The role of chemistry in upper troposphere NO₂ under-predictions

Barron Henderson^{1,2}, Robert Pinder², Wendy Goliff³, William Stockwell⁴, Askar Fahr⁴, Golam Sarwar², Bill Hutzell², Rohit Mathur², William Vizuete¹, Ron Cohen⁵

¹Dept. of Environmental Science and Engineering UNC Chapel Hill
²Atmospheric Modeling and Analysis Division, U.S. EPA
³Division of Atmospheric Sciences, Desert Research Institute
⁴Dept. of Chemistry, Howard University
⁵Depts. of Chemistry and Earth and Planetary Sciences, University of California Berkeley

October 21, 2009

CMAQ compared with SCIAMACHY: worst in rural areas.

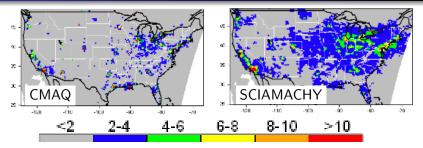


Figure 1: NO₂ columns (10¹⁵ molec/cm²) from Napelenok ACP 2008

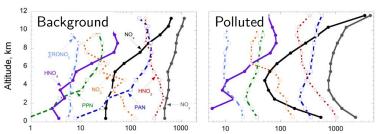


Figure 2: Vertical profiles of background and polluted conditions from Singh 2007.

Which model processes lead to under-prediction?

- Potential sources of error:
 - chemistry, photolysis, aerosols, advection, convection, diffusion, wet deposition, dry deposition, emissions, the stratosphere, the ocean, ...
- Modeled chemistry has been questioned (Olson 2006, Bertram 2007, Ren 2008)
 - typically: evaluate a model against a chamber study (i.e. a controlled timeseries of measurements)
 - problem: does anyone have a chamber at 236K and 0.298 atm?
- What to do?
 - We need a timeseries of observations
 - We need a timeseries of model results

Bertram results can derive air parcel ages

Deep convection sends a plug of surface air to upper troposphere

- \bullet wet scavenging removes ${\rm HNO_3}$ and lightning adds ${\rm NO_x}$
- Air parcels are mostly stable for up to 5 days
- \bullet Freshly convected: NO_x :HNO $_3 >> 1$
- \bullet Aged air parcel: $\mathrm{NO_x:HNO_3} << 1$

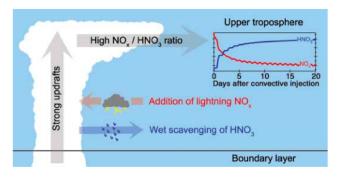


Figure 3: Deep convection from Bertram et al. Science 2007

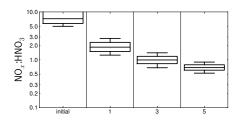


Figure 4: NO_x :HNO₃ is used to categorize days since convection. O₃ shows a monotonic increase with time. CO shows a monotonic decrease with time. NO_2 shows a gradual increase with time.

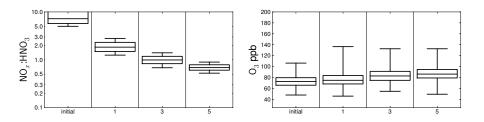


Figure 4: NO_x :HNO₃ is used to categorize days since convection. O₃ shows a monotonic increase with time. CO shows a monotonic decrease with time. NO_2 shows a gradual increase with time.

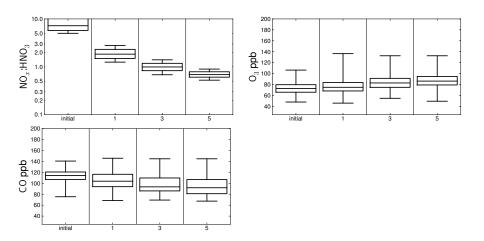


Figure 4: NO_x :HNO₃ is used to categorize days since convection. O₃ shows a monotonic increase with time. CO shows a monotonic decrease with time. NO_2 shows a gradual increase with time.

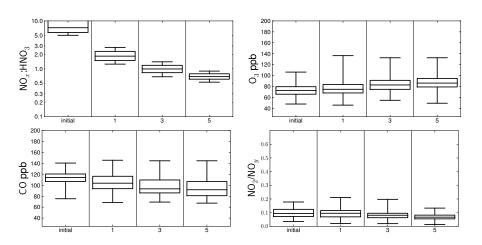


Figure 4: NO_x :HNO $_3$ is used to categorize days since convection. O $_3$ shows a monotonic increase with time. CO shows a monotonic decrease with time. NO_2 shows a gradual increase with time.

