*******U.S. COPYRIGHT NOTICE*****

No further reproduction or distribution of this copy is permitted by electronic transmission or any other means.

The user should review the copyright notice on the scanned image(s) contained in the original work from which the electronic copy was made.

Section 108: United States Copyright Law

The copyright law of the United States [Title 17, United States Code] governs the making of photocopies or other reproductions of copyrighted materials.

Under certain conditions specified in law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the reproduction is not to be used for any purpose other than private study, scholarship, or research. If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that use may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. No further reproduction and distribution of this copy is permitted by transmission or any other means.

STATUS
Considering 12/04/2018
SOURCE

BORROWER

EKB LENDERS *ALK TYPE Copy

REQUEST DATE 12/04/2018 RECEIVE DATE OCLC # 318616471 NEED BEFORE 01/03/2019

DUE DATE

Compliments of the Alaska State Library

BIBLIOGRAPHIC INFORMATION

LOCAL ID

AUTHOR Cooper, John A.

TITLE Preliminary source apportionment of winter particulate mass in Juneau, Alaska. Volume 1, Final

IMPRINT Beaverton, Or.: NEA, Inc., [1983]

ISBN

ARTICLE AUTHOR Cooper, J. A. and C. A. Frasier.

ARTICLE TITLE Preliminary source apportionment of winter

particulate mass in Juneau, Alaska. Volume 1,

FORMAT Government Document

EDITION VOLUME

NUMBER

DATE 1983
PAGES

INTERLIBRARY LOAN INFORMATION

ALERT

VERIFIED <TN:29881><ODYSSEY:206.107.42.91/ILL> OCLC **MAX COST** 0.00 USD

LEND CHARGES Other - 0.00 USD

LEND RESTRICTIONS

RICTIONS

BORROWER NOTES ALL HELP APPRECIATED!!; Will gladly accept PDFs or TIFFs at libraryrtp.reprint@epa.gov . If UPS/FedEx use: 4930 Old Page Rd., Durham, NC 27703

LENDER NOTES Article Exchange.

AFFILIATION GAC/UL FEDLINK/CAHL/NC\$A/LVIS/

COPYRIGHT US:CCL

SHIPPED DATE 12/04/2018

FAX NUMBER

ARIEL EMAIL

EMAIL libraryrtp.reprint@epa.gov

ODYSSEY 206.107.42.91/ILL ARIEL FTP

BILL TO US EPA Main Library

109 T.W. Alexander Drive Mail Code C267-01 ATTN: ILL

Research Triangle Park, NC, US 27711

BILLING NOTES Please do not send if there is a charge/fee.

SHIPPING INFORMATION

SHIP VIA Email or USPS. UPS/Fedex contact for alternate SHIP TO US EPA RTP Library - ILL 4930 Old Page Road Durham, NC, US 27703

RETURN VIA N/A

RETURN TO Interlibrary Loan
Alaska State Library
PO Box 110571

Juneau, AK, US 99811-0571

PRELIMINARY SOURCE APPORTIONMENT OF WINTER PARTICULATE MASS IN JUNEAU, ALASKA

VOLUME I

FINAL REPORT

Prepared for:

Alaska Department of Environmental Conservation 3220 Hospital Drive Juneau, Alaska 99811

By:

John A. Cooper and Clifton A. Frazier

NEA, INC. 10950 S.W. 5th Street, Suite 380 Beaverton, Oregon 97005

June 13, 1983

EXECUTIVE SUMMARY

The city of Juneau is located on the southern coast of Alaska. The residential portion of the city extends inland from the opening of the Mendenhall Valley, where the airport and commercial portion of the city is located and is surrounded by high mountain ridges. This valley geography, plus frequent temperature inversions, which exist during much of the winter, prevent air pollutants from being dispersed and contribute to air quality degradation. Because of changes in source characteristics, the valley's residential area has experienced a substantial increase in suspended particulate mass levels in recent years. The most notable change in airshed emissions is associated with a large increase in the use of wood burning appliances for residential space heating. Although much of the recently observed decrease in air quality may be due to this source, its impact needs to be quantified as well as the impacts from other sources to assess the potential health implications and to develop cost-effective control strategies.

This study used chemical mass balance (CMB) receptor model methods to quantify the contribution of residential wood combustion (RWC) emissions to the Juneau-Mendenhall Valley. This method uses chemical fingerprints to identify each major source contributing to suspended particulate levels. The lead and bromine, for example, are commonly associated with the automotive exhaust fingerprint due to the combustion of leaded gasoline. On the other hand, aluminum, silicon, calcium, titanium, manganese, iron, etc. are associated with crustal sources such as road and windblown dust, while fine particle organic carbon, potassium, and zinc are associated with a RWC fingerprint.

These and other chemical features were measured on 53 glass fiber TSP filters which sampled particles at the Floyd Dryden School, Super Bear, and the Juneau Municipal Building sampling sites on high TSP days during the 1981, 1982, and 1983 heating seasons. The filters and the results were composited to develop average impact results for December, 1981 and 1982, at the three sites and on the basis of specific weather regimes.

The CMB source impact analysis results are summarized in the pie charts illustrated in Figures 1-11 for five December composites and six weather regimes. On the two highest TSP days in which it averaged 537 $\mu g/m^3$, crustal dust accounted for over 54% of the mass while RWC accounted for only 33%, 171 $\mu g/m^3$. These samples were collected in the fall during an extended period of dry calm weather. The next two highest TSP days occurred in the winter under similar weather conditions, but the average temperature was about 15° cooler. In this case, the RWC impact accounted for 78.8% (221 $\mu g/m^3$) of the TSP mass of 281 $\mu g/m^3$ and the crustal dust was below detection limits. The winter TSP levels were 256 $\mu g/m^3$ less while the RWC component was about 50 $\mu g/m^3$ more than observed in the fall.

The RWC impacts are highly correlated with temperature (correlation coefficient of 0.98) if the results from regime 6 are excluded. (Regime 6 was not included because it was originally selected as a day in March with a high potential for fugitive dust impacts.) The RWC impacts from the first five regimes during which calm weather prevailed could be explained by an equation of the form RWC = 198 $\mu g/m^3$ - 4.52 $\frac{\mu g}{m^3 \, ^{\circ} \, F}$ t, where t is the temperature in degrees Fahrenheit.

The results from this study clearly showed that RWC sources contributed between 100 and 230 $\mu g/m^3$ of fine particulate mass on cold, calm days and are responsible for between 40% and 90% of the TSP, depending mainly on the relative contribution of crustal dust sources such as road and parking lot dust. The dust contributions were much more variable ranging from less than detection limits to over 300 $\mu g/m^3$, depending mainly on ground conditions (dry, snow, or rain). RWC impacts were highest at the Floyd Dryden site and lowest at the Municipal Building site, while transportation source contributions were highest at the Super Bear site.

The contribution of distillate oil combustion sources could not be defined but an extreme upper limit could be established by assuming all of the sulfate was from this source. Although such upper limits may be high

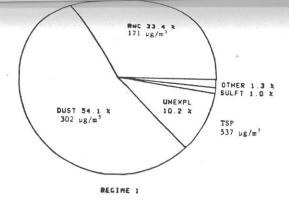


Figure 1. Average source contributions during highest exposure days in the Fall of 1982 when dry, cold and calm weather conditions prevailed. No snow cover or precipitation for preceding week and average temperature of 10° .

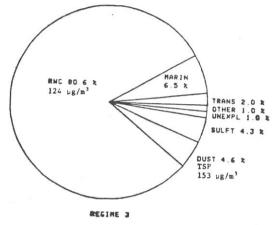


Figure 3. Average source contributions for Regime 3: cold, clear, calm days with average temperature of about 12°.

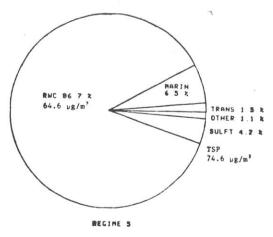


Figure 5. Average source contributions for Regime 5: snow/rain, calm days with average temperature of 30°.

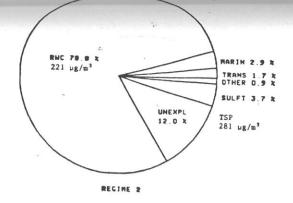


Figure 2. Average source contributions during highest exposure days during the 1981/1982 Winter. No snow cover or precipitation for preceding week and average temperature of -5° .

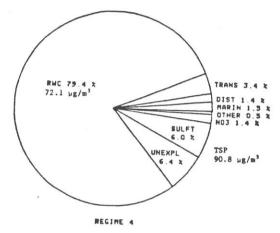


Figure 4. Average source contributions for Regime 4: clear, calm, warmer days with average temperature of 28° .

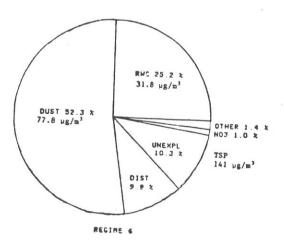


Figure 6. Average source contributions for Regime 6: dry, calm days with potential for high fugitive dust. Average temperature was 27.

