PROBE	TEMP (deg. F)	156	552	155		T.@		754	754	H K	•	@@ !-!	(G)	258	092	797		@ -	T.@	297	258	150			
ET FINGILOCATION	14.16	FILTER NUMBERS	4/2	STACK PITOT	5.00	PASSED	delta H	ORIFICE (In, H2O)	8-	ب	1.3			CU.FT @	1.8	1.30	ج.		CU.FT ®	- 11	89.5	2	1:3			CU.FT	6.1	<u>ત્</u> ક	(7)		AVE delta H	The state of the s
A SHEE	1	AMBIENT	(deg. F)	STACK THERM	Ž	CK X	VEI OCITY	HEAD (In H20)	<b>8</b> 4	<u>r.</u>	Q;	End of Port	LEAK RATE:		.63	.78	39.	End of Port	LEAK RATE:	,	023	15	. 59	End of Port	I FAK RATE		.85	£	43	End of Port	AVE SQRT delta P	The state of the s
FIELD DATA SHEE	7 /ng /23	STATIC PRESSURE	(in. Water)	DGM	983	PIOI LEAK CH	MBC	READING Vm (cu. ft.)	655.456	92.659	663.43	544 999			666.775	670.79	643.93	1, 194 . 384			67.7.34	181.34	્લ્થમ. 1લ	(51.681			684.681	691.45	694,9 6	699.653	DGM	PAW(37)
26A	<u> </u>	AMBIENT PRESS	(In. Hg)	DGM H@	1.69		CLOCK	TIME (24-HR)	12.20			16:35	INITIAL	FINAL	16:34		-	16.52	INITIAL	FINAL	16.54			60.4	INITIA	FINAL	11.61			9('\)		<b></b>
METHOD	77	OR S		DGM BOX No.	MS-21		Ī	TIME	0	5	10	15	EAK CHECK? CU. FT)	\(\frac{1}{2}\)	15	20	25	30	EAK CHECK? (CU. FT)		30	35	40	45	AK CHECK?	(: - : : : : : : : : : : : : : : : : : :	45	20	55	90	TOTAL TIME	60 Min.
DI AN		OPERATOR		ASSUMED MOISTURE	1/ (%)		TRAVERSE PORT/	POINT CN	A-1	2	n		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		B-1	2	3		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		C-1	2	3		DOM VOLLIME (CLEAK)		D-1	2	3			,

Plant	lologa tion/ Toppa er(s)N	Jope Main 2 JP-M2 Not Applicab	Samp Reco Reco	ple Date overy Date overed by	1	<u>-</u>		
			<u>MO</u>	<u>ISTURE</u>				
Impingers	50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel	
Final weight		1800.5	7760	623.7	742.8	7364	10133	g
Initial weight		755.6	7.61.1	619.9	741.0	7374	10013	g
Net weight	_ <	44.9	14.9	3.8	1.8	-1,0	12-0	g
Description o	of impinger v	vater		$\frac{76}{-137}$ $137$ $137$ $137$	/レ/ Si	spent il gel colo grams		
		<u>I</u>	RECOVE	RED SA	MPLE			
H ₂ SO ₄ Impinge container no	ers and knock	out contents -M26A-H	and water rin 2SO4- メタ	se		Liquid lev marked/se	el aled	<i>/</i>
NaOH Imping container no	ers contents a	nd water rins -M26A-N	e IaOH <u>3/</u> }-			Liquid lev marked/se		
Samples stored	d and locked					_		

ŀ	1	_
L	1	
L	1	
-	T	
7	1	1
	•	_
•	1	
ŀ	_	
<	1	
(	7 77	1
_		
Ĺ		j
:	-	4
Ļ	1	_
ī	1	
_	427	_
1	3	
5	ź	7
•	٠,	۷
(	_	)
7	_	١
-	Ť	_
•		
İ		
Ļ	1	
-	٠.	

W	ETHO	D 26A	METHOD 26A FIELD DATA SHEET	A SHEE	<u></u>				PAGE 1 of	1 of 1	
PLAN AND C	   		NAIE MA	SAMPL	SAMPLING LOCATION	2	SAMPLE I YPE	77	NOW Y	NUMBER	
4 olcin Cafarer	2- JOBER 2	7	11/08/123				MZOA		5. 3B		
OPERATOR		AMBIEN PRESS (n. 남a)	STATIC PRESSURE (in. Water)	AMBIENT TEMP (dea. F)	FILTER NUMBERS	STACK ID (In.)	PTO 92	PROBE LEN AND LINER	NGTH ? TYPE	NUMBER	OLE DIAMETER
¥.		29.30	×2.7%	CH	NI	60 "2	J. 1.46.84	51 26/6	14 10 alla	37	No Sc.
ASSUMED D	DGM BOX No.	DGM H@	DGM	STACK	STACK	ORSAT	CHECK	CHECK	CONTENT	CONTENT	KFACTOR
2507437350			FACTOR (Y)	ON		S.	(INITIAL)	(FINAL)	%	_ %	
<u> </u>	M 5-15	1.68		AS TOK	DASSEN D	EAILER	ر ا	ာ <u>်စ</u>	~	2	3.25
TRAVERSE EL	APSED			della D	JOOL D	יייייי	Su Ai	DCM 19	ZUL 100		SAMPLE
i	TEST	CLOCK	DGM VELOCITY READING HEAD	VELOCITY	delta H	PROBE TEMP	STACK	IN/OUT		Sil Gel EXIT TEMP	TRAIN
No.	(NIN)	(24-HR)	Vm (cu. ft.)	(in. H2O)	(In. H2O)	(deg. F)	(deg. F)	(deg. F)		(deg. F)	(in. Hg)
A-1	0	0691	551.315	178.	1.9	256	308	02	<b>ુ</b> જ	49	9
2	5		555.u.7	11.	1.6	\$58	898	71	Esp	119	9
3	10		559.26	15-	-	S.S.	368	72	2 sre	62	9
	15	(63)	1217-295	End of Port							
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	CHECK? FT)	INITIAL FINAL		LEAK RATE:	CU.FT	@ 1	INCHES Hg				
B-1	15	[637	5 62.415 1	-83	1.9	Js4	309	72	<b>3</b> 52	€ 9	9
2	20		\$66.38	.78	1.3	454	308	72	०११	(Z)	Q
3	25		570.26	. 68	1.5	249	30&	73	363	9	9
	30	1883	573.82	End of Port							
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	CHECK? FT)	INITIAL		LEAK RATE:	BA:FT	@(	INCHES Hg				
		-			۱.	9)	INCHES HG			į	
<u>۲</u> -	30	1654	573.832	08.	 		312	74	255	58	e
2	35		577.26	.7S	1.7	260	309	74	2.5.5	56	و
т П	40		580.59	. 59	۲.	462	306	74	3,56	SH	9
	45	1704	583.698	End of Port							The second secon
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	CHECK?	INITIAL		LEAK RATE:	CU.FT.®	86	INCHES HG				
7	45	-	5 8.2 1.0 8	. 85	5.1	272	303	72	858	Su	^
2	50	_	SKalau	.78		23	307	74	259	7.	^
m	55		592.14	.72	1.6	250	308	74	263	, 12,	e)
	09	1726	596537	End of Port							
	TOTAL	**************************************	DGM	AVE SQRT	AVE delta H		AVE. TEMP	AVE. TEMP	`		
9	60 Min.								/		

PlantSample Loca Run NoS Filter Numbe	tion	/	6A-3B		ple Date		-			
			<u>MC</u>	<u> ISTURE</u>						
Impingers	l 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel			
Final weight		808.2	773.6	615.9	7620	747.1	a 66.9 8	,		
Initial weight		762.4	7596	614.6	758.6	7475	952.1	5		
Net weight	_	45.8	14:0	1.3	3.4	20,4	14.7 8	5		
Description o	of impinger v	vater	Total moistu	$\frac{7}{\sqrt{2}}$ $= \frac{\sqrt{2}}{\sqrt{2}}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pent gel color ams				
		<u>I</u>	RECOVE	RED_SAI	MPLE					
H ₂ SO ₄ Imping container no.	ers and knock	out contents -M26A-H	and water rin 2SO4- ろり	ise Ž	Liquid level marked/sealed					
NaOH Impingo container no				3		Liquid lev marked/se	1/			
Samples stored	d and locked									

Plant Oo Sample Loca Run No. Fi Filter Numbe	tión <u>N</u> eld Blant	Coloria Con S K -M2 Not Applicab	4000h	pu Ih	Reco	ple Date	1 9 123	_				
Harrier Transport			<u>MC</u>	<u>DISTURE</u>								
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel					
Final weight		738.6	734.5	643.6	744.4	745.0	907.2	g				
Initial weight		738.6	739.5	W137	744,5	7453	967.1	g				
Net weight		0.0	00	~ 0 .1	~ Del	-0,3	011	g				
Description o	f impinger v	vater	Obe a				S	il gel colo				
Total moisture = grams												
RECOVERED SAMPLE												
H ₂ SO ₄ Impinge container no.						Liquid lev marked/se	el aled					
NaOH Impingo container no	ers contents a	nd water rins -M26A-N	e laOH - f	B		Liquid lev marked/se	el aled					
Samples stored	and locked											

Client: Holcim Joppa IL. Test Location: Main Stack Date: Dec 08, 2023 Run number 1 One Minute Averages

One Minute Average	es	
	Out O2 %,dry	Out CO2 %,dry
1:24:52 PM	13.0	13.5
1:25:52 PM	13.1	13.4
1:26:52 PM	13.2	13.4
1:27:52 PM	13.2	13.4
1:28:52 PM	13.1	13.6
1:29:52 PM	13.1	13.6
1:30:52 PM	13.1	13.4
1:31:52 PM	13.2	13.5
1:32:52 PM	13.1	13.6
1:33:52 PM	13.0	13.8
1:34:52 PM	12.9	14.0
1:35:52 PM	13.1	13.6
1:36:52 PM	13.1	13.7
1:37:52 PM	13.1	13.9
1:38:52 PM	13.0	14.0
1:39:52 PM	13.1	13.9
1:40:52 PM	13.0	13.9
1:41:52 PM	13.1	13.9
1:42:52 PM	13.1	13.9
1:43:52 PM	13.0	14.0
1:44:52 PM	13.0	14.0
1:45:52 PM	13.0	14.0
1:46:52 PM	13.1	14.0
1:47:52 PM	13.1	14.0
1:48:52 PM	13.0	14.2
1:49:52 PM	13.0	14.2
1:50:52 PM	13.0	14.2
1:51:52 PM	13.1	14.0
1:52:52 PM	13.1	14.0
1:53:52 PM	13.0	14.1
1:54:52 PM	12.9	14.3
1:55:52 PM	13.0	14.1
1:56:52 PM	13.1	14.0
1:57:52 PM	13.0	14.1
1:58:52 PM	13.0	14.1
1:59:52 PM	13.1	14.0
2:00:52 PM	13.1	13.9
2:01:52 PM	13.0	14.1
2:02:52 PM 2:03:52 PM	13.1 13.1	13.9 13.9
2:04:52 PM		13.9
2:05:52 PM	13.1 13.1	13.9
2:06:52 PM	13.0	14.1
2:07:52 PM	13.1	14.0
2:08:52 PM	13.1	13.9
2:09:52 PM	13.1	13.9
2:10:52 PM	13.1	14.0
2:11:52 PM	13.1	13.8
2:12:52 PM	13.2	13.8
2:13:52 PM	13.0	14.0
2:14:52 PM	13.1	14,1
2:15:52 PM	13.0	14.1
2:16:52 PM	13.1	14.1
2:17:52 PM	13.1	14.0
2:18:52 PM	13.0	14.2
2:19:52 PM	13.0	14.3
2:20:52 PM	13.1	14.2
2:21:52 PM	13.1	14.2
2:22:52 PM	13.0	14.4
2:23:52 PM	13.0	14.4
Run Avgs	13.1	13.9
Cal Gas	11.8	10.2
Initial Zero	0.1	0.1
Final Zero	0.3	0.2
Initial cal.	11.8	10.1
Final Cal.	12.1	10.0
Corrected Assesses		
Corrected Average	12.9	14.2

Client: Holcim Joppa IL Test Location: Main Stack Date: Dec 08, 2023 Run number 2 One Minute Averages

One mindle reverages		
	Out O2 %,dry	Out CO2 %,dry
2:54:00 PM	13.0	14.2
2:55:00 PM	13.1	14.1
2:56:00 PM	13.1	14.0
2:57:00 PM 2:58:00 PM	13.2 13.1	13.8 13.8
2:59:00 PM	13.1	13.9
3:00:00 PM	13.1	13.8
3:01:00 PM	13.1	13.8
3:02:00 PM 3:03:00 PM	13.2 13.2	13.7 13.6
3:04:00 PM	13.1	13.8
3:05:00 PM	13.1	13.7
3:06:00 PM 3:07:00 PM	13.2	13.5
3:08:00 PM	13.2 13.2	13.7 13.6
3:09:00 PM	13.2	13.6
3:10:00 PM	13.3	13.4
3:11:00 PM 3:12:00 PM	13.3 13.3	13.3 13.3
3:13:00 PM	13.3	13.3
3:14:00 PM	13.3	13.2
3:15:00 PM	13.3	13.2
3:16:00 PM 3:17:00 PM	13.3 13.3	13.2 13.2
3:18:00 PM	13.4	13.2
3:19:00 PM	13.3	13.1
3:20:00 PM	13.3	13.2
3:21:00 PM 3:22:00 PM	13.4 13.4	13.0 13.0
3:23:00 PM	13.4	13.0
3:24:00 PM	13.3	13.1
3:25:00 PM	13.4	12.9
3:26:00 PM 3:27:00 PM	13.4 13.4	12.9 13.0
3:28:00 PM	13.4	13.0
3:29:00 PM	13.3	13.1
3:30:00 PM	13.4	13.0
3:31:00 PM 3:32:00 PM	13.3 13.3	13.0 13.1
3:33:00 PM	13.3	13.1
3:34:00 PM	13.3	13.1
3:35:00 PM 3:36:00 PM	13.3 13.3	13.2 13.1
3:37:00 PM	13.3	13.2
3:38:00 PM	13.4	13.0
3:39:00 PM	13.3	13.1
3:40:00 PM 3:41:00 PM	13.3 13.4	13.1 13.0
3:42:00 PM	13.4	12.9
3:43:00 PM	13.4	12.9
3:44:00 PM	13.3	13.1
3:45:00 PM 3:46:00 PM	13.3 13.4	13.1 13.0
3:47:00 PM	13.4	13.0
3:48:00 PM	13.3	13.1
3:49:00 PM	13.2	13.2
3:50:00 PM 3:51:00 PM	13.3 13.3	13.2 13.1
3:52:00 PM	13.3	13.1
3:53:00 PM	13.3	13.1
Run Avgs	13.3	13.3
Cal Gas	11.8	10.2
Initial Zero Final Zero	0.3 0.4	0.2 0.2
Initial cal.	12.1	10.0
Final Cal.	12.3	10.2
Corrected Average	12.9	13.5

Client: Holcim Joppa II.. Test Location: Main Stack Date: Dec 08, 2023 Run number 3 One Minute Averages

One windle Average:	5	
	Out O2 %,dry	Out CO2 %,dry
4:39:56 PM 4:40:56 PM 4:41:56 PM 4:42:56 PM 4:43:56 PM 4:45:56 PM 4:45:56 PM 4:45:56 PM 4:45:56 PM 4:45:56 PM 4:50:56 PM 4:50:56 PM 4:50:56 PM 4:50:56 PM 4:50:56 PM 4:50:56 PM 5:00:56 PM	Out O2 %, dry  13.1 13.1 13.2 13.1 13.1 13.1 13.1 13.	%,dry  14.4 14.3 14.2 14.2 14.2 14.2 14.2 14.0 14.3 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.1 14.0 14.0
5:33:56 PM 5:34:56 PM 5:35:56 PM 5:36:56 PM 5:37:56 PM	13.3 13.3 13.3 13.3 13.3	13.8 13.8 13.7 13.8 13.9
5:38:56 PM Run Avgs	13.2 13.2	13.9 13.9
Cal Gas Initial Zero Final Zero Initial cal. Final Cal.	11.8 0.4 0.5 12.3 12.4	10.2 0.2 0.2 10.2 10.5
Carracted Assesses	40.0	40.7

Corrected Average

13.7

12.6

Holcim, Joppa IL	a IL		Main Stack	ıck				Decemb	December 8, 2023	23		Operator XC	K						
					Run No.	<b>,</b> -	13:24-14:24		=	Run No.	2	14:53-15:53			Run No. 3		16:39-17:39	6	
21220			Internal	S S	Pre Run	Percent	Percent   Post Run   Percent   Pre Run	Percent	Percent		Percent	Post Run	Percent   Percent   Pre Run   Percent   Post Run   Percent	Percent	Pre Run	Percent	Post Run		Percent
Cylinder ID	Gas Type	Value	Response	Error	Bias	Bias	Bias	Bías	Drift Drift		Bias	Bias	Bias	Dil.	Bias	Bias	Bias	Bias	a t t t c
	O2 Zero	Zero N2	0.0%	0.00%	0.1%	0.46%	0.3%	1.37% 0.91%		0.3%	1.37%	0.4%	1.83% 0.46%	0.46%	0.4%	1.83% 0.5%		2.28%	0.46%
XC025341	O2 Mid	11.8%	11.7%   -0.41%	-0.41%	11.8%	0.46%	12.1%	1.83%	1.37% 12.1%	12.1%	1.83%	12.3%	2.74%	0.91% 12.3%		2.74%	12.4%	3.20%	0.46%
ALM056015	O2 Span	21.9%	21.9%	%00.0							, <del>-</del>								
	CO2 Zero	Zero N2	%0.0	0.00%	0.1%	0.55%	0.2%	1.10%	0.55%	0.2%	1.10%	0.2%	1.10%	0.00%	0.2%	1.10%	0.2%	1.10%	0.00%
XC025341	CO2 Mid	10.2%	10.2%	-0.11%	10.1%	-0.55%	10.0%	-1.10%	-0.55%	10.0%	-1.10%	10.2%	0.00%	1.10% 10.2%	10.2%	0.00%	10.5%	1.65%	1.65%
ALM056015	CO2 Span	18.2%	18.3%	0.72%										······································					

Holcim Joppa IL Kiln 1 Main Stack HCN Analyte Spikes

	Date	12/08/23	12/08/23	12/08/23	12/08/23
	Time	13:05-13:16	14:23-14:43	15:56-16:12	17:38-17:54
		Pre Run 1	Post Run 1	Post Run 2	Post Run 3
	CC768222	HCN	HCN	HCN	HCN
Cs	Spike Direct, ppm	49.23	49.23	49.23	49.23
	SF6 Tracer Direct, ppm	4.85	4.85	4.85	4.85
SF6	Diluted SF6 Tracer, ppm	0.436	0.419	0.363	0.326
	Diluted SF6 Tracer, ppm	0.420	0.359	0.350	0.332
	Average Diluted SF6 Tracer, ppm	0.428	0.389	0.357	0.329
DF	Dilution Ratio	11.33	12.47	13.60	14.74
	Total, ppm	4.817	4.536	4.174	3.960
	Total, ppm	4.681	4.147	4.067	3.463
Ct	Average Total, ppm	4.749	4.342	4.121	3.712
	Pre Spike Native , ppm	1.070	1.082	1.194	0.927
	Pre Spike Native , ppm	1.060	1.011	1.163	1.007
	Post Spike Native , ppm	1.269	1.360	1.350	1.040
	Post Spike Native , ppm	1.224	1.031	1.250	1.017
Cn	Average Native , ppm	1.156	1.121	1.239	0.998
	Spike Recovery	85.1%	83.8%	82.1%	83.3%
	CTS Direct (CC426155)				
	Ethylene Expected (ppm)	75.47			75.48
	Ethylene Measured (ppm)	73.98			73.58
	CTS Error	-2.0%			-2.5%

Holcim; Joppa IL Main Stack

Pre Run 1 HCN Analyte Spike

Shectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
C005786.LAB	12/08/23	13:02:24.475	1.140	0.005	0.002
SPC005787.LAB	12/08/23	13:03:28.131	1.051	-0.016	0.002
SPC005788.LAB	12/08/23	13:04:32.138	1.070	-0.007	0.004
SPC005789.LAB	12/08/23	13:05:35.986	1.060	-0.016	0.004
SPC005790.LAB	12/08/23	13:06:40.264	3.358	-0.016	0.298
SPC005791.LAB	12/08/23	13:07:43.809	4.817	-0.018	0.436
SPC005792.LAB	12/08/23	13:08:47.774	4.681	-0.028	0.420
SPC005793.LAB	12/08/23	13:09:51.719	5.322	-0.014	0.510
SPC005794.LAB	12/08/23	13:10:55.560	0.323	-0.015	-0.000
SPC005795.LAB	12/08/23	13:11:59.384	0.106	-0.024	0.001
SPC005796.LAB	12/08/23	13:13:03.301	0.639	-0.007	0.001
SPC005797.LAB	12/08/23	13:14:07.208	1.334	-0.014	0.003
SPC005798.LAB	12/08/23	13:15:11.111	1.269	-0.016	0.004
SPC005799.LAB	12/08/23	13:16:15.021	1.224	-0.017	0.002
SPC005800.LAB	12/08/23	13:17:18.999	0.856	0.001	0.004
SPC005801.LAB	12/08/23	13:18:22.846	1.199	-0.001	0.006

Holcim; Joppa IL Main Stack Post Run 1 HCN Analyte Spike

Shectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
C005861.LAB	12/08/23	14:22:17.244	1.095	-0.039	0.003
SPC005862.LAB	12/08/23	14:23:21.153	1.082	-0.041	0.004
SPC005863.LAB	12/08/23	14:24:25.098	1.011	-0.037	0.003
SPC005864.LAB	12/08/23	14:25:29.003	3.739	-0.043	0.334
SPC005865.LAB	12/08/23	14:26:32.872	4.984	-0.029	0.494
SPC005866.LAB	12/08/23	14:27:36.769	4.893	-0.047	0.462
SPC005867.LAB	12/08/23	14:28:40.667	4.536	-0.036	0.419
SPC_005868.LAB	12/08/23	14:29:44.577	4.147	-0.046	0.359
SPC005869.LAB	12/08/23	14:30:48.465	5.530	-0.038	0.519
SPC005870.LAB	12/08/23	14:31:52.748	0.436	-0.009	0.001
SPC005871.LAB	12/08/23	14:32:56.319	0.278	-0.032	-0.005
SPC005872.LAB	12/08/23	14:34:00.191	0.225	-0.036	0.003
SPC005873.LAB	12/08/23	14:35:04.113	0.851	-0.021	0.006
SPC005874.LAB	12/08/23	14:36:08.107	0.891	-0.019	0.005
SPC005875.LAB	12/08/23	14:37:12.363	0.920	-0.033	0.007
SPC005876.LAB	12/08/23	14:38:15.822	0.880	-0.029	0.005
SPC005877.LAB	12/08/23	14:39:19.733	0.847	-0.027	0.004
SPC 005878.LAB	12/08/23	14:40:23.634	0.933	-0.035	0.003
SPC005879.LAB	12/08/23	14:41:27.536	1.360	-0.009	0.002
SPC005880.LAB	12/08/23	14:42:31.521	1.031	-0.033	0.004

