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Thanks to the rest of the TEMPO Validation Team!

Disclaimer: The views expressed in this presentation are those of
the authors and do not necessarily reflect the views or policies of
the U.S. Environmental Protection Agency.
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» Validation TEAM enhanced TEMPO mission

» 65+ contributors led by Jim Szykman (EPA) and Brad
Pierce (UW-SEC) in collaboration with Science Team,
NASA, NOAA, and SAO.

» Expanded the Pandonia Global Network of Pandoras

» Feedback about version 1 priori profile and unrealistic AMF
spatial variation helped improve versions 2 and 3

» Validation report submitted to NASA

TROPOSPHERIC EMISSIONS:

MONITORING OF POLLUTION (TEMPO) PROJECT » including results shown today...
o _ » EPA’s Analysis System now V3
Validation and Quality Assessment of the TEMPO Level-2 > V3 Nitrogen dioxide correlates well with Pandora and
Trace Gas Products TropOMI.
[December XX 2024] » V3 Formaldehyde correlates well with Pandora ...

Prepared by the TEMPO Validation Team and TEMPO Ad-hoc Validation | 3> Example Applications of TEMPO with CMAQ
Working Group » Model evaluation and emissions inference.

» Surface concentration experiments

» Very preliminary and expanding!

Plan: available —https://tempo.si.edu under documents
Report: Draft under review

» Applications presume validation!
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https://tempo.si.edu/

TEMPO Validation Methodologies

Smithsonian

» Correlative measurements : TropOMI and Pandora Spectrometers
* Pandora stations: best ground-based validation dataset available for total vertical columns.

* TropOMI: state-of-the-art satellite retrievals at similar spatial resolution.

» 96 Analysis Regions: Pandonia Global Network and Ozone Nonattainment Areas.
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e 44 Pandora stations
e Most stations in the east

* 52 Nonattainment Areas

 Better spatial coverage

e Of special interest for
emissions control
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» Get level 2 data for TEMPO, TropOMI, and Pandora

e Python bindings for EPA’s Remote Sensing Information Gateway (pyrsig)
* Trainings available — see QR code

> Select time intersections

 TropOMI: same hour (e.g., 19:00:00Z to 19:59:597)
 Pandora: overpass within 15min of observation

» Select spatial intersections

* TropOMI: pixels overlap
« Pandora: overlap a buffer

> Pool intersections for
statistical analyses

* Pixels near Pandora locations

e Pixels in Nonattainment areas s a0 735 730 723 720 713
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0?2 Data Record Overvie
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- Consistent monthly performance

Consistent diurnal performance

 Dynamic range varies by month as expected *  Dynamic range varies by time of day as expected
' *  Orthogonal important due airmass sampling
 Orthogonal slopes consistent by month -
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U Data Record Overvie
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Consistent monthly performance

 Dynamic range varies by month as expected
 Orthogonal slopes consistent
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Consistent diurnal performance

Dynamic varies less by time of day
Orthogonal important due airmass sampling.
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Better Agreement in Summer

 Dynamic range varies by month as expected s . Count

« Larger seasonal changes in TEMPO than .- S S ey B s sy | B
TropOMILI.

 Orthogonal slopes lowest in winter
e Steadily increasing from January to May
* Decreasing after August