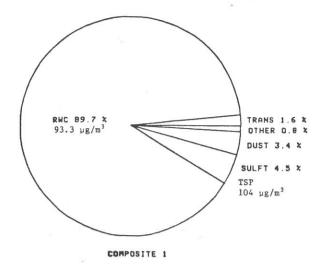


Figure 7. December, 1981, composite source contributions at Floyd Dryden.

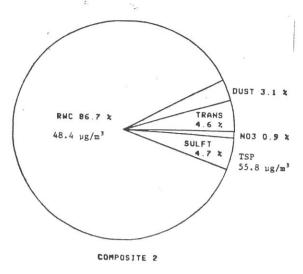


Figure 8. December, 1981, composite source contributions at Super Bear.

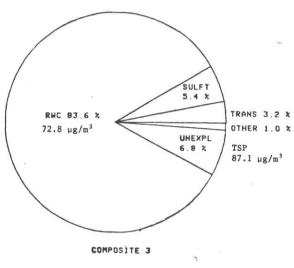


Figure 9. December, 1982, composite source contributions at Floyd Dryden.

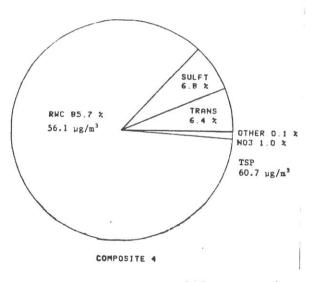


Figure 10. December, 1982, composite source contributions at Super Bear.

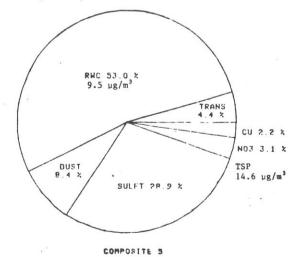


Figure 11. December, 1981, composite source contributions at the Juneau Municipal Building.

by 2 to 10 fold, it clearly shows that this is far from being one of the most significant sources and it probably contributes less than about 10 $\mu g/m^3$ in most cases.

Simple, low-cost, routine procedures for monitoring the impact of RWC sources can probably be developed and validated for the Mendenhall Valley and other relatively simple airsheds in Alaska. These procedures might be based on such measurements as visibility, gaseous species, graphitic carbon by optical means, OC/EC ratios, fine particle mass, etc. Whatever procedure is selected, it would first have to be validated by intercomparison and correlation studies with other independent methods.

TABLE OF CONTENTS

		rage
	EXECUTIVE SUMMARY	i
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
1.0	INTRODUCTION	1
2.0	BACKGROUND	1
	2.1 Methodology	1
	2.2 Chemical and Physical Characteristics of Emissions.	4
3.0	RESULTS AND DISCUSSION	8
	3.1 Ambient Aerosol Chemistry	8
	3.2 CMB Source Apportionment	11
4.0	CONCLUSIONS AND RECOMMENDATIONS	30
5.0	REFERENCES	32
	APPENDICES <u>V</u>	olume
	A. Receptor Model Fundamentals	II
	B. Development of a Chemical Profile for a Seattle and Tacoma Composite Transportation Source (Incomplete)	II
	C. XRF Analysis Results for Individual Filters	II
	D1. CMB Source Apportionment and Analysis Results for Individual Filters Used in Averages and Pie Charts	II
	D2. CMB Source Apportionment and Analysis Results for Composite Data Sets	II
	E. Meteorological Conditions Associated with the Days Selected for Analysis	II
	F. Chemical Profiles for Sources Used in the CMB Calculations	II
	G1. Source Impact Summaries Organized by Source Type (Weather Regime 1)	II
	G2. Source Impact Summaries Organized by Source Type (Weather Regime 2)	II
	G3. Source Impact Summaries Organized by Source Type (Weather Regime 3)	II
	G4. Source Impact Summaries Organized by Source Type (Weather Regime 4)	II
	G5. Source Impact Summaries Organized by Source Type (Weather Regime 5)	II
	G6. Source Impact Summaries Organized by Source Type (Weather Regime 6)	II
	H. Carbon Analysis Results	II
	I. Meteorological Regime Characteristics	II

LIST OF TABLES

Number	<u>Title</u>	Page
1	Summary of Major Elemental Features Associated with Fine Particles from Selected Sources (Percent)	5
2	Filter Identification and Grouping Classification	9
3	List of the Source Codes and Source Descriptions	13
4	Priority Pollutant Analysis List	16
5	Typical Values of Aerosol Concentration for Different Geographic Areas (Annual Averages) (Based on 1969 Data, Ref. 10)	17
6	Seasonal Observations of Benzo(a)pyrene and Benzanthrone in Some U.S. Cities (Based on 1969 data, Ref. 10)	17
7	Average Source Contributions for Regime 1: Fall Highest Exposure Days	25
8	Average Source Contributions for Regime 2: Winter Highest Exposure Days	25
9	Average Source Contributions for Regime 3: Cold, Clear, Calm Days	26
10	Average Source Contributions for Regime 4: Clear, Calm, Warmer Days	26
11	Average Source Contributions for Regime 5: Snow/Rain, Calm Days	27
12	Average Source Contributions for Regime 6: Dry, Calm, Days with Potential High Fugitive Dusts	27

LIST OF FIGURES

		Page
Number	<u>Title</u>	
1	Comparison of the Medford RWC Fingerprint with Ambient Fingerprint on Christmas Eve, 1979. From Reference 4.	7
2	Size Distribution of Woodsmoke Particles Obtained with Electrical Aerosol Analyzer. From Reference 6.	7
3	Example of CMB Computer Printout	12
4	CMB Results for 11/22/82 at Super Bear	18
5	CMB Results for 11/22/82 at Floyd Dryden	19
6	CMB Results for 11/22/82 at Floyd Dryden - Alternate Fit	20
7	CMB Results Using Sulfate Source	23
8	CMB Results Using Distillate Oil Source	24
9	Average Source Contributions During Highest Exposure Days in the Fall of 1982 when Dry, Cold, and Calm Weather Conditions Prevailed	28
10	Average Source Contributions During Highest Exposure Days During the 1981/1982 Winter	28
11 .	Average Source Contributions for Regime 3: Cold, Clear, Calm Days	28
12	Average Source Contributions for Regime 4: Clear, Calm, Warmer Days	28
13	Average Source Contributions for Regime 5: Snow/Rain, Calm, Days	28
14	Average Source Contributions for Regime 6: Dry, Calm Days with Potential for High Fugitive Dust	28
15	December, 1981, Composite Source Contributions at Floyd Dryden	29
16	December, 1981, Composite Source Contributions at Super Bear	29
17	December, 1982, Composite Source Contributions at Floyd Dryden	29
18	December, 1982, Composite Source Contributions at Super Bear	29
19	December, 1981, Composite Source Contributions at the Juneau Municipal Building	29

The city of Juneau is located on the southern coast of Alaska. The residential portion of the city extends inland from the opening of the Mendenhall Valley, where the airport and commercial portion of the city is located and is surrounded by high mountain ridges. This valley geography, plus frequent temperature inversions, which exist during much of the winter, prevent air pollutants from being dispersed and contribute to air quality degradation. Because of changes in source characteristics, the valley's residential area has experienced a substantial increase in suspended particulate mass levels in recent years. The most notable change in airshed emissions is associated with a large increase in the use of wood burning appliances for residential space heating. Although much of the recently observed decrease in air quality may be due to this source, its impact needs to be quantified as well as the impacts from other sources to assess potential health implications and to develop cost-effective control strategies.

As a result of the likely resistance to controls, it is essential that a substantial data base be established to support the necessity to take action and establish a high level of confidence in the effectiveness of proposed controls. Since attainment of better air quality will probably require several years, trends must be established and improvements documented to maintain public support for anticipated controls.

The objective of this study is to use chemical mass balance (CMB) receptor model methods to provide a preliminary quantification of the contribution of sources to air quality degradation in the Juneau-Mendenhall Valley with special focus on residential wood combustion (RWC) appliances.

2.0 BACKGROUND

2.1 Methodology

The relationship between particulate emissions and ambient concentrations measured at a receptor (hi-vol sampler) site distant from the pollution source is a complicated one. Many variables, primarily meteorological make the direct

correlation between source emissions and ambient concentrations a poor one. Each of these variables is random in nature, will vary with space and time, and may combine with other variables in a nonlinear manner. Thus, any estimation of source impact on ambient loadings (mass collected on a hi-vol TSP filter) using dispersion modeling is approximate at best. The conceptualization of this complex and intractable "real-life" situation is a comparatively simple "model" based on physical principles which can be used to determine the average contribution of specific sources to particulate loadings.

It is possible to begin at either end of the system: The emission rates of a set of sources can be compiled, the appropriate transport parameters measured and incorporated into a source oriented model which will predict ambient concentrations at specified sampling sites and times.