Holcim; Joppa IL Main Stack

Post Run 2 HCN Analyte Spike

Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
12/08/23	15:53:39.651	1.289	-0.035	0.002
12/08/23	15:54:43.594	1.056	-0.018	0.007
12/08/23	15:55:47.830	1.194	-0.021	0.005
12/08/23	15:56:51.320	1.163	-0.019	0.005
12/08/23	15:57:55.340	1.327	-0.024	0.007
12/08/23	15:58:59.126	1.360	-0.009	0.005
12/08/23	16:00:03.375	1.142	-0.016	0.042
12/08/23	16:01:06.937	3.791	-0.025	0.379
12/08/23	16:02:10.926	4.174	-0.036	0.363
12/08/23	16:03:14.786	4.067	-0.027	0.350
12/08/23	16:04:18.695	3.970	-0.034	0.563
12/08/23	16:05:22.691	4.547	-0.014	0.090
12/08/23	16:06:26.577	0.190	-0.024	-0.003
12/08/23	16:07:30.367	0.173	-0.029	0.007
12/08/23	16:08:34.265	0.097	-0.010	0.006
12/08/23	16:09:38.171	0.740	-0.030	0.008
12/08/23	16:10:42.086	1.350	-0.029	0.006
12/08/23	16:11:46.332	1.250	-0.016	0.004
	12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23 12/08/23	Date Time 12/08/23 15:53:39.651 12/08/23 15:54:43.594 12/08/23 15:55:47.830 12/08/23 15:56:51.320 12/08/23 15:57:55.340 12/08/23 15:58:59.126 12/08/23 16:00:03.375 12/08/23 16:01:06.937 12/08/23 16:02:10.926 12/08/23 16:03:14.786 12/08/23 16:04:18.695 12/08/23 16:05:22.691 12/08/23 16:05:22.691 12/08/23 16:07:30.367 12/08/23 16:08:34.265 12/08/23 16:09:38.171 12/08/23 16:10:42.086 12/08/23 16:11:46.332	12/08/23       15:53:39.651       1.289         12/08/23       15:54:43.594       1.056         12/08/23       15:55:47.830       1.194         12/08/23       15:56:51.320       1.163         12/08/23       15:57:55.340       1.327         12/08/23       15:58:59.126       1.360         12/08/23       16:00:03.375       1.142         12/08/23       16:01:06.937       3.791         12/08/23       16:02:10.926       4.174         12/08/23       16:03:14.786       4.067         12/08/23       16:04:18.695       3.970         12/08/23       16:05:22.691       4.547         12/08/23       16:07:30.367       0.173         12/08/23       16:07:30.367       0.173         12/08/23       16:08:34.265       0.097         12/08/23       16:09:38.171       0.740         12/08/23       16:10:42.086       1.350	12/08/23       15:53:39.651       1.289       -0.035         12/08/23       15:54:43.594       1.056       -0.018         12/08/23       15:55:47.830       1.194       -0.021         12/08/23       15:56:51.320       1.163       -0.019         12/08/23       15:57:55.340       1.327       -0.024         12/08/23       15:58:59.126       1.360       -0.009         12/08/23       16:00:03.375       1.142       -0.016         12/08/23       16:01:06.937       3.791       -0.025         12/08/23       16:02:10.926       4.174       -0.036         12/08/23       16:03:14.786       4.067       -0.027         12/08/23       16:04:18.695       3.970       -0.034         12/08/23       16:05:22.691       4.547       -0.014         12/08/23       16:07:30.367       0.173       -0.029         12/08/23       16:08:34.265       0.097       -0.010         12/08/23       16:09:38.171       0.740       -0.030         12/08/23       16:10:42.086       1.350       -0.029

Holcim; Joppa IL

Main Stack

Post Run 3 HCN Analyte Spike

Spectrum

Date

Time

1 OSCINGILISTICIN AND	aryte opike				
Crectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
C006042.LAB	12/08/23	17:36:46.822	0.880	-0.057	0.003
SPC006043.LAB	12/08/23	17:37:50.809	0.927	-0.077	-0.002
SPC006044.LAB	12/08/23	17:38:54.593	1.007	-0.040	0.001
SPC006045.LAB	12/08/23	17:39:58.496	1.279	-0.033	0.007
SPC006046.LAB	12/08/23	17:41:02.429	3.683	-0.034	0.385
SPC006047.LAB	12/08/23	17:42:06.379	5.037	-0.037	0.496
SPC006048.LAB	12/08/23	17:43:10.266	4.584	-0.015	0.451
SPC006049.LAB	12/08/23	17:44:14.172	4.263	-0.025	0.372
SPC006050.LAB	12/08/23	17:45:17.996	3.960	-0.022	0.326
SPC006051.LAB	12/08/23	17:46:21.884	3.463	-0.016	0.332
SPC006052.LAB	12/08/23	17:47:25.824	0.267	-0.018	0.001
SPC006053.LAB	12/08/23	17:48:29.694	0.503	-0.038	0.007
SPC006054.LAB	12/08/23	17:49:33.582	0.259	-0.020	-0.005
SPC006055.LAB	12/08/23	17:50:37.524	0.274	-0.028	0.000
SPC006056.LAB	12/08/23	17:51:41.765	0.430	-0.023	-0.009
SPC006057.LAB	12/08/23	17:52:45.321	1.040	-0.034	0.006
SPC006058.LAB	12/08/23	17:53:49.607	1.017	-0.023	800.0
SPC006059.LAB	12/08/23	17:54:53.091	0.295	-0.035	-0.004

Holcim; Joppa IL Main Stack

a Post Run 3 CTS

Spectrum	Date	Time	Ethylene (100,3000) 191C
SPC006070.LAB	12/08/23	18:48:00.467	0.054
SPC006071.LAB	12/08/23	18:49:04.302	17.648
SPC006072.LAB	12/08/23	18:50:08.433	73.478
SPC_006073.LAB	12/08/23	18:51:12.043	73.589
SPC006074.LAB	12/08/23	18:52:16.007	73.481
SPC_006075.LAB	12/08/23	18:53:19.861	73.602
SPC_006076.LAB	12/08/23	18:54:23.836	73.579
SPC006077.LAB	12/08/23	18:55:27.637	73.606
SPC006078.LAB	12/08/23	18:56:31.537	73.584
SPC006079.LAB	12/08/23	18:57:35.574	73.331
SPC 006080.LAB	12/08/23	18:58:39.363	73.689
SPC006081.LAB	12/08/23	18:59:43.260	73.523
SPC006082.LAB	12/08/23	19:00:47.259	73.586
SPC006083.LAB	12/08/23	19:01:51.082	73.577
	CTS Avera	age	73.581

Holcim; Joppa IL Main Stack Main CTS and HCN Direct

Main CTS and HCN Dire	ct					
Spectrum	Date	Time				Ethylene (100,3000) 191C
SPC005689.LAB	12/08/23	11:05:58.044	-0.086	0.020	0.001	-0.028
SPC005690.LAB	12/08/23	11:07:01.911	-0.130	-0.015	-0.000	-0.051
SPC005691.LAB	12/08/23	11:08:05.826	-0.131	-0.013	0.002	-0.103
SPC005692.LAB	12/08/23	11:09:09.731	-0.170	0.015	0.002	-0.031
SPC005693.LAB	12/08/23	11:10:13.643	-0.184	-0.006	0.002	-0.098
SPC005694.LAB	12/08/23	11:11:17.755	-0.206	-0.010	0.002	-0.030
SPC005695.LAB	12/08/23	11:12:21.576	-0.037	-0.010	0.000	-0.048
SPC005696.LAB	12/08/23	11:13:25.458	-0.131	0.023	0.000	-0.090
SPC005697.LAB	12/08/23	11:14:29.287	-0.132	0.010	-0.000	-0.071
SPC_005698.LAB	12/08/23	11:15:33.185	-0.125	-0.002	0.003	-0.113
SPC 005699.LAB	12/08/23	11:16:37.089	-0.015	-0.013	0.003	-0.034
SPC_005700.LAB	12/08/23	11:17:41.004	-0.090	0.004	0.001	-0.097
SPC 005701.LAB	12/08/23	11:18:45.022	-0.095	-0.021	0.001	-0.065
SPC 005702BKG.LAB	12/08/23	11:21:29.677	0.000	0.000	0.000	0.000
SPC 005703.LAB		11:22:40.225	0.063	0.010	-0.004	0.043
SPC 005704BKG.LAB	12/08/23	11:25:20.358	0.000	0.000	0.000	0.000
SPC 005705.LAB		11:26:30.766	0.004	-0.006	-0.000	0.024
SPC 005706BKG.LAB	12/08/23	11:29:01.678	0.000	0.000	0.000	0.000
SPC 005707.LAB		11:30:12.079	0.012	-0.011	-0.001	-0.070
SPC 005708BKG.LAB	12/08/23	11:32:39.752	0.000	0.000	0.000	0.000
SPC 005709.LAB		11:33:50:177	0.028	0.011	0.000	0.061
SPC 005710.LAB	12/08/23	11:34:54.099	-0.370	-0.014	0.004	0.022
SPC 005711.LAB	12/08/23	11:35:58.040	0.163	0.015	0.001	0.055
SPC005712.LAB	12/08/23	11:37:01.914	0.033	-0.031	-0.001	0.035
SPC005713.LAB	12/08/23	11:38:05.964	-0.063	-0.002	-0.001	0.031
SPC005714.LAB	12/08/23	11:39:09.734	-0.098	-0.010	0.002	0.042
SPC005715.LAB	12/08/23	11:40:13.646	-0.083	-0.005	0.003	0.065
SPC005716.LAB	12/08/23	11:41:17.654	0.050	0.001	-0.002	0.077
SPC005717.LAB	12/08/23	11:42:21.505	-0.227	0.001	-0.015	46.568
SPC005718.LAB	12/08/23	11:43:25.406	-0.369	-0.014	-0.007	73.941
SPC005719.LAB	12/08/23	11:44:29.327	-0.317	0.014	-0.011	74.021
	CTS Avera	age				73.981
SPC005720.LAB	12/08/23	11:45:33.193	6.116	0.006	0.639	61.081
SPC005721.LAB	12/08/23	11:46:37.101	41.476	0.012	4.224	8.189
SPC005722.LAB	12/08/23	11:47:41.000	42.551	-0.007	4.236	8.559
SPC005723.LAB	12/08/23	11:48:45.289	42.785	0.004	4.235	8.563
SPC005724.LAB	12/08/23	11:49:48.860	42.688	-0.022	4.230	8.525
SPC005725.LAB		11:50:52.732	48.037	-0.001	4.804	0.098
SPC005726.LAB		11:51:56.642	48.701	-0.010	4.847	-0.637
SPC005727.LAB	12/08/23	11:53:00.562	49.238	-0.007	4.855	-0.518
SPC005728.LAB		11:54:04.533	49.308	-0.004	4.848	-0.596
SPC005729.LAB		11:55:08.431	49.133	-0.007	4.852	-0.616
	HCN/SF6	Spike Average	49.226		4.850	

# Appendix C

Ion Chromatography Analytical Report Data

# Deeco, Inc.

3404 Lake Woodard Drive Raleigh, NC 27604

Project No: 23-3318 Holcim Joppa

Hydrogen Fluoride & Chlorine

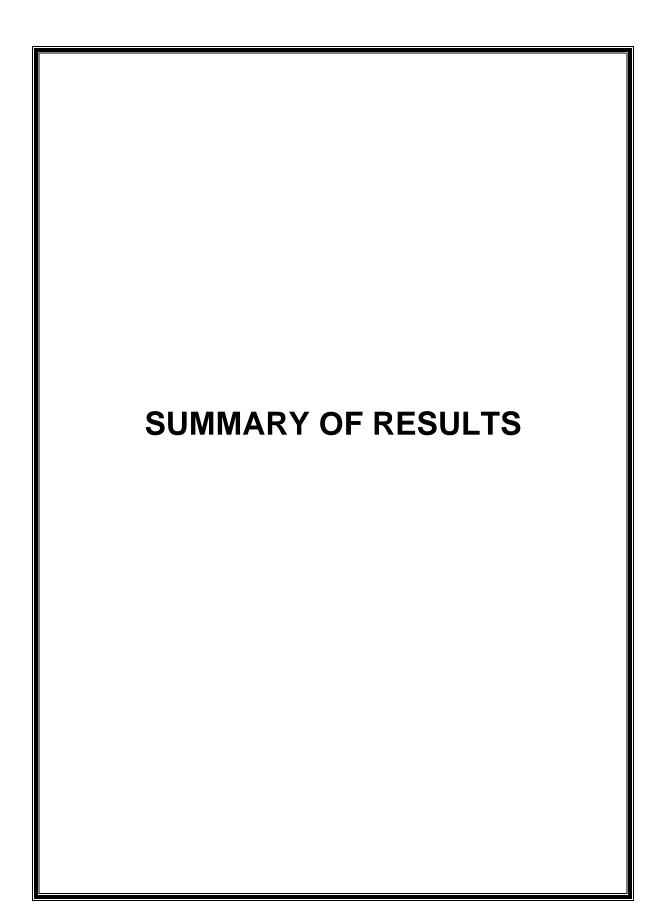
EPA Method 26A Analysis

Analytical Report 41759



Element One, Inc.

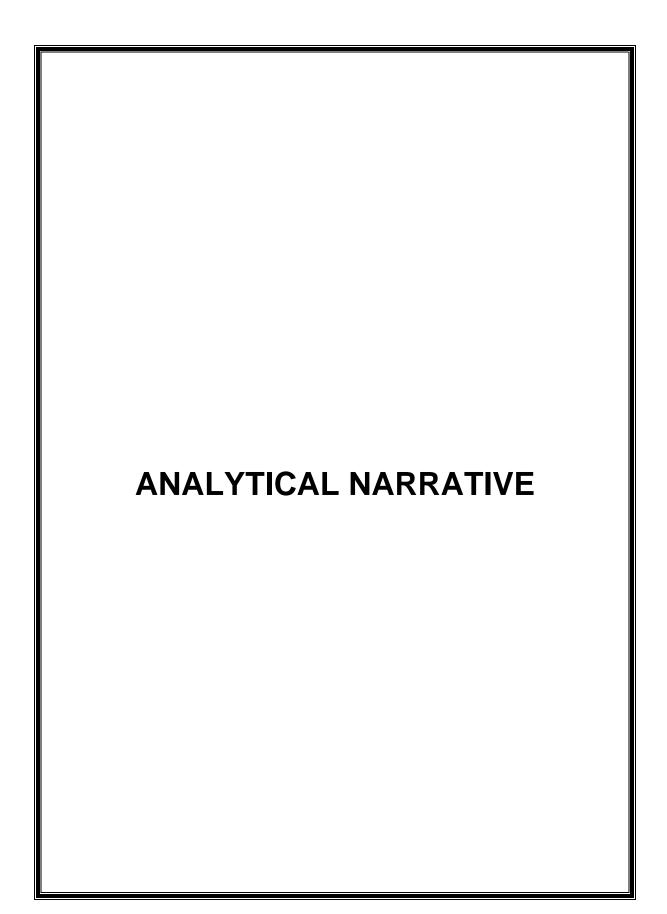
6319-D Carolina Beach Rd., Wilmington, NC 28412 910-793-0128 FAX: 910-792-6853 e1lab@e1lab.com


The following data for Analytical Report 41759 has been reviewed for completeness, accuracy, adherence to method protocol, and compliance with quality assurance guidelines.

Review by:

Katie Gattis, Quality Assurance Officer January 8, 2024

Report Reviewed and Finalized by:


Ken Smith, Laboratory Director January 8, 2024



# **Summary of Analysis**

## **Summary of Method 26A Analysis**

	Joppa- M26A-R1A e41759-1	Joppa- M26A-R2A e41759-2	Joppa- M26A-R3A e41759-3
Element	Total mg	Total mg	Total mg
HF	< 0.23	< 0.251	< 0.241
$Cl_2$	< 0.181	< 0.202	< 0.168
	Joppa- M26A-R1B e41759-4	Joppa- M26A-R2B e41759-5	Joppa- M26A-R3B e41759-6
Element	Total mg	Total mg	Total mg
HF	< 0.227	< 0.26	< 0.248
Cl ₂	< 0.178	< 0.17	< 0.176
	Florount	Joppa- M26A-FBOFF e41759-7	
	Element	Total mg	
	HF	< 0.189	
	$Cl_2$	< 0.152	



## **Element One Analytical Narrative**

Client:	Deeco, Inc.	Element One #:	41759
Client ID:	23-3318 Holcim Joppa	Analyst:	LAW
Method:	M26A	Dates Received:	12.18.23
Analytes:	HF, Cl ₂	Dates Analyzed:	12.28.23-01.04.24

#### **Summary of Analysis**

The samples were prepared and analyzed according to Method 26A protocol. The samples were analyzed for fluoride and chloride on Metrohm 861/788 and 881/858 ion chromatograph systems.

#### **Detection Limits**

The Metrohm reporting limit was 0.1 µg/mL for fluoride and chloride.

#### **Analysis QA/QC**

Duplicate analyses relative percent difference (RPD), spike recovery and second source verification data are summarized in the Quality Control section. All QA/QC data was within the criteria of the method.

#### **Additional Comments**

The reported results have not been corrected for any blank values or spike recovery values. Due to the sample matrix, it was necessary to analyze all samples at a minimum five-fold dilution to reduce interferences and to preserve the anion column. The reported results relate only to the items tested or calibrated.



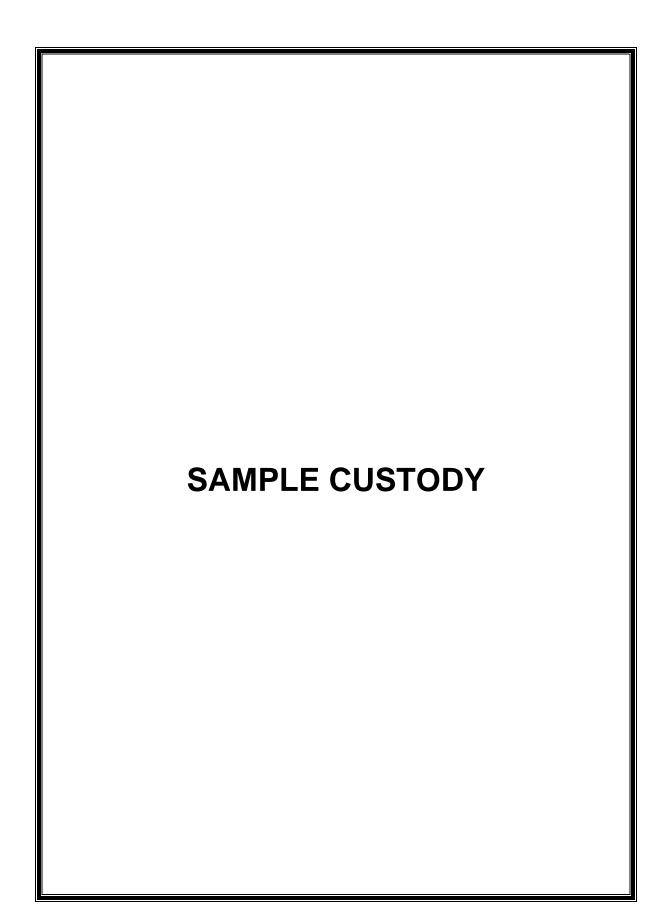
## **Summary of Quality Control Data**

# Summary of Method 26A Duplicate Analysis RPD (Method 26A QC limits: <5% for RPD)

	Joppa- M26A-R1A	Joppa- M26A-R2A	Joppa- M26A-R3A
Element	RPD	RPD	RPD
HF	NA	NA	NA
$Cl_2$	NA	NA	NA
	Joppa- M26A-R1B	Joppa- M26A-R2B	Joppa- M26A-R3B
Element	RPD	RPD	RPD
HF	NA	NA	NA
Cl ₂	NA	NA	NA
		Joppa- M26A-FBOFF	
	Element	RPD	
	HF	NA	
	$Cl_2$	NA	

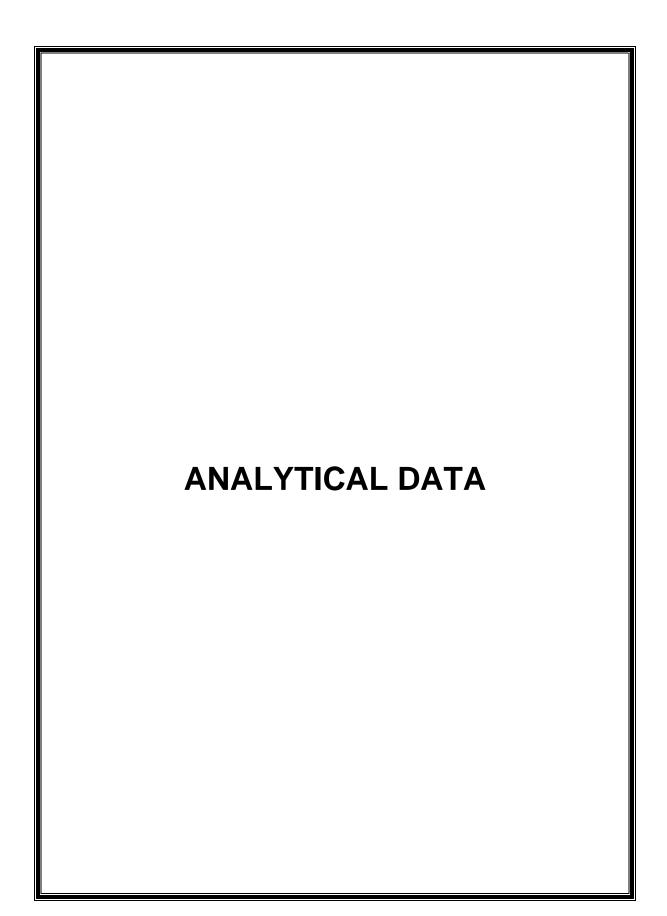
# Summary of Method 26A Spike Recoveries (Method 26A QC limits: 90-110% for Spike Recoveries)

	Joppa-	Joppa-
	M26A-R3A	M26A-R3B
Element	Recovery	Recovery
HF	104%	107%
$Cl_2$	100%	102%


### **Second Source Calibration Verification**

(*Laboratory QC limits: 90-110%)

	DL 0.1mg/L	*QC 5.0mg/L
Element	Recovery	Recovery
HF	110%	101%
Cl ₂	92%	98%


elementOne

Certification: NJ NELAP NC009 41759 Deeco M26A Report Packet Page 8 of 27



			DEECO, In( 3404 Lake Woodard Dr. Raleigh, NC 27604 919-250-0285			C	759 ( 12/15/23 Element One EPA Method 26A
Plant Name: Holcim	(		Plant Location: Joppa IL			Project Name:	23-3318
Relinquished by (Signature)	1	Date/Time  2/18/23	Received by: (Signature)		Date/Time		
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Dats/Time Received by: (Signature)		Date/Time	Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample Description	Special Notes	Lab
Joppa-1A-H ₂ SO ₄	12/08/23	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO₄ and DI Rinses	Final Volume 437.6 mL	Element One
Joppa-1A-NaOH	12/08/23	Comp.	Chloride ion as Chlorine (Cl ₂ )	EPA Method 26A	0.1N NaOH and DI Rinses	Final Volume 361.7 mL Sodium thiosulfate NOT ADDED!	Element One
Joppa-1B-H ₂ SO ₄	12/08/23	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 430.6 mL.	Element One
Joppa-1B-NaOH	12/08/23	Comp.	Chloride ion as Chlorine (Cl ₂ )	EPA Method 26A	0.1N NaOH and DI Rinses	Final Volume 355.4 mL Sodium thiosulfate NOT ADDED!	Element One
Joppa-2A-H ₂ SO ₄	12/08/23	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 477.3 mL	Element One
Joppa-2A-NaOH	12/08/23	Сотр.	Chloride ion as Chlorine (Cl ₂ )	EPA Method 26A	0.1N NaOH and DI Rinses	Final Volume 404.1 mL Sodium thiosulfate NOT ADDED!	Element One
Joppa-2B-H ₂ SO ₄	12/08/23	Сотр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 493.1 mL	Element One
Joppa-2B-NaOH	12/08/23	Comp.		EPA Method 26A	0.1N NaOH and DI Rinses	0.1N NaOH Final Volume 340.8 mL and DI Sodium thiosulfate NOT ADDED!	Element One
Sandles He	releved	5	good consistent in	あい じん	Express a	ostamos. No evoty ordans.	sty costans

