

REPORT NO: 032824-3316

PROJECT: 23-3316

DATE: March 28, 2024

Emission Test Report TYPE:

Hydrogen Cyanide, Hydrogen Fluoride and Diatomic Chlorine from a Portland Cement Plant

Holcim Inc. **Ste. Genevieve Facility** Bloomsdale, MO

AUTHOR: Scott Steinsberger, Ph.D.

TEST DATES: January 10-11, 2024

FIELD TEAM: Dustin Carpenter, Lee Harris, and Scott Steinsberger

PREPARED FOR: Holcim Inc.

> Ste. Genevieve Facility 2942 US Highway 61 Bloomsdale, MO 63627

TABLE OF CONTENTS

Section	<u>Page</u>
1. INTRODU	JCTION
2. SUMMAR	Y OF RESULTS
3. SAMPLIN	G AND ANALYTICAL PROCEDURES8
3.1	Sampling Point Determination - EPA Method 1
3.2	Flue Gas Velocity and Volumetric Flow Rate - EPA Method 2
3.3	Outlet Flue Gas Composition - EPA Method 3A
	3.3.1 Calibration Gases
	3.3.2 Sampling Procedures
3.4	Flue Gas Moisture Content - EPA Method 4
3.5	Hydrogen Fluoride and Diatomic Chlorine - EPA Method 26A
3.6	Hydrogen Cyanide and Hydrogen Fluoride - EPA Method 320
	3.6.1 Laboratory QA/QC Activities Before Field Test Program 16
	3.6.2 QA/QC Activities During Field Test Program
4. QA/QC PI	ROCEDURES AND RESULTS
4.1	Sampling Equipment
	4.1.1 Manual Sampling Equipment Calibrations
4.2	Analytical QA/QC Results
Appendix A	- Emission Summary Tables
Appendix B	- Field Data and CEM/FTIR Data
Appendix C	- Ion Chromatography Analytical Report Data
Appendix D	- Plant Process Data
Appendix E	- Calibration Documents
Appendix F	- Test Participants
Appendix G	- RTR Sampling and Analytical Protocol

LIST OF TABLES

TADLE 2.1	HOLCIM INC., STE. GENEVIEVE FACILITY, BLOOMSDALE, MO4	r
TABLE 2.1	HOLCIM INC., STE. GENEVIEVE FACILITY, BLOOMSDALE, MO; KILN	
	MAIN STACK HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND	
	DIATOMIC CHLORINE EMISSIONS; RAW MILLS ON;	-
TABLE 2.2	JANUARY 10, 2024)
TABLE 2.2	MAIN STACK HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND	
	DIATOMIC CHLORINE EMISSIONS; RAW MILLS OFF,	
	JANUARY 11, 2024	7
TABLE 3.1	PAIRED METHOD 26A SAMPLING TRAIN DIATOMIC CHLORINE	
	CONCENTRATION COMPARISON RESULTS FOR THE KILN MAIN	
	STACK; JANUARY 10-11, 2024	ŀ
TABLE 3.2	FTIR PRETEST AND FIELD TEST QA/QC SUMMARY17	7
TABLE 3.3	ETHYLENE CALIBRATION TRANSFER STANDARD (CTS) AND	
	HYDROGEN CYANIDE ANALYTE SPIKING TEST RESULTS FOR THE	
	KILN MAIN STACK; JANUARY 10-11, 2024)
	LIST OF EIGHDES	
Figure No.	LIST OF FIGURES	
Figure 3.1	Schematic of the Main Stack Sampling Location	
00	2	

1. INTRODUCTION

The United States Environmental Protection Agency (US EPA) has directed the portland cement industry (SIC 3241) to conduct emissions testing as part of the US EPA Risk and Technology Review (RTR). This document provides the emission test results and supporting quality assurance/quality control (QA/QC) measures used to produce standardized data having known precision and accuracy. Collection of accurate, representative, and standardized data for facilities with low emissions is necessary especially in view of MACT standard setting procedures.

The process tested at Holcim's Ste. Genevieve facility is a preheater/precalciner pyroprocessing system with two inline raw mills producing portland cement.

The air pollution control equipment at the Ste. Genevieve facility consists of three control devices. A selective noncatalytic reduction (SNCR) post combustion emissions control technology for reducing NOx by injecting ammonia into the kiln at a properly determined location. A dry sorbent injection system utilizing lime is used to control acid gas emissions. Exhaust from the kiln, both inline raw mills, clinker cooler, and coal mills directed through respective fabric filters for particulate removal, and directed into individual kiln/raw mills, clinker cooler, and coal mills stacks.

A more detailed description of the processes is provided in Section 2 of the RTR Sampling and Analytical Protocol reproduced in Appendix G.

The Holcim retained DEECO Inc. (DEECO) to conduct emission tests for hydrogen cyanide (HCN), hydrogen fluoride (HF), and diatomic chlorine (Cl₂). All sampling runs were be one hour long. Concurrent measurements to determine volumetric flow rate were made.

A summary of the test results is shown in Table 1.1.

TABLE 1.1 SUMMARY OF HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC CHLORINE EMISSIONS; HOLCIM INC., STE. GENEVIEVE FACILITY BLOOMSDALE, MO; JANUARY 10-11, 2024

Test Parameters	Main Stack Raw Mills On	Main Stack Raw Mills Off
Hydrogen Cyanide (FTIR) parts-per-million, dry basis corrected to 7% O ₂ pounds-per-hour pounds-per-ton of clinker	5.4 13.2 0.021	5.6 13.0 0.022
Hydrogen Fluoride (Method 26A) parts-per-million, dry basis corrected to 7% O ₂ pounds-per-hour pounds-per-ton of clinker	<0.24 <0.439 <0.0007	<0.24 <0.411 <0.0007
Diatomic Chlorine (Method 26A) parts-per-million, dry basis corrected to $7\%~\rm O_2$ pounds-per-hour pounds-per-ton of clinker	<0.05 <0.323 <0.0005	<0.10 <0.582 <0.0010

The sampling and analytical procedures followed are summarized in Table 1.2 and discussed in detail in Section 3.

Testing was performed on the main stack under two conditions, both Raw Mills On and both Raw Mills Off. The Raw Mills On runs were conducted on January 10, 2024 and the three Raw Mills Off runs were conducted on January 11, 2024.

Sampling was conducted by personnel from DEECO, Inc. of Raleigh, North Carolina. All questions regarding sampling and analytical data should be directed to Dr. Scott Steinsberger of DEECO at (800) 733-3261. The field sampling was completed by Dustin Carpenter, Lee Harris, and Scott Steinsberger of DEECO.

The remainder of this document summarizes the results, procedures and quality control measures followed for this program. Section 2 contains tabulated air emission results for each parameter of interest. Section 3 summarizes the air emission sampling and analytical procedures performed by DEECO, with a brief description and/or reference to the applicable methodologies. Section 4 discusses the basic quality control elements in place for this program to assure the collection of representative, accurate air emission data.

The appendices provided in this document contain all of the necessary information to verify the reported results. Included as Appendices are: Appendix A - Emission Summary Tables; Appendix B - Field Data and CEM/FTIR Data; Appendix C - Ion Chromatography Analytical Report Data; Appendix D - Plant Process Data; Appendix E - Calibration Documents; Appendix F - Test Participants; Appendix G - RTR Sampling and Analytical Protocol

TABLE 1.2 SUMMARY OF SAMPLING AND ANALYTICAL PROTOCOLS FOR HOLCIM INC., STE. GENEVIEVE FACILITY, BLOOMSDALE, MO

Location and Frequency	Test Parameter	Sampling Method	Sampling Procedure	Analysis Method	Analysis Procedure
Kiln Main Stack	Volumetric Flow Rate and cyclonic check	EPA Methods 1 and 2	Velocity and temperature traverses	EPA Methods 1 and 2	Manometer for differential pressure and thermocouple for temperature
	Oxygen and Carbon Dioxide and Stratification Check	EPA Method 3A	Continuous; extractive sample	EPA Method 3A	Paramagnetic for O ₂ and NDIR for CO ₂
	Moisture	EPA Method 4	Condensation	EPA Method 4	Gravimetric
	Hydrogen Fluoride and Diatomic Chlorine (Cl ₂)	EPA Method 26A	Isokinetic integrated sample	EPA Method 26A	Ion chromatography
	Hydrogen Fluoride and Hydrogen Cyanide	EPA Method 320	Continuous; extractive sample	EPA Method 320	Fourier Transform Infrared (FTIR) Spectroscopy

2. SUMMARY OF RESULTS

Emissions sampling was conducted at Holcim's Ste. Genevieve facility located in Bloomsdale, MO Sampling was conducted for stack gas flow rate (EPA Methods 1 and 2), stack gas oxygen and carbon dioxide (EPA Method 3A), stack gas moisture (EPA Method 4), stack gas hydrogen fluoride and diatomic chlorine (EPA Method 26A) and stack gas hydrogen cyanide and hydrogen fluoride (EPA Method 320).

For this test series, a brand new Teflon heated sample line was used for the first time and appeared to be off gassing hydrogen fluoride. The initial hydrogen fluoride concentration on January 10 was over 10 ppm. The final hydrogen fluoride concentration on January 11 after the last run was 0.2 ppm. The elevated hydrogen fluoride concentrations occurred while sampling stack gas and would decrease when the sampling system was purge with nitrogen. Subsequent purging of the sample line over several days with moist air while heating eventually eliminated the hydrogen fluoride off gassing. The Method 26A samples were all non-detect for hydrogen fluoride. The FTIR hydrogen fluoride results are provided in Appendix B but not included in the summary tables. Based on this evidence, the hydrogen fluoride data from the FTIR is considered to be invalid.

Testing was conducted on the main stack under two conditions; Raw Mills On and Raw Mills Off and the results are summarized in Tables 2.1 and 2.2, respectively.

TABLE 2.1 HOLCIM INC., STE. GENEVIEVE FACILITY, BLOOMSDALE, MO; KILN MAIN STACK HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC CHLORINE EMISSIONS; RAW MILLS ON; JANUARY 10, 2024

Test Parameter	Main Stack Raw Mills On Run 1	Main Stack Raw Mills On Run 2	Main Stack Raw Mills On Run 3	Main Stack Raw Mills On Average
Time	14:30-15:36	15:52-16:58	17:10-18:16	January 10, 2024
Flow Rate (dscfm)	685,150	673,650	679,000	679,300
Oxygen	8.9%	9.0%	9.1%	9.0%
Carbon Dioxide	22.1%	22.0%	22.0%	22.0%
Moisture	11.0%	10.9%	10.7%	10.9%
Hydrogen Cyanide (FTIR)				
ppm _{dry} at 7% O ₂	5.2	5.5	5.5	5.4
pounds-per-hour	12.9	13.4	13.4	13.2
pounds-per-ton of clinker	0.020	0.021	0.021	0.021
Hydrogen Fluoride (Method 26A)				
ppm _{dry} at 7% O ₂	< 0.234	< 0.239	< 0.255	<0.243
pounds-per-hour	< 0.431	< 0.430	< 0.458	< 0.439
pounds-per-ton of clinker	< 0.0007	< 0.0007	< 0.0007	< 0.0007
Diatomic Chlorine (Method 26A)				
ppm _{dry} at 7% O ₂	< 0.049	< 0.054	< 0.050	< 0.050
pounds-per-hour	< 0.318	< 0.339	< 0.313	< 0.323
pounds-per-ton of clinker	< 0.0005	< 0.0005	< 0.0005	< 0.0005

TABLE 2.2 HOLCIM INC., STE. GENEVIEVE FACILITY, BLOOMSDALE, MO; KILN MAIN STACK HYDROGEN CYANIDE, HYDROGEN FLUORIDE, AND DIATOMIC CHLORINE EMISSIONS; RAW MILLS OFF, JANUARY 11, 2024

Test Parameter	Main Stack Raw Mills Off Run 1	Main Stack Raw Mills Off Run 2	Main Stack Raw Mills Off Run 3	Main Stack Raw Mills Off Average		
Time	08:35-09:41	09:53-10:59	11:09-12:15	January 11, 2024		
Flow Rate (dscfm)	652,450	642,500	651,950	649,000		
Oxygen	9.2%	9.2%	9.2%	9.2%		
Carbon Dioxide	21.5%	21.6%	21.4%	21.5%		
Moisture	10.6%	10.8%	10.7%	10.7%		
Hydrogen Cyanide (FTIR)						
ppm _{dry} at 7% O ₂	5.2	5.6	6.1	5.6		
pounds-per-hour	12.0	12.8	14.1	13.0		
pounds-per-ton of clinker	0.020	0.022	0.023	0.022		
Hydrogen Fluoride (Method 26A)						
ppm _{dry} at 7% O ₂	< 0.259	< 0.252	< 0.216	< 0.242		
pounds-per-hour	<0.442	< 0.425	< 0.368	< 0.411		
pounds-per-ton of clinker	< 0.0007	< 0.0007	< 0.0006	< 0.0007		
Diatomic Chlorine (Method 26A)						
ppm _{dry} at 7% O ₂	<0.123	0.078	0.089	< 0.096		
pounds-per-hour	< 0.743	0.464	0.540	< 0.582		
pounds-per-ton of clinker	< 0.0012	0.0008	0.0009	< 0.0010		

3. SAMPLING AND ANALYTICAL PROCEDURES

Table 1.2 presents a summary of the overall sampling and analytical protocols used for the test program for the Kiln/Raw Mills Main stack at Holcim's Ste. Genevieve facility in Bloomsdale, MO. All sampling and analytical methods employed for this test program were performed in accordance with the procedures outlined in the Reference Test Methods contained in the <u>Code of Federal Regulations</u>, Title 40, Part 60, Appendix A (40 CFR 60, Appendix A) and 40 CFR 63, Appendix A.

3.1 Sampling Point Determination - EPA Method 1

The measurement site for the Kiln/Raw Mills Main stack is a vertically-oriented circular stack with an inside diameter of 218.9 inches. Four equidistant sampling ports are located at about located approximately 146.7' (approximately 8.0 duct diameters) above the closest disturbance and approximately 147.3' (approximately 8.1 duct diameters) from the stack outlet.

The number and location of the sampling or traverse points were determined according to the procedures outlined in EPA Method 1. The traverse point locations are provided in Appendix B. All points were at least 1.0 inches from the stack wall, per Method 1. The sampling location met the minimum specifications for selection of a measurement site as outlined in EPA Method 1. Cyclonic flow checks, as described in EPA Method 1 Section 2.4, using the Type-S pitot null procedure and angle measurements at the stack test location were conducted.

A twelve (12) point sampling traverse were made using 3 points in each of 4 sampling ports at the main stack. Each traverse was made at each sampling location using a type-S pitot tube in accordance with EPA Methods 2 procedures. The traverse point locations are provided in Appendix B. Gas temperatures were measured using calibrated Type K thermocouples and digital readout devices. All measurements were performed in accordance with the procedures in EPA Methods 2, and 26A.

A schematic of the main stack is provided in Figure 3-1.

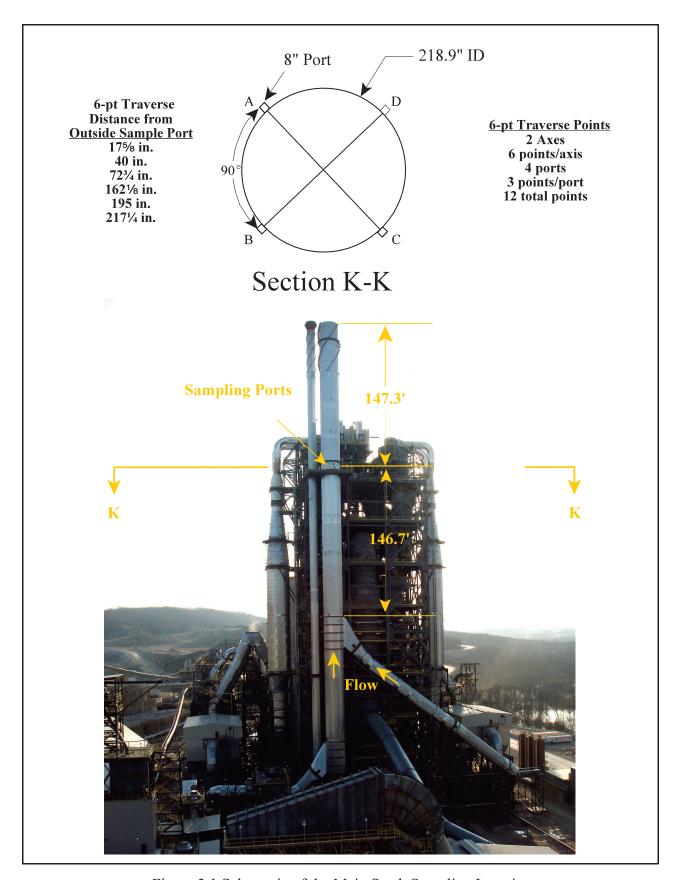


Figure 3.1 Schematic of the Main Stack Sampling Location

3.2 Flue Gas Velocity and Volumetric Flow Rate - EPA Method 2

The flue gas velocity and volumetric flow rate were determined according to the procedures outlined in EPA Method 2. Velocity measurements were using type S pitot tubes conforming to the calibration specifications outlined in EPA Method 2, Section 10.1. Each Type-S pitot tube, calibrated according to these standards, had an assigned coefficient. Differential pressures were measured with fluid manometers. Effluent gas temperatures were measured with chromel-alumel thermocouples equipped with digital readouts.

3.3 Outlet Flue Gas Composition - EPA Method 3A

Outlet flue gas analysis for oxygen (O_2) and carbon dioxide (CO_2) concentrations, and the calculation of percent excess air and flue gas dry molecular weight was performed in accordance with EPA Method 3A.

To evaluate the sampling location and points for FTIR and O_2 sampling, a three-point O_2 concentration stratification test on a line passing through the centroidal area at (for stacks is greater than 2.4 meters) at 0.4, 1.2 and 2.0 meters from the stack or duct wall. The procedures in Section 8.1.2 of Method 7E were followed, but oxygen will be used as parameter as allowed by fourth sentence in Section 8.1.2. The plant O_2 CEMS was used as a control. A criteria of <5% variation from combined mean for each point was used as indication of non-stratification to allow single point sampling at the point closest to the mean.

Per EPA Method 3A for determining molecular weight, continuous extractive sampling will be obtain using the Method 320 sampling system described in Section 3.6.

A portion of the hot, wet gas sample was sent through a condensing system to remove the stack moisture. A portion of the moisture-free gas sample was sent to an O_2/CO_2 analyzer.

Calibration procedures were be performed in accordance with EPA methodology. Analyzers were calibrated before and after each test and a calibration check between each test run.

The pretest calibrations consisted of the following steps:

- Internal (direct) calibration of each analyzer to adjust calibration and check linearity.
- External (through the entire sampling system) calibration to check the system bias on zero and span gases.

The post test calibration consisted of an external system bias calibration check.

The analyzer calibrated using a certified zero and span (mid or high range) gas. Zero and span gases were directed to each analyzer through the appropriate plumbing, the calibration gas flow rates were adjusted to the correct flow rate and the analyzer was adjusted with the appropriate span pot.

After the analyzer was properly adjusted the linearity was checked using a low and high range

calibration gas. The maximum allowable limit for linearity is 2% of the analyzer range and all analyzers were shown to be linear within these limits before proceding.

The external calibration bias check were performed by placing the CEM system in sampling mode and injecting a zero and span gas into the sample line at the probe exit. This check showed if there is any sampling system related bias, and also checks the integrity of the sample line.

3.3.1 Calibration Gases

DEECO useed EPA Protocol and/or $\pm 2\%$ NIST Traceable gases for calibration as required by the various reference methods employed in this test program. Calibration gases were selected from previous experience with similar sources and/or from information obtained from the facility engineer prior to sampling. In some cases if the gases that are selected are out of the optimum range of operation then no significant impact of data quality is expected due to the linear nature of the analyzers that were used.

No audit gases from a federal or a state agency were provided.

3.3.2 Sampling Procedures

At the completion of the pretest calibration routine, the CEM system was ready for operation. No further adjustments of sample flow rates, analyzer zero or span adjustments, or other critical CEM operating parameters were made until testing and post test calibration were complete.

Each sampling run was one hour. At the completion for each test run, calibration gases were used to check between test runs. A zero and the upscale calibration gas closest to the actual emission concentrations were used for the pretest and post test calibrations.

3.4 Flue Gas Moisture Content - EPA Method 4

The flue gas moisture content was determined in conjunction with the EPA Method 26A trains according to the sampling and analytical procedures outlined in EPA Method 4. (**NOTE:** In order to maintain isokinetic sampling, the sampling rate used may have been required to temporarily exceed the EPA Method 4-specified maximum sampling rate of 0.75 CFM, based on observed stack gas pitot readings.) The impingers were connected in series and contained reagents as described below. The impingers were contained in an ice bath in order to assure condensation of the moisture in the flue gas stream. Any moisture that is not condensed in the impingers was captured in the silica gel, therefore all moisture was weighed and entered into moisture content calculations.

3.5 Hydrogen Fluoride and Diatomic Chlorine - EPA Method 26A

Sampling and analytical procedures were those outlined in EPA Method 26A to determine primarily diatomic chlorine (Cl₂) emissions and hydrogen fluoride (HF) emissions at main stack outlet sampling locations. Duplicate simultaneous trains (a.k.a "paired trains") for each test run were used to determine precision.

Sample was collected through a heated glass probe, followed by a heated Teflon filter, where stack gas HF and $\rm Cl_2$ were collected in a series of chilled impingers. The sampling train impingers contained 100 ml of 0.1N sulfuric acid in the first and second, an empty third impinger, 100 ml of 0.1N NaOH in the fourth and fifth and 200 grams of silica gel in the last impinger

Sampling was conducted isokinetically $(\pm 10\%)$ with readings of flue gas parameters recorded at traverse points selected according to EPA Method 1. Leak-checks on the Method 26A sampling train were performed before and after each sampling run and optionally for any port change. The sampling train leak-checks and leakage rate (where applicable) were documented on the field test data sheet for each respective run. All leak checks were acceptable.

The glass button hook nozzle and probe liner was constructed of borosilicate glass. The filter holder will be constructed of borosilicate glass with a Teflon frit filter support and a sealing gasket. A PTFE-bonded glass fiber filter was used. The probe and filter housing were heated to above 248°F and not exceed an upper boundary of 273°F. Probe liners and filter holders were cleaned thoroughly prior to testing.

The Method 26A trains was operated isokinetically for a minimum of 60 minutes and collected a minimum of 1 dry, standard cubic meter (DSCM). Pretest preparations, preliminary determinations, and leak check procedures were those outlined in EPA Method 5.

After completion of sampling the train was leak checked and transferred to the sample recovery trailer. All leak checks were acceptable. The impingers were weighed to determine moisture gain in accordance with EPA Method 4.

Sample recovery involved quantitative recovery of the sulfuric acid impinger contents and the NaOH impinger contents into separate tare-weighed, precleaned polyethylene sample containers.

The nozzle, probe, filter and filter housing were not recovered.

The contents of sulfuric acid impingers, including the contents if any of the empty (2nd knockout or third) impinger were quantitatively transferred to the tare-weighed, precleaned polyethylene sample container, followed by three rinses with deionized (DI) water of the impingers and all connecting glassware (including the connecting glassware to the first impinger) placed in the same H₂SO₄ container. The container was labeled and weighed to determine the final sample volume.

The contents NaOH impingers were quantitatively transferred to a second tare-weighed, precleaned polyethylene sample container, followed by three rinses with DI water of the impingers and all connecting glassware placed in the same NaOH container. The container was labeled and weighed to determine the final sample volume.

Sample recovery from each train included:

- 1. Container No. 1 Contents of H₂SO₄ impingers and knockout impinger and, and DI rinse of impingers and connecting glassware; and
- 2. Container No. 2 Contents NaOH impingers, and DI rinse of impingers and connecting glassware.

Additional quality control consisted of collecting and analyzing a field blank train for every three test runs. The blank train was assembled from a used train, leak checked and sat for a period equal to the sampling time (i.e, 1-hr). The blank train data was to be used to determine the method detection limit for the test program target analytes (ie. The lowest number that could be detected), and compared to stack emissions.

Reagent blanks of 0.1 N H₂SO₄, 0.1N NaOH, and DI water were collected and archived for later analysis should there be any issues with the field blank train samples

The H_2SO_4 impinger solutions were analyzed using ion chromatography techniques for fluoride ions (F⁻) (EPA SW-9057). Duplicate analyses performed on the samples and field blanks. Precision was demonstrated by duplicate injection of each sample, the results of each individual analysis being within 5% of their mean to be acceptable.

The NaOH impinger solutions was treated with sodium thiosulfate to ensure complete conversion of hypochlorous acid (HClO) to chloride ions (Cl⁻). The resulting solution was analyzed using ion chromatography techniques for chloride ions (EPA SW-9057). Duplicate analyses was performed on the samples and field blanks. Precision was demonstrated by duplicate injection of each sample, the results of each individual analysis being within 5% of their mean to be acceptable

All EPA Method 26A HF/Cl₂ samples were analyzed by Element One of Wilmington NC. Refer to Section 1, Figure 1.1 of the RTR Sampling and Analytical Protocol for contact information.

For this test program, the relative deviation (RD) was to be calculated as described in EPA Method 30B between the Cl₂ concentrations measured with the paired trains. A criteria of a less than 10% relative deviation or 0.2 ppm absolute difference was required.

The absolute differences between the Cl_2 concentrations measured with the paired trains is summarized in Table 3.1. For each paired run, Cl_2 concentrations met the 0.2 ppm absolute difference criteria.

TABLE 3.1 PAIRED METHOD 26A SAMPLING TRAIN DIATOMIC CHLORINE CONCENTRATION COMPARISON RESULTS FOR THE KILN MAIN STACK; JANUARY 10-11, 2024

Run	Time	Train A Diatomic Chlorine Concentration (ppm,dry)	nlorine Diatomic Chlorine cation Concentration					
January 10, 2024	; Main Stack; Raw I	Mills On						
Run 1	14:30-15:36	0.044	< 0.039	0.005				
Run 2	15:52-16:58	0.048	< 0.043	0.005				
Run 3	17:10-18:16	0.042	< 0.041	0.001				
January 11, 2024	; Main Stack; Raw I	Mills Off						
Run 1	08:35-09:41	0.166	< 0.039	0.127				
Run 2	09:53-10:59	0.062	0.068	0.006				
Run 3	11:09-12:15	0.065	0.085	0.020				

3.6 Hydrogen Cyanide and Hydrogen Fluoride - EPA Method 320

EPA Method 320 was performed to determine emissions of concentrations of HCN and HF. Three, 1-hour sampling runs were conducted under each representative process and control system operating conditions.

The gas sample was extracted from the stack through a glass-lined probe and filter heated to 375° F. For external calibration checks and analyte spikes, the gases were introduced in front of the heated filter. Any excess calibration gas was diverted through the sample probes into the source. Outflow of gas from the heated filter enclosure was transported through a Teflon sample line heated to 375° F. For these sources approximately 300' of sample line was required. The heated sample line was connected directly to the FTIR sample cell. Using heat-traced Teflon tubing the exit of the FTIR cell was connected to a sample pump with a heated stainless steel pump head. The pump discharge was directed to a proprietary chiller-type gas conditioner to remove moisture prior to delivery sample gas to the O_2/CO_2 monitor.

The distribution of the gas sample to the monitors was accomplished using a panel equipped with valves and rotometers. The gas sample was then divided and directed to the O_2/CO_2 analyzer.

FTIR sample cell was maintained at 191°C and connected to a MKS Instruments Multigas 2030 Fourier Transform Infrared Spectrometer and Detector.

The FTIR spectrometer measured vapor phase organic or inorganic compounds which absorb energy in the mid-infrared spectral region, about 400 to 4000 cm $^{-1}$ (25 to 2.5 μ m). Continuous measurement were made by matching sample absorbance bands with bands in reference spectra, and comparing sample band intensities with reference band intensities.

The principle limitation to FTIR spectroscopy are the presence of interfering compounds that also absorb energy in the mid-infrared spectral region. In a cement kiln stack gas matrix, water vapor (H_2O) and carbon dioxide (CO_2) are the primary interferents that must be incorporated into the identification and quantitation method.

The FTIR software performs the computation for a single compound by subtracting all the other compounds (interferants and target) from the absorbance spectra and quantifies the single compound based on the remain absorbance. The FTIR software provides a Standard Error Calculation (SEC) value that is an indication of how well the identification and quantitation has been performed. A high SEC indicates that other interferants have not been accounted for in the analysis method, and a low SEC is indicative of greater confidence measurement.

The instrument is operated with a resolution of 0.5 cm⁻¹ with 4x zero filling. Beer-Norton Medium apodization is used with amplitude phase correction.

For this RTR test program, following specific QA/QC activities for EPA Method 320 were performed and are summarized in Table 3.2

3.6.1 Laboratory QA/QC Activities Before Field Test Program

Before field testing occurs, the following QA/QC activities were conducted;

- Seven consecutive samples of dry nitrogen through the sampling system was acquired and used to calculate the standard deviation for each of the test program target analytes multiplied by a factor of 3. These data were considered representative of detection limits (DL) for this test program and were below the 0.5 ppm required DL for both HCN and HF;
- 2) From these seven dry nitrogen samples, the results for the Signal-to-Noise Ratio (SNR) @ 2500 cm⁻¹ was >2500, at 64 scans and the results for single beam intensity @ 2500 cm⁻¹ was >0.9; and
- 3) The HCN calibration gases was analyzed directly and the FTIR responses agreed with tag value within 5%

3.6.2 QA/QCActivities During Field Test Program

During the field test program, following QA/QC activities were be performed and criterium met;

- 1) On each test day prior to any testing, an instrument background was collected using dry nitrogen directed to the gas cell. The background was collected with at least 128 scans;
- 2) The probe, filter, sample line and all sample system components in contact with effluent were be maintained at or above 375°F or 191°C (consistent with FTIR calibration temperature) to avoid any possible "cold spots;"
- A system zero with all sampling system components at operating temperature was performed by injecting nitrogen at the sample probe and through sample filter and entire measurement system. After zero equilibration was been achieved, all measurement components will be quantified for at least 128 scans;
- 4) The sample probe was position at effluent measurement point and sampling was continue until equilibration of the measurement system has been achieved. At this point, the effluent concentrations was quantified with two consecutive 64-scan samples as the initial native concentration for the dynamic spike;
- Analyte spiking was conducted for HCN before the first test run, and after each successive test run for a minimum of 4 spikes per test condition. These results will be used to determine accuracy and are summarized in Table 3.3;
- The spike gas injections was maintained at 10% or less of total sample volume. The spike gas concentration and flow rate was be selected to approximately double the native effluent concentration. Spike recovery results were within $\pm 20\%$ of the expected value. An SF₆ tracer was used to calculate the exact spike gas dilution ratio of 10% or less;
- 7) After the dynamic spike, nitrogen was sent through the sampling system until all traces of spike gas are removed and lines are proven below DL for target analytes;

TABLE 3.2 FTIR PRETEST AND FIELD TEST QA/QC SUMMARY

Spectrum	HCN	SF6	HF	SNR 2500	sBeam @2500
Seven consecutive samples	of dry nitroger	ı for detection lim	it		
SPC 000837.LAB	-0.051		-0.002	6223.51	1.42
SPC 000838.LAB	-0.032		-0.000	5809.30	1.42
SPC000839.LAB	0.046		-0.017	3759.60	1.42
SPC000840.LAB	-0.011		0.016	4373.66	1.42
SPC000841.LAB	0.080		0.002	5347.95	1.42
SPC000842.LAB	0.059		-0.012	5012.46	1.42
SPC000843.LAB	-0.029		-0.006	4706.13	1.42
Standard Deviation X 3	0.156		0.032		
Averages				5033.23	1.42
HCN Standard (CC768222	2; 49.9 ppm HC	N/5.0 ppm SF6)			
SPC 007625.LAB	49.43	4.85			
SPC 007626.LAB	49.16	4.86			
SPC007627.LAB	49.30	4.86			
Averages	49.30	4.86			
Residuals for Post HCN ar	nalyte spike nat	ive scans			
SPC 007708.LAB					
Concentration	3.66		2.44		
MDC3	0.18		0.45		
MDC3%	NA		NA		
SPC 007709LAB					
Concentration	2.06		-0.03		
MDC3	0.11		0.22		
MDC3%	NA		NA		
Final SNR @ 2500 cm ⁻¹ an	d single beam i	ntensity @ 2500 c	m ⁻¹		
SPC008190.LAB				5053.0	1.24

- The nitrogen purge was discontinued and the sampling system was allowed to equilibrate with stack gas before starting a test run. The first two consecutive 64-scan samples of a sample run was used for the final native concentration. Residual results for HCN and HF were verified to be less than 0.2-0.3 ppm for data acceptance, or less than 5% of the measured value, whichever was least restrictive.
- 9) The final SNR @ 2500 cm⁻¹, at 64 scans, and the results for single beam intensity @ 2500 cm⁻¹ were verified to met the >2500 and >0.9 criterium; respectively.

TABLE 3.3 ETHYLENE CALIBRATION TRANSFER STANDARD (CTS) AND HYDROGEN CYANIDE ANALYTE SPIKING TEST RESULTS FOR THE KILN MAIN STACK; JANUARY 10-11, 2024

Run	Time	Average Native Hydrogen Cyanide Concentration (ppm,wet)	Spike plus Average Hydrogen Cyanide Native Concentration (ppm,wet)	Hydrogen Cyanide Spike Recovery	CTS Error
January 10, 20	024; Main Stack F	Raw Mills On			
Pre Run 1	13:57-14:15	3.71	6.32	103.6%	-1.9%
Post Run 1	15:28-15:47	4.24	6.83	108.0%	
Post Run 2	16:52-17:09	4.26	6.73	108.1%	
Post Run 3	18:04-18:35	4.25	6.92	111.7%	-1.0%
January 11, 20	23; Main Stack F	Raw Mills Off			
Pre Run 1	08:19-08:32	3.76	5.59	97.2%	-1.4%
Post Run 1	09:34-09:49	4.11	6.35	106.4%	
Post Run 2	10.53-11:06	4.51	6.63	97.1%	
Post Run 3	12:02-12:27	4.58	6.93	108.0%	-2.2%

4. QA/QC PROCEDURES AND RESULTS

The objective of a quality assurance/quality control (QA/QC) program is to assure that the precision and accuracy of all environmental data generated by DEECO for clients are commensurate with data quality objectives (DQO's). DQO's are based on a common understanding of the intended end use(s) of the data, the measurement process, and the availability of resources. Once DQO's are established, formally or informally, QC protocol can be defined for the measurements.

In this project, the final data user will be Holcim. The data quality objectives in this project are to generate scientifically sound data to be used for compliance purposes.

4.1 Sampling Equipment

All of the sampling equipment used was calibrated according to the procedures outlined in the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, EPA-600/4-77-027b.

4.1.1 Manual Sampling Equipment Calibrations

For sampling Methods 1, 2, and 4 the procedures and equipment used to measure stack gas velocity and temperature measurements and the metering system used to maintain constant rate sampling conditions and to determine the sample gas volume were subjected to pretest and posttest calibrations and/or inspections as required by the appropriate EPA methods.

Barometer - Barometric pressure values were obtained from a calibrated barometer, verified by phone call to a local airport, and corrected for elevation to sample port level (0.01 inches Hg per 10 ft. elevation).

<u>Pitot Tubes</u> - Each pitot tube used in sampling meets the design specifications for type-S pitot tubes in EPA Method 2. Therefore, a maximum value baseline coefficient (C_p) of 0.84 is assigned to each pitot tube. Calibration by the manufacturer for pitot face-opening alignment included measuring the external tubing diameter (dimension D_t), the base-to-opening plane distance (dimensions P_a and P_b), and the face opening misalignment angles, with all terms as described in EPA Method 2. Pitot tubes were visually inspected for structural integrity at the completion of each test. Inspection sheets for pitot tubes are included in Appendix E.

Calibration Meter and Metering System - The secondary reference meter equipment arrangement for calibration is shown in Figure 5.7 of EPA Method 5. The prescribed procedures were followed. A wet test meter with a 1 ft 3 /rev capacity and \pm 1 percent accuracy is used as the primary calibrant. The dry gas meter's pump is run for a minimum of 5 minutes at a flow rate of 0.35 cfm to condition the interior surface of the wet test meter. Leak checks are performed and if satisfactory, triplicate runs at each of no less than five different flow rates are done. A calibration curve is prepared and the meter is recalibrated after 200 hours of operation or annually, whichever comes first.

The calibration set-up for the dry gas metering system using the secondary reference meter in lieu of the wet test meter is given in Figure 5.5 of EPA Method 5. A leak check of the metering system before calibration was performed as shown in Figure 5.4 of EPA Method 5. The metering systems's pump is operated for 5 minutes at an orifice manometer setting of 0.5 inches H_20 to heat up the pump and system to stabilize the meter inlet and outlet temperatures. Values for the orifice setting (delta H), wet test meter volume (V_w) , corresponding dry test meter volume (V_d) , dry test meter inlet and outlet gas temperatures $(t_{di}$ and $t_{dn})$, and time are recorded for the initial calibration. Then the ratio of the wet test meter to the dry test meter (gamma) and the orifice pressure differential that equates to 0.75 cfm at standard conditions (delta H@) are calculated.

A post-test meter calibration was made on the dry gas meter used during the test to check its accuracy against the pre-test calibration. This was performed following EPA Method 5, Section 16.3 or a post-test calibration check was made using the average orifice setting obtained during each test run and setting the vacuum at the maximum value obtained during each test run. These test runs were made against DEECO's secondary reference dry gas meter which was calibrated against a wet test meter. The calibration data sheets for the dry gas meters are included in Appendix E.

<u>Thermocouples and Digital Indicators</u> - Thermocouples were calibrated by comparing them against an ASTM-3F mercury-in-glass thermometer at approximately 32°F (ice water), ambient temperature, and at approximately 220°F. Each thermocouple was calibrated against temperature ranges to which it is typically exposed during test conditions, and they agreed within 1.5 percent (expressed in °R) of the reference thermometer throughout the entire calibration range. Also, thermocouples were checked at ambient temperature at the test site to verify calibration. The calibration data sheets for the thermocouples are included in Appendix E.

<u>Pretest and Posttest Leak Checks of Sampling Trains</u> - Each Method 4 sampling train was subjected to pretest leak checks and posttest leak checks. For all sampling runs the posttest leak checks were acceptable (less than 4% of the sampling rate at the highest vacuum recorded during the test run).

4.2 Analytical QA/QC Results

Analytical measurements of precision and accuracy were made on stack gas samples, and are summarized in a separate report.