On the other hand, one can start with ambient air particulate samples as collected at a receptor site by a representative sampling technique, determine some properties such as elemental composition of this sample which are unique to specific sources or source types and assign the origin of that fraction of the sample possessing a property to its appropriate source.

A chemical mass balance (CMB) receptor model was used in this study to identify source types and determine their contributions to ambient particulate levels. It is based on the conservation of aerosol mass from the time a chemical species is emitted from its source to the time it is measured at a receptor. That is, if p sources are emitting M_1 mass of particles

$$m = \sum_{j=1}^{p} M_{j}$$

where m is the total mass of the particulate collected on a filter at a receptor site. It assumes the mass on the filter is a linear combination of the mass contributed from each of the sources.

The mass of a specific chemical species, m_i , is given by the following

$$m_{i} = \sum_{j=1}^{p} M_{ij} = \sum_{j=1}^{p} F'_{ij} M_{j}$$

where M_{ij} is the mass of element i from source j and F'_{ij} is the fraction of chemical species i in the mass from source j collected at the receptor. It is usually assumed that

$$F'_{ij} = F_{ij}$$

where F_{ij} is the fraction of chemical i emitted by source j as measured at the source. The degree of validity in this assumption depends on the chemical and physical properties of the species and its potential for atmospheric modifications such as condensation, volatilization, chemical reactions, sedimentations, etc.

If we accept this equation, however, and divide both sides of equation 1 by the total mass of the deposit collected at the receptor site, it follows that

$$\frac{\mathbf{m}_{i}}{\mathbf{m}} = \sum_{j=1}^{p} F_{ij} \frac{\mathbf{m}_{j}}{\mathbf{m}}$$

$$C_{i} = \sum_{j=1}^{p} F_{ij} S_{j}$$
2

where $\mathbf{C_i}$ is the concentration of the chemical component i measured at the receptor (air filter, for example) and $\mathbf{S_j}$ is the source contribution; i.e., ratio of the mass contributed from source j to the total mass collected at the receptor site. In practice, it is this fraction of particulate pollution measured at a receptor due to source j, $\mathbf{S_j}$, which is of primary interest in CMB calculations.

If the C_i and the F_{ij} at the receptor for all p of the source types suspected of affecting the receptor are known, and p < n (n = number of chemical species), a set of n simultaneous equations exists from which the source type contribution S_j may be calculated by least squares methods. Further details are provided in Appendix A.

Implementation of a CMB analysis requires the formation of both ambient and source elemental data sets. The approach taken in this study was to use primarily literature values for source elemental profiles and to develop ambient profiles based on the analysis of high volume (HV) total suspended particulate (TSP) glass fiber (GF) filters collected during the heating season.

2.2 Chemical and Physical Characteristics of Emissions

2.2.1 RWC Chemical Profile

Table 1 lists major chemical features associated with potential sources contributing to air particulate levels in Juneau. (Detailed source profiles are listed in Appendix F). These sources were selected from NEA's master source library on the basis of possible sources in the area. The first source profile listed, RWC, is a composite fingerprint used in Medford, Oregon (1). It is based on direct measurements of emissions from wood burning stoves and fireplaces burning local hard and soft woods. The slash burn source profile was measured during the Portland Aerosol Characterization Study (PACS) (2). Both profiles represent averages of results developed over the past five years as part of our aerosol characterization studies. Although the organic carbon (OC) and elemental carbon (EC) values were relatively constant, averaging about 50% and 10% respectively, the inorganic species were quite variable. The potassium, for example, ranged from less than a tenth of a percent to greater than one percent (3).

This is particularly important because the amount of mass attributed to a source is directly related to the percent composition. This usually isn't a problem when representative samples of emissions from a specific airshed can be obtained and the impact is relatively low. This, however, may be a problem in specific airsheds because of potential differences in species of wood burned, average moisture content, specific appliances used, ambient temperature differences and the level of impact predicted on the basis of emission inventories. This wasn't a major problem in this specific study because a substantial portion of the RWC source fitting pressure was associated with the organic and elemental carbon (OC/EC) species and the inorganic species were responsible for only a minor amount of fitting pressure.

Table 1

Summary of Major Elemental Features Associated With Fine Particles from Selected Sources (Percent)

Element	RWC®	Slash Burn ^a	Transpor- tation ⁸	Gasoline b Auto Exh.	Road	So11ª	Road	Resid, Oilb	Distil. 011b	111 ^b
SO.	.29	.33		1.3	.23	90°			13.2 + 8	1 2
EC	12.8*	8.6	26.1		1.6	0.7			18 + 5	
00	47.5*	59.2	43.1		8.7	3.7			18 + 23	
A1	.02	.14	.14	1.1	8.2*	*6.8	10.9		.31 +	.21
Si		.13	.59	0.82	24.8*	27.0*	32.8	0.46	.27 ± .32	.32
S	.18	.13	3.92	7.	.32	.07	0.25		6.9 ± 2	*9.
C1	.51	.26	2.35	3.0			0.15		1.2 ±	6.
×	*98*	.62		.07	.83	.75	1.46		.02 ±	.01
Ca	.07	.87	1.17	1.25	2.4*	1.8*	3.29		+ 5.	9.
T1 .			0.32		*75.	*7*	0.81			
Λ							0.05		₹ 500*	.002
Mn		.28			.12*	.18*	0.13		.014 ±	.010
F) O		90°	1.85	2.1	42.4	5.5*	7.19		.12 ±	.11
N1				.02	.1	.007	0.01		Ŧ 600°	900.
Cu				.07	.08	.03	0.01		.17 ±	.059
Zn	.04	.02	60.0	.35	.04	.011	0.07		.029 ±	.019
Br		.02	5.32*	2.0*			0.02		.026 ±	.028
Pb			13.8*	20*	60.		0.53		.54 ±	.51
NH4		.22								
Pb/Br			0.39	0.25						
No. Measurements	ents								,	

No. Measurements

a. Medford source matrix, reference 1
 c. Portland source matrix, reference 2
 d. Based on resuspension of road dust from Juneau
 key indicating elements

The Medford RWC fingerprint was used for Juneau because of its availability and limited resources which prevented more extensive direct source measurements. This fingerprint was successfully used in the Medford Aerosol Characterization Study (MACS)(1) in which 46% of the local respirable (< $2.5~\mu m$) particles were associated with vegetative burning. Figure 1 shows a comparison between selected elements measured on Christmas Eve (1979) when the impact from RWC was expected to be substantial, and the RWC fingerprint. The K, Ca, Zn, OC, and EC all seem to be dominated by the RWC source while the Na, Al, S, SO_4 , Cl, Br, Pb, and NO_3 seem to have substantial contributions from other sources such as oil, coal, and gasoline combustion. The K, Ca, Zn, OC, and EC could almost all be explained by the RWC fingerprint if it were normalized to the ambient K level.

It should also be noted that the particulate Cl and S are significant trace species and a substantial portion of these elements are emitted in the gaseous phase (5). Another important feature of RWC emissions is its fine particle nature as illustrated in Figure 2. Over 99% of the emissions are less than 2.5 μ m (6).

2.2.2 Transportation and Automotive Exhaust

The transportation and automotive exhaust emissions listed in Table 1 are from the MACS and PACS (1,2). The transportation source is a composite of leaded and unleaded automotive exhaust, diesel exhaust and tire wear, while the PACS vehicle exhaust profile includes only gasoline exhaust based on tunnel studies (7) which includes some crustal elements from road dust. Development of such profiles for each airshed requires considerable information related to average fleet emissions, etc. The details of the procedure are outlined in Appendix B. The dominant features of this profile are Br and Pb which are relatively unique to this source. Thus, the transportation contribution can be well defined with these species.

The Medford transportation fingerprint was used for the Juneau samples. Although it includes some diesel exhaust and tire wear, these extra contributions are probably compensated by the use of potentially higher lead values

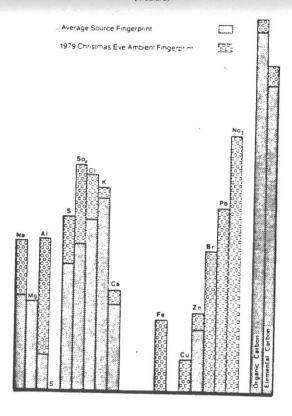


Figure 1. Comparison of the Medford RWC fingerprint with ambient fingerprint on Christmas Eve, 1979. From Reference 4.

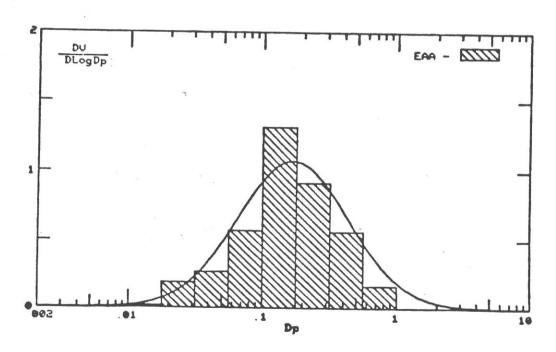


Figure 2. Size Distribution of Woodsmoke Particles Obtained with Electrical Aerosol Analyzer. From Reference 6.

than might actually exist because of a decline in the average lead in gasoline. These uncertainties, however, are not very significant since the total contribution of this source is only about 5% of the TSP.