			DEECO, In( 3404 Lake Woodard Dr. Raleigh, NC 27604 919-250-0285			الارام Date: Lab: Train:	ロイフ 5 9 ( Date: 12/15/23 Lab: Element One Train: EPA Method 28A
Plant Name: Holcim			Plant Location: Joppa IL			Project Name:	23-3318
Relipquished by (Signature)		Date/Time (2/18/23)	Date/Time Received by: (Signature)		Date/Time /	Comments	
Relinquished by: (Signature)		Date/Time	Date/filme Received by: (Signature)	,	Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample Description	Special Notes	Lab
Joppa-3A-H ₂ SO ₄	12/08/23	Сотр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 458.7 mL Element One	Element One
Joppa-3A-NaOH	12/08/23	Сотр.	Chloride ion as Chlorine (Cl ₂ )	EPA Method 26A	0.1N NaOH and DI Rinscs	Final Volume 335.7 mL Sodium thiosulfate NOT ADDED!	Element One
Joppa-3B-H ₂ SO ₄	12/08/23	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	1.3 mL	Element One
Joppa-3B-NaOH	12/08/23	Сотр.	Chloride ion as Chlorine (Cl ₂ )	EPA Method 26A	0.1N NaOH and DI Rinses	0.1N NaOH Final Volume 352.9 mL and DI Sodium thiosulfate NOT ADDED!	Element One
Joppa-FBOFF-H _z SO ₄	12/08/23	Сопр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	9.5 mL	Element One
Joppa-FBOFF-NaOH	12/08/23	Comp.	Chloride ion as Chlorine (Cl ₂ )	EPA Method 26A	0.1N NaOH and DI Rinses	Final Volume 304.2 mL Sodium thiosulfate NOT ADDED!	Element One
				:			
							٦



## **Analytical Calculations**

HF-

Total HX (mg) = [X Results (μg/mL)*Dilution*Beginning Vol (mL)]*Correction Factor 1000

#### Where-

X Results= Raw sample concentration (ppm) — IC Data Sheet

Dilution= <u>Diluted Volume</u>—IC Run Sheet Aliquot

Beginning Volume--Sample Submission

1.053= Correction factor for hydrogen fluoride

Cl₂ -

Total  $X_2$  (mg) = X Results ( $\mu$ g/mL)*Dilution*Beginning Volume (mL) 1000

#### Where-

X Results= Raw sample concentration (ppm)—Cl2 IC Data Sheet

Dilution= <u>Diluted Volume</u>—IC Run Sheet Aliquot

Beginning Volume--Sample Submission

## **Analytical Calculations**

### Spike Recovery-

Spike (%) = (Spiked Result ( $\mu$ g/mL) – Sample Result ( $\mu$ g/mL)) X100 Spike Amount (µg/mL)

#### Where-

Spike Result = Raw sample concentration (ppm)--IC-Data Sheet

Sample Result = Raw sample concentration (ppm)--IC-Data Sheet

Spike Amount—IC-Data Sheet

### **Duplicate Analysis RPD-**

RPD (%) = (Duplicate Result ( $\mu$ g/mL) - Sample Result ( $\mu$ g/mL)) X100 Average (µg/mL)

#### Where-

Sample Result and Duplicate Results=Raw sample concentration (ppm)--IC-Data Sheet

Average= (<u>Duplicate + Sample Results)</u>
2

ele	ment(	One	AIF	R TES	STING	G SA	MPLE	SUBN	IISSION	FORM	Lab	D O	41759
										Analys	is Due Da	ate 12.29	9.23
Out of Hold 01.05.24									QA/	-	ort Due Da		
Clien	+	Deeco, I	nc								Date Rec	12.18	.23
Proje		23-3318									Time Rec	1100	
			1/0	uma L			₹H.pH <	- 2	BH,ph	1 > 8	F	Ref. Method	1:
V ₀	lume Ma	N)	Y	ume Lo	76)		/ PIN 1	N	(Y)	N	1 .	26A	
L('	/	. X CU			101	_	/	.,	( )				
Sam	ple lde	ntification	on C	, C	1.01	-						e Fron	
1	Joppa	-M26A-R1	1A			4		-M26A-R1		7	Joppa-M2	6A-FBOFF	
2 Joppa-M26A-R2A					5		M26A-R2	and the same of th					
3 Joppa-M26A-R3A					6	And in case of the last of the	M26A-R3			-			
	Joppa	-M26A-R	3A Spi	ke			Joppa-	-M26A-R3I	з Sріке	_			
-				Sam	ples 1-7	7	HF						
Ana	lyses F	Requeste	d	Sam	ples 1-7	7	Cl ₂						
- Bun	s/FB												
Kun	SIFD		npinge		FH	Imping	er 2	FH Im	pinger 3		pinger 4 bined Imp)	BH Imp	oinger 5
Lab I	Lab ID BV, ml FV, ml BV, r					nl	FV, ml	BV, ml	FV, ml	BV, ml	FV, ml	BV, ml	FV, ml
1			43	7.le	_						361.7		
2			_	1.3							484.1		
3.S				8.4							335.7		
4	430.6								355.4				
5	493-1									3408			
6.S				_					352.9				
7 359.5						=	_				304.2		
Lab	Comm	unicatio	ns										
			-										

elementOne

Imp 1, 2, &3 Prep By / Date <u>61-0324000</u>
Imp 4 & 5 Prep By / Date <u>12-2823</u>
Labeled By/Date <u>12-19-23</u>
ID Verification By/Date <u>WWW 12-19-23</u>

Rec Runs/FB: H2SO4; NaOH; No RB received--12.18.23 LLB

## Metrohm 861/788 Ion Chromatograph System

elementOne

M26A-HF IC Data Sheet

Lab ID #: 41759

Client: Deeco

Column: IonPac AS14A

Date: 01.08.24

Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW

Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml): 0.10

F to HF factor: 1.053

Sample ID	F¹ μg/ml	Dilution	Final Vol, ml	HF, Total	Spike, µg/ml	% Recovery/ RPD	File Name	Date Time
LRB	0.000	1	10	< 0.001			_2024-01-03_	1/3/2024 18:12
LRB	0.000	1	10	< 0.001		NA	_2024-01-03_	1/3/2024 18:31
LRB SPK	5.076	1	10	0.053	5.00	102%	_2024-01-03_	1/3/2024 18:50
LRB SPK	5.069	1	10	0.053	5.00	101%	_2024-01-03_	1/3/2024 19:09
41759-1	0.000	5	437.6	< 0.23			_2024-01-04_	1/4/2024 7:19
41759-1 DUP	0.000	5	437.6	< 0.23		NA	_2024-01-04_	1/4/2024 7:38
41759-2	0.000	5	477.3	< 0.251			_2024-01-04_	1/4/2024 7:57
41759-2 DUP	0.000	5	477.3	< 0.251		NA	_2024-01-04_	1/4/2024 8:16
41759-3	0.000	5	458.7	< 0.241			_2024-01-04_	1/4/2024 8:34
41759-3 DUP	0.000	5	458.7	< 0.241		NA	_2024-01-04_	1/4/2024 8:53
41759-3 SPK	5.350	5	458.7	12.9	5.00	107%	_2024-01-04_	1/4/2024 9:12
41759-3 SPK DUP	5.045	5	458.7	12.2	5.00	101%	_2024-01-04_	1/4/2024 9:31
41759-4	0.000	5	430.6	< 0.227			_2024-01-04_	1/4/2024 9:49
41759-4 DUP	0.000	5	430.6	< 0.227		NA	_2024-01-04_	1/4/2024 10:08
41759-5	0.000	5	493.1	< 0.26			_2024-01-04_	1/4/2024 11:42
41759-5 DUP	0.000	5	493.1	< 0.26		NA	_2024-01-04_	1/4/2024 12:00
41759-6	0.000	5	471.3	< 0.248			_2024-01-04_	1/4/2024 12:19
41759-6 DUP	0.000	5	471.3	< 0.248		NA	_2024-01-04_	1/4/2024 12:38
41759-6 SPK	5.394	5	471.3	13.4	5.00	108%	_2024-01-04_	1/4/2024 12:57
41759-6 SPK DUP	5.289	5	471.3	13.1	5.00	106%	_2024-01-04_	1/4/2024 13:15
41759-7 FB	0.000	5	359.5	< 0.189			_2024-01-04_	1/4/2024 13:34
41759-7 FB DUP	0.000	5	359.5	< 0.189		NA	_2024-01-04_	1/4/2024 13:53

elementOne e 41759-HF

HF Data 1 of 2

Shak An Wobb

elementOne

M26A-HF IC Data Sheet

Lab ID #: 41759

Client: Deeco

Column: IonPac AS14A

Date: 01.08.24

Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW

Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml): 0.10

F to HF factor: 1.053

Standards	F μg/ml	Dilution	QC, µg/ml	% Relative Error	% Recovery	File Name	Date Time
0	0.000					2024-01-03	1/3/2024 14:28
0.1	0.099			-1.0%	99%	2024-01-03	1/3/2024 14:46
1	1.000			0.0%	100%	2024-01-03	1/3/2024 15:05
3	3.104			3.5%	103%	2024-01-03	1/3/2024 15:24
5	4.970			-0.6%	99%	2024-01-03	1/3/2024 15:43
10	9.927			-0.7%	99%	2024-01-03	1/3/2024 16:01
0.1	0.109			9.0%	109%	2024-01-04	1/4/2024 15:45
1	0.985			-1.5%	99%	2024-01-04	1/4/2024 16:04
3	3.077			2.6%	103%	2024-01-04	1/4/2024 16:23
5	5.076			1.5%	102%	2024-01-04	1/4/2024 16:41
10	10.331			3.3%	103%	_2024-01-04_	1/4/2024 17:00
Correlation-	0.9997						
QC	5.052		5.00		101%	_2024-01-03_	1/3/2024 16:20
QC	5.001		5.00		100%	_2024-01-03_	1/3/2024 16:39
QC	5.204		5.00		104%	_2024-01-03	1/3/2024 21:20
QC	5.120		5.00		102%	2024-01-03	1/3/2024 21:39
QC	5.486		5.00		110%	_2024-01-04_	1/4/2024 1:42
QC	5.080		5.00		102%	_2024-01-04_	1/4/2024 2:01
QC	5.403		5.00		108%	_2024-01-04	1/4/2024 6:05
QC	4.540		5.00		91%	2024-01-04	1/4/2024 6:23
QC	5.209		5.00		104%	2024-01-04	1/4/2024 10:27
QC	5.174		5.00		103%	_2024-01-04_	1/4/2024 10:46
QC	5.152		5.00		103%	_2024-01-04_	1/4/2024 14:49
QC	5.257		5.00		105%	2024-01-04	1/4/2024 17:19
DL	0.110		0.10		110%	2024-01-03	1/3/2024 17:35
DL	0.110		0.10		110%	_2024-01-03_	1/3/2024 17:54
DL	0.109		0.10		109%	2024-01-04	1/4/2024 15:08
DL	0.110		0.10		110%	2024-01-04	1/4/2024 17:38
36738-5 QC	6.746	1	6.96		102%	_2024-01-04_	1/4/2024 14:12
36738-5 QC DUP	6.817	1	6.96		103%	_2024-01-04_	1/4/2024 14:30
BLK	0.000					_2024-01-03_	1/3/2024 16:58
BLK	0.000					_2024-01-03_	1/3/2024 17:16
BLK	0.000					_2024-01-03_	1/3/2024 21:57
BLK	0.000					_2024-01-03_	1/3/2024 22:16
BLK	0.086					_2024-01-04_	1/4/2024 2:20
BLK	0.000					2024-01-04	1/4/2024 2:38
BLK	0.114					2024-01-04	1/4/2024 6:42
BLK	0.000					_2024-01-04_	1/4/2024 7:01
BLK	0.000					_2024-01-04_	1/4/2024 11:04
BLK	0.000					_2024-01-04_	1/4/2024 11:23
BLK	0.000					_2024-01-04_	1/4/2024 15:27
BLK	0.000					_2024-01-04_	1/4/2024 17:56
			eleme	ntOne			

HF Data 2 of 2

e 41759-HF

elementOne

# IC Sample Sheet/Digestion Worksheet

41751

Lab ID #: 41753

Date: 1.3.24

Column: IonPac AS14A

41759 Instrument: 011786 Lot# (CII -997-3

Analyst: دسم

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Batch name: 0\0324-41751

10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 100 mM H₃PO₄ Lot # |CI|-|08-3

Method: 300/26A

				1.0 mL/min.	Method: 300/26A		
AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
1	0.0			مد	mane	<u>e</u> ²	
2	0.1		F-	13BC00594		0.9997	
3	1.0		Ċr	4308 5 59		0.1990	
4	3.0						
5	5.0						
Ų	10.0						
٦	@c						
4	O.C						
9	BLK						
10	BUC						
1/	DL						
n	ja						
13	UPB.						
14	LRB						
15	UPB+ ·						
110	LPBt						
FI	4451-1		HCL			5y	
48	- Id ·		1			١	
19	-3				-		
70	-3d						
21	-31.				5,049		
n	-3+d		1		5.085	$\downarrow$	
73	60						
24	O C						
25	BUL						

Manual integrations noted by M	-11			
Curve IC Lot # \C\\-\O(-2Comments:	Palory			
Spike 50 uL from 1000 ug/mL Std. to 10mL sample Lo	t#s: IC ME Solut	ion <u>23/3/29-250 U/S</u> IC NO:	2 Solution $\underline{2}$	302942-2501895
QC: Spike 50 uL from 1000 ug/mL F, Cl, Br, and SO ₄ §				
QC: Spike 20 uL from 1000 ug/mL NO2, NO3, and PO4	Std. to 10mL sam	ple; lot #'s listed above.		
Submitted for QC- Date: Time:	_By:	QC Review- Date:	Time:	By:

41751 Lab ID #: 41753 elementOne IC Sample Sheet/Digestion Worksheet 1959 Instrument: 801 | 788 Date: 61-03-24 Column: IonPac AS14A Lot# 1C11 -99-3 Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

دىن :Analyst Batch name: 01072 Y ~ 41751 10mL Conc. Eluent Diluted to FV=1L with filtered UPDI

Lot # 1011-108-3 Regenerant: 100 mM H₃PO₄ Method: 300/26A Flow Rate: 1.0 mL/min.

			Flow Rate:	1.0 mL/min.		Method:	
AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
24	BLK						
14.	41751-2		Hcl			5χ.	
79.	-2d		<u> </u>	·	_	1	
29	-A .				_		
30	-4d						
31	-5						
37	-Sol					-	
33	- (o						
34	- led						, ·
35	-10+				5.022		- 9
. 3U	- 6+d		4		4,784	9	
37	QC .						
38	@C						
39	BLK						
40	BLK						
41	47151-7 thsa		HCl			Şχ	
42	-701 H2504		V.		_	9	
43	41753-1		HCl		3,489	w	
qA.	- \d				3,488	-	
49	-2				3,458		
40	-2d				3,463		
47	- 24				8.491		
48	- 2td				8,143	V	
49	-3 fil					\$X	
80 .	-301 BIK		۵			4	

Manual Integrations noted by M			6716		
Curve IC Lot #	Conments:	1.4	20184	_ /	
Spike 50 uL from 1000 ug/mL SM				IC NO2 Solytiony_	
QC: Spike 50 uL from 1000 us/ml					
QC: Spike 20 uL from 1009 ug/ml	, NO₂, NO₃, and PO₄ S	Std. to 10mL sam	ple; lot #'s listed abov	re. (/	
Submitted for QC- Date	Time:	By:	QC Review- Date:	Timg:	By:

41751 Lab ID #: 41953

elementOne

IC Sample Sheet/Digestion Worksheet

417597

Date: 01-03-24

Column: IonPac AS14A

Instrument: 201788

Analyst: حس

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Lot# 1611-99-3

Batch name: 616324-41751 10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 100 mM H₃PO₄

Lot # 1011-108-3 Method: 300/26A Flow Rate: 1.0 mL/min.

AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
51	Oc.						
52	O.C						
53	BLK						
54	ble						
55 .	41350-1		HERHE		, '	5χ	
Ste .	-1d		1				
57 .	- 2						
38	- 2d						
591	-3						
W6.	- 3d						
w ·	-34				5,350		
lez.	-3td				5,045		
(e3 ·	-4						
44	-4d		4			Ą	
us .	Q.C.						
lele	QC						-
U7	BLK						
VS	BLK						
601	41369-5		HE			Sχ	
40	-50						
ৰ।	- (9						
72	-ud				_		
73	-U+				5.394		
74	- letd				5:189		
75	7 FB		V.			1	

Manual integrations noted by m			BORY		
Curve IC Lot #	_Commefits:	pg 5	sor 9		
Spike 50 uL from 1000 ug/mL Std. to	o 10ml/ sandple Lot#s: I	C ME Solution _	IC N	O2 Sofutiøn	
QC: Spike 50 uL from 1000 ug/mL F	F, CI, ∕Br, and SO₄ Std. to	10mL sample; lot		//	
QC: Spike 20 uL from 1000 ug/mL N	$NO_2/NO_3$ and $PO_4$ Std. to	o 10mL sample; k	ot #'s listed above.	6/	
Submitted for QC- Date:	_Time:By:	QC F	Review- Date:	Time:	_By:

elementOne	IC Sample Sheet/Digestion	Worksheet

44751 Lab ID #: 41453 41759

Date: 01.03 . 24

Column: IonPac AS14A

شىن :Analyst

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Instrument: \$611798 Lot# 10111-99-3

10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 100 mM H₃PO₄ Lot # ICL/-10%-3 Batch name: 6103 ZY 41751

			Flow Rate: 1.0 mL/min.			Method: 300/26A		
AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)	
46 .	413591- 7d FB		HF			5x		
77	36738-5 QC		HFLHCI	6246	5635	9		
78	-5 Q C		1	6.812	5,663	İΧ	TV H(1=5.52	
79.	QC ·					1	TV HF=6-914	
TD	bi							
81	BUE			,				
82	0.1							
83	0.7							
<b>8</b> 4	3.0							
45	5.0							
De	10.0							
97	Øc.							
43	DL							
89	BLK							

Manual integrations noted by M		C-11		
Curve IC Lot #	_Comments:Ω	4654	_ /	
Spike 50 uL from 1000 ug/mL Stat. t	o 10mL sample Lot #'s: IC	ME Solution	IC NO2 Solution	
QC: Spike 50 uL from 1000 ug/mL l	CI, Br, and SO4 Std. to	10mL sample; lot #'s listied above	e. //	
QC: Spike 20 uL from 1000 g/ml/	NO2, NO3, and PO4 Std. to	10mL sample; lot #'s listed above	/e. [/	
Submitted for QC- Date:	_ Time: By:	QC Review- Date:	Time:	By:
(				

elementOne

# M26A-CI2 IC Data Sheet

Lab ID #: 41759

Lude An W

Client: Deeco

Date: 01.03.24 Analyst: LAW

Column: IonPac AS14A

Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Flow Rate: 1.0 mL/min. Detection Limit, (µg/ml): 0.10

1.000

Sample ID	Cl ⁻ μg/ml	Dilution	Final Vol, ml	Cl ₂ , Total mg	Spike, µg/ml	% RPD/ Recovery	File Name	Date Time
LRB	0.019	1	10	< 0.001			4c485cef:18cab84278c:-74a8	12/28/2023 17:14
LRB	0.018	1	10	< 0.001		NA	4c485cef:18cab84278c:-74a6	12/28/2023 17:38
LRB SPK	5.243	1	10	0.052	5.00	104%	4c485cef:18cab84278c:-74a4	12/28/2023 18:01
LRB SPK	5.244	1	10	0.052	5.00	105%	4c485cef:18cab84278c:-74a2	12/28/2023 18:25
41759-1	0.058	5	361.7	< 0.181			4c485cef:18cab84278c:-7470	12/29/2023 4:12
41759-1 DUP	0.044	5	361.7	< 0.181		NA.	4c485cef:18cab84278c:-746e	12/29/2023 4:36
41759-2	0.000	5	404.1	< 0.202			4c485cef:18cab84278c:-746c	12/29/2023 4:59
41759-2 DUP	0.046	5	404.1	< 0.202		NA.	4c485cef:18cab84278c:-746a	12/29/2023 5:23
41759-3	0.000	5	335.7	< 0.168			4c485cef:18cab84278c:-7468	12/29/2023 5:46
41759-3 DUP	0.050	5	335.7	< 0.168		NA	4c485cef:18cab84278c:-7466	12/29/2023 6:10
41759-3 SPK	5.073	5	335.7	8.52	5.00	100%	4c485cef:18cab84278c:-7464	12/29/2023 6:33
41759-3 SPK DUP	5.039	5	335.7	8.46	5.00	100%	4c485cef;18cab84278c;-7462	12/29/2023 6:57
41759-4	0.063	5	355,4	< 0.178			4c485cef;18cab84278c;-7460	12/29/2023 7:20
41759-4 DUP	0.061	5	355.4	< 0.178		NA	4c485cef;18cab84278c:-7421	12/29/2023 7:44
41759-5	0.016	5	340.8	< 0.17			4c485cef;18cab84278c;-729a	12/29/2023 9:41
41759-5 DUP	0.045	5	340.8	< 0.17		NA	4c485cef:18cab84278c:-7298	12/29/2023 10:05
41759-6	0.013	5	352.9	< 0.176			4c485cef:18cab84278c:-7296	12/29/2023 10:28
41759-6 DUP	0.034	5	352.9	< 0.176		NA	4o485cef:18cab84278c:-7294	12/29/2023 10:52
41759-6 SPK	5.087	5	352.9	8.98	5.00	102%	4c485cef:18cab84278c:-7292	12/29/2023 11:15
41759-6 SPK DUP	5.111	5	352.9	9.02	5.00	102%	4c485cef:18cab84278c:-7290	12/29/2023 11:39
41759-7	0.015	5	304.2	< 0.152			4c485cef:18cab84278c:-728e	12/29/2023 12:02
41759-7 DUP	0.010	5	304.2	< 0.152		NA	4c485cef:18cab84278c:-728c	12/29/2023 12:26

elementOne e 41759-Cl₂

Cl₂-Data 1 of 2

elementOne

elementOne

M26A-Cl₂ IC Data Sheet

Lab ID #: 41759

Client: Deeco

Date: 01.03.24

Analyst: LAW
Detection Limit, (µg/ml): 0.10

Column: IonPac AS14A

Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Flow Rate: 1.0 mL/min.