Appendix A Emission Summary Tables

Company: Holcim; Ste. Genevieve MO Source: Main Stack; Raw Mill On

Job ID: 24-3316

Train Type: EPA Method 26A

	1A 01/10/24 1430-1536	1B 01/10/24 1430-1536	2A 01/10/24 1552-1658	2B 01/10/24 1552-1658	3A 01/10/24 1710-1816	3B 01/10/24 1710-1816	Average
Initial Meter Volume, ft ³	759.749	578.879	816.866	635.415	873.091	691.589	
Final Meter Volume, ft ³	816.574	635.119	872.813	691.219	929.275	747.699	
Intra-Port Volume and/or Leak Check Correction, ft ³	0.000	0.000	0.000	0.000	0.000	0.000	
Total Sample Volume, cf	56.825	56.240	55.947	55.804	56.184	56.110	56.185
DGM Calibration Factor	0.967	0.973	0.967	0.973	0.967	0.973	0.970
Average DGM Temp, F	47.0	48.2	46.3	49.6	49.2	54.7	49.2
Average DGM delta H, "H2O	3.20	2.68	3.08	2.59	3.12	2.63	2.88
Barometric Pressure, "Hg	28.90	28.90	28.90	28.90	28.90	28.90	28.90
Corrected Sample Vol, dscf	55.690	55.255	54.889	54.664	54.813	54.424	54.956
Corrected Sample Vol, dscm	1.577	1.565	1.554	1.548	1.552	1.541	1.556
Sample Volume (at Stack Conditions), acf	84.884	84.410	83.738	83.488	83.258	82.759	83.756
Sample Volume (at Stack Conditions), acm	2.404	2.390	2.371	2.364	2.358	2.343	2.372
Oxygen, %	8.9	8.9	9.0	9.0	9.1	9.1	9.0
Carbon Dioxide, %	22.1	22.1	22.0	22.0	22.0	22.0	22.0
Nitrogen, %	69.0	69.0	69.0	69.0	68.9	68.9	69.0
Stack Gas Excess Air, %	95.5	95.5	97.7	97.7	100.1	100.1	97.8
Total Moisture Catch Weight, grams	144.4	146.3	141.3	142.3	136.1	136.3	138.2
Stack Gas Moisture, %	10.9	11.1	10.8	10.9	10.5	10.6	10.8
Stack Gas Dry Molecular Weight, lb/lbmole	31.89	31.89	31.88	31.88	31.88	31.88	31.89
Stack Gas Wet Molecular Weight, lb/lbmole	30.38	30.35	30.38	30.37	30.43	30.41	30.39
Average Stack Temp, F	234.3	234.3	235.7	235.7	235.0	235.0	235.0
Stack Static (Gauge) Pressure, "H2O	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Stack Gas Actual Pressure, "Hg	28.97	28.97	28.97	28.97	28.97	28.97	28.97
Average Sqrt delta P *	1.045	1.045	1.027	1.027	1.032	1.032	1.035
Pitot Tube Coefficient	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Stack Gas Velocity, ft/second	66.65	66.69	65.57	65.58	65.80	65.82	66.02
Nozzle Inside Diameter, inches	0.250	0.250	0.250	0.250	0.250	0.250	
Total Sample Time, min	60	60	60	60	60	60	60
Isokinetic Rate, %	103.8	103.2	104.1	103.8	103.2	102.5	103.4
Stack Dimensions	218.9 in. ID						
Stack Area, sq ft	261.35	261.35	261.35	261.35	261.35	261.35	261.35
Actual Stack Gas Flow Rate, acfm	1,045,100	1,045,800	1,028,200	1,028,400	1,031,800	1,032,100	1,035,200
Actual Stack Gas Flow Rate, acmm	29,594	29,614	29,116	29,121	29,217	29,226	29,315
Stack Gas Flow Rate, dscfm	685,700	684,600	674,000	673,300	679,300	678,700	679,300
Stack Gas Flow Rate, dscmm	19,417	19,386	19,086	19,066	19,236	19,219	19,235

Company: Holcim; Ste. Genevieve MO Source: Main Stack; Raw Mill On

Job ID: 24-3316

Train Type: EPA Method 26A NOTE: Average INCLUDES Non-detect runs' results

"ND()" denotes values below detection limits

"ND()" denotes values beio	ow detection limits		1A 01/10/24 1430-1536	6		1B 01/10/24 1430-1536	6		2A 01/10/24 1552-1658			2B 01/10/24 1552-1658			3A 01/10/24 1710-1816	6		3B 01/10/24 1710-1816			Average	;
Hydrogen Fluoride	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm @ 7% O2 Conc., mg/dscm @ 12% CO2 Conc., ppmvd	ND(ND(ND(ND(ND(0.264 0.167 0.194 0.091 0.201))))	ND(ND(ND(ND(ND(0.263 0.168 0.195 0.091 0.202))))	ND(ND(ND(ND(ND(0.266 0.171 0.200 0.093 0.206))))	ND(ND(ND(ND(ND(0.262 0.169 0.198 0.092 0.204))))	ND(ND(ND(ND(ND(0.281 0.181 0.213 0.099 0.218))))	ND(ND(ND(ND(ND(0.276 0.179 0.211 0.098 0.215))))	ND(ND(ND(ND(ND(0.269 0.173 0.202 0.094 0.208))))
	Conc., ppmvd @ 7% O2 Conc., ppmvd @ 12% CO2 Emission Rate, lb/hr Clinker Rates (mtph and lbs/ton)	ND(ND(ND(0.233 0.109 0.430 580.90)	ND(ND(ND(ND(0.234 0.110 0.431 0.0007))	ND(ND(ND(0.240 0.112 0.432 575.80)	ND(ND(ND(ND(0.238 0.111 0.427 0.0007))	ND(ND(ND(0.256 0.119 0.461 582.10)	ND(ND(ND(ND(0.254 0.117 0.455 0.0007))	ND(ND(ND(ND(0.243 0.113 0.439 0.0007)
Chlorine	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm @ 7% O2 Conc., mg/dscm @ 12% CO2 Conc., ppmvd Absolute Difference, ppmvd (<0.2 re	eauired)	0.208 0.132 0.153 0.072 0.045		ND(ND(ND(ND(ND(0.181 0.116 0.134 0.063 0.039 0.01))))		0.222 0.143 0.167 0.078 0.048		ND(ND(ND(ND(ND(0.194 0.125 0.146 0.068 0.043 0.01)))		0.193 0.124 0.146 0.068 0.042		ND(ND(ND(ND(ND(0.188 0.122 0.144 0.067 0.041 0.00))))	< < < <	0.198 0.127 0.148 0.069 0.043	
	Conc., ppmvd @ 7% O2 Conc., ppmvd @ 12% CO2 Emission Rate, lb/hr Clinker Rates (mtph and lbs/ton)		0.052 0.024 0.339 580.90		ND(ND(ND(ND(0.045 0.021 0.297 0.0005)))		0.057 0.026 0.361 575.80		ND(ND(ND(ND(0.050 0.023 0.316 0.0005)))		0.050 0.023 0.316 582.10		ND(ND(ND(ND(0.049 0.023 0.310 0.0005)))	< < <	0.050 0.023 0.323 0.0005	

Run 1								
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C	H2O% (40) 191C	CO2% (40) 1910
SPC007723.LAB	01/10/24	14:30:39.757	3.745	3.051	-0.Ó17	2.847	11.095	18.488
SPC007724.LAB	01/10/24	14:31:43.703	3.757	2.876	-0.013	2.775	11.079	18.511
SPC007725.LAB	01/10/24	14:32:47.588	3.477	2.722	-0.016	2.810	11.115	18.448
SPC007726.LAB	01/10/24	14:33:51.551	4.198	2.643	-0.017	2.774	11.050	18.540
SPC007727.LAB	01/10/24	14:34:55.515	4.023	2.510	-0.018	2.871	11.023	18.555
SPC007728.LAB		14:35:59.335	3.852	2.416	-0.018	2.905	10.964	18.515
SPC007729.LAB		14:37:03.250	3.941	2.337	-0.017	2.845	11.009	18.586
SPC007730.LAB		14:38:07.171	3.888	2.279	-0.016	2.850	11.012	18.584
SPC007731.LAB		14:39:11.129	4.196	2.279	-0.020	2.843	11.091	18.605
SPC007732.LAB		14:40:15.047	3.490	2.124	-0.014	2.824	10.989	18.606
SPC007733.LAB		14:41:19.175	3.492	2.145	-0.016	2.893	10.941	18.507
SPC007734.LAB		14:42:23.186	3.704	2.094	-0.013	2.867	10.987	18.428
SPC007735.LAB SPC 007736.LAB		14:43:26.753	3.775	2.064	-0.019	2.821	10.978	18.442
		14:44:30.674	3.983	2.013	-0.017	2.765	11.019	18.488
SPC007737.LAB SPC 007738.LAB		14:45:34.584	3.989	1.983	-0.020 -0.018	2.804	10.958	18.535 18.485
SPC007736.LAB SPC007739.LAB		14:46:38.582 14:47:42.461	3.645 3.988	1.937 1.952	-0.018 -0.020	2.916 2.900	11.066 11.145	18.485 18.561
SPC007739.LAB SPC 007740.LAB		14:48:46.374	3.966 4.198	1.940	-0.020 -0.017	2.870	11.145	18.530
SPC007740.LAB SPC007741.LAB		14:49:50.243	3.942	1.875	-0.017	2.879	11.221	18.405
SPC007741.LAB SPC_007742.LAB		14:50:54.167	3.951	1.863	-0.013	2.754	11.159	18.544
SPC 007743.LAB		14:51:58.121	3.998	1.850	-0.014	2.897	11.190	18.623
SPC007744.LAB		14:53:02.040	3.905	1.800	-0.018	2.823	11.029	18.571
SPC 007745.LAB		14:54:05.961	3.978	1.812	-0.022	2.916	10.978	18.599
SPC007746.LAB		14:55:10.105	3.731	1.833	-0.020	2.884	10.890	18.547
SPC 007747.LAB		14:56:13.788	3.714	1.858	-0.015	2.933	10.911	18.535
SPC007748.LAB		14:57:17.754	3.979	1.874	-0.018	2.774	10.971	18.656
SPC 007749.LAB	01/10/24	14:58:21.692	3.933	1.959	-0.019	2.862	11.008	18.487
SPC007750.LAB	01/10/24	14:59:25.490	4.259	2.076	-0.017	2.873	11.112	18.637
SPC007751.LAB	01/10/24	15:00:29.412	3.778	2.197	-0.017	2.841	11.137	18.559
SPC007752.LAB	01/10/24	15:01:33.322	4.138	2.323	-0.016	2.848	11.197	18.583
SPC007753.LAB	01/10/24	15:02:37.235	4.028	2.411	-0.015	2.839	11.195	18.494
SPC007754.LAB		15:03:41.252	4.182	2.508	-0.024	2.848	11.134	18.525
SPC007755.LAB		15:04:45.359	4.088	2.455	-0.018	2.899	10.818	18.544
SPC007756.LAB		15:05:49.102	4.877	2.661	-0.018	2.798	10.930	18.606
SPC007757.LAB		15:06:52.898	3.770	2.445	-0.017	2.797	11.100	18.587
SPC007758.LAB		15:07:56.809	3.843	2.392	-0.019	2.794	11.080	18.504
SPC007759.LAB		15:09:00.773	3.756	2.391	-0.015	2.875	11.028	18.520
SPC007760.LAB		15:10:04.685	3.860	2.356	-0.020	2.918	10.999	18.436
SPC007761.LAB		15:11:08.563	3.694	2.343	-0.016	2.887	11.120	18.506
SPC007762.LAB		15:12:12.868	3.971	2.275	-0.018	2.856	11.113	18.581
SPC007763.LAB		15:13:16.399	4.014	2.252	-0.017	2.717	11.031	18.419
SPC007764.LAB SPC 007765.LAB		15:14:20.308	4.179	2.193 2.203	-0.018	2.807	10.875	18.490
SPC007765.LAB SPC007766.LAB		15:15:24.225	4.209 3.988	2.203	-0.019 -0.015	2.843 2.959	10.906 10.951	18.575 18.408
SPC007766.LAB SPC 007767.LAB		15:16:28.189 15:17:32.059	3.988 4.026	2.108	-0.015 -0.021	2.959 2.758	11.015	18.567
SPC007767.LAB SPC 007768.LAB		15:18:36.356	4.028	2.035	-0.021	2.756	10.991	18.563
SPC007766.LAB SPC 007769.LAB		15:19:39.893	4.023 4.167	2.035	-0.020	2.851	10.957	18.613
SPC007709.LAB		15:20:43.868	4.067	2.003	-0.019	2.773	11.133	18.606
SPC007770.LAB		15:21:48.068	3.924	1.940	-0.019	2.773	11.112	18.568
SPC 007771.LAB		15:22:51.684	4.077	1.869	-0.017	2.876	11.027	18.526
SPC 007773.LAB		15:23:55.548	4.147	1.851	-0.017	2.928	10.870	18.531
SPC 007774.LAB		15:24:59.565	4.036	1.876	-0.017	2.913	10.984	18.555
SPC 007775.LAB		15:26:03.444	4.466	1.834	-0.019	2.849	11.094	18.774
SPC 007776.LAB		15:27:07.296	3.951	1.846	-0.018	2.989	11.090	18.717
SPC007777.LAB		15:28:11.210	4.238	1.760	-0.020	2.912	10.929	18.693
SPC007778.LAB		15:29:15.133	4.234	1.730	-0.018	2.844	10.867	18.692
SPC007779.LAB		15:30:19.317	4.037	1.624	-0.019	2.858	10.918	18.583
Mills On Run 1		(actual)	3.974		-0.018	2.853	11.032	18.550
Oxygen	8.9%	(ppm,dry @7% O2)			-0.023	3.711	11.0	M26A Moisture
DSCFM	685,150	(lbs/hr)	12.865		-0.308	9.588		
Clinker (mtons/hr)	580.9	(lbs/ton clinker)	0.02010					

Holcim; Ste. Genevieve MO Main Stack; Raw Mills On

Run 2	O.i.							
Spectrum	Date	Time	HCN PCA 191c R1 191c	HE nom (10) 191C	SE6 (10) 1910	Ethylene (100,3000) 191C	H20% (40) 101C	CD294 (40) 101C
SPC 007799.LAB		15:53:00.726	3.923	2.000	-0.017	2.910	10.801	18.658
SPC 007800.LAB		15:54:04.637	4.329	1.730	-0.020	2.885	10.894	18.710
SPC007801.LAB		15:55:08.755	4.193	1.640	-0.019	2.930	10.996	18.774
SPC_007802.LAB		15:56:12.818	3.947	1.509	-0.018	2.896	11,040	18.597
SPC_007803.LAB		15:57:16.426	3.907	1.386	-0.021	2.845	11.072	18.679
SPC 007804.LAB		15:58:20.293	4.052	1.379	-0.021	2.904	11.119	18.583
SPC007805.LAB		15:59:24.208	3.961	1.322	-0.020	2.810	11.086	18.629
SPC 007806.LAB		16:00:28.323	3.749	1.288	-0.018	2.868	11.036	18.613
SPC_007807.LAB		16:01:32.036	3.771	1.252	-0.019	2.814	11.024	18.531
SPC_007808.LAB		16:02:35.954	3.801	1.265	-0.020	2.804	10.975	18.620
SPC_007809.LAB		16:03:39.980	3.778	1.243	-0.019	2.851	11.106	18.624
SPC007810.LAB		16:04:43.777	3.853	1.148	-0.017	2.878	11.038	18.588
SPC007811.LAB		16:05:48.059	4.193	1.096	-0.019	2.877	10.883	18.573
SPC007812.LAB		16:06:51.654	4.164	1.078	-0.017	2.837	10.793	18.601
SPC007813.LAB		16:07:55.622	4.299	1.132	-0.017	2.878	10.908	18.592
SPC_007814.LAB		16:08:59.480	4.107	1.119	-0.018	2.854	10.936	18.564
SPC_007815.LAB		16:10:03.360	4.361	1.053	-0.018	2.847	10.936	18.580
SPC_007816.LAB		16:11:07.463	4.363	1,111	-0.017	2.832	10.878	18.700
SPC007817.LAB		16:12:11.393	4.899	1.241	-0.019	2.827	10.878	18.626
SPC_007818.LAB		16:13:15.208	3.860	1.083	-0.019	2.896	11.028	18.664
SPC 007819.LAB		16:14:19.151	4.027	1.059	-0.017	2.934	11.039	18.670
SPC_007820.LAB		16:15:23.036	4.246	1.037	-0.018	2.916	11.041	18.528
SPC_007821.LAB	01/10/24	16:16:27.246	4.178	0.999	-0.020	2.790	10.911	18.647
SPC007822.LAB		16:17:30.962	4.119	1.165	-0.019	2.880	10.871	18.626
SPC007823.LAB		16:18:34.719	4.136	0.999	-0.016	2.889	10.970	18.556
SPC_007824.LAB	01/10/24	16:19:38.583	4.372	0.978	-0.018	2.864	10.922	18.617
SPC007825.LAB		16:20:42.541	4.374	0.964	-0.016	2.841	11.019	18.602
SPC007826.LAB	01/10/24	16:21:46.422	4.440	0.961	-0.017	2.793	10.969	18.508
SPC007827.LAB	01/10/24	16:22:50.434	4.375	0.956	-0.017	2.827	11.003	18.544
SPC007828.LAB	01/10/24	16:23:54.285	4.108	0.939	-0.020	2.839	10.979	18.480
SPC007829.LAB	01/10/24	16:24:58.156	4.281	0.923	-0.019	2.883	10.968	18.484
SPC007830.LAB	01/10/24	16:26:02.065	4.790	1.079	-0.018	2.845	10.876	18.655
SPC007831.LAB	01/10/24	16:27:06.044	4.089	0.974	-0.020	2.858	10.920	18.650
SPC007832.LAB	01/10/24	16:28:09.897	4.210	0.911	-0.019	2.897	11.086	18.652
SPC007833.LAB	01/10/24	16:29:13.855	4.327	0.945	-0.020	2.975	11.057	18.670
SPC007834.LAB	01/10/24	16:30:17.774	4.208	0.896	-0.021	2.908	11.054	18.504
SPC007835.LAB	01/10/24	16:31:21.648	4.450	0.889	-0.018	2.835	11.015	18.535
SPC007836.LAB	01/10/24	16:32:25.562	4.385	0.869	-0.019	2.907	11.099	18.554
SPC007837.LAB	01/10/24	16:33:29.852	4.332	0.847	-0.019	2.881	11.064	18.625
SPC007838.LAB		16:34:33.392	4.384	0.867	-0.019	2.854	11.044	18.723
SPC007839.LAB		16:35:37.449	4.432	0.809	-0.020	2.937	10.935	18.713
SPC007840.LAB		16:36:41.260	4.110	0.824	-0.020	2.895	10.962	18.695
SPC007841.LAB		16:37:45.134	4.468	0.813	-0.018	2.836	10.960	18.702
SPC007842.LAB		16:38:49.326	4.072	0.816	-0.020	2.935	11.038	18.686
SPC007843.LAB		16:39:53.166	4.287	0.770	-0.019	2.873	11.035	18.638
SPC007844.LAB		16:40:56.959	4.354	0.828	-0.014	2.803	10.959	18.704
SPC007845.LAB		16:42:00.838	4.419	0.718	-0.019	2.820	11.043	18.583
SPC007846.LAB		16:43:04.765	4.471	0.735	-0.017	2.820	11.012	18.741
SPC007847.LAB		16:44:08.617	4.599	0.764	-0.021	2.872	11.040	18.830
SPC007848.LAB		16:45:12.713	4.198	0.705	-0.019	2.913	11.023	18.678
SPC007849.LAB		16:46:16.483	3.988	0.712	-0.015	2.917	11.034	18.549
SPC007850.LAB		16:47:20.538	4.414	0.721	-0.016	2.910	11.040	18.711
SPC007851.LAB		16:48:24.466	4.231	0.702	-0.017	2.906	10.995	18.581
SPC007852.LAB		16:49:28.174	4.184	0.699	-0.018	2.814	10.943	18.488
SPC007853.LAB		16:50:32.090	4.215	0.685	-0.020	2.940	10.958	18.405
SPC007854.LAB	03/10/24	16:51:36.000	4.239	0.697	-0.018	2.850	11.076	18.355
Mills On Run 2	0.00/	(actual)	4.215		-0.018	2.870	10.989	18.614
Oxygen DSCFM	9.0%	(ppm,dry @7% O2)			-0.024	3.760	10.9	M26A Moisture
	673,650 575.8	(lbs/hr)	13.402		-0.318	9.470		
Clinker (mtons/hr)	5/5.8	(lbs/ton clinker)	0.021					

Holcim; Ste. Genevieve MO Main Stack: Raw Mills On Run 3 Spectrum Time HCN PCA 191c R1 191c HF ppm (10) 191C SF6 (10) 191C Ethylene (100,3000) 191C H2O% (40) 191C CO2% (40) 191C SPC__007871.LAB 01/10/24 17:10:33.987 4.004 1.061 -0.018 2.891 11.048 SPC__007872.LAB 01/10/24 17:11:37.898 4.128 0.963 -0.016 2.864 11.020 18.523 SPC 007873.LAB 01/10/24 17:12:41.812 3.969 0.894 -0.018 2.965 11.108 18.562 SPC__007874.LAB 01/10/24 17:13:45.731 3.844 0.889 -0.018 2.926 10.951 18.516 SPC__007875.LAB 01/10/24 17:14:49.637 3.811 0.847 -0.021 2.971 10.927 18.503 SPC 007876.LAB 01/10/24 17:15:53.552 4.265 0.814 -0.016 2.886 10.947 18.492 SPC__007877.LAB 01/10/24 17:16:57.857 4.068 0.779 -0.0182.910 10.901 18.533 SPC__007878.LAB 01/10/24 17:18:01.524 4.299 0.759 -0.018 2.887 10.826 18.511 SPC__007879.LAB 01/10/24 17:19:05.289 4.118 0.740 -0.016 2.802 10.968 18.388 SPC__007880.LAB 01/10/24 17:20:09.210 3.985 0.721 -0.0202.902 11.026 18.464 SPC__007881.LAB 01/10/24 17:21:13.115 3.962 0.727 -0.020 2.939 11.054 18.539 SPC__007882.LAB 01/10/24 17:22:17.393 4.433 0.689 -0.016 2.906 11.005 18.554 SPC 007883.LAB 01/10/24 17:23:21.036 4.328 0.683 -0.0182.906 10.900 18.692 SPC__007884.LAB 01/10/24 17:24:24.899 4.213 0.673 -0.018 2.971 10.995 18.676 SPC__007885.LA8 01/10/24 17:25:28.766 4.459 0.668 -0.017 2.885 10.970 18.621 SPC_007886.LAB 01/10/24 17:26:32,730 4.249 0.660 -0.015 2.895 11.113 18.647 SPC_007887.LAB 01/10/24 17:27:36.598 4.210 0.642 -0.018 2.924 11.054 18.537 SPC__007888.LAB 01/10/24 17:28:40.509 4.180 0.637 -0.017 2.873 10.980 18.537 SPC 007889.LAB 01/10/24 17:29:44.430 4.113 0.605 -0.0182.909 10.957 18,706 SPC 007890.LAB 01/10/24 17:30:48.339 4.432 0.642 -0.016 2.933 10.940 18.682 SPC_007891.LAB 01/10/24 17:31:52.255 4.237 0.661 -0.0172.928 11.045 18,621 SPC__007892.LAB 01/10/24 17:32:56.175 4.609 0.608 -0.0162.856 10.930 18.653 SPC 007893.LAB 01/10/24 17:34:00.363 4.430 0.603 2.934 -0.017 10.922 18.694 SPC 007894.LAB 01/10/24 17:35:03.998 4.217 0.610 -0.0172.966 10.974 18.635 SPC_007895.LAB 01/10/24 17:36:07.955 4.219 0.600 -0.017 2.913 11.047 18.537 SPC 007896.LAB 01/10/24 17:37:11.821 3.997 0.591 -0.017 2.925 10.986 18.514 SPC_007897.LAB 01/10/24 17:38:15.739 4.301 0.585 -0.019 2.986 10.933 18.656 SPC 007898.LAB 01/10/24 17:39:19.698 4.359 0.576 -0.017 2.906 10.955 18.563 SPC_007899.LAB 01/10/24 17:40:23.670 4.273 0.556 -0.018 2.869 10.915 18.632 SPC_007900.LAB 01/10/24 17:41:27.571 4.315 0.549 -0.018 2.953 11.002 18,545 SPC 007901.LAB 01/10/24 17:42:31.397 4.169 0.565 -0.017 2.952 11.031 18.488 SPC 007902.LAB 01/10/24 17:43:35.305 4.093 0.549 -0.015 2.853 11.071 18,405 SPC 007903.LAB 01/10/24 17:44:39.507 4.209 0.513 -0.015 2.845 11.029 18.428 SPC__007904.LA8 01/10/24 17:45:43.196 3.892 0.535 -0.016 2.849 11.028 18.478 SPC 007905.LA8 01/10/24 17:46:47.047 4.334 0.516 -0.0202.802 10.948 18,426 SPC_007906.LAB 01/10/24 17:47:51.248 4.002 0.522 -0.019 2.913 11.054 18.508 SPC 007907.LAB 01/10/24 17:48:54.879 4.138 0.533 -0.018 2.851 11.066 18.429 SPC 007908.LAB 01/10/24 17:49:58.787 4.204 0.484 -0.017 2.884 11.035 18.523 SPC_007909.LAB 01/10/24 17:51:02.745 3.981 0.500 -0.017 2.938 10.907 18.405 SPC 007910.LAB 01/10/24 17:52:06.616 4.180 0.509 -0.016 2.944 10.953 18.596 SPC__007911.LAB 01/10/24 17:53:10.521 4.185 0.500 -0.017 2.931 11,106 18.592 SPC_007912.LAB 01/10/24 17:54:14.437 4.065 0.484 -0.0172.915 11.141 18.467 SPC_007913.LAB 01/10/24 17:55:18.395 4.157 0.502 -0.018 2.971 11.103 18,508 SPC 007914.LAB 01/10/24 17:56:22.304 4,166 0.493 -0.018 2.880 10.952 18.563 SPC 007915.LAB 01/10/24 17:57:26.178 4.340 0.480 -0.016 2.985 10.997 18.627 SPC 007916.LAB 01/10/24 17:58:30.094 4.250 0.482 -0.018 2.999 10.956 18.626 SPC_007917.LAB 01/10/24 17:59:34.386 4.101 0.469 -0.016 3.042 11.043 18.667 SPC 007918.LAB 01/10/24 18:00:37.956 4.198 0.470 -0.0172.920 11.030 18.671 SPC__007919.LAB 01/10/24 18:01:41.834 4.165 0.476 -0.0202.887 10.993 18.642 SPC 007920.LAB 01/10/24 18:02:45.796 4.194 0.483 -0.0172.990 11.009 18.604 SPC__007921.LAB 01/10/24 18:03:49.738 4.341 0.481 -0.020 2.928 11.028 18.665 SPC 007922.LAB 01/10/24 18:04:53,906 4.374 0.462 -0.017 3,000 11.071 18.619 SPC__007923.LAB 01/10/24 18:05:57.516 4.222 0.473 -0.0223.016 11.077 18.546 SPC 007924.LAB 01/10/24 18:07:01.382 4.193 0.462 -0.019 2.868 11.032 18.591 SPC_007925.LAB 01/10/24 18:08:05.310 3.770 0.468 -0.0172.952 11.030 18.500 SPC__007926.LAB 01/10/24 18:09:09.320 4.016 0.503 -0.015 2.893 11.051 18.413 SPC 007927.LAB 01/10/24 18:10:13.464 4.045 0.448 -0.018 2.875 10.927 18.370 Mills On Run 3 4.176 (actual) -0.018 2.917 11.001 18.555

-0.023

-0.303

3.848

9.687

10.7

M26A Moisture

Oxygen

DSCFM

Clinker (mtons/hr)

9.1%

679,000

582.1

(ppm,dry @7% Q2)

(lbs/hr)

(lbs/ton clinker)

5.508

13.360

0.021

Company: Holcim; Ste. Genevieve MO Source: Main Stack; Raw Mills Off

Job ID: 24-3316

Train Type: EPA Method 26A

	4A 01/11/24 835-941	4B 01/11/24 835-941	5A 01/11/24 953-1059	5B 01/11/24 953-1059	6A 01/11/24 1109-1215	6B 01/11/24 1109-1215	Average
Initial Meter Volume, ft ³ Final Meter Volume, ft ³	929.503 981.535	748.021 799.574	981.734 1034.319	799.806 851.054	34.608 87.993	851.326 903.790	
Intra-Port Volume and/or Leak Check Correction, ft ³	0.000	0.000	0.000	0.000	0.000	0.000	
Total Sample Volume, cf	52.032	51.553	52.585	51.248	53.385	52.464	52.211
DGM Calibration Factor	0.967	0.973	0.967	0.973	0.967	0.973	0.970
Average DGM Temp, F	47.5	51.1	55.3	57.1	62.0	62.4	55.9
Average DGM delta H, "H2O	2.71	2.29	2.63	2.23	2.69	2.28	2.47
Barometric Pressure, "Hg	29.00	29.00	29.00	29.00	29.00	29.00	29.00
Corrected Sample Vol, dscf	51.054	50.486	50.806	49.598	50.924	50.266	50.522
Corrected Sample Vol, dscm	1.446	1.430	1.439	1.404	1.442	1.423	1.431
Sample Volume (at Stack Conditions), acf	84.347	83.501	84.258	82.347	84.248	83.253	83.659
Sample Volume (at Stack Conditions), acm	2.388	2.364	2.386	2.332	2.386	2.357	2.369
Oxygen, %	9.2	9.2	9.2	9.2	9.2	9.2	9.2
Carbon Dioxide, %	21.5	21.5	21.6	21.6	21.4	21.4	21.5
Nitrogen, %	69.3	69.3	69.2	69.2	69.4	69.4	69.3
Stack Gas Excess Air, %	101.2	101.2	101.4	101.4	100.9	100.9	101.2
Total Moisture Catch Weight, grams	127.1	126.3	129.7	127.6	127.8	128.2	127.9
Stack Gas Moisture, %	10.5	10.6	10.7	10.8	10.6	10.7	10.7
Stack Gas Dry Molecular Weight, lb/lbmole	31.81	31.81	31.82	31.82	31.79	31.79	31.81
Stack Gas Wet Molecular Weight, lb/lbmole	30.36	30.34	30.34	30.33	30.33	30.32	30.34
Average Stack Temp, F	298.8	298.8	300.0	300.0	299.0	299.0	299.3
Stack Static (Gauge) Pressure, "H2O	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Stack Gas Actual Pressure, "Hg	29.08	29.08	29.08	29.08	29.08	29.08	29.08
Average Sqrt delta P *	1.033	1.033	1.020	1.020	1.033	1.033	1.029
Pitot Tube Coefficient	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Stack Gas Velocity, ft/second	68.77	68.79	67.98	67.99	68.81	68.83	68.53
Nozzle Inside Diameter, inches	0.250	0.250	0.250	0.250	0.250	0.250	
Total Sample Time, min	60	60	60	60	60	60	60
Isokinetic Rate, %	100.0	99.0	101.1	98.8	99.8	98.6	99.6
Stack Dimensions	218.9 in. ID	218.9 in. ID	218.9 in. ID	218.9 in. ID	218.9 in. ID	218.9 in. ID	
Stack Area, sq ft	261.35	261.35	261.35	261.35	261.35	261.35	261.35
Actual Stack Gas Flow Rate, acfm	1,078,400	1,078,700	1,066,000	1,066,200	1,079,000	1,079,300	1,074,600
Actual Stack Gas Flow Rate, acmm	30,537	30,546	30,186	30,192	30,554	30,563	30,430
Stack Gas Flow Rate, dscfm	652,700	652,200	642,800	642,200	652,200	651,700	649,000
Stack Gas Flow Rate, dscmm	18,482	18,468	18,202	18,185	18,468	18,454	18,377

Company: Holcim; Ste. Genevieve MO Source: Main Stack; Raw Mills Off

Job ID: 24-3316

Train Type: EPA Method 26A NOTE: Average INCLUDES Non-detect runs' results

"ND()" denotes values below detection limits

"ND()" denotes values belo	ow detection limits		4A 01/11/24 835-941			4B 01/11/24 835-941			5A 01/11/24 953-1059			5B 01/11/24 953-1059			6A 01/11/24 1109-1215	5		6B 01/11/24 1109-121			Average)
Hydrogen Fluoride	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm @ 7% O2 Conc., mg/dscm @ 12% CO2 Conc., ppmvd Conc., ppmvd @ 7% O2 Conc., ppmvd @ 12% CO2 Emission Rate, lb/hr Clinker Rates (mtph and lbs/ton)	ND(ND(ND(ND(ND(ND(ND(ND(0.268 0.185 0.220 0.103 0.223 0.265 0.124 0.453 540.80))))))	ND(ND(ND(ND(ND(ND(ND(ND(ND(0.252 0.176 0.209 0.098 0.212 0.252 0.118 0.430 0.0007)))))))	ND(ND(ND(ND(ND(ND(ND(ND(0.252 0.175 0.208 0.097 0.211 0.250 0.117 0.422 533.30))))))	ND(ND(ND(ND(ND(ND(ND(ND(ND(0.249 0.177 0.211 0.099 0.213 0.253 0.118 0.427 0.0007)))))))	ND(ND(ND(ND(ND(ND(ND(ND(0.208 0.144 0.171 0.081 0.173 0.206 0.097 0.352 548.20))))))	ND(ND(ND(ND(ND(ND(ND(ND(ND(0.224 0.157 0.187 0.088 0.189 0.225 0.106 0.384 0.0006)))))))))	ND(ND(ND(ND(ND(ND(ND(ND(ND(0.242 0.169 0.201 0.094 0.204 0.242 0.114 0.411))))))))
Chlorine	Catch Wt, mg Conc., mg/dscm Conc., mg/dscm @ 7% O2 Conc., mg/dscm @ 12% CO2 Conc., ppmvd Absolute Difference, ppmvd (<0.2 re Conc., ppmvd @ 7% O2 Conc., ppmvd @ 12% CO2 Emission Rate, lb/hr Clinker Rates (mtph and lbs/ton)	quired)	0.713 0.493 0.586 0.275 0.167 0.199 0.093 1.205 540.80		ND(ND(ND(ND(ND(ND(ND(ND(ND(0.164 0.115 0.136 0.064 0.039 0.13 0.046 0.022 0.280 0.0012))))))		0.265 0.184 0.219 0.102 0.062 0.074 0.035 0.443 533.30			0.283 0.202 0.239 0.112 0.068 0.01 0.081 0.038 0.485 0.0008			0.276 0.191 0.227 0.107 0.065 0.077 0.036 0.468 548.20			0.357 0.251 0.298 0.141 0.085 0.02 0.101 0.048 0.612 0.0009		< < < < < < < < < < < < < < < < < < <	0.343 0.239 0.284 0.134 0.081 0.096 0.045 0.582 0.0010	

Holcim; Ste. Genevieve MO Main Stack; Raw Mills Off

Run 1								
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C	H2O% (40) 191C	CO2% (40) 191C
SPC007992.LAB	01/11/24	08:36:28.446	3.389	1.328	-0.018	2.717	10.533	18.681
SPC 007993.LAB	01/11/24	08:37:32.493	3.840	1.368	-0.016	2.787	10.544	18.727
SPC 007994.LAB	01/11/24	08:38:36.274	3.406	1.322	-0.019	2.690	10.597	18.684
SPC 007995.LAB	01/11/24	08:39:40.146	3.224	1.283	-0.016	2.648	10.592	18.748
SPC 007996.LAB	01/11/24	08:40:44.055	3.701	1.266	-0.016	2.636	10.578	18.611
SPC 007997.LAB		08:41:47.967	3.917	1.271	-0.018	2.684	10.593	18.803
SPC 007998.LAB		08:42:51.925	3.806	1.260	-0.017	2.732	10.589	18.705
SPC 007999.LAB		08:43:55.788	3.640	1.197	-0.020	2.756	10.590	18.729
SPC 008000.LAB		08:44:59.744	4.013	1.184	-0.017	2.677	10.582	18.748
SPC 008001.LAB		08:46:03.616	3.508	1.197	-0.019	2.718	10.585	18.690
SPC 008002.LAB		08:47:07.569	3.574	1.166	-0.017	2.634	10.551	18.650
SPC 008003.LAB		08:48:11.433	3.670	1.118	-0.015	2.653	10.541	18.586
SPC008004.LAB		08:49:15.347	3.957	1.100	-0.018	2.690	10.536	18.470
SPC 008005.LAB		08:50:19.296	3.918	1.075	-0.018	2.592	10.544	18.527
SPC 008006.LAB		08:51:23.212	3.949	1.047	-0.016	2.587	10.531	18.407
SPC008007.LAB		08:52:27.082	3.350	1.072	-0.016	2.587	10.514	18.365
SPC 008008.LAB		08:53:31.030	3.770	1.013	-0.015	2.602	10.509	18.325
SPC008008.LAB		08:54:34.957	3.826	0.983	-0.013	2.665	10.516	18.444
SPC008009.LAB		08:55:38.851	4.425	1.004	-0.019	2.646	10.551	18.436
SPC008010.LAB		08:56:42.721	3.353	0.986	-0.019	2.628	10.534	18.369
SPC008011.LAB		08:57:46.676	3.701	0.952	-0.015	2.689	10.557	18.515
SPC008012.LAB								
		08:58:50.730	3.759	0.933	-0.017	2.659	10.564	18.606
SPC008014.LAB		08:59:54.455	4.400	0.915	-0.016	2.735	10.637	18.622
SPC008015.LAB SPC 008016.LAB		09:00:58.362	3.976	0.931	-0.017	2.701	10.593	18.553
		09:02:02.280	4.112	0.915	-0.017	2.620	10.555	18.504
SPC008017.LAB		09:03:06.227	4.190	0.913	-0.015	2.647	10.598	18.706
SPC008018.LAB		09:04:10.096	4.302	0.894	-0.017	2.593	10.608	18.599
SPC008019.LAB		09:05:14.049	4.211	0.870	-0.018	2.668	10.637	18.673
SPC008020.LAB		09:06:17.922	3.775	0.841	-0.018	2.670	10.610	18.678
SPC008021.LAB		09:07:21.834	4.140	0.861	-0.017	2.701	10.609	18.582
SPC008022.LAB		09:08:25.752	4.277	0.855	-0.018	2.705	10.627	18.596
SPC008023.LAB		09:09:29.655	4.198	0.830	-0.017	2.648	10.674	18.624
SPC008024.LAB		09:10:33.875	3.772	0.830	-0.018	2.685	10.674	18.659
SPC008025.LAB		09:11:37.479	4.031	0.807	-0.016	2.678	10.675	18.551
SPC008026.LAB		09:12:41.426	3.832	0.803	-0.016	2.616	10.679	18.455
SPC008027.LAB		09:13:45.293	3.937	0.788	-0.018	2.672	10.691	18.532
SPC008028.LAB		09:14:49.213	4.349	0.786	-0.018	2.651	10.807	18.502
SPC008029.LAB		09:15:53.120	3.721	0.610	-0.016	2.694	10.718	18.656
SPC008030.LAB		09:16:57.177	3.880	0.736	-0.018	2.726	10.690	18.539
SPC008031.LAB		09:18:00.979	4.043	0.748	-0.015	2.637	10.739	18.591
SPC008032.LAB		09:19:04.898	4.291	0.741	-0.017	2.667	10.722	18.653
SPC008033.LAB		09:20:08.805	3.934	0.734	-0.015	2.719	10.711	18.516
SPC008034.LAB		09:21:12.792	3.813	0.712	-0.016	2.670	10.695	18.534
SPC008035.LAB		09:22:16.580	3.848	0.705	-0.015	2.635	10.660	18.448
SPC008036.LAB		09:23:20.540	4.035	0.690	-0.016	2.592	10.666	18.478
SPC008037.LAB		09:24:24.795	3.981	0.698	-0.014	2.603	10.649	18.453
SPC008038.LAB		09:25:28.619	4.245	0.684	-0.018	2.616	10.631	18.350
SPC008039.LAB		09:26:32.227	4.066	0.711	-0.017	2.616	10.645	18.515
SPC008040.LAB		09:27:36.526	4.154	0.691	-0.015	2.617	10.725	18.611
SPC008041.LAB	01/11/24	09:28:40.090	4.081	0.679	-0.015	2.726	10.734	18.507
SPC008042.LAB	01/11/24	09:29:43.958	3.775	0.647	-0.018	2.705	10.685	18.500
SPC008043.LAB		09:30:47.872	3.889	0.675	-0.018	2.674	10.657	18.398
SPC008044.LAB	01/11/24	09:31:51.776	4.230	0.613	-0.017	2.596	10.681	18.454
SPC008045.LAB	01/11/24	09:32:55.780	4.054	0.657	-0.018	2.607	10.661	18.506
SPC008046.LAB		09:33:59.641	4.355	0.652	-0.017	2.621	10.624	18.388
SPC008047.LAB	01/11/24	09:35:03.851	4.072	0.635	-0.016	2.646	10.665	18.365
Mills Off Run 1		(actual)	3.923		-0.017	2.661	10.622	18.556
Oxygen	9.2%	(ppm,dry @7% O2)	5.213		-0.022	3.537	10.6	M26A Moisture
DSCFM	652,450	(lbs/hr)	12.046		-0.278	8.483		
Clinker (mtons/hr)	540.8	(lbs/ton clinker)	0.020					

Holcim; Ste. Genevieve MO Main Stack; Raw Mills Off Run 2

Run 2	_							
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C	H2O% (40) 191C	CO2% (40) 191C
SPC008064.LAB	01/11/24	09:54:01.988	4.167	0.628	-0.018	2.625	10.726	18.585
SPC008065.LA8	01/11/24	09:55:05.811	4.473	0.592	-0.018	2.581	10.696	18.557
SPC 008066.LAB		09:56:09.721	4.346	0.583	-0.018	2.641	10.696	18.501
SPC 008067.LAB		09:57:14.014	4.040	0.589	-0.016	2.561	10.742	18.591
\$PC008068.LAB		09:58:17.583	4.177	0.569	-0.016	2.588		
							10.698	18.510
SPC008069.LAB		09:59:21.447	4.219	0.595	-0.017	2.612	10.696	18.411
SPC008070.LAB		10:00:25.361	4.189	0.579	-0.018	2.645	10.718	18.568
SPC008071.LAB	01/11/24	10:01:29.329	4.369	0.575	-0.015	2.672	10.705	18.511
SPC008072.LA8	01/11/24	10:02:33.175	4.092	0.529	-0.015	2.688	10.728	18.569
SPC008073.LAB	01/11/24	10:03:37.270	4.042	0.367	-0.014	2.661	10.807	18.660
SPC_008074.LAB		10:04:40.991	4.085	0.528	-0.016	2.702	10.737	18.565
SPC 008075.LAB		10:05:44.901	4.033	0.342	-0.019	2.679	10.736	18.605
SPC008076.LAB		10:06:48.851	4.580	0.547	-0.019	2.691		
							10.751	18.638
SPC008077.LAB		10:07:52.719	4.495	0.513	-0.017	2.657	10.751	18.633
SPC008078.LAB		10:08:56.628	4.460	0.489	-0.017	2.695	10.756	18.574
SPC008079.LAB	01/11/24	10:10:00.607	4.030	0.339	-0.020	2.594	10.707	18.668
SPC008080.LAB	01/11/24	10:11:04.478	4.174	0.525	-0.016	2.635	10.830	18.450
SPC 008081.LAB		10:12:08.353	4.017	0.335	-0.017	2.665	10.732	18.537
SPC 008082.LAB		10:13:12.264	4.316	0.340	-0.018	2.721	10.744	18.657
SPC_008083.LAB		10:14:16.214	3.957	0.493	-0.014	2.648	10.713	18.502
SPC008084.LAB		10:15:20.078	4.544	0.480	-0.018	2.634	10.732	18.565
SPC008085.LA8		10:16:24.110	4.307	0.474	-0.015	2.675	10.717	18.605
SPC008086.LA8		10:17:27.940	4.204	0.506	~0.015	2.644	10.748	18.495
SPC008087.LAB	01/11/24	10:18:31.902	3.974	0.301	-0.018	2.633	10.761	18.566
SPC008088.LAB	01/11/24	10:19:35.824	4.111	0.482	-0.018	2.666	10.713	18.449
SPC 008089.LAB	01/11/24	10:20:39.623	4.458	0.456	-0.018	2.668	10.784	18.450
SPC008090.LAB		10:21:43.532	4.113	0.273	-0.020	2.642	10.721	18.529
SPC_008091.LAB		10:22:47.447	4.074	0.325	-0.016	2.627	10.730	18.531
SPC_008092.LAB		10:23:51.352	4.292	0.490	-0.018	2.589		
							10.772	18.556
SPC008093.LAB		10:24:55.463	4.004	0.326	-0.016	2.698	10.781	18.697
SPC_008094.LAB		10:25:59.204	4.307	0.276	-0.018	2.706	10.855	18.637
SPC008095.LAB	01/11/24	10:27:03.416	3.870	0.297	-0.016	2.712	10.768	18.507
SPC008096.LAB	01/11/24	10:28:07.078	4.203	0.341	-0.017	2.716	10.781	18.562
SPC 008097.LAB	01/11/24	10:29:10.892	4.080	0.300	-0.016	2.678	10.785	18.550
SPC 008098.LAB		10:30:14.914	4.324	0.318	-0.018	2.673	10.786	18.648
SPC008099.LAB		10:31:18.749	4.067	0.325	-0.017	2.654	10.803	18.813
SPC_008100.LAB								
		10:32:22.618	3.811	0.266	-0.020	2.760	10.789	18.717
SPC008101.LAB		10:33:26.522	4.089	0.254	-0.018	2.708	10.814	18.768
SPC008102.LAB		10:34:30.429	4.075	0.268	-0.017	2.729	10.801	18.700
SPC008103.LAB	01/11/24	10:35:34.529	4.006	0.304	-0.019	2.659	10.773	18.620
SPC_008104.LA8	01/11/24	10:36:38.247	4.157	0.276	-0.018	2.629	10.734	18.607
SPC 008105.LAB	01/11/24	10:37:42.198	4.372	0.435	-0.017	2.672	10.759	18.517
SPC_008106.LAB	01/11/24	10:38:46.324	4.307	0.276	-0.018	2.636	10.700	18.412
SPC 008107.LAB		10:39:50.319	4.195	0.443	-0.018	2.638	10.719	18.567
SPC008108.LAB		10:40:53.884	4.066	0.280	-0.017	2.707	10.741	18.621
SPC008109.LAB		10:41:57.797	4.350	0.453	-0.017	2.722	10.718	18.533
SPC008110.LAB		10:43:01.701	4.462	0.428	-0.020	2.618	10.720	18.564
SPC008111.LAB	01/11/24	10:44:05.608	4.866	0.425	-0.014	2.701	10.711	18.536
SPC008112.LAB	01/11/24	10:45:09.614	4.707	0.442	-0.016	2.691	10.723	18.590
SPC 008113.LAB	01/11/24	10:46:13.421	3.996	0.420	-0.018	2.742	10.695	18.555
SPC_008114.LAB		10:47:17.332	4.086	0.422	-0.016	2.763	10.735	18.405
SPC_008115.LAB		10:48:21.624	4.339	0.393	-0.018	2.655	10.719	18.285
SPC008116.LAB			4.498		-0.016			
		10:49:25.204		0.425		2.590	10.685	18.520
SPC008117.LAB		10:50:29.063	4.393	0.421	-0.014	2.611	10.670	18.366
SPC008118.LAB		10:51:32.978	4.483	0.426	-0.017	2.643	10.659	18.398
SPC008119.LAB	01/11/24	10:52:36.882	4.657	0.434	-0.014	2.553	10.690	18.422
Mills Off Run 2		(actual)	4.234		-0.017	2.661	10.740	18.556
Oxygen	9.2%	(ppm,dry @7% O2	5.636		-0.023	3.542	10.8	M26A Moisture
DSCFM	642,500	(lbs/hr)	12.826		-0.279	8.366		
Clinker (mtons/hr)	533.8	(lbs/ton clinker)	0.022					
		,,						

Holcim; Ste. Genevieve MO Main Stack; Raw Mills Off Run 3

Run 3								
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C	H2O% (40) 191C	CO2% (40) 191C
SPC008135.LAB	01/11/24	11:10:14.387	4.716	0.514	-0.014	2.662	10.728	18.691
SPC008136.LAB		11:11:18.290	4.500	0.502	-0.018	2.631	10.743	18.507
SPC008137.LAB		11:12:22.198	4.549	0.486				
					-0.015	2.613	10.736	18.665
SPC008138.LAB		11:13:26.113	4.670	0.476	-0.018	2.666	10.715	18.541
SPC008139.LAB	01/11/24	11:14:30.061	4.225	0.482	-0.014	2.664	10.689	18.499
SPC008140.LAB	01/11/24	11:15:34.009	4.556	0.485	-0.016	2.729	10.701	18.534
SPC008141.LAB	01/11/24	11:16:37.840	4.625	0.454	-0.016	2.627	10.703	18.639
SPC008142.LAB		11:17:41.847	4.549	0.461	-0.015	2.650	10.705	18.633
SPC008143.LAB		11:18:45.717	4.535	0.482	-0.017	2.593		
							10.741	18.675
SPC008144.LAB		11:19:49.566	4.924	0.485	-0.015	2.647	10.719	18.620
SPC008145.LA8	01/11/24	11:20:53.474	5.055	0.475	-0.018	2.585	10.753	18.631
SPC008146.LAB	01/11/24	11:21:57.430	5.050	0.504	-0.019	2.564	10.704	18.691
SPC 008147.LAB	01/11/24	11:23:01.300	4.441	0.498	-0.016	2.556	10.713	18.633
SPC_008148.LAB		11:24:05.204	4.432	0.512	-0.015	2.687	10.689	18.603
SPC008149.LAB		11:25:09.157	4.593	0.486	-0.018	2.600	10.713	18.513
SPC008150.LAB		11:26:13.025	4.834	0.475	-0.016	2.548	10.715	18.638
SPC008151.LAB	01/11/24	11:27:17.274	3.992	0.476	-0.015	2.606	10.706	18.479
SPC 008152.LAB	01/11/24	11:28:20.843	4.445	0.498	-0.018	2.606	10.732	18.617
SPC_008153.LAB		11:29:24.940	4.484	0.470	-0.018	2.616	10.750	18.658
			4.607					
SPC_008154.LAB		11:30:28.663		0.502	-0.014	2.649	10.685	18.653
SPC008155.LAB		11:31:32.570	4.773	0.450	-0.016	2.662	10.697	18.593
SPC008156.LAB	01/11/24	11:32:36.483	4.788	0.456	-0.020	2.592	10.757	18.668
SPC008157.LAB	01/11/24	11:33:40.600	4.683	0.455	-0.018	2.647	10.713	18,717
SPC008158.LAB	01/11/24	11:34:44.303	4.538	0.435	-0.016	2.632	10.744	18,509
SPC_008159.LAB		11:35:48.215	4.303	0.442	-0.016	2.599	10.669	18.563
SPC008160.LAB		11:36:52.128	4.491	0.410	-0.017	2.611	10.685	18.676
SPC008161.LAB		11:37:56.033	4.501	0.393	-0.019	2.677	10.672	18.522
SPC008162.LAB	01/11/24	11:38:59.978	4.347	0.417	-0.016	2.643	10.704	18.592
SPC008163.LAB	01/11/24	11:40:03.849	4.313	0.417	-0.017	2.560	10.612	18.494
SPC008164.LAB	01/11/24	11:41:07.806	4.844	0.411	-0.016	2.631	10.630	18.385
SPC008165.LAB		11:42:11.672	4.919	0.428	-0.016	2.625	10.653	18.510
SPC 008166.LAB		11:43:15.776	4.718		-0.018			
				0.391		2.603	10.637	18.593
SPC008167.LAB		11:44:19.597	4.558	0.387	-0.018	2.592	10.731	18.560
SPC008168.LAB	01/11/24	11:45:23.483	4.762	0.379	-0.015	2.620	10.679	18.475
SPC008169.LAB	01/11/24	11:46:27.355	4.358	0.361	-0.016	2.557	10.689	18.430
SPC008170.LAB	01/11/24	11:47:31.222	4.602	0.374	-0.015	2.584	10.626	18.416
SPC_008171.LAB		11:48:35.182	4.870	0.390	-0.016	2.652	10.628	18.484
SPC008172.LAB		11:49:39.089	4.418	0.376	-0.015	2.664	10.683	18.582
SPC008173.LAB		11:50:42.963	4.552	0.373	-0.013	2.613	10.658	18.462
SPC008174.LAB	01/11/24	11:51:47.258	4.448	0.336	-0.017	2.606	10.682	18.414
SPC 008175.LAB	01/11/24	11:52:50.778	4.817	0.348	-0.016	2.599	10.696	18.443
SPC_008176.LAB	01/11/24	11:53:54.733	4.652	0.359	-0.016	2.704	10.676	18.519
SPC008177.LAB		11:54:58.639	4.388	0.384	-0.016	2.690	10.695	18.509
SPC008178.LAB		11:56:02.641	4.246	0.361	-0.016	2.607	10.725	18.367
SPC008179.LAB	01/11/24	11:57:06.461	4.562	0.365	-0.017	2.656	10.692	18.380
SPC008180.LAB	01/11/24	11:58:10.428	4.470	0.368	-0.017	2.558	10.716	18.457
SPC008181.LAB	01/11/24	11:59:14.354	4.740	0.348	-0.017	2.603	10.717	18.469
SPC008182.LAB		12:00:18.272	4.727	0.377	-0.015	2.651	10.690	18.436
SPC008183.LAB		12:01:22.314	4.831	0.377	-0.014	2.590	10.692	18.341
SPC008184.LAB		12:02:25.969	4.896	0.362	-0.015	2.585	10.801	18.057
SPC008185.LAB		12:03:29.878	4.864	0.195	-0.013	2.589	10.969	18.149
SPC008186.LAB	01/11/24	12:04:33.829	4.510	0.209	-0.017	2.635	11.148	18.352
SPC008187.LAB		12:05:37.740	4.502	0.227	-0.016	2.791	11.271	18.506
SPC008188.LAB		12:06:41.653	4.212	0.204	-0.016	2.754	11.284	18.388
		12:07:45.526	4.156	0.222	-0.017	2.707		
SPC008189.LAB							11.257	18.310
SPC008190.LAB	01/11/24	12:08:49.431	4.213	0.218	-0.017	2.570	11.257	18.253
Mills Off Run 3		(actual)	4.578		-0.016	2.628	10.753	18.513
Oxygen	9.2%	(ppm,dry @7% O2	2} 6.087		-0.022	3.494	10.7	M26A Moisture
DSCFM	651,950	(lbs/hr)	14.055		-0.269	8.374		
Clinker (mtons/hr)	548.2	(lbs/ton clinker)	0.023					
James (menerili)	J.012	(see ten emmer)	0.440					