2.2.3 Soil and Road Dust

About 50% of the TSP in a typical urban airshed is associated with crustal material from soil or road dust. Chemical fingerprints are easily developed for this source by resuspending bulk material collected from each airshed. The first road dust and soil fingerprints listed are from the MACS. The second road dust fingerprint was developed from a Juneau road dust sample. Clearly, Al, Si, and Fe are the most abundant elements. In contrast to the other combustion sources which emit mostly fine particles, the road dust consists mostly of coarse particles (> 95%).

3.0 RESULTS AND DISCUSSION

3.1 Ambient Aerosol Chemistry

Analysis results from 53 glass fiber TSP filters were used to establish an ambient data base for CMB source apportionment calculations. These filters were grouped into five composite sets and five exposure/weather regimes as indicated in Table 2. Each of the filters was analyzed by XRF and the results are listed in Appendix C. The five composite sets of filters and each of the individual filters making up the weather regimes were analyzed by ion chromatography (IC) and combustion for organic (OC) and elemental carbon (EC). The results for these analyses are listed in Appendix D along with results of the CMB calculations. (Carbon results are listed in Appendix H.)

The dominant chemical species was OC which typically accounted for about 40% of the mass. Sulfate, nitrate, Fe, EC, and Na were the next most abundant elements. Lead and Br were always well defined, substantially above blank levels and usually in about a 3:1 ratio typical of automotive exhaust. The Fe to Mn ratio was usually very close to the 56:1 measured in

 $\label{eq:Table 2} \mbox{Table 2}$ Filter Identification and Grouping Classification

Classification	Site	Date	Identificat	ion Codes
			ADEC	NEA
	1	12/9/81	12 18839	P4438
	1	12/12/81	1218840	P4439
Floyd Dryden Composite	1	12/15/81	1218843	P4419
	1	12/18/81	1218846	P4421
December, 1981	1	12/21/81	1218848	P4423
	1	12/24/81	1218844	P4420
Composite 1	1	12/27/81	2072988	P4408
	1	12/30/81	2072987	P4409
	1	12/30/61	2072907	14409
	2	12/3/81	1218829	P4433
	2	12/6/81	1218836	P4436
Super Bear Composite	2	12/9/81	1218834	P4434
	2	12/12/81	1218835	P4435
December, 1981	2	12/15/81	1218842	P4418
2000	2	12/18/81	1218847	P4422
	2	12/21/81	1218849	P4424
Composite 2	2	12/24/81	1218838	P4437
	2	12/27/81	2072986	P4410
*	2	12/30/81	2072991	P4406
Carrier and the second				
	1	12/1/82	2075339	P4416
	1	12/4/82	2075337	P4417
Eland Dandar Composite	1	12/17/82	2075388	P4404
Floyd Dryden Composite	1	12/10/82	2075784	P4391
	1	12/13/82	2075781	P4392
December, 1982	1	12/16/82	2075776	P4395
	1	12/19/82	2075775	P4396
2	1	12/22/82	2075771	P4398
Composite 3	1	12/25/82	2075768	P4401
	1	12/28/82	2075766	P4402
	1	12/31/82	2075763	P4403
		10/11/00	20752/1	D//1/
	2	12/1/82	2075341	P4414
Super Bear Composite	2	12/4/82	2075790	P4425
	2	12/7/82	2075787	P4389
	2	12/10/82	2075786	P4390
December, 1982	2	12/13/82	2075779	P4393
	2 2	12/16/82	2075778	P4394
Composite 4	2	12/19/82	2075773	P4397
COMPOSITE 4	2	.12/22/82	2075770	P4399
	2	12/25/82	2075769	P4400

Table 2
-ContinuedFilter Identification and Grouping Classification

Classification	Site	Date	Identification ADEC	Codes NEA
Juneau Municipal Bldg. December, 1982 Composite 5	3 3 3	12/1/82 12/7/82 12/31/82	2075351 2075350 2075348	P4427 P4428 P4429
Regime 1 Fall highest exposure days when dry, cold & calm weather prevailed. No snow cover or precip- itation for preceding week and average temperature of 10°F.	2 1 1	11/22/82 11/19/82 11/22/82	2075377 2075397 2075378	P4413 P4387 P4388
Regime 2 Winter highest exposure days. No snow cover or precipitation for preceding week and average temperature of 10°F.	1 1	12/30/81 1/2/82	2072987 2072993	P4409 P4405
Regime 3 Cold, clear, calm days with average temperature of 12°F.	1 1 1	12/9/81 1/17/82 1/21/82	1218839 2072989 3397394	P4438 P4407 P4426
Regime 4 Clear, calm, warmer days with average temperature of 28°F.	1 2 1 1	2/7/81 2/17/82 12/31/82 2/16/82	2072967 2072960 2075763 3397875	P4411 P4412 P4403 P4431
Regime 5 Snow/rain, calm days with average tem- perature of 30°F.	1 1 1	11/28/82 12/21/81 12/15/81	2075340 1218848 1218843	P4415 P4423 P4419
Regime 6 Dry, calm days in March with high potential for fugitive dust; average temperature of 27°F.	2 1	3/4/83 3/4/83	3397258 339783	P4430 P4432

the Juneau road dust sample and the OC to EC ratio was typically about 5:1 as observed for RWC emissions. The concentration of iron was much more variable than other species such as OC, EC, Br, and Pb. While the percent concentrations of these other species varied by about a factor of two, the Fe ranged from "zero" (< 0.01%) to over 5%.

High blank levels and variability in those blank levels substantially reduced the amount of information attainable for other elements such as C1, Ca, Sr, Ba, etc. Sulfate and nitrate results should be considered as upper limits because of the potential for significant filter artifacts.

It should be noted that the C1 results listed as typically less than 0.05% do not include systematic uncertainties. The less than is actually about two orders of magnitude greater than indicated and is thought to be consistent with a marine source of Na.

3.2 CMB Source Apportionment

The results of the CMB source apportionment calculations are listed in Appendix D at the top of the computer printout for each filter as illustrated in Figure 3. The sample identification (P4387), site, size, etc. are listed at the top of the page followed by the listing of two effective variance fitting parameters, reduced chi square (0.548) and the degrees of freedom (D of F:7) which is the difference between the number of species used in the fit, 13 (the species with asterisks), and the number of sources used in the final calculation, 6.

The sources used in the final calculation and their contribution $(\mu g/m^3)$ and percent) are listed next. Table 3 lists the source codes and their identifications used in this study. Although only a few sources are listed in Table 3, consideration of a much larger set of sources was used to construct this final set of sources used in this study.

CMBDER RESULTS FOR CMB # P4387 TOTAL PARTICULATE FRACTION SAMPLING DATE: 821119 SITE CODE: 01 SAMPLING DURATION: 24 HRS. WITH START HOUR: 0 SITE: FLOYD DRYDEN EFFECTIVE VARIANCE FITTING. REDUCED CHI SQUARE: 0.548 D OF F: CODE SOURCE FLG UG/M3 % _______ RWC * 122,755+-33.878 19.678+- 5.512 3 MARIN * 11.415+- 4.842 1.830+- 0.781 DUST * 433.360+-19.832 69.469+- 4.598 7 SULFT * 1.908+- 0.429 0.306+- 0.070 * 0.233+- 0.031 0.037+- 0.005 8 NH4 9 NO3 * 0.698+- 0.091 0.112+- 0.016 TOTAL: 570.368+-39.556 91.432+- 7.702 SPECIE TOTAL SUSPENDED PARTICULATE RATIO CODE MEAS. UG/M3 PERCENT CALC. UG/M3 1 0C * 65.757+- 5.216 10.541 58.309+-16.940 0.887+-0.267 0C 2 EC * 6.492+- 0.834 1.041 15.713+-10.311 2.420+-1.618 EC 3 HH4* 0.233+- 0.020 0.037 0.233+- 0.024 1.000+-0.133 NH4 0.000+- 0.005 0.000+-0.008 F 0.582+- 0.042 0.093 4 F 5 NO3* 0.698+- 0.058 0.112 0.698+- 0.070 1.000+-0.130 NO3 1.908+- 0.191 1.000+-0.225 S04 6 SD4* 1.908+- 0.384 0.306 7 NA * 3.258+- 2.286 0.522 4.668+- 0.460 1.433+-1.015 NA ---5.854+- 1.305 0.000+-0.000 CL 8 CL . < 0.048 0.558+- 0.207 0.090 7.560+- 0.932 9.999+-9.999 K 9 K / 10 CA CA < 0.083 ---14.500+- 0.758 0.000+-0.000 3.502+- 0.195 0.972+-0.088 11 TI * 3.601+- 0.257 0.577 TI 12 V * 0.184+- 0.022 0.030 0.217+- 0.030 1.176+-0.216 V 13 CR * 0.145+- 0.011 0.023 0.143+- 0.017 0.989+-0.141 CR 0.559+- 0.035 1.075+-0.102 MN 14 MN * 0.520+- 0.037 0.083 15 FE * 32.015+- 2.274 5.132 31.176+- 1.621 0.974+-0.086 FE 0.033+- 0.003 0.005 0.061+- 0.013 1.838+-0.427 16 NI HI 0.058+- 0.004 0.009 0.052+- 0.013 0.892+-0.234 CU 17 CU * 0.144+- 0.011 0.023 0.331+- 0.052 2.295+-0.401 ZN 18 ZN 0.004+- 0.013 0.563+-1.701 19 GA 0.008+- 0.002 0.001 GA 20 AS < 0.005 ---0.026+- 0.061 0.000+-0.000 AS < 0.001 0.000+- 0.009 0.000+-0.000 SE 21 SE ---22 BR * 0.124+- 0.009 0.020 0.110+- 0.014 0.881+-0.132 0.039+- 0.013 1.403+-0.494 RB 23 RB SR 24 SR 0.035+- 0.017 4.623+-2.889 Y 25 Y 0.007+- 0.003 0.001 < 0.012 26 ZR 0.065+- 0.078 0.000+-0.000 ZR ---CD 27 CD 28 BA 0.000+- 0.832 0.000+-0.000 LA 29 LA 0.002+- 0.002 0.000 0.022+- 0.017 8.667+-\$10.5 HG 30 HG 0.444+- 0.032 0.071 2.292+- 0.143 5.159+-0.494 PB 31 PB