1.000

Standards	Cl' µg/ml	Dilution	QC µg/ml	%Relative Error	% Recovery	File Name	Date Time
0	0.000					4c485cef:18cab84278c:-7116	12/28/2023 12:32
0.1	0.093			-7.0%	93%	4c485cef:18cab84278c:-7114	12/28/2023 12:56
1	0.912			-8.8%	91%	4c485cef:18cab84278c:-7112	12/28/2023 13:19
3	3.028			0.9%	101%	4c485cef:18cab84278c:-7110	12/28/2023 13:43
5	5.133			2.7%	103%	4c485cef:18cab84278c:-710e	12/28/2023 14:07
10	9.933			-0.7%	99%	4c485cef:18cab84278c:-710c	12/28/2023 14:30
0.1	0.110			10.0%	110%	4c485cef:18cab84278c:-71f1	12/29/2023 14:47
1	0.940			-6.0%	94%	4c485cef:18cab84278c:-71ef	12/29/2023 15:10
3	3.023			0.8%	101%	4c485cef:18cab84278c:-710a	12/29/2023 15:34
5	5.150			3.0%	103%	4c485cef:18cab84278c:-7108	12/29/2023 15:57
10	10.854			8.5%	109%	4c485cef:18cab84278c:-7106	12/29/2023 16:21
10	10.004			0.070	10070	10100001110000111100111100111100	
Correlation-	0.999792						
QC	4.903		5.00		98%	4c485cef:18cab84278c:-74b4	12/28/2023 14:54
QC	5.160		5.00		103%	4c485cef:18cab84278c:-74b2	12/28/2023 15:17
QC	5.179		5.00		104%	4c485cef:18cab84278c:-7494	12/28/2023 21:09
QC	4.836		5.00		97%	4c485cef:18cab84278c:-7492	12/28/2023 21:33
QC	5.183		5.00		104%	4c485cef:18cab84278c:-7478	12/29/2023 2:38
QC	5.184		5.00		104%	4c485cef:18cab84278c:-7476	12/29/2023 3:02
QC	5.047		5.00		101%	4c485cef:18cab84278c:-72a2	12/29/2023 8:07
QC	5.121		5.00		102%	4c485cef;18cab84278c;-72a0	12/29/2023 8:31
QC	5.274		5.00		105%	4c485cef:18cab84278c:-71f7	12/29/2023 13:36
QC	5.371		5.00		107%	4c485cef;18cab84278c;-7104	12/29/2023 16:44
QC	5.299		5.00		106%	4c485cef:18cab84278c:-70f6	12/29/2023 19:29
DL	0.092		0.10		92%	4c485cef:18cab84278c:-74ac	12/28/23 16:28
DL	0.090		0.10		90%	4c485cef:18cab84278c:-74aa	12/28/2023 16:51
DL	0.092		0.10		92%	4c485cef:18cab84278c:-71f5	12/29/2023 14:00
DL	0.092		0.10		92%	4c485cef:18cab84278c:-7102	12/29/2023 17:08
40034-7QC	4.161	20	78.00		107%	4c485cef;18cab84278c;-728a	12/29/2023 12:49
40034-7QC DUP	4.148	20	78.00		108%	4c485cef:18cab84278c:-7288	12/29/2023 13:13
BLK	0.005					4c485cef:18cab84278c:-74b0	12/28/2023 15:41
BLK	0.002					4c485cef:18cab84278c:-74ae	12/28/2023 16:04
BLK	0.004					4c485cef:18cab84278c:-7490	12/28/2023 21:56
BLK	0.003					4c485cef:18cab84278c:-748e	12/28/2023 22:20
BLK	0.002					4c485cef:18cab84278c:-7474	12/29/2023 3:25
BLK	0.004					4c485cef:18cab84278c:-7472	12/29/2023 3:49
BLK	0.001					4c485cef:18cab84278c:-729e	12/29/2023 8:54
BLK	0.001					4c485cef:18cab84278c:-729c	12/29/2023 9:18
BLK	0.003					4c485cef:18cab84278c:-71f3	12/29/2023 14:23
BLK	0.002					4c485cef:18cab84278c:-7100	12/29/2023 17:31
BLK	0.021					4c485cef:18cab84278c:-70f4	12/29/2023 19:52
	0.021						

elementOne e 41759-Cl₂

Cl₂-Data 2 of 2

# IC Sample Sheet/Digestion Worksheet

Lab ID #:41722 41759

Date: 12. 28. 23

Column: IonPac AS14A

Instrument: \$21 1358 Lot# \C11-99-3

Analyst: vuh

Conc. Eluent; 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Lot # 1011-106-2

Batch name:  $J_2$ 23- $J_1$ 722. C12 Regenerant: 100mM H₃PO₄ Lot #  $J_2$  Flow Rate: 1.0 mL/min. Met

Method: 26A NaOH

	Flow Rate: 1.0 mL/min. Method: 26A NaOH						
AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
1	0.0		R2	ac iot	#		
1	0.1	Ci	,999792	Ricca 4	308759		
3	1.0						
4	3.0						
5	5.0						
Q	0.01						
7	Q.C						
٩	QO						
9	BUK						
/0	BLK						
11	DL						
n	DL						
13	UB	1					
14	LFB						
15	LPB+						
-1/0	LRB+						
17	41722-7		Clz	Laxer	2.739	lūx	
18	-7d			1	2,243		
19	- 8				2952		
10	-8d			6	2924	4	
21	-10			5×	0,144	5 K	
n	-1001		<b>√</b>	7	0.4.6	4	
23	Q.C						
24	20						
VS	BLK						

Manual integrations noted by M
Curve IC Lot # IC11-107-9 Sodium Thiosulfate Lot # IC11-73-4 Comments: D-10F9
Spike 50 uL from 1000 ug/mL Std. to 10mL sample Lot #s: IC ME Solution 1405 7308 079 - 250
QC: Spike 50 uL from 1000 ug/mL Br Std. to 10mL sample; lot #'s listled above.
Submitted for QC- Date: 123023 Time: 1678 By: QC Review- Date: Time: By:

# IC Sample Sheet/Digestion Worksheet

Lab ID #:41722 41759

Date: 12, 28-23

Column: IonPac AS14A

Instrument: 881 858

Analyst: YUO

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Lot# 1C11-99-3

10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Batch name: |22823-41722-612Regenerant: 100mM H₃PO₄ Lot # 10 Flow Rate: 1.0 mL/min. Met

Lot # \C\\-\D6 - 2 Method: 26A NaOH

		Flo	Flow Rate: 1.0 mL/min.				Method: 26A NaOH		
AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)		
24	BLK								
22	41322-9		Cla		1,970	/0X			
28	-9d		1		2.036	1			
29	-9+				7.293				
30	-9td				7.298	Ú			
31	-11				0.163	5x			
32	-11d				6.157				
33	- 12				0,257		Bodell		
34	-120				6,144		5690 pechack		
35	- 12+				5,352				
876	-12+d		7		5361	- 1			
37	QC .								
38	Qc								
39	BUC								
40	BUC								
41	41759-1		Cl2		<u></u>	54			
42	-1d								
43	-2								
44	-20				_				
45	- 3								
410	- 3d								
49	-3+				5.073				
48	-3td -4d121873				5,039				
49	-40/233								
50	- 4d		$\perp$			<b>V</b>			

Manual integra						a . C	1-1
Curve IC/Lot #		_Sodium Th	niosølfate Lot #		Comments:	D.205	7
Spike 50 uL from 1000	ug/mL Std. t	o 10mL san	ngle Lot#s: IC M	E Solution		1	,
QC: Spike 50 uL from	1/000 ug/ml. E	3r Std. to 19	mL sample; lot #	s listied above.	. /	/	/
Submitted for QC- Day	e:	_Time:_/	By:	QC Revi	iew- Date:	Time:!	By:
		- (		/	1	/	/

elementOne

# IC Sample Sheet/Digestion Worksheet

Lab ID #: 41722 41759

Date: 12. 28-23

Column: IonPac AS14A

Instrument: %\\15%

Analyst:vuh

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Lot# IC11-99-3

Lot# 1011-106-2

10mL Conc. Eluent Diluted to FV=1L with filtered UPDI

Batch name: {22823-41722 C\2 Regenerant: 100mM H₃PO₄ Lot # 1

Flow Rate: 1.0 mL/min. Meti

Method: 26A NaOH

		FIO	v Rate: 1.0 ml			WELLIOU.	26A NaOH
AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
51	QC						
52	QC						
53	BUK		,				
54	BUK						
65	41750-5		Clz			54	
Sle	-5d						
57	-10						
58	- lad				-		
59	-10+				5.087		
100	- letd				5.111		
Lel	-7.						
して	- 7d					$\checkmark$	
U3	4003A-7.QC				4.161	20 X	TV=78
124	-7 ocd		<b>↓</b>		4.48	9	7
115	ØC.						
1010	pr						·
47	BUK						
US	0.1.						
109	1.0						
30	3.0						
71	5.0						
72	(0.0)						
73	QC						
74	DL						
75	BUK						

Manual integra		,			2. fy	
Curve IC/Lot #	Sodium/Thio	sulfate Lot #/	Comme	nts:	5011	
Spike 50 uL from 1000 ug/m	L Std. to 10ml sampl	e Lot #'s: IC ME So	lution	- /'	,	/
QC: Spike 50 uL/from 1000	ug/mL Br Std. to 10ml	L sample; )6t #'s listi	ed aboyle.	/	/	/
Submitted for QC- Date:	T/me:	By	QO'Review- Date:_	/ Time:_	/By:	

41727

elementOne

# IC Sample Sheet/Digestion Worksheet

Lab ID #: 41759

Date: 12-28-23

Column: IonPac AS14A

Instrument: 8 81 1 858 Lot# 1 C \( - qq - 3

كىن: Analyst

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 100mM H₃PO₄ Lot # \ C\(-\(-\(-\(-\)\)\)

Batch name: 1/22823-41772

Flow Rate: 1.0 mL/min.

Method: 26A NaOH

AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
76	4 1722-12		Cl2		0.343	5×	
77	-1ZD		l L		0.346		
29	-12+				5.565		
79	-12+D		L		5443		
80	OC. Blic			45			
81	Blic				ļ		
					ļ		
				,			
					ļ		
					ļ		
			-	<u> </u>	-		
				<u> </u>			
fanual integra				L		JOE 4	

Manual integra				4 _	
Curve IC Lot #	Sodium Thiosulfat		Comments:	0080C	4
	g/mL Std. to 10mL sample Lot		,-	( )	
	000 ug/mL Br√Std. to 10√mL sam	ple; lot #'s listied above.			
Submitted for QC- Date:	Time:	By:/QC Re	sview- Date:	Time:	By:
	/ /	/			
	/	/			
	2	/			

Appendix D

**Plant Process Data** 

	K1:
	CLINKER_PR
	OD (TNHR)
	Raw
Date/Time	Value
Run 1	
12/08/2023 13:24	64.4
12/08/2023 13:25	64.4
12/08/2023 13:26 12/08/2023 13:27	64.4 64.4
12/08/2023 13:28	64.4
12/08/2023 13:29	64.4
12/08/2023 13:30	64.4
12/08/2023 13:31	64.4
12/08/2023 13:32	64,4
12/08/2023 13:33	64.4
12/08/2023 13:34	64.4
12/08/2023 13:35	64.4
12/08/2023 13:36	64.4
12/08/2023 13:37	64.4
12/08/2023 13:38	64.4
12/08/2023 13:39	64.4
12/08/2023 13:40	64.4
12/08/2023 13:41	64.4
12/08/2023 13:42 12/08/2023 13:43	64.4 64.4
12/08/2023 13:44	64.4
12/08/2023 13:45	64.4
12/08/2023 13:46	64.4
12/08/2023 13:47	64.4
12/08/2023 13:48	64.4
12/08/2023 13:49	64.4
12/08/2023 13:50	64.4
12/08/2023 13:51	64.4
12/08/2023 13:52	64.4
12/08/2023 13:53	64.4
12/08/2023 13:54	64.4
12/08/2023 13:55	64.4
12/08/2023 13:56	64.4
12/08/2023 13:57	64.4 64.4
12/08/2023 13:58 12/08/2023 13:59	64.4
12/08/2023 14:00	64.4
12/08/2023 14:01	64.4
12/08/2023 14:02	64.4
12/08/2023 14:03	64.4

Date (Flore	K1: CLINKER_PR OD (TNHR) Raw Value
Date/Time	64.4
12/08/2023 14:04 12/08/2023 14:05	64.4
12/08/2023 14:05	64.4
12/08/2023 14:07	64.4
12/08/2023 14:08	64.4
12/08/2023 14:09	64.4
12/08/2023 14:10	64.4
12/08/2023 14:11	64.4
12/08/2023 14:12	64.4
12/08/2023 14:13	64.4
12/08/2023 14:14	64.4
12/08/2023 14:15	64.4
12/08/2023 14:16	64.4
12/08/2023 14:17	64.4
12/08/2023 14:18	64.4
12/08/2023 14:19	64.4
12/08/2023 14:20	64.4
12/08/2023 14:21	64.4
12/08/2023 14:22	64.4
12/08/2023 14:23	64.4
12/08/2023 14:24	64.4
12/08/2023 14:25	64.4
Run 1 Average	64.4

	K1: CLINKER_PR OD (TNHR) Raw
Date/Time	Value
Run 2	
12/08/2023 14:53	64.4
12/08/2023 14:54	64.4
12/08/2023 14:55	64.4
12/08/2023 14:56	64.4
12/08/2023 14:57	64.4
12/08/2023 14:58	64.4
12/08/2023 14:59	64.4
12/08/2023 15:00	64.4
12/08/2023 15:01	64.4
12/08/2023 15:02	64.4
12/08/2023 15:03	64.4
12/08/2023 15:04	64.4 64.4
12/08/2023 15:05 12/08/2023 15:06	64.4
12/08/2023 15:07	64.4
12/08/2023 15:08	64.4
12/08/2023 15:09	64.4
12/08/2023 15:10	64.4
12/08/2023 15:11	64.4
12/08/2023 15:12	64.4
12/08/2023 15:13	64.4
12/08/2023 15:14	64.4
12/08/2023 15:15	64.4
12/08/2023 15:16	64.4
12/08/2023 15:17	64.4
12/08/2023 15:18	64.4
12/08/2023 15:19	64.4
12/08/2023 15:20	64.4
12/08/2023 15:21	64.4
12/08/2023 15:22	64.4
12/08/2023 15:23	64.4
12/08/2023 15:24	64.4
12/08/2023 15:25	64.4
12/08/2023 15:26 12/08/2023 15:27	64.4 64.4
12/08/2023 15:28	64.4
12/08/2023 15:29	64.4
12/08/2023 15:30	64.4
12/08/2023 15:31	64.4

Date/Time	K1: CLINKER_PR OD (TNHR) Raw Value
12/08/2023 15:33	64.4
12/08/2023 15:34	64.4
12/08/2023 15:35	64.4
12/08/2023 15:36	64.4
12/08/2023 15:37	64.4
12/08/2023 15:38	64.4
12/08/2023 15:39	64.4
12/08/2023 15:40	64.4
12/08/2023 15:41	64.4
12/08/2023 15:42	64.4
12/08/2023 15:43	64.4
12/08/2023 15:44	64.4
12/08/2023 15:45	64.4
12/08/2023 15:46	64.4
12/08/2023 15:47	64.4
12/08/2023 15:48	64.4
12/08/2023 15:49	64.4
12/08/2023 15:50	64.4
12/08/2023 15:51	64.4
12/08/2023 15:52	64.4
Run 2 Average	64.4

	K1: CLINKER_PR
	OD_CD
	(TNHR)
	Raw
Date/Time	Value
12/08/2023 16:20	64.4
12/08/2023 16:21	64.4
12/08/2023 16:22	64.4
12/08/2023 16:23	64.4
12/08/2023 16:24	64.4
12/08/2023 16:25	64.4
12/08/2023 16:26	64.4
12/08/2023 16:27	64.4
12/08/2023 16:28	64.4
12/08/2023 16:29	64.4
12/08/2023 16:30	64.4
12/08/2023 16:31	64.4
12/08/2023 16:32	64.4
12/08/2023 16:33	64.4
12/08/2023 16:34	64.4
12/08/2023 16:35	64.4
12/08/2023 16:36	64.4
12/08/2023 16:37	64.4
12/08/2023 16:38	64.4
12/08/2023 16:39	64.4
12/08/2023 16:40	64.4
12/08/2023 16:41	64.4
12/08/2023 16:42	64.4
12/08/2023 16:43	64.4
12/08/2023 16:44	64.4
12/08/2023 16:45	64.4
12/08/2023 16:46	64.4
12/08/2023 16:47	64.4
12/08/2023 16:48	64.4
12/08/2023 16:49	64.4
12/08/2023 16:50	64.4
12/08/2023 16:51	64.4 64.4
12/08/2023 16:52	64.4
12/08/2023 16:53	64.4
12/08/2023 16:54 12/08/2023 16:55	64.4
	64.4
12/08/2023 16:56 12/08/2023 16:57	64.4
TE/00/2023 10/3/	64.4
12/08/2023 16/59	
12/08/2023 16:58 12/08/2023 16:59	64.4

Date/Time	K1: CLINKER_PR OD_CD (TNHR) Raw Value
12/08/2023 17:01	64.4
12/08/2023 17:02	64.4
12/08/2023 17:03	64.4
12/08/2023 17:04	64.4
12/08/2023 17:05	64.4
12/08/2023 17:06	64.4
12/08/2023 17:07	64.4
12/08/2023 17:08	64.4
12/08/2023 17:09	64.4
12/08/2023 17:10	64.4
12/08/2023 17:11	64.4
12/08/2023 17:12	64.4
12/08/2023 17:13	64.4
12/08/2023 17:14	64.4
12/08/2023 17:15	64.4
12/08/2023 17:16	64.4
12/08/2023 17:17	64.4

# Appendix E

**Calibration Documents** 

Pitot Tube Inspection Sheet

PILOL I	ube inspection Sneet		
,	_	Date	01/03/23
	O Level	Tube Assembly Level?	Yes
		Ports Damaged?	No
	Bullseye Level	-10 deg < a1 < +10 deg	2
		-10 deg < a2 < +10 deg	1
		-5 deg < B1 < +5 deg	1
	al	-5 deg < B2 < +5 deg	1
	8 22	Y (gamma)	1
	<del>-</del>	0 (theta)	1
		A (alpha)	0.951
	B1	Z = A (sin y) < 0.125"?	yes
		W = A (sin 0) < 0.031"?	yes
A. C.	B2	Pa =	0.475
AAA TERNAL AAA WARANA	$\equiv$	Pb =	0.476
		Tube Diameter (Dt) =	0.376
		Pa = Pb +- 0.063"?	yes
1	-		
		(1.05 x Dt)?	0.3948
		(1.50 x Dt)?	0.564
	Pa A	(1.05 x Dt)< P < (1.50 x Dt)?	yes
	Eligible for Default Pitot Calibration F	actor (Cp = 0.84)?	Yes

Thermocouple Calibration

Type of Reference Thermometer?	Mercury	Date	01/03/23
Barometeric Pressure?	29.52	Ambient Temperature?	68

Source	Reference Temp, F	Thermocouple Temp, F	Absolute Temp Difference
cold air	37	38	-0.20%
medium air	215	215	0.00%
hot air	325	325	0.00%

# Windtunnel Calibration

Pitot Reading	Reference (0.99)	5A S-Type Pitot	Ср
ΔP1	0.31	0.44	0.84
ΔP ₂	0.31	0.43	0.85
ΔP ₃	0.31	0.43	0.85
	<b>Average Pitot</b>	0.85	

Thermocouple Calibration Check (EPA ALT-011 Procedure), performed on 1/3/23

Source	Ref. Temp. F	Thermocouple Temp. F	± 2 deg F?
Ambient	68	66.9	Yes

# METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

. ( 13 

**ENVIRONMENTAL SUPPLY COMPANY** 

- Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
  - Record barometric pressure before and after calibration procedure.
- 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet.
- Record data and information in the GREEN cells, YELLOW cells are calculated. 4

					ΔH@						1.62	1.62			1.72	1.72			1.71	1.71						
CEEDS 2.80%,	CALIBRATED	<b>≯</b>	•	>	VARIATION (%)									1.09				-0.29				-0.81				
IF Y VARIATION EXCEEDS 2.00%	ORIFICE SHOULD BE RECALIBRATED			(3)	>						0.989	0.981		0.985	0.973	0.971		0.972	0.968	0.966		0.967				
는 보	ORIFICE			(2)	Ver (STD)					AVG=	5.3168	5.3119		AVG =	6.5483	6.5483		= AVG =	8.3298	8.3298		AVG =				AVG=
				Ξ	Vm (STD)						5.3733	5.4122			6.7325	6.7411			8.6078	8.6215						
AVG (P _{bar} ) 30.03				DGM AH	(in H ₂ O)						8.0	8.0			1.3	1.3			2.1	2.1						
FINAL 30.03			210	TIME (MIN)	θ						10.00	10.00			10.00	10.00			10.00	10.00						
INITIAL 30.03				DGM	AVG		9	0	o		62.75	\$	0		8	68.25	0		69.5	71.5	0		0	0	0	
BAROMETRIC PRESSURE (in Hg):	l	ų, ų	L CUX	DGM OUTLET	TIAL FINAL						62 62	62 63			63 65	99 59			89 99	69 89						
TRIC PRESS		To de de de de de de de de de de de de de		DGM INLET DO	INITIAL FINAL INITIAL FINAL					-	65	99			20	72			74	75						
BAROME				AMBIENT DGN	MITIM	-					75 62	76 65			76 66	76 70			7 76	7 74						
ļ				AMB								7				7			"	77						
M5-15	14315			( <u>c.l.</u>	NET (Vm)	_	0.000	0.000	0.000	-	5.289	5.340	0.000	_	099'9	6.697	0.000	_	8.555	8.601	0.000	_	0.000	0.000	0.000	
METER SERIAL #:	ET SERIAL #:			DGM READINGS (FT3)	FINAL						359.213	364.553			371.213	377.910			386.465	395.066						ć
MET	CRITICAL ORIFICE SET SERIAL #:			DGM	INITIAL						353.924	359.213			364.553	371,213			377.910	386.465						HONO THE CONTION CONTIONS AS ON BOATION STANDAGO.
	CR	Teeren	9	VACUUM	(in Hg)	[					18	18			18	18			18	48						F 4 0 0
12/28/21	M5-15	5		FACTOR V	(AVG) (i		0.3283				0.4094	0.4094			0.5047	0.5047			0.6426	0.6426			0.8587			0000
DATE	PART #:				RUN#	L	•	8	m	L		~	_ص	L	-	7	<u>س</u>	Ĺ	-	~	۳	L	۳-	7	က	()
	METER PART #:				ORIFICE # RUN #			72				5				19				2				33		TOWO!

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr (std), and the DGM calibration factor, Y. These equations are automatically calculated in the

 $Vm_{(sd)} = K_1 * Vm * \frac{Pbar + (\Delta H/13.6)}{}$  $I_m$ 

Ξ

 $Vcr_{cod}$ , = K*  $Pbar * \Theta$ 

(2)

 Net volume of gas sample passed through DGM, corrected to standard conditions Tn = Absolute DGM avg. temperature (°R - English, °K - Metric) K₁ = 17.64 ºR/in. Hg (English), 0.3858 ºK/mm Hg (Metric)

= Volume of gas sample passed through the critical orifice, corrected to standard conditions

T_{amb} = Absolute ambient temperature (°R - English, °K - Metric)

(per manufacturer procedure) Potentiometer Check, °F

AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 0.975

@ 0 F

1.68 0

AVERAGE AH@ =

@ 500 F @ 1000 F 496 1000 0.1%

Avg Absolute Difference ==

K' = Average K' factor from Critical Orifice Calibration

 $Y = \frac{V}{V \eta_{sab}}$ Vetsu

3

■ DGM calibration factor

# METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
 Record barometric pressure before and after calibration procedure.

ENVIRONMENTAL SUPPLY COMPANY

- 3) Run at tested vacuum (from Onifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record data and information in the GREEN cells, YELLOW cells are calculated.