Appendix B

Field Data and CEM/FTIR Data

EPA Method 1 Traverse Point Location for Circular Ducts

Plant	Holcir	n			Exan	nnl	e For	18
City	Saint	Genevieve	State	MO		ynt		
Location		Kiln/Raw Mill S	tack				Downstream	
Stack ID (inches)	218.90						
Nipple Le	ngth	8.00				•	Port Level	
Nearest U	pstream	Disturbance (Ben	d, ID FAN, etc)					
Distance	(inches)	1760.4	Type of Disturbance	Duct Breaching		Į		
Nearest D	ownstre	am Disturbance (B	Bend, or Stack Outl	iet)			Upstream	
Distance	(inches)	1767.6	Type of Disturbance	Stack Outlet] [ĵ'		The second secon
Sampler	мн		Date 11/15/09]		Flow recti		
(Mark with a	ın "x")	١			Stack Sch	emat	tic (Draw by har	nd after printing)
Particulat	e Traver	se?	X Yes	No				
						7		
Number o	f Travers	se Points Required	. 6					

Traverse Point	Fraction of Stack	Stack ID	Diameter Frac.	Nipple Length	Traverse Point Distance
Number	Internal Diam.	(Inches)	Stack ID	(Inches)	from outside Nipple
1	0.044	218.89764	9.63	8	17 5/8 in.
2	0.146	218.89764	31.96	8	40 in.
3	0.296	218.89764	64.79	8	72 3/4 in.
4	0.704	218.89764	154.10	8	162 1/8 in.
5	0.854	218.89764	186.94	8	195 in.
6	0.956	218.89764	209.27	8	217 1/ <u>4</u> in.
					,

Cyclonic Flow Check Data Sheet

PLANT AND CITY	DATE	SAMPLIN	G LOCATION		SAMPLE	TYPE	RUN NUMBER
Holing Stelsenem	ed 1/10/24		air 94	der K	Cyclonic Flo	w Check	
	AMBIENT	STACK		T .		DGM CAL	PROBE
OPERATOR Barometric STATIC Pressure (Pb PRESS		ID	PITOT	DGM	DGM	FACTOR	I ID
/ (in. Hg) (in. H2O		(ln.)	Ср	BOX No.	delta H@	(gamma)	NO
DE/HH 28,9 1,0	45	21818	0.84	147.25	NA	NA	(-Fii
		21014	0.95	'			6 h

EPA Method 2 Data

Run Time (24.hr)	Traverse Port Point ID	Pitot Delta P READING "H2O	STACK TEMP deg F	Absolute Angle at null (0) Delta P READING "H2O
1330	A (1.0	235	5
	2	1.1	235	5
	3	0,9	234	5
	BI	1.2	235	5
	2	1.2	235	10
	3	40	235	5
	61	1,2	236	5
	2	1, 8	235	10
	3	1.0	235	5
	01	1.3	236	0
		1.1	735	10
	3	0.9	234	5
Pitot Leak C	Check	166		
Averages				

Average of Absolute Angle Readings must be < 20 degrees

LULLIC	
П	
I	
U,	
٥	
H	_
⊴	
)
ATACIC)
Щ	
26A	
Ğ	
0	•
\subseteq	
\subseteq	
	_
-	•
MFI	
_	=

Q Q Q	F -M26A- 1 M	NOZZLE IMBER DIAN	052 052	CO2 K FACTOR	5.2	95	Sil Gel EXIT TRAIN TEMP VAC (deg. F) (in. Hg)	2)	0, 05	2 8 2 B			21 84	47 10	45 9			10 21	14 10	5 64	600		21 14	11 0 1	71 9			
PAGE 1 of 1	EC SC		1/4 lie 54					260 56	261				258	200	260			182	252	254			282	250	252			7
TVDE	1	PROBE LENGTH AND LINER TYPE	6'effeti	LEAK CHECK (FINAL)	09 C	DGM III	IN / OUT TEMP (deg. F)	4.8	77	77			48	1, 3	.0			24	24	49			56	20	50		AVE. TEMP.	one of the control of
= IGMVS	Method 26A	PITOT Sp	64	CHECK	ੋਂ ਨ੍ਹੇ :	6u O) @	STACK TEMP (deg. F)	255	233	2341		INCHES Hg	235	235	233		INCHES Hg	230	234	255		INCHES HG	272	h 6 7	232		AVE. TEMP	College of the Colleg
NO		STACK ID (In)	218,5	ORSAT NO.	CEM		PROBE TEMP (deg. F)	256	255	251		CU.FT.@	256	250	2 V 2 V		CU.FT @	256	257	25/		CU.FT @	284	255	285			
SHEET	× +200	FILTER	1/4	STACK PITOT NO.	OF PASSED	247.9755	delta H ORIFICE (In. H2O)	3.5	3.2	2,6		 999	3.8	ج 'جر	2. و		CUS	3.5	3.5	2.0	•	Ino Cont	3.5	3.2	2.6		AVE delta H	STATE OF STREET
A SHEE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AMBIENT TEMP	N S	STACK THERM NO	700	delta P	VELOCITY HEAD (In. H2O)	7:	÷	ď	End of Port	LEAK RATE:	1.3	1.7	6.89	End of Port	LEAK RATE:	1.1	1,7	ال،ن	End of Port	LEAK RATE:	1.3	`	D. 88	End of Port	AVE SORT	NORTH AND LANGUAGE
FIELD DATA SHEET	107 / 124	STATIC PRESSURE (in Water)	.95	DGM CAL FACTOR (Y)	TO TO THE TANK CHECKET		DGM READING Vm (cu. ft.)	759.749	רר. השר	769.51	773, 450	,	773.950	779.02	184.01	188.344		788.349	742.20	198.10	802.438		867728	207.48	412.28	416.574	DGM	Country to the second of the s
D 26A		AMBIENT PRESS	24.9	DGM H@	1-45		CLOCK TIME (24-HR)	ehns			1448	INITIAL FINAL	1227	•		1502	INITIAL FINAL	12001			1519	INITIAL				1536	•	
METHOD 26A		关 ·		DGM BOX No.	m525		TEST TIME (MIN)	1430 0	5	10	Hur 15	AK CHECK? CU. FT)	15	20	25	30	AK CHECK? CU. FT)	30	35	40	45	:AK CHECK? CU. FT)	45	20	55	09	TOTAL	60 Min.
LNAIG	Holcim:	operator	790	ASSUMED MOISTURE (%)		TRAVERSE	PORT/ /POINT NO.	A-1	2	3		INTRA-PORT LËAK CHECK? DGM VOLUME (CU. FT)	B-1	2	3		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	C-1	2	က		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	D-1	2	3			اسيطة

Plant Holei Sample Local Run No. L Filter Numbe	tion <u>Ma; u</u>	Stack 6 On-M2	6A- / /{	Recovery Date 1/10/24 Recovered by 525								
			<u>MO</u>	ISTURE								
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel (untipped)					
Final weight		820.3		J. 4.4	763.3	776.8						
Initial weight Net weight		172.1 48.2	166.9 45.8	17.4		773.3 3.5	14.5	g				
Description o	of impinger v	vater	C (ea		Total moistu		0 3/W Si 14.4	spent I gel color grams				
		<u>]</u>	RECOVE	RED SA	MPLE			FU				
H ₂ SO ₄ Impinge container no.						Liquid lev marked/se	rel raled	502.1				
NaOH Imping container no	ers contents a	nd water rins -M26A-N	<u>se</u> ГаОН <u>/</u> /		Liquid lev marked/se	rel valed	371.2					
Samples stored	d and locked											

V

E.		
Ī		
i	ī	
Ŀ	<u>+</u>	
-	Ţ	
(ſ	
	4	
ì	4	١
ľ	_	•
•	1	
(
_	_	
(
_		
L	1	
ĭ	-	
L	ı.	
<	1	
C	ē	
ì	7	
•	_	
Ĺ		
(_	١
_	Ŧ	
	ŧ.	
ļ	-	
Ļ	Ţ	
•	5	
•	-	-

Plant Holciv Sample Locat Run No. 16 Filter Numbe	tion <u>Maiv</u> 3 SG	on -M2		Recovered by 65								
			<u>MO</u>	ISTURE								
Impingers	l 50 ml 0.1N H₂SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untippæd)	6 100 ml 0.1N NaOH (untipped)	Silica gel (untipped)					
Final weight		805.6	500.8	630,9	754.4	737.6	1001,2	g				
Initial weight		7605	746.5	613.9	741-9	733.1	988.4	g				
Net weight	/	45.1	54.3	16.9	12.5	4,7	12.8	g				
Description o	f impinger v	vater _C(<u>ear</u> -	·	 Total moistu	$\frac{50}{100}$	Si	spent l gel color grams				
		<u>]</u>	RECOVE	RED SA	<u>MPLE</u>			FV				
H ₂ SO ₄ Impinge container no	ers and knock	out contents -M26A-H	and water rin 2SO4- 1 P	ise D		Liquid lev marked/se	rel valed _ V	499.7				
NaOH Impinge container no	ers contents a	nd water rinsM26A-N	ie IaOH //	3		Liquid lev marked/se	rel valed	361.1				
Samples stored	d and locked											

V

 - 		
\ \ \	4	
֪	_	
L	1	_
	747	
(=	
	_ 	
-		-

		A- 7874	JAMET	.250	K FACTOR	5.9		SAMPLE TRAIN VAC	(III. mg) (/	6)	0			11	1.1	4			70	70	9			11	6,	8			
	茵	OFF -M26A-	NUMBER 1	0 2 . 7	CO2 CONTENT %		00	Sil Gel EXIT TEMP	(deg. r.)	28	75			77	44	7 5			43	43	2 3			44	22	17/1		\	
PAGE 1 of	RUN	NO -		od She in	CONTENT	. Y	0 7	OVEN TEMP	(deg. r.)	ったな	اما			257	25%	255			255	255	1 52			255	255	26.2		7	
	LYPE		PROBETENGTH AND LINER TYPE	6 offective	四半≥	ე 00	6H, (7) @	IN / OUT	(deg. r.)	114	7			77	2	2			77	2	なる			22	48	18		AVE. TEMP.	Self-Self-Self-Self-Self-Self-Self-Self-
	SAMPLE TYPE	Method 26A	Portor G	480	LEAK CHECK (INITIAL)	ر از از	6H. 0/ @	STACK	(deg. r)	137			INCHES HG	9	2.34	2301		NCHES Hg	237	236	233		INCHES Hg	352	236	235		AVE. TEMP.	TO THE PARTY OF THE PROPERTY OF THE PARTY OF
	NO!		STACK ID (In.)	7.8.5	ORSAT NO.	CEM	FAILEU	PROBE TEMP	(deg. r) 2 < 4	256	152		######################################	253	258	256	•	00	255	255	255		90	256	255	255			
—	SAMPLING LOCATION	5 tack	FILTER	NE	STACK PITOT NO.	700	TASSED		(III. FIZU)	3.5	2.2		CU.FT @	2.4	7,	2.6		CU.FT	5.2	3.2	2 رو		CU.FT @	3.0	4.2	2.6		AVE delta H	The state of the s
A SHEE	SAMPL		AMBIENT TEMP (deg. F)	75	STACK THERM NO.	ΙÈ		delta P VELOCITY HEAD	(m. H2U)	ب نــ	76.	End of Port	LEAK RATE:	1.1	1.2	.96	End of Port	LEAK RATE:	1.0	1-1	. 9	End of Port	LEAK RATE:	1.2	1.1	0.88	End of Port	AVE SORT delta P	ANALON TOTAL STATEMENT OF THE PROPERTY OF THE
FIELD DATA SHEE	DATE	1 10 /24	STATIC PRESSURE (in. Water)	, 45	DGM CAL FACTOR (Y)	l E	5	DGM READING	410. 4/01	421.00	876.62	×31. 12		831.114	83602	840.95	8415.145		845.145	844.63	824.28	858.687		658.687	563.77	868.47	472-813	DGM /	SQUESCY SQUESC
D 26A			AMBIENT PRESS (In. Ha)	26.9	DGM H@	45		CLOCK	(24-FK)			1407	INITIAL				1221	INITIAL FINAL	16.60			45 ibu	NITIAL FINAL	11,43			1458		
METHOD 26A	PLANT AND CITY	و ود	OR	766	DGM BOX No.	m5.75		TEST TIME	(MIM)	5	10	15	EAK CHECK? (CU. FT)	15	20	25	30	EAK CHECK? (CU. FT)	30	35	40	45	EAK CHECK? (CU. FT)	45	50	55	09	TOTAL	60 Min.
	PLAN	Holcim;	OPERATOR		ASSUMED MOISTURE (%)	11		IRAVERSE ELAPSEI PORT/ TEST (POINT TIME	NC.	2	8		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	B-1	2	3		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT) FI	C-1	2	3		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	D-1	2	3			

Plant Holcie Sample Local Run No. 21 Filter Numbe	tion <u>Main</u> A 5G	Stack On -M2	6A-2-A		Reco	ole Date overy Date <u>l</u> overed by	10 124	ļ.			
			<u>MC</u>	<u> ISTURE</u>							
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H₂SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel				
Final weight		838.6	799.9	676.3	759,7	75014	966.3	g			
Initial weight		764.5	757.6	667.0	756.3	7500	955.5	g			
Net weight		74.1	42.3	8.3	3,4	0.4	12.8	g			
Description of impinger water $\frac{Clean}{D}$ % spent $\frac{30}{30}$ % spent Sil gel col Total moisture = $\frac{30}{141.3}$ grams											
RECOVERED SAMPLE											
H ₂ SO ₄ Impinge container no.						Liquid lev	vel ealed	504.6			
H ₂ SO ₄ Impingers and knockout contents and water rinse container no. SC -M26A-H2SO4- 2. The container no. SC -M26A-H2SO4- 2. The container no. SC -M26A-NaOH 2. The container no. SC -M26A-N											
Samples stored Remarks					_			-			

⊢
Ш
EEI
団の
$\overline{\Omega}$
_
7
abla
$\stackrel{>}{\sim}$
Ш
Ш
ĪĪ
26A
26
-
0
Ĭ
F
Ш
\equiv
-

Plant Holde Sample Local Run No. 21 Filter Numbe	tion <u>M 11414</u> 3	5 tack 5 6 - M2	6A-2B		Sample Date 1 / 10 /24 Recovery Date 1 / 10 /24 Recovered by 50.5						
			<u>MC</u>	<u>DISTURE</u>			1				
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H₂SO₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel				
Final weight		632.7	791.6	622.8	754.3	749.8	986.1	g			
Initial weight		753,2	752-1		7511	748.8	973.6	g			
Net weight		79.5	39.5	6.9	7.2	0.7	12.5	g			
Description of impinger water											
		<u> </u>	RECOVE	RED SA	MPLE						
H ₂ SO ₄ Impingo container no.	ers and knock	cout contents - M26A-H	and water rin	nse B		Liquid lev marked/se	vel vealed	497.3			
NaOH Impingo container no	vel vel	3980									
Samples stored Remarks				_							
								/			

Col

	4	LE DIAMETER	.252.	K FACTOR	62		AMPLE TRAIN VAC (in Ho)		1							1														
	3A- 3A		_	522000000000		VV	を 	7.1.2	~	2	•		•	~	"	8				~	2	0			=	=	Q			
1 NUMBER	OFF -M26A-	NUMBER	62.052	CO2 CONTENT	7.0	2	Sil Gel EXI TEMP	2.5	7	75			!	n T	2	10			- 1		38	0 1			7	Ī	4.5			
PAGE 1 of 1 RUN NUMBER	- ON	LENGTH IER TYPE	10	/ 02 CONTENT	% ()/		OVEN TEMP	7 10 1	258	260				25%	255	252	de per en			253	252	255			252	h52	152			
TYPE		PROBE LENGTH AND LINER TYPE	ethin	CHECK	OD J CU. FT	Ha "Ha	IN/OUT TEMP	7.60	Ş	50				\$0	SO	50				56	2	28			417	2	18		AVE. TEMP.	
SAMPLET	Method 26A	PITOT G	7 4%	CHECK	DO CU.FT	0 6H, O	STACK TEMP	7.620	235	234		INCHES Hg	INCHES Hg	236	235	278		INCHES Hg	INCHES Hg	222	2%	2%		INCHES Hg	225	724	222		AVE. TEMP.	
Z		STACK ID (In.)	2.18.7	 -		FAILED @	PROBE TEMP			255		8	(3)	256	285	255		(8)	6	2560	256	256		88	285	258	255			
SHEET SAMPLING LOCATION		FILTER NUMBERS	NN	STACK PITOT	+	PASSED	delta H ORIFICE	3.8	.:	2.7		CU.FT @	CUFI	2 2	2.4	2.6	,	CU.FT	CU.FT	3,5	7.5	2. Ç		CU.FT.®	2.5		5		AVE delta H	
SHEET	A LANCONANA	L _	28	STACK THERM	5.7	\ \ \ !!	} -	1. 3		76.	End of Port	LEAK RATE:			0:	0.90	End of Port	LEAK RATE: _		2.	1.7	28.0	End of Port	LEAK RATE:	2-1		0,97	End of Port	AVE SQRT delta P	
METHOD 26A FIELD DATA SHEE	1/20 /24	STATIC PRESSURE (in. Water)	, 95	DGM	FACIOR(T)	IIOI LEAK CHE	DGM READING	673.041	878.43		887.495		- 11	887.495	392-25	894. UG	900.867			100 867	905.75	22.0%	121.21		915.147	20.02	424.94	7.75	DGM	
D 26A F	The second secon	AMBIENT PRESS (In. Hg)	14.4	DGM H@	1.45	-	CLOCK TIME	0161			574	INITIAL	FINAL	1727			30 1742	INITIAL	FINAL	1744		22.010	1789	INITIAL EINAI	1461)		(4110	<i>y</i>	
METHO PLANT AND CITY	رکول		3	DGM BOX No.	M8.15		TEST TIME	0	5	10	15	1		15	20	25	30	SAK CHECK? CU. FT)		30	35	40	45		45	50	55	09	TOTAL	60 Min.
PIAN	Holcim;	OPERATOR)90 	MED	(%)	133	PORT/ POINT POINT	A-1	2	m		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		B-1	2	က		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		<u>۲</u>	2	က		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		2	m			

Plant Hole Sample Local Run No Filter Number	tion <u>Maio</u> 3 A	<u>n 3 tacke</u> 6) 6 -M2	26A-3A		Sample Date <u>l / l v /24</u> Recovery Date <u>/ / /0 /24</u> Recovered by <u>/ / / / / / / / / / / / / / / / / / /</u>							
			<u>MC</u>	DISTURE								
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel					
Final weight	/	80.2	847.4	660.1	751.3	7427	992.4	g				
Initial weight		7510	806.8	647.1	747.5	742.8	972-8	g				
Net weight		59.2	40.6	13.0	3.8	-0.1	19.6	g				
Description o	of impinger v		<u>RECOVE</u>		Total moistu	13		spent il gel color grams				
H ₂ SO ₄ Imping container no.						Liquid lev marked/se	vel ealed	5°33.8°				
NaOH Imping container no.	ers contents a	and water rins -M26A-N	se NaOH 3/	}		Liquid lev	vel / ealed	373.8				
Samples stored Remarks								-				

\vdash	
Ù	
Ц	
I	
Ū	
_	
7	Ļ
フ	
7	
L	-
	`
Ц	
īī	
_	,
2	Ļ
2	
_	`
5	
C	
METHON 264 FIFT O LATE A SHEFT	
H	-
Ц	
≥	>
	-

TO BE A SOCIAL DESCRIPTION OF THE PERSON OF	METHOD		26A FIELD DATA SH	Ш	_		,		ō	4	
Holdim: 44.	ST. CARTINE		DAIE N /24		ING LOCALION	Z C C	Method 26A	YPE	NOY W	NUMBER OFF -M26A-	S S S S S S S S S S
OPERATOR	ŎŔ	AMBIENT PRESS (In. Ha)	STATIC PRESSURE (ib. Water)	AMBIENT TEMP (deg. F)	FILTER	STACK ID (In.)	PITOT	PROBE LENĞTH AND LINER TYPE	NĞTH ? TYPE		T.É. DIAMETER
	Harris	28.40	<u>s</u>	38	NA	218.9	48.0	6 84 CLFC 4 VC	‡ 7	150.	050.
ASSUMED MOISTURE (%)	DGM BOX No.	DGM H@	DGM CAL FACTOR (Y)	STACK THERM NO.	STACK PITOT NO.	ORSAT NO.	LEAK CHECK (INITIAL)	/LEAK CHECK (FINAL)	O2 CONTENT %	CO2 CONTENT	K FACTOR
		507	PITOT LEAK CHE	CK W	SASSED	CEM FAILED	⊢ σ	(a) (b) (c) FT	2	3	2.45
TRAVERSE PORT/ POINT NO.	ELAPSED TEST TIME (MIN)	CLOCK TIME (24-HR)	DGM READING Vm (cu. ft.)	delta P VELOCITY HEAD (In, H20)	delta H ORIFICE (In. H20)	PROBE TEMP (deg, F)	STACK TEMP (deg. F)	DGM IN/OU TEMP (dea, F	FILTER OVEN TEMP (dea, F)	Sil Gel EXIT TEMP (deg. F)	SAMPLE TRAIN VAC (in. Hq)
A-1	0		691.589	_	3.3	254	252	50	192	43	7
2	5		696.89		2.7	955	235	50	258	P.	و
3	10		701.61	0.90	2.3	235	234	52	260	55	g
	15	1725	706.006	End of Port							
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	EAK CHECK? (CU. FT)	INITIAL FINAL	/	LEAK RATE:	CU.FT @	1.00	INCHES Hg				
B-1	15	1111	706.006		2.2	122	7.36	- Jo	288	25	e
2	20		710.74	0.	5:2	252	552	hS	382	27	©
3	25		715.25	0.90	22	250	233	54	250	28	O
	30	1742	119.591	End of Port			,			d	
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	EAK CHECK? (CU. FT)	INITIAL FINAL		LEAK RATE:	CU.FT	FT @ /	INCHES Hg INCHES Hg				
C-1	30	1744	16.891	1.2	29	253	1257	25	253	125	Ø
2	32		724.52	7:1		255	240	57	252	54	6
3	40		789.94	0.89	2.2	150	07.7	58	255	55	W
, i	45	159	733.627	End of Port							
INTRA-PURI LEAK CHECK? DGM VOLUME (CU. FT)	EAK CHECK? (CU. FT)	INITIAL		LEAK RATE:	CU.FT.®	T @ T	INCHES Hg				
D-1	45		733,607	1.2	5.9	156	236	55	252	200	.
2	20	-	128.41		112	152	482	88	45%	28	و
3	55		743.06	0.93	2.3	253	232	59	751	6)	ક
	09	1810	747.697	End of Port							
	TOTAL TIME	S Contraction of the	DGM VOLUME	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.	7	\	
	60 Min.										

Plant 14016 Sample Locat Run No. 2 Filter Numbe	tion <u>Maio</u>	n Stacl	e. 26A- ble		Reco	ole Date very Date vered by	/ /24	<u>L</u>		
			<u>MC</u>	<u> </u>			1	<u> </u>		
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel			
Final weight		4030	7975		7405	754.9	976.2	g		
Initial weight		7400	754-1		737.6	755.3	•	g		
Net weight				,				g		
Description o										
					Total moistu	ire =		grams		
		<u>]</u>	<u>RECOVE</u>	RED SA	MPLE					
H ₂ SO ₄ Impingers and knockout contents and water rinse container no										
NaOH Impingers contents and water rinse container no										
Samples stored										

Plant Hold Sample Local Run No Filter Number	tion	L -M2	Gtack BA- FB	<u>() </u>		ole Date <u>/</u> very Date_ <u>/</u> vered by	1 10 124 1 11 124 309	-			
			MO	ISTURE							
Impingers	l 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel (untipped)				
Final weight		7703	751.4	6601	766.5	7340	968.1	g			
Initial weight		770.5	751.8	660.0	765.6	754.3	968.2	g			
Net weight								g			
Description of impinger water $\frac{20}{8}$ % spent $\frac{30}{8}$ % Sil gel color $\frac{30}{8}$ 7 Total moisture $\frac{30}{8}$ 9 grams											
		J	RECOVE				`	,			
H ₂ SO ₄ Impinge container no	ers and knock	cout contents	and water rin 2SO4- ON	ise FB				163,0			
NaOH Impingo container no	ers contents a	nd water rins -M26A-N	e laOH <i>() N</i>	FB		Liquid lev marked/se	rel valed	339.F			
Samples stored Remarks	and locked	Tran	2A		_						

METHOD 26A FIELD DATA SHEET AND CITY 1/4	7 2.5 25.7 3 7 2.4 255 3 Port	Fort	AK RATE: CU.FT @ INCHES Hg CU.FT @ INCHES Hg 2.5.7.2.4.7.4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	2. 2.5 2.50 7 2.5 2.50 7	AVE - AVE CHAIR H
FIELD DATE STAT PRESS (In. Wa In. Wa	. 44 2.5 20 20 .45 .45 .45 .45 .45 .45 .45 .45 .45 .45	\$. 14 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .	LEAK RATE: CU.FT (CU.FT	2.5 0.1	75 End of Port AVE AVE - delta H
METHOD 26A PLANT AND CITY	5 4m 966.	0 2004.	~	50 55	60 年へ) TOTAL TIME

Plant Your Sample Local Run No Filter Number	cion	Ste Ge FF -M2 Not Applicab	herrem 6A-485	M) SCS IA	Reco	•	1 1 124 1 1 1 124 6 (1)	_			
			<u>MO</u>	ISTURE				 ;			
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ /(tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel				
Final weight		849,9	782,2	6013	743.8	7536	1020.4	g			
Initial weight Net weight		768.7 31.7	755.6 26.6	596.9 2.4	739.8 4.0	752,1	1009-2	g g			
Description of impinger water											
	RECOVERED SAMPLE										
H ₂ SO ₄ Impingers and knockout contents and water rinse container no.											
NaOH Impingers contents and water rinse container no.											
Samples stored and locked											

-	-
Ц	
Ц	
I	
トロロエグ)
7	
7	
2	
_	
\Box	`
_	
Ц	
FIFI O DATA	
_	,
7	
7	
`_	`
느	_
\overline{C}	
METHOD 26A	_
۲	
Щ	
2	>

	MOGAL ALD		K DIAMETER	252.	T K FACTOR	21.2		SAMPLE (II TRAIN VAC	(98)		7	و			Ş	و ا	4			0	0,	٥٠	9			7	و	O			
——————————————————————————————————————	ACIN NOMBER		.249.257	152.	CO2 CONTENT		2	Sil Gel EXIT TEMP	(deg. F)	55	53	20			2.5	67	1			{	2	2	7 6			25	53	24			
PAGE 1 of	Z Z Z	200	4 - YPE	t # 1 t +	O2 CONTENT			OVER TEMP	(deg. F)	h 52	258	254			156	952	252			000	AC2.	450	911			252	255	952			7
	בער	_	AND LINEK LYPE	6 ft effective	CHECK	100°	@	DGM IN / OUT TEMP	(deg. F)	517	77	48			677	05	15			Ľ			٦ ٦			55	53	52		AVE. TEMP.	
	Method 26A	PITOT	ያ	\$.0	CHECK	4001 CU. FT	@ !O "Hg	STACK	(deg. F)	299	293	260		INCHES Hg	7-67	662	949		INCHES Hg	INCHES Hg	\$000	200	000ء		NCHES HG	298	799	262		AVE. TEMP.	
	2	S	(j. 19.	218.9	ORSAT	CEM] FAILED	PROBE TEMP	(deg. F)	25.5	752	752		-/-@1.	187	252	757		CU.FT @ /		757	25.5	•	•	CU.FT @	257	35%	452			
SHEET	NO LOCA	FILTER			STACK PITOT NO	OF	PASSED	delta H ORIFICE	(In. H2O)	9. 0.	2.6	2.3		CU.FT @	2.5	5.3	Ë		- CU.F	1	2.5	1.7	4	•	+	2.6	1.1	7.1		AVE delta H	
A SHEE	SAMPLE CARA	AMBIENT	(deg. F)	39	STACK THERM NO	0		delta P VELOCITY HEAD	(In. H2O)	7:	1.2		End of Port	LEAK RATE:			03.0	End of Port	LEAK RATE:	-	3	£1.0	End of Port		LEAK RATE:	1.1	0.1	1760	End of Port	AVE SQRT delta P	
METHOD 26A FIELD DATA SH	# / 11 / 24	STATIC	FRESSURE (in. Water)		DGM CAL FACTOP(Y)	0.973	PITOT LEAK CHI	DGM READING	Vm (cu. ft.)	120.04/		157.00	761.549		761.549	765.87	710.15	158.57-1	/	ll l	122.67	06.01 1	18.740	-		786.730	₹.	94.561	HL5.66 L	NOLUME	
OD 26A		AMBIENT	(In. Hg)	29.0	DGM H@	59.1		CLOCK	_	0 08.2%	5	10	15 6850	INITIAL	15 0852	20	25	30 0907	INITIAL	FINAL	30 0909	35	5. AQA E.	F3[-0]-0	FINAL	45 0926	50	55	1460 09		
METHC	TAND C	OPERATOR		Harus	DGM BOX No.	M5.18)	ELAPSEI TEST TIME					_	EAK CHECK? (CU. FT)				3	INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)				4	EAK CHECK?	: (CU. FT)				9	TOTAL	60 Min.
	Holoim. CH	OPERA	•	Lu Ha	ASSUMED MOISTURE (%)			TRAVERSE ELAPSE PORT/ POINT TIME	ÖZ	A-1	2	n		INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	B-1	2	3		INTRA-PORT LEAK CHE DGM VOLUME (CU. FT)		<u>ن</u>	7 0		INTRA-PORT L	DGM VOLUME (CU. FT)	D-1	2	3			

Plant Sample Locat Run No Filter Numbe	tion <u>M</u>	Ain € F -M2	6A- 4B			ole Date // very Date // vered by				
			<u>MO</u>	ISTURE						
Impingers	l 50 ml 0.1N H ₂ SO ₄ (knockout)	2/ 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.IN H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel			
Final weight		744.1	781.8	612.4	749.6	2404	1001.0			
Initial weight Net weight		79,3	27.9	3.7	4,2	fil.	11.1	g		
Description of impinger water Clear 30 % spent Sil gel color Total moisture = 12-6-3 grams										
RECOVERED SAMPLE										
H ₂ SO ₄ Impinge container no.	H ₂ SO ₄ Impingers and knockout contents and water rinse container no. Some sealed water rinse marked/sealed water rinse container no. Some sealed water rinse container no. Some sealed water rinse container no. Some sealed water rinse marked/sealed water rinse water rinse marked/sealed water rinse water									
NaOH Impinge container no	ers contents a	and water rins -M26A-N	e IaOH 4	3		Liquid lev marked/se	rel /	3227		
Samples stored Remarks	_									

	_
	
7	
V.	,
DATA	
Z	:
L]
	١
Ī	
Ī	_
26A	•
3	3
(1
	١
C)
\overline{C}	
<u> -</u>	-
L	ļ
2	2

PLANT Holcim; 376 OPERATE	METHO PLANT AND CITY OPERATOR 0 6 6	AMBIENT PRESS (In. Hg)	METHOD 26A FIELD DATA AND CITY CALL STATIC (In. Hg) (in. Water)	A	SHEET SAMPLING LOCATION Muin Stack & Muin Stack & MBIENT FILTER S FEMP NUMBERS FIGS F	STACK ID (In.)	SAMPLE Method 26A PITOT CP	PROBELE AND LINEF	PAGE 1 of RUNT - ON - ON FER TYPE	RUN NUMBER ON OFF -M26A- NOZZI NUMBER D -255 - 255	A-SA ZLE DIAMETER
ASSUMED MOISTURE (%)	BOX No.	DGM H@	DGM S CAL TI FACTOR (Y)	TACK JERM NO.	STACK PITOT NO.	ORSAT NO. CEM	AK CU. FT		~ <u>22222222</u>	CONTENT	K FACTOR
TRAVERSE ELAPSEI PORT/ TEST /POINT TIME NO. (MIN)			DGM READING Vm (cu. ft.)	elta P LOCITY (EAD . H2O)	delta H ORIFICE (In. H2O)	PROBE TEMP (deg. F)	STACK TEMP (deg. F)	DGM IN / OU TEMP (deg. F	FILTER OVEN TEMP (deg. F)	Sil Gel EXIT TEMP (deg. F)	SAMPLE TRAIN VAC (in. Hg)
A-1	0 2	953	481,734	26.	2,5 2.5	25.2	102	50	255	525	2 % 1
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	(C)	1008 INITIAL FINAL	994.5-99	End of Port	CU.FT @		INCHES Hg				
B-1	15 20 25		994.599	1.0	8.2	156	965 965	52 53	752 252	52 55	500
INTRA-PORT L DGM VOLUME	30 1 INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT) IN	1025 INITIAL FINAL	4607.467	End of Port	CU.FT @	1.00	INCHES Hg				
0-1	30	101		.98	2.5	1 X	305	55 56	25%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 0 0
S 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 45 EAK CHECK? (CU. FT)	INITIAL FINAL	1021,281	End of Port	▶	ρ 	INCHES HO			- 100 miles	D
D-1			182.5201		2.5	952	302	6 2	255	5.2	0 8
<u>ო</u>	55 60 TOTAL TIME 60 Min.	1059	10 3 4 . 31 9 DGM VOLUME	- 9 K End of Port AVE SORT delta P		254	SOO AVE. TEMP.	Ø 3 AVE. TEMP.	144	25	8

Plant Ho Sample Loca Run No Filter Number	4/5-1	10in 5	26A- 5A	, ,	Reco	ple Date overy Date overed by				
			<u>MO</u>	DISTURE	_					
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0 1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel (untipped)			
Final weight		10847.2	779.4	6700	772.1	7490	, 983D			
Initial weight	/	7713	7509	663.4	769.6	747.8	9681			
Net weight		75,9	28.9	6.6	2.5	1,2	1510 8	3		
Description of impinger water										
RECOVERED SAMPLE										
H ₂ SO ₄ Impingers and knockout contents and water rinse container no. Solution Liquid level marked/sealed NaOH Impingers contents and water rinse Liquid level Liquid level 26										
NaOH Impingers contents and water rinse container no. SG -M26A-NaOH 5A Liquid level marked/sealed										
Samples stored Remarks										

JORA FIFI DIDATA SHFFT	
	ו
Ī	_
U,)
4	
5	
2	ì
_	
Ш	1
П	
◁	
S)
	•
٦)
JIL	_
METHO	
T T	
_	

		26A	METHOD 26A FIELD DATA SHEET	A SHEE					PAGE 1 of	——————————————————————————————————————	
PLAN Loloim: At	ANDCIT		DAIE 1 / 1: /2/	SAMPL	AMPLING LOCATION	S C C	Mathod 26A	<u> </u>	V VON V	ON OFF MORA.	2 B
CONCILITY OF CONTROL		AIMENENT	CTATIC	ייורי	TEILTED I		TOTION TO THE	DECRETE	100	ZZON NOZN	
<u>.</u> .		PRESS (In. Hg)	PRESSURE (in. Water)	TEMP (deg. F)	NUMBERS	D (In.)	. Cp	AND LINER TYPE	TYPE		ום
777	Harris 1	29.0		517	W.W	6.812	hgo	6ft effeðve 91655	14	150	252:
ASSUMED MOISTURE	DGM BOX No.	DGM H@	DGM CAL	STACK THERIM	STACK PITOT	ORSAT	CHECK	CHECK	O2 CONTENT	CONTENT	K FACTOR
(%)	A5-18	1.65	0.9-75	NO.	MO.	CEM	<u>ਵ</u> ਿਲ੍ਹ ਹ	109 CE	70	% &	2.73
No to Washington to the			FILO LEAN CHI	AOI	۲.	FAILED	(g 11 m	@ 7.7 "Hg	, <u>, , , , , , , , , , , , , , , , , , </u>	<u>.</u>	
I KAVERSE PORT/ /POINT	ELAPSED TEST TIME	CLOCK TIME	DGM READING	delta P VELOCITY HEAD	delta H ORIFICE (h. H2C)	PROBE TEMP	STACK TEMP	IN/OUT TEMP	OVEN TEMP	Sil Gel EXIT TEMP	SAMPLE TRAIN VAC
NG:	C	0063		(52.7)		(1.5)	200	1	120	1000	
2			304.46	1.0	7.7	75.4	303	53	365	53	∞
8	10		208.67	76.0	0.2	255	29%	24	155	53	Ø
	5	1008	\$ 12.676	End of Port							
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		INITIAL FINAI		LEAK RATE:	CU.FT @	T @	INCHES HG				
B-1	15	019	012.218		2.3	152	299	SG	952	28	Oa
2	20		816.98	1.0	2.1	285	300	56	252	09	8
3	25			9,94	0,7	283	662	2.1	324	63	8
	0	5201	925.298	End of Port							
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)		INITIAL		LEAK RATE:	CU.FT @	91	INCHES HG				
C-1	98	1_20	825.298	1.2	28	200	300	58	754	63	11
2	35		930.06	6.48	2.1	2,25	205	28	252	Ğ !	6
3	40		824.25	0.94	0.2	552	344	OS	350	29	Ø
	45	1045	878.785	End of Port							
INTRA-PORT L DGM VOLUME	INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT) F	INITIAL		LEAK RATE:	CU.FT.®	1 @ L	INCHES HO				
0-1		다	838.285	7.4	2.6	260	307	ටුගු	155	23	01
2	20		242.87	0.1	2.1	258	300	وا	255		σ
3	55	450	847.66	0.95	2.0	75H	300	ভ	158		
	30	1669	461.054	End of Port							
	TOTAL		DGM	AVE SQRT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.	1		
	60 Min.		Control Adviction in the control of	A Comment of the Comm							

Plant Filter Number	5/9 1	lain 3 to		DISTURE		ole Date <u>1</u> very Date_/ vered by				
			IVIC	ISTORE		_		- 1		
Impingers	1 50 ml 0.1N H ₂ SO ₄	2 100 ml 0.1N H ₂ SO ₄	3 100 ml 0.1N H ₂ SO ₄	4 Optional Knockout	5 100 ml 0.1N NaOH	6 100 ml 0.1N NaOH	Silica gel			
	(knockout)	(tipped)	(tipped)	(untipped)	(untipped)	(untipped)	(untipped)	_		
Final weight		828,1	781.5	624.1	740.6	+62.2	1001.48	<u>. </u>		
Initial weight		753.8	752.9	619.3	737.8	750.7	985.9	.		
Net weight		7413	28.7	4,8	2.8	1,5	15.5 8			
Description of impinger water Clear Total maisture = 12.7.6 grams										
Total moisture = $\frac{12.7 \times 6}{}$ grams										
RECOVERED SAMPLE										
H ₂ SO ₄ Impingers and knockout contents and water rinse container no. Liquid level marked/sealed 472.3										
NaOH Impinge container no	ers contents a	nd water rins - M26A-N	e aoh 5	B		Liquid lev marked/se	rel aled	413.8		
Samples stored Remarks	_			_						

V

Plant Opto Sample Locat Run No \$ C Filter Number	7	Nain 13	OH OH	<u> </u>		ole Date _/_ very Date_f vered by	1 1 124 1 11 124 9 ()			
			<u>MO</u>	ISTURE						
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H₂SO₄ — (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel			
Final weight		827.6	765.4	6.76.8	745.4	739.3	1009.2 g			
Initial weight		7505	739.1	679.B	743.4	738.7	992.3 g			
Net weight		76.8	26,5	5.0	2.0	0.6	16.9 g			
Description of impinger water 20 % spent 20 % Sil gel color Total moisture = 127.9 grams										
RECOVERED SAMPLE										
H ₂ SO ₄ Impingers and knockout contents and water rinse container no										
NaOH Impinge	ers contents a	nd water rinsM26A-N	e laOH (s/	4		Liquid lev marked/se	vel V 2	90.7		
Samples stored Remarks										

 $\sqrt{}$

H	
Щ	_
Ц	
コ	
ี่)
_	
\ \ <	
5	_
2	
	_
	`
Ц	
	-
ш	-
700	Ĺ
Ŗ)
C	\
	1
7	`
≒	_
근	_
Γ.	
닏	>
2	>