MEAS. AMB. MASS (UG/M3): 623.8

^{* -} FITTING ELEMENT

List of the Source Codes and Source Descriptions

Table 3

0001	RUC	RESIDENTIAL WOOD COMBUSTION (MACS)
0004	TRANS	TRANSPORTATION (MACS)
0015	MARIN	MARINE AIR (PACS)
0002	DUST	JUNEAU DUST
0005	RESID	RESIDUAL DIL (PACS)
0023	DIST	DISTILLATE OIL
0031	SULFT	SECONDARY SULFATE
0007	HH4	AMHONIUM
0003	N03	SECONDARY HITRATE
0006	CII	CUBBED

The next section of the printout lists the chemical species, their measured concentration in $\mu g/m^3$, and a one standard deviation uncertainty. The next column lists the measured percent contribution of each species, while the last two columns list the calculated concentrations and the ratio of calculated to measured concentration.

A large number of potential source combinations are often attempted before the most probable combination is established through an iterative procedure. The most probable combination of sources is identified by optimizing four primary fitting parameters: reduced chi square, degrees of freedom, percent mass explained, and the ratio of calculated to explained chemical mass. The best fit or most probable combination of sources explaining the aerosol mass is determined by minimizing the reduced chi square (usually less than 1.), maximizing the degrees of freedom, maximizing the percent mass explained up to 100%, and obtaining elemental ratios of about 1.0 within experimental error.

The fit illustrated in Figure 3 is quite good. It has a low reduced chi square, high number of degrees of freedom, explains over 90% of the mass, and most of the key and most reliable species ratios are 1.0 within experimental error. The most notable exception is lead, which is usually quite accurately measured even on glass fiber filters and is associated primarily with automotive exhaust. In this particular case, the transportation source could not be added because the Pb was already over explained with the sources used. This suggests the dust source, which is the only major source of lead in the list of sources shown in the Figure 3 fit, is not representative of the dust source impacting this particular sampling site. This problem only develops for lead and on a few days when the dust contribution is large. The lead concentration in the dust sample was 0.53%, nearly five fold greater than the lead concentration found in the fine fraction of road dust in Medford, Oregon, and 50% greater than the fine fraction road dust found in Portland, Oregon. This difference may be even more dramatic since the lead content of TSP road dust is typically lower than fine (< 2.5 µm) particle road dust.

Another key element of interest was K. This particular fit for K was quite poor, but the uncertainty is quite large. The reason for this is two fold. First, the analytical uncertainty is quite high for the ambient data because of blank impurity problems. Secondly, the variability in the K content of the source fingerprint is quite high and most of the fitting pressure is supplied by the OC and EC.

This particular filter, which recorded the highest TSP loading of $624~\mu g/m^3$, was also selected for priority pollutant analysis by gas chromatography-mass spectroscopic analysis. The results from this analysis are listed in Table 4. Most of the species measured were less than detection limits. The species of most interest, because of its prevalent use as a common indicator of polycyclic organic matter, is benzo(a)pyrene (BaP). BaP has been shown to be typically in the range from about 0.01% to 0.03% in wood smoke (8,9). The concentration of BaP measured on this filter (4 μ g/g or 11 ng/m³) is in good agreement with these previous results and confirms the source contribution of RWC indicated in Figure 3. That is, the percent BaP in Juneau's ambient RWC smoke would be 0.009% (0.011 ÷ 122.7).

The highest RWC source contribution calculated was 235 $\mu g/m^3$ (P4388) with several days approaching or exceeding 200 $\mu g/m^3$. Thus, BaP levels in the 20 ng/m³ would not be unusual for the Juneau airshed. These levels can be put in perspective by comparing them to other regions of the country and their seasonal variability as is done in Tables 5 and 6. It should be noted that the data in these tables are based on 1969 measurements and there has been a steady decline in these levels over the past decade or so. It also needs to be emphasized that BaP is simply an indicator of polycyclic organic compounds that might be present. Other potentially toxic and hazardous compounds such as carbon monoxide, phenols, aldehydes, etc. would be expected to be present in about the same relative concentration as estimated by Cooper (8).

Figures 4-6 illustrate the results obtained on two days in the fall of 1982, November 19th and 22nd. This period, including several days immediately

Table 4
Priority Pollutant Analysis List

ACID COMPOUNDS	ug/g(ppm)	BASE/NEUTRAL COMPOUNDS	ug/g(ppm)
2,4,6-trichlorophenol	< 0.4	4-bromophenyl phenyl ether	< 0.4
p-chloro-m-cresol	< 0.4	bis(2-chloroisopropyl) ether	c < 0.4
2-chlorophenol	< 0.4	bis(2-chlorethoxy)methane	< 0.4
2,4-dichlorophenol	< 0.4	hexachlorobutadiene	< 0.4
2,4-dimethylphenol	< 0.4	hexachlorocyclopentadiene	< 0.4
2-nitrophenol	< 0.4	isophorone	< 0.4
4-nitrophenol	< 0.4	napthalene	< 0.4
2,4-dinitrophenol	< 0.4	nitrobenzene	< 0.4
4,6-dinitro-2-methylphenol	< 0.4	N-nitrosodimethylamine	< 0.4
pentachlorophenol	< 0.4	N-nitrosodiphenylamine	< 0.4
phenol	< 0.4	N-nitrosodi-n-propylamine	< 0.4
BASE/NEUTRAL COMPOUNDS	ug/g(ppm)	bis(2-ethylhexyl)phthalate	6
acenaphthene	< 0.4	butyl benzyl phthalate	< 0.4
benzidine	< 0.4	di-n-butyl phthalate	5
1,2,4-trichlorobenzene	< 0.4	di-n-octyl phthalate	< 0.4
hexachlorobenzene	< 0.4	diethyl phthalate	1
hexachloroethane	< 0.4	dimethyl phthalate	< 0.4
bis(2-chloroethyl)ether	< 0.4	benzo(a)anthracene	< 0.4
2-chloronaphthalene	< 0.4	benzo(a)pyrene	4
1,2-dichlorobenzene	< 0.4	benzo(b)fluoranthene	2
1,3-dichlorobenzene	< 0.4	benzo(k)fluoranthene	< 0.4
1,4-dichlorobenzene	< 0.4	chrysene	5
3,3'-dichlorobenzidine	< 0.4	acenaphthylene	< 0.4
2,4-dinitrotoluene	< 0.4	anthracene	< 0.4
2,6-dinitrotoluene	< 0.4	benzo(ghi)perylene	< 0.4
2,2-diphenylhydrazine	< 0.4	fluorene	< 0.4
(as azobenzene)	< 0.4	phenanthrene	0.5
fluoranthene	9 ·	dibenzo(a,h)anthracene	< 0.4
4-chlorophenyl phenyl ether	< 0.4	indeno(1,2,3-cd)pyrene	< 0.4
		pyrene	9

Typical Values of Aerosol Concentration for Difference Geographic Areas (Annual Averages) (Based on 1969 data, Ref. 10)