						ΔНе						1.69	1.69			1.69	1,68			1.68	1.68						
	CEEDS 2.00%,	ECALIBRATED	/	_*	>	VARIATION (%)									2.83				-0.87	1	•		-1,96		•		
	IF Y VARIATION EXCEEDS 2.00%,	ORIFICE SHOULD BE RECALIBRATED			(3)	*						1.017	1,008		1.012	0.979	0.973		0.976	0.966	0.964		0.965				
	平平	ORIFICE			(3)	V _{cr} (STD)					AVG =	5.3499	5.3499		= AVG =	6.5890	6.5953		AVG =	8.3973	8.3973		AVG =				AVG =
					ε	V _m (STD)						5.2584	5.3100			6.7289	6.7798			8.6894	8.7089						
AVG (Pbar)	29.99				DGM AH	(in H ₂ O)						0.86	0.86			1.3	1.3			2.1	2.1						
FINAL	29.99			ELAPSED	TIME (MIN)	9						10.00	10.00			10.00	10.00			10.00	16.00						
INITIAL	29.99				DGM	AVG		0	0	0		69	69.25	0		20	70.25	0		70.75	72	0		0	0	0	
ı	(in Hg):			ų.	UTLET	FINAL						69	69			7.0	70			70	92						
	BAROMETRIC PRESSURE (in Hg):			TEMPERATURES "F	DGM OUTLET	INITIAL FINAL INITIAL FINAL						69	69			69	69			69	70						
	TRIC PR			TEMPER	DGM INLET	FINAL						69	20			71	72			74	76						
	BAROME			Ì		INITIA						69	89			70	5			2	72						
					AMBIENT							67	67			89	67			67	67						
	M5-21	14315			ପ	NET (Vm)		0.000	0.000	0.000		5.244	5.298	0.000		6.716	6.770	0.000		8.668	8.708	0.000		0.000	0.000	0.000	
	METER SERIAL #:	SET SERIAL #:			DGM READINGS (FT)	FINAL						63.745	69.109			75.825	82.595			91.263	99,971						ALEXANDER OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T
	M	CRITICAL ORIFICE SET SERIAL #:			DG!	INITIAL	ŀ					58.501	63.811			69.109	75.825		ŀ	82.595	91.263						
		CR		TESTED	VACUUM	(in Hg)						18	18			18	60			<b>€</b>	80						
	12 8 22	M5-21		¥	FACTOR	(AVG)		0.3283				0.4094	0.4094			0.5047	0.5047			0.6426	0.6426		•	0.8587		~~	
	DATE	METER PART #:	_			RUN#	L	_	~1	က		<b>~</b>	7	м		<u>-</u>	~	ю		-	7	r		<b></b>	7	3	Ė
		METER				ORIFICE #			12				15				5				23				32		

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:
The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr (std), and the DGM calibration factor, Y. These equations are automatically calculated in the

 $f_{H_{\{1,4\}}} = K_1 * \Gamma m * \frac{Pbar + (\Delta H / 13.6)}{}$ <u>T</u>

Ξ

 Net volume of gas sample passed through DGM, corrected to standard conditions  $T_m = Absolute DGM avg. temperature ( {}^{\circ}R - English, {}^{\circ}K - Metric)$ K₁ = 17.64 °R/in, Hg (English), 0.3858 °K/mm Hg (Metnc)

AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 0.385

AVERAGE AHg = 1.69

 $Fcr_{tart} = K * \frac{Pbur * \Theta}{r}$ 

8

 DGM calibration factor  $Y = \frac{Vct_{sub}}{Vm_{sub}}$ 

3

K' = Average K' factor from Critical Orifice Calibration

T_{amb} = Absolute ambient temperature (*R - English, *K - Metric)

Volume of gas sample passed through the critical orifice, corrected to standard conditions

@ 0 F @ 500 F @ 1000 F

496 1000

(per manufacturer procedure)

Potentiometer Check, °F

0

Company: Holcim Joppa II. Source: Kiln 1 Main Stack Job ID: 23-3318 Train Type: M26A

M5-15 Average		0.979	1.3%
M5-21 Average		0.993	0.8%
3B 12/08/23 1620-1726	45.222 532.8 29.3 1.66 1.68 30.696 1.28396073 60	0.971	0.42%
3A 12/08/23 1620-1726	44.196 531.3 29.3 1.67 1.69 1.28831104 60 0.985	0.992	0.76%
2B 12/08/23 1453-1602	45.907 529.6 29.3 1.7 1.68 30.676 1.30013563 60	0.966	0.94%
2A 12/08/23 1453-1602	43.835 530 29.3 1.67 1.69 30.676 1.28820797 60	1.000	1.49%
M5-15 1B 12/08/23 1324-1434	42.461 525.1 29.3 1.58 1.68 30.788 1.25108176 60	0.999	2.45%
M5-21 1A 12/08/23 1324-1434	42.741 520.1 59.3 1.58 1.69 30.788 1.25442894 60	286.0	0.24%
Alt-009 Alternate Post Test Calibration Data	Vm Tm Pb Havg H@ Md (Havg)^0.5 Run Time, Min	Calculated Gamma (Yqa)	% difference from Actual Y





# **CERTIFICATE OF ANALYSIS**

**Grade of Product: EPA Protocol** 

Part Number:

E04NI77E15A3796

Culinder Volumes

Reference Number: 122-402248430-1

Cylinder Number:

XC025341B 124 - Durham (SAP) - NC Cylinder Volume: 151.1 CF

Laboratory:

DOGGO

Cylinder Pressure:

2015 PSIG

PGVP Number:

B22021

Valve Outlet:

590

Gas Code:

CO,CO2,O2,BALN

Certification Date:

Oct 13, 2021

Expiration Date: Oct 13, 2029

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

			ANALYTICAL	L RESULTS		
Component		Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON MONC	XIDE	65.00 PPM	64.10 PPM	G1	+/- 0.8% NIST Traceable	10/13/2021
CARBON DIOXII	DE	10.00 %	10.22 %	G1	+/- 0.6% NIST Traceable	10/12/2021
OXYGEN		12.00 %	11.79 %	G1	+/- 0.4% NIST Traceable	10/12/2021
NITROGEN		Balance	,			
			CALIBRATION	STANDARDS		
Type Lor	t ID	Cylinder No	Concentration		Uncertainty	<b>Expiration Date</b>

			CALIBRATION STANDARDS		
Type	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRM	09010213	KAL004779	98.48 PPM CARBON MONOXIDE/NITROGEN	+/- 0.5%	Oct 16, 2024
NTRM	19060402	6162642Y	11.105 % CARBON DIOXIDE/NITROGEN	+/- 0.6%	Dec 04, 2025
NTRM	10010616	K014963	9.967 % OXYGEN/NITROGEN	+/- 0.3%	Apr 19, 2022
			4 5 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		

	ANALYTICAL EQUIPME	INT	
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration	
Horiba VA-5001 CO2 BF89GV17	Nondispersive Infrared (NDIR)	Sep 15, 2021	
Horiba VIA510 CO 1G46EA07	Nondispersive Infrared (NDIR)	Sep 22, 2021	
Siemens Oxymat 61 M3299 O2	Paramagnetic	Sep 14, 2021	

Triad Data Available Upon Request



Approved for Release



Airgas Specialty Gases Airgas USA LLC 630 United Drive Durham, NC 27713 Airgas.com

# CERTIFICATE OF ANALYSIS

# **Grade of Product: EPA PROTOCOL STANDARD**

Part Number:

E04NI59E15A38X3

Reference Number: 122-402389885-1A

Cylinder Number:

ALM-056015

Cylinder Volume:

143.7 CF

Laboratory:

124 - Durham (SAP) - NC

Cylinder Pressure:

2016 PSIG

PGVP Number:

Valve Outlet:

590

B22022

Certification Date:

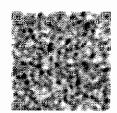
Mar 28, 2022

Gas Code:

CO,CO2,O2,BALN

Expiration Date: Mar 28, 2030

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.


Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS												
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates							
CARBON MONOXIDE	120.0 PPM	116.5 PPM	G1	+/- 0.3% NIST Traceable	03/28/2022							
CARBON DIOXIDE	18.00 %	18.17 %	G1	+/- 0.7% NIST Traceable	03/28/2022							
OXYGEN	22.00 %	21.90 %	G1	+/- 0.5% NIST Traceable	03/28/2022							
NITROGEN	Balance											

			CALIBRATION STANDARDS		
Type	Lot ID	Cylinder No	Concentration	Uncertainty	<b>Expiration Date</b>
NTRM	13010207	KAL003102	246.9 PPM CARBON MONOXIDE/NITROGEN	+/- 0.2%	Oct 16, 2024
NTRM	12061508	CC354696	19.87 % CARBON DIOXIDE/NITROGEN	+/- 0.6%	Jan 11, 2024
NTRM	08010220	K013155	23.20 % OXYGEN/NITROGEN	+/- 0.4%	Jun 01, 2024

	ANALYTICAL EQUIPME	NT
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration
Horiba VA-5001 CO2 BF89GV17	Nondispersive Infrared (NDIR)	Mar 01, 2022
Horiba VIA510 CO RS2EGL6K	Nondispersive Infrared (NDIR)	Mar 01, 2022
Siemens Oxymat 61 M3299 O2	Paramagnetic	Mar 01, 2022

Triad Data Available Upon Request



Approved for Release



Airgas Specialty Gases Airgas USA LLC 630 United Drive Durham, NC 27713 Airgas.com

# **CERTIFICATE OF ANALYSIS**

# **Grade of Product: CERTIFIED STANDARD-SPEC**

Part Number: Cylinder Number: X02NI99C15A54F5

CC426155

124 - Durham (SAP) - NC

Laboratory: Analysis Date: Lot Number:

Mar 28, 2023 122-402705571-1

Reference Number:

Cylinder Volume:

Cylinder Pressure: Valve Outlet:

122-402705571-1

144.0 CF 2015 PSIG

350

Expiration Date: Mar 28, 2031

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS												
Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty									
ETHYLENE NITROGEN	75.00 PPM Balance	75.47 PPM	+/- 2%									







# CERTIFICATE OF ACCURACY: GMACS-c Calibration Standard

### CUSTOMER INFORMATION

IRGAS SPECIALTY GASES

**Exploratory Products Group** 

6141 Easton Road

Piumsteadville, PA 18949

Work Order #: 160-402845897-1

Sales Order #: 1123601913

PO #: 7100179560

Customer: DEECO Inc.

Address 1: 3404 Lake Woodard Road

Address 2.

City / State / Zip: Raleigh, NC 27604

## PRODUCT INFORMATION

COMPOSITION

Hydrogen Cyanide Sulfur Hexafluoride CONCENTRATION 49.9 PPIVI

> 5.0 PPM Balance

**UNCERTAINTY (Abs)** 

2.3 PPM 0.07 PPM **UNCERTAINTY (Rel)** 

4.6 % 1.3 %

Nitrogen

CYLINDER#: CC768222

CYLINDER TYPE: 150A Aluminum

CGA: 350 SS

CYLINDER PRESSURE: 2000 psig

AIRGAS PART #: X03NI99C15AC0W8

CERTIFICATION DATE: 7-Sep-2023 EXPIRATION DATE: 7-Mar-2024

MIXTURE DEW POINT: N/A

### **CERTIFICATION DATA**

BLENDING PROCESS: GravStat™ Gravimetry

CONCENTRATION

50.02 PPM

5.02 PPM

UNCERTAINTY (Abs)

0.9 PPM 0.07 PPM **UNCERTAINTY (Rel)** 

1.8 % 1.3 %

CONFIRMING ANALYSIS: FTIR Spectroscopy

INSTRUMENT / MODEL: CAI Model 700 FTIR

COMPONENT

Hydrogen Cyanide

COMPONENT

Hydrogen Cyanide

Ifur Hexafluoride

CONCENTRATION

49.8 PPM

UNCERTAINTY (Abs)

2.1 PPM

UNCERTAINTY (Rel)

4.2 %

REFERENCE STANDARD: GMPS-c 50 PPM Hydrogen Cyanide

CYLINDER NUMBER: CC768196

EXPIRATION DATE: 2/29/2024

COMPONENT Hydrogen Cyanide CONCENTRATION

48.9 PPM

UNCERTAINTY (Abs) 1.7 PPM

3.4 %

Curve Order

Correlation

Slope (X2)

Slope (X)

Intercept

UNCERTAINTY (Rel)

CALIBRATION CURVE DATA Point-to-Point Matching Std

Linear / Direct Ratio

CONCENTRATION

49.9 PPM

N/A

N/A

N/A

N/A

# INTERLOCK STATISTICS

	CONCEIVENATION	
BLEND RESULT:	50.02 PPM	
ANALYSIS RESULT:	49.8 PPM	

UNCERTAINTY (Abs) 0.9 PPM 2.1 PPM

2.3 PPM

UNCERTAINTY (Rel) 1.8 % 4.2 %

4.6 %

COMMENTS / SPECIAL INSTRUCTIONS

INTERLOCK RESULT:

A GMACS-c ("Candidate GMACS") is made and certified according to the EPA GMACS Procedure (Alt-114) found at: https://cfpub.epa.gov

- Do not use this standard if pressure is less than 200 psig.
- 3. Do not use or store this product at or below the stated dew point.

APPROVED BY: ___

**BOB GRASMEDER** 

Client: Holcim Joppa IL Test Location: Main Stack Stratification Check

Date: Dec 08, 2023 Run number 1

One Minute Averages

Ono minato mora,	-						
	Reference	Plant					
	Out O2	Out O2					
	%,dry	%,dry					
Point!							
1:24:52 PM	13.0	12.3					
1:25:52 PM	13.1	12.3					
1:26:52 PM	13.2	12.4					
1:27:52 PM	13.2	12.4					
1:28:52 PM	13.1	12.3					
1:29:52 PM	13.1	12.4					
Point 2	13.1	12.4					
1:30:52 PM	13.1	12.4					
1:31:52 PM	13.2	12.4					
1:32:52 PM	13.1	12.4					
1:33:52 PM	13.0	12.3					
1:34:52 PM	12.9	12.3					
1:35:52 PM	13.1	12.3					
Point 3	13.1	12.3					
1:36:52 PM	13.1	12.4					
1:37:52 PM	13.1	12.4					
1:38:52 PM	13.0	12.3					
1:39:52 PM	13.1	12.2					
1:40:52 PM	13.0	12.3					
1:41:52 PM	13.1	12.3					
Averages	13.1	12.3					

Date/Time	K1: O2_DRY (PCT) Expression Value
12/08/2023 13:24	12.34
12/08/2023 13:25	12.34
12/08/2023 13:26	12.42
12/08/2023 13:27	12.41
12/08/2023 13:28	12.34
12/08/2023 13:29	12.35
12/08/2023 13:30	12.35
12/08/2023 13:31	12.35
12/08/2023 13:32	12.37
12/08/2023 13:33	12.34
12/08/2023 13:34	12.31
12/08/2023 13:35	12.32
12/08/2023 13:36	12.35
12/08/2023 13:37	12.35
12/08/2023 13:38	12.34
12/08/2023 13:39	12.24
12/08/2023 13:40	12.25
12/08/2023 13:41	1.2.30

Analysis Valid ' Report

Sample Filename: F:\Joppa\December 8\SPC_005798.LAB

Filename for noise: F:\Midlothian on Rental\November 14\SPC_000837.LAB Interferences Filenames: C:\Midlothian on Rental\November 15\SPC_001463.LAB C:\Midlothian on Rental\November 15\SPC_001464.LAB C:\Midlothian on Rental\November 15\SPC_001466.LAB C:\Midlothian on Rental\November 15\SPC_001466.LAB C:\Midlothian on Rental\November 15\SPC_001467.LAB C:\Midlothian on Rental\November 15\SPC_001468.LAB C:\Midlothian on Rental\November 15\SPC_001468.LAB C:\Midlothian on Rental\November 15\SPC_001469.LAB C:\Midlothian on Rental\November 15\SPC_001469.LAB C:\Midlothian on Rental\November 15\SPC_001469.LAB

Recipe path: C:\OLT\recipes\Cement Testing R3.MGRCP

Comment Good Close to DL	Close to DL	Good	Close to DL	Close to DL	Good	Check it!	Good	Good	Close to DL	Close to DL	Good	Close to DL	Close to DL	Close to DL	Close to DL	Good	Close to DL	Close to DL	Close to DL	Close to DL	Close to DL	Close to DL	Close to DL	Close to DL	Close to DL
Span -			,	,		1		ı		,	ı	,	,	1		ι	ı	,	ı		ı	,		ı	,
ma Range 0-200 0.02 0-10	0.11 0-3000	0-40	0.02 0-100	0.12 0-1000	0.07 0-3000	0.01 0-300	0-200	0 0-1	0.09 0-70	0.08 0-1000	0.02 0-250	0.14 0-100	0.06 0-100	0.01 0-150	0.68 0-2000	0.02 0-300	0.12 0-3000	0.11 0-3000	0.05 0-1000	0.06 0-1000	0.01 0-100	0.11 0-500	0.01 0-50	0.05 0-10	0.23 0-150
~ Bias Sigma - 0.02 0.0	0.75		0.01				ı																		
~ CL 0.03 0.11	1.08	0.07	0.42	0.79	3.9	0.61	1.62	0	0.91	1.89	0.55	0.72	3.15	0.19	3.82	0.12	3.39	3.07	1.25	2.34	0.15	0.71	0.29	0.24	1.14
	1.08	1 1		0.79			1																		
0CU 0.38 0.25 0.02	1.92	0.09		1.14	6.42	1.29	4	0	1.35	2.45	2.37	0.72	7.76	0.23	5.99	0.2	8.32	6.96	1.88	3.25	0.23	1.02	0.1	0.43	0.26
FMU*R 0.26 0.25	1.92	0.09		1.14	6.42	1.29	4	0	1.35	2.45	2.37	0.72	7.76	0.23	5.99	0.2	8.32	96.9	1.88	3.25	0.23	1.02	0.1	0.43	0.26
MAU 0.38 0.07	0.29	0.02	0.28	0.27	0.35	0.2	0.43	0	0.24	0.38	0.7	0.14	1.39	0.03	1.12	0.05	2.25	1.81	0.37	0.5	0.02	0.22	0.05	0.16	0.04
0.31 0.04	0.17	0.0	0.15	0.14	0.26	0.12	0.2	0	0.2	0.35	0.26	0.12	0.68	0.02	0.88	0.04	1.19	1.	0.31	0.43	0.02	0.2	0.05	0.14	0.03
10	0.33		0.05	0.37	0.22	0.03		0	0.28	0.23	0.05	0.42	0.17	0.04	2.03	0.05	0.35	0.34	0.15	0.19	0.02	0.32	0.04	0.14	0.7
MDC3 MDC2 0.22 - 0.14 0.05	<del>-</del> 5	0.04 -	0.55	0.59	4.69	0.76	1.93 -	0	1.12	2.25	0.9	9.0	3.82	0.22	4.7	0.18	4.41	4.23	1.55	2.77	0.17	0.91	0.1	0.37	0.24
Conc 1.27 -0.02	0.72	3.54	0	1.27	193.54	1.39	81.19	0.01	0.72	-0.59	3.42	-0.45	-0.52	-0.07	-1.41	0.77	1.93	3.36	0.33	-0.48	0.14	0.42	0.01	0.41	2.2
Gas calibration Name JP HCN (200) PCA 191C 191C HF PPM (10) 191C SF6 (10) 191C	ETHYLENE (100,3000) 191C	H2O% (40) 191C CO2% (40) 191C	HCL PPM (100) 191C	SO2 (1000) 191C	NO (350,3000) 191C	NH3 (300) 191C (10F2)	CO (500) 191C (10F2)	CO% (1) 191C (20F2)	FORMALDEHYDE (70) 191C	ACETALDEHYDE (1000) 191C	CH4 (250) 191C (10F2)	PROPANE (100) 191C	HBR (100) 180C	NO2 (150) 191C (10F2)	NO2 (2000) 191C (20F2)	N2O (100,200,300) 191C	NH3 (3000) 191C (20F2)	CH4 (3000) 191C (20F2)	ACETYLENE (1000) 191C	PROPYLENE (200,1000) 191C	COS (100) 150C	ETHANE (500) 191C	H2SO4 (50) 150C	MEOH (10) 191C	SO3 (150) 191C

Analysis Valid Report

Sample Filename: F:\Joppa\December 8\SPC_005799.LAB

Filename for noise: F:\Midlothian on Renta\November 14\SPC_000837.LAB Interferences Filenames: C:\Midlothian on Renta\November 15\SPC_001463.LAB C:\Midlothian on Renta\November 15\SPC_001464.LAB C:\Midlothian on Renta\November 15\SPC_001465.LAB C:\Midlothian on Renta\November 15\SPC_001465.LAB C:\Midlothian on Renta\November 15\SPC_001467.LAB C:\Midlothian on Renta\November 15\SPC_001468.LAB C:\Midlothian on Renta\November 15\SPC_001468.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB

Recipe path: C:\OLT\recipes\Cement Testing R3.MGRCP

Comment	Good	Close to DL	Close to DL	Close to DL	Good	Good	Close to DL	Close to DL	Good	Check it!	Good	Good	Close to DL	Close to DL	Good	Close to DL	Close to DL	Close to DL	Close to DL	Good	Close to DL	Check it:	Close to DL	Close to DL	Close to DL	Close to DL	Close to DL	Close to DL	Close to DL
Span	. ,	ı	1		ı	ı	•	ı	t	1	t	ı	1	ı	ı		,	ı	,	ι		1	1	1		1	•	1	i
Sigma Range	_	0.02 0-10	0-10	0.11 0-3000	0-40	0-40	0.02 0-100	0.12 0-1000	0.07 0-3000	0.01 0-300	0-200	0 0-1	0.09 0-70	0.08 0-1000	0.02 0-250	0.14 0-100	0.06 0-100	0.01 0-150	0.68 0-2000	0.02 0-300	0.12 0-3000	0.11 0-3000	0.05 0-1000	0.06 0-1000	0.01 0-100	0.11 0-500	0.01 0-50	0.05 0-10	0.23 0-150
Bias S		0.02	•	0.75	•	•	0.01	0.42	0.23	0.11	1	0	0.04	0.35	0.01	0.3	0.02	0.01	1.78	0.02	0.09	0.27	90.0	0.3	0	0.22	0.25	0.03	0.44
~ CF ~	ŧ	0.11	0.01	1.08	0.07 -	0.26 -	0.42	0.79	3.8	0.61	1.66 -	0	0.92	1.94	0.59	0.72	3.2	0.19	3.82	0.11	3.26	2.78	1.32	2.41	0.15	0.7	0.29	0.24	1.14
~ DF	,	0.07	,	1.08	,	·	90.0	0.79	0.45	0.15	,	0	0.33	0.59	90.0	0.72	0.19	0.05	3.81	0.07	0.44	0.61	0.21	0.49	0.02	0.54	0.29	0.17	1.14
OCC	0.38	0.26	0.02	1.93	0.09	0.33	0.99	1.19	6.34	1.3	4.06	0	1.36	2.51	2.48	0.72	7.87	0.22	5.97	0.2	8.08	6.49	1.96	3.32	0.23	1.01	0.11	0.43	0.26
FMU*R	0.22	0.26	0.02	1.93	0.09	0.33	0.99	1.19	6.34	<del>ر</del> ئ	4.06	0	1.36	2.51	2.48	0.72	7.87	0.22	5.97	0.2	8.08	6.49	1.96	3.32	0.23	1.01	0.11	0.43	0.26
	0.38	0.07	0	0.29	0.02	0.05	0.28	0.27	0.35	0.2	0.43	0	0.24	0.38	0.7	0.14	1.39	0.03	1.12	0.05	2.25	1.81	0.37	0.5	0.02	0.22	0.05	0.16	0.04
MDC1	0.31	0.04	0	0.17	0.01	0.01	0.15	0.14	0.26	0.12	0.2	0	0.2	0.35	0.26	0.12	0.68	0.02	0.88	0.04	1.19	<del></del>	0.31	0.43	0.05	0.2	0.05	0.14	0.03
MDC2		0.05		0.33			0.05	0.37	0.22	0.03		0	0.28	0.23	0.05	0.42	0.17	0.04	2.03	0.05	0.35	0.34	0.15	0.19	0.02	0.32	0.04	0.14	0.7
MDC3 N	0.18 -	0.15	0.01	1.1	0.04 -	0.24 -	0.54	0.62	4.63	0.77	1.96 -	0	1.13	2.3	0.94	9.0	3.87	0.21	4.69	0.17	4.28	3.94	1.62	2.84	0.17	0.91	0.1	0.37	0.24
Conc	1.22	-0.05	0	0.8	3.41	12.79	0.01	1.17	188.64	1.36	83.23	0.01	0.74	9.0-	3.45	-0.45	-0.59	-0.11	-1.01	0.78	1.79	3.38	0.27	-0.47	0.14	0.46	0.05	0.42	2.12
Gas calibration Name	JP HCN (200) PCA 191C 191C	HF PPM (10) 191C	SF6 (10) 191C	ETHYLENE (100,3000) 191C	H2O% (40) 191C	CO2% (40) 191C	HCL PPM (100) 191C	SO2 (1000) 191C	NO (350,3000) 191C	NH3 (300) 191C (10F2)	CO (500) 191C (10F2)	CO% (1) 191C (20F2)	FORMALDEHYDE (70) 191C	ACETALDEHYDE (1000) 191C	CH4 (250) 191C (10F2)	PROPANE (100) 191C	HBR (100) 180C	NO2 (150) 191C (10F2)	NO2 (2000) 191C (20F2)	N2O (100,200,300) 191C	NH3 (3000) 191C (20F2)	CH4 (3000) 191C (20F2)	ACETYLENE (1000) 191C	PROPYLENE (200,1000) 191C	COS (100) 150C	ETHANE (500) 191C	H2SO4 (50) 150C	MEOH (10) 191C	SO3 (150) 191C