	METHC	D 26A	METHOD 26A FIELD DATA SH		—				PAGE 1 of		
HLAN	HEAN! AND CELY		DAIL	SAMPL	MPLING LOCATION	N C	SAMPLE IYPE	YPE	NOY NO	₩١	
Holcim; 5t (7378		1 / 11 /24	•	なみ		Method 26A		NO - 8	OFF) -M26A	- 70 آگا
OPERATOR	JR	AMBIENT PRESS (In Ho)	STATIC PRESSURE (in Water)	AMBIENT TEMP (deg F)	FILTER	STACK ID (In)	P1707 G	PROBE LENGTH AND LINER TYPE	LENGTH ER TYPE	NUMBER L	TLE DIAMETER
Lee V	WW.AS	29.0	1.1	30	11/18	2018.9	D.84	6 for coffeeding	x 745	\" I	252.
ASSUMED MOISTURE 1	DGM BOX No.	DGM H@	DGM CAL FACTOR (Y)	STACK THERM NO	STACK PITOT NO	ORSAT	LEAK CHECK (INITIAL)	CHECK	CONTENT %	CO2 CONTENT	K FACTOR
100	A8-18	1.65	PITOT LEAK CHECK ->	MA I	WPASSED I	CEM FAILED	© 1% PH	(00) CU. FT		5	2.13
TRAVERSE1 PORT/ /POINT NO.	ELAPSED TEST TIME (MIN)	CLOCK TIME (24-HR)	DGM READING Vm (cu. ft.)	delta P VELOCITY HEAD (In. H20)	delta H ORIFICE (In, H2O)	PROBE TEMP (deg. F)	STACI TEMF		FILTER OVEN TEMP (deg. F)	Sil Gel EXIT TEMP (deg. F)	SAMPLE TRAIN VAC (in. Ha)
A-1	0	1	451.326	1.5	900	9.52	200	5.1	hSD.	55	01
2	5		856,09		2.3	252	300	80	052	Ş	00
8	10		960.42	0.99	2.1	253	248	CO	222	65	7
	15	1124	864.853	End of Port							
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	AK CHECK? 3U. FT)	INITIAL		LEAK RATE:	CU.FT @	00	INCHES HG				
B-1-8	15		864.853		2.2	188	300	S	092	2	8
2	20		869.19	1.0	2.1	258	300	(20)	258	೦೨	Ž
3	25		873. 3B	26.0	0.2	652	300	20)	260	10	2
	30	114.1	15217-18	End of Port							
INTRA-PORT LEAK CHECK? DGM VOLUME (CU. FT)	AK CHECK? SU. FT)	INITIAL FINAL		LEAK RATE:	CU.FT @		INCHES Hg				
C-1	30	1143	1877-831	1.7	2.6	755	292	ઉત	p.52	203	0)
2	35		882,09	0.7	2.1	222	299	65	255	رق)	æ
ဂ	40		886.36	96°C		282	236	65	259	000	7
) ((((45	1158	230.425	End of Port							
INTRA-PORT LEAR CHECK? DGM VOLUME (CU. FT)	AK CHECK? CU. FT)	INITIAL		LEAK RATE:	CUFT®	@@	INCHES Hg				
D-1	45	1200	270.422	<u>5</u>	2.8	250	30	وع	252	65	11
2	20	<u> </u>	495.21	[.]	2.3	252	244	65	7.55	00	\$
3	55		899.71	26,0	7.1	752	662	67	255	61	7
	09	5121	403.790	End of Port							
<u>E</u>	TOTAL		DGM	AVE SORT delta P	AVE delta H		AVE. TEMP.	AVE. TEMP.	/	\	
<u> </u>	60 Min.								1		

Plant <u>Ho</u> Sample Local Run No Filter Numbe	tion	Sein 5	tect B	<u>M(l) </u>		ple Date <u>/</u> overy Date_ <u>/</u> overed by		
			MC	DISTURE				 1
Impingers	l 50 ml 0.1N H₂SO₄ (knockout)/	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel (untipped)	
Final weight		833.1	788 A	654.2	746.7	748,5	1037.7 g	_
Initial weight Net weight		757.2	- 761.9 26.7	5.6	744.6	748.0 0.5	10203 g 17.4 g	1
Description o	f impinger v	vater	<u> </u>	en		Y	% sp Sil g	el color
				ĺ	Total moistu	$lre = \underline{l}$	295, 7_ gra	ıms
RECOVERED SAMPLE								
H₂SO₄ Impingo container no	ers and knock	cout contents	and water rin	ise		Liquid lev marked/se	rel aled	\$25.0
NaOH Impinge container no	ers contents a	nd water rins -M26A-N	<u>e</u> iaOH <i>lb li</i>	3		Liquid lev marked/se	rel Zaled Z	95.8
Samples stored	and locked							
Remarks								

Plant HC Sample Loca Run No Filter Numbe	tion <u>Man</u> 36 01	9 tack 4 -M2	neur 6A-FB ole	<u> </u>	Reco	ole Date <u>(</u> very Date_t vered by	1 / 1 /24 1 1 1 /24 4 C 5	_
			<u>MC</u>	DISTURE				
Impingers	1 50 ml 0.1N H ₂ SO ₄ (knockout)	2 100 ml 0.1N H ₂ SO ₄ (tipped)	3 100 ml 0.1N H ₂ SO ₄ (tipped)	4 Optional Knockout (untipped)	5 100 ml 0.1N NaOH (untipped)	6 100 ml 0.1N NaOH (untipped)	Silica gel	
Final weight		452.3	776.8	597.3	769.3	769.1	9356	g
Initial weight		752.4	776.9	597.4	769.8	769.5	976.2	.g
Net weight								g
Description o	f impinger v	vater	Cler		Total majatu	<u>6</u>	Sil Sil	spent gel color
					Total moistu	ire =	<u>C</u> §	grams
]	RECOVE	RED SAI	MPLE			
H ₂ SO ₄ Impinge container no						Liquid lev marked/se	rel aled	400. (
NaOH Impinge container no.	ers contents a	nd water rins -M26A-N	ie iaOH <i>O E</i>	€FB		Liquid lev marked/se	rel valed	369.8
Samples stored Remarks	and locked	Trai	n, 4 A					

Client: Holcim Ste Genevieve MO Test Location: Main Stack Mill On

Date: Jan 10 24 Start Time: 14:30:12

Run number 1
One Minute Averages

One williage Average		
	O2 %,dry	CO2 %,dry
2:31:10 PM 2:32:10 PM 2:33:10 PM 2:33:10 PM 2:35:10 PM 2:35:10 PM 2:35:10 PM 2:35:10 PM 2:39:10 PM 2:39:10 PM 2:40:10 PM 2:41:10 PM 2:41:10 PM 2:45:10 PM 2:45:10 PM 2:45:10 PM 2:45:10 PM 2:45:10 PM 2:45:10 PM 2:55:10 PM 3:01:10 PM		
Run Avgs	8.7	21.7
Cal Gas Initial Zero Final Zero Initial cal. Final Cal.	12.1 0.2 -0.1 12.0 11.7	18.2 0.2 0.4 17.9 18.0
Corrected Average	8.9	22.1

Client: Holcim Ste Genevive MO Test Location: Main Stack Mill On Date: Jan 10 24 Start Time: 15:52:12

Run number 2 One Minute Averages

	O2 %,dry	CO2 %,dry
3:53:10 PM 3:54:10 PM 3:55:10 PM 3:55:10 PM 3:56:10 PM 3:57:10 PM 4:57:10 PM 4:00:10 PM 4:01:10 PM 4:02:10 PM 4:03:10 PM 4:06:10 PM 4:06:10 PM 4:07:10 PM 4:10:10 PM 4:10:10 PM 4:11:10 PM 4:11:10 PM 4:11:10 PM 4:11:10 PM 4:11:10 PM 4:12:10 PM 4:13:10 PM 4:15:10 PM 4:15:10 PM 4:15:10 PM 4:15:10 PM 4:15:10 PM 4:15:10 PM 4:18:10 PM 4:19:10 PM 4:20:10 PM 4:20:10 PM 4:23:10 PM 4:23:10 PM 4:23:10 PM 4:23:10 PM 4:23:10 PM 4:26:10 PM 4:26:10 PM 4:27:10 PM 4:30:10 PM 4:30:10 PM 4:30:10 PM 4:30:10 PM 4:31:10 PM	9.2 9.2 9.1 9.2 9.1 9.2 9.1 9.2 9.2 9.1 9.2 9.2 9.1 9.1 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.1 9.1 9.2 9.2 9.2 9.2 9.2 9.1 9.1 9.2 9.2 9.2 9.1 9.1 9.1 9.2 9.2 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	21.7 21.8 21.9 21.7 21.8 21.7 21.8 21.6 21.7 21.8 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Initial Zero Final Zero Initial cal. Final Cal.	0.3 0.3 12.1 12.2	0.1 0.1 18.1 17.9

22.0

9.0

Corrected Average

Client: Holcim Ste Genevive MO Test Location: Main Stack Mill On

Date: Jan 10 24 Start Time: 17:10:36

Run number 3 One Minute Averages

	O2 %,dry	CO2 %,dry
5:11:34 PM 5:12:34 PM 5:13:34 PM 5:14:34 PM 5:15:34 PM 5:16:34 PM 5:16:34 PM 5:16:34 PM 5:30:18 PM 5:30:18 PM 5:32:18 PM 5:32:18 PM 5:33:18 PM 5:36:18 PM 5:36:18 PM 5:36:18 PM 5:36:18 PM 5:41:18 PM 5:41:18 PM 5:41:18 PM 5:41:18 PM 5:42:18 PM 5:42:18 PM 5:41:18 PM 5:50:18 PM 5:50:18 PM 5:51:18 PM 5:51:18 PM 5:51:18 PM 5:51:18 PM 6:01:18 PM	9.3 9.2 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3	21.5 21.5 21.5 21.5 21.5 21.6 21.8 21.8 21.7 21.6 21.6 21.6 21.6 21.7 21.6 21.5 21.6 21.7 21.6 21.5 21.6 21.7 21.7 21.6 21.7 21.6 21.7 21.7 21.6 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7
Initial Zero Final Zero Initial cal. Final Cal.	0.3 0.3 12.2 12.2	0.1 0.2 17.9 17.9
0 1 1 1	0.4	~~ ~

Corrected Average

9.1 22.0

Holcim; Ste C	Holcim; Ste Genevieve MO Main Stack: Raw Mills On	Main Sta	ck: Raw	Mills Or	_			January 10, 2024	, 10, 20;	24		Operator 🔑 😕	12	
					Run No.	_	14:30-15:30			Run No.				
			Internal	දු	Pre Run	Percent	Percent Post Run Percent Percent Pre Run	Percent	Percent	Pre Run	Percent	Percent Post Run Percent Percent	Percent	Percent
Cylinder ID	Gas Type	Value	Response	Error	Bias	Bias	Bias	Bias	Drift	Bias	Bias	Bias	Bias	Drift
	O2 Zero	Zero N2	%0.0	0.00%	0.2%	0.91%	-0.1% -0.46% -1.37%	-0.46%	-1.37%					
EB0070764	O2 Mid	12.1%	12.1%	0.09%	12.0%	-0.46%	11.7%	-1.83%	-1.37%				***************************************	
ALM056015	O2 Span	21.9%	21.9%	0.00%										
	CO2 Zero	Zero N2	0.1%	0.28%	0.2%	0.28%	0.4%	0.85% 0.57%	0.57%					
ALM056015	CO2 Mid	18.2%	18.2%	0.00%	17.9%	-0.85%	18.0%	-0.57%	0.28%					
CC714737	CO2 Span	35.1%	35.0%	-0.28%										

Holcim; Ste C	Holcim; Ste Genevieve MO Main Stack: Raw Mills	Main Sta	ck: Raw I	Mills On				January 10, 2024	10, 202	24		Operator A	Ä	
					Run No.	2	15:52-16:52	_		Run No.	3	17:10-18:10		
			Internal	Cal	Pre Run	Percent	Percent Post Run Percent Percent Pre Run	Percent	Percent	Pre Run	Percent	Post Run	#	Percent
Cylinder ID	Gas Type	Value	Response	Error	Bias	Bias	Bias	Bias	Drift	Bias	Bias	Bias	Bias	Drift
	O2 Zero	Zero N2	%0.0	0.00%	0.3%	1.37%	0.3%	1.37% 0.00%	%00.0	0.3%	1.37%	0.3%	1.37%	%00.0
EB0070764	O2 Mid	12.1%	12.1%	%60.0	12.1%	%00.0	12.2%	0.46%	0.46%	12.2%	0.46%	12.2%	0.46%	0.00%
ALM056015	O2 Span	21.9%	21.9% 0.00%	0.00%										
	CO2 Zero	Zero N2	0.1%	0.28%	0.1%	%00.0	0.1%	%00:0	0.00%	0.1%	0.00%	0.2%	0.28%	0.28%
ALM056015	CO2 Mid	18.2%	18.2%	0.00%	18.1%	-0.28%	17.9%	-0.85%	-0.57%	17.9%	-0.85%	17.9%	-0.85%	0.00%
CC714737	CO2 Span	35.1%	35.0%	-0.28%										

Cflent: Holcim Ste Genevive MO Test Location: Main Stack Mills Off Date: Jan 11 24 Start Time: 08:35:08

Run number 1 One Minute Averages

One willage Av	ciagos	
	O2 %,dry	CO2 %,dry
8:36:06 AM	9.1	21.3
8:37:06 AM	9.1	21.4
8:38:06 AM	9.1	21.3
8:39:06 AM	9.1	21.4
8:40:06 AM	9.1	21.3
8:41:06 AM	9.1	21.4
8:42:06 AM	9.0	21.5
8:43:06 AM 8:44:06 AM	9.1 9.1	21.4 21.4
8:45:06 AM	9.1	21.5
8:46:06 AM	9.1	21.4
8:47:06 AM	9.2	21.3
8:48:06 AM	9.2	21.3
8:49:06 AM	9.3	21.1
8:50:06 AM	9.3	21.2
8:51:06 AM	9.4	21.0
8:52:06 AM	9.4	21.0
8:53:06 AM	9.4	21.0
8:54:06 AM	9.4	20.9
8:55:06 AM 8:56:06 AM	9.4 9.4	21.2 21.0
8:57:06 AM	9.4	21.0
8:58:06 AM	9.3	21.2
8:59:06 AM	9.3	21.3
9:00:06 AM	9.2	21.3
9:01:06 AM	9.2	21.2
9:02:06 AM	9.3	21.2
9:03:06 AM	9.2	21.4
9:04:06 AM	9.2	21.3
9:05:06 AM	9.1	21.4
9:06:06 AM	9.1	21.4
9:07:06 AM	9.2	21.3
9:08:06 AM 9:09:06 AM	9.2 9.2	21.3 21.3
9:10:06 AM	9.2	21.4
9:11:06 AM	9.2	21.3
9:12:06 AM	9.3	21.2
9:13:06 AM	9.3	21.2
9:14:06 AM	9.3	21.2
9:15:06 AM	9.2	21.3
9:16:06 AM	9.2	21.4
9:17:06 AM	9.2	21.2
9:18:06 AM	9.2	21.3
9:19:06 AM 9:20:06 AM	9.2 9.3	21.4 21.2
9:20:00 AM	9.3	21.2
9:22:06 AM	9.3	21.1
9:23:06 AM	9.3	21.2
9:24:06 AM	9.4	21.2
9:25:06 AM	9.4	21.0
9:26:06 AM	9.4	21.2
9:27:06 AM	9.3	21.3
9:28:06 AM	9.3	21.2
9:29:06 AM	9.3	21.3
9:30:06 AM	9.4	21.1 21.1
9:31:06 AM 9:32:06 AM	9.4 9.4	21.1
9:32:06 AM	9.4	21.2
9:34:06 AM	9.5	21.0
9:35:06 AM	9.4	21.1
Run Avgs	9.3	21.2
Cal Gas	12.1	18.2
Initial Zero	0.3	0.2
Final Zero	0.3	0.3
Initial cal.	12.1	18.0
Final Cal.	12.1	18.0
Corrected Avi	9.2	21.5

Client: Holcim Ste Genevive MO Test Location: Main Stack Mills Off Date: Jan 11 24 Start Time: 09:53:10

Date: Jan 11 24: Run number 2 One Minute Averages

One will the Hydrag	0.5	
	O2 %,dry	CO2 %,dry
9:54:08 AM 9:55:08 AM 9:55:08 AM 9:57:08 AM 9:57:08 AM 9:59:08 AM 10:00:08 AM 10:10:08 AM 10:10:08 AM 10:11:08 AM 10:11:08 AM 10:11:08 AM 10:11:08 AM 10:11:08 AM 10:11:08 AM 10:12:08 AM 10:15:08 AM 10:15:08 AM 10:20:08 AM 10:30:08 AM	9.3 9.3 9.3 9.3 9.4 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.4 9.4 9.5 9.4 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3	21.3 21.2 21.2 21.2 21.0 21.2 21.2 21.4 21.3 21.3 21.3 21.3 21.4 21.2 21.4 21.4
Initial Zero Final Zero Initial cal. Final Cal.	0.3 0.4 12.1 12.2	0.3 0.2 18.0 18.0

Corrected Average 9.2

21.6

Client: Holcim Ste Genevive MO Test Location: Main Stack Mills Off Date: Jan 11 24 Start Time: 1

24 Start Time: 11:09:08

Run number 3
One Minute Averages

One Minute Average	? \$	
	O2 %,dry	CO2 %,dry
11:10:06 AM	9.3	21.4
11:11:06 AM	9.4	21.2
11:12:06 AM	9.3	21.3
11:13:06 AM	9.4	21.2
11:14:06 AM	9.4	21.1
11:15:06 AM	9.4	21.1
11:16:06 AM 11:17:06 AM	9.3 9.4	21.3 21.2
11:18:06 AM	9.3	21.3
11:19:06 AM	9.3	21.4
11:20:06 AM	9.4	21.3
11:21:06 AM	9.3	21.3
11:22:06 AM	9.4	21.3
11:23:06 AM	9.4	21.3
11:24:06 AM	9.4	21.3
11:25:06 AM 11:26:06 AM	9.4 9.4	21.1 21.3
11:27:06 AM	9.4	21.2
11:28:06 AM	9.4	21.2
11:29:06 AM	9.4	21.3
11:30:06 AM	9.4	21.3
11:31:06 AM	9.4	21.3
11:32:06 AM	9.3	21.3
11:33:06 AM	9.3	21.4
11:34:06 AM	9.3	21.3
11:35:06 AM 11:36:06 AM	9.4 9.3	21.2 21.3
11:37:06 AM	9.3	21.4
11:38:06 AM	9.4	21.2
11:39:06 AM	9.4	21.3
11:40:06 AM	9.4	21.2
11:41:06 AM	9.5	21.1
11:42:06 AM	9.5	21.2
11:43:06 AM	9.4	21.3
11:44:06 AM 11:45:06 AM	9.4 9.4	21.3 21.2
11:46:06 AM	9.4	21.2
11:47:06 AM	9.4	21.1
11:48:06 AM	9.4	21.1
11:49:06 AM	9.4	21.2
11:50:06 AM	9.4	21.3
11:51:06 AM	9.5	21.1
11:52:06 AM	9.5	21.1
11:53:06 AM 11:54:06 AM	9.5 9.4	21.2 21.2
11:55:06 AM	9.4	21.2
11:56:06 AM	9.4	21.1
11:57:06 AM	9.5	21.0
11:58:06 AM	9.4	21.2
11:59:06 AM	9.4	21.1
12:00:06 PM	9.4	21.2
12:01:06 PM	9.6	21.0
12:02:06 PM 12:03:06 PM	9.7	20.8 20.7
12:04:06 PM	9.8 9.6	20.7
12:05:06 PM	9.3	21.3
12:06:06 PM	9.3	21.3
12:07:06 PM	9.3	21.2
12:08:06 PM	9.4	21.0
12:09:06 PM	9.6	21.0
Run Avgs	9.4	21.2
Cal Gas	12.1	18.2
Initial Zero	0.4	0.2
Final Zero	0.4	0.3
Initial cal.	12.2	18.0
Final Cal.	12.2	18.1
Corrected Average	9.2	21.4

Holcim; Ste (Holcim; Ste Genevieve MO Main Stack: Raw Mills Off	Main Sta	ck: Raw	Wills Off				January	January 11, 2024	**	J	Operator S	S	١					
					Run No.	1	08:35-09:35		Ë	Run No. 2		09:53-10:53			Run No. 3		11:09-12:09	6	
			Internal	Cal	Pre Run	Percent	Percent Post Run Percent Pre Run	Percent	Percent	Pre Run	Percent	Percent Post Run Percent Percent Pre Run Percent Post Run Percent Percent	Percent	Percent	Pre Run	Percent	Post Run	Percent	Percent
Cylinder ID	Gas Type	Value	Response	Error	Bias	Bias	Bias	Bias	Drift	Bias	Bias	0.003	Bias	Drift	Bias	Bias	Bias	Bias	Drift Drift
	O2 Zero	Zero N2	%0.0	0.00%	0.3%	1.37%	0.3%	1.37% 0.00%	0.00%	0.3%	1.37%	0.4%	1.83%	0.46% 0.4%		1.83%	0.4%	1.83%	0.00%
EB0070764	O2 Mid	12.1%	12.1% 0.09%		12.1%	0.00%	12.1%	0.00% 0.00%		12.1%	0.00%	12.2%	0.46%	0.46% 12.2%	12.2%	0.46%	12.2%	0.46%	0.00%
ALM056015	O2 Span	21.9%	21.9%	0.00%											.				
	CO2 Zero	Zero N2	0.1%	0.28%	0.2%	0.28%	0.3%	0.57% 0.28%		0.3%	0.57%	0.2%	0.28%	-0.28%	0.2%	0.28%	0.3%	0.57%	0.28%
ALM056015	CO2 Mid	18.2%	18.2%	0.00%	18.0%	-0.57%	18.0%	-0.57% 0.00%		18.0%	-0.57%	18.0%	-0.57%	0.00% 18.0%	18.0%	-0.57% 18.1%	18.1%	-0.28%	0.28%
CC714737	CO2 Span	35.1%	35.0% -0.28%	-0.28%							************								

· mare I

Holcim Ste. Genevieve MO Kiln Main Stack; Both Raw Mills On HCN Analyte Spikes

	Date	01/10/24	01/10/24	01/10/24	01/10/24
	Time	13:57-14:15	15:28-15:47	16:52-17:09	18:04-18:35
		Main Pre 1	Main Post 1	Main Post 2	Main Post 3
	CC768222	HCN	HCN	HCN	HCN
Cs	Spike Direct, ppm	49.30	49.30	49.30	49.30
	SF6 Tracer Direct, ppm	4.86	4.86	4.86	4.86
SF6	Diluted SF6 Tracer, ppm	0.273	0.262	0.253	0.262
	Diluted SF6 Tracer, ppm	0.263	0.252	0.238	0.250
	Average Diluted SF6 Tracer, ppm	0.268	0.257	0.246	0.256
DF	Dilution Ratio	18.13	18.91	19.80	18.98
	Total, ppm	6.273	6.948	6.985	6.953
	Total, ppm	6.367	6.705	6.481	6.891
Ct	Average Total, ppm	6.320	6.827	6.733	6.922
	Pre Spike Native , ppm	3.959	4.238	4.239	4.341
	Pre Spike Native , ppm	3.645	4.234	4.709	4.374
	Post Spike Native , ppm	3.664	4.194	3.987	4.084
	Post Spike Native , ppm	3.564	4.276	4.093	4.181
Cn	Average Native , ppm	3.708	4.236	4.257	4.245
	Spike Recovery	103.6%	108.0%	108.1%	111.7%
	CTS Direct (CC426155)				
	Ethylene Expected (ppm)	75.47			75.48
	Ethylene Measured (ppm)	74.06			74.73
	CTS Error	-1.9%			-1.0%

Holcim; Ste. Genevieve MO Main Stack; Raw Mills On

Mills On Pre Run 1 HCN Analyte Spike

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC007691.LAB	01/10/24	13:56:19.061	2.852	10.027	-0.022
SPC007692.LAB	01/10/24	13:57:23.175	3.959	9.427	-0.017
SPC007693.LAB	01/10/24	13:58:26.859	3.645	7.715	-0.016
SPC007694.LAB	01/10/24	13:59:30.713	4.212	7.054	0.026
SPC007695.LAB	01/10/24	14:00:34.672	6.273	6.529	0.273
SPC007696.LAB	01/10/24	14:01:38.688	6.367	6.118	0.263
SPC007697.LAB	01/10/24	14:02:42.406	6.882	5.444	0.246
SPC007698.LAB	01/10/24	14:03:46.324	0.235	0.256	0.010
SPC007699.LAB	01/10/24	14:04:50.439	0.004	0.255	-0.024
SPC007700.LAB	01/10/24	14:05:54.196	0.137	0.233	-0.015
SPC007701.LAB	01/10/24	14:06:58.117	0.007	0.372	-0.006
SPC007702.LAB	01/10/24	14:08:02.105	3.224	6.788	-0.017
SPC007703.LAB	01/10/24	14:09:05.920	3.211	5.278	-0.017
SPC007704.LAB	01/10/24	14:10:10.184	3.565	4.583	-0.016
SPC007705.LAB	01/10/24	14:11:13.817	3.382	4.042	-0.019
SPC007706.LAB	01/10/24	14:12:17.670	3.733	3.463	-0.016
SPC007707.LAB	01/10/24	14:13:21.598	3.486	3.417	-0.020
SPC007708.LAB	01/10/24	14:14:25.852	3.664	3.197	-0.021
SPC007709.LAB	01/10/24	14:15:29.634	3.564	3.224	-0.017
SPC 007710.LAB	01/10/24	14:16:33.330	2.529	1.437	-0.017

Holcim; Ste. Genevieve MO

Main Stack; Raw Mills On Post Mills On Run 1 HCN Analyte Spike

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC007776.LAB	01/10/24	15:27:07.296	3.951	1.846	-0.018
SPC007777.LAB	01/10/24	15:28:11.210	4.238	1.760	-0.020
SPC007778.LAB	01/10/24	15:29:15.133	4.234	1.730	-0.018
SPC007779.LAB	01/10/24	15:30:19.317	4.037	1.624	-0.019
SPC007780.LAB	01/10/24	15:31:23.071	4.341	1.700	-0.012
SPC007781.LAB	01/10/24	15:32:26.924	6.948	2.073	0.262
SPC007782.LAB	01/10/24	15:33:30.851	6.705	1.896	0.252
SPC007783.LAB	01/10/24	15:34:34.801	5.914	1.836	0.142
SPC007784.LAB	01/10/24	15:35:38.651	1.200	0.141	0.075
SPC007785.LAB	01/10/24	15:36:42.522	0.290	0.110	0.004
SPC007786.LAB	01/10/24	15:37:46.786	0.226	0.103	-0.009
SPC007787.LAB	01/10/24	15:38:50.401	0.172	0.110	-0.017
SPC007788.LAB	01/10/24	15:39:54.656	0.377	0.118	-0.016
SPC007789.LAB	01/10/24	15:40:58.447	-0.100	0.392	-0.009
SPC007790.LAB	01/10/24	15:42:02.142	0.016	0.105	-0.010
SPC007791.LAB	01/10/24	15:43:06.133	0.141	0.816	-0.016
SPC007792.LAB	01/10/24	15:44:09.937	4.152	3.079	-0.018
SPC007793.LAB	01/10/24	15:45:13.890	4.068	2.591	-0.017
SPC007794.LAB	01/10/24	15:46:18.108	4.194	2.286	-0.015
SPC 007795.LAB	01/10/24	15:47:21.681	4.276	2.140	-0.013

Holcim; Ste. Genevieve MO Main Stack; Raw Mills On

Post Mills On Run 2 HCN Analyte Spike

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC007853.LAB	01/10/24	16:50:32.090	4.215	0.685	-0.020
SPC007854.LAB	01/10/24	16:51:36.000	4.239	0.697	-0.018
SPC007855.LAB	01/10/24	16:52:39.960	4.709	0.914	-0.018
SPC007856.LAB	01/10/24	16:53:43.865	6.872	1.143	0.222
SPC007857.LAB	01/10/24	16:54:47.924	6.985	1.015	0.253
SPC007858.LAB	01/10/24	16:55:51.845	6.481	0.976	0.238
SPC007859.LAB	01/10/24	16:56:55.570	5.969	0.924	0.164
SPC007860.LAB	01/10/24	16:57:59.667	1.623	0.081	0.091
SPC007861.LAB	01/10/24	16:59:03.425	0.166	0.043	-0.024
SPC007862.LAB	01/10/24	17:00:07.304	0.192	0.040	-0.019
SPC007863.LAB	01/10/24	17:01:11.210	0.119	0.040	-0.006
SPC007864.LAB	01/10/24	17:02:15.125	-0.006	0.061	-0.011
SPC007865.LAB	01/10/24	17:03:19.116	0.220	0.048	-0.001
SPC007866.LAB	01/10/24	17:04:22.952	0.309	0.042	-0.000
SPC007867.LAB	01/10/24	17:05:26.866	-0.072	0.042	-0.001
SPC007868.LAB	01/10/24	17:06:30.809	3.914	1.442	-0.022
SPC007869.LAB	01/10/24	17:07:34.753	3.987	1.389	-0.018
SPC007870.LAB	01/10/24	17:08:38.709	4.093	1.250	-0.018

Holcim; Ste. Genevieve MO Main Stack; Raw Mills On

Post	Mille	On	Run	3	HCN	Analyte	Spike

, , , , , , , , , , , , , , , ,	to opino				
Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C
01/10/24	18:02:45.796	4.194	0.483	-0.017	2.990
01/10/24	18:03:49.738	4.341	0.481	-0.020	2.928
01/10/24	18:04:53.906	4.374	0.462	-0.017	3.000
01/10/24	18:05:57.516	4.222	0.473	-0.022	3.016
01/10/24	18:07:01.382	4.193	0.462	-0.019	2.868
01/10/24	18:08:05.310	3.770	0.468	-0.017	2.952
01/10/24	18:09:09.320	4.016	0.503	-0.015	2.893
01/10/24	18:10:13.464	4.045	0.448	-0.018	2.875
01/10/24	18:11:17.405	4.850	0.500	-0.0 <u>0</u> 1	2.770
01/10/24	18:12:20.939	6.953	0.803	0.262	2.608
01/10/24	18:13:24.849	6.891	0.749	0.250	2.645
01/10/24	18:14:28.752	4.368	0.409	0.185	1.806
01/10/24	18:15:32.654	0.210	0.055	-0.013	0.028
01/10/24	18:16:36.618	0.094	0.067	-0.017	-0.081
01/10/24	18:17:40.493	0.036	0.033	-0.008	-0.030
01/10/24	18:18:44.414	3.189	0.744	-0.021	2.280
01/10/24	18:19:48.359	4.084	0.781	-0.020	2.956
01/10/24	18:20:52.501	4.181	0.721	-0.019	2.891
01/10/24	18:32:54.136	0.110	0.004	-0.017	24.139
01/10/24	18:33:57.742	-0.078	-0.018	-0.009	74.792
01/10/24	18:35:01.582	-0.047	-0.005	-0.011	7 <u>4.668</u>
	Date 01/10/24	Date Time 01/10/24 18:02:45.796 01/10/24 18:02:45.796 01/10/24 18:03:49.738 01/10/24 18:05:57.516 01/10/24 18:05:57.516 01/10/24 18:08:05.310 01/10/24 18:09:09.320 01/10/24 18:10:13.464 01/10/24 18:11:17.405 01/10/24 18:12:20.939 01/10/24 18:13:24.849 01/10/24 18:15:32.654 01/10/24 18:16:36.618 01/10/24 18:17:40.493 01/10/24 18:19:48.359 01/10/24 18:20:52.501 01/10/24 18:32:54.136 01/10/24 18:33:57.742 01/10/24 18:33:501.582	Date Time HCN PCA 191c R1 191c 01/10/24 18:02:45.796 4.194 01/10/24 18:03:49.738 4.341 01/10/24 18:04:53.906 4.374 01/10/24 18:05:57.516 4.222 01/10/24 18:07:01.382 4.193 01/10/24 18:09:09.320 4.016 01/10/24 18:10:13.464 4.045 01/10/24 18:11:17.405 4.850 01/10/24 18:12:20.939 6.953 01/10/24 18:13:24.849 6.891 01/10/24 18:15:32.654 0.210 01/10/24 18:16:36.618 0.094 01/10/24 18:17:40.493 0.036 01/10/24 18:19:48.359 4.084 01/10/24 18:19:48.359 4.084 01/10/24 18:20:52.501 4.181 01/10/24 18:32:54.136 0.110 01/10/24 18:33:57.742 -0.078	Date Time HCN PCA 191c R1 191c HF ppm (10) 191C 01/10/24 18:02:45.796 4.194 0.483 01/10/24 18:03:49.738 4.341 0.481 01/10/24 18:04:53.906 4.374 0.462 01/10/24 18:07:01.382 4.193 0.462 01/10/24 18:08:05.310 3.770 0.468 01/10/24 18:09:09.320 4.016 0.503 01/10/24 18:10:13.464 4.045 0.448 01/10/24 18:11:17.405 4.850 0.500 01/10/24 18:12:20.939 6.953 0.803 01/10/24 18:13:24.849 6.891 0.749 01/10/24 18:15:32.654 0.210 0.055 01/10/24 18:16:36.618 0.094 0.067 01/10/24 18:18:44.414 3.189 0.744 01/10/24 18:19:48.359 4.084 0.781 01/10/24 18:19:48.359 4.084 0.781 01/10/24 18:20:52.501 4.181	Date Time HCN PCA 191c R1 191c HF ppm (10) 191C SF6 (10) 191C 01/10/24 18:02:45.796 4.194 0.483 -0.017 01/10/24 18:03:49.738 4.341 0.481 -0.020 01/10/24 18:04:53.906 4.374 0.462 -0.017 01/10/24 18:07:01.382 4.193 0.462 -0.019 01/10/24 18:08:05.310 3.770 0.468 -0.017 01/10/24 18:09:09.320 4.016 0.503 -0.015 01/10/24 18:10:13.464 4.045 0.448 -0.018 01/10/24 18:11:17.405 4.850 0.500 -0.001 01/10/24 18:13:24.849 6.891 0.749 0.250 01/10/24 18:14:28.752 4.368 0.409 0.185 01/10/24 18:16:36.618 0.094 0.067 -0.017 01/10/24 18:18:44.414 3.189 0.744 -0.021 01/10/24 18:19:48.359 4.084 0.781 -0.020 <

Holcim; Ste. Genevieve MO Main Stack; Raw Mills On CTS and HCN Analyte Spike Direct

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C
SPC007616.LAB	01/10/24	12:14:46.677	44.820	-0.003	4.614	73.527
SPC007617.LAB	01/10/24	12:15:50.693	47.978	-0.011	4.864	73.742
SPC007618.LAB	01/10/24	12:16:54.516	47.621	0.001	4.838	73.979
SPC007619.LAB	01/10/24	12:17:58.620	49.064	-0.003	4.819	74.133
Ethylene CTS (CC4261	55)					74.056
SPC007620.LAB	01/10/24	12:19:02.350	49.082	0.007	4.824	72.901
SPC007621.LAB	01/10/24	12:20:06.314	48.911	-0.038	4.861	2.418
SPC007622.LAB	01/10/24	12:21:10.197	48.882	0.018	4.862	-0.546
SPC007623.LAB	01/10/24	12:22:14.323	49.141	-0.036	4.858	-0.537
SPC007624.LAB	01/10/24	12:23:18.032	49.025	0.010	4.861	-0.516
SPC007625.LAB	01/10/24	12:24:21.958	49.432	0.000	4.851	-0.527
SPC007626.LAB	01/10/24	12:25:26.263	49.155	-0.008	4.856	-0.536
SPC007627.LAB	01/10/24	12:26:29.984	49.300	-0.051	4.859	-0.524
HCN Analyte Spike (CC	7682221		49.295	_	4.855	

Holcim Ste. Genevieve MO Kiln Main Stack; Raw Mills Off HCN Analyte Spikes

	Date	01/11/24	01/11/24	01/11/24	01/11/24
	Time	08:19-08:32	09:34-09:49	10:53-11:06	12:02-12:27
		Main Pre 1	Main Post 1	Main Post 2	Main Post 3
	CC768222	HCN	HCN	HCN	HCN
Cs	Spike Direct, ppm	49.10	49.10	49.10	49.10
	SF6 Tracer Direct, ppm	4.87	4.87	4.87	4.87
SF6	Diluted SF6 Tracer, ppm	0.212	0.233	0.245	0.241
	Diluted SF6 Tracer, ppm	0.192	0.222	0.232	0.233
	Average Diluted SF6 Tracer, ppm	0.202	0.228	0.239	0.237
DF	Dilution Ratio	24.11	21.41	20.42	20.55
	Total, ppm	5.686	6.492	6.548	6.919
	Total, ppm	5.485	6.215	6.705	6.946
Ct	Average Total, ppm	5.586	6.354	6.627	6.933
	Pre Spike Native , ppm	3.732	4.355	4.657	4.896
	Pre Spike Native , ppm	3.661	4.072	4.544	4.864
	Post Spike Native , ppm	3.953	4.044	4.360	4.241
	Post Spike Native , ppm	3.703	3.948	4.490	4.300
Cn	Average Native , ppm	3.762	4.105	4.513	4.575
	Spike Recovery	97.2%	106.4%	97.1%	108.0%
	CTS Direct (CC426155)				
	Ethylene Expected (ppm)	75.47			75.48
	Ethylene Measured (ppm)	74.45			73.84
	CTS Error	-1.4%			-2.2%

Holcim; Ste. Genevieve MO Main Stack; Raw Mills Off

	, , , , , , , , , , , , ,	· opo			
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC007970.LAB	01/11/24	08:13:02.299	0.476	0.010	0.005
SPC007971.LAB	01/11/24	08:14:06.253	0.917	0.093	0.004
SPC007972.LAB	01/11/24	08:15:10.178	1.057	0.246	0.005
SPC007973.LAB	01/11/24	08:16:14.040	0.061	0.114	0.000
SPC007974.LAB	01/11/24	08:17:17.974	3.307	1.128	-0.024
SPC007975.LAB	01/11/24	08:18:21.902	3.297	1.448	-0.016
SPC007976.LAB	01/11/24	08:19:25.801	3.732	1.530	-0.020
SPC007977.LAB	01/11/24	08:20:29.810	3.661	1.506	-0.018
SPC007978.LAB	01/11/24	08:21:33.824	3.826	1.515	-0.019
SPC007979.LAB	01/11/24	08:22:37.540	5.588	1.533	0.204
SPC007980.LAB	01/11/24	08:23:41.456	5.686	1.519	0.212
SPC007981.LAB	01/11/24	08:24:45.365	5.485	1.448	0.192
SPC007982.LAB	01/11/24	08:25:49.536	5.246	1.397	0.117
SPC007983.LAB	01/11/24	08:26:53.183	1.165	0.226	0.062
SPC007984.LAB	01/11/24	08:27:57.091	-0.108	0.192	-0.012
SPC007985.LAB	01/11/24	08:29:01.045	-0.085	0.092	-0.019
SPC007986.LAB	01/11/24	08:30:04.938	3.415	1.433	-0.014
SPC007987.LAB	01/11/24	08:31:08.954	3.953	1.404	-0.018
SPC007988.LAB	01/11/24	08:32:12.760	3.703	1.340	-0.014
SPC007989.LAB	01/11/24	08:33:16.677	4.060	1.346	-0.017

Holcim; Ste. Genevieve MO Main Stack: Raw Mills Off

Main Stack; Raw Mills Off Post Mills Off Run 1 HCN Analyte Spike

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC008045.LAB	01/11/24	09:32:55.780	4.054	0.657	-0.018
SPC008046.LAB	01/11/24	09:33:59.641	4.355	0.652	-0.017
SPC008047.LAB	01/11/24	09:35:03.851	4.072	0.635	-0.016
SPC008048.LAB	01/11/24	09:36:07.610	4.306	0.639	-0.015
SPC008049.LAB	01/11/24	09:37:11.343	6.895	0.641	0.162
SPC008050.LAB	01/11/24	09:38:15.238	6.818	0.606	0.248
SPC008051.LAB	01/11/24	09:39:19.401	6.492	0.610	0.233
SPC008052.LAB	01/11/24	09:40:23.052	6.215	0.567	0.222
SPC008053.LAB	01/11/24	09:41:27.221	0.143	0.051	0.001
SPC008054.LAB	01/11/24	09:42:30.870	0.119	0.066	-0.019
SPC008055.LAB	01/11/24	09:43:34.779	0.221	0.147	-0.009
SPC008056.LAB	01/11/24	09:44:38.682	0.124	0.044	-0.010
SPC008057.LAB	01/11/24	09:45:42.718	0.171	0.038	-0.002
SPC008058.LAB	01/11/24	09:46:46.520	3.532	0.757	-0.015
SPC008059.LAB	01/11/24	09:47:50.426	4.044	0.724	-0.016
SPC008060.LAB	01/11/24	09:48:54.335	3.948	0.694	-0.015
SPC008061.LAB	01/11/24	09:49:58.251	3.724	0.677	-0.016

Holcim; Ste. Genevieve MO Main Stack; Raw Mills Off Post Mills Off Run 2 HCN Analyte Spike

Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C
SPC008118.LAB	01/11/24	10:51:32.978	4.483	0.426	-0.017
SPC008119.LAB	01/11/24	10:52:36.882	4.657	0.434	-0.014
SPC008120.LAB	01/11/24	10:53:40.792	4.544	0.430	-0.017
SPC008121.LAB	01/11/24	10:54:44.739	4.675	0.446	-0.018
SPC008122.LAB	01/11/24	10:55:48.712	4.713	0.435	-0.017
SPC008123.LAB	01/11/24	10:56:52.517	6.494	0.435	0.013
SPC008124.LAB	01/11/24	10:57:56.433	6.548	0.418	0.245
SPC008125.LAB	01/11/24	10:59:00.439	6.705	0.448	0.232
SPC008126.LAB	01/11/24	11:00:04.245	5.494	0.444	0.110
SPC008127.LAB	01/11/24	11:01:08.142	1.236	0.079	0.081
SPC008128.LAB	01/11/24	11:02:12.159	-0.076	0.050	-0.019
SPC008129.LAB	01/11/24	11:03:15.957	0.199	0.019	-0.017
SPC008130.LAB	01/11/24	11:04:19.886	3.136	0.403	-0.020
SPC008131.LAB	01/11/24	11:05:23.836	4.360	0.389	-0.016
SPC008132.LAB	01/11/24	11:06:27.728	4.490	0.515	-0.014

Holcim; Ste. Genevieve MO Main Stack; Raw Mills Off Post Mills Off Run 3 HCN Analyte Spike

1 OSCIVINS OIL INGILO	I TORY MIRCHY	ic Opino				
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C
SPC008183.LAB	01/11/24	12:01:22.314	4.831	0.377	-0.014	2.590
SPC008184.LAB	01/11/24	12:02:25.969	4.896	0.362	-0.015	2.585
SPC008185.LAB	01/11/24	12:03:29.878	4.864	0.195	-0.013	2.589
SPC008186.LAB	01/11/24	12:04:33.829	4.510	0.209	-0.017	2.635
SPC008187.LAB	01/11/24	12:05:37.740	4.502	0.227	-0.016	2.791
SPC008188.LAB	01/11/24	12:06:41.653	4.212	0.204	-0.016	2.754
SPC008189.LAB	01/11/24	12:07:45.526	4.156	0.222	-0.017	2.707
SPC008190.LAB	01/11/24	12:08:49.431	4.213	0.218	-0.017	2.570
SPC008191.LAB	01/11/24	12:09:53.727	4.474	0.265	-0.016	2.612
SPC008192.LAB	01/11/24	12:10:57.630	7.016	0.274	0.042	2.530
SPC008193.LAB	01/11/24	12:12:01.159	6.919	0.384	0.241	2.465
SPC008194.LAB	01/11/24	12:13:05.065	6.946	0.399	0.233	2.460
SPC008195.LAB	01/11/24	12:14:09.008	6.264	0.330	0.175	2.154
SPC008196.LAB	01/11/24	12:15:12.970	0.180	0.061	-0.010	0.096
SPC008197.LAB	01/11/24	12:16:17.155	-0.063	0.022	-0.019	-0.092
SPC008198.LAB	01/11/24	12:17:20.815	0.000	0.021	-0.014	0.056
SPC008199.LAB	01/11/24	12:18:24.798	0.003	0.051	-0.013	0.187
SPC008200.LAB	01/11/24	12:19:28.523	4.241	0.330	-0.018	2.626
SPC008201.LAB	01/11/24	12:20:32.434	4.300	0.235	-0.017	2.649
SPC008202.LAB	01/11/24	12:21:36.323	0.324	0.097	-0.012	0.433
SPC008203.LAB	01/11/24	12:22:40.418	0.007	0.032	-0.002	0.078
SPC008204.LAB	01/11/24	12:23:44.141	0.282	0.027	-0.001	0.118
SPC008205.LAB	01/11/24	12:24:48.042	-0.063	0.027	-0.010	9.396
SPC008206.LAB	01/11/24	12:25:51.951	-0.098	0.005	-0.014	73.850
SPC008207.LAB	01/11/24	12:26:55.982	0.260	-0.005	-0.014	73.826

Holcim; Ste. Genevieve MO Main Stack; Raw Mills Off CTS and HCN Analyte Spike Direct

O I S and Hom Analyte S	DIVE DISECT					
Spectrum	Date	Time	HCN PCA 191c R1 191c	HF ppm (10) 191C	SF6 (10) 191C	Ethylene (100,3000) 191C
SPC007941BKG.LAB	01/11/24	07:32:21.674	0.000	0.000	0.000	0.000
SPC007942.LAB	01/11/24	07:33:32.444	-0.054	-0.019	-0.002	-0.001
SPC007943.LAB	01/11/24	07:34:35.963	-0.059	-0.025	-0.001	-0.045
SPC007944.LAB	01/11/24	07:35:40.004	-0.094	-0.019	-0.001	0.027
SPC007945BKG.LAB	01/11/24	07:38:41.217	0.000	0.000	0.000	0.000
SPC007946.LAB	01/11/24	07:39:51.654	-0.113	0.006	-0.001	0.062
SPC007947.LAB	01/11/24	07:40:55.423	-0.006	-0.001	0.000	0.051
SPC007948.LAB	01/11/24	07:41:59.342	-0.180	0.016	-0.008	67.206
SPC007949.LAB	01/11/24	07:43:03.627	-0.112	0.007	-0.009	74.451
SPC007950.LAB	01/11/24	07:44:07.279	-0.096	-0.001	-0.008	74.445
Ethylene CTS (CC42615	55)					74.448
SPC007951.LAB	01/11/24	07:45:11.183	23.230	0.040	2.270	33.235
SPC007952.LAB	01/11/24	07:46:15.072	48.321	0.021	4.864	-0.513
SPC007953.LAB	01/11/24	07:47:18.880	49.018	0.010	4.866	-0.498
SPC007954.LAB	01/11/24	07:48:22.794	48.912	-0.013	4.876	-0.571
SPC007955.LAB	01/11/24	07:49:26.789	49.042	0.001	4.874	-0.525
SPC007956.LAB	01/11/24	07:50:30.613	49.119	0.024	4.868	-0.532
SPC007957.LAB	01/11/24	07:51:34.641	49. <u>128</u>	0.031	4.871	-0.503
HCN Analyte Spike (CC	768222)		49.096		4.871	
SPC 007958.LAB	01/11/24	07:52:38.711	22.834	0.000	2.061	1.942

Appendix C

Ion Chromatography Analytical Report Data

Deeco, Inc.