Location	N. particles/cm ³ b	Mass Concentration (m), μg/m ^{3 c}	Benzene- Soluble Fraction of m, µg, m ³	Benzo[a] pyrene Fraction of m, ng, m ³
Nonurban				
Continental				
General	10'-10"	20-80	1.1-2.2	-
California	10'-104	39	2.8	0.48
Oregon	-	47	0.9	0.09
Colorado	10°-104	14	1.1	0.11
Indiana	-	39	2.1	0.25
Maine	_	18	1.2	0.12
New York	-	29	1.8	0.25
So. Carolina	_	40	2.7	0.43
Maritime				
General	102-104	_	-	-
Pacific offshore	102-104	19-146	1.5-6.1 d	
Oahu, Hawaii	10'-104	10-49 d	0.7-6.3 d,e	-
Urban				
Continental				
General	103-106	>100	7	-
Los Angeles	103-106	93	12.5	1.87
Portland	_ ~	72	6.6	2.60
Denver	103-105	110	9.0	2.52
Minneapolis	10'-10'	70	6.1	1.18
Chattanooga	-	105	6.9	4.18
New York	_	105	8.9	3.63
Greenville, S.C.	-	76	7.4	7.49
Maritime				
Honolulu, Hawaii	102-104	40	2.3	0.59
San Juan, Puerto				
Rico	-	77	6.9	1.42

Table 6

Seasonal Observations of Benzo(a)pyrene and Benzanthrone in Some U.S. Cities (Based on 1969 data, Ref. 10)

	Mass Cor	Mass Concentration, ng/m								
	Benzo[a	pyrene			Benzanthrone					
	Quarter	Quarter								
Site	1	2	3	4	1	2	3	4		
Los Angeles	2.98	0.79	0.64	3.05	4.48	1.87	1.74	6.10		
Medford, Oregon	2.60	2.18	1.45	9.97	8.14	1.69	2.92	9.69		
Albuquerque, N.M.	1.02	0.23	0.29	2.95	1.47	0.57	0.67	3.34		
Ashland, Ky.	21.17	6.38	6.21	9.80	12.17	3.69	5.47	6.64		
Chicago	7.20	3.21	1.60	3.52	4.86	3.38	2.31	3.78		
Nashville, Tenn.	5.73	1.76	0.77	2.93	4.76	2.04	1.62	5.68		
Philadelphia	6.33	1.69	1.41	6.68	11.02	1.64	1.60	3.65		
Pittsburgh, Pa.	21.32	18.27	6.04	9.37	9.28	4.75	3.10	3.91		
Greenville, S.C.	19.60	2.84	0.66	4.91	15.52	2.70	1.56	8.46		
Missouri (nonurban)	0.24	0.16	0.17	0.08	0.47	0.23	0	0.47		
Pennsylvania										
(monurban)	2.52	0.83	1.04	0.54	0.83	0.57	1.01	1.00		

```
CMBDER RESULTS FOR CMB # P4413
TOTAL PARTICULATE FRACTION
SAMPLING DATE: 821122 SITE CODE: 02
SAMPLING DURATION: 24 HRS. WITH START HOUR: 0
SITE: SUPER BEAR
EFFECTIVE VARIANCE FITTING. REDUCED CHI SQUARE: 2.615 D OF F: 7
 CODE SOURCE FLG UG/M3
     RWC
            * 167.666+-44.685 42.995+-11.690
 1
            # 4.973+- 1.074
                             1.275+- 0.284
    TRANS
            * 152.687+- 7.441
                              39.154+- 2.844
    DUST
              8.357+- 1.019
                              2.143+- 0.286
 7
     SULFT
                              0.141+- 0.019
            * 0.551+- 0.068
 8 NH4
           * 1.293+- 0.158
                              0.332+- 0.044
 9
     H03
 10 CU * 0.029+- 0.007 0.007+- 0.002
 TOTAL: 335.555+-45.324 86.047+-12.512
                 TOTAL SUSPENDED PARTICULATE
 SPECIE
            MEAS. UG/M3 PERCENT CALC. UG/M3 RATIO
 CODE
 79.642+-23.138 0.752+-0.227
  1 00 * 105.934+- 8.696 27.165
                       4.470 21.461+-14.084 1.231+-0.823
  2 EC * 17.432+- 2.236
                                0.551+- 0.055 1.000+-0.123
          0.551+- 0.040 0.141
  3 NH4*
                                0.000+- 0.002 0.000+-0.003
                       0.172
  4 F
           0.670+- 0.432
                                              1.000+-0.122
                                                           H03
                                1.293+- 0.129
                        0.332
  5 H03*
          1.293+- 0.091
                                              1.000+-0.122
                                                           504
                                8.357+- 0.836
  6 SD4*
           8.357+- 0.583
                       2.143
                                                           HH
                                              0.069+-0.089
           < 2.349
                         ---
                                0.139+- 0.077
  7 NA
                                              0.000+-0.000
                         ---
                                 1.204+- 0.855
  8 CL
              < 0.058
                                 3.677+- 1.180
                                              5.296+-2.354
                         0.178
           0.694+- 0.214
  9 K *
                       ---
                                 5.194+- 0.285
                                              0.000+-0.000
                                                           CA
  10 CA
           < 0.082
                                              0.848 + -0.076
                         0.378
                                1.250+- 0.069
           1.473+- 0.105
  11 TI *
                                              0.799+-0.138
           0.095+- 0.009
                         0.024
                                 0.076+- 0.011
  12 V *
                                                           CR
                                0.050+- 0.006
                                              1.145+-0.176
           0.044+- 0.004 0.011
  13 CR *
                                0.197+- 0.012 1.092+-0.104
                       0.046
  14 MH *
          0.180+- 0.013
                                              0.991+-0.087
                       2.866 11.076+- 0.572
  15 FE *
          11.178+- 0.794
                                              1.607+-0.420
          0.013+- 0.002
                         0.003
                                0.021+- 0.005
  16 HI
                                              1.000+-0.143
                                                           CU
                       0.012
                                 0.047+-0.006
           0.047+- 0.004
  17 CU *
                         0.030
                                0.167+- 0.063
                                              1.440+-0.551
                                                           ZN
  18 ZH
           0.116+- 0.009
                                 0.002+- 0.005
                                              2.545+-$12.7
               < 0.002
                         -
  19 GA
                                              1.992+-5.993
                                0.009+- 0.021
  20 AS
               < 0.009
                         ___
                                                           SE
                                              0.000+-0.000
               < 0.003
                         ---
                                 0.000+- 0.003
  21 SE
                                                           BR
                                 0.295+- 0.105
                                              0.601 + -0.218
                         0.126
           0.491 + - 0.035
  22 BR *
                                              1.057+-0.431
                                                           RB
                         0.003
                                 0.014+-0.005
  23 RB
           0.013 + - 0.003
                                              1.398+-0.183
           0.057+- 0.005
                                 0.079+- 0.008
  24 SR
                         0.015
                                                           4
                                              5.817+-9.101
             < 0.003
                         ---
                                 0.012+- 0.006
  25 Y
                                              0.000+-0.000
               < 0.011
                         ---
                                 0.023+- 0.028
  26 ZR
                                              1.235+-2.515
                                                           CD
                       0.003
                                 0.017+- 0.031
           0.014+- 0.012
  27 CD
                                0.424+- 0.243 1.276+-0.802
                                                           BA
  28 BA
           0.333+- 0.087
                         0.085
                                 0.000+- 0.293 0.000+-3.951
  29 LA
               < 0.096
                         ---
                                0.008+- 0.006 0.000+-0.000
                                                           HG
                         ---
               < 0.002
  30 HG
  31 PB * 1.311+- 0.093 0.336 1.494+- 0.138 1.140+-0.133 PB
```