Buzzi Unicem, Maryneal TX

	31C F																
	Ethylene (100,3000) 191C	0.000	-0.037	0.000	-0.062	0.013	-0.014	0.000	-0.019	0.027	-0.014	-0.102	-0.068	-0.051	-0.084		
	SF6 (10) 191C	0.000	-0.001	0.000	0.003	-0.000	0.001	0.000	-0.001	-0.003	-0.000	-0.001	-0.001	-0.001	-0.002	0.002	
	HCN PCA 191c R1 191c	0.000	-0.004	0.000	-0.064	-0.154	0.035	0.000	-0.051	-0.032	0.046	-0.011	0.080	0.059	-0.029	0.156	
	Date Time	11/14/23 06:57:22.688	11/14/23 06:58:33.020	11/14/23 07:01:13.650	11/14/23 07:02:24.028	11/14/23 07:03:28.036	11/14/23 07:04:32.104	11/14/23 07:07:39.052	11/14/23 07:08:49.639	11/14/23 07:09:53.338	11/14/23 07:10:57.234	11/14/23 07:12:01.138	11/14/23 07:13:05.164	11/14/23 07:14:08.941	11/14/23 07:15:12.843	Standard Deviation x 3	•
Main Stack Pretest	Spectrum	SPC_000830BKG.LAB	SPC 000831.LAB	SPC_000832BKG.LAB	SPC 000833.LAB	SPC_000834.LAB	SPC_000835.LAB	SPC_000836BKG.LAB	SPC_000837.LAB	SPC_000838.LAB	SPC_000839.LAB	SPC_000840.LAB	SPC_000841.LAB	SPC 000842.LAB	SPC_000843.LAB	1	

sBeam @ 2500

1.41 1.42 1.42 1.42 1.42 1.42 1.42

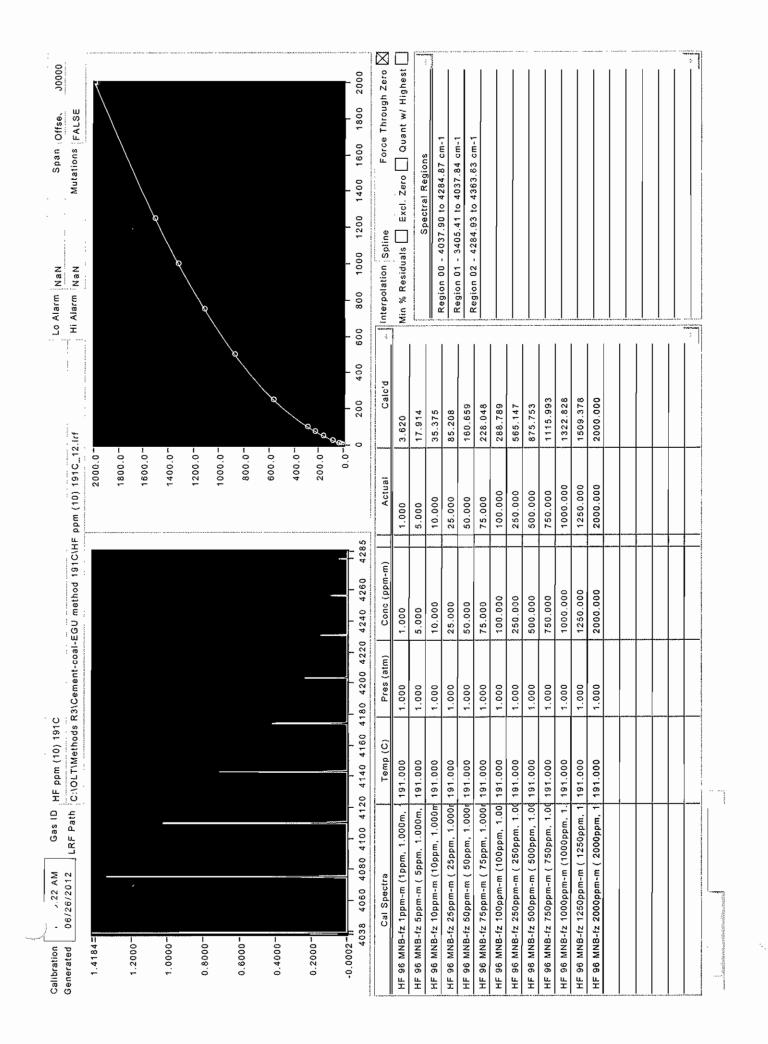
NaN 6779.16 5353.34 5553.53 4837.84 5479.59 5734.58

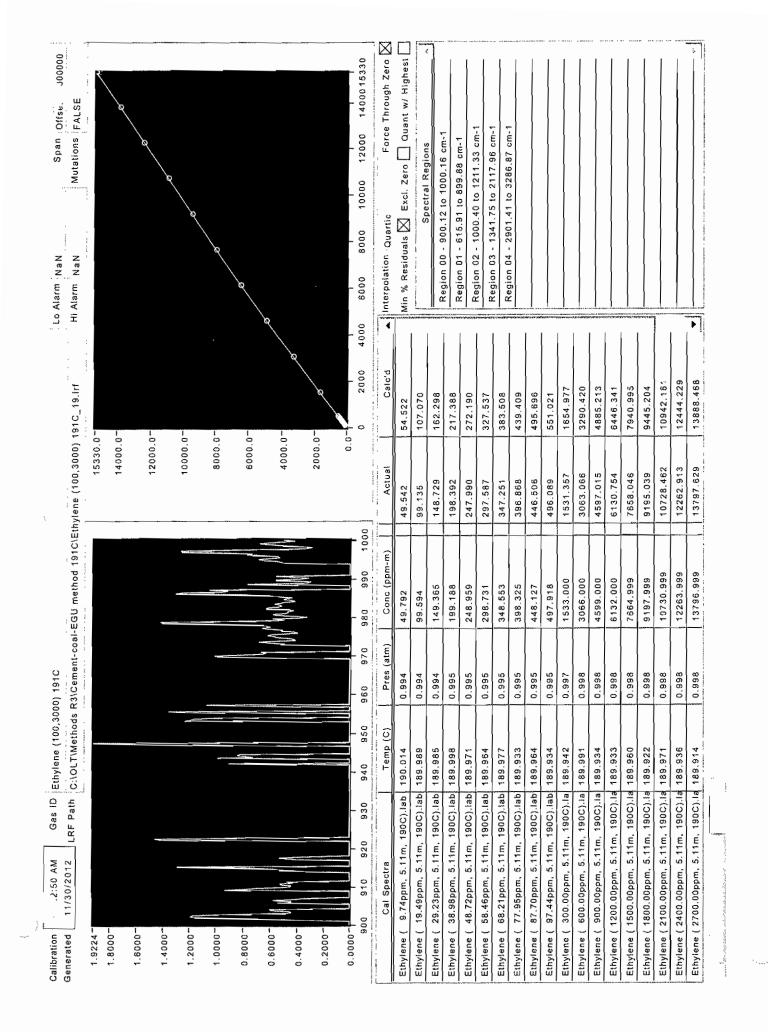
1,42 1,42 1,42 1,42 1,42 1,42 1,42 1,42

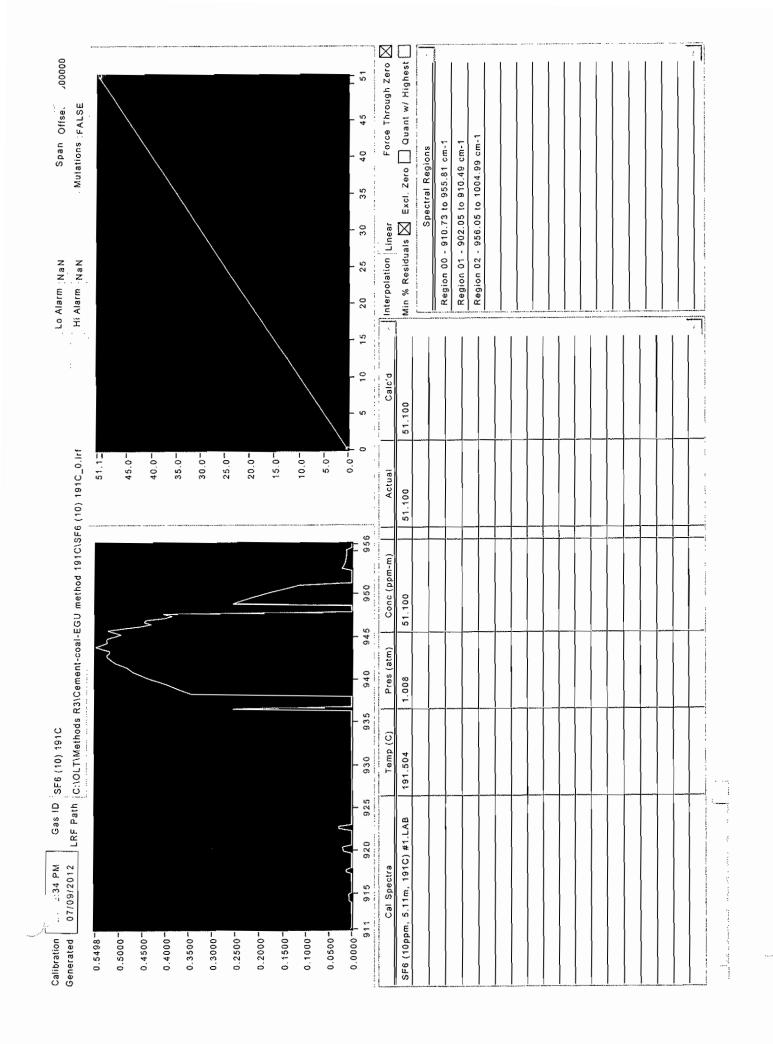
6223.51 5809.30 3759.60 4373.66 5347.95 5012.46

HF ppm (10) 191C 0.000 0.011 0.000 0.018 0.007 0.003 0.000 -0.000 -0.017 0.016 0.002 -0.012 -0.006

1.42


5033.23


Averages


4706.13

SPC_003144.LAB	11/29/23 10:07:23.437 11/29/23 10:08:27 783	-0.070	-0.009	73.818	0.009	3771.37	1.25
SPC 003146.LAB	11/29/23 10:09:31.168	-0.255	-0.011	74.391	0.004	3362.83	1.25
SPC_003147.LAB	11/29/23 10:10:35.067	-0.286	-0.016	74.456	-0.005	3721.81	1.25
Ethylene Calibration Transfer Standard (CC426155, 75.47	ndard (CC426155; 75.47 ppm)			74.475	ı		
SPC_003163.LAB	11/29/23 10:32:14.551	195.980	9.583	-0.647	-0.007	NaN	1.25
SPC 003164.LAB	11/29/23 10:33:18.264	196.278	9.585	-0.465	-0.017	4782.81	1.25
SPC 003165.LAB	11/29/23 10:34:22.223	196.975	9.583	-0.523	-0.015	5254.76	1.25
SPC 003166,LAB	11/29/23 10:35:26.094	197.038	9.580	-0.445	-0.014	5634.48	1.25
SPC 003167.LAB	11/29/23 10:36:30.150	197.342	9.580	-0.500	-0.009	5809.63	1.25
HCN Standard (CC768233; 199.1 ppm HCN/10.0 ppm SF6)	pm HCN/10.0 ppm SF6)	196.908	9.582				
SPC 003172.LAB	11/29/23 10:41:49:573	49.888	4.852	-0.442	-0.014	4728.10	1.25
SPC 003173.LAB	11/29/23 10:42:53.522	49.909	4.847	-0.380	-0.005	4092.51	1.25
SPC 003174.LAB	11/29/23 10:43:57.490	49.927	4.851	-0.391	-0.016	3563.85	1.25
SPC 003175.LAB	11/29/23 10:45:01.307	49.815	4.849	-0.423	-0.020	4533.18	1.25
SPC_003176.LAB	11/29/23 10:46:05.212	49.899	4.848	-0.380	-0.004	3854.17	1.25
HCN Standard (CC768222; 49.9 ppm HCN/5.0 ppm SF6)	om HCN/5.0 ppm SF6)	49.887	4.849				









Appendix F

**Test Participants** 

Scott Steinsberger Project Manager and FTIR Operator

Lee Harris Sample Recovery Technician

Gage Mayer Sampling Technician

Michael Powell Sampling Technician

Richard Painter Holcim Plant Contact

### Appendix G

**RTR Sampling and Analytical Protocol** 



# PROTOCOL TO PERFORM A SAMPLING AND ANALYTICAL TESTING PROGRAM AS PART OF THE US EPA RISK AND TECHNOLOGY REVIEW

at
Holcim Inc.
Joppa Facility
2500 Portland Road
Grand Chain, IL 62941

Submitted By: DEECO, INC. 3404 Lake Woodard Road Raleigh, NC 27604

**September 29, 2023** 

**Copy # 1** 

### TABLE OF CONTENTS

Figur	<u>e</u>		<b>Page</b>
1.0		CTION	
	1.1 SUN	MMARY OF TEST PROGRAM	. 1-1
	1.2 PLA	NT NAME, ADDRESS, AND CONTACT	. 1-1
		OCESS OF INTEREST	
	1.4 AIR	POLLUTION CONTROL EQUIPMENT	. 1-1
	1.5 EMI	ISSION POINTS AND SAMPLING LOCATIONS	. 1-1
	1.6 POL	LUTANTS TO BE MEASURED	. 1-2
	1.7 EXP	PECTED TEST DATES	. 1-2
		T PROGRAM ORGANIZATION	
2.0	SOURCE D	DESCRIPTION	. 2-1
		OCESS DESCRIPTION	
	2.2 CON	NTROL EQUIPMENT DESCRIPTION	. 2-1
3.0	TEST PRO	GRAM	. 3-1
	3.1 OBJ	ECTIVES	. 3-1
	3.2 TES	T MATRIX	. 3-1
	3.3 TES	T COORDINATION	. 3-2
4.0	SAMPLING	G LOCATION DESCRIPTIONS	. 4-1
	4.1 SAN	MPLING LOCATION DESCRIPTION	. 4-1
5.0		G AND ANALYTICAL PROCEDURES	
	5.1 TES	T METHODS	
	5.1.1	SAMPLING POINT DETERMINATION - EPA METHOD 1	. 5-1
	5.1.2	2 FLUE GAS VELOCITY AND VOLUMETRIC FLOW RATE -	<b>EPA</b>
		METHOD 2	. 5-1
	5.1.3	3 OUTLET FLUE GAS COMPOSITION -	
		EPA METHOD 3A	. 5-1
		5.1.3.1 Calibration Gases	. 5-2
		5.1.3.2 Sampling Procedures	. 5-2
	5.1.4		
	5.1.5	5 HYDROGEN FLUORIDE AND DIATOMIC CHLORINE - EPA MET	HOD
		26A	. 5-3
	5.1.6		
		320	
		5.1.6.1 Laboratory QA/QC Activities Before Field Test Program	
		5.1.6.2 QA/QC Activities During Field Test Program	
6.0	QUALITY .	ASSURANCE/QUALITY CONTROL ACTIVITIES	. 6-1
	6.1 QA/	QC PROCEDURES	. 6-1
		MPLE IDENTIFICATION AND CUSTODY	

### **TABLE OF CONTENTS (Continued)**

7.0	SAMI	PLE CUSTODY	1
	7.1	FIELD SAMPLING OPERATIONS7-	1
	7.2	ANALYTICAL OPERATIONS	1
8.0	INTE	RNAL QUALITY CONTROL CHECKS 8-	
	8.1	EQUIPMENT INSPECTION AND MAINTENANCE 8-	
	8.2	EQUIPMENT CALIBRATION 8-	
	8.3	SAMPLING QUALITY CONTROL PROCEDURES 8-	
	8.4	ANALYTICAL QUALITY CONTROL PROCEDURES 8-	5
9.0	REPO	RTING AND DATA REDUCTION REQUIREMENTS9-	1
	9.1	DATA REPORTING9-	1
	9.2	REPORT CONTENTS	1
	9.3	DATA REDUCTION	
	9.4	DATA VALIDATION9-	1
10.0	PLAN	T ENTRY AND SAFETY	
	10.1	SAFETY RESPONSIBILITIES	1
	10.2	SAFETY PROGRAM	
	10.3	SAFETY REQUIREMENTS	1
		LIST OF TABLES	
Table		Pag	<u>e</u>
TABL	E 3-1	PROGRAM OUTLINE AND TENTATIVE TEST SCHEDULE 3-	1
TABL	E 6-1	QA/QC PROCEDURES AND REQUIREMENTS 6-	1
		LIST OF FIGURES	
		LIST OF FIGURES	
Figure 5		Pag	<u>e</u>
		ganizational Chart	
_		opa Detailed Process Schematic	
<b>Figure</b>	2 4.1 Sc.	hematic of Stack Sampling Location	2

#### APPENDICES

Appendix A - Sampling and Analytical Methods

#### 1.0 INTRODUCTION

Page:

Revision No:

Date: September 29, 2023

1-1

#### 1.1 SUMMARY OF TEST PROGRAM

The United States Environmental Protection Agency (US EPA) has directed the portland cement industry (SIC 3241) to conduct emissions testing as part of the US EPA Risk and Technology Review (RTR). This document provides the overall test program approach and specifies minimum sample collection procedures, data quality objectives, and quality assurance/quality control measures to be used by the source testing firms selected by the cement companies performing tests. The test program is designed to be a comprehensive and robust test of each facility. The quality assurance and quality control (QA/QC) measures are designed to produce standardized data having known precision and accuracy. Collection of accurate, representative, and standardized data for facilities with low emissions is necessary especially in view of MACT standard setting procedures.

Cement kiln pyro-processing systems located throughout the US will be included in this request. Individual facilities have a wide range of kiln system configurations and air pollution control (APC) trains. Site-specific considerations will be required to capture emissions profiles for the target analytes that represent the extent of control or possible emissions increases from these controls.

#### 1.2 PLANT NAME, ADDRESS, AND CONTACT

Holcim (US) Inc. - Joppa Facilty 2500 Portland Road Grand Chain, Illinois 62941

Mr. Richard Painter TEL (618) 614-0189 FAX (618) 543-7413 E-Mail richard.painter@holcim.com

#### 1.3 PROCESS OF INTEREST

The process to be tested at the Joppa facility is a "long dry" cement kiln. It produces portland cement without an external preheater/precalciner. There is no inline raw mill. There are two kilns located on-site, however one is used. As of this writing, Kiln System #2 is idled, with gases from Kiln System #1 exhausted through the Kiln #2 stack. Kiln System #2 has been idle all of 2023 and there are no plans to bring the kiln up therefore it will not be tested.

#### 1.4 AIR POLLUTION CONTROL EQUIPMENT

The Holcim Joppa facility operates a number of air pollution control devices which help control and lower stack emissions. Those air pollution control devices include an Electrostatic Precipitator (ESP), Low-NO_x Burners, Selective Catalytic Reduction (SCR), Dry Absorbent Addition (DAA) System and the Kiln #2 Baghouse.

#### 1.5 EMISSION POINTS AND SAMPLING LOCATIONS

The emissions from the Kiln #1 are exhausted from the Kiln #2 stack.

#### 1.6 POLLUTANTS TO BE MEASURED

Emission testing will be conducted for hydrogen cyanide (HCN), hydrogen fluoride (HF), and diatomic chlorine (Cl₂). Concurrent measurements to determine volumetric flow rate will be made. The sampling and analytical procedures to be followed are discussed in detail in Section 4.

#### 1.7 EXPECTED TEST DATES

Test dates are to be determined.

#### 1.8 TEST PROGRAM ORGANIZATION

The test program organizational chart is presented in Figure 1.1.

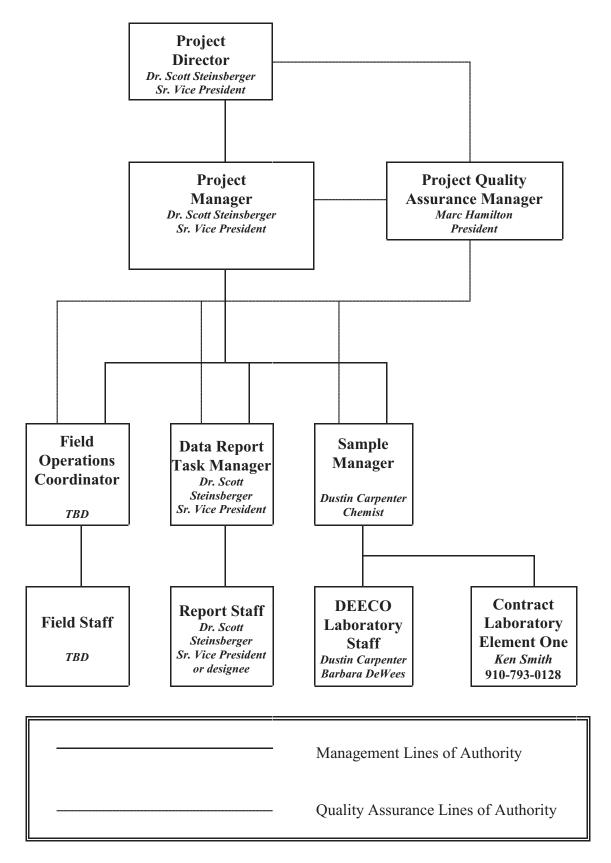



Figure 1.1 Organizational Chart

#### 2.0 SOURCE DESCRIPTION

Page:

Revision No:

Date: September 29, 2023

2-1

0

#### 2.1 PROCESS DESCRIPTION

Holcim's Joppa facility manufactures Portland cements and cement-based products using the "long dry" cement kiln process. There are two kilns located on-site and two raw mills. The facility is capable of producing approximately one million tons of cement products when operating as originally designed. As of this writing, Kiln System #2 is idled, with gases from Kiln System #1 exhausted through the Kiln #2 stack. Kiln System #2 has been idle all of 2023 and there are no plans to restart it.

Raw materials include sources of calcium, iron, silica, and alumina. The raw materials are ground into a fine mix and are introduced into a rotary kiln and exposed to temperatures near 3000°F. In the kiln, the four primary ingredients melt together and undergo chemical and mineralogical changes to produce an interim product called clinker. This clinker is a hard, black, glassy compound which does not resemble the raw materials. Clinker, gypsum and other materials are added to the finish mills and the materials are ground to a fine powder which is the final product - Portland Cement.

Depending on the proportions of the original raw materials, the duration and intensity of the kiln processing, and the parameters set during grinding, different cements are produced with distinctly different capabilities and uses. The manufacturing process consists of the following activities: Raw material receiving; Raw material storage; Raw material reclaim; Raw material grinding; Raw material storage and kiln feed; Pyroprocessing (kilns); Clinker storage; Clinker reclaim; Clinker grinding; Cement storage and Cement loadout.

The Holcim Joppa facility operates a number of air pollution control devices which help control and lower stack emissions. Those air pollution control devices include an Electrostatic Precipitator (ESP), Low-NO_x Burners, Selective Catalytic Reduction (SCR), Dry Absorbent Addition (DAA) System and the Kiln 2 Baghouse.

#### 2.2 CONTROL EQUIPMENT DESCRIPTION

The Holcim Joppa facility operates a number of air pollution control devices which help control and lower stack emissions. Those air pollution control devices include an Electrostatic Precipitator (ESP), Low-NO_x Burners, Selective Catalytic Reduction (SCR) with ammonia injection, Dry Absorbent Addition (DAA) System and the Kiln 2 Baghouse.

A schematic of the Joppa process, including control equipment is shown below in Figure 2.1.

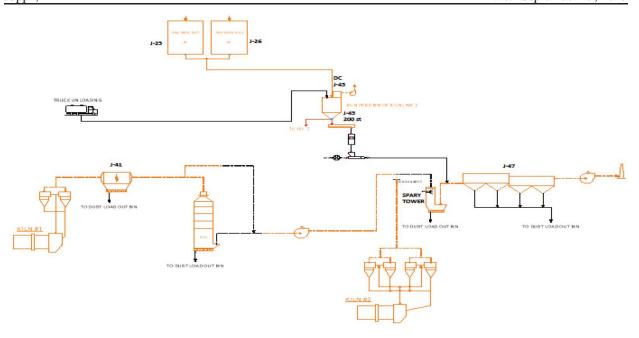



Figure 2.1 Joppa Detailed Process Schematic

#### Page: 3-1 Revision No:

Date: September 29, 2023

0

#### 3.0 TEST PROGRAM

#### 3.1 **OBJECTIVES**

An air emissions sampling and analytical program will be conducted on the Common stack at the Joppa cement facility located in Joppa, Illinois. All testing will be performed following accepted EPA methodology. The test program is to provide a standardized data set to the EPA and the cement industry so that reliable facility inter-comparisons of emissions can be made.