3404 Lake Woodard Drive Raleigh, NC 27604

Project No: 23-3309 Holcim Ste.Genevieve

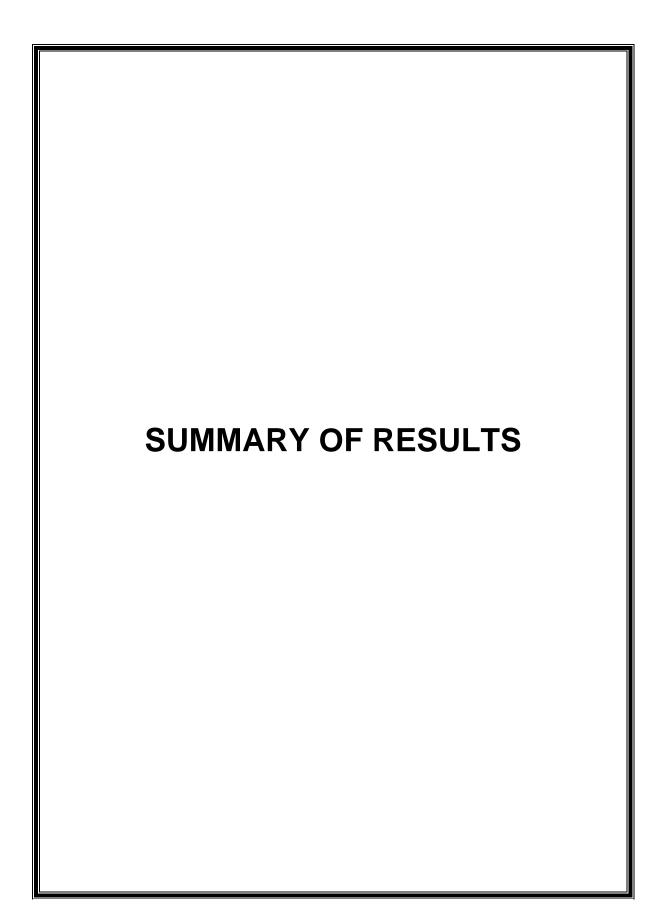
Hydrogen Fluoride & Chlorine

EPA Method 26A Analysis

Analytical Report 41873

Element One, Inc.

6319-D Carolina Beach Rd., Wilmington, NC 28412 910-793-0128 FAX: 910-792-6853 e1lab@e1lab.com


The following data for Analytical Report 41873 has been reviewed for completeness, accuracy, adherence to method protocol, and compliance with quality assurance guidelines.

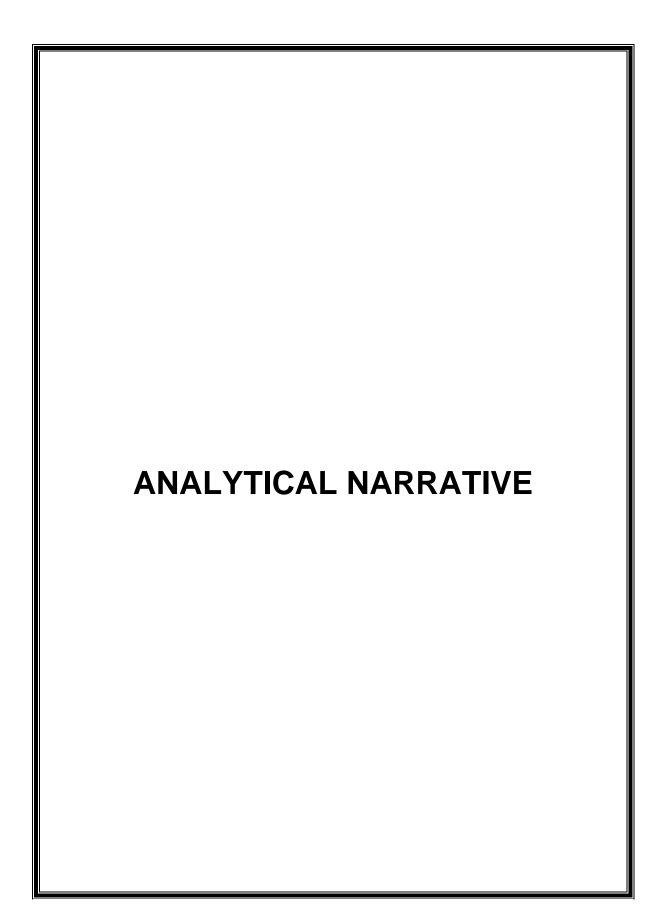
Review by:

Linda Ann Webb, M.S. Analytical Chemist January 26, 2024

Report Reviewed and Finalized by:

Ken Smith, Laboratory Director January 26, 2024

Summary of Analysis


Summary of Method 26A Analysis

Element	SG-	SG-	SG-
	M26A-R1A	M26A-R2A	M26A-R3A
	e41873-1	e41873-2	e41873-3
	Total mg	Total mg	Total mg
HF	< 0.264	< 0.266	< 0.281
Cl ₂	0.208	0.222	0.193
Element	SG-	SG-	SG-
	M26A-R4A	M26A-R5A	M26A-R6A
	e41873-4	e41873-5	e41873-6
	Total mg	Total mg	Total mg
HF	< 0.268	< 0.252	< 0.208
Cl ₂	0.713	0.265	0.276
Element	SG-	SG-	SG-
	M26A-R1B	M26A-R2B	M26A-R3B
	e41873-7	e41873-8	e41873-9
	Total mg	Total mg	Total mg
HF	< 0.263	< 0.262	< 0.276
Cl ₂	< 0.181	< 0.194	< 0.188
Element	SG-	SG-	SG-
	M26A-R4B	M26A-R5B	M26A-R6B
	e41873-10	e41873-11	e41873-12
	Total mg	Total mg	Total mg
HF	< 0.252	< 0.249	< 0.224
Cl_2	< 0.164	0.283	0.357

	SG-	SG-
	M26A-FBON	M26A-FBOFF
	e41873-13	e41873-14
Element	Total mg	Total mg
HF	< 0.212	< 0.211
Cl ₂	< 0.170	< 0.185

elementOne

Certification: NJ NELAP NC009 41873 Deeco M26A Report Packet Page 4 of 30

Element One Analytical Narrative

Client:	Deeco, Inc.	Element One #:	41873
Client ID:	23-3309 Holcim Ste.Genevieve	Analyst:	LAW
Method:	M26A	Dates Received:	01.15.24
Analytes:	HF, Cl ₂	Dates Analyzed:	01.18-24.24

Summary of Analysis

The samples were prepared and analyzed according to Method 26A protocol. The samples were analyzed for fluoride and chloride on Metrohm 930/858 and 881/858 ion chromatograph systems respectively.

Detection Limits

The Metrohm reporting limit was 0.1 µg/mL for fluoride and chloride.

Analysis QA/QC

Duplicate analyses relative percent difference (RPD), spike recovery and second source verification data are summarized in the Quality Control section. All QA/QC data was within the criteria of the method.

Additional Comments

The reported results have not been corrected for any blank values or spike recovery values. Due to the sample matrix, it was necessary to analyze all samples at a minimum five-fold dilution to reduce interferences and to preserve the anion column. The reported results relate only to the items tested or calibrated.

Summary of Quality Control Data

Summary of Method 26A Duplicate Analysis RPD

)	<5% for RPD	QC limits:	(Method 26A

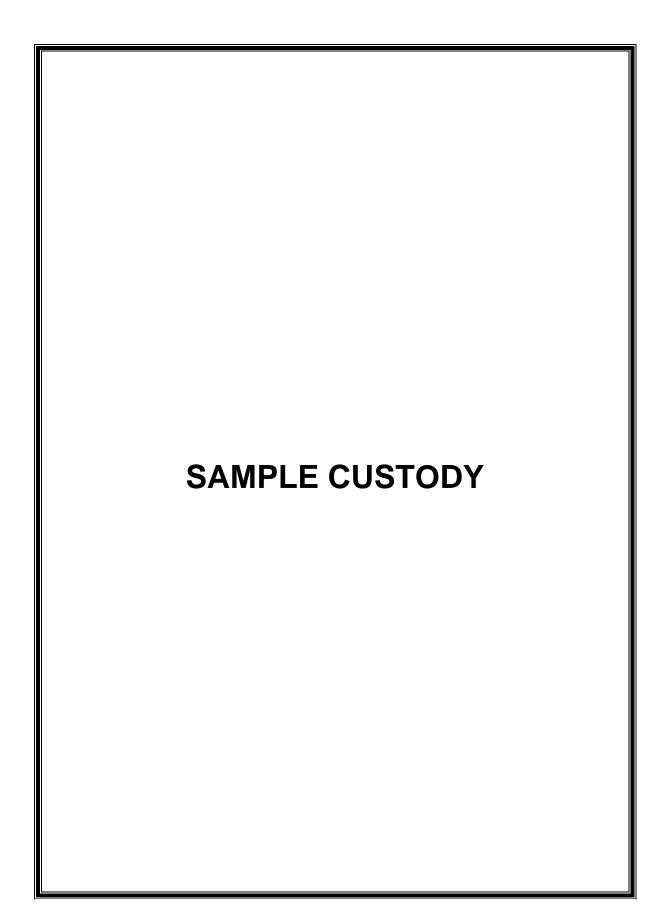
	SG-	SG-	SG-
	M26A-R1A	M26A-R2A	M26A-R3A
Element	RPD	RPD	RPD
HF	NA	NA	NA
Cl ₂	1.8%	3.3%	0.0%
	SG-	SG-	SG-
	M26A-R4A	M26A-R5A	M26A-R6A
Element	RPD	RPD	RPD
HF	NA	NA	NA
Cl ₂	0.9%	3.5%	0.0%
	SG-	SG-	SG-
	M26A-R1B	M26A-R2B	M26A-R3B
Element	RPD	RPD	RPD
HF	NA	NA	NA
Cl ₂	NA	NA	NA
	SG-	SG-	SG-
	M26A-R4B	M26A-R5B	M26A-R6B
Element	RPD	RPD	RPD
HF	NA	NA	NA
Cl ₂	NA	2.2%	1.2%

M26A-FBON M26A-FBOFF Element RPD RPD HF NA NA Cl2 NA NA		SG-	SG-
HF NA NA		M26A-FBON	M26A-FBOFF
- NA NA	Element	RPD	RPD
- NA NA		 N Δ	ΝΙΛ
Cl ₂ NA NA	ПГ		
	Cl ₂	NA	NA

elementOne

Summary of Quality Control Data

Summary of Method 26A Spike Recoveries (Method 26A QC limits: 90-110% for Spike Recoveries)


	SG-	SG-
	M26A-R3A	M26A-R3B
Element	Recovery	Recovery
HF	101%	102%
Cl ₂	107%	106%

Second Source Calibration Verification

(*Laboratory QC limits: 90-110%)

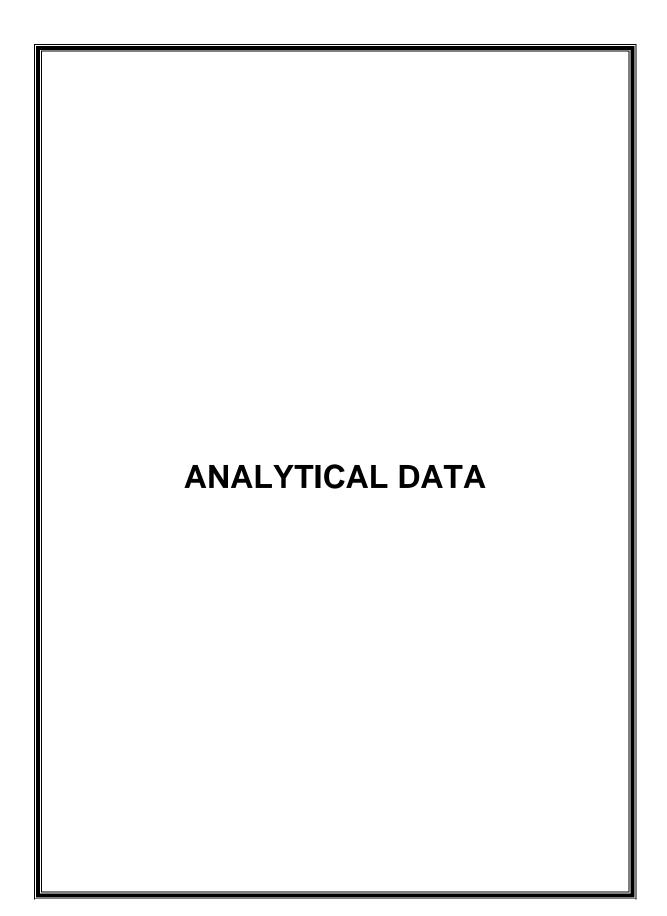
	DL 0.1mg/L	*QC 5.0mg/L
Element	Recovery	Recovery
HF	97%	100%
Cl ₂	108%	101%

elementOne

Plant Name: Holcim Relinquished by: (Signature)			3404 Lake Woodard Dr. Raleigh, NC 27604 919-250-0285			Date: Lab: Train:	Date: 1/12/24 Lab: Element One Train: EPA Method 26A
(Signature)		_	Plant Location: Ste. Genevive MO			Project Name:	23-3309
		Date/Time	Date/Time Received by: (Signature)		Date/Time しいんタイ	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample Description	Special Notes	Lab
01.	01/10/24	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	0.1N H ₂ SO ₄ Final Volume and DI Rinses	Element One
SG-1A-NaOH 01.	01/10/24	Сошр.	Chloride ion as Diatomic Chlorine	EPA Method and DI Rinses	0.1N NaOH and DI Rinses	Final Volume 371.2 mL Sodium thiosulfate not added	Element One
SG-1B-H ₂ SO ₄ 01.	01/10/24	. Сошр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	0.1N H ₂ SO ₄ Final Volume and DI Rinses	Element One
SG-1B-NaOH 01.	01/10/24	Сошр.	Chloride ion as Diatomic Chlorine	EPA Method and DI Asiases	0.1N NaOH and DI Rinses	Final Volume 361.1 mL Sodium thiosulfate not added	Element One
SG-2A-H ₂ SO ₄ 01.	01/10/24	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method and DI and DI Rinses	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 504.6 mL	Element One
SG-2A-NaOH 01	01/10/24	Comp.	Comp. Chloride ion as Diatomic Chlorine 26A Method and DI Sodium Sodium Rinses not add	EPA Method 26A	0.1N NaOH and DI Rinses	EPA Method and DI Sodium thiosulfate SoA Rinses not added	Element One

Certification: NJ NELAP NC009 41873 Deeco M26A Report Packet Page 11 of 30

			DEECO, In(3	41873
			3404 Lake Woodard Dr. Raleigh NC 27604			Date:	1/12/24
8			919-250-0285			Train:	山山
Plant Name: Holcim			Plant Location: Ste. Genevive MO			Project Name:	23-3309
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time Comments	Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample Description	Special Notes	Lab
SG-2B-H ₂ SO ₄	01/10/24	Сотр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	0.1N H ₂ SO ₄ Final Volume and DI Rinses	Element One
SG-2B-NaOH	01/10/24	Сопъ.	Chloride ion as Diatomic Chlorine	EPA Method 26A	0.1N NaOH and DI Rinses	O.IN NaOH Final Volume and DI Sas.o mL Sodium thiosulfate not added	Element One
SG-3A-H ₂ SO ₄	01/10/24	Сотр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	0.1N H ₂ SO ₄ Final Volume and DI 533.8 mL	Element One
SG-3A-NaOH	01/10/24	Comp.	Chloride ion as Diatomic Chlorine	EPA Method and DI Sodium thiosa Rinses not added	0.1N NaOH and DI Rinses	Final Volume 373.8 mL Sodium thiosulfate not added	Element One
SG-3B-H ₂ SO ₄	01/10/24	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	0.1N H ₂ SO ₄ Final Volume and DI 524.5 mL	Element One
SG-3B-NaOH	01/10/24	Сотр.	Chloride ion as Diatomic Chlorine	EPA Method and DI Sodium thiosi Rinses not added	0.1N NaOH and DI Rinses	Final Volume 375.6 mL Sodium thiosulfate not added	Element One


			DEECO, In(3404 Lake Woodard Dr. Raleigh, NC 27604 919-250-0285			Date: Lab: Train:	4 \$73 (1/12/24 Element One EPA Method 26A
Plant Name: Holcim			Plant Location: Ste. Genevive MO			Project Name:	23-3309
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time Comments	Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample Description	Special Notes	Lab
SG-FBOn-H ₂ SO ₄	01/10/24	Сотр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	0.1N H ₂ SO ₄ Final Volume and DI 403.0 mL	Element One
SG-FBOn-NaOH	01/10/24	Comp.	Chloride ion as Diatomic Chlorine	EPA Method 26A	0.1N NaOH and DI Rinses	O.IN NaOH Final Volume and DI Sodium thiosulfate not added	Element One
SG-4A-H₂SO₄	01/11/24	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	EPA Method and DI Final Volume 26A Rinses Final Volume 509.5 mL	Element One
SG-4A-NaOH	01/11/24	Comp.	Chloride ion as Diatomic Chlorine	EPA Method 26A	0.1N NaOH and DI Rinses	Final Volume 337.5 mL Sodium thiosulfate not added	Element One
SG-4B-H ₂ SO ₄	01/11/24	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	EPA Method 0.1N H ₂ SO ₄ Final Volume and DI 478.6 mL	Element One
SG-4B-NaOH	01/11/24	Comp.	Chloride ion as Diatomic Chlorine	EPA Method 26A	0.1N NaOH and DI Rinses	0.1N NaOH Sinal Volume 327.3 mL Sodium thiosulfate not added	Element One

Certification: NJ NELAP NC009 41873 Deeco M26A Report Packet Page 13 of 30

			DEECO, In(41873 (
			3404 Lake Woodard Dr. Raleigh, NC 27604			Date: Lab:	ш
Mono.			Dlant I postion: Sto Ganaviro MO			Droitod Nomo:	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time. Comments	Comments	B000-03
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Date/Time Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample Description	Special Notes	Lab
SG-5A-H ₂ SO ₄	01/11/24	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method and DI Rinses	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 479.0 mL	Element One
SG-5A-NaOH	01/11/24	Comp.	Chloride ion as Diatomic Chlorine	EPA Method and DI Rinses	0.1N NaOH and DI Rinses	Final Volume 368.8 mL Sodium thiosulfate not added	Element One
SG-5B-H ₂ SO ₄	01/11/24	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method and DI Rinses Rinses	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 472.3 mL	Element One
SG-5B-NaOH	01/11/24	Сотр.	Chloride ion as Diatomic Chlorine	EPA Method and DI and DI Rinses	0.1N NaOH and DI Rinses	Final Volume 413.8 mL Sodium thiosulfate not added	Element One
SG-6A-H ₂ SO ₄	01/11/24	Сотр.	Fluoride ion as Hydrogen Fluoride	EPA Method and DI and DI Rinses	0.1N H ₂ SO ₄ and DI Rinses	Final Volume 395.9 mL	Element One
SG-6A-NaOH	01/11/24	Сотр.	Chloride ion as Diatomic Chlorine	EPA Method and DI Rinses	0.1N NaOH and DI Rinses	Final Volume 290.7 mL Sodium thiosulfate not added	Element One

Certification: NJ NELAP NC009 41873 Deeco M26A Report Packet Page 14 of 30

			DEECO, In(Date:	41873 (
			Raleigh, NC 27604 919-250-0285			Lab: Train:	Lab: Element One Train: EPA Method 26A
Plant Name: Holcim			Plant Location: Ste. Genevive MO			Project Name:	23-3309
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time .jS, 2\	Date/Time Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Comments	
Relinquished by: (Signature)		Date/Time	Date/Time Received by: (Signature)		Date/Time	Date/Time Comments	
Field Sample No.	Date	Composite or Grab	Analysis Required	Sampling Train	Sample Description	Special Notes	Lab
SG-6B-H ₂ SO ₄	01/11/24	Сотр.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	EPA Method and DI A2SO ₄ Final Volume and DI A2S.0 mL	Element One
SG-6B-NaOH	01/11/24	Comp.	Chloride ion as Diatomic Chlorine	EPA Method and DI 26A Rinses Rinses	0.1N NaOH and DI Rinses	Final Volume 295.8 mL Sodium thiosulfate not added	Element One
SG-FBOff-H ₂ SO ₄	01/11/24	Comp.	Fluoride ion as Hydrogen Fluoride	EPA Method 26A	0.1N H ₂ SO ₄ and DI Rinses	EPA Method and DI Pinal Volume and DI Rinses A00.1 mL	Element One
SG-FBOff-NaOH	01/11/24	Comp.	Chloride ion as Diatomic Chlorine	EPA Method 26A	0.1N NaOH and DI Rinses	EPA Method and DI Sodium thiosulfate SoA Rinses not added	Element One

Analytical Calculations

HF-

Total HX (mg) = [X Results (µg/mL)*Dilution*Beginning Vol (mL)]*Correction Factor 1000

Where-

X Results= Raw sample concentration (ppm) — IC Data Sheet

Dilution= <u>Diluted Volume</u>—IC Run Sheet Aliquot

Beginning Volume--Sample Submission

1.053= Correction factor for hydrogen fluoride

Cl₂ -

Total X_2 (mg) = X Results (μ g/mL)*Dilution*Beginning Volume (mL) 1000

Where-

X Results= Raw sample concentration (ppm)—Cl2 IC Data Sheet

Dilution= <u>Diluted Volume</u>—IC Run Sheet Aliquot

Beginning Volume--Sample Submission

Analytical Calculations

Spike Recovery-

Spike (%) = (Spiked Result (
$$\mu$$
g/mL) – Sample Result (μ g/mL)) X100
Spike Amount (μ g/mL)

Where-

Spike Result = Raw sample concentration (ppm)--IC-Data Sheet

Sample Result = Raw sample concentration (ppm)--IC-Data Sheet

Spike Amount—IC-Data Sheet

Duplicate Analysis RPD-

RPD (%) = (Duplicate Result (
$$\mu$$
g/mL) - Sample Result (μ g/mL)) X100
Average (μ g/mL)

Where-

Sample Result and Duplicate Results=Raw sample concentration (ppm)--IC-Data Sheet

Average= (<u>Duplicate + Sample Results</u>)
2

ele	ment	One	AIF	R TE	STIN	G SA	MPL	E SUBN	IISSION	FORM	La	b ID	41873
										Analys	sis Due D	ate 01.2	3 24
									04	VQC/Repo			
									Q,	и фолтор.		uto 01.2	.0.2 1
Clien	10.00	Deeco, I	nc.								Date Rec		
Proje	Ct No	23-3309									Time Red	1100	
Vol	ume M	arked	Vol	ume L	oss		ÆŲ pH	< 2	∠ BH p	H > 8		Ref. Metho	d:
Y		N	Υ	(N	?	()	()	N	(Y)	N		26A	
· · ·	ala lal	4161 41 -											
. 1		entification 126A-R1A	on			• 7	CC M	064 D4D		40	00 14004	FRON	
• 2		126A-R1A				8		26A-R1B 26A-R2B		13	SG-M26A		
, 3		126A-R3A				9		26A-R3B	***************************************	14	5G-W/26F	4-FBOFF	×
		126A-R3A S	Snike			9		26A-R3B Si	nike				
, 4		26A-R4A	opino			10		26A-R4B	JIKE				
, 5		26A-R5A				11		26A-R5B					
. 6		26A-R6A				12		26A-R6B					
				Sam	ples 1-1		HF	LOTTIOD					
Anal	yses F	Requeste	d	Sam	ples 1-1	4	Cl ₂						
Runs	/FB												
		FH Im	pinger bined In	1 np)	FH	Imping	er 2	FH Imp	inger 3		inger 4	BH Imp	oinger 5
Lab II)	BV, ml	FV	, ml	BV, m	ni F	V, ml	BV, ml	FV, ml	BV, ml	FV, ml	BV, ml	FV, ml
1		502.1					\			371,2			
2		504.6					\			369,9			
3.S		533.8					\			373.8			
4		509.5					_			337,5			
5		479,0					_			3688			
6		395.9								290.7			
7		499.7								361.1			
8		497,3					>			388.0			
9.5		524.5					_			375,6			
10		478.6					_			327,3			
11		4723								413.8			
12		425.0								295.8			
13		403.0								339:7			
14		400.1				1				369.8			
Lab C	omm	unication	s 5	ee k	offle	S to	ov S	ample	volu	nes-Ku	<u>را</u>		
			- 1000000000000000000000000000000000000										
Rec Rur	ns/FB; H	2SO4; NaOH;	No RB	receive	d01.15	2411R			20100101				
			7	1000110	01.10	.27 LLU							
SS Pa SS by 1/15/2		3:51:40 PM							Imp 4 Labele	2, &3 Prep & 5 Prep By ed By/Date_ ification By/	Date M	YUN 1/18 Mb 1.23-1 1.5/24 1.15.24	124

M26A-HF IC Data Sheet

Lab ID #: 41873

Client: Deeco Column: IonPac AS14A

Date: 01.23.24 Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml): 0.10 F to HF factor: 1.053

						%		
			Final	HF, Total	Spike,	Recovery/		
Sample ID	F μg/ml	Dilution	Vol, ml	mg	µg/ml	RPD	File Name	Date Time
LRB	0.000	1	10	< 0.001			-7650ee00:18d1e609e6c:-7c08	1/18/2024 21:18
LRB	0.000	1	10	< 0.001		NA	-7650ee00:18d1e609e6c:-7c06	1/18/2024 21:38
LRB SPK	5.022	1	10	0.053	5.00	100%	-7650ee00:18d1e609e6c:-7c04	1/18/2024 21:59
LRB SPK	5.071	1	10	0.053	5.00	101%	-7650ee00:18d1e609e6c:-7c02	1/18/2024 22:19
41873-1	0.000	5	502.1	< 0.264			-7650ee00:18d1e609e6c:-7c00	1/18/2024 22:40
41873-1 DUP	0.000	5	502.1	< 0.264		NA	-7650ee00:18d1e609e6c:-7bfe	1/18/2024 23:00
41873-2	0.000	5	504.6	< 0.266			-7650ee00:18d1e609e6c:-7bfc	1/18/2024 23:21
41873-2 DUP	0.000	5	504.6	< 0.266		NA	-7650ee00:18d1e609e6c:-7bfa	1/18/2024 23:41
41873-3	0.000	5	533.8	< 0.281			-7650ee00:18d1e609e6c:-7bec	1/19/2024 2:04
41873-3 DUP	0.000	5	533.8	< 0.281		NA	-7650ee00:18d1e609e6c:-7bea	1/19/2024 2:25
41873-3 SPK	5.042	5	533.8	14.2	5.00	101%	-7650ee00:18d1e609e6c:-7be8	1/19/2024 2:45
41873-3 SPK DUP	5.018	5	533.8	14.1	5.00	100%	-7650ee00:18d1e609e6c:-7be6	1/19/2024 3:06
41873-4	0.000	5	509.5	< 0.268			-7650ee00:18d1e609e6c:-7bf8	1/19/2024 0:01
41873-4 DUP	0.000	5	509.5	< 0.268		NA	-7650ee00:18d1e609e6c:-7bf6	1/19/2024 0:22
41873-5	0.000	5	479.0	< 0.252			-7650ee00:18d1e609e6c:-7be4	1/19/2024 3:26
41873-5 DUP	0.000	5	479.0	< 0.252		NA	-7650ee00:18d1e609e6c:-7be2	1/19/2024 3:47
41873-6	0.000	5	395.9	< 0.208			-7650ee00:18d1e609e6c:-7be0	1/19/2024 4:07
41873-6 DUP	0.000	5	395.9	< 0.208		NA	-7650ee00:18d1e609e6c:-7bde	1/19/2024 4:27
41873-7	0.000	5	499.7	< 0.263			-7650ee00:18d1e609e6c:-7bdc	1/19/2024 4:48
41873-7 DUP	0.000	5	499.7	< 0.263		NA	-7650ee00:18d1e609e6c:-7bda	1/19/2024 5:08
41873-8	0.000	5	497.3	< 0.262			-7650ee00:18d1e609e6c:-7bd0	1/19/2024 6:51
41873-8 DUP	0.000	5	497.3	< 0.262		NA	-7650ee00:18d1e609e6c:-7bce	1/19/2024 7:11
41873-9	0.000	5	524.5	< 0.276			-7650ee00:18d1e609e6c:-7b1f	1/19/2024 7:32
41873-9 DUP	0.000	5	524.5	< 0.276		NA	-7650ee00:18d1e609e6c:-7b1d	1/19/2024 7:52
41873-9 SPK	5.101	5	524.5	14.1	5.00	102%	-7650ee00:18d1e609e6c:-7b1b	1/19/2024 8:13
41873-9 SPK DUP	5.095	5	524.5	14.1	5.00	102%	-7650ee00:18d1e609e6c:-7b19	1/19/2024 8:33
41873-10	0.000	5	478.6	< 0.252			-7650ee00:18d1e609e6c:-7b15	1/19/2024 8:54
41873-10 DUP	0.000	5	478.6	< 0.252		NA	-7650ee00:18d1e609e6c:-7b13	1/19/2024 9:14
41873-11	0.000	5	472.3	< 0.249			-7650ee00:18d1e609e6c:-7b11	1/19/2024 9:34
41873-11 DUP	0.000	5	472.3	< 0.249		NA	-7650ee00:18d1e609e6c:-7b17	1/19/2024 9:55
41873-12	0.000	5	425.0	< 0.224			-7650ee00:18d1e609e6c:-7a34	1/19/2024 11:37
41873-12 DUP	0.000	5	425.0	< 0.224		NA	-7650ee00:18d1e609e6c:-7a32	1/19/2024 11:58
41873-13 FB	0.000	5	403.0	< 0.212			-7650ee00:18d1e609e6c:-7a30	1/19/2024 12:18
41873-13 FB DUP	0.000	5	403.0	< 0.212		NA	-7650ee00:18d1e609e6c:-7a2e	1/19/2024 12:39
41873-14 FB	0.000	5	400.1	< 0.211			-7650ee00:18d1e609e6c:-79bd	1/19/2024 12:59
41873-14 FB DUP	0.000	5	400.1	< 0.211		NA	-7650ee00:18d1e609e6c:-78da	1/19/2024 13:20

elementOne e 41873-HF

HF Data 1 of 2

Luch

elementOne M26A-HF IC Data Sheet Lab ID #: 41873

Client: Deeco Column: IonPac AS14A

Date: 01.23.24 **Eluent:** 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml): 0.10 F to HF factor: 1.053

Standards	F µg/ml Dilution	QC, µg/ml	% Relative Error	% Recovery	File Name	Date Time
0.0	0.00				-7650ee00:18d1e609e6c:-78e6	1/18/2024 17:12
0.1	0.103		3.0%	103%	-7650ee00:18d1e609e6c:-78e4	1/18/2024 17:33
1.0	0.964		-3.6%	96%	-7650ee00:18d1e609e6c:-78e2	1/18/2024 17:53
3.0	3.00		0.1%	100%	-7650ee00:18d1e609e6c:-78e0	1/18/2024 18:14
5.0	5.05		1.0%	101%	-7650ee00:18d1e609e6c:-78de	1/18/2024 18:34
10.0	9.98		-0.2%	100%	-7650ee00:18d1e609e6c:-78dc	1/18/2024 18:54
0.1	0.097		-3.0%	97%	-7650ee00:18d1e609e6c:-78d2	1/19/2024 14:41
1.0	0.986		-1.4%	99%	-7650ee00:18d1e609e6c:-78d0	1/19/2024 15:02
3.0	3.09		2.9%	103%	-7650ee00:18d1e609e6c:-78ce	1/19/2024 15:22
5.0	5.19		3.7%	104%	-7650ee00:18d1e609e6c:-78cc	1/19/2024 15:43
10.0	10.2		2.3%	102%	-7650ee00:18d1e609e6c:-78ca	1/19/2024 16:03
Correlation-	0.999965					
QC	5.01	5.00		100%	-7650ee00:18d1e609e6c:-7c14	1/18/2024 19:15
QC	5.03	5.00		101%	-7650ee00:18d1e609e6c:-7c12	1/18/2024 19:35
QC	5.04	5.00		101%	-7650ee00:18d1e609e6c:-7bf4	1/19/2024 0:42
QC	5.08	5.00		102%	-7650ee00:18d1e609e6c:-7bf2	1/19/2024 1:03
QC	5.13	5.00		103%	-7650ee00:18d1e609e6c:-7bd8	1/19/2024 5:29
QC	5.09	5.00		102%	-7650ee00:18d1e609e6c:-7bd6	1/19/2024 5:49
QC	5.06	5.00		101%	-7650ee00:18d1e609e6c:-7a3c	1/19/2024 10:15
QC	5.07	5.00		101%	-7650ee00:18d1e609e6c:-7a3a	1/19/2024 10:36
QC	5.15	5.00		103%	-7650ee00:18d1e609e6c:-78d8	1/19/2024 13:40
QC	5.18	5.00		104%	-7650ee00:18d1e609e6c:-78c8	1/19/2024 16:24
DL	0.097	0.10		97%	-7650ee00:18d1e609e6c:-7c0c	1/18/2024 20:37
DL	0.096	0.10		96%	-7650ee00:18d1e609e6c:-7c0a	1/18/2024 20:57
DL	0.099	0.10		99%	-7650ee00:18d1e609e6c:-78d6	1/19/2024 14:00
DL	0.098	0.10		98%	-7650ee00:18d1e609e6c:-78c6	1/19/2024 16:44
36738-5QC	6.79 1	6.96		103%	-7650ee00:18d1e609e6c:-78c2	1/19/2024 17:25
BLK	0.00				-7650ee00:18d1e609e6c:-7c10	1/18/2024 19:56
BLK	0.00				-7650ee00:18d1e609e6c:-7c0e	1/18/2024 20:16
BLK	0.00				-7650ee00:18d1e609e6c:-7bf0	1/19/2024 1:23
BLK	0.00				-7650ee00:18d1e609e6c:-7bee	1/19/2024 1:44
BLK	0.00				-7650ee00:18d1e609e6c:-7bd4	1/19/2024 6:10
BLK	0.00				-7650ee00:18d1e609e6c:-7bd2	1/19/2024 6:30
BLK	0.00				-7650ee00:18d1e609e6c:-7a38	1/19/2024 10:56
BLK	0.00				-7650ee00:18d1e609e6c:-7a36	1/19/2024 11:17
BLK	0.00				-7650ee00:18d1e609e6c:-78d4	1/19/2024 14:21
BLK	0.00				-7650ee00:18d1e609e6c:-78c4	1/19/2024 17:05

elementOne e 41873-HF

HF Data 2 of 2

elementOne

IC Sample Sheet/Digestion Worksheet

Lab ID #: 41873

Date: 1.18.24 Column: Metrosep A Supp 19 Instrument: 930 | 85 8
Analyst: KUT | LAW Conc. Eluent: 8.0 mM Na₂CO₃/ 0.25 mM NaHCO₃ Lot# MetroNym 23120 6

Batch name: O1/824-41873 HF 10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 500 mM H $_2$ SO $_4$ Lot # $_1$ C

Regenerant: 500 mM H_2SO_4 Lot # |C|| - 11 & 3 Flow Rate: 0.7 mL/min. Method: 300/26A

AS LOC.	Sample ID	Client	Analyte	Results	Results	Dilution	Wt (g) /
AS LOC.		Olletti	Allalyte	(ug/mL)	(ug/mL)		FV (mL)
\	6.0			RZ	ac lot	#	
2	0.1		F	,999965	BBCJOS	74 Sigm	α
3	0.1					U	
3 4 5	3.0						
5	5.0						
6	10.0						
7	ac						
7	ac						
9	BIX						
10	BIK DL						
11	DL						
12	DL						
13	LKB						
14	LRB						A
15	URB+						
11.	1101						
17	41873-1	Deero	HF			5×	
18	-Idup	1	1			1	
19	-2						
20	41873-1 -1dup -2 -2dup				_		
21	-4				-		
aa	-4dup	1				1	
23	ac						
24	-4dup ac ac						
25	BIC						

Manual integrations noted by M			c_{α}			
Curve IC Lot # 1C11 -115 -3	_Comments:	F	of 3	_		
Spike 50 uL from 1000 ug/mL Std.	to 10mL sample Lo	t #'s:IC ME Sol	ution 2303029 -250496	NO2 Solution 23	30 8942-250	HPS
QC: Spike 50 uL from 1000 ug/mL l						
QC: Spike 20 uL from 1000 ug/mL	NO ₂ , NO ₃ , and PO ₄	Std. to 10mL sa	ample; lot #'s listed above.			
Submitted for QC- Date: 01-7224	Time: \$(37)	Bv: (,~)	QC Review- Date:	Fime:	Bv:	

IC Sample Sheet/Digestion Worksheet

Lab ID #: 41873

Date: 1.18.24 Column: Metrosep A Supp 19 Instrument: 930 1858
Analyst: KLG ILAW Conc. Eluent: 8.0 mM Na₂CO₃/ 0.25 mM NaHCO₃ Lot# MtYo hm 231206

Batch name: 01182441873 HF 10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 500 mM H₂SO₄ Lot # 1000 Lot # 1000

Regenerant: 500 mM H_2SO_4 Lot # |C|| - || 2 - 3Flow Rate: 0.7 mL/min. Method: 300/26A

AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
26	BIK						
27	41873-3	Deco	HF			54	
28	-3aug	1		_	5.042	1	
29	-3spk				P1-10 cm		
30	-3sprdup				5.08		
31	B16 41873-3 -3aup -3spx -3spxdup -5 -5dup -6 -10 -10 -7dup AC AC B116				-		
32	-5 dup				1		
33	-6)		
34	-6 dup				J		
35	-7				/		
36	-7 dup	1	4)	→	
37	ac '						
38	ac						
39	0110						
40	BILC						
41	41873-8	Deeco	HF			5X	
42	-8 dup	1			_		*
43	-9 '				-		
44	-9 dup				`		*
45	-95pk				5,101		
46	-95px -95px dup -10				5,095		
47	-10"				_		
48	-10 dup						
49	-11						
50	-11 dup	4	4		_	1	

Manual integrations noted by M		2				
Curve IC/Lot #	Comments:	P. 0	ot3			
Spike 50 uL from 1000 ug/mL Std. t				IC NO2 Solution	/	1
QC: Spike 50 uL from 1000 ug/mL F	F, ØI, Br, and SQ St	d to 10mL samp	e; lot #'s listied ab	ove.	/	1
QC: Spike 20 uL from 1000 ug/mL N	yO2, NO3, and PO4 S	td. to 10mL sam	ple; lot #'s listed at	oove. /	/ /	,
Submitted for QC- Date:			QC Review-Date	e:/_ Time:	Ву:	

IC Sample Sheet/Digestion Worksheet

Lab ID #: 41873

Date: 1.18.24 Column: Metrosep A Supp 19 Instrument: 930 | 868 Analyst: KLB | LAW Conc. Eluent: 8.0 mM Na $_2$ CO $_3$ / 0.25 mM NaHCO $_3$ Lot# Metrohm 23 1206

Batch name: 01824-41873 HF 10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 500 mM H₂SO₄ Lot # 10

Regenerant: 500 mM H_2SO_4 Lot # IC III - III 2 - 3 Flow Rate: 0.7 mL/min. Method: 300/26A

	Flow Rate: 0.7 mL/min. Method: 300/26A						
AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
51	ac						
52	ac						
52 53	BIK						
54	BIK						
55	41873-12	Dello	HF		-	5X	
56	-12 dup				-		
57	-13 FB						
58	-13FB dup				<u></u>		
59	-14FB						
60	-14FB dup	1	\downarrow		(April 17 Transmission)	V	
61	ac '						
62	DL						
63	BIY						
64	0-1						
65	1.0						
66	3.0						
67	5.0						
68	10.0						
69	ac						
70	PL						
71	BIE						
72	36738-5QC		HF		6,290	17	TV= 6.96
73							
74							
75							

Manual integrations noted by M		0 1/-		
Curve IC/Lot #	_Comments:0.3	ot 2	_ /	
Spike 50 uL from 1000/ug/mL Std. to	10mL sample Lot #'s:IC ME Sol	ution / IC !	NO2 Solution	/
QC: Spike 50 uL from 1000 ug/mL F,	, CI, Br, and SQ Std. to 10mL sai	mple; lot #'s liştied above.		/
QC: Spike 20 uL from 1000 ug/mL N	O2, MO3, and PO4 Std. to/10mL sa	ample; lot #'s listed above.		
Submitted for QC-/Date:		QC Review- Date:	Time:	/ By:
L L	1	/	/	

M26A-Cl₂ IC Data Sheet

Lab ID #: 41873

Client: Deeco

Column: IonPac AS14A

Date: 01.25.24

Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW/MNB

Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml): 0.10

Sample ID	Cl ⁻ µg/ml	Dilution	Final Vol, ml	Cl ₂ , Total mg	Spike, µg/ml	% RPD/ Recovery	File Name	Date Time
LRB	-0.029	1	10	< 0.001			-4d041e00:18d2346a31a:-6b9c	1/24/2024 16:13
LRB	-0.027	1	10	< 0.001		NA	-4d041e00:18d2346a31a:-6b9a	1/24/2024 16:37
LRB SPK	5.22	1	10	0.052	5.00	104%	-4d041e00:18d2346a31a:-6c12	1/23/2024 17:07
LRB SPK	5.41	1	10	0.054	5.00	108%	-4d041e00:18d2346a31a:-6c10	1/23/2024 17:30
41873-1	0.111	5	371.2	0.206			-4d041e00:18d2346a31a:-6c0e	1/23/2024 17:54
41873-1 DUP	0.113	5	371.2	0.210		1.8%	-4d041e00:18d2346a31a:-6c0c	1/23/2024 18:17
41873-2	0.122	5	369.9	0.226			-4d041e00:18d2346a31a:-6c0a	1/23/2024 18:41
41873-2 DUP	0.118	5	369.9	0.218		3.3%	-4d041e00:18d2346a31a:-6c08	1/23/2024 19:04
41873-3	0.103	5	373.8	0.193			-4d041e00:18d2346a31a:-6bfa	1/23/2024 21:49
41873-3 DUP	0.103	5	373.8	0.193		0.0%	-4d041e00:18d2346a31a:-6bf8	1/23/2024 22:12
41873-3 SPK	5.37	5	373.8	10.0	5.00	105%	-4d041e00:18d2346a31a:-6bf6	1/23/2024 22:36
41873-3 SPK DUP	5.50	5	373.8	10.3	5.00	108%	-4d041e00:18d2346a31a:-6bf4	1/23/2024 22:59
41873-4	0.420	5	337.5	0.709			-4d041e00:18d2346a31a:-6c06	1/23/2024 19:28
41873-4 DUP	0.424	5	337.5	0.716		0.9%	-4d041e00:18d2346a31a:-6c04	1/23/2024 19:51
41873-5	0.146	5	368.8	0.269			-4d041e00:18d2346a31a:-6bf2	1/23/2024 23:23
41873-5 DUP	0.141	5	368.8	0.260		3.5%	-4d041e00:18d2346a31a:-6bf0	1/23/2024 23:46
41873-6	0.190	5	290.7	0.276			-4d041e00:18d2346a31a:-6bee	1/24/2024 0:10
41873-6 DUP	0.190	5	290.7	0.276		0.0%	-4d041e00:18d2346a31a:-6bec	1/24/2024 0:33
41873-7	0.033	5	361.1	< 0.181			-4d041e00:18d2346a31a:-6b3f	1/24/2024 0:57
41873-7 DUP	0.065	5	361.1	< 0.181		NA	-4d041e00:18d2346a31a:-6b3c	1/24/2024 1:20
41873-8	0.091	5	388.0	< 0.194			-4d041e00:18d2346a31a:-6bde	1/24/2024 3:18
41873-8 DUP	0.087	5	388.0	< 0.194		NA	-4d041e00:18d2346a31a:-6bdc	1/24/2024 3:41
41873-9	0.096	5	375.6	< 0.188			-4d041e00:18d2346a31a:-6bda	1/24/2024 4:05
41873-9 DUP	0.095	5	375.6	< 0.188		NA	-4d041e00:18d2346a31a:-6bd8	1/24/2024 4:28
41873-9 SPK	5.40	5	375.6	10.1	5.00	106%	-4d041e00:18d2346a31a:-6bd6	1/24/2024 4:52
41873-9 SPK DUP	5.40	5	375.6	10.1	5.00	106%	-4d041e00:18d2346a31a:-6bd4	1/24/2024 5:15
41873-10	0.047	5	327.3	< 0.164			-4d041e00:18d2346a31a:-6b3b	1/24/2024 5:39
41873-10 DUP	0.046	5	327.3	< 0.164		NA	-4d041e00:18d2346a31a:-6b39	1/24/2024 6:02
41873-11	0.138	5	413.8	0.286			-4d041e00:18d2346a31a:-6bce	1/24/2024 6:26
41873-11 DUP	0.135	5	413.8	0.279		2.2%	-4d041e00:18d2346a31a:-6bcc	1/24/2024 6:49
41873-12	0.240	5	295.8	0.355			-4d041e00:18d2346a31a:-6bc2	1/24/2024 8:47
41873-12 DUP	0.243	5	295.8	0.359		1.2%	-4d041e00:18d2346a31a:-6bc0	1/24/2024 9:10
41873-13 FB	0.074	5	339.7	< 0.17			-4d041e00:18d2346a31a:-6b90	1/24/2024 18:34
41873-13 FB DUP	0.076	5	339.7	< 0.17		NA	-4d041e00:18d2346a31a:-6b8e	1/24/2024 18:58
41873-14 FB	0.074	5	369.8	< 0.185			-4d041e00:18d2346a31a:-6bba	1/24/2024 10:21
41873-14 FB DUP	0.077	5	369.8	< 0.185		NA	-4d041e00:18d2346a31a:-6bb8	1/24/2024 10:44

element**One** e 41873-Cl₂

Cl₂-Data 1 of 2

Inh Au

M26A-Cl₂ IC Data Sheet

Lab ID #: 41873

Client: Deeco Column: IonPac AS14A

Date: 01.25.24 Eluent: 8.0 mM Na₂CO₃/ 1.0 mM NaHCO₃

Analyst: LAW/MNB Flow Rate: 1.0 mL/min.