Simulating aging of freshly convected air parcels

- Box modeling air parcels using LEEDS DSMACC box model
- Physical and initial conditions from "freshly convected" observations

Table 1: Overview of 7 chemical mechanisms in this study.

Model (abbreviation)	# Rxns	# Spcs
Carbon Bond '05 (CB05)	176	62
State Air Pollution Research Center '99	222	77
(SAPRC99)		
SAPRC '07 (SAPRC07)	<700	153
Model for OZone And Related chemical	290	88
Tracers "Standard" (MZ4)		
GEOS-Chem "full" (GEOS)	290	88
Regional Atmospheric Chemistry Mech v.2	341	117
(RACM2)		
Master Chemical Mechanism (MCM)	>4500	>1700

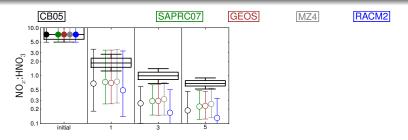


Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p < 0.0001).

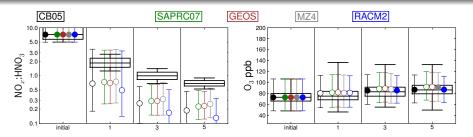


Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p < 0.0001).

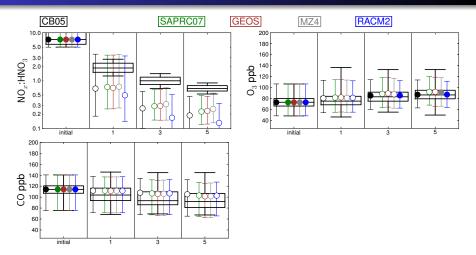


Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p < 0.0001).

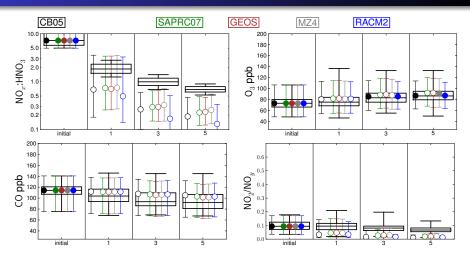


Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p < 0.0001).

Models over-predict NO₂/NO_x, PAN, and HNO₃

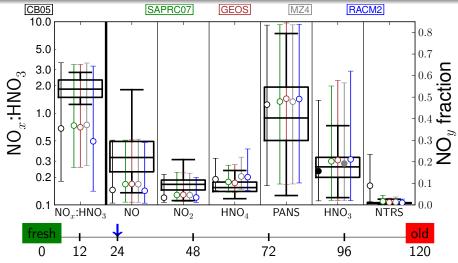


Figure 6: Nitrogen species 24 hours since convection: observed (back) and modeled (front). Filled circles are consistent with observations (p < 0.0001).

Conclusions: Model performance

- Semi-explicit, regional, and global models all
 - under-predict NO_x:HNO₃
 - under-prediction NO_x
 - over-predict NO_z, esp. CH₃C(O)ONO₂ and HNO₃
 - over-prediction NO₂/NO_x
- All problems point to too many radical reactions

PAN Sensitivity Studies

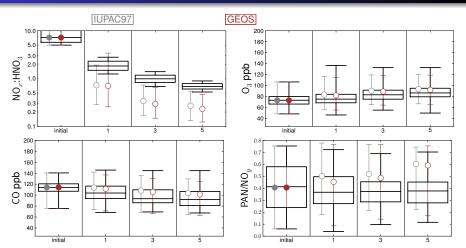


Figure 7: GEOS-Chem tested with old acetone quantum yield, with $2 \times CO$, and with constrained acetaldehyde. Model medians are displayed circles that are filled when consistent with observations (p < 0.0001).

Models over-predict OH and HO₂

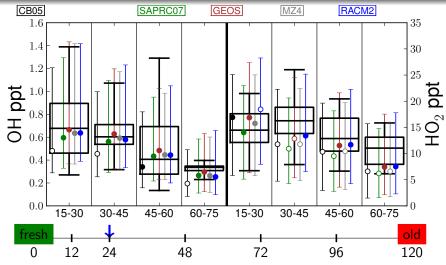


Figure 8: HOx' by solar zenith angle 24 hours since convection: observed (back) and modeled (front). Filled circles are consistent with observations (p < 0.0001).