* By comparison, Pandora slopes were quite
consistent. ] I ] ul |

« Suggest looking into potential TropOMI
high-bias in Winter/Spring |

=== LR=0.04x+7.10e+15

e16 N=728318; r=0.08

lets N=1049084; r=u.1s

scale: 0 to 6e16

LR=0.05x+7.67e+15 g4 —=° LR=0.01x+6.15e+15
=es OR=0.68x+1.12e+15 ceres OR=0.33x+3.18e+15
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0 Applicatic Y.
P PIE 0 AQ Applicatio
Air Mass Factor differences from TEMPO prior
* Focusing on NO2 Applications Bl 1000, Mo /My = 5.6221.0%
 Model performance evaluation (are columns similar?) N | Q1=
* Dynamic evaluation (do columns respond to emissions 2w ------- 03=16.7%
similarly? Using weekend vs weekday 5]
* Case study of convenience Sept 2023 :
« Expediated Modeling of Burn Events Results (EMBER)* | |
« 2018 anthropogenic emissions " Difference [%]
e 2023 preliminary fire inventory Q _sol = 11 o
« Longer analysis would be ideal =l B | T e
. : = T ]
* Consistent Atmospheric Shape Factor ol ¢
»  CMAQ TropVCD: 30, B § g
* TEMPO TropVCD: TropSCD / M, sl 5 "3
* Air Mass Factor: M, = 5w,Q,a(T,) / 30, , g s 10°
* wherez: I:)z,mid > Ptropopause,cf g gm- +r[intercept| 001 0.I9 10!
LE) O . - mﬁzﬁ 4303 .S:Si .
* Simon et al. (10.1016/j.dib.2024.111208) Data in Brief TEMPO w/ M_g [Pmolec/cm2]

\e’EPA Office of Research and Development




AQ ADD atIo

10:00-10:59LDT

_lel5

13:00-13:59LDT

TEMPO TropVCD

wEPA

lel5

N w -

TEMPO TropVCD w/ CMAQ_AMF
[molecules/cm”™2]

[=

w

TEMPO TropVCD w/ CMAQ_AMF
[molecules/cm”™2]

CMAQ TropVCD

___lel5

N w S

CMAQ TropVCD w/ CF TropP
[molecules/cm”™ 2]

[=

w

CMAQ TropVCD w/ CF TropP
[molecules/cm”™ 2]

CMAQ - TEMPO

lel5

CMAQ - TEMPO

'@' \ u’w
S\ LW

lel5

-
O )
CMAQ - TEMPO

dTropVCD NO2 [molecules/cm2]

dTropVCD NO2 [molecules/cm2]

Sept 2023 average

CMAQ has low
biases in many major
cities

TEMPO and CMAQ
have larger
tropospheric
columnsin the
morning hours (10-
11LDT) than at polar
overpass.

Morning differences
are larger in absolute
scale.

Consistent w/ Nash et al. 2024 (10.5194/egusphere-
2024-554), corrects low ozone bias that is largest in the

Office of Research and Development
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.. @ @ a A A

P () Pre 3 AQ ADD 3T10

e1s . sozone N2a Tep-down Em/ssions Sept 2023 average
10:00 to 10:59LDT 7, | » * CMAQ has low
= % ‘s ; | N & biases in many major
9 b = i 40
ol 5% 34 » 5 Ccities
= " &+ TEMPO and CMAQ
o S3 g3
Q o £ gt have larger
o s 5 N - .
e YE ' AE/E = B AQ [ Q = 2660 “J'iis tropospherlc
B = qu/Eq X Qq / qu = .
0 0 ~ sy columns in the
. morning hours (10-
TEMPOW/MQ le1s _ CMAQW/TP.cf 115 _ %”‘M‘fown Emissions & (

11LDT) than at polar

80

13:00 to 13:59LDT
} " overpass.

= 4% 4%.
() | o . .
o g o5 * _ * Morning differences
% 3¢ <E 3 ;% 20 9 ]
" Z3 ¥ 0w are larger in absolute
— 93 23 =
= 23§ 288 scale.
Qe o & of
a % b,
~ 1 L AE/E=BAQ/Q=49+75 "o W * Mass balance
B = dEq/Eq X Qq / dQ - inversion
/ 5 0 A 0 A o Yy
_ Consistent w/ Nash et al. 2024 (10.5194/egusphere-
TEMPO TropVCD CMAQ TropVCD CMAQ TEMPO 2024-554), corrects low ozone bias that is largest in the
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AQ ADD atIo

Sundays lel5 Mondays - Sundays lels

1PM overpass

CMAQ 13:00-13:59LDT

TEMPO 13:00-13:59LDT

Monday Magnitude
wEPA

N w -

CMAQ TropVCD w/ CF TropP
[molecules/cm”™2]

[=

w

TEMPO TropVCD w/ CMAQ_AMF
[molecules/cm”™2]

Sunday Magnitude

___lel5

N w S

CMAQ TropVCD w/ CF TropP
[molecules/cm”™ 2]

[=

w

TEMPO TropVCD w/ CMAQ_AMF
[molecules/cm”™ 2]

Mondays - Sundays 1lel5

2N

Weekday Increment

dNO2 [molecules/cm?2]

dNO2 [molecules/cm?2]