MEAS, AMB, MASS (UG/M3): 390.0 ... * - FITTING ELEMENT

CMBDER RESULTS FOR CMB # P4388 TOTAL PARTICULATE FRACTION SAMPLING DATE: 821122 SITE CODE: 01 SAMPLING DURATION: 24 HRS. WITH START HOUR: 0 SITE: FLOYD DRYDEN EFFECTIVE VARIANCE FITTING. REDUCED CHI SQUARE: 0.386 D OF F: CODE SOURCE FLG UG/M3 % RWC * 234.722+-64.728 39.298+-11.008 1 2 TRANS * 3.383+- 1.396 0.566+- 0.235 DUST * 322.997+-15.528 54.078+- 3.717 7 SULFT * 8.286+- 1.014 1.387+- 0.183 8 NH4 * 0.368+- 0.045 0.062+- 0.008 9 NO3 * 1.854+- 0.227 0.310+- 0.041 10 CU * 0.299+- 0.040 0.050+- 0.007 TOTAL: 571.908+-66.587 95.752+-12.100 SPECIE TOTAL SUSPENDED PARTICULATE CODE MEAS. UG/M3 PERCENT CALC. UG/M3 RATIO 1 00 * 119.637+- 9.797 20.030 111.493+-32.391 0.932+-0.281 00 2 EC * 19.135+- 2.417 3.204 30.044+-19.716 1.570+-1.049 EC 3 NH4* 0.368+- 0.026 0.062 0.368+- 0.037 1.000+-0.123 NH4 4 F 0.915+- 0.065 0.153 0.000+- 0.004 0.000+-0.004 F 5 NO3* 1.854+- 0.130 0.310 1.854+- 0.185 1.000+-0.122 N03 8.286+- 0.584 1.387 6 SD4* 8.286+- 0.829 1.000+-0.122 804 7 NA * 2.426+- 2.246 0.406 0.195+- 0.108 0.080+-0.087 NA < 0.049 8 CT ---1.768+- 1.198 0.000+-0.000 9 K 10 CA 1.030+- 0.208 0.172 6.747+- 1.665 6.551+-2.088 CA 12 V * 0.151+- 0.018 0.025 0.161+- 0.023 1.066+-0.198 V 13 CR * 0.103+- 0.008 0.017 0.107+- 0.013 1.032+-0.150 14 MN * 0.396+- 0.028 0.066 0.417+- 0.026 1.052+-0.100 CR MH 15 FE * 23.656+- 1.681 3.961 23.299+- 1.208 0.985+-0.087 16 NI 0.023+- 0.002 0.004 0.045+- 0.010 1.924+-0.464 FE NI 17 CU * 0.338+- 0.024 0.057 0.338+- 0.032 1.000+-0.118 CU 18 ZN 19 GA < 0.006 20 AS ---0.019+- 0.045 9.999+-9.999 AS 21 SE < 0.002 ---0.000+- 0.007 0.000+-6.249 22 BR * 0.243+- 0.017 0.041 0.245+- 0.072 1.004+-0.305 BR 0.021+- 0.003 0.003 0.147+- 0.011 0.025 23 RB 0.029+- 0.010 1.398+-0.513 24 SR 0.168+- 0.016 1.142+-0.140 < 0.003 25 Y 0.026+- 0.013 9.999+-9.999 ---Y 26 ZR < 0.012 ---27 00 < 0.013 ---0.036+- 0.065 0.000+-0.000 CD , 28 BA 0.898+- 0.514 1.369+-0.809 BA 29 LA 0.000+- 0.620 0.000+-3.261 LA 30 HG < 0.002 ---31 PB 0.748+- 0.054 0.125 0.016+- 0.013 0.000+-0.000 HG 2.176+- 0.138 2.910+-0.279 PB

MEAS. AMB. MASS (UG/M3): 597.3

^{* -} FITTING ELEMENT

CMBDEQ RESULTS FOR CMB # P4388 TOTAL PARTICULATE FRACTION SAMPLING DATE: 821122 SITE CODE: 01 SAMPLING DURATION: 24 HRS. WITH START HOUR: 0 SITE: FLOYD DRYDEH EFFECTIVE VARIANCE FITTING. REDUCED CHI SQUARE: 0.268 D OF F: 5 CODE SOURCE FLG UG/M3 % 1 RWC * 233.616+-64.464 39.113+-10.963 2 TRANS * 3.172+- 1.334 0.531+- 0.225 TOTAL: 576.197+-66.569 96.470+-12.111 TOTAL SUSPENDED PARTICULATE SPECIE CODE MEAS. UG/M3 PERCENT CALC. UG/M3 1 0C * 119.637+- 9.797 20.030 110.968+-32.239 0.928+-0.280 0C 2 EC * 19.135+- 2.417 3.204 29.903+-19.624 1.563+-1.044 EC 0.368+- 0.026 0.062 0.368+- 0.037 1.000+-0.123 NH4 3 NH4* 4 F 0.915+- 0.065 0.153 0.000+- 0.004 0.000+-0.004 F 5 NO3* 1.854+- 0.130 0.310 1.854+- 0.185 1.000+-0.122 NO3 6 SO4* 8.286+- 0.584 1.387 8.286+- 0.829 1.000+-0.122 SO4 7 NA * 2.426+- 2.246 0.406 2.421+- 0.247 0.998+-0.930 NA 8 CL 9 K 10 CA < 0.049 ---3.985+- 1.316 0.000+-0.000 CL 1.030+- 0.208 0.172 6.816+- 1.657 6.618+-2.091 < 0.081 ---10.899+- 0.580 0.000+-0.000 11 TI * 2.794+- 0.200 0.468 2.620+- 0.145 0.938+-0.085 12 ¥ * 0.151+- 0.018 0.025 0.162+- 0.023 1.066+-0.198 11 13 CR * 0.103+- 0.008 0.017 0.107+- 0.013 1.032+-0.150
14 MH * 0.396+- 0.028 0.066 0.417+- 0.026 1.053+-0.100 0.417+- 0.026 1.053+-0.100 MM 15 FE * 23.656+- 1.681 3.961 23.298+- 1.208 0.985+-0.087 FE 16 NI 0.023+- 0.002 0.004 0.045+- 0.010 1.924+-0.464 NI 17 CU * 0.338+- 0.024 0.057 0.338+- 0.032 1.000+-0.118 CU 20 AS 21 SE < 0.006 ---0.019+- 0.045 26 ZR < 0.012 0.048+- 0.058 0.000+-0.000 ZR C 0.013 --- 0.036+- 0.065 0.000+-0.000 CD 0.656+- 0.098 0.110 0.898+- 0.514 1.369+-0.809 BA 0.190+- 0.098 0.032 0.000+- 0.620 0.000+-3.261 LA C 0.002 --- 0.016+- 0.013 0.000+-0.000 HG 27 CD 28 BA 29 LA 30 HG 31 PB 0.748+- 0.054 0.125 2.147+- 0.135 2.871+-0.273 PB

preceeding the days sampled, were characterized by dry, calm, low temperatures with no snow cover. RWC and DUST were the two dominate sources identified, each contributing about 40 to 50% of the mass.

On November 22nd, samples were collected at both the Super Bear and Floyd Dryden sites, Figures 4 and 5. Similar sources were found to contribute to both sites. The transportation source contribution was slightly greater at the Super Bear site, while the RWC impact was slightly greater at the Floyd Dryden site. The most significant difference was in the DUST contribution which was over two fold higher at the Floyd Dryden site than at the Super Bear location. This is even more suprising since the transportation contribution was nearly 50% greater at the Super Bear location. This suggests that a source other than road dust may be contributing the DUST at the Floyd Dryden site which may help explain the over prediction of Pb on days with high DUST contributions.

It should be noted that the CMB calculations were made completely independent of meteorological and other data. Only the source information was used to determine the best or most probable fit of the ambient data. Thus, comparison of CMB results with such data is a comparison of independent sets of information. Agreement or apparent reasonableness of the data provides additional support to the CMB conclusions. Contrasting data usually indicates some unknown in the system or erroneous information which can usually be resolved.

Figure 6 illustrates another group of sources fit to the November 22nd ambient data. In this case, a MARINE source was added to the sources used in the fit shown in Figure 5. Although the MARINE source contribution is reasonable (an impact of about 3 $\mu g/m^3$ was identified in Portland, Oregon), it was dropped in the final fit because the uncertainty in this source's contribution is slightly greater than the impact. This is a general fitting philosophy and may cause some systematic bias in the data.

Figures 7 and 8 illustrate another aspect of the CMB fitting procedure. Each figure illustrates the fit obtained using a slightly different set of sources. The main difference is in the use of SULFT (sulfate) in the fit shown in Figure 7 and DIST (distillate oil) in Figure 8. The distillate oil source provides an upper limit estimate for this source's contribution. It was used only on occasions, however, because it substantially overestimates its contribution because most of the fitting pressure is provided by sulfate which has both a substantial artifact and secondary aerosol contribution.

The source contributions are summarized in Tables 7-12 and are illustrated with pie charts in Figures 9-14. During the highest exposure days in the fall of 1982, under dry conditions, DUST contributed over 300 $\mu g/m^3$ of mass (54%) while this source contribution was below detection limits during the winter high exposure days. RWC impacts were higher in the winter, however, averaging about 226 $\mu g/m^3$ in the winter and about 170 $\mu g/m^3$ in the fall, when the average temperature was about 15° warmer.

RWC accounts for between 80 and 90% of the mass during meteorological regimes 3 through 5, while its percent contributions during dry conditions is reduced because of increased DUST levels. (The percent contributions listed in the pie charts may be slightly different from those in the tables because the table values were normalized to 100% for the pie charts.) The RWC impacts in $\mu g/m^3$ were strongly correlated with temperature for regimes 1-5 (correlation coefficient > 0.98). During calm weather regimes, the RWC impact could be predicted by the following linear function of temperature:

$$RWC = 198 - 4.52 t$$

where t = temperature in degrees Fahrenheit.

The results for the composite samples (Figures 15-19) agree with the individual filters and are consistent with expectations based on source locations. For example, the lowest RWC impacts during December of 1982 were observed at the Municipal Building, 9.6 $\mu g/m^3$ (65%), as compared to 73 $\mu g/m^3$ (83%) at the Floyd Dryden site and 56 $\mu g/m^3$ (92%) at the Super Bear site.