Potential issues

- Over-predicting radical source (i.e. photolysis)
- Over-predicting radical amplification
 - CH₂O

- HO₂ + NO → NO₂ + HO
- CH₃CHO
 - OH + CH₃CHO → CH₃C(O)OO
 - $CH_3C(O)OO' + NO \longrightarrow NO_2 + CH_3OO'$
 - $CH_3OO^{\cdot} + NO \longrightarrow NO_2 + CH_2O + HO_2^{\cdot}$
 - $HO_2 + NO \longrightarrow NO_2 + HO$
- Over-predicting radical cycling efficiency
 - ratio of radical propagating to radical terminating reactions
 - propagation (i.e. $RO_2 + NO \longrightarrow NO_2 + RO$)
 - termination (i.e. OH + NO₂ → HNO₃)

Radicals sources in the first 4 hours

Table 2: Comparison of new radicals (ppt) by chemical mechanism.

Reaction	GEOS	CB05
$CH_2O \longrightarrow CO + 2 \cdot HO_2$	488	346
$O_3 \longrightarrow O^1D$; $O^1D + H_2O \longrightarrow 2 \cdot HO$.	215	246
$HNO_2 \longrightarrow NO + HO$.	226	186
$H_2O_2 \longrightarrow 2 \cdot HO$	100	103
$CH^3C(O)OOH \longrightarrow CH^3OO. + HO.$	38	59
$CH_3CHO \longrightarrow CO + HO_2 + CH_3OO$.	31	37
$CH_3C(O)CH_3 \longrightarrow CH_3C(O)OO. + CH_3OO.$	32	0
$HNO_4 \longrightarrow HO_2 + NO_2$	23	13
$CH_3OOH \longrightarrow CH_2O + HO_2 + HO$	22	23
Total new Radicals	1199	1035
$CH_3OOH + HO$ \longrightarrow $CH_2O + H_2O + HO$	0	26
$CH_3OOH + HO' \longrightarrow HO_2 + XO_2 + CH_3OO'$		

Radicals sinks in the first 4 hours

Table 3: Comparison of radical removals (ppt) by chemical mechanism.

Reaction	GEOS	CB05
$HO' + HO'_2 \longrightarrow H_2O + O_2$	363	266
$HO^{\boldsymbol{\cdot}} + NO \longrightarrow HNO_2$	234	192
$NO_2 + HO_2 \longrightarrow HNO_4$	176	154
$HO' + NO_2 \longrightarrow HNO_3$	131	104
$HO_2^{\cdot} + HO_2^{\cdot} \longrightarrow H_2O_2$	92	88
$HO^{\boldsymbol{\cdot}} + HNO_4 \longrightarrow H_2O + NO_2 + O_2$	83	71
$CH_3OO' + HO'_2 \longrightarrow CH_3OOH + O_2$	43	29
$HO_{\cdot}^{\cdot} + CH_{3}C(0)OO_{\cdot} \longrightarrow CH_{3}C(0)OOH$	16	9
Total Radical Sink	1219	1025

Conclusions

- Model performance
 - models under-predict NO₂ particularly after 1 day old
 - over-predict rate of "aging" in the first 24 hours (improves subsequently)
 - best O_3 came from worst HO_x
 - HOx.
 - Like other studies $HO_{model}^{\cdot} = 2 \times HO_{obs}^{\cdot}$
 - Unlike other studies $HO_{2model}^{\cdot} > HO_{2obs}^{\cdot}$
- Best practices
 - check model photolysis for pressure/temperature sensitivity
 - use detailed photolysis in the upper troposphere
 - use Blitz et al. 2004 CH₃C(O)CH₃ quantum yield
- Next steps
 - ullet Investigate $HO^{\hfootnotemark}_{2model}$ improvement compared to other studies
 - Attribute radical production to initial species (not immediate precursor)
 - Assess uncertainty in major radical source species

Acknowledgments

For all their support and help:

- Mat Evans, Ph.D., Univ. of LEEDS
- Jingqiu Mao, Ph.D., Harvard
- Ann Marie Carlton, Ph.D., US EPA
- Kinetic Pre-Processor (Damien et al. 2002)
- MAQLAB, UNC Chapel Hill

Special thanks for DC8 observational data to:

Melody Avery, Donald Blake, William Brune, Alan Fried, Brian Heikes, Greg Huey, Glen Sachse, Hanwant Singh, Paul Wennberg, and the INTEX team.

Support:

This research was supported in part by an appointment to the Research Participation Program at the National Exposure Research Laboratory, U.S. Environmental Protection Agency administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.