Weekday/weekend
analysis (n=4)
Tropospheric
columns in major
cities stand out in
both TEMPO and
CMAQ

Mondays larger than
Sundays in polluted
scenes
Unexpected
differences in
Mississippi
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AQ ADD atIo

CMAQ 10:00-10:59LDT

Mondays

TEMPO 10:00-10:59LDT

Monday Magnitude

wEPA

lel5

N w -

CMAQ TropVCD w/ CF TropP
[molecules/cm”™2]

[=

w

TEMPO TropVCD w/ CMAQ_AMF
[molecules/cm”™2]

Sunday Magnitude

N w S

CMAQ TropVCD w/ CF TropP
[molecules/cm”™ 2]

[=

w

TEMPO TropVCD w/ CMAQ_AMF
[molecules/cm”™ 2]

Mondays - Sundays

lel5

Mondays - Sundays

). eh

lel5

Weekday Increment

o
dNO2 [molecules/cm?2]

o
dNO2 [molecules/cm?2]

At morning scan

Weekday/weekend
analysis (n=4)

TEMPO and CMAQ
increments over cities
are more similar at
10LDT than at 13LDT
TEMPO has more
negative increments
than CMAQ in general
and over the
southeast and Great
Lakes in particular.
TEMPO Chicago
increment looks
suspect.

Need longer data to
isolate variability vs
true difference.
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Physical surface NO2 translation from EMBER: x=n(Q),

* Surface to tropospheric column from EMBER (n=x,/Q,) ] — oosriosy | || — o243 (=0s9) | ]
* Tropospheric Column from TEMPO (Q) _.*1 EMBER Prediction B
« Coarse resolution (36km): exploring NCORE sites only & w0 ' % w4 Simple Regression
§ 30 g 30 ern_Qt'.l'.b
Findings g 10! %‘ ol 101
* Physical translation improves on simple regression " g 10-
* Disagreement in Washington, Colorado and El Paso o [
 Performance should be enhanced with landuse regression 0 chgaa Nozlglzb] co Mg 0 NC?ERE Nm[:'f;b] co Mg

NCORE (outer) vs TEMPO (inner) Surface NO2

50 T . _ 8
72 601 —— 0.33x+1.00 (r=0.62) 601 —— 0.79x+0.47 (r=0.83)
o <0 104 - 102
65 = oy TEMPO vs EMBE
w -—
z g | TEMPO (x=nQ,) &
i 40 1 t 40
5 © ™ ™
2 o o
3 z =
i w304 w 304
4 th i
101 10]
S Q © 20
= = =
3 —_ LLd LLd
_g_ = = 10
=
2 o .
TEMPO 2 : o
| ‘f’_) T T T T T T T T
25 T T T T e T 1 0 20 40 60 109 0 20 40 60 10?
-120 -110 —-100 -90 -80 -70 NCORE NO2 [ppb] EMBER NOZ2 [ppb]
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e  Community led validation TEAM helped TEMPO meet validation goals
— Nitrogen dioxide and formaldehyde results contribute to both the beta and provisional maturity levels.
— Assessing bias, precision and uncertainty (NO2-02, NO2-04, HCHO-02 and HCHO-04)
— Inter-site gradients contributes to urban/rural gradient assessments (NO2-01 and HCHO-01)
— Large pixel-to-pixel variation and data striping remains
— Reveals strong disagreement between TEMPO and TropOMI HCHO, which is likely an improvement.

e TEMPO shows 2023 CMAQ simulation low-bias

—  Confirms TropOMI results (Kumm A24A-04 Tue 4:30pm)
— Geostationary coverage would increase direct assimilation influence on ozone.

e Inferred Surface NO2 shows moderate skill

— Traditional physical translation improves on simple regression
— Likely needs additional information from landuse regression to improve (e.g., Anenberg 2022)

* Thanks to:
— Kelly Chance, SAO, NASA and all the people who helped deliver on the promise of TEMPO!
— NASA LaRC ASDC for assistance to connect TEMPO to RSIG APIs and increase accessibility!
— Pandonia Global Network and State and Local agencies for working with EPA to expand Pandora measurements!
— Research groups and researchers who have contributed their time and analysis in support of TEMPO validation!

A0S eda@uoJieg uoSI9pUIH :|lew?
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