Detection Limit, (µg/ml): 0.10

Standards	Cl ⁻ µg/ml	Dilution	QC μg/ml	%Relative Error	% Recovery	File Name	Date Time
0.0	0.00		**********			-4d041e00:18d2346a31a:-6b4b	1/23/2024 11:38
0.1	0.102			2.0%	102%	-4d041e00:18d2346a31a:-6b49	1/23/2024 12:01
1.0	0.986			-1.4%	99%	-4d041e00:18d2346a31a:-6b47	1/23/2024 12:25
3.0	2.95			-1.8%	98%	-4d041e00:18d2346a31a:-6b45	1/23/2024 12:49
5.0	5.09			1.9%	102%	-4d041e00:18d2346a31a:-6b43	1/23/2024 13:12
10.0	9.97			-0.3%	100%	-4d041e00:18d2346a31a:-6b41	1/23/2024 13:36
0.1	0.109			9.0%	109%	-4d041e00:18d2346a31a:-6bac	1/24/2024 13:05
1.0	1.01			0.9%	101%	-4d041e00:18d2346a31a:-6baa	1/24/2024 13:29
3.0	3.03			0.9%	101%	-4d041e00:18d2346a31a:-6ba8	1/24/2024 13:52
5.0	5.22			4.5%	104%	-4d041e00:18d2346a31a:-6ba6	1/24/2024 14:16
10.0	10.5			5.4%	105%	-4d041e00:18d2346a31a:-6ba4	1/24/2024 14:39
Correlation-	0.999899						
QC	5.07		5.00		101%	-4d041e00:18d2346a31a:-6c22	1/23/2024 13:59
QC	5.03		5.00		101%	-4d041e00:18d2346a31a:-6c20	1/23/2024 14:23
QC	4.97		5.00		99%	-4d041e00:18d2346a31a:-6c02	1/23/2024 20:15
QC	5.17		5.00		103%	-4d041e00:18d2346a31a:-6c00	1/23/2024 20:38
QC	5.04		5.00		101%	-4d041e00:18d2346a31a:-6be€	1/24/2024 1:44
QC	5.24		5.00		105%	-4d041e00:18d2346a31a:-6be4	1/24/2024 2:07
QC	5.17		5.00		103%	-4d041e00:18d2346a31a:-6bca	1/24/2024 7:13
QC	5.24		5.00		105%	-4d041e00:18d2346a31a:-6bc8	1/24/2024 7:36
QC	5.27		5.00		105%	-4d041e00:18d2346a31a:-6bb2	1/24/2024 11:55
QC	5.27		5.00		105%	-4d041e00:18d2346a31a:-6ba2	1/24/2024 15:03
QC	5.10		5.00		102%	-4d041e00:18d2346a31a:-6b8c	1/24/2024 19:21
DL	0.108		0.10		108%	-4d041e00:18d2346a31a:-6c1a	1/23/24 15:33
DL	0.098		0.10		98%	-4d041e00:18d2346a31a:-6c18	1/23/2024 15:56
DL	0.102		0.10		102%	-4d041e00:18d2346a31a:-6bb0	1/24/2024 12:18
DL	0.098		0.10		98%	-4d041e00:18d2346a31a:-6ba0	1/24/2024 15:26
40034-7 QC	7.84	10	78.0		101%	-4d041e00:18d2346a31a:-6bb6	1/24/2024 11:08
40034-7 QC	7.85	10	78.0		101%	-4d041e00:18d2346a31a:-6bb4	1/24/2024 11:31
BLK	-0.026					-4d041e00:18d2346a31a:-6c1e	1/23/2024 14:46
BLK	-0.026					-4d041e00:18d2346a31a:-6c1c	1/23/2024 15:10
BLK	-0.027					-4d041e00:18d2346a31a:-6bfe	1/23/2024 21:02
BLK	-0.021					-4d041e00:18d2346a31a:-6bfc	1/23/2024 21:25
BLK	-0.027					-4d041e00:18d2346a31a:-6be2	1/24/2024 2:31
BLK	-0.027					-4d041e00:18d2346a31a:-6beC	1/24/2024 2:54
BLK	-0.021					-4d041e00:18d2346a31a:-6bc6	1/24/2024 8:00
BLK	-0.010					-4d041e00:18d2346a31a:-6bc4	1/24/2024 8:23
BLK	-0.024					-4d041e00:18d2346a31a:-6bae	1/24/2024 12:42
BLK	-0.020					-4d041e00:18d2346a31a:-6b9e	1/24/2024 15:50
BLK	-0.028					-4d041e00:18d2346a31a:-6b8a	1/24/2024 19:45

elementOne e 41873-Cl₂

Cl₂-Data 2 of 2

24

25

QC

BUC

IC Sample Sheet/Digestion Worksheet

Lab ID #: 41873

Date: 1.23.24

Column: IonPac AS14A

Instrument: 881 1858

Analyst: LAW [WWb

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Lot# 1011.101.1

10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Batch name: 012324-41873 Regenerant: 100mM H₃PO₄

Lot # (CI) 117-2 Method: 26A NaOH

	0(15 14-11		w Rate: 1.0 ml		Method: 26A NaOH			
AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)	
1	0.0			©C_	MANIF	22	, , , , , , ,	
2	0.1		Ĉ1-	4305159	PICCA	0.099809		
3	1.0							
4	3.0							
5	5.0							
le	0.0							
7	QC							
\$	QC							
9	BLK							
W	BUK							
()	PL							
12	DL						Estable bex	
13	LPB					N	Solciule	
14	LRB					redul of reduct	6/0/	
15	LPBF				\	x read	O	
16	LPB+				60-5	of replied		
17	41873-1	Deeco	Clz	6.111	0.352/	5x		
18	-10	4	1	0.113	0.344	1		
19	-2			0.122	0.406			
70	- 2d			0.116	0.3912			
21	- 4			6.420	0/439			
22	- 4d		9	0.424	\$.453			
23	Qc				1			

Manual integrations noted by M						
Curve IC Lot # (C) . (17 - 4	_Sodium Thiosulfate	e Lot # [[]]. 13.	4 Comments:	1001 10	F Q	
Spike 50 uL from 1000 ug/mL Std. to	o 10mL sample Lot	#'s: IC ME Solution	n 23030291 - 251 H	oc voj t		
QC: Spike 50 uL from 1000 ug/mL B	r Std. to 10mL sam	ple; lot #'s listied a	bove.	, ,		
Submitted for QC- Date: 1-25-24		10.1.01.	QC Review- Date:	Time:	By:	

IC Sample Sheet/Digestion Worksheet

Lab ID #: 41873

Date: 1.23.24 Analyst: Law mus

Column: IonPac AS14A Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Instrument: 881/858 Lot# 1011-1000-1

10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 100mM $\rm H_3PO_4$ $\rm Lot~\#~U$

Batch name: 012324-41873 Flow Rate: 1.0 mL/min.

Lot # いいーロール Method: 26A NaOH

AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
26	YOUR						
27	41873-3	DYYCO	Cla	0.103	0.330 /	Sx	
28	- 3d	1		0.103	0.327	1	
29	-3+			5.373	5.373/		
30	- 3+ dup			5.504	5.513		
31	-5			().146	0.329		
32	-5d			0.141	0.333		
33	-\0			0.190	0.444		
34	-led			0.190	0.447		
35	-4				0/324		
36	- 7d	4	4		V-356	4	
37	QC						
34	Qc						
391	BUK						
40	BIK						
41	41873-8	Dieco	Cla	0.091	0.249/	5×	
42	-9 d			0.087	0.249/		
43	-9			0.096	0.201		
44	-9d			0.095	0.28h		
45	-9+			5.401	5.477		
40	-at dup			5.394	5/398		
47	-10				0.390		
48	-1001				6.389		
49	-11			0.138	10.293		
80	- Ud			07.35	0.301		

Manual integra						
Curve IC Lot #	Sodium Thio	sulfate Lot #	Comments	: pa 7 af	-4	
Spike 50 uL from 1000 ug/ml	Std. to 10mL samp	e Lot #'s: IC ME S	olution	.)		
QC: Spike 50 uL from 1000/0	ig/mL Br Std. to 10m	L sample; lot #'s lis	stied above.			
Submitted for QC- Date: /	Time:	By:/_	QC Review- Date:	Time:	By:	
(

IC Sample Sheet/Digestion Worksheet

Lab ID #: 41873

Date: 1.23.24 Analyst: Law mmb Column: IonPac AS14A

Instrument: 981 | 85%

Conc. Eluent: 8.0 mM Na₂CO₃/ 1.0mM NaHCO₃

Lot# 1011-104-1

10mL Conc. Eluent Diluted to FV=1L with filtered UPDI Regenerant: 100mM $\rm H_3PO_4$ Lot # $\rm \downarrow$

Batch name: 012324-41873 Flow Rate: 1.0 mL/min.

AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
51	QC						
52	QC						
53	BUK						
54	BLK						
55	41873-12	Dieco	Clr	0.246	0.661/	SX	
SU	-12d			G.243	0.414	1	
57	-13 FB			0.100	0.100		PC confirm
58	-13 FBd			0100	0.109		@ 1010
59	-14 613			_	_/		
leo	-14 FBC	9			+	7	
121	40034 - 7 QC			7.941	7.841	10 X	TV=78.0
ler	-7 QUd		1	7.849	7/849	9	
43	30						
49	DL						
us	BUC						
le	0.1						
L7	1.0						
Us	3.0						
49	5.0						
70	10.0						
71	QU						
72	DL						
73	BUC						
74	LRB						
75	LPB						

Manual integra	1	7		
Curve IC Lot #	Sodium Thiosulfate Lot #	Comments:	bo1 30f 4	
Spike 50 uL from 1000 ug/m/	Std. to 10mL sample Lot #'s: IC ME	Solution	. ,	
QC: Spike 50 uL from 1000/u	g/mL Br Std. to 10mL sample; lot #'s	listied above.		
Submitted for QC- Date:/_	Time: By:	QC Review- Date:	Time: By:	
Ĺ				
		/		

elementO	ne IC S	Sample Sh	eet/Digestio	n Workshe	et	Lab ID #:	41873
Ana	Date: (+23-24 alyst: LAW (MM) ame: (1) 2324 - 4187	Column: IonPac AS14A Instrument: $\Re [\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					loce - 1
AS LOC.	Sample ID	Client	Analyte	Results (ug/mL)	Results (ug/mL)	Dilution	Wt (g) / FV (mL)
74	41473-3	decco	(12	(ug/iiiL)	(1.167)	lox	a to and the
77	- 3+	1			5.443.	1	LERO EPOPO
78	-9				0.14		Pecifs
79	-9+	1	1		5.445	→	
\$10	.Qt=13 HB	1	1		_	SX	
87	-BUR 13 FISC	1	1		_	1	
\$2	OC.						
83	BUC						
	University of the second						
				*			
Manual integra Curve IC Lot #	Sadi	um Thiosulfate	Lot#	/ Com-	onte: Inc. A	- nf A	
Spike 50 uL fro	m 1000 ug/mL Std./to 10m	L sample Lot #	s: IC ME Solution		ents: <u>pg</u> 4	014	
Submitted for C	L from 1000 ug/m/ Br Std QC- Date: Time	. to 10mL samp e:I	ole; lot #'s listied/al	oove. C Review- Date:	Time:	By:	

Appendix D

Plant Process Data

Ste. Genevieve MO

Main Stack Raw Mills On

DA	S	T	im	e
_,	\sim		111	

Run 1	Clinker Production (mtph)
1/10/2024 14:30	423.1
1/10/2024 14:31	500.0
1/10/2024 14:32	500.0
1/10/2024 14:33	1076.9
1/10/2024 14:34	0.0
1/10/2024 14:35	1000.0
1/10/2024 14:36	500.0
1/10/2024 14:37	576.9
1/10/2024 14:38	423.1
1/10/2024 14:39	576.9
1/10/2024 14:40	500.0
1/10/2024 14:41	1076.9
1/10/2024 14:42	0.0
1/10/2024 14:43	1000.0
1/10/2024 14:44	0.0
1/10/2024 14:45	1000.0
1/10/2024 14:46	500.0
1/10/2024 14:47	500.0
1/10/2024 14:48	1076.9
1/10/2024 14:49	0.0
1/10/2024 14:50	1000.0
1/10/2024 14:51	0.0
1/10/2024 14:52	1076.9
1/10/2024 14:53	500.0
1/10/2024 14:54	500.0
1/10/2024 14:55	500.0
1/10/2024 14:56	1076.9
1/10/2024 14:57	0.0
1/10/2024 14:58	1000.0
1/10/2024 14:59	500.0
1/10/2024 15:00	500.0
1/10/2024 15:01	500.0
1/10/2024 15:02	500.0
1/10/2024 15:03	1076.9
1/10/2024 15:04	0.0
1/10/2024 15:05	1000.0
1/10/2024 15:06	500.0

Ste. Genevieve MO

Main Stack Raw Mills On DAS Time

Run 1	Clinker Production (mtph)
1/10/2024 15:07	576.9
1/10/2024 15:08	500.0
1/10/2024 15:09	500.0
1/10/2024 15:10	500.0
1/10/2024 15:11	1076.9
1/10/2024 15:12	0.0
1/10/2024 15:13	1000.0
1/10/2024 15:14	500.0
1/10/2024 15:15	500.0
1/10/2024 15:16	576.9
1/10/2024 15:17	423.1
1/10/2024 15:18	576.9
1/10/2024 15:19	1000.0
1/10/2024 15:20	0.0
1/10/2024 15:21	1076.9
1/10/2024 15:22	423.1
1/10/2024 15:23	576.9
1/10/2024 15:24	500.0
1/10/2024 15:25	500.0
1/10/2024 15:26	1076.9
1/10/2024 15:27	0.0
1/10/2024 15:28	500.0
1/10/2024 15:29	1000.0
1/10/2024 15:30	500.0
01/10/2024 15:31	500.0
01/10/2024 15:32	0.0
01/10/2024 15:33	500.0
01/10/2024 15:34	1576.9
01/10/2024 15:35	0.0
5 5. <u>_</u> 5 <u>_</u> 5 5 . 6 . 6	

01/10/2024 15:36

Run Averages

1000.0

580.9

Ste. Genevieve MO

Main Stack Raw Mills On

27.0 70	Clinker Production
Run 2	(mtph)
1/10/2024 15:52	576.9
1/10/2024 15:53	0.0
1/10/2024 15:54	1000.0
1/10/2024 15:55	500.0
1/10/2024 15:56	500.0
1/10/2024 15:57	576.9
1/10/2024 15:58	1000.0
1/10/2024 15:59	500.0
1/10/2024 16:00	500.0
1/10/2024 16:01	500.0
1/10/2024 16:02	500.0
1/10/2024 16:03	576.9
1/10/2024 16:04	1000.0
1/10/2024 16:05	0.0
1/10/2024 16:06	500.0
1/10/2024 16:07	1076.9
1/10/2024 16:08	500.0
1/10/2024 16:09	500.0
1/10/2024 16:10	500.0
1/10/2024 16:11	500.0
1/10/2024 16:12	1076.9
1/10/2024 16:13	0.0
1/10/2024 16:14	1000.0
1/10/2024 16:15	500.0
1/10/2024 16:16	500.0
1/10/2024 16:17	500.0
1/10/2024 16:18	576.9
1/10/2024 16:19	500.0
1/10/2024 16:20	500.0
1/10/2024 16:21	1000.0
1/10/2024 16:22	576.9
1/10/2024 16:23	500.0
1/10/2024 16:24	500.0
1/10/2024 16:25	500.0
1/10/2024 16:26	0.0
1/10/2024 16:27	1576.9
1/10/2024 16:28	0.0
1/10/2024 16:29	1000.0

Ste. Genevieve MO

Main Stack

Raw Mills On

Run 2	Clinker Production (mtph)
1/10/2024 16:30	0.0
1/10/2024 16:31	1076.9
1/10/2024 16:32	423.1
1/10/2024 16:33	576.9
1/10/2024 16:34	1000.0
1/10/2024 16:35	0.0
1/10/2024 16:36	1076.9
1/10/2024 16:37	500.0
1/10/2024 16:38	500.0
1/10/2024 16:39	500.0
1/10/2024 16:40	500.0
1/10/2024 16:41	500.0
1/10/2024 16:42	1076.9
1/10/2024 16:43	0.0
1/10/2024 16:44	1000.0
1/10/2024 16:45	500.0
1/10/2024 16:46	500.0
1/10/2024 16:47	500.0
1/10/2024 16:48	576.9
1/10/2024 16:49	1000.0
1/10/2024 16:50	0.0
1/10/2024 16:51	1076.9
1/10/2024 16:52	500.0
01/10/2024 16:53	500.0
01/10/2024 16:54	500.0
01/10/2024 16:55	576.9
01/10/2024 16:56	423.1
01/10/2024 16:57	576.9
01/10/2024 16:58	500.0
Run Average	575.8

Ste. Genevieve MO

Main Stack

Raw Mills On

DAS Time CEMs

Run 1	O2 (%dry)
1/10/2024 14:30	8.63
1/10/2024 14:31	8.64
1/10/2024 14:32	8.65
1/10/2024 14:33	8.58
1/10/2024 14:34	8.58
1/10/2024 14:35	8.53
1/10/2024 14:36	8.55
1/10/2024 14:37	8.52
1/10/2024 14:38	8.55
1/10/2024 14:39	8.49
1/10/2024 14:40	8.53
1/10/2024 14:41	8.59
1/10/2024 14:42	8.66
1/10/2024 14:43	8.68
1/10/2024 14:44	8.67

Ste. Genevieve MO

Main Stack

Raw Mills On

DAS Time	
Run 3	Clinker Production (mtph)
1/10/2024 17:10	500.0
1/10/2024 17:11	500.0
1/10/2024 17:12	1000.0
1/10/2024 17:13	0.0
1/10/2024 17:14	1076.9
1/10/2024 17:15	500.0
1/10/2024 17:16	500.0
1/10/2024 17:17	500.0
1/10/2024 17:18	576.9
1/10/2024 17:19	500.0
1/10/2024 17:20	500.0
1/10/2024 17:21	1076.9
1/10/2024 17:22	500.0
1/10/2024 17:23	500.0
1/10/2024 17:24	500.0
1/10/2024 17:25	0.0
1/10/2024 17:26	1000.0
1/10/2024 17:27	576.9
1/10/2024 17:28	500.0
1/10/2024 17:29	1000.0
1/10/2024 17:30	500.0
1/10/2024 17:31	0.0
1/10/2024 17:32	1000.0
1/10/2024 17:33	0.0
1/10/2024 17:34	1076.9
1/10/2024 17:35	1076.9
1/10/2024 17:36	0.0
1/10/2024 17:37	1000.0
1/10/2024 17:38	500.0
1/10/2024 17:39	500.0
1/10/2024 17:40	500.0
1/10/2024 17:41	500.0
1/10/2024 17:42	1076.9
1/10/2024 17:43	0.0
1/10/2024 17:44	500.0
1/10/2024 17:45	1000.0
1/10/2024 17:46	576.9
1/10/2024 17:47	423.1

Ste. Genevieve MO

Main Stack

Raw Mills On

	Clinker Production
Run 3	(mtph)
1/10/2024 17:48	576.9
1/10/2024 17:49	500.0
1/10/2024 17:50	1076.9
1/10/2024 17:51	0.0
1/10/2024 17:52	1000.0
1/10/2024 17:53	500.0
1/10/2024 17:54	500.0
1/10/2024 17:55	0.0
1/10/2024 17:56	1000.0
1/10/2024 17:57	576.9
1/10/2024 17:58	1000.0
1/10/2024 17:59	0.0
1/10/2024 18:00	1000.0
1/10/2024 18:01	500.0
1/10/2024 18:02	576.9
1/10/2024 18:03	500.0
1/10/2024 18:04	500.0
1/10/2024 18:05	1076.9
1/10/2024 18:06	0.0
1/10/2024 18:07	1000.0
1/10/2024 18:08	500.0
1/10/2024 18:09	500.0
1/10/2024 18:10	576.9
01/10/2024 18:11	423.1
01/10/2024 18:12	576.9
01/10/2024 18:13	1000.0
01/10/2024 18:14	0.0
01/10/2024 18:15	1000.0
01/10/2024 18:16	500.0
Run Averges	582.1

Ste. Genevieve MO

Main Stack Raw Mills Off

	Clinkan Danduntina
Run 1	Clinker Production (mtph)
1/11/2024 8:35	423.1
1/11/2024 8:36	1000.0
1/11/2024 8:37	0.0
1/11/2024 8:38	923.1
1/11/2024 8:39	500.0
1/11/2024 8:40	0.0
1/11/2024 8:41	923.1
1/11/2024 8:42	500.0
1/11/2024 8:43	1000.0
1/11/2024 8:44	0.0
1/11/2024 8:45	846.2
1/11/2024 8:46	576.9
1/11/2024 8:47	423.1
1/11/2024 8:48	500.0
1/11/2024 8:49	500.0
1/11/2024 8:50	423.1
1/11/2024 8:51	1000.0
1/11/2024 8:52	0.0
1/11/2024 8:53	923.1
1/11/2024 8:54	500.0
1/11/2024 8:55	423.1
1/11/2024 8:56	500.0
1/11/2024 8:57	500.0
1/11/2024 8:58	423.1
1/11/2024 8:59	1000.0
1/11/2024 9:00	423.1
1/11/2024 9:01	0.0
1/11/2024 9:02	1000.0
1/11/2024 9:03	423.1
1/11/2024 9:04	576.9
1/11/2024 9:05	423.1
1/11/2024 9:06	923.1
1/11/2024 9:07	0.0
1/11/2024 9:08	923.1
1/11/2024 9:09	576.9
1/11/2024 9:10	423.1
1/11/2024 9:11	500.0
1/11/2024 9:12	500.0

Ste. Genevieve MO

Main Stack
Raw Mills Off

Naw Mins On	
DAS Time	
Dun 4	Clinker Production
Run 1	(mtph)
1/11/2024 9:13	423.1
1/11/2024 9:14	1000.0
1/11/2024 9:15	0.0
1/11/2024 9:16	923.1
1/11/2024 9:17	500.0
1/11/2024 9:18	423.1
1/11/2024 9:19	576.9
1/11/2024 9:20	423.1
1/11/2024 9:21	923.1
1/11/2024 9:22	0.0
1/11/2024 9:23	1000.0
1/11/2024 9:24	500.0
1/11/2024 9:25	423.1
1/11/2024 9:26	500.0
1/11/2024 9:27	500.0
1/11/2024 9:28	423.1
1/11/2024 9:29	1000.0
1/11/2024 9:30	0.0
01/11/2024 9:31	846.2
01/11/2024 9:32	576.9
01/11/2024 9:33	0.0
01/11/2024 9:34	423.1
01/11/2024 9:35	1000.0
01/11/2024 9:36	923.1

01/11/2024 9:37

01/11/2024 9:38

01/11/2024 9:39

01/11/2024 9:40

01/11/2024 9:41

Run Average

0.0

1000.0

423.1

500.0

500.0

540.8

Ste. Genevieve MO

Main Stack

Raw Mills Off

Clinker F	Produ	ction
-----------	-------	-------

Run 2	(mtph)
1/11/2024 9:53	0.0
1/11/2024 9:54	923.1
1/11/2024 9:55	500.0
1/11/2024 9:56	500.0
1/11/2024 9:57	0.0
1/11/2024 9:58	923.1
1/11/2024 9:59	1000.0
1/11/2024 10:00	0.0
1/11/2024 10:01	923.1
1/11/2024 10:02	500.0
1/11/2024 10:03	423.1
1/11/2024 10:04	500.0
1/11/2024 10:05	0.0
1/11/2024 10:06	923.1
1/11/2024 10:07	1000.0
1/11/2024 10:08	0.0
1/11/2024 10:09	1000.0
1/11/2024 10:10	423.1
1/11/2024 10:11	500.0
1/11/2024 10:12	500.0
1/11/2024 10:13	0.0
1/11/2024 10:14	1423.1
1/11/2024 10:15	0.0
1/11/2024 10:16	846.2
1/11/2024 10:17	576.9
1/11/2024 10:18	423.1
1/11/2024 10:19	500.0
1/11/2024 10:20	423.1
1/11/2024 10:21	500.0
1/11/2024 10:22	1000.0
1/11/2024 10:23	0.0
1/11/2024 10:24	923.1
1/11/2024 10:25	500.0
1/11/2024 10:26	423.1
1/11/2024 10:27	500.0
1/11/2024 10:28	500.0
1/11/2024 10:29	423.1

Ste. Genevieve MO

Main Stack

Raw Mills Off

Dun 2	Clinker Production
Run 2	(mtph)
1/11/2024 10:30	500.0
1/11/2024 10:31	923.1
1/11/2024 10:32	576.9
1/11/2024 10:33	423.1
1/11/2024 10:34	500.0
1/11/2024 10:35	500.0
1/11/2024 10:36	423.1
1/11/2024 10:37	1000.0
1/11/2024 10:38	0.0
1/11/2024 10:39	923.1
1/11/2024 10:40	500.0
1/11/2024 10:41	423.1 500.0
1/11/2024 10:42	500.0
1/11/2024 10:43	423.1
1/11/2024 10:44	1000.0
1/11/2024 10:45	0.0
1/11/2024 10:46	923.1
1/11/2024 10:47	0.0
1/11/2024 10:48 1/11/2024 10:49	923.1
1/11/2024 10:49	500.0
1/11/2024 10:50	500.0
1/11/2024 10:51	923.1
1/11/2024 10:53	0.0
01/11/2024 10:54	923.1
01/11/2024 10:55	0.0
01/11/2024 10:56	1000.0
01/11/2024 10:57	500.0
01/11/2024 10:58	500.0
01/11/2024 10:59	423.1
Run Average	533.3

Ste. Genevieve MO

Main Stack Raw Mills Off

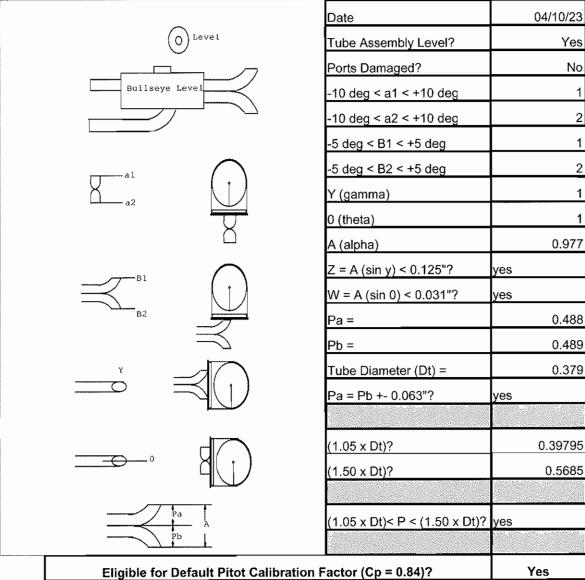
Clinker	Drag	luction

	Clinker Productio
Run 3	(mtph)
01/11/2024 11:09	1000.0
01/11/2024 11:10	423.1
01/11/2024 11:11	500.0
01/11/2024 11:12	500.0
01/11/2024 11:13	500.0
01/11/2024 11:14	423.1
01/11/2024 11:15	1000.0
01/11/2024 11:16	0.0
01/11/2024 11:17	846.2
01/11/2024 11:18	0.0
01/11/2024 11:19	1000.0
01/11/2024 11:20	423.1
01/11/2024 11:21	576.9
01/11/2024 11:22	923.1
01/11/2024 11:23	0.0
01/11/2024 11:24	1000.0
01/11/2024 11:25	423.1
01/11/2024 11:26	500.0
01/11/2024 11:27	423.1
01/11/2024 11:28	0.0
01/11/2024 11:29	1000.0
01/11/2024 11:30	1000.0
01/11/2024 11:31	0.0
01/11/2024 11:32	923.1
01/11/2024 11:33	0.0
01/11/2024 11:34	923.1
01/11/2024 11:35	500.0
01/11/2024 11:36	500.0
01/11/2024 11:37	423.1
01/11/2024 11:38	1000.0
01/11/2024 11:39	500.0
01/11/2024 11:40	423.1
01/11/2024 11:41	500.0
01/11/2024 11:42	423.1
01/11/2024 11:43	0.0
01/11/2024 11:44	1000.0
01/11/2024 11:45	1000.0

Ste. Genevieve MO

Main Stack

Raw Mills Off


Clinke	Drad	hicklan
Clinke	r Proc	luction

Run 3	(mtph)
01/11/2024 11:46	0.0
01/11/2024 11:47	923.1
01/11/2024 11:48	423.1
01/11/2024 11:49	0.0
01/11/2024 11:50	1000.0
01/11/2024 11:51	423.1
01/11/2024 11:52	500.0
01/11/2024 11:53	1000.0
01/11/2024 11:54	0.0
01/11/2024 11:55	1000.0
01/11/2024 11:56	423.1
01/11/2024 11:57	423.1
01/11/2024 11:58	576.9
01/11/2024 11:59	423.1
01/11/2024 12:00	1000.0
01/11/2024 12:01	0.0
01/11/2024 12:02	846.2
01/11/2024 12:03	0.0
01/11/2024 12:04	500.0
01/11/2024 12:05	1000.0
01/11/2024 12:06	423.1
01/11/2024 12:07	500.0
01/11/2024 12:08	1000.0
01/11/2024 12:09	0.0
01/11/2024 12:10	923.1
01/11/2024 12:11	500.0
01/11/2024 12:12	0.0
01/11/2024 12:13	923.1
01/11/2024 12:14	500.0
01/11/2024 12:15	923.1
Run Average	548.2

Appendix E

Calibration Documents

Pitot Tube Inspection Sheet

Thermocouple Calibration

The mocoupie Cambration			
Type of Reference Thermometer? Me	rcury	Date	04/10/23
Barometeric Pressure?	29.92	Ambient Temperature?	71.9

Source	Reference Temp, F	Thermocouple Temp, F	Absolute Temp Difference
cold air	36	37	-0.20%
medium air	215	214	0.15%
hot air	325	323	0.25%

Windtunnel Calibration

Pitot Reading	Reference (0.99)	6E S-Type Pitot	Ср
ΔΡ1	0.32	0.44	0.85
ΔP_2	0.31	0.43	0.85
ΔP_3	0.31	0.44	0.84
Average Pitot Tube Calibration Factor>		0.85	

Thermocouple Calibration Check (EPA ALT-011 Procedure), performed on 4/10/23

Source	Ref. Temp. F	Thermocouple Temp. F	± 2 deg F?
Ambient	71.9	70.8	Yes

	Pitot	Tube	Inspectio	n Sheet
--	-------	------	-----------	---------

Pitot I	ube Inspection Sheet		
		Date	12/29/23
	OLevel	Tube Assembly Level?	Yes
		Ports Damaged?	No
	Bullseye Level	-10 deg < a1 < +10 deg	0
		-10 deg < a2 < +10 deg	1
		-5 deg < B1 < +5 deg	1
	al	-5 deg < B2 < +5 deg	1
	<u> </u>	Y (gamma)	1
		0 (theta)	1
	\triangle	A (alpha)	0.918
***************************************	81	Z = A (sin y) < 0.125"?	yes
	\Rightarrow (1)	W = A (sin 0) < 0.031"?	yes
	B2	Pa =	0.459
	\Rightarrow	Pb =	0.459
		Tube Diameter (Dt) =	0.372
		Pa = Pb +- 0.063"?	yes
		(1.05 x Dt)?	0.3906
	(1.50 x Dt)?	0.558	
	Pa A	(1.05 x Dt)< P < (1.50 x Dt)?	yes
	Pb		
	Eligible for Default Pitot Calibration	Factor (Cp = 0.84)?	Yes

Thermocouple Calibration

Type of Reference Thermometer?	Mercury	Date	12/29/23
Barometeric Pressure?	29.53	Ambient Temperature?	60

Source	Reference Temp, F	Thermocouple Temp, F	Absolute Temp Difference
cold air	38	38	0.00%
medium air	215	214	0.15%
hot air	325	326	-0.13%

Windtunnel Calibration

Pitot Reading	Reference (0.99)	6F S-Type Pitot	Ср
ΔΡ1	0.31	0.44	0.84
ΔP_2	0.31	0.43_	0.85
ΔΡ3	0.31	0.44	0.84
<u> </u>	Average Pitot	Tube Calibration Factor>	0.84

Thermocouple Calibration Check (EPA ALT-011 Procedure), performed on 12/29/23

Source	Ref. Temp. F	Thermocouple Temp. F	± 2 deg F?
Ambient	64	63	Yes

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

ENVIRONMENTAL SUPPLY COMPANY

- Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
 Record barometric pressure before and after calibration procedure.
- 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time
 - necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record data and information in the GREEN cells, YELLOW cells are calculated.

		ſ	ΔН©					1.62	1.60			1.68	1.67			1.66	1.65						
CEEDS 2.00%, ecalibrated	*	>-	VARIATION (%)								-1.65				0.62				1.03				
IF Y VARIATION EXCEEDS 2.00%, ORIFICE SHOULD BE RECALIBRATED		ල	>					0.944	0.970		0.957	0.979	0.979		0.979	0.985	0.981		0.983				
IF Y ORIFICE		(2)	Vc. (STD)				AVG =	5.3709	5.3709		AVG=	6.6212	6.6212		AVG ==	8.4303	8.4383		AVG =				AVG =
		£	V _m (STD)					5.6915	5.5349			6.7600	6.7647			8.5593	8.5982						
AVG (P _{bar)} 30.165		DGM AH	(in H ₂ O)					0.81	0.81			1.3	1.3			2.1	2.1						
FINAL 30.18	ELAPSED	TIME (MIN)	9					10.00	10.00			10.00	10.00			10.00	10.00						
30.15		DGM	AVG	•	.	, 0		61.25	65	0		20	72	0		74.75	76.5	0		0	0	0	
] :(in Hg):	ĥ.	DGM OUTLET	L FINAL					61	æ			88	70			73	7.4						
RESSUR	TEMPERATURES °F	DGM	L INITIA					88	63			65	28			70	73						
BAROMETRIC PRESSURE (in Hg):	TEMPE	DGM INLET	INITIAL FINAL INITIAL FINAL					59 67	64 71			71 76	73 77		ſ	75 81	79 80			_	_		
BARC		AMBIENT D	Z					69	89			. 69	69			69	89						
M5-18 14315			NET (Vm)	;	0.000	0.000		5.561	5.447	0.000		6.708	6.738	0.000		8.553	8.620	0.000		0.000	0.000	0.000	
METER SERIAL #:		DGM READINGS (FT3)	FINAL					367.017	372.464			379.625	386.363			395.674	404.294	••••					,
METER SERIAL #: Critical orifice set serial #:		DGM	INITIAL					361.456	367.017			372.917	379.625		Ī	387.121	395.674						
CRIT		_			_J]					\ 			[1 [֓֞֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֜֜֓֓֓֡֓֜֜֡֓֡֓֜֜֜֡֓֓֡֓֡֡֓֜֡֓֡֓֜֡֓֡֓֡֡֡֓֜֡֡֓֜֡֡֡֡֡֓֜֡֡֓֜֡֓֜
	TESTED	VACUUM	(in Hg)				_	18	8			\$	\$			18	18						
12/23/23 M5-18	¥	FACTOR	(AVG)		0.3283			0.4094	0.4094			0.5047	0.5047			0.6426	0.6426			0.8587			
DATE:			RUN#		- 0	4 69	•	Ψ-	61	8		-	~	8		-	2	65		-	7	က	
METER			ORIFICE # RUN #		12	!			15				6				23				32		

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the Critical orifice, Vor (std), and the DGM calibration factor, Y. These equations are automatically calculated in the

AVERAGE DRY GAS METER CALIBRATION FACTOR, Y =

0.973

@ 0 F @ 500 F @ 1000 F 496 1000 AVERAGE ∆H@ = 1.65 0 (per manufacturer procedure) Potentiometer Check, °F

0.1%

Avg Absolute Difference =

 $Vcr_{(sd)} = K^{*} \frac{Pbar * \Theta}{\sqrt{Tamb}}$ ŝ

 $Vm_{vol} = K_1 * Vm * \frac{Pbar + (\Delta H / 13.6)}{}$

Ξ

= Volume of gas sample passed through the critical orifice, corrected to standard conditions Tamb = Absolute ambient temperature (*R - English, *K - Metric)

Net volume of gas sample passed through DGM, corrected to standard conditions

 $T_{\rm m} = \,$ Absolute DGM avg. temperature (°R - English, °K - Metric) K₁ = 17.64 °R/in. Hg (English), 0.3858 °K/mm Hg (Metric)

K' = Average K' factor from Critical Orifice Calibration

DGM calibration factor

 Vc_{Sub}

3

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

ENVIRONMENTAL SUPPLY COMPANY

- Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
 Record barometric pressure before and after calibration procedure.
 Run at tested vacuum (from Orifice Calibration Report), for a period of time
- necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record data and information in the GREEN cells, YELLOW cells are calculated.

	,%D	9			\														!	!					i
	(CEEDS 2.0	ECALIBRAT	⇗	>	VARIATION (%)									-0.59				0.22				0.37			
	IF Y VARIATION EXCEEDS 2.00%,	ORIFICE SHOULD BE RECALIBRATED		9	: >						0.960	0.963		0.962	0.970	0.969		0.969	0.974	0.968		0.971			
	F	ORIFICE		(2)	Vc. (STD)					AVG =	5.4435	5.4435		AVG =	6.7106	6.6976		AVG =	8.5276	8.5194		AVG =			
				£	V. (STD)						5.6719	5.6506			6.9187	6.9121			8.7589	8.7997			***************************************		
AVG (Poor)	30.165			DGM AH	(in H ₂ O)						0.97	0.97			1.5	1.5			2.5	2.5					
FINAL	30.15		ELAPSED	TIME (MIN)							10.00	10.00			10.00	10.00			10.00	10.00					
INITIAL	0.18			DGM	AVG	l		l		[53.75	55.5	6	l	57.25	58.75		l	l	59.5	0	l			
<u> </u>	3):			_				I		[<u>2</u>	55			56			-	20	55					
	JRE (in t		FS %	DGM OUTLET	TAL FIN			-			53 5	55			55 5	56 57	\dashv		58	58	-				
	PRESSI		TEMPERATURES "F		NAE INT	-					55	82			٠ و	8	_		65	29					
	BAROMETRIC PRESSURE (in Hg): 30.18		TEME	DGM INLET	INITIAL FINAL INITIAL FINAL	-					53	15			57 (65			62	8	_				
	BAR			AMBJENT	Z						55	55			55	22			57	28					
Г	_	\neg		⋖		 		J.		l	l	!		l		l		L				l			******
	m5-25	14315		T ³)	NET (Vm)	_	0.000	0.000	0.000		5.460	5.458	0.000		6.697	6.710	0.000	_	8.519	8.534	0.000		0.000	0.000	0.000
	METER SERIAL #:	SET SERIAL #:		DGM READINGS (FT3)	FINAL						581.661	587.119			594.121	600.831			609.648	618.182					
	×	CRITICAL ORIFICE SET SERIAL #:		90	INITIAL						576.201	581.661			587.424	594.121			601.129	609.648					
		ច	TESTED	VACUUM	(ju Hg)						18	82			18	8			18	2					
	12/21/23	m5-25	£	FACTOR	(AVG)		0.3283				0.4094	0.4094			0.5047	0.5047			0.6426	0.6426			0.8587		
_	DATE	ART#:	L		RUN#	_	-	21	— «	Ĺ		T		Ĺ	-	~	<u>۔</u> «	L	<u> </u>	~	س		l	7	m
		METER PART #:			ORIFICE #			12				5				<u></u>				23				32	

1.94

2;

1.91 1.91 1.99 2.00

ΔH®

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, Vm (std), and the critical orifice, Vcr (std), and the DGM calibration factor, Y. These equations are automatically calculated in the

AVERAGE DRY GAS METER CALIBRATION FACTOR, Y = 0.967

AVG =

@ 0 F @ 500 F @ 1000 F 498 496 496 AVERAGE ∆H@ = 1.95 0 (per manufacturer procedure) Potentiometer Check, °F

0.0% Avg Absolute Difference =

$$V_{CT_{1,M}} = K^* \frac{Pbar * \Theta}{\sqrt{Tmb}}$$

9

 $Vm_{(sat)} = K_1 * Vm * \underbrace{Pbur + (\Delta H/13.6)}_{}$

£

Volume of gas sample passed through the critical orifice, corrected to standard conditions

■ Net volume of gas sample passed through DGM, corrected to standard conditions

 $T_{\rm m} = Absolute \, DGM \, avg.$ temperature (°R - English, °K - Metric) K₁ = 17.64 °R/in. Hg (English), 0.3858 °K/mm Hg (Metric)

Forbs = Absolute ambient temperature (°R - English, °K - Metric)

K' = Average K' factor from Critical Orifice Calibration

 $Y = \frac{V_C C_{sid}}{V m_{sid}}$

3

DGM calibration factor

Company: Holcim; Ste. Genevieve MO Source: Main Stack; Raw Mills Off Job ID: 24-3316 Train Type: EPA Method 26A

M5-18 Averages		0.973	0.973	0.35%
M5-25 Averages		0.953	0.967	1.46%
M5-18 6B 01/11/24 1109-1215	52.464 522.4 29 2.28 1.65 31.792 1.50607719	0.968	0.973	0.51%
M5-25 6A 01/11/24 1109-1215	53.385 522 29 2.69 1.95 31.792 1.63825252	0.951	0.967	1.65%
M5-18 5B 01/11/24 953-1059	51.248 517.1 29 2.23 1.65 31.824 1.48901693	0.974	0.973	0.14%
M5-25 5A 01/11/24 953-1059	52.585 515.3 29 2.63 1.95 31.824 1.61791554	0.947	0.967	2.07%
M5-18 4B 01/11/24 835-941	51.553 511.1 29 2.29 1.65 31.808 1.51048892	0.977	0.973	0.41%
M5-25 4A 01/11/24 835-941	52.032 503.8 29 2.71 1.95 31.808 1.64229839 60	0.961	0.967	0.65%
Alt-009 Alternate Post Test Calibration Data	Vm Tm Pb Havg H@ Md (Havg)^0.5 Run Time, Min	Calculated Gamma (Yqa)	Meter Gamma	% difference from Actual Y

Airgas Specialty Gases Airgas USA LLC 630 United Drive Durham, NC 27713

Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number:

E04NI77E15A3796

Reference Number: 122-402389886-1

Cylinder Number:

EB0070764

Cylinder Volume:

151.0 CF

Laboratory:

124 - Durham (SAP) - NC

Cylinder Pressure:

2015 PSIG

PGVP Number:

Valve Outlet:

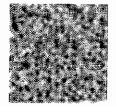
590

B22022

Certification Date:

Mar 23, 2022

Gas Code:


CO,CO2,O2,BALN

Expiration Date: Mar 23, 2030

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/S31, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

			6 Not Ose this Cylinder below 1	oo paig, i.e. o.r megapas	CB13.	
			ANALYTICAI	L RESULTS		
Compor	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON	MONOXIDE	65.00 PPM	62.51 PPM	G1	+/- 0.6% NIST Traceable	03/23/2022
CARBON	DIOXIDE	10.00 %	10.14 %	G1	+/- 0.6% NIST Traceable	03/23/2022
OXYGEN		12.00 %	12.08 %	G1	+/- 0.4% NIST Traceable	03/23/2022
NITROGE	:N	Balance				
			CALIBRATION	STANDARDS		
Type	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	09010213	KAL004779	98,48 PPM CARBON MO	NOXIDE/NITROGEN	+/- 0.5%	Oct 16, 2024
NTRM	19060402	6162642Y	11.105 % CARBON DIOX	(IDE/NITROGEN	+/- 0.6%	Dec 04, 2025
NTRM	10010616	K014963	9.967 % OXYGEN/NITRO	GEN	+/- 0.3%	Apr 19, 2022
			ANALYTICAL I	EQUIPMENT		
Instrume	ent/Make/Mode	el	Analytical Principle		Last Multipoint Calif	oration
Horiba VA	-5001 CO2 BF89	GV17	Nondispersive Infrared (I	VDIR)	Mar 01, 2022	
Horiba VI	A510 CO 1G46EA	\07	Nondispersive Infrared (I	VDIR)	Mar 09, 2022	
Siemens (Dxymat 61 M3299	9 02	Paramagnetic		Mar 01, 2022	

Triad Data Available Upon Request

Approved for Release

Airgas Specialty Gases Airgas USA LLC 630 United Drive Durham, NC 27713 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number:

E04NI59E15A38X3

Reference Number: 122-402389885-1A

Cylinder Number:

ALM-056015

143.7 CF

Laboratory:

124 - Durham (SAP) - NC

Cylinder Volume: Cylinder Pressure: 2016 PSIG

PGVP Number:

B22022

590

Gas Code:

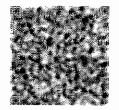
Valve Outlet:

CO,CO2,O2,BALN

Certification Date: Mar 28, 2022

Expiration Date: Mar 28, 2030

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.


Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

	•	ANALYTICAI	LRESULTS		
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON MONOXIDE	120.0 PPM	116.5 PPM	G1	+/- 0.3% NIST Traceable	03/28/2022
CARBON DIOXIDE	18.00 %	18.17 %	G1	+/- 0.7% NIST Traceable	03/28/2022
OXYGEN	22.00 %	21.90 %	G1	+/- 0.5% NIST Traceable	03/28/2022
NITROGEN	Balance				_

			CALIBRATION STANDARDS		
Туре	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRM	13010207	KAL003102	246.9 PPM CARBON MONOXIDE/NITROGEN	+/- D.2%	Oct 16, 2024
NTRM	12061508	CC354696	19.87 % CARBON DIOXIDE/NITROGEN	+/- 0.6%	Jan 11, 2024
NTRM	08010220	K013155	23.20 % OXYGEN/NITROGEN	+/~ 0.4%	Jun 01, 2024

	ANALYTICAL EQUIPME	NT
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration
Horiba VA-5001 CO2 BF89GV17	Nondispersive Infrared (NDIR)	Mar 01, 2022
Horiba VIA510 CO RS2EGL6K	Nondispersive Infrared (NDIR)	Mar 01, 2022
Siemens Oxymat 61 M3299 O2	Paramagnetic	Ma <u>r 01, 2022</u>

Triad Data Available Upon Request

pproved for Release

Airgas Specialty Gases Airgas USA, LLC 630 United Drive Durham, NC 27713 Airgas.com

CERTIFICATE OF ANALYSIS **Grade of Product: EPA Protocol**

Part Number:

E02NI65E15A6270

Reference Number: 122-401213509-1

Cylinder Number:

CC714737

Cylinder Volume:

142.3 CF

Laboratory: PGVP Number: 124 - Durham (SAP) - NC

Cylinder Pressure: Valve Outlet:

1690 PSIG 580

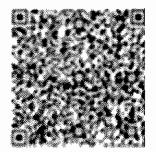
B22018

Certification Date:

May 31, 2018

Gas Code:

CO2,BALN


Expiration Date: May 31, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 oslg. i.e. 0.7 megaposcats

			ANALYTICA	L RESULTS				
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates		
CARBON NITROGE		35.00 % Balance	35.10 %	G2	+/- 0.6% NIST Traceable	05/31/2018		
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARD	S Uncertainty	Expiration Date		
NTRM	13060810	CC415934	24.04 % CARBON D	IOXIDE/NITROGEN	+/- 0.6%	May 16, 2019		
Instrume	ent/Make/Mod	el	ANALYTICAL Analytical Principle	***	Γ Last Multipoint Cali	bration		
Horiba VIA510 CO2 2L6YXWY0			Nondispersive Infrared		May 10, 2018			

Triad Data Available Upon Request

Page 1 of 122-401213509-1

CERTIFICATE OF ACCURACY: GMACS-c Calibration Standard

CUSTOMER INFORMATION

AIRGAS SPECIALTY GASES

Work Order #: 160-402845897-1

Address 1: 3404 Lake Woodard Road

Exploratory Products Group

Sales Order #: 1123601913

Customer: DEECO Inc.

6141 Easton Road

PO#: 7100179560

Address 2:

Plumsteadville, PA 18949

City / State / Zip: Raleigh, NC 27604

PRODUCT INFORMATION

COMPOSITION

CONCENTRATION

UNCERTAINTY (Abs)

UNCERTAINTY (Rel)

Hydrogen Cyanide Sulfur Hexafluoride 49.9 PPM 5.0 PPM

2.3 PPM 0.07 PPM 4.6 % 1.3 %

Nitrogen

Balance

AIRGAS PART #: X03NI99C15AC0W8

CYLINDER #: CC768222

CYLINDER TYPE: 150A Aluminum

CERTIFICATION DATE: 7-Sep-2023

CGA: 350 \$S

EXPIRATION DATE: 7-Mar-2024

CYLINDER PRESSURE: 2000 psig

MIXTURE DEW POINT: N/A

CERTIFICATION DATA

BLENDING PROCESS: GravStat™ Gravimetry

COMPONENT

CONCENTRATION

UNCERTAINTY (Abs)

UNCERTAINTY (Rel)

rogen Cyanide Sulfur Hexafluoride 50.02 PPM 5.02 PPM

0.9 PPM 0.07 PPM 1.8 % 1.3 %

CONFIRMING ANALYSIS: FTIR Spectroscopy

COMPONENT

INSTRUMENT / MODEL: CAI Model 700 FTIR CONCENTRATION

Hydrogen Cyanide

49.8 PPM

UNCERTAINTY (Abs) 2.1 PPM

UNCERTAINTY (Rel) 4.2 %

REFERENCE STANDARD: GMPS-c 50 PPM Hydrogen Cyanide

CYLINDER NUMBER:

CC768196

EXPIRATION DATE: 2/29/2024

CONCENTRATION -

UNCERTAINTY (Abs)

UNCERTAINTY (Rel)

Hydrogen Cyanide

COMPONENT

48.9 PPM

1.7 PPM

3.4 %

CALIBRATION CURVE DATA

Curve Order

Correlation

Slope (X2)

Slope (X)

Intercept

Point-to-Point Matching Std

Linear / Direct Ratio

N/A

N/A

N/A

N/A

INTERLOCK STATISTICS

CONCENTRATION

UNCERTAINTY (Abs)

UNCERTAINTY (Rel)

BLEND RESULT:

50.02 PPM 49.8 PPM

0.9 PPM

1.8 % 4.2 %

ANALYSIS RESULT: INTERLOCK RESULT:

49.9 PPM

2.1 PPM 2.3 PPM

4.6 %

OMMENTS / SPECIAL INSTRUCTIONS

- 1. A GMACS-c ("Candidate GMACS") is made and certified according to the EPA GMACS Procedure (Alt-114) found at: https://cfpub.epa.gov
- 2. Do not use this standard if pressure is less than 200 psig.
- 3. Do not use or store this product at or below the stated dew point.

APPROVED BY:	

Airgas Specialty Gases Airgas USA LLC 630 United Drive Durham, NC 27713 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Part Number: Cylinder Number: Laboratory:

X02NI99C15A54F5 CC426155

Analysis Date: Lot Number:

124 - Durham (SAP) - NC Mar 28, 2023

122-402705571-1

Reference Number:

Cylinder Volume: Cylinder Pressure: Valve Outlet:

122-402705571-1 144.0 CF 2015 PSIG

350

Expiration Date: Mar 28, 2031

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

	ANA	LYTICAL RESULTS	
Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty
ETHYLENE NITROGEN	75.00 PPM Balance	75.47 PPM	+/- 2%

Approved for Release

Client: Holcim Ste Genevieve MO Test Location: Main Stack Mill On

Date: Jan 10 24 Start Time: 14:30:12

Run number Stratification Check

One Minute Averages

	Reference	Plant
	O2	02
	%,dry	%,dry
2:31:10 PM	8.9	8.6
2:32:10 PM	8.9	8.6
2:33:10 PM	8.8	8.7
2:34:10 PM	8.7	8.6
2:35:10 PM	8.7	8.6
Point A	8.8	8.6
2:36:10 PM	8.7	8.5
2:37:10 PM	8.7	8.6
2:38:10 PM	8.7	8.5
2:39:10 PM	8.6	8.6
2:40:10 PM	8.7	8.5
Point B	8.7	8.5
2:41:10 PM	8.8	8.5
2:42:10 PM	8.8	8.6
2:43:10 PM	8.8	8.7
2:44:10 PM	8.8	8.7
2:45:10 PM	8.8	8.7
Point C	8.8	8.6

Holcim Ste. Genevieve MO Main Stack Raw Mills On

DAS Time CEMs

Run 1	O2 (%dry)
1/10/2024 14:30	8.63
1/10/2024 14:31	8.64
1/10/2024 14:32	8.65
1/10/2024 14:33	8.58
1/10/2024 14:34	8.58
1/10/2024 14:35	8.53
1/10/2024 14:36	8.55
1/10/2024 14:37	8.52
1/10/2024 14:38	8.55
1/10/2024 14:39	8.49
1/10/2024 14:40	8.53
1/10/2024 14:41	8.59
1/10/2024 14:42	8.66
1/10/2024 14:43	8.68
1/10/2024 14:44	8.67

Analysis Validation Report

Sample Filename: F:\SteGEn JAnuary2024\January 10\SPC_007708.LAB

Filename for noise: F:\Midlothian on Renta\November 14\SPC_000837.LAB interferences Filenames: C:\Midlothian on Renta\November 15\SPC_001463.LAB C:\Midlothian on Renta\November 15\SPC_001464.LAB C:\Midlothian on Renta\November 15\SPC_001465.LAB C:\Midlothian on Renta\November 15\SPC_001466.LAB C:\Midlothian on Renta\November 15\SPC_001466.LAB C:\Midlothian on Renta\November 15\SPC_001466.LAB C:\Midlothian on Renta\November 15\SPC_001463.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB

Recipe path: C:\OLT\recipes\Cement Testing R3.MGRCP

nc MDC3 MDC2 MDC1 MAU FMU*R OCU ~ DL 3.66 0.18 - 0.24 0.3 0.23 0.3 - 2.44 0.45 0.05 0.04 0.07 0.8 0.8 0.0
0.03 - 0.04 0.07 0.0
2.28 0.33 0.17 0.29 3.96
0.15 - 0.01 0.02 0.3
0.38 - 0.01 0.02 0.52
0.71 0.05 0.15 0.28 1.29
1.21 0.37 0.14 0.27 2.33
0.26 0.35 5.39
0.12 0.2 2.89
0.2 0.43 9.42
0 0
0.28 0.2 0.24 1.9
0.23 0.35 0.38 3.65
0.05 0.26 0.7 3.08
0.42 0.12 0.14 1.06
0.17 0.68 1.39 14.39
0.04 0.02 0.03 0.38
0.88 1.12 7.52
0.04 0.05 0.17
1.19 2.25 22.04
1.1 1.81 13.93
2.1 0.15 0.31 0.37 2.54
0.19 0.43 0.5 6.69
0.02 0.02 0.3
1.42 0.32 0.2 0.22 1.58
0.04 0.05 0.05 0.16
0.14 0.16 0.7
0.03 0.04 0.4

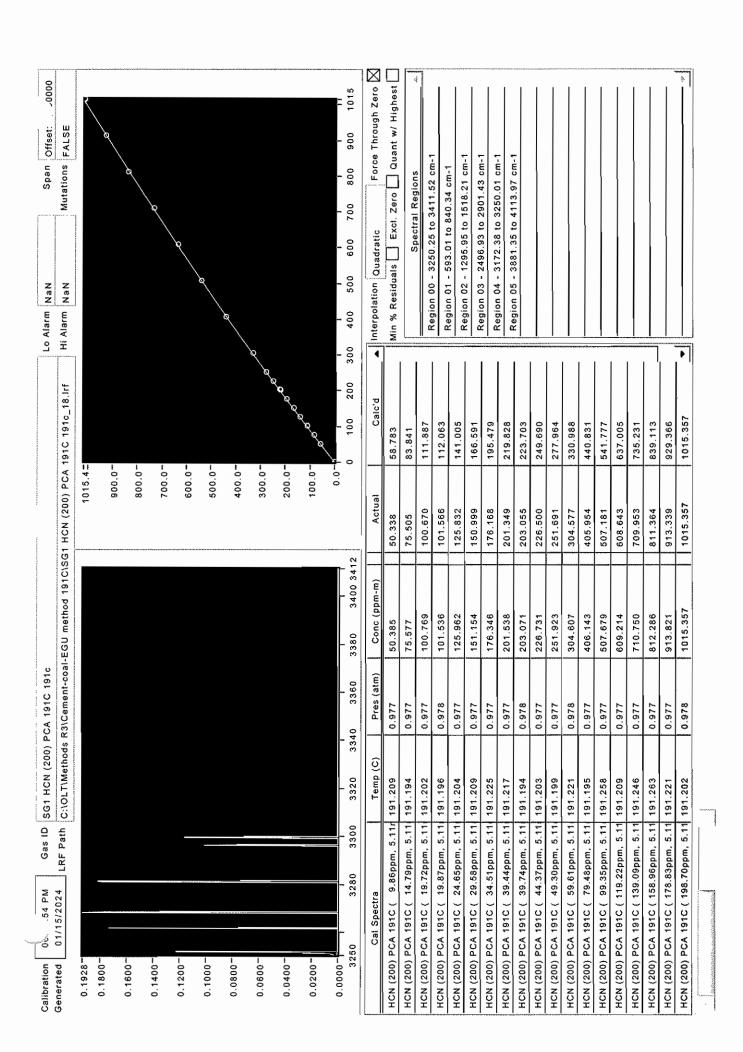
Analysis Validation Report

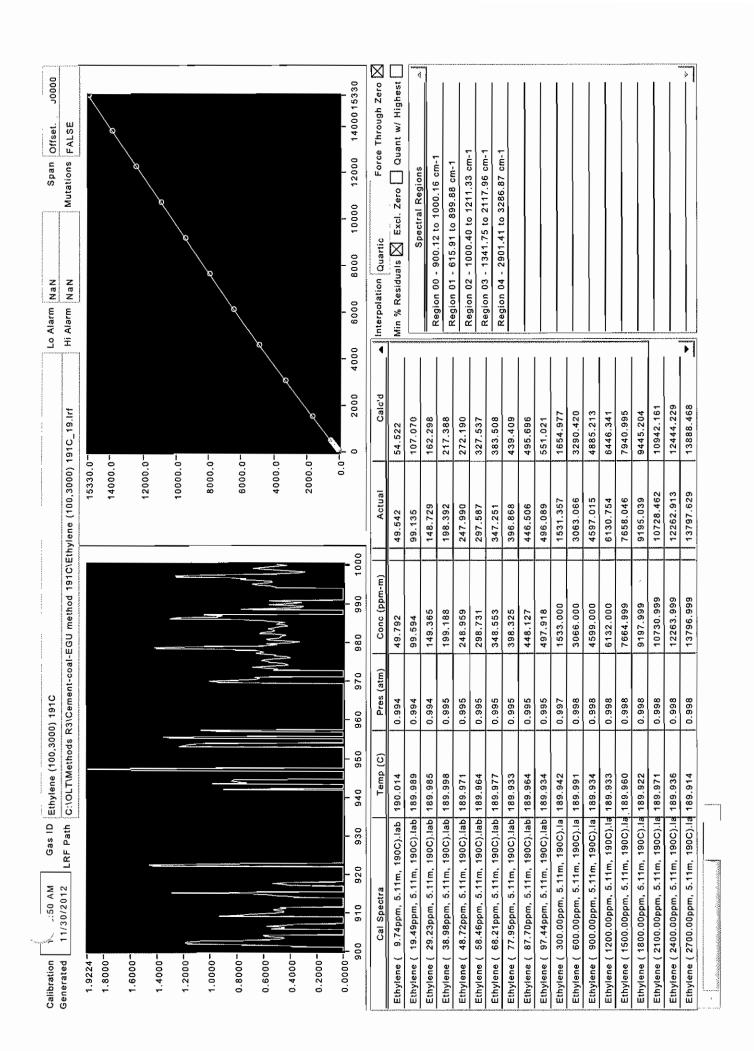
Sample Filename: F:\SteGEn JAnuary2024\January 10\SPC 007709.LAB

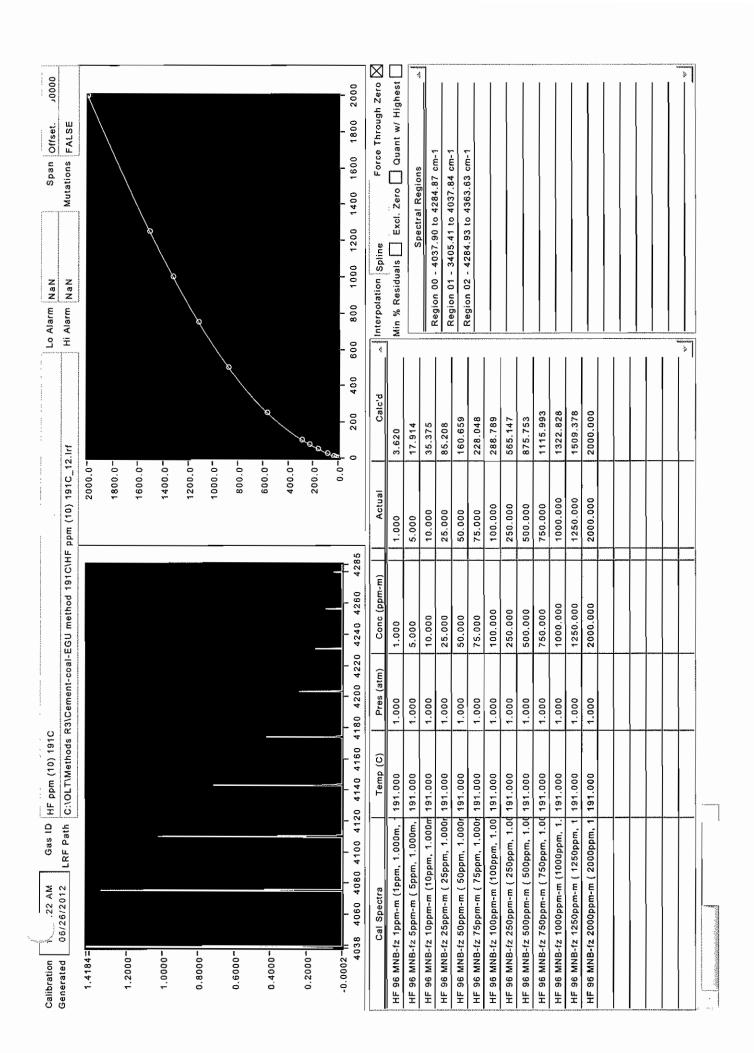
Filename for noise: F:\Midlothian on Renta\November 14\SPC_000837.LAB Interferences Filenames: C:\Midlothian on Renta\November 15\SPC_001463.LAB C:\Midlothian on Renta\November 15\SPC_001464.LAB C:\Midlothian on Renta\November 15\SPC_001465.LAB C:\Midlothian on Renta\November 15\SPC_001466.LAB C:\Midlothian on Renta\November 15\SPC_001466.LAB C:\Midlothian on Renta\November 15\SPC_001466.LAB C:\Midlothian on Renta\November 15\SPC_001463.LAB C:\Midlothian on Renta\November 15\SPC_001463.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB C:\Midlothian on Renta\November 15\SPC_001469.LAB

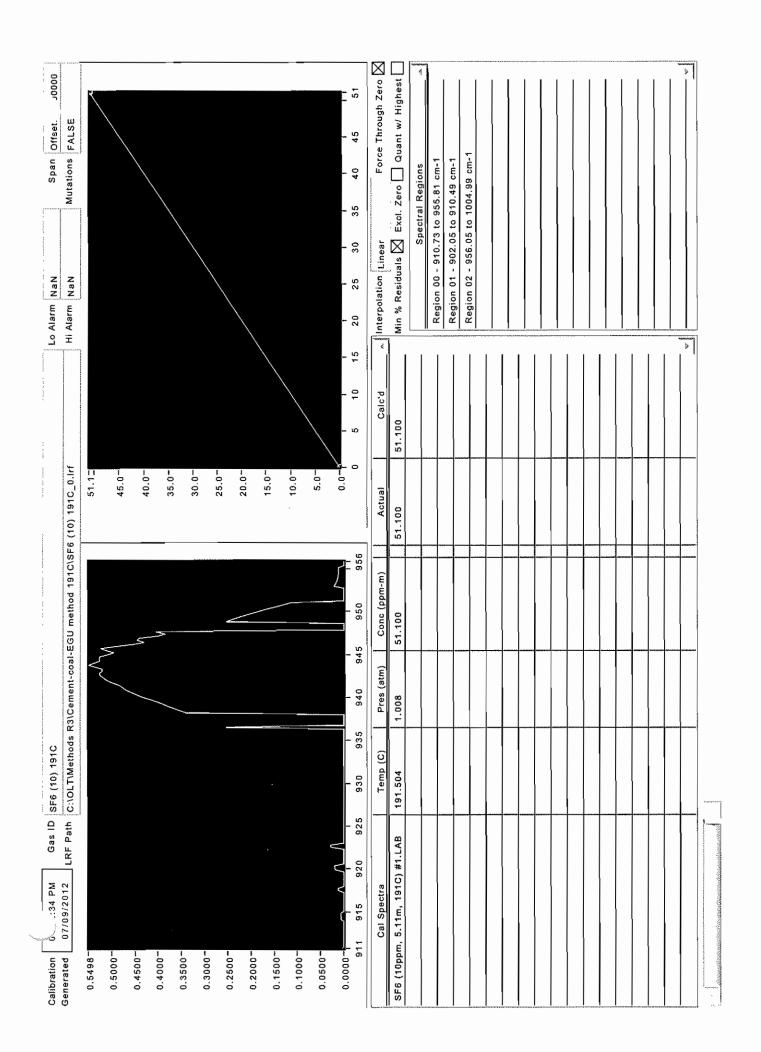
Recipe path: C:\OLT\recipes\Cement Testing R3.MGRCP

Comment	Good	Good	Check it	Close to DL	Good	Good	Close to DL	Good	Good	Check it!	Good	Good	Check it!	Close to DL	Check it!	Close to DL	Close to DL	Close to DL	Close to DL	Good	Check it	Close to DL	Close to DL	Close to DL	Check it!	Close to DL	Close to DL	Close to DL	Close to DL
Span		,		,	,	,	,					,				,			ŀ		,	,	,		,		,		,
Range	0-500	0-10	0-10	0-3000	0-40	0-40	0-100	0-1000	0-3000	0-300	0-200	0-1	0.4-0	0-1000	0-250	0-100	0-100	0-150	0-2000	0-300	0-3000	0-3000	0-1000	0-1000	0-100	0-200	0-20	0-10	0-150
Sigma		0.02		0.11		_	0.02	0.12	0.07	0.01	_	0	0.09	0.08	0.02	0.14	0.06	0.01	0.68	0.02	0.12	0.11	0.05	90.0	0.01	0.11	0.01	0.05	0.23
Bias S	•	0.02	•	0.75	•	,	0.01	0.42	0.23	0.11	•	0	0.04	0.35	0.01	0.3	0.02	0.01	1.78	0.02	0.09	0.27	90.0	0.3	0	0.22	0.25	0.03	0.44
~ ℃	- 60.0	0.35	0.02 -	2.04	0.22 -	0.37 -	0.55	0.83	2.91	1.43	2.86 -	0	1.25	2.86	0.82	0.74	6.22	0.33	4.81	0.09	10.2	6.98	1.65	5.1	0.18	1.16	0.29	0.45	1.14
, []		0.07		1.08			90.0	0.79	0.45	0.15		0	0.33	0.59	90.0	0.72	0.19	0.05	3.81	0.07	0.44	0.61	0.21	0.49	0.02	0.54	0.29	0.17	1.14
ocu .	0.3	0.81	0.03	3.97	0.28	0.51	1.24	2.14	5.31	2.83	9.05	0	1.83	3.52	3.1	1.05	14.01	0.37	7.21	0.17	21.41	13.35	2.37	6.52	0.29	1.55	0.16	99.0	0.38
FMU*R OC	0.25	0.81	0.03	3.97	0.28	0.51	1.24	2.14	5.31	2.83	9.05	0	1.83	3.52	3.1	1.05	14.01	0.37	7.21	0.17	21.41	13.35	2.37	6.52	0.29	1.55	0.16	99.0	0.38
MAU F	0.3	0.07	0	0.29	0.02	0.02	0.28	0.27	0.35	0.2	0.43	0	0.24	0.38	0.7	0.14	1.39	0.03	1.12	0.05	2.25	1.81	0.37	0.5	0.02	0.22	0.05	0.16	0.04
	0.24	0.04	0	0.17	0.01	0.01	0.15	0.14	0.26	0.12	0.5	0	0.2	0.35	0.26	0.12	0.68	0.02	0.88	0.04	1.19	*	0.31	0.43	0.02	0.2	0.05	0.14	0.03
MDC2 1		0.05		0.33			0.05	0.37	0.22	0.03		0	0.28	0.23	0.05	0.42	0.17	0.04	2.03	0.05	0.35	0.34	0.15	0.19	0.02	0.32	0.04	0.14	0.7
MDC3 N	0.2 -	0.45	0.03 -	2.28	0.14 -	0.37 -	0.68	<u>*-</u>	3.87	1.67	4.39 -	0	1.52	3.23	1.17	0.88	6.9	0.35	5.66	0.15	11.35	8.11	1.96	5.56	0.21	1.39	0.15	0.57	0.35
Conc	3.56	2.46	-0.02	2.82	11.25	18.51	0.04	12.4	143.64	4.5	142.82	0.01	2.91	6.0	3.35	0.78	-0.67	-0.03	0.38	0.55	6.17	2.55	0.63	1.63	0.38	1.26	0.01	-0.06	-3.46
Gas calibration Name	SG1 HCN (200) PCA 191C 191C	HF PPM (10) 191C	SF6 (10) 191C	ETHYLENE (100,3000) 191C	H2O% (40) 191C	CO2% (40) 191C	HCL PPM (100) 191C	SO2 (1000) 191C	NO (350,3000) 191C	NH3 (300) 191C (10F2)	CO (500) 191C (10F2)	CO% (1) 191C (20F2)	FORMALDEHYDE (70) 191C	ACETALDEHYDE (1000) 191C	CH4 (250) 191C (10F2)	PROPANE (100) 191C	HBR (100) 180C	NO2 (150) 191C (10F2)	NO2 (2000) 191C (20F2)	N2O (100,200,300) 191C	NH3 (3000) 191C (20F2)	CH4 (3000) 191C (2OF2)	ACETYLENE (1000) 191C	PROPYLENE (200,1000) 191C	COS (100) 150C	ETHANE (500) 191C	H2SO4 (50) 150C	MEOH (10) 191C	SO3 (150) 191C


Holcim; Ste. Genevieve MO Main Stack; Raw Mills Off


Run 3


 Spectrum
 Date
 Time


 SPC__008190.LAB
 01/11/24
 12:08:49.431

SNR 2500 sBeam @ 2500 5052.990234 1.239564

Appendix F

Test Participants

Scott Steinsberger Project Manager and FTIR Operator

Dustin Carpenter Sample Technician

Lee Harris Sampling Technician

Andrew Horrell Holcim Plant Contact

Appendix G

RTR Sampling and Analytical Protocol

PROTOCOL TO PERFORM A SAMPLING AND ANALYTICAL TESTING PROGRAM AS PART OF THE US EPA RISK AND TECHNOLOGY REVIEW

at

Holcim Inc. Ste. Genevieve Facility 2942 US Highway 61 Bloomsdale, MO 63627

Submitted By: DEECO, INC. 3404 Lake Woodard Road Raleigh, NC 27604

September 29, 2023

Copy # 1

TABLE OF CONTENTS

Figure	2		Page
1.0	INTRODU	CTION	. 1-1
	1.1 SUI	MMARY OF TEST PROGRAM	. 1-1
	1.2 PLA	ANT NAME, ADDRESS, AND CONTACT	. 1-1
	1.3 PRO	OCESS OF INTEREST	. 1-1
	1.4 AIR	POLLUTION CONTROL EQUIPMENT	. 1-1
	1.5 EM	ISSION POINTS AND SAMPLING LOCATIONS	. 1-2
	1.6 POI	LLUTANTS TO BE MEASURED	. 1-2
	1.7 EXI	PECTED TEST DATES	. 1-2
	1.8 TES	ST PROGRAM ORGANIZATION	. 1-2
2.0	SOURCE I	DESCRIPTION	. 2-1
	2.1 PRO	OCESS DESCRIPTION	. 2-1
	2.2 CO	NTROL EQUIPMENT DESCRIPTION	. 2-2
3.0	TEST PRO	GRAM	. 3-1
	3.1 OB.	JECTIVES	. 3-1
	3.2 TES	ST MATRIX	. 3-1
	3.3 TES	ST COORDINATION	. 3-2
4.0		G LOCATION DESCRIPTIONS	
	4.1 SAI	MPLING LOCATION DESCRIPTION	. 4-1
5.0		G AND ANALYTICAL PROCEDURES	
		ST METHODS	
	5.1.		
	5.1.		
		METHOD 2.	. 5-1
	5.1.		
		EPA METHOD 3A	. 5-1
		5.1.3.1 Calibration Gases	. 5-2
		5.1.3.2 Sampling Procedures	
	5.1.		
	5.1.	5 HYDROGEN FLUORIDE AND DIATOMIC CHLORINE - EPA METI	HOD
		26A	
	5.1.	6 HYDROGEN CYANIDE AND HYDROGEN FLUORIDE - EPA METI	HOD
		320	. 5-5
		5.1.6.1 Laboratory QA/QC Activities Before Field Test Program	
		5.1.6.2 QA/QC Activities During Field Test Program	. 5-6
6.0	-	ASSURANCE/QUALITY CONTROL ACTIVITIES	
	6.1 QA	/QC PROCEDURES	. 6-1
	6.2 SAI	MPLE IDENTIFICATION AND CUSTODY	. 6-2

TABLE OF CONTENTS (Continued)

7.0	SAMP	PLE CUSTODY									
	7.1	FIELD SAMPLING OPERATIONS									
	7.2	ANALYTICAL OPERATIONS									
8.0	INTER	RNAL QUALITY CONTROL CHECKS 8-1									
	8.1	EQUIPMENT INSPECTION AND MAINTENANCE 8-1									
	8.2	EQUIPMENT CALIBRATION8-1									
	8.3	SAMPLING QUALITY CONTROL PROCEDURES 8-3									
	8.4	ANALYTICAL QUALITY CONTROL PROCEDURES 8-5									
9.0	REPORTING AND DATA REDUCTION REQUIREMENTS										
	9.1	DATA REPORTING9-1									
	9.2	REPORT CONTENTS									
	9.3	DATA REDUCTION									
	9.4	DATA VALIDATION9-1									
10.0	PLANT ENTRY AND SAFETY										
	10.1	SAFETY RESPONSIBILITIES									
	10.2	SAFETY PROGRAM									
	10.3	SAFETY REQUIREMENTS									
		LIST OF TABLES									
Table		Page									
TABL	_	PROGRAM OUTLINE AND TENTATIVE TEST SCHEDULE 3-1									
TABL	E 6-1	QA/QC PROCEDURES AND REQUIREMENTS6-1									
		LIST OF FIGURES									
		LIST OF FIGURES									
Figure F:		Page									
Figure	1.1 Org	ganizational Chart									
_		. Genevieve Detailed Process Schematic									
Figure	4.1 Sch	nematic of Stack Sampling Location									

APPENDICES

Appendix A - Sampling and Analytical Methods

1.0 INTRODUCTION

Page:

Revision No:

Date: September 29, 2023

1-1

1.1 SUMMARY OF TEST PROGRAM

The United States Environmental Protection Agency (US EPA) has directed the portland cement industry (SIC 3241) to conduct emissions testing as part of the US EPA Risk and Technology Review (RTR). This document provides the overall test program approach and specifies minimum sample collection procedures, data quality objectives, and quality assurance/quality control measures to be used by the source testing firms selected by the cement companies performing tests. The test program is designed to be a comprehensive and robust test of each facility. The quality assurance and quality control (QA/QC) measures are designed to produce standardized data having known precision and accuracy. Collection of accurate, representative, and standardized data for facilities with low emissions is necessary especially in view of MACT standard setting procedures.

Cement kiln pyro-processing systems located throughout the US will be included in this request. Individual facilities have a wide range of kiln system configurations and air pollution control (APC) trains. Site-specific considerations will be required to capture emissions profiles for the target analytes that represent the extent of control or possible emissions increases from these controls.

1.2 PLANT NAME, ADDRESS, AND CONTACT

Holcim (US) Inc. - Ste. Genevieve Plant 2942 US Highway 61 Bloomsdale, MO 63627

Mr. Andrew Horrell TEL (636) 524-8425 FAX (636) 524-8140 andrew.horrell@holcim.com

1.3 PROCESS OF INTEREST

The process to be tested at the Ste. Genevieve facility is a preheater/precalciner pyroprocessing system with two inline raw mills producing portland cement.

1.4 AIR POLLUTION CONTROL EQUIPMENT

The air pollution control equipment at the Ste. Genevieve facility consists of three control devices. A selective noncatalytic reduction (SNCR) post combustion emissions control technology for reducing NOx by injecting ammonia into the kiln at a properly determined location. A dry sorbent injection system utilizing lime is used to control acid gas emissions. Exhaust from the kiln, both inline raw mills, clinker cooler, and coal mills directed through respective fabric filters for particulate removal, and directed into individual kiln/raw mills, clinker cooler, and coal mills stacks.

1.5 EMISSION POINTS AND SAMPLING LOCATIONS

Sampling will be conducted on the Kiln/Raw Mills Main stack.

1.6 POLLUTANTS TO BE MEASURED

Emission testing will be conducted for hydrogen cyanide (HCN), hydrogen fluoride (HF), and diatomic chlorine (Cl₂). Concurrent measurements to determine volumetric flow rate will be made. The sampling and analytical procedures to be followed are discussed in detail in Section 4.

1-2

0

1.7 **EXPECTED TEST DATES**

Test dates are to be determined.

1.8 **TEST PROGRAM ORGANIZATION**

The test program organizational chart is presented in Figure 1.1.

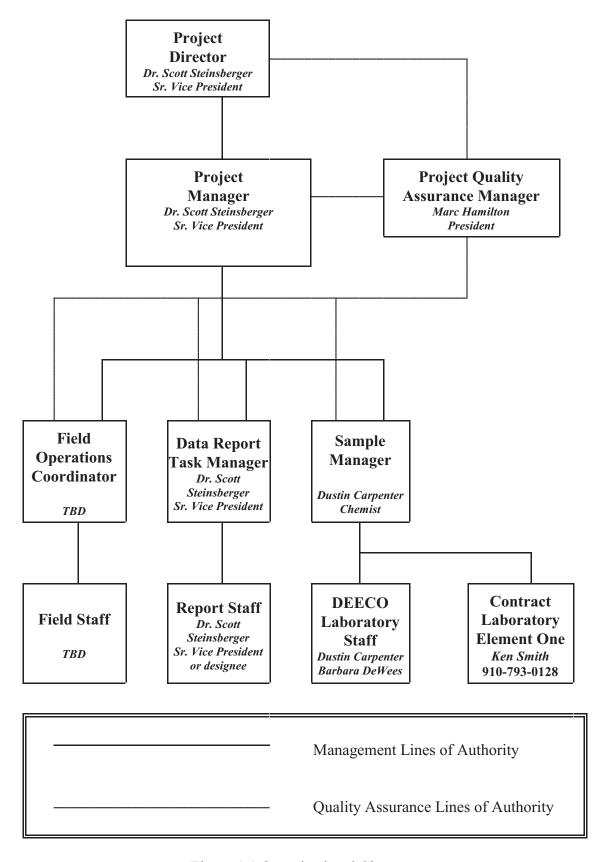


Figure 1.1 Organizational Chart

2.0 SOURCE DESCRIPTION

Page:

Revision No:

Date: September 29, 2023

2 - 1

0

2.1 PROCESS DESCRIPTION

Holcim (US) Inc. operates a facility east of the township of Danby in Ste. Genevieve County, Missouri designated as the Ste. Genevieve plant. The Ste. Genevieve plant is expected to have an annual clinker production capacity of 4,828,074 tons with a Portland cement production capacity of 5,082,183 tons. Operational units that accommodate this level of production include an on-site quarry, raw material storage, crushing and milling, solid fuel (coal and petroleum coke) storage and milling, liquid fuel storage, one preheater/precalciner cement kiln system, product milling, product storage, and loading and unloading systems.

Cement manufacturing involves chemical and physical processing of large quantities of raw materials. The raw materials used include sources of calcium, silica, alumina and iron. These are the components necessary for the manufacture of the cement chemicals dicalcium silicate, tricalcium silicate, tricalcium aluminate, and tetra-calcium aluminoferrite. The raw feed is prepared for use in the kiln system by sizing, grinding and blending the various raw materials to produce the necessary mix for quality production. The prepared raw feed is introduced to the kiln system where it is physically and chemically transformed into clinker, the intermediate product of Portland cement. In the kiln system, the raw materials are exposed to temperatures reaching up to 3,500°F through a countercurrent process in the kiln and a co-current process in the preheater. The raw materials are heated to 2,650°F, the temperature required to produce quality clinker. Both on-site and off-site sources supply raw materials for cement kiln feed at the Ste. Genevieve plant. Quarry resources include limestone and shale deposits that will comprise part of the raw material blend to become clinker, the principal product. Holcim will receive other raw materials from off-site suppliers at the Ste. Genevieve plant by rail, truck, and barge via the Mississippi River. Materials received from offsite may include limestone, iron ore, clay, bottom ash, fly ash, bauxite, diaspore, gypsum and other materials as necessary. An important source of raw materials is nonhazardous waste materials from other industries that have the proper chemical and physical properties to be used as a raw material source. The Ste. Genevieve plant is designed for these types of materials as sources of calcium, silica, alumina and iron. Preparation of raw materials, depending on its source and physical properties, involves primary and secondary crushing, and screening, blending and grinding in the raw mills prior to entrance into the preheater tower of the cement kiln system.

Holcim uses coal and petroleum coke as the primary fuels for the cement manufacturing process at the Ste. Genevieve plant. Holcim uses coal mills to prepare raw coal/coke for firing in the precalciner and the kiln. Solid fuels are received at the facility by truck, rail, and river barge. Liquid oils and similar non-hazardous materials are used as a secondary fuel in critical situations such as start-up and back-up. The facility's equipment design also allows Holcim to beneficially use many other sources of energy bearing, non-hazardous waste materials as supplemental fuel, when available. The preheater/precalciner pyroprocess is a state-of-the-art design that features five-stage cyclone-type preheater tower, low-NO_x precalciner, and a rotary kiln. The preheater/precalciner portion of the system is located in a tall tower adjacent to the kiln. The low-NO_x precalciner will be located at the base of the tower. The precalciner allows the burning fuel to be thoroughly mixed with the kiln feed. Excess heated air from the clinker cooler (tertiary air) will provide combustion air for the precalciner. Preheater/precalciner kilns feature greater thermal efficiency as compared to long dry or long wet kilns. This results in significantly lower emissions and decreased fuel consumption per ton of clinker produced. To increase energy efficiency even further, hot exhaust gases from the preheater tower are utilized to dry kiln feed in the raw mills and fuel in the coal mill.

Page: 2-2 Revision No: 0

Date: September 29, 2023

2.2 CONTROL EQUIPMENT DESCRIPTION

The air pollution control equipment at the Ste. Genevieve facility consists of three control devices. A selective noncatalytic reduction (SNCR) post combustion emissions control technology for reducing NO_x by injecting ammonia into the kiln at a properly determined location. A dry sorbent injection system utilizing lime is used to control acid gas emissions. Exhaust from the kiln/raw mills, clinker cooler, and coal mills directed through respective fabric filters for particulate removal, and directed into individual kiln/raw mills, clinker cooler, and coal mills stacks.

A schematic of the Ste. Genevieve process, including control equipment is shown below in Figure 2.1.

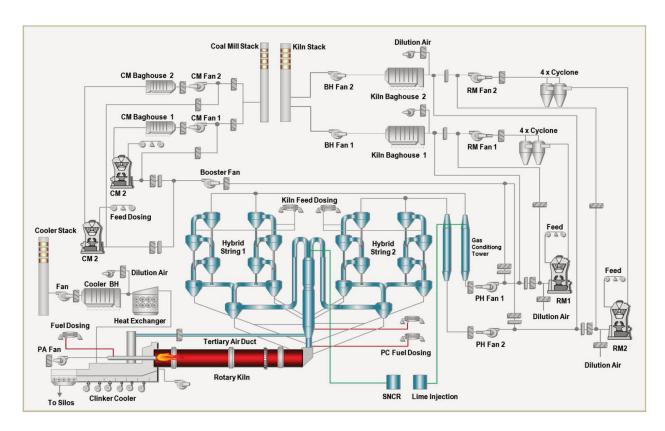


Figure 2.1 Ste. Genevieve Detailed Process Schematic

3.0 TEST PROGRAM

Page:

Revision No:

Date: September 29, 2023

3-1

0

3.1 **OBJECTIVES**

An air emissions sampling and analytical program will be conducted on the Kiln/Raw Mills Main stack at the Ste. Genevieve cement facility located in Bloomsdale, MO. All testing will be performed following accepted EPA methodology. The test program is to provide a standardized data set to the EPA and the cement industry so that reliable facility inter-comparisons of emissions can be made.

All testing will be performed in strict accordance with "DRAFT GENERAL TEST PLAN Testing To Determine HCN, HF, and Cl₂ Emissions From Cement Kilns" dated March 2, 2023" and the specifications stipulated in 40 CFR 60, Appendix A for flow rate following EPA Method 1, 2, 3A, and 4) and hydrogen fluoride (HF) and diatomic chlorine (Cl₂) following EPA Method 26A and in 40 CFR 63, Appendix A for hydrogen cyanide (HCN) and (HF) following EPA Method 320. All sampling runs will be one hour long.

The source emission test will be performed on a date to be determined. Testing will be conducted under representative process and control system operating conditions. For facilities with inline raw mills, testing will be performed while operating in the "Mill On" and "Mill Off" conditions. Ste. Genevieve is equipped with two (2) inline raw mills, therefore the expected operating conditions are "Both Mills On" and "Both Mills Off".

3.2 TEST MATRIX

Table 3-1 presents the sampling and analytical matrix and proposed test schedule.

TABLE 3-1 PROGRAM OUTLINE AND TENTATIVE TEST SCHEDULE

Sampling Location	No. of runs	Sample/Type Pollutant	Sampling Method	Sample Run Times (min)	Analytical Method	Analytical Laboratory			
Day 1	Day 1								
Stack	Arrive on-site and set up test equipment								
Day 2									
Stack; Both Raw	3	O ₂ /CO ₂	EPA Method 3A	60	Paramagnetic (O ₂) NDIR (CO ₂)	DEECO			
Mills On	3	HF and Cl ₂	EPA Method 26A ¹	60	Ion Chromatograph	Element One			
	3	HCN and HF	EPA Method 320	60	FTIR (Method 320)	DEECO			
Day 3	Day 3								
Stack; Both Raw	3 O ₂ /CO ₂		EPA Method 3A	60	Paramagnetic (O ₂) NDIR (CO ₂)	DEECO			
Mills Off	3	HF and Cl ₂	EPA Method 26A ¹	60	Ion Chromatograph	Element One			
	3	HCN and HF	EPA Method 320	60	FTIR (Method 320)	DEECO			

¹ Stack gas flow rate and moisture measurement may be taken from concurrent Method 26A sampling trains.

3-2

3.3 **TEST COORDINATION**

Mr. Andrew Horrell, the Ste. Genevieve facility contact, will serve as the test coordinator and will be responsible for:

- 1. Scheduling the start of all testing
- Principal contact with the agency officials concerning the tests 2.
- 3. Principal contact with DEECO concerning the tests
- Recording the process data during the testing 4.
- Providing copies of any field test data to the agency 5.

If there is a temporary equipment malfunction in the middle of a test, radio contact will be made with the test crew in order to delay the test. When problems have been corrected, the test will continue from the point where it was delayed. If the malfunction or upset condition results in an extended test delay, then the affected test run(s) may be aborted and a new run(s) conducted when the malfunction has been corrected or process upset cleared. Any samples or field data from aborted runs may be discarded.