All testing will be performed in strict accordance with "DRAFT GENERAL TEST PLAN Testing To Determine HCN, HF, and Cl₂ Emissions From Cement Kilns" dated March 2, 2023" and the specifications stipulated in 40 CFR 60, Appendix A for flow rate following EPA Method 1, 2, 3A, and 4) and hydrogen fluoride (HF) and diatomic chlorine (Cl₂) following EPA Method 26A and in 40 CFR 63, Appendix A for hydrogen cyanide (HCN) and (HF) following EPA Method 320. All sampling runs will be one hour long.

The source emission test will be performed on a date to be determined. Testing will be conducted under representative process and control system operating conditions. For facilities with inline raw mills, testing will be performed while operating in the "Mill On" and "Mill Off" conditions. Joppa has no inline raw mill, therefore only a single operating condition will be tested.

#### 3.2 **TEST MATRIX**

Table 3-1 presents the sampling and analytical matrix and proposed test schedule.

TABLE 3-1 PROGRAM OUTLINE AND TENTATIVE TEST SCHEDULE

Sampling Location	No. of runs	Sample/Type Pollutant	Sampling Method	Sample Run Times (min)	Analytical Method	Analytical Laboratory
Day 1						
Stack	Arrive on-site and set up test equipment on the Kiln 1 exhaust (from Kiln 2 stack)					
Day 2						
Kiln 1 from Kiln 2 Stack	3	O ₂ /CO ₂	EPA Method 3A	60	Paramagnetic (O ₂ ) NDIR (CO ₂ )	DEECO
	3	HF and Cl ₂	EPA Method 26A ¹	60	Ion Chromatograph	Element One
	3	HCN and HF	EPA Method 320	60	FTIR (Method 320)	DEECO

¹ Stack gas flow rate and moisture measurement may be taken from concurrent Method 26A sampling trains.

#### 3.3 TEST COORDINATION

Mr. Richard Painter, the Joppa facility contact, will serve as the test coordinator and will be responsible for:

- 1. Scheduling the start of all testing
- 2. Principal contact with the agency officials concerning the tests
- 3. Principal contact with DEECO concerning the tests
- 4. Recording the process data during the testing
- 5. Providing copies of any field test data to the agency

If there is a temporary equipment malfunction in the middle of a test, radio contact will be made with the test crew in order to delay the test. When problems have been corrected, the test will continue from the point where it was delayed. If the malfunction or upset condition results in an extended test delay, then the affected test run(s) may be aborted and a new run(s) conducted when the malfunction has been corrected or process upset cleared. Any samples or field data from aborted runs may be discarded.

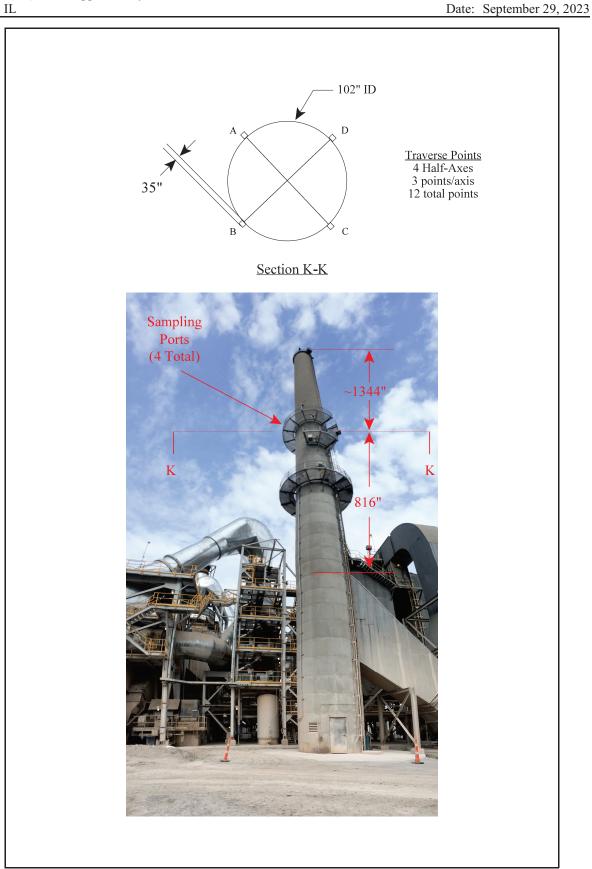
#### 4.0 SAMPLING LOCATION DESCRIPTIONS

Page:

Revision No:

Date: September 29, 2023

4-1


0

#### 4.1 SAMPLING LOCATION DESCRIPTION

The Kiln 1 Stack 2 (which is the same stack formerly used for Kiln #2) is vertically-oriented and circular with an inside diameter of 102". The stack gas sampling ports are located more than 7.5 diameters above the ID fan breaching and more than 0.5 diameters below the stack outlet. The location meets the minimum specifications for a measurement site under EPA Method 1. Cyclonic flow checks, as described in EPA Method 1 Section 2.4, using the Type-S pitot null procedure and angle measurements will be conducted at the Common stack test location.

A twelve (12) point sampling traverse will be made using six (6) point traverses in each of two perpendicular directions (or 3 points in each of 4 sampling ports) at the Common stack. Each traverse will be made at each sampling location using a type-S pitot tube in accordance with EPA Methods 2 procedures. Gas temperatures are to be measured using calibrated Type K thermocouples and digital readout devices. All measurements are to be performed in accordance with the procedures in EPA Methods 2, and 26A.

A schematic of the common stack is provided in Figure 4.1.



4-2

Page:

Revision No:

Figure 4.1 Schematic of Stack Sampling Location

#### 5.0 SAMPLING AND ANALYTICAL PROCEDURES

Page:

Revision No:

Date: September 29, 2023

5-1

0

This section contains a brief description of the sampling and analytical procedures for each method that will be employed during the test program. All equipment, procedures, and quality assurance measures necessary for completion of the test program will meet or exceed the specifications of the appropriate methods. Any deviations from the methods to ensure quality representativeness of the results are also discussed.

#### 5.1 TEST METHODS

The methods for the test program are described below, and apply to all process operating conditions (e.g. where there is an inline raw mill, testing will be performed while operating in the "Mill On" and "Mill Off" conditions). Table 3-1 outlines expected operating conditions for this test.

#### 5.1.1 SAMPLING POINT DETERMINATION - EPA METHOD 1

The number and location of the sampling or traverse points will be determined according to the procedures outlined in EPA Method 1. The sample location will be inspected to insure EPA Method 1 criteria is met. All points will be at least 1.0 inches from the stack wall, per Method 1.

#### 5.1.2 FLUE GAS VELOCITY AND VOLUMETRIC FLOW RATE - EPA METHOD 2

The flue gas velocity and volumetric flow rate will be determined according to the procedures outlined in EPA Method 2. Velocity measurements will be made using type S pitot tubes conforming to the calibration specifications outlined in EPA Method 2, Section 10.1. Each Type-S pitot tube, calibrated according to these standards, will have an assigned coefficient. Differential pressures will be measured with Magnehelic gauges of appropriate range or with fluid manometers. Effluent gas temperatures will be measured with chromel-alumel thermocouples equipped with digital readouts.

#### 5.1.3 OUTLET FLUE GAS COMPOSITION - EPA METHOD 3A

Outlet flue gas analysis for oxygen  $(O_2)$  and carbon dioxide  $(CO_2)$  concentrations, and the calculation of percent excess air and flue gas dry molecular weight will be performed in accordance with EPA Method 3A.

To evaluate the sampling location and points for FTIR and  $O_2$  sampling, a three-point  $O_2$  concentration stratification test on a line passing through the centroidal area at 16.7, 50.0 and 83.3 percent of the measurement line (or for stacks is greater than 2.4 meters (7.8 ft) at 0.4, 1.2 and 2.0 meters from the stack or duct wall). The procedures in Section 8.1.2 of Method 7E will be followed, but oxygen will be used as parameter as allowed by fourth sentence in Section 8.1.2. The plant  $O_2$  CEMS as a control. A criteria of <5% variation from combined mean for each point will be used as indication of non-stratification and allowing single point sampling at the point closest to the mean. Otherwise, sampling for equal periods at the three test points during test run will be conducted.

Per EPA Method 3A for determining molecular weight, integrated sampling will be obtain using the Method 320 sampling system described in Section 5.1.6.

A portion of the hot, wet gas sample will be sent through a condensing system to remove the stack moisture, A portion of the moisture-free gas sample will be snt to a CAI Model 200  $O_2$  (or

5-2

0

equivalent) analyzer measures using the paramagnetic technique. An oxygen molecule, because of its sp3 electron orbital distribution, has an unpaired electron and hence displays a magnetic orientation. Since other elements that display this magnetic phenomenon are not common gasses at normal temperatures, the paramagnetic measurement technique is virtually specific for oxygen. The sample gas flows through a detection cell located in a very strong magnetic field. The concentration of O2 gas present induces a pressure differential in the detector cell. The amount of differential pressure is proportional to the concentration of O₂ gas present.

Calibration procedures will be performed in accordance with EPA methodology. Analyzers will be calibrated before and after each test and a calibration check between each test run.

The pretest calibrations will consist of the following steps:

- Internal (direct) calibration of each analyzer to adjust calibration and check linearity.
- External (through the entire sampling system) calibration to check the system bias on zero and span gases.

The post test calibration will consist of an external system bias calibration check.

The analyzer will be as calibrated using a certified zero and span (mid or high range) gas. Zero and span gases were directed to each analyzer through the appropriate plumbing, the calibration gas flow rates will be adjusted to the correct flow rate and the analyzer will be adjusted with the appropriate span pot.

After the analyzer is properly adjusted the linearity will be checked using a low and high range calibration gas. The maximum allowable limit for linearity is 2% of the analyzer range. All analyzers will be shown to be linear within these limits before proceding..

The external calibration bias check will be performed by placing the CEM system in sampling mode and injecting a zero and span gas into the sample line at the probe exit. This check shows if there is any sampling system related bias, and also checks the integrity of the sample line.

**5.1.3.1** Calibration Gases-DEECO will use EPA Protocol and/or ±2% NIST Traceable gases for calibration as required by the various reference methods employed in this test program. Calibration gases will be selected from previous experience with similar sources and/or from information obtained from the facility engineer prior to sampling. In some cases if the gases that are selected are out of the optimum range of operation then no significant impact of data quality is expected due to the linear nature of the analyzers that were used.

Audit gases, if available from a federal or a state agency, will be analyzed.

**5.1.3.2 Sampling Procedures**-At the completion of the pretest calibration routine, the CEM system will be ready for operation. No further adjustments of sample flow rates, analyzer zero or span adjustments, or other critical CEM operating parameters will be made until testing and post test calibration were complete.

Each sampling run will be one hour. At the completion for each test run, calibration gases will be used to check between test runs. A zero and the upscale calibration gas closest to the actual emission concentrations will be used for the pretest and post test calibrations.

#### 5.1.4 FLUE GAS MOISTURE CONTENT - EPA METHOD 4

The flue gas moisture content will be determined in conjunction with the EPA Method 26A trains according to the sampling and analytical procedures outlined in EPA Method 4. (NOTE: In order to maintain isokinetic sampling, the sampling rate used may be required to temporarily exceed the EPA Method 4-specified maximum sampling rate of 0.75 CFM, based on observed stack gas pitot readings.) The impingers will be connected in series and will contain reagents as described below. The impingers will be contained in an ice bath in order to assure condensation of the moisture in the flue gas stream. Any moisture that is not condensed in the impingers is captured in the silica gel, therefore all moisture can be weighed and entered into moisture content calculations.

Page:

Revision No:

Date: September 29, 2023

5-3

0

#### 5.1.5 HYDROGEN FLUORIDE AND DIATOMIC CHLORINE - EPA METHOD 26A

Sampling and analytical procedures will be similar to those outlined in EPA Method 26A to determine primarily diatomic chlorine ( $Cl_2$ ) emissions and hydrogen fluoride (HF) emissions at main stack outlet sampling locations. Duplicate simultaneous trains (a.k.a "paired trains") for each test run will be used to determine precision.

Sample is collected through a heated glass probe, followed by a heated quartz fiber filter, where stack gas HF and Cl₂ are collected in a series of chilled impingers. The sampling train impingers will contain 50 ml of 0.1N sulfuric acid in the first impinger (optional should high moisture warrant a modified short stem), 100 ml of 0.1N sulfuric acid in the second and third, an empty fourth impinger, 100 ml of 0.1N NaOH in the fifth and sixth and 200 grams of silica gel in the last impinger. (**NOTE**: For plants with scrubbers, the optional cyclone may be used since the gas stream may be saturated with moisture.)

Sampling will be conducted isokinetically ( $\pm 10\%$ ) with readings of flue gas parameters recorded at traverse points selected according to EPA Method 1. Leak-checks on the Method 26A sampling train will be are performed before and after each sampling run and optionally for any port change. In the event that any portion of the train needed to be disassembled and reassembled (i.e., due to filter or resin changes), leak-checks are performed. The sampling train leak-checks and leakage rate (where applicable) are documented on the field test data sheet for each respective run. All leak checks will be acceptable.

The glass button hook nozzle and probe liner will be constructed of borosilicate glass or quartz. The filter holder will be constructed of borosilicate glass with a Teflon frit filter support and a sealing gasket. A heated quartz fiber filter, for sources above 210°C, or PTFE-bonded glass fiber filter will be used. The probe and filter housing will heated to above 248°F and not exceed an upper boundary of 273°F. Probe liners and filter holders will be cleaned thoroughly prior to testing.

The Method 26A trains will be operated isokinetically for a minimum of 60 minutes and collect a minimum of 1 dry, standard cubic meter (DSCM). Pretest preparations, preliminary determinations, and leak check procedures will be those outlined in EPA Method 5.

After completion of sampling the train will be leak checked and transferred to the sample recovery trailer. All leak checks will be acceptable. The impingers will be weighed to determine moisture gain in accordance with EPA Method 4.

Sample recovery will involve quantitative recovery of the sulfuric acid impinger contents and the NaOH impinger contents into separate tare-weighed, precleaned polyethylene sample containers.

The nozzle, probe, filter and filter housing will not be recovered.

The contents of sulfuric acid impingers, including the contents if any of the empty ( $2^{nd}$  knockout or fourth) impinger will be quantitatively transferred to the tare-weighed, precleaned polyethylene sample container, followed by three rinses with deionized (DI) water of the impingers and all connecting glassware (including the connecting glassware to the first impinger) placed in the same  $H_2SO_4$  container. The container will be labeled and weighed to determine the final sample volume. The liquid level will be marked on the sample container.

The contents NaOH impingers will be quantitatively transferred to a second tare-weighed, precleaned polyethylene sample container, followed by three rinses with DI water of the impingers and all connecting glassware placed in the same NaOH container. The container will be labeled and weighed to determine the final sample volume. The liquid level will be marked on the sample container

Sample recovery from each train will include:

- 1. Container No. 1 Contents 1st knockout, H₂SO₄ impingers, and 2nd knockout and, and DI rinse of impingers and connecting glassware; and
- 2. Container No. 2 Contents NaOH impingers, and DI rinse of impingers and connecting glassware.

Additional quality control consists of collecting and analyzing a field blank train for every three test runs. The blank train is to be assembled from a used train, leak checked and sit for a period equal to the sampling time (i.e, 1-hr). The blank train data will be used to determine the method detection limit for the test program target analytes (ie. The lowest number that could be detected), and compared to stack emissions.

Reagent blanks of  $0.1~N~H_2SO_4$ , 0.1N~NaOH, and DI water will be collected and archived for later analysis should there be any issues with the field blank train samples

The H₂SO₄ impinger solutions will be analyzed using ion chromatography techniques for fluoride ions (F⁻) (EPA SW-9057). Duplicate analyses will be performed on the samples and a reagent blank. Precision will be demonstrated by duplicate injection of each sample, the results of each individual analysis must be within 5% of their mean to be acceptable. If the precision criteria is not met, analysis of the sample is repeated until consecutive injections meet the criteria.

The NaOH impinger solutions will be treated with sodium thiosulfate to ensure complete conversion of hypochlorous acid (HClO) to chloride ions (Cl). The resulting solution will be analyzed using ion chromatography techniques for chloride ions (EPA SW-9057). Duplicate analyses will be performed on the samples and a reagent blank. Precision will be demonstrated by duplicate injection of each sample, the results of each individual analysis must be within 5% of their mean to be acceptable. If the precision criteria is not met, analysis of the sample is repeated until consecutive injections meet the criteria.

All EPA Method 26A HF/Cl₂ samples will be analyzed by Element One of Wilmington NC. Refer to Section 1, Figure 1.1 for contact information.

The relative deviation (RD)will be calculated as described in EPA Method 30B between the Cl₂ concentrations measured with the paired trains.

#### 5.1.6 HYDROGEN CYANIDE AND HYDROGEN FLUORIDE - EPA METHOD 320

EPA Method 320 will be performed to determine emissions of concentrations of HCN and HF. Three, 1-hour sampling runs will be conducted under representative process and control system operating conditions.

The gas sample will be extracted from the stack through a glass-lined probe and filter heated to  $375^{\circ}$  F. For external calibration checks and analyte spikes, the gases will be introduced in front of the heated filter. Any excess calibration gas will be diverted through the sample probes into the source. Outflow of gas from the heated filter enclosure was transported through a Teflon sample line heated to  $375^{\circ}$  F. For this source approximately 100' of sample line will be required. The heated sample line will be connected directly to the FTIR sample cell. Using heat-traced Teflon tubing the exit of the FTIR cell will be connected to a sample pump with a heated stainless steel pump head. The pump discharge will be directed to a proprietary chiller-type gas conditioner to remove moisture prior to delivery sample gas to the  $O_2/CO_2$  monitors.

The distribution of the gas sample to the monitors will be accomplished using a panel equipped with valves and rotometers. The gas sample was then divided and directed to the analyzers.

FTIR sample cell will be maintained at 191 °C and connected to a MKS Instruments Multigas 2030 Fourier Transform Infrared Spectrometer and Detector.

The FTIR spectrometer will measure vapor phase organic or inorganic compounds which absorb energy in the mid-infrared spectral region, about  $400 \text{ to } 4000 \text{ cm}^{-1}$  (25 to 2.5  $\mu$ m). Continuous measurement will be made by matching sample absorbance bands with bands in reference spectra, and comparing sample band intensities with reference band intensities.

The principle limitation to FTIR spectroscopy are the presence of interfering compounds that also absorb energy in the mid-infrared spectral region. In a cement kiln stack gas matrix, water vapor  $(H_2O)$  and carbon dioxide  $(CO_2)$  are the primary interferents that must be incorporated into the identification and quantitation method.

The FTIR software performs the computation for a single compound by subtracting all the other compounds (interferants and target) from the absorbance spectra and quantifies the single compound based on the remain absorbance. The FTIR software provides a Standard Error Calculation (SEC) value that is an indication of how well the identification and quantitation has been performed. A high SEC indicates that other interferants have not been accounted for in the analysis method, and a low SEC is indicative of greater confidence measurement.

The instrument is operated with a resolution of 0.5 cm⁻¹ with 4x zero filling. Beer-Norton Medium apodization is used with amplitude phase correction.

For this RTR test program, following specific QA/QC activities for EPA Method 320 will be performed and criterium met.

## **5.1.6.1** Laboratory QA/QC Activities Before Field Test Program- Before field testing occurs, the following QA/QC activities will be conducted;

1) Seven consecutive samples of dry nitrogen through the sampling system will be acquired and used to calculate the standard deviation for each of the test program target analytes multiplied

Page: 5-6
Revision No: 0
Date: September 29, 2023

by a factor of 3. These data will be considered representative of detection limits for this test program and are to be compared to the 0.5 ppm required DL;

- 2) From these seven dry nitrogen samples, the results for the Signal-to-Noise Ratio (SNR) @ 2500 cm⁻¹ should be >2500, at 64 scans and the results for single beam intensity @ 2500 cm⁻¹ should be >0.9; and
- 3 Upon receipt of HCN calibration gases a direct analysis will be performed to verify FTIR response agrees with tag value within 5%. Analysis results will be reported to PCA to assess need for modified reference spectra and/or change to direct analysis criterion:

# **5.1.6.2 QA/QCActivities During Field Test Program**- During the field test program, following QA/QC activities will be performed and criterium met;

- 1) On each test day prior to any testing, an instrument background will be collected using dry nitrogen directed to the gas cell. The background will be collected with at least 128 scans;
- 2) The probe, filter, sample line and all sample system components in contact with effluent will be maintained at or above 375°F or 191°C (consistent with FTIR calibration temperature) to avoid any possible "cold spots;"
- 3) Heated sample lines will be ≤100 feet wherever possible, and not longer than 200 feet, without prior approval for unusual test circumstances;
- A system zero with all sampling system components at operating temperature will be performed by injecting nitrogen at the sample probe and through sample filter and entire measurement system. After zero equilibration has been achieved, all measurement components will be quantified for at least 128 scans;
- Ambient air will be sampled until equilibration of the measurement system has been achieved and all measurement components will be quantify for at least 128 scans;
- The sample probe will be position at effluent measurement point and sampling will continue until equilibration of the measurement system has been achieved. At this point, the effluent concentrations will be quantified with two consecutive 64-scan samples as the initial native concentration for the dynamic spike;
- Analyte spiking will be conducted for HCN before the first test run, and after each successive test run for a minimum of 4 spikes per test condition. (Additional spikes would be required before and after corrective action for the sampling or analysis system and/or before and after removing the sampling system from the stack.) These results will determine accuracy;
- The spike gas injections will be maintained at 10% or less of total sample volume. The spike gas concentration and flow rate will be selected to approximately double the native effluent concentration, or the spike will be conducted to add 3-4 ppm to native concentration, whichever results in greater spiked concentration. Spike recovery results will be within  $\pm 20\%$  of the expected value or  $\pm 0.5$  ppm, whichever is least restrictive. (Specific HCN gases will be manufactured for this test program in the range of 50-100 ppm to provide spikes in the 5-10 ppm range, or lower. An SF₆ or appropriate tracer will be used to calculate the exact spike gas dilution ratio of 10% or less;)
- 9) After the dynamic spike, nitrogen will be sent through the sampling system until all traces of spike gas are removed and lines are proven below DL for target analytes;
- 10) The nitrogen purge will be discontinued and the sampling system will be allowed to equilibrate with stack gas before starting a test run. The first two consecutive 64-scan samples of a sample run will be used for the final native concentration. Residual results for HCN and HF will be verified to be less than 0.2-0.3 ppm for data acceptance, or less than 5% of the measured value, whichever is least restrictive. Calculate the standard deviation for

US EPA RTR Sampling and Analytical Protocol Holcim (US) Inc. - Joppa Facility Joppa, IL

each of the test program target analytes for seven consecutive sample spectra from Run 1, multiplied by a factor of 3. These data will be compared to the pre-test system nitrogen standard deviation results and also included in the facility test report;

Page:

Revision No:

Date: September 29, 2023

5-7

0

The SNR @ 2500 cm⁻¹, at 64 scans, and the results for single beam intensity @ 2500 cm⁻¹ will be verified to met the >2500 and >0.9 criterium; respectively. The analyte spiking for HCN and subsequent system nitrogen injection will be conducted after each test run. Continue sequence until at least three valid runs per test condition are completed.

#### Page: 6-1 Revision No: 0

Date: September 29, 2023

### 6.0 QUALITY ASSURANCE/QUALITY CONTROL ACTIVITIES

#### 6.1 QA/QC PROCEDURES

The QA/QC procedures for this RTR test program are summarized in Table 6-1.

TABLE 6-1 QA/QC PROCEDURES AND REQUIREMENTS

Target Analyte	Test Method	Detection Limit	QA/QC
HCN	EPA Method 320	0.5 ppm	Increase scans if needed to achieve detection limits. Increasing to 400 from relative 64 (gives a 2.5 S/N advantage).  HCN spiking before and after each run by adding 10% or
			less spike to approximately double the native effluent concentration, or conduct spike to add 3-4 ppm to native concentration, whichever results in greater spiked concentration.
			Spike recovery results shall be within $\pm 20\%$ of the expected value or $\pm 0.5$ ppm, whichever is least restrictive
			5% pre-to-post run calibration transfer standard (CTS) requirement
HF		0.2-0.3 ppm	Rely on CTS (5%), HCN and tracer gas responses to validate HF FTIR data
Cl ₂	EPA Method 26A	~ 0.07 mg/m ³ (~0.2 ppm)	Duplicate Simultaneous Trains; Collect minimum of 1 dscm for each sample train. Acceptance criteria for paired samples: 10% Relative Deviation or 0.2 ppm absolute difference, whichever is least restrictive. Insert dry impinger between acid and base impingers
Effluent Flow Rate	EPA Methods 1-4	Not Applicable	As per M26A isokinetic testing or separately by Methods 1-3. FTIR measurements for $H_2O$ . Wind Tunnel calibrated pitot tube having a Cp of 0.84 or less is required for all flow measurements. Compare preliminary velocity traverse measurements and sample run flow rate measurements to installed certified flow rate monitor. Investigate and resolve differences greater than 10% of average flow rate.
$O_2$	EPA Method 3A	Not Applicable	Analyte concentrations corrected @ $7\%$ O ₂ Span is 10%, 15%, or 20% (for co-mingled stacks only) Acceptance criteria are 0.2% O ₂ difference for analyzer calibration error, and 0.3% O ₂ for system bias checks, and zero and upscale drift checks.

#### 6.2 SAMPLE IDENTIFICATION AND CUSTODY

Sample custody procedures for this program are based on EPA recommended procedures. Since samples will be analyzed by one or more laboratories as well as in the field, the custody procedures emphasize careful documentation of sample collection and field analytical data and the use of chain of custody records for samples being transported. The procedures which will be used are discussed below.

Page:

Revision No:

Date: September 29, 2023

6-2

0

The project manager will be responsible for ensuring that proper custody and documentation procedures are followed for the field sampling and field analytical efforts. He will be assisted in this effort by key sampling personnel involved in sampling recovery.

Samples will be collected, transported, and stored in clean containers which are constructed of materials inert to the analytical matrix such as glass jars. Only containers which allow air tight seals will be used. Amber glass jars will be employed when containers are needed to inhibit photochemical reactions.

All sampling data, including information regarding sampling times, locations, and any specific considerations associated with sample acquisition will be recorded on preformatted data sheets. All samples will be given unique, identifying alphanumeric sample codes which will serve to track samples from the field to the laboratory.

Samples will be stored for transport from the lab to the field to the lab in storage boxes constructed in a fashion which minimizes movement and thus prevents breakage of containers. For example, boxes used for transporting glass containers will have foam inserts with form-fitting cutouts. Sample transport boxes will be locked except when in use. Vans containing equipment and samples will be locked whenever they are left unattended.

A daily activity log will be maintained by the project supervisor. This will be an informal log used to record various types of information, such as minor problems which arise, sketches of sampling locations, names and phone numbers of plant contacts. daily activity summaries, etc.

This section provides information regarding the organization of the sampling and analytical program. The following details the key positions and their responsibilities. Once personnel have been assigned to these positions, their qualifications will be provided as an addendum.

The organization of the project team, including QA functions, is shown in the project organization chart (see Figure 1.1).

#### 7.0 SAMPLE CUSTODY

Page:

Revision No:

Date: September 29, 2023

7-1

0

Sample custody procedures for this program are based on EPA recommended procedures. Since samples will be analyzed by one or more laboratories as well as in the field, the custody procedures emphasize careful documentation of sample collection and field analytical data and the use of chain of custody records for samples being transported. The procedures which will be used are discussed below.

#### 7.1 FIELD SAMPLING OPERATIONS

The project manager will be responsible for ensuring that proper custody and documentation procedures are followed for the field sampling and field analytical efforts. He will be assisted in this effort by key sampling personnel involved in sampling recovery.

Samples will be collected, transported, and stored in clean containers which are constructed of materials inert to the analytical matrix such as glass jars. Only containers which allow air tight seals will be used. Amber glass jars will be employed when containers are needed to inhibit photochemical reactions.

All sampling data, including information regarding sampling times, locations, and any specific considerations associated with sample acquisition will be recorded on preformatted data sheets. All samples will be given unique, identifying alphanumeric sample codes which will serve to track samples from the field to the laboratory.

Samples will be stored for transport from the lab to the field to the lab in storage boxes constructed in a fashion which minimizes movement and thus prevents breakage of containers. For example, boxes used for transporting glass containers will have foam inserts with form-fitting cutouts. Sample transport boxes will be locked except when in use. Vans containing equipment and samples will be locked whenever they are left unattended.

A daily activity log will be maintained by the project supervisor. This will be an informal log used to record various types of information, such as minor problems which arise, sketches of sampling locations, names and phone numbers of plant contacts. daily activity summaries, etc.

#### 7.2 ANALYTICAL OPERATIONS

Analytical operations will be performed on-site in the laboratory as well as in the remote laboratories. Samples analyzed by outside laboratories are transported with a Change of Custody form. This form will list sample identifications, analytical parameters, sample matrices, anticipated date of results, and other relevant information necessary to ensure the appropriate analyses are performed and to document the progress of the samples.

#### 8.0 INTERNAL QUALITY CONTROL CHECKS

Page:

Revision No:

Date: September 29, 2023

8-1

0

Specific quality control (QC) procedures will be followed to ensure the continuous production of useful and valid data throughout the course of this test program. The QC checks and procedures described in this section represent an integral part of the overall sampling and analytical scheme. Strict adherence to prescribed procedures is quite often the most applicable QC check. A discussion of both the sampling and analytical QC checks that will be utilized during this program is presented below.

#### 8.1 EQUIPMENT INSPECTION AND MAINTENANCE

Each item of field test equipment will be assigned a unique, permanent identification number. An effective preventative maintenance program is necessary to ensure data quality. Each item of equipment returning from the field will be inspected before it is returned to storage. During the course of these inspections, items are cleaned, repaired, reconditioned, and recalibrated where necessary.

Each item of equipment transported to the field for this test program will be inspected again before being packed to detect equipment problems which may originate during periods of storage. This minimizes lost time on the job site due to equipment failure.

Occasional equipment failure in the field is unavoidable despite the most rigorous inspection and maintenance procedures. For this reason, replacement equipment for all critical sampling train components will be transported to the job site.

#### 8.2 EQUIPMENT CALIBRATION

New items for which calibration is required will be calibrated before initial field use. Equipment whose calibration status may change with use or time will be inspected in the field before testing begins and again upon return form each field use. When an item of equipment is found to be out of calibration, it will be repaired and recalibrated or retired from service. All equipment will be periodically recalibrated in full, regardless of the outcome of these regular inspections.

Calibrations will be conducted in a manner, and at a frequency, which meets or exceeds U.S. EPA specifications. The calibration procedures outlined in the EPA Methods will be followed. When these methods are inapplicable, methods such as those prescribed by the American Society for Testing Materials (ASTM) will be used.

Data obtained during calibrations will be recorded on standardized forms, which will be checked for completeness and accuracy by the quality assurance manager. Data reduction and subsequent calculations will be performed using computer facilities. Calculations will be checked at least twice for accuracy. Copies of calibration forms will be included in the test or projects reports.

Emissions sampling equipment requiring calibration includes pitot tubes, pressure gauges, thermometers, dry gas meters and barometers. The following sections elaborate on the calibration procedures to be followed for these items of equipment.

**A: Pitot Tubes.** All Type S pitot tubes used, whether separate or attached to a sampling probe, will be constructed in-house or by a third-party vendor. Each new pitot will

be calibrated in accordance with Section 10.1 of EPA Method 2. Each Type-S pitot tube, calibrated according to these standards, will have an assigned coefficient. This

Page:

Revision No:

8-2

0

Each pitot tube will be inspected visually upon return from the field. If a cursory inspection indicates damage or raises doubt that the pitot remains in accordance with the EPA geometry standards, the pitot tube will be refurbished as needed and recalibrated.

**B:** Differential Pressure Gauge. All meter consoles used are equipped with 10-inch water column (W.C.) inclined-vertical manometers. Fluid manometers do not require calibration other than leak checks. Manometers will be leak checked in the field prior to each test series, and again upon return from the field.

coefficient should not change as long as the pitot tube is not damaged.

- C: Impinger Thermometer. Prior to the start of testing, the thermometer used to monitor the temperature of the gas leaving the last impinger will be compared with a mercury-in-glass thermometer which meets ASTM E-1 No. 63F specifications. The impinger thermometer is adjusted if necessary until is agrees within 2°F of the reference thermometer. If the thermometer is not adjustable, it is labeled with a correction factor.
- **D: Dry Gas Meter Thermometer.** The thermometer used to measure the temperature of the metered gas sample will be checked prior to each field trip against an ASTM mercury-in-glass thermometer. The dry gas meter thermometer is acceptable if the values agree within  $\pm$  5.4°F. Thermometers not meeting this requirements will be adjusted or labeled with a correction factor.
- **E: Flue Gas Temperature Sensor.** All thermocouples employed for the measurement of flue gas temperature are calibrated upon receipt. Initial calibrations will be performed at three points (ice bath, boiling water, and hot oil). An ASTM mercury-in-glass thermometer will be used as a reference. The thermocouple is acceptable if the agreement is within 1.5 percent (absolute) at each of the three calibration points.

Before and after each field use, the reading from the flue gas thermocouple-potentiometer combination will be compared with an ASTM mercury-in-glass reference thermometer at ambient conditions. If the two agree within  $\pm$  1.5 percent (absolute), the thermocouple and potentiometer are considered to be in proper working order.

**F: Dry Gas Meter and Orifice.** Two procedures will be used to calibrate the dry gas meter and orifice simultaneously. The full calibration will be a complete laboratory procedure used to obtain the calibration factor of the dry gas meter. Full calibrations will be performed over a wide range of orifice settings. A simpler procedure, the post-test calibration, will be designed to check whether the calibration factor has changed.

A dry gas meter that is calibrated annually against a spirometer or a set of calibrated critical orifices will be used as a transfer standard. During the annual calibration, triplicate calibration runs will be performed at seven flow rates ranging from 0.25 to 1.40 cfm.

**G: Dry Gas Meter.** Each metering system receives a full calibration at the time of purchase and a post-test calibration after each field use. If the calibration factor,  $\gamma$ , deviates by less than five percent from the initial value, the test data are acceptable. If  $\gamma$  deviates by more than 5 percent, the meter is recalibrated and the meter coefficient (initial or recalibrated) that yields the lowest sample volume for the test runs is used.

Page:

Revision No:

Date: September 29, 2023

8-3

0

EPA Method 5 requires another full calibration anytime the post-test calibration check indicates that  $\gamma$  changed by more than 5 percent. Standard practice is to adjust and recalibrate the dry gas meter anytime  $\gamma$  is found to be outside the range of 0.96 to 1.04. Post-test calibrations will be performed after each field test series per EPA Method 5, section 16.3 procedures.

- **H:** Orifice. An orifice calibration factor will be calculated for each flow setting during a full calibration. If the range of values does not vary by more than 0.20 in H₂O over a range of 0.4 to 4.0 in H₂O, the arithmetic average of the values obtained during the calibration is used.
- **I: Barometer.** Each field barometer will be adjusted before each test series to agree within  $\pm$  0.1 inches of a reference aneroid barometer. The reference barometer will be checked against the station pressure value (corrected for elevation difference) reported by the National Weather Service.

#### 8.3 SAMPLING QUALITY CONTROL PROCEDURES

The following pretest QC checks will be conducted:

- All sampling equipment will be thoroughly checked to ensure clean and operable components.
- Equipment will be inspected for possible damage from shipment.
- The oil manometer or Magnehelic gauge used to measure pressure across the Type S pitot tube will be leveled and zeroed.
- The number and location of the sampling traverse points will be checked before taking measurements.
- The temperature measurement system will be visually checked for damage and operability by measuring the ambient temperature prior to each traverse.

In addition to the general QC procedures listed above, QC procedures specific to each sampling method will also be incorporated into the sampling scheme. These methods and specific procedures are discussed below.

**A:** Sampling Train QC checks. The following QC procedures will be emphasized:

#### Prior to Start of Tests

- Keep all cleaned glassware and sample train components sealed until train assembly.
- Assemble the sampling trains in an environment free from uncontrolled dust.
- Visually inspect each sampling train for proper assembly.
- Perform pretest calculations to determine the proper sampling nozzle size.

#### Prior to Each Test Run

- Visually inspect the sampling nozzle.
- Visually inspect the Type S pitot tube.
- Leak check each leg of the Type S pitot tube.
- Leak check the entire sampling train.

#### **During Each Test Run**

- Readings of temperature and differential pressure will be taken at each transverse point.
- All sampling data and calculations will be recorded on preformatted data sheets.
- All calibration data forms will be reviewed for completeness and accuracy.
- Any unusual occurrences will be noted during each run on the appropriate data form.
- The project supervisor will review sampling data sheets daily during testing.
- Properly maintain the roll and pitch axis of the Type S pitot tube and the sampling nozzle.
- Leak check the train before and after any move from one sampling port to another during a run (at DEECO's option) or if a filter change takes place.
- Conduct additional leak checks if the sampling time exceeds 4 hours.
- Maintain the probe, filter, and impingers at the proper temperatures.
- Maintain ice in the ice bath at all times.
- Make proper readings of the dry gas meter, delta P and delta H, temperature, and pump vacuum during sampling at each traverse point.
- Maintain isokinetic sampling within  $\pm 10\%$  of 100%.

#### After Each Test Run

- Visually inspect the sampling nozzle.
- Visually inspect the Type S pitot tube.
- Leak check each leg of the Type S pitot tube.
- Leak check the entire sampling train.

# Page: 8-5 Revision No: 0 Date: September 29, 2023

**B:** QC for Volumetric air flow rate determinations

Flue Gas Velocity. Data required to determine the flue gas velocity will be collected using the methodology specified in EPA Method 2. Quality control procedures are as follows.

- Visually inspect the Type S pitot tube before and after sampling.
- Leak check both legs of the pitot tube before and after sampling.
- Check the number and location of the sampling traverse points before taking measurements.

**Flue Gas Molecular Weight.** In the event that that integrated bag samples are to be used for determination of flue gas molecular weight, EPA Method 3 will be the sampling technique specified. Quality control will focus on the following procedures:

- The sampling train will be leak checked before and after each run.
- A constant sampling rate will be used in withdrawing a sample.
- The sampling train will be purged prior to sample collection.
- The sampling port will be properly sealed to prevent air in-leakage.

**Moisture Content.** The moisture content of the gas stream will be determined using the technique specified in EPA Method 4. The following QC checks will be performed:

- The sampling train will be leak checked before and after each run.
- Ice will be maintained in the ice bath throughout each run to insure an exit temperature (after the silica gel impinger) of  $\le 67^{\circ}$ F.

#### 8.4 ANALYTICAL QUALITY CONTROL PROCEDURES

All analyses for this program will be performed using accepted laboratory procedures in accordance with the specified analytical protocols. Adherence to prescribed QC procedures will ensure data of consistent and measurable quality. Analytical QC will focus upon the use of control standards to provide a measure of analytical precision and accuracy. Also, specific acceptance criteria are defined for various analytical operations including calibrations, control standard analyses, drift checks, blanks, etc. The following general QC procedures will be incorporated into the analytical effort:

- The on-site project manager will review all analytical data and QC data on a daily basis for completeness and acceptability.
- Analytical QC data will be tabulated using the appropriate charts and forms on a daily basis
- Copies of the QC data tabulation will be submitted to the quality assurance manager following the completion of the test program.
- All hard copy raw data (i.e., chromatograms, computer printouts, etc.) will be maintained in organized files.

Page: 8-6 Revision No: 0

Date: September 29, 2023

Specific analytical QC procedures for the Orsat analyzer (if used) are listed below.

- The analyzer will be leveled and the fluid levels zeroed prior to use.
- The analyzer will be leak checked prior to use.
- The analyzer will be thoroughly purged with sample prior to use.
- The analyzer will be checked by analyzing an ambient air sample.

#### EPA Method 26A Sample Analysis QC Checks are listed below.

- Calibration curve consisting of 4 calibration levels that bracket the expected sample range. Dilute samples as necessary to reach the calibration range;
- Duplicate analysis of calibration standards, before and after sample analysis, with duplicate injections being within 5% of their mean;
- Duplicate analysis of reagent blanks, quality control samples and field samples with duplicate injections being within 5% of their mean;
- Matrix spike samples may be prepared and analyzed. Matrix spike recoveries should be 90-110%
- A field blank will be carried through the procedure and analyzed with the field samples.
- An audit sample will be analyzed for if available from two or more independent, Approved Audit Sample Providers no less than 60 days prior to the test effort.

### 9.0 REPORTING AND DATA REDUCTION REQUIREMENTS

Page:

Revision No:

Date: September 29, 2023

9-1

0

#### 9.1 DATA REPORTING

The reporting units for HCN, HF, and  $Cl_2$  will be in parts-per-million by volume, wet basis (ppm_{v,d}), parts-per-million by volume, dry corrected to 7% oxygen (ppm_{v,d}@7%O₂), pounds-per-hour (lbs/hr), and pounds-per-ton of clinker (lbs/ton). Additional supporting data for  $CO_2$ ,  $O_2$ , and  $O_2$ 0 concentrations and volumetric flow rates (actual cubic feet-per-minute, wet, standard cubic feet-per-minute, and dry, standard cubic feet-per-minute) will be reported. The clinker production, in short tons-per-hour (TPH) will be reported.

Any data that is not acceptable because of technical difficulties will be indicated, and an explanation of the technical problem will be given. All related QC and calibration data will be in the final report.

#### 9.2 REPORT CONTENTS

Copies of the test report will be submitted after the test series has been completed. Results reported will include, but not be limited to emission rates and concentrations of gaseous pollutants, and process sample determinations, any liquid stream constituents determinations, and any other type of data requested. This report will also include a list of all personnel present during testing, summary results, descriptions of test procedures used, a description of the source and its operation during testing, test locations drawings, example calculations, raw field data, and equipment calibrations.

#### 9.3 DATA REDUCTION

Care will be exercised to ensure hand recorded data is written accurately and legibly. Additionally, the use of prepared data recording forms, conveniently formatted, is an important aid to verify that all necessary data items are recorded. The collected field and laboratory data will be reviewed by the analyst and the Project Manager.

The Project Manager will reduce and validate all of the sampling and analytical data that is collected. The sampling data will include flow measurements, calibrations, etc. Each laboratory will reduce all analytical results prior to their submission to the Project Manager. The analytical data will be used to determine concentrations and emission rates of the compounds of interest.

Data reduction follows guidelines published in EPA Reference Methods, where applicable, and by guideline documents where EPA Reference Methods are not available. Validated computer programs will be used to calculate all reported values.

#### 9.4 DATA VALIDATION

A second technical review of the data will be performed and documented by a qualified scientist other than the one who performed the actual analyses. The second reviewer will include evidence (e.g., check marks, recalculations, etc.) that show which data points were checked. Finally, the second reviewer will sign and date the cover page of the data packet or the record that was reviewed.

In-situ measurements will be validated by demonstrated acceptable post-test leak checks and calibration verifications according to the referenced method used.

Analysis data may be validated according to defined criteria by a secondary reviewer or by the analyst. At a minimum and if applicable, analysis data will be validated according to the following criteria (additional method-specific criteria or project requirements may apply):

- Sampling records complete and traceable
- All appropriate QC samples included with the analytical batch and reported with the sample results
- Routine tuning, calibration and inspection of analytical instrumentation documented and performed prior to analyses
- Initial and continuing calibration criteria met
- Method/reagent blanks confirm no background contamination
- Surrogate recoveries within criteria
- Qualitative sample results (e.g., retention times, mass spectra, isotopic ratios) consistent with standard data
- Sample data within the calibrated range of the instrument
- Chromatograms or other raw data consistent with computer-generated quantitation reports
- Accuracy of intermediate data manipulations, transcribed numbers and/or final reported results verified
- Reference standards, instrumentation, sample identification, analysts, methodology, and sequence of processing clearly identified and traceable in the project records
- Lost data or corrective actions documented (e.g., loss of sample, reanalysis, redilutions, additional cleanup steps, alternative calculations etc.)
- Data that does not meet the validation requirements flagged accordingly
- Data reported in the correct units (e.g., "ppm" should not be used without specifying volume or mass units; "ug/g" are preferred units for data reporting)

#### 10.0 PLANT ENTRY AND SAFETY

Page:

Revision No:

Date: September 29, 2023

10 - 1

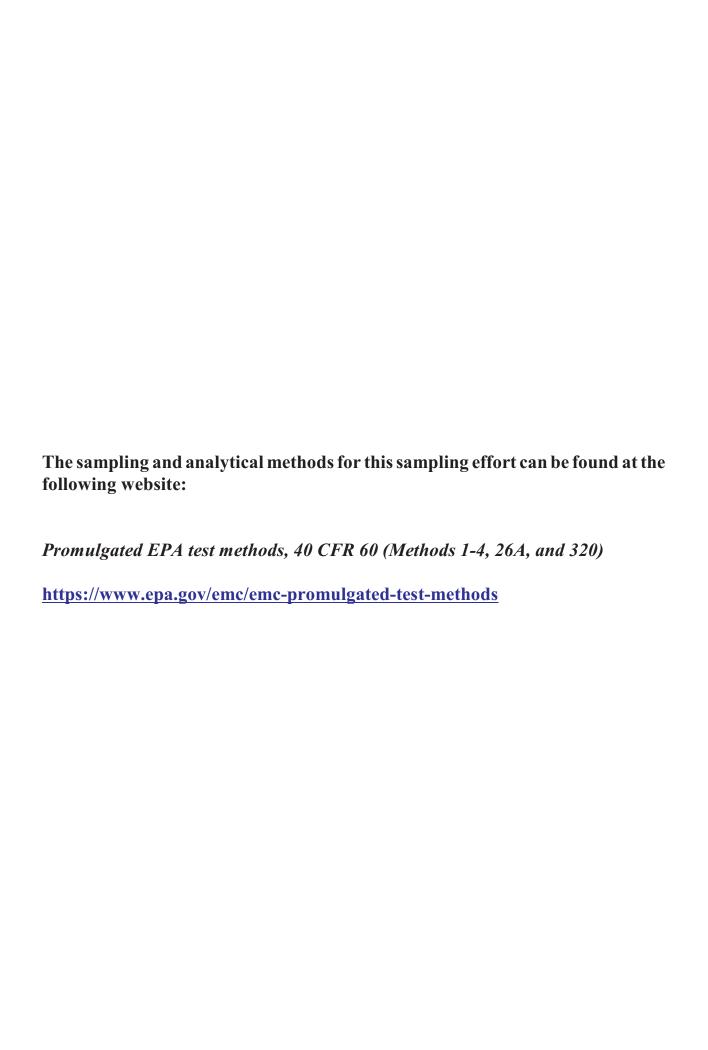
#### 10.1 SAFETY RESPONSIBILITIES

The Project Manager is responsible for ensuring compliance with plant entry, health, and safety requirements. The Facility Contact (refer to Section 1.2) as the authority to impose or waive facility restrictions. The Project Manager has the authority to negotiate with facility person any deviations from the facility restrictions.

#### 10.2 SAFETY PROGRAM

DEECO has a comprehensive health and safety program that satisfies Federal OSHA and MSHA requirements. The basic elements include: (1) written policies and procedures, (2) routine training of employees and supervisors, (3) medical monitoring, (4) use of personal protection equipment, (5) hazard communication, (6) pre-mobilization meetings with Holcim personnel and DEECO test team personnel, and (7) routine surveillance of the on-going test work.

#### 10.3 SAFETY REQUIREMENTS


All test personnel will adhere to the following standard safety and precautionary measures as follows:

- 1) Confine activities to test area only;
- 2) Wear hard hats at all times on-site, except inside sample recovery trailers and mobile CEM laboratory;
- 3) Wear protective shoes or boots in test area:
- 4) Wear protective glasses or goggles at the outlet test sites, and other areas as designated;
- 5) Have readily available first aid equipment and fire extinguishers.

Before or on the first day on-site, the Project Manager will fill out the Emergency Response Procedure form and provide copies to be posted at each test site.

### Appendix A

**Sampling and Analytical Methods** 