4.0 SAMPLING LOCATION DESCRIPTIONS

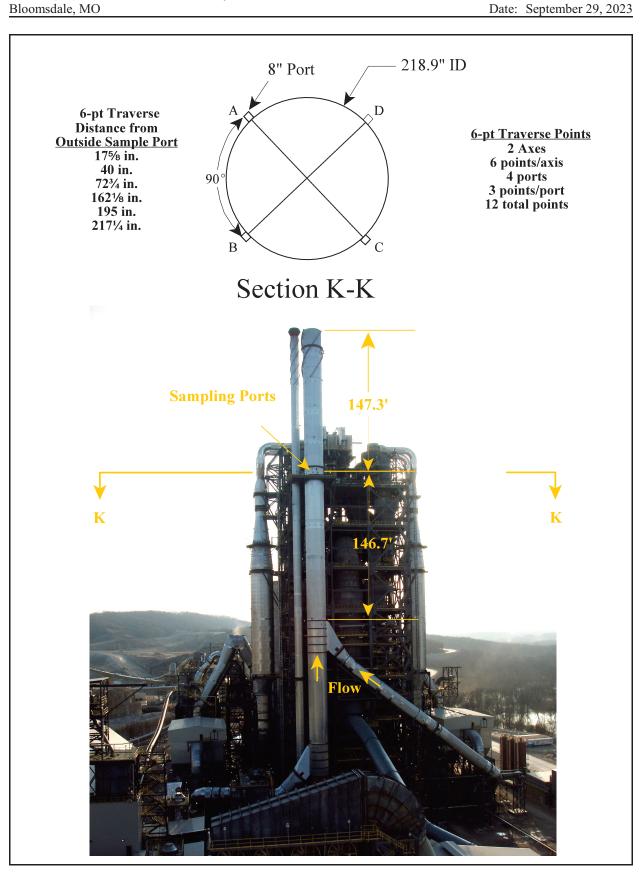
Page:

Revision No:

Date: September 29, 2023

4-1

0


4.1 SAMPLING LOCATION DESCRIPTION

The Kiln/Raw Mills Main stack is a vertically-oriented circular stack with an inside diameter of 218.9 inches. Four equidistant sampling ports are located at about located approximately 146.7' (approximately 8.0 duct diameters) above the closest disturbance and approximately 147.3' (approximately 8.1 duct diameters) from the stack outlet.

This sampling location meets the minimum specifications for selection of a measurement site as outlined in EPA Method 1. Cyclonic flow checks, as described in EPA Method 1 Section 2.4, using the Type-S pitot null procedure and angle measurements will be conducted at the Kiln/Raw Mills Main stack test location.

A twelve (12) point sampling traverse will be made using 3 points in each of 4 sampling ports at the Kiln/Raw Mills Main stack. Each traverse will be made at each sampling location using a type-S pitot tube in accordance with EPA Methods 2 procedures. Gas temperatures are to be measured using calibrated Type K thermocouples and digital readout devices. All measurements are to be performed in accordance with the procedures in EPA Methods 2, and 26A.

A schematic of the Kiln/Raw Mills Main stack is provided in Figure 4.1.

4-2

Page:

Revision No:

Figure 4.1 Schematic of Stack Sampling Location

5.0 SAMPLING AND ANALYTICAL PROCEDURES

Page:

Revision No:

Date: September 29, 2023

5-1

0

This section contains a brief description of the sampling and analytical procedures for each method that will be employed during the test program. All equipment, procedures, and quality assurance measures necessary for completion of the test program will meet or exceed the specifications of the appropriate methods. Any deviations from the methods to ensure quality representativeness of the results are also discussed.

5.1 TEST METHODS

The methods for the test program are described below, and apply to all process operating conditions (e.g. where there is an inline raw mill, testing will be performed while operating in the "Mill On" and "Mill Off" conditions). Table 3-1 outlines expected operating conditions for this test.

5.1.1 SAMPLING POINT DETERMINATION - EPA METHOD 1

The number and location of the sampling or traverse points will be determined according to the procedures outlined in EPA Method 1. The sample location will be inspected to insure EPA Method 1 criteria is met. All points will be at least 1.0 inches from the stack wall, per Method 1.

5.1.2 FLUE GAS VELOCITY AND VOLUMETRIC FLOW RATE - EPA METHOD 2

The flue gas velocity and volumetric flow rate will be determined according to the procedures outlined in EPA Method 2. Velocity measurements will be made using type S pitot tubes conforming to the calibration specifications outlined in EPA Method 2, Section 10.1. Each Type-S pitot tube, calibrated according to these standards, will have an assigned coefficient. Differential pressures will be measured with Magnehelic gauges of appropriate range or with fluid manometers. Effluent gas temperatures will be measured with chromel-alumel thermocouples equipped with digital readouts.

5.1.3 OUTLET FLUE GAS COMPOSITION - EPA METHOD 3A

Outlet flue gas analysis for oxygen (O_2) and carbon dioxide (CO_2) concentrations, and the calculation of percent excess air and flue gas dry molecular weight will be performed in accordance with EPA Method 3A.

To evaluate the sampling location and points for FTIR and O_2 sampling, a three-point O_2 concentration stratification test on a line passing through the centroidal area at 16.7, 50.0 and 83.3 percent of the measurement line (or for stacks is greater than 2.4 meters (7.8 ft) at 0.4, 1.2 and 2.0 meters from the stack or duct wall). The procedures in Section 8.1.2 of Method 7E will be followed, but oxygen will be used as parameter as allowed by fourth sentence in Section 8.1.2. The plant O_2 CEMS as a control. A criteria of <5% variation from combined mean for each point will be used as indication of non-stratification and allowing single point sampling at the point closest to the mean. Otherwise, sampling for equal periods at the three test points during test run will be conducted.

Per EPA Method 3A for determining molecular weight, integrated sampling will be obtain using the Method 320 sampling system described in Section 5.1.6.

A portion of the hot, wet gas sample will be sent through a condensing system to remove the stack moisture, A portion of the moisture-free gas sample will be snt to a CAI Model 200 O_2 (or

Page: 5-2 Revision No: 0 Date: September 29, 2023

equivalent) analyzer measures using the paramagnetic technique. An oxygen molecule, because of its sp3 electron orbital distribution, has an unpaired electron and hence displays a magnetic orientation. Since other elements that display this magnetic phenomenon are not common gasses at normal temperatures, the paramagnetic measurement technique is virtually specific for oxygen. The sample gas flows through a detection cell located in a very strong magnetic field. The concentration of O_2 gas present induces a pressure differential in the detector cell. The amount of differential pressure is proportional to the concentration of O_2 gas present.

Calibration procedures will be performed in accordance with EPA methodology. Analyzers will be calibrated before and after each test and a calibration check between each test run.

The pretest calibrations will consist of the following steps:

- Internal (direct) calibration of each analyzer to adjust calibration and check linearity.
- External (through the entire sampling system) calibration to check the system bias on zero and span gases.

The post test calibration will consist of an external system bias calibration check.

The analyzer will be as calibrated using a certified zero and span (mid or high range) gas. Zero and span gases were directed to each analyzer through the appropriate plumbing, the calibration gas flow rates will be adjusted to the correct flow rate and the analyzer will be adjusted with the appropriate span pot.

After the analyzer is properly adjusted the linearity will be checked using a low and high range calibration gas. The maximum allowable limit for linearity is 2% of the analyzer range. All analyzers will be shown to be linear within these limits before proceding..

The external calibration bias check will be performed by placing the CEM system in sampling mode and injecting a zero and span gas into the sample line at the probe exit. This check shows if there is any sampling system related bias, and also checks the integrity of the sample line.

5.1.3.1 Calibration Gases-DEECO will use EPA Protocol and/or $\pm 2\%$ NIST Traceable gases for calibration as required by the various reference methods employed in this test program. Calibration gases will be selected from previous experience with similar sources and/or from information obtained from the facility engineer prior to sampling. In some cases if the gases that are selected are out of the optimum range of operation then no significant impact of data quality is expected due to the linear nature of the analyzers that were used.

Audit gases, if available from a federal or a state agency, will be analyzed.

<u>5.1.3.2 Sampling Procedures</u>-At the completion of the pretest calibration routine, the CEM system will be ready for operation. No further adjustments of sample flow rates, analyzer zero or span adjustments, or other critical CEM operating parameters will be made until testing and post test calibration were complete.

Each sampling run will be one hour. At the completion for each test run, calibration gases will be used to check between test runs. A zero and the upscale calibration gas closest to the actual emission concentrations will be used for the pretest and post test calibrations.

5.1.4 FLUE GAS MOISTURE CONTENT - EPA METHOD 4

The flue gas moisture content will be determined in conjunction with the EPA Method 26A trains according to the sampling and analytical procedures outlined in EPA Method 4. (NOTE: In order to maintain isokinetic sampling, the sampling rate used may be required to temporarily exceed the EPA Method 4-specified maximum sampling rate of 0.75 CFM, based on observed stack gas pitot readings.) The impingers will be connected in series and will contain reagents as described below. The impingers will be contained in an ice bath in order to assure condensation of the moisture in the flue gas stream. Any moisture that is not condensed in the impingers is captured in the silica gel, therefore all moisture can be weighed and entered into moisture content calculations.

Page:

Revision No:

Date: September 29, 2023

5-3

0

5.1.5 HYDROGEN FLUORIDE AND DIATOMIC CHLORINE - EPA METHOD 26A

Sampling and analytical procedures will be similar to those outlined in EPA Method 26A to determine primarily diatomic chlorine (Cl_2) emissions and hydrogen fluoride (HF) emissions at main stack outlet sampling locations. Duplicate simultaneous trains (a.k.a "paired trains") for each test run will be used to determine precision.

Sample is collected through a heated glass probe, followed by a heated quartz fiber filter, where stack gas HF and Cl₂ are collected in a series of chilled impingers. The sampling train impingers will contain 50 ml of 0.1N sulfuric acid in the first impinger (optional should high moisture warrant a modified short stem), 100 ml of 0.1N sulfuric acid in the second and third, an empty fourth impinger, 100 ml of 0.1N NaOH in the fifth and sixth and 200 grams of silica gel in the last impinger. (**NOTE**: For plants with scrubbers, the optional cyclone may be used since the gas stream may be saturated with moisture.)

Sampling will be conducted isokinetically ($\pm 10\%$) with readings of flue gas parameters recorded at traverse points selected according to EPA Method 1. Leak-checks on the Method 26A sampling train will be are performed before and after each sampling run and optionally for any port change. In the event that any portion of the train needed to be disassembled and reassembled (i.e., due to filter or resin changes), leak-checks are performed. The sampling train leak-checks and leakage rate (where applicable) are documented on the field test data sheet for each respective run. All leak checks will be acceptable.

The glass button hook nozzle and probe liner will be constructed of borosilicate glass or quartz. The filter holder will be constructed of borosilicate glass with a Teflon frit filter support and a sealing gasket. A heated quartz fiber filter, for sources above 210°C, or PTFE-bonded glass fiber filter will be used. The probe and filter housing will heated to above 248°F and not exceed an upper boundary of 273°F. Probe liners and filter holders will be cleaned thoroughly prior to testing.

The Method 26A trains will be operated isokinetically for a minimum of 60 minutes and collect a minimum of 1 dry, standard cubic meter (DSCM). Pretest preparations, preliminary determinations, and leak check procedures will be those outlined in EPA Method 5.

After completion of sampling the train will be leak checked and transferred to the sample recovery trailer. All leak checks will be acceptable. The impingers will be weighed to determine moisture gain in accordance with EPA Method 4.

Sample recovery will involve quantitative recovery of the sulfuric acid impinger contents and the NaOH impinger contents into separate tare-weighed, precleaned polyethylene sample containers.

Page: 5-4 Revision No: 0

Date: September 29, 2023

The nozzle, probe, filter and filter housing will not be recovered.

The contents of sulfuric acid impingers, including the contents if any of the empty (2^{nd} knockout or fourth) impinger will be quantitatively transferred to the tare-weighed, precleaned polyethylene sample container, followed by three rinses with deionized (DI) water of the impingers and all connecting glassware (including the connecting glassware to the first impinger) placed in the same H_2SO_4 container. The container will be labeled and weighed to determine the final sample volume. The liquid level will be marked on the sample container.

The contents NaOH impingers will be quantitatively transferred to a second tare-weighed, precleaned polyethylene sample container, followed by three rinses with DI water of the impingers and all connecting glassware placed in the same NaOH container. The container will be labeled and weighed to determine the final sample volume. The liquid level will be marked on the sample container

Sample recovery from each train will include:

- 1. Container No. 1 Contents 1st knockout, H₂SO₄ impingers, and 2nd knockout and, and DI rinse of impingers and connecting glassware; and
- 2. Container No. 2 Contents NaOH impingers, and DI rinse of impingers and connecting glassware.

Additional quality control consists of collecting and analyzing a field blank train for every three test runs. The blank train is to be assembled from a used train, leak checked and sit for a period equal to the sampling time (i.e, 1-hr). The blank train data will be used to determine the method detection limit for the test program target analytes (ie. The lowest number that could be detected), and compared to stack emissions.

Reagent blanks of $0.1~N~H_2SO_4$, 0.1N~NaOH, and DI water will be collected and archived for later analysis should there be any issues with the field blank train samples

The $\rm H_2SO_4$ impinger solutions will be analyzed using ion chromatography techniques for fluoride ions (F) (EPA SW-9057). Duplicate analyses will be performed on the samples and a reagent blank. Precision will be demonstrated by duplicate injection of each sample, the results of each individual analysis must be within 5% of their mean to be acceptable. If the precision criteria is not met, analysis of the sample is repeated until consecutive injections meet the criteria.

The NaOH impinger solutions will be treated with sodium thiosulfate to ensure complete conversion of hypochlorous acid (HClO) to chloride ions (Cl⁻). The resulting solution will be analyzed using ion chromatography techniques for chloride ions (EPA SW-9057). Duplicate analyses will be performed on the samples and a reagent blank. Precision will be demonstrated by duplicate injection of each sample, the results of each individual analysis must be within 5% of their mean to be acceptable. If the precision criteria is not met, analysis of the sample is repeated until consecutive injections meet the criteria.

All EPA Method 26A HF/Cl₂ samples will be analyzed by Element One of Wilmington NC. Refer to Section 1, Figure 1.1 for contact information.

The relative deviation (RD)will be calculated as described in EPA Method 30B between the Cl₂ concentrations measured with the paired trains.

5.1.6 HYDROGEN CYANIDE AND HYDROGEN FLUORIDE - EPA METHOD 320

EPA Method 320 will be performed to determine emissions of concentrations of HCN and HF. Three, 1-hour sampling runs will be conducted under representative process and control system operating conditions.

Page:

Revision No:

Date: September 29, 2023

The gas sample will be extracted from the stack through a glass-lined probe and filter heated to 375° F. For external calibration checks and analyte spikes, the gases will be introduced in front of the heated filter. Any excess calibration gas will be diverted through the sample probes into the source. Outflow of gas from the heated filter enclosure was transported through a Teflon sample line heated to 375° F. For this source approximately 100' of sample line will be required. The heated sample line will be connected directly to the FTIR sample cell. Using heat-traced Teflon tubing the exit of the FTIR cell will be connected to a sample pump with a heated stainless steel pump head. The pump discharge will be directed to a proprietary chiller-type gas conditioner to remove moisture prior to delivery sample gas to the O_2/CO_2 monitors.

The distribution of the gas sample to the monitors will be accomplished using a panel equipped with valves and rotometers. The gas sample was then divided and directed to the analyzers.

FTIR sample cell will be maintained at 191 °C and connected to a MKS Instruments Multigas 2030 Fourier Transform Infrared Spectrometer and Detector.

The FTIR spectrometer will measure vapor phase organic or inorganic compounds which absorb energy in the mid-infrared spectral region, about $400 \text{ to } 4000 \text{ cm}^{-1}$ (25 to 2.5 μ m). Continuous measurement will be made by matching sample absorbance bands with bands in reference spectra, and comparing sample band intensities with reference band intensities.

The principle limitation to FTIR spectroscopy are the presence of interfering compounds that also absorb energy in the mid-infrared spectral region. In a cement kiln stack gas matrix, water vapor (H_2O) and carbon dioxide (CO_2) are the primary interferents that must be incorporated into the identification and quantitation method.

The FTIR software performs the computation for a single compound by subtracting all the other compounds (interferants and target) from the absorbance spectra and quantifies the single compound based on the remain absorbance. The FTIR software provides a Standard Error Calculation (SEC) value that is an indication of how well the identification and quantitation has been performed. A high SEC indicates that other interferants have not been accounted for in the analysis method, and a low SEC is indicative of greater confidence measurement.

The instrument is operated with a resolution of 0.5 cm⁻¹ with 4x zero filling. Beer-Norton Medium apodization is used with amplitude phase correction.

For this RTR test program, following specific QA/QC activities for EPA Method 320 will be performed and criterium met.

5.1.6.1 Laboratory QA/QC Activities Before Field Test Program- Before field testing occurs, the following QA/QC activities will be conducted;

1) Seven consecutive samples of dry nitrogen through the sampling system will be acquired and used to calculate the standard deviation for each of the test program target analytes multiplied

Page: 5-6 Revision No: 0

Date: September 29, 2023

by a factor of 3. These data will be considered representative of detection limits for this test program and are to be compared to the 0.5 ppm required DL;

- 2) From these seven dry nitrogen samples, the results for the Signal-to-Noise Ratio (SNR) @ 2500 cm⁻¹ should be >2500, at 64 scans and the results for single beam intensity @ 2500 cm⁻¹ should be >0.9; and
- 3 Upon receipt of HCN calibration gases a direct analysis will be performed to verify FTIR response agrees with tag value within 5%. Analysis results will be reported to PCA to assess need for modified reference spectra and/or change to direct analysis criterion:

5.1.6.2 QA/QCActivities During Field Test Program- During the field test program, following QA/QC activities will be performed and criterium met;

- 1) On each test day prior to any testing, an instrument background will be collected using dry nitrogen directed to the gas cell. The background will be collected with at least 128 scans;
- 2) The probe, filter, sample line and all sample system components in contact with effluent will be maintained at or above 375°F or 191°C (consistent with FTIR calibration temperature) to avoid any possible "cold spots;"
- 3) Heated sample lines will be ≤100 feet wherever possible, and not longer than 200 feet, without prior approval for unusual test circumstances;
- A system zero with all sampling system components at operating temperature will be performed by injecting nitrogen at the sample probe and through sample filter and entire measurement system. After zero equilibration has been achieved, all measurement components will be quantified for at least 128 scans;
- Ambient air will be sampled until equilibration of the measurement system has been achieved and all measurement components will be quantify for at least 128 scans;
- The sample probe will be position at effluent measurement point and sampling will continue until equilibration of the measurement system has been achieved. At this point, the effluent concentrations will be quantified with two consecutive 64-scan samples as the initial native concentration for the dynamic spike;
- Analyte spiking will be conducted for HCN before the first test run, and after each successive test run for a minimum of 4 spikes per test condition. (Additional spikes would be required before and after corrective action for the sampling or analysis system and/or before and after removing the sampling system from the stack.) These results will determine accuracy;
- The spike gas injections will be maintained at 10% or less of total sample volume. The spike gas concentration and flow rate will be selected to approximately double the native effluent concentration, or the spike will be conducted to add 3-4 ppm to native concentration, whichever results in greater spiked concentration. Spike recovery results will be within $\pm 20\%$ of the expected value or ± 0.5 ppm, whichever is least restrictive. (Specific HCN gases will be manufactured for this test program in the range of 50-100 ppm to provide spikes in the 5-10 ppm range, or lower. An SF₆ or appropriate tracer will be used to calculate the exact spike gas dilution ratio of 10% or less;)
- 9) After the dynamic spike, nitrogen will be sent through the sampling system until all traces of spike gas are removed and lines are proven below DL for target analytes;
- 10) The nitrogen purge will be discontinued and the sampling system will be allowed to equilibrate with stack gas before starting a test run. The first two consecutive 64-scan samples of a sample run will be used for the final native concentration. Residual results for HCN and HF will be verified to be less than 0.2-0.3 ppm for data acceptance, or less than 5% of the measured value, whichever is least restrictive. Calculate the standard deviation for

each of the test program target analytes for seven consecutive sample spectra from Run 1, multiplied by a factor of 3. These data will be compared to the pre-test system nitrogen standard deviation results and also included in the facility test report;

Page:

Revision No:

Date: September 29, 2023

5-7

0

The SNR @ 2500 cm⁻¹, at 64 scans, and the results for single beam intensity @ 2500 cm⁻¹ will be verified to met the >2500 and >0.9 criterium; respectively. The analyte spiking for HCN and subsequent system nitrogen injection will be conducted after each test run. Continue sequence until at least three valid runs per test condition are completed.

6.0 QUALITY ASSURANCE/QUALITY CONTROL ACTIVITIES

Page:

Revision No:

Date: September 29, 2023

6-1

6.1 QA/QC PROCEDURES

The QA/QC procedures for this RTR test program are summarized in Table 6-1.

TABLE 6-1 QA/QC PROCEDURES AND REQUIREMENTS

Target Analyte	Test Method	Detection Limit	QA/QC
HCN	EPA Method 320	0.5 ppm	Increase scans if needed to achieve detection limits. Increasing to 400 from relative 64 (gives a 2.5 S/N advantage). HCN spiking before and after each run by adding 10% or less spike to approximately double the native effluent concentration, or conduct spike to add 3-4 ppm to native concentration, whichever results in greater spiked concentration. Spike recovery results shall be within ±20% of the expected
			value or ± 0.5 ppm, whichever is least restrictive 5% pre-to-post run calibration transfer standard (CTS) requirement
HF		0.2-0.3 ppm	Rely on CTS (5%), HCN and tracer gas responses to validate HF FTIR data
Cl ₂	EPA Method 26A	$\sim 0.07 \text{ mg/m}^3$ ($\sim 0.2 \text{ ppm}$)	Duplicate Simultaneous Trains; Collect minimum of 1 dscm for each sample train. Acceptance criteria for paired samples: 10% Relative Deviation or 0.2 ppm absolute difference, whichever is least restrictive. Insert dry impinger between acid and base impingers
Effluent Flow Rate	EPA Methods 1-4	Not Applicable	As per M26A isokinetic testing or separately by Methods 1-3. FTIR measurements for $\rm H_2O$. Wind Tunnel calibrated pitot tube having a Cp of 0.84 or less is required for all flow measurements. Compare preliminary velocity traverse measurements and sample run flow rate measurements to installed certified flow rate monitor. Investigate and resolve differences greater than 10% of average flow rate.
O ₂	EPA Method 3A	Not Applicable	Analyte concentrations corrected @ 7% O ₂ Span is 10%, 15%, or 20% (for co-mingled stacks only) Acceptance criteria are 0.2% O ₂ difference for analyzer calibration error, and 0.3% O ₂ for system bias checks, and zero and upscale drift checks.

6.2 SAMPLE IDENTIFICATION AND CUSTODY

Sample custody procedures for this program are based on EPA recommended procedures. Since samples will be analyzed by one or more laboratories as well as in the field, the custody procedures emphasize careful documentation of sample collection and field analytical data and the use of chain of custody records for samples being transported. The procedures which will be used are discussed below.

Page:

Revision No:

Date: September 29, 2023

6-2

0

The project manager will be responsible for ensuring that proper custody and documentation procedures are followed for the field sampling and field analytical efforts. He will be assisted in this effort by key sampling personnel involved in sampling recovery.

Samples will be collected, transported, and stored in clean containers which are constructed of materials inert to the analytical matrix such as glass jars. Only containers which allow air tight seals will be used. Amber glass jars will be employed when containers are needed to inhibit photochemical reactions.

All sampling data, including information regarding sampling times, locations, and any specific considerations associated with sample acquisition will be recorded on preformatted data sheets. All samples will be given unique, identifying alphanumeric sample codes which will serve to track samples from the field to the laboratory.

Samples will be stored for transport from the lab to the field to the lab in storage boxes constructed in a fashion which minimizes movement and thus prevents breakage of containers. For example, boxes used for transporting glass containers will have foam inserts with form-fitting cutouts. Sample transport boxes will be locked except when in use. Vans containing equipment and samples will be locked whenever they are left unattended.

A daily activity log will be maintained by the project supervisor. This will be an informal log used to record various types of information, such as minor problems which arise, sketches of sampling locations, names and phone numbers of plant contacts. daily activity summaries, etc.

This section provides information regarding the organization of the sampling and analytical program. The following details the key positions and their responsibilities. Once personnel have been assigned to these positions, their qualifications will be provided as an addendum.

The organization of the project team, including QA functions, is shown in the project organization chart (see Figure 1.1).

7.0 SAMPLE CUSTODY

Page:

Revision No:

Date: September 29, 2023

7-1

0

Sample custody procedures for this program are based on EPA recommended procedures. Since samples will be analyzed by one or more laboratories as well as in the field, the custody procedures emphasize careful documentation of sample collection and field analytical data and the use of chain of custody records for samples being transported. The procedures which will be used are discussed below.

7.1 FIELD SAMPLING OPERATIONS

The project manager will be responsible for ensuring that proper custody and documentation procedures are followed for the field sampling and field analytical efforts. He will be assisted in this effort by key sampling personnel involved in sampling recovery.

Samples will be collected, transported, and stored in clean containers which are constructed of materials inert to the analytical matrix such as glass jars. Only containers which allow air tight seals will be used. Amber glass jars will be employed when containers are needed to inhibit photochemical reactions.

All sampling data, including information regarding sampling times, locations, and any specific considerations associated with sample acquisition will be recorded on preformatted data sheets. All samples will be given unique, identifying alphanumeric sample codes which will serve to track samples from the field to the laboratory.

Samples will be stored for transport from the lab to the field to the lab in storage boxes constructed in a fashion which minimizes movement and thus prevents breakage of containers. For example, boxes used for transporting glass containers will have foam inserts with form-fitting cutouts. Sample transport boxes will be locked except when in use. Vans containing equipment and samples will be locked whenever they are left unattended.

A daily activity log will be maintained by the project supervisor. This will be an informal log used to record various types of information, such as minor problems which arise, sketches of sampling locations, names and phone numbers of plant contacts. daily activity summaries, etc.

7.2 ANALYTICAL OPERATIONS

Analytical operations will be performed on-site in the laboratory as well as in the remote laboratories. Samples analyzed by outside laboratories are transported with a Change of Custody form. This form will list sample identifications, analytical parameters, sample matrices, anticipated date of results, and other relevant information necessary to ensure the appropriate analyses are performed and to document the progress of the samples.

8.0 INTERNAL QUALITY CONTROL CHECKS

Page:

Revision No:

Date: September 29, 2023

8-1

0

Specific quality control (QC) procedures will be followed to ensure the continuous production of useful and valid data throughout the course of this test program. The QC checks and procedures described in this section represent an integral part of the overall sampling and analytical scheme. Strict adherence to prescribed procedures is quite often the most applicable QC check. A discussion of both the sampling and analytical QC checks that will be utilized during this program is presented below.

8.1 EQUIPMENT INSPECTION AND MAINTENANCE

Each item of field test equipment will be assigned a unique, permanent identification number. An effective preventative maintenance program is necessary to ensure data quality. Each item of equipment returning from the field will be inspected before it is returned to storage. During the course of these inspections, items are cleaned, repaired, reconditioned, and recalibrated where necessary.

Each item of equipment transported to the field for this test program will be inspected again before being packed to detect equipment problems which may originate during periods of storage. This minimizes lost time on the job site due to equipment failure.

Occasional equipment failure in the field is unavoidable despite the most rigorous inspection and maintenance procedures. For this reason, replacement equipment for all critical sampling train components will be transported to the job site.

8.2 EQUIPMENT CALIBRATION

New items for which calibration is required will be calibrated before initial field use. Equipment whose calibration status may change with use or time will be inspected in the field before testing begins and again upon return form each field use. When an item of equipment is found to be out of calibration, it will be repaired and recalibrated or retired from service. All equipment will be periodically recalibrated in full, regardless of the outcome of these regular inspections.

Calibrations will be conducted in a manner, and at a frequency, which meets or exceeds U.S. EPA specifications. The calibration procedures outlined in the EPA Methods will be followed. When these methods are inapplicable, methods such as those prescribed by the American Society for Testing Materials (ASTM) will be used.

Data obtained during calibrations will be recorded on standardized forms, which will be checked for completeness and accuracy by the quality assurance manager. Data reduction and subsequent calculations will be performed using computer facilities. Calculations will be checked at least twice for accuracy. Copies of calibration forms will be included in the test or projects reports.

Emissions sampling equipment requiring calibration includes pitot tubes, pressure gauges, thermometers, dry gas meters and barometers. The following sections elaborate on the calibration procedures to be followed for these items of equipment.

A: Pitot Tubes. All Type S pitot tubes used, whether separate or attached to a sampling probe, will be constructed in-house or by a third-party vendor. Each new pitot will

be calibrated in accordance with Section 10.1 of EPA Method 2. Each Type-S pitot tube, calibrated according to these standards, will have an assigned coefficient. This coefficient should not change as long as the pitot tube is not damaged.

Page:

Revision No:

Date: September 29, 2023

8-2

0

Each pitot tube will be inspected visually upon return from the field. If a cursory inspection indicates damage or raises doubt that the pitot remains in accordance with the EPA geometry standards, the pitot tube will be refurbished as needed and recalibrated.

- **B:** Differential Pressure Gauge. All meter consoles used are equipped with 10-inch water column (W.C.) inclined-vertical manometers. Fluid manometers do not require calibration other than leak checks. Manometers will be leak checked in the field prior to each test series, and again upon return from the field.
- C: Impinger Thermometer. Prior to the start of testing, the thermometer used to monitor the temperature of the gas leaving the last impinger will be compared with a mercury-in-glass thermometer which meets ASTM E-1 No. 63F specifications. The impinger thermometer is adjusted if necessary until is agrees within 2°F of the reference thermometer. If the thermometer is not adjustable, it is labeled with a correction factor.
- **D: Dry Gas Meter Thermometer.** The thermometer used to measure the temperature of the metered gas sample will be checked prior to each field trip against an ASTM mercury-in-glass thermometer. The dry gas meter thermometer is acceptable if the values agree within \pm 5.4°F. Thermometers not meeting this requirements will be adjusted or labeled with a correction factor.
- **E: Flue Gas Temperature Sensor.** All thermocouples employed for the measurement of flue gas temperature are calibrated upon receipt. Initial calibrations will be performed at three points (ice bath, boiling water, and hot oil). An ASTM mercury-in-glass thermometer will be used as a reference. The thermocouple is acceptable if the agreement is within 1.5 percent (absolute) at each of the three calibration points.

Before and after each field use, the reading from the flue gas thermocouple-potentiometer combination will be compared with an ASTM mercury-in-glass reference thermometer at ambient conditions. If the two agree within \pm 1.5 percent (absolute), the thermocouple and potentiometer are considered to be in proper working order.

F: Dry Gas Meter and Orifice. Two procedures will be used to calibrate the dry gas meter and orifice simultaneously. The full calibration will be a complete laboratory procedure used to obtain the calibration factor of the dry gas meter. Full calibrations will be performed over a wide range of orifice settings. A simpler procedure, the post-test calibration, will be designed to check whether the calibration factor has changed.

A dry gas meter that is calibrated annually against a spirometer or a set of calibrated critical orifices will be used as a transfer standard. During the annual calibration, triplicate calibration runs will be performed at seven flow rates ranging from 0.25 to 1.40 cfm.

G: Dry Gas Meter. Each metering system receives a full calibration at the time of purchase and a post-test calibration after each field use. If the calibration factor, γ , deviates by less than five percent from the initial value, the test data are acceptable. If γ deviates by more than 5 percent, the meter is recalibrated and the meter coefficient (initial or recalibrated) that yields the lowest sample volume for the test runs is used.

Page:

Revision No:

Date: September 29, 2023

8-3

0

EPA Method 5 requires another full calibration anytime the post-test calibration check indicates that γ changed by more than 5 percent. Standard practice is to adjust and recalibrate the dry gas meter anytime γ is found to be outside the range of 0.96 to 1.04. Post-test calibrations will be performed after each field test series per EPA Method 5, section 16.3 procedures.

- **H:** Orifice. An orifice calibration factor will be calculated for each flow setting during a full calibration. If the range of values does not vary by more than 0.20 in H_2O over a range of 0.4 to 4.0 in H_2O , the arithmetic average of the values obtained during the calibration is used.
- **I: Barometer.** Each field barometer will be adjusted before each test series to agree within \pm 0.1 inches of a reference aneroid barometer. The reference barometer will be checked against the station pressure value (corrected for elevation difference) reported by the National Weather Service.

8.3 SAMPLING QUALITY CONTROL PROCEDURES

The following pretest QC checks will be conducted:

- All sampling equipment will be thoroughly checked to ensure clean and operable components.
- Equipment will be inspected for possible damage from shipment.
- The oil manometer or Magnehelic gauge used to measure pressure across the Type S pitot tube will be leveled and zeroed.
- The number and location of the sampling traverse points will be checked before taking measurements.
- The temperature measurement system will be visually checked for damage and operability by measuring the ambient temperature prior to each traverse.

In addition to the general QC procedures listed above, QC procedures specific to each sampling method will also be incorporated into the sampling scheme. These methods and specific procedures are discussed below.

A: Sampling Train QC checks. The following QC procedures will be emphasized:

Prior to Start of Tests

• Keep all cleaned glassware and sample train components sealed until train assembly.

Page:

Revision No:

Date: September 29, 2023

8-4

- Assemble the sampling trains in an environment free from uncontrolled dust.
- Visually inspect each sampling train for proper assembly.
- Perform pretest calculations to determine the proper sampling nozzle size.

Prior to Each Test Run

- Visually inspect the sampling nozzle.
- Visually inspect the Type S pitot tube.
- Leak check each leg of the Type S pitot tube.
- Leak check the entire sampling train.

During Each Test Run

- Readings of temperature and differential pressure will be taken at each transverse point.
- All sampling data and calculations will be recorded on preformatted data sheets.
- All calibration data forms will be reviewed for completeness and accuracy.
- Any unusual occurrences will be noted during each run on the appropriate data form.
- The project supervisor will review sampling data sheets daily during testing.
- Properly maintain the roll and pitch axis of the Type S pitot tube and the sampling nozzle.
- Leak check the train before and after any move from one sampling port to another during a run (at DEECO's option) or if a filter change takes place.
- Conduct additional leak checks if the sampling time exceeds 4 hours.
- Maintain the probe, filter, and impingers at the proper temperatures.
- Maintain ice in the ice bath at all times.
- Make proper readings of the dry gas meter, delta P and delta H, temperature, and pump vacuum during sampling at each traverse point.
- Maintain isokinetic sampling within $\pm 10\%$ of 100%.

After Each Test Run

- Visually inspect the sampling nozzle.
- Visually inspect the Type S pitot tube.
- Leak check each leg of the Type S pitot tube.
- Leak check the entire sampling train.

B: QC for Volumetric air flow rate determinations

Flue Gas Velocity. Data required to determine the flue gas velocity will be collected using the methodology specified in EPA Method 2. Quality control procedures are as follows.

Page:

Revision No:

Date: September 29, 2023

8-5

0

- Visually inspect the Type S pitot tube before and after sampling.
- Leak check both legs of the pitot tube before and after sampling.
- Check the number and location of the sampling traverse points before taking measurements.

Flue Gas Molecular Weight. In the event that that integrated bag samples are to be used for determination of flue gas molecular weight, EPA Method 3 will be the sampling technique specified. Quality control will focus on the following procedures:

- The sampling train will be leak checked before and after each run.
- A constant sampling rate will be used in withdrawing a sample.
- The sampling train will be purged prior to sample collection.
- The sampling port will be properly sealed to prevent air in-leakage.

Moisture Content. The moisture content of the gas stream will be determined using the technique specified in EPA Method 4. The following QC checks will be performed:

- The sampling train will be leak checked before and after each run.
- Ice will be maintained in the ice bath throughout each run to insure an exit temperature (after the silica gel impinger) of $\leq 67^{\circ}$ F.

8.4 ANALYTICAL QUALITY CONTROL PROCEDURES

All analyses for this program will be performed using accepted laboratory procedures in accordance with the specified analytical protocols. Adherence to prescribed QC procedures will ensure data of consistent and measurable quality. Analytical QC will focus upon the use of control standards to provide a measure of analytical precision and accuracy. Also, specific acceptance criteria are defined for various analytical operations including calibrations, control standard analyses, drift checks, blanks, etc. The following general QC procedures will be incorporated into the analytical effort:

- The on-site project manager will review all analytical data and QC data on a daily basis for completeness and acceptability.
- Analytical QC data will be tabulated using the appropriate charts and forms on a daily basis
- Copies of the QC data tabulation will be submitted to the quality assurance manager following the completion of the test program.
- All hard copy raw data (i.e., chromatograms, computer printouts, etc.) will be maintained in organized files.

Page: 8-6 Revision No: Date: September 29, 2023

Specific analytical QC procedures for the Orsat analyzer (if used) are listed below.

- The analyzer will be leveled and the fluid levels zeroed prior to use.
- The analyzer will be leak checked prior to use.
- The analyzer will be thoroughly purged with sample prior to use.
- The analyzer will be checked by analyzing an ambient air sample.

EPA Method 26A Sample Analysis QC Checks are listed below.

- Calibration curve consisting of 4 calibration levels that bracket the expected sample range. Dilute samples as necessary to reach the calibration range;
- Duplicate analysis of calibration standards, before and after sample analysis, with duplicate injections being within 5% of their mean;
- Duplicate analysis of reagent blanks, quality control samples and field samples with duplicate injections being within 5% of their mean;
- Matrix spike samples may be prepared and analyzed. Matrix spike recoveries should be 90-110%
- A field blank will be carried through the procedure and analyzed with the field samples.
- An audit sample will be analyzed for if available from two or more independent, Approved Audit Sample Providers no less than 60 days prior to the test effort.

Page: 9-1 Revision No: 0

Date: September 29, 2023

9.0 REPORTING AND DATA REDUCTION REQUIREMENTS

9.1 DATA REPORTING

The reporting units for HCN, HF, and Cl_2 will be in parts-per-million by volume, wet basis (ppm_{v,d}), parts-per-million by volume, dry corrected to 7% oxygen (ppm_{v,d}@7%O₂), pounds-per-hour (lbs/hr), and pounds-per-ton of clinker (lbs/ton). Additional supporting data for CO_2 , O_2 , and O_2 0 concentrations and volumetric flow rates (actual cubic feet-per-minute, wet, standard cubic feet-per-minute, and dry, standard cubic feet-per-minute) will be reported. The clinker production, in short tons-per-hour (TPH) will be reported.

Any data that is not acceptable because of technical difficulties will be indicated, and an explanation of the technical problem will be given. All related QC and calibration data will be in the final report.

9.2 REPORT CONTENTS

Copies of the test report will be submitted after the test series has been completed. Results reported will include, but not be limited to emission rates and concentrations of gaseous pollutants, and process sample determinations, any liquid stream constituents determinations, and any other type of data requested. This report will also include a list of all personnel present during testing, summary results, descriptions of test procedures used, a description of the source and its operation during testing, test locations drawings, example calculations, raw field data, and equipment calibrations.

9.3 DATA REDUCTION

Care will be exercised to ensure hand recorded data is written accurately and legibly. Additionally, the use of prepared data recording forms, conveniently formatted, is an important aid to verify that all necessary data items are recorded. The collected field and laboratory data will be reviewed by the analyst and the Project Manager.

The Project Manager will reduce and validate all of the sampling and analytical data that is collected. The sampling data will include flow measurements, calibrations, etc. Each laboratory will reduce all analytical results prior to their submission to the Project Manager. The analytical data will be used to determine concentrations and emission rates of the compounds of interest.

Data reduction follows guidelines published in EPA Reference Methods, where applicable, and by guideline documents where EPA Reference Methods are not available. Validated computer programs will be used to calculate all reported values.

9.4 DATA VALIDATION

A second technical review of the data will be performed and documented by a qualified scientist other than the one who performed the actual analyses. The second reviewer will include evidence (e.g., check marks, recalculations, etc.) that show which data points were checked. Finally, the second reviewer will sign and date the cover page of the data packet or the record that was reviewed.

calibration verifications according to the referenced method used.

Analysis data may be validated according to defined criteria by a secondary reviewer or by the analyst. At a minimum and if applicable, analysis data will be validated according to the following criteria (additional method-specific criteria or project requirements may apply):

- Sampling records complete and traceable
- All appropriate QC samples included with the analytical batch and reported with the sample results
- Routine tuning, calibration and inspection of analytical instrumentation documented and performed prior to analyses
- Initial and continuing calibration criteria met
- Method/reagent blanks confirm no background contamination
- Surrogate recoveries within criteria
- Qualitative sample results (e.g., retention times, mass spectra, isotopic ratios) consistent with standard data
- Sample data within the calibrated range of the instrument
- Chromatograms or other raw data consistent with computer-generated quantitation reports
- Accuracy of intermediate data manipulations, transcribed numbers and/or final reported results verified
- Reference standards, instrumentation, sample identification, analysts, methodology, and sequence of processing clearly identified and traceable in the project records
- Lost data or corrective actions documented (e.g., loss of sample, reanalysis, redilutions, additional cleanup steps, alternative calculations etc.)
- Data that does not meet the validation requirements flagged accordingly
- Data reported in the correct units (e.g., "ppm" should not be used without specifying volume or mass units; "ug/g" are preferred units for data reporting)

10.0 PLANT ENTRY AND SAFETY

Page:

Revision No:

Date: September 29, 2023

10 - 1

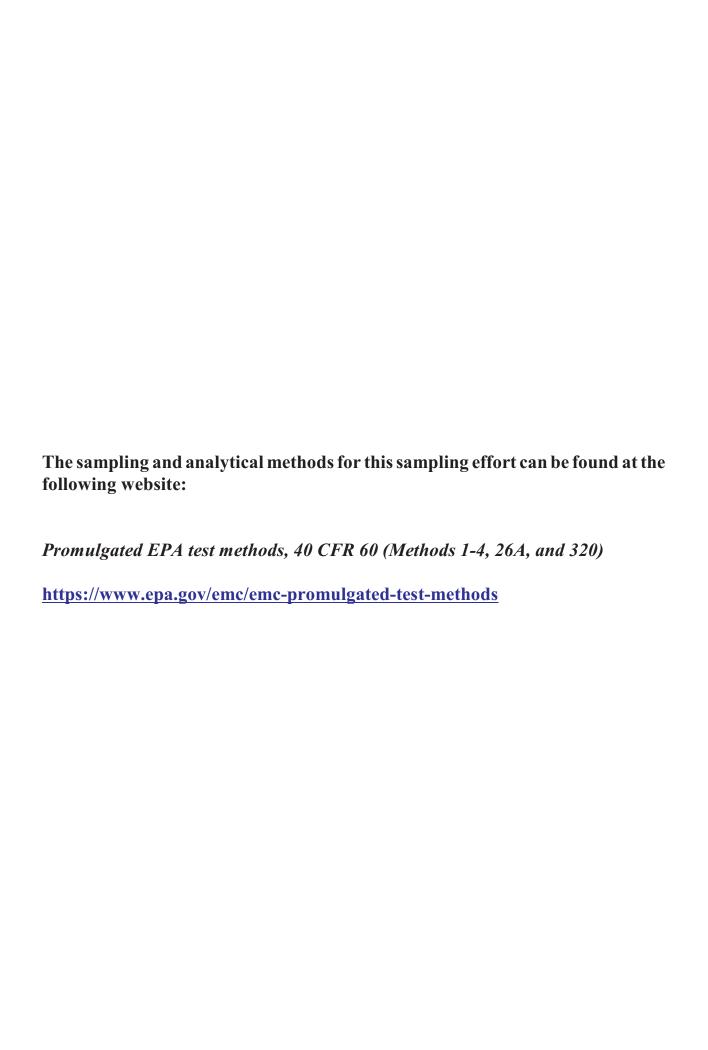
10.1 SAFETY RESPONSIBILITIES

The Project Manager is responsible for ensuring compliance with plant entry, health, and safety requirements. The Facility Contact (refer to Section 1.2) as the authority to impose or waive facility restrictions. The Project Manager has the authority to negotiate with facility person any deviations from the facility restrictions.

10.2 SAFETY PROGRAM

DEECO has a comprehensive health and safety program that satisfies Federal OSHA and MSHA requirements. The basic elements include: (1) written policies and procedures, (2) routine training of employees and supervisors, (3) medical monitoring, (4) use of personal protection equipment, (5) hazard communication, (6) pre-mobilization meetings with Holcim personnel and DEECO test team personnel, and (7) routine surveillance of the on-going test work.

10.3 SAFETY REQUIREMENTS


All test personnel will adhere to the following standard safety and precautionary measures as follows:

- 1) Confine activities to test area only;
- 2) Wear hard hats at all times on-site, except inside sample recovery trailers and mobile CEM laboratory;
- 3) Wear protective shoes or boots in test area:
- 4) Wear protective glasses or goggles at the outlet test sites, and other areas as designated;
- 5) Have readily available first aid equipment and fire extinguishers.

Before or on the first day on-site, the Project Manager will fill out the Emergency Response Procedure form and provide copies to be posted at each test site.

Appendix A

Sampling and Analytical Methods