CMBDEQ RESULTS FOR CMB # P4409 TOTAL PARTICULATE FRACTION SAMPLING DATE: 811230 SITE CODE: 01 SAMPLING DURATION: 24 HRS. WITH START HOUR: 0. SITE: FLOYD DRYDEN EFFECTIVE VARIANCE FITTING. REDUCED CHI SQUARE: 1.593 D DF F: 4 CODE SOURCE FLG UG/M3 % RUC * 211.094+-55.371 82.267+-22.029 TRANS * 4.257+- 0.769 1.659+- 0.313 2 3 MARIH * 7.712+- 5.368 3 005+- 2.098 7 SULFT * 9.691+- 1.184 3.777+- 0.504 8 NH4 * 0.480+- 0.059 0.187+- 0.025 9 * 1.934+- 0.237 NO3 0.754+- 0.101 10 CU * 0.061+- 0.008 0.024+- 0.003 TOTAL: 235.228+-55.648 91.672+-22.242 SPECIE TOTAL SUSPENDED PARTICULATE CODE MEAS. UG/M3 PERCENT CALC. UG/M3 RATIO 1 00 * 105.380+- 8.915 41.069 100.270+-29.131 0.952+-0.288 00 2 EC * 29.745+- 3.563 11.592 27.020+-17.732 0.908+-0.606 EC 3 NH4* 0.480+- 0.034 0.187 0.480+- 0.048 1.000+-0.122 NH4 0.608+- 0.043 0.237 4 F 0.000+- 0.002 0.000+-0.003 F 5 ND3* 6 504* 7 NA * 3.411+- 2.136 1.329 3.260+- 0.323 0.956+-0.606 NA 0.214+- 0.049 0.083 8 CL 4.259+- 1.323 9.999+-9.999 CL 0.978+- 0.197 0.381 9 K * 1.923+- 1.478 1.967+-1.563 K ---10 CA < 0.075 0.299+- 0.130 0.000+-0.000 CA 11 TI < 0.003 0.014+- 0.005 0.000+-0.000 TI 12 Y < 0.001 ---0.000+- 0.002 0.000+-0.000 V 0.138+- 0.010 0.054 18 ZN 0.082+- 0.078 0.593+-0.567 ZH 19 GA < 0.001 ---0.000+- 0.002 0.000+-0.000 GA

 0.005
 -- 0.000+- 0.002
 0.000+- 0.000
 AS

 0.001
 -- 0.000+- 0.002
 0.000+- 0.000
 SE

 0.217+- 0.016
 0.085
 0.242+- 0.090
 1.112+- 0.421
 BR

 20 AS 21 SE 22 BR * 23 RB < 0.002 -0.000+- 0.002 0.000+-3.022 RB 24 SR < 0.002 0.000+- 0.002 0.000+-0.000 --- 0.000+- 0.002 0.000+-0.000 Y --- 0.000+- 0.002 0.000+-0.000 ZR --- 0.000+- 0.002 0.000+-0.000 CD 25 Y < 0.002 26 ZR < 0.010 27 CD < 0.011 28 BA < 0.074 ---0.000+- 0.002 0.000+-0.000 BA 29 LA < 0.086 ___ 0.000+- 0.002 0.000+-0.000 LA ---30 HG < 0.002 0.000+- 0.002 0.000+-0.000 HG 31 PB * 0.603+- 0.043 0.235 0.587+- 0.110 0.974+-0.196 PB

MEAS. AMB. MASS (UG/M3): 256.6

^{* -} FITTING ELEMENT

CHBDEQ RESULTS FOR CMB # P4409 TOTAL PARTICULATE FRACTION SAMPLING DATE: 811230 SITE CODE: 01 SAMPLING DURATION: 24 HRS. WITH START HOUR: 0 SITE: FLOYD DRYDEN EFFECTIVE WARIANCE FITTING. REDUCED CHI SQUARE: 0.166 D OF F: 5 % CODE SOURCE FLG UG/M3 ______ RUC * 190,994+-51,821 74,434+-20,590 1 TRANS * 3.260+- 1.068 1.271+- 0.422 2 MARIN * 8.103+- 5.378 3.158+- 2.103 3 6 DIST * 40.719+- 9.997 15.869+- 3.989 * 0.480+- 0.059 0.187+- 0.025 8 NH4 9 H03 * 1.934+- 0.237 0.754+- 0.101 TOTAL: 245.491+-53.061 95.672+-21.311 TOTAL SUSPENDED PARTICULATE SPECIE CODE MEAS, UG/M3 PERCENT CALC, UG/M3 1 80 * 105:380+- 8.915 41.069 98.052+-26.458 0.930+-0.263 0.0 2 EC * 29.745+-. 3.563 11.592 31.695+-18.556 1.066+-0.637 EC 0.480+- 0.048 1.000+-0.122 HH4 0.187 3 HH4* 0.480+- 0.034 F **0.000+- 0.002 0.000+-0.003** 0.608+- 0.043 0.237 4 F 1.000+-0.123 N03 1.934+- 0.137 0.754 1.934+- 0.193 5 HD3* 504 8.470+- 3.201 0.874+-0.336 9.691+- 0.681 3.777 6 504* 3.400+- 0.336 0.997+-0.632 NA 1.329 3.411+- 2.136 7 NA * 4.779+- 1.318 9.999+-9.999 CL 0.214+- 0.049 0.083 8 CL 1.763+- 1.337 1.803+-1.415 K 0.978+- 0.197 0.381 9 K * ---0.483+- 0.253 0.000+-0.000 CA < 0.075 10 CA 0.010+- 0.004 0.000+-0.000 TI 11 TI < 0.003 4.5 0.002+- 0.033 0.000+-0.000 12 Y < 0.001 0.000+- 0.002 0.000+-0.000 CR ---< 0.001 13 CR 0.002 0.006+- 0.004 0.891+-0.737 MH 0.006+- 0.002 14 MH * FE 0.109+- 0.052 0.000+-0.000 < 0.012 ---15 FE HI 16 NI ___ 0.004+- 0.003 0.000+-0.000 < 0.001 0.024 CU 17 CU * 0.061+- 0.005 0.069+- 0.024 1.133+-0.404 0.138+- 0.010 0.054 0.085+- 0.071 0.618+-0.517 ZH 18 ZH 0.000+- 0.002 0.000+-0.000 GA < 0.001 ---19 GA ---0.000+- 0.002 0.000+-0.000 AS < 0.005 20 AS ---SE 0.000+- 0.002 0.000+-0.000 21 SE < 0.001 0.085 0.200+- 0.070 0.921+-0.328 BR 0.217+- 0.016 22 BR * 0.000+- 0.002 0.000+-2.793 RB < 0.002 ---23 RB < 0.002 0.000+- 0.002 0.000+-0.000 24 SR Y 0.000+- 0.002 0.000+-0.000 < 0.002 25 Y 0.000+- 0.002 0.000+-0.000 26 ZR < 0.010 0.000+- 0.002 0.000+-0.000 CD 27 CD < 0.011 0.000+- 0.002 0.000+-0.000 BA < 0.074 28 BA 0.000+- 0.002 0.000+-0.000 LA < 0.086 29 LA 0.000+- 0.002 0.000+-0.000 HG < 0.002 30 HG 31 PB * 0.603+- 0.043 0.235 0.670+- 0.224 1.110+-0.380 PB

MEAS. AMB. MASS (UG/M3): 256.6

^{* -} FITTING ELEMENT

Table 7

Average Source Contributions for Regime 1: Fall Highest Exposure Days

REGIME 1
TOTAL PARTICLE FRACTION
COMPLING PERSON. 83/11/18

SAMPLING PERIOD: 82/11/19 TO 82/11/22

NUMBER OF SAMPLES : 3 AVERAGE CHI-SQUARED : 1.45

SOURCE MEAN *8 *8 *0 MEAN *A #>MDC %>MDC -----(UG/M3)---------(PERCENT)--------RWC 171.27+-35.64 61.73 46.71 33.38-- 7.84 3 100.0 0.61+- 0.37 66.0 2 TRANS 2.79+- 1.47 2.54 0.82 0.81+- 0.37 2 .66.0 0.38+- 0.38 1 50 0 54.07+- 8.61 3 100.0 0.95+- 0.63 2 66.0 0.08+- 0.03 3 100.0 0.25+- 0.07 3 100.0 MARIN 2.40+- 2.40 4.15 1.47 DUST 301.97+-80.80 \$139. 14 22 SULFT 4.18+- 2.41 4.18 0.92 NH4 0.38+- 0.09 0.16 0.05 N 0 3 1.28+- 0.33 0.58 0.16 011 0.11+- 0.10 0.16 0.02 0.02+- 0.02 2 66.0 UNEXPL 52.65+-12.90 22.34 ~ 10.25+- 2.73

SUM 537.02

100.00

AVE. MASS 537.02 UG/M3

Table 8

Average Source Contributions for Regime 2: Winter Highest Exposure Days

REGIME 2 TOTAL PARTICLE FRACTION

SAMPLING PERIOD: 81/12/30 TO 82/01/02

NUMBER OF SAMPLES : 2 AVERAGE CHI-SQUARED : 1.17

SOURCE		9.5		* C	MEAN	*A (HT)	#>MDC	
RWC TRANS MARIN SULFT NH4 NO3	220.56+- 4.80+- 8.23+- 10.41+- 0.30+- 2.19+-	9.46 0.55 0.52 0.72 0.18	13.38 0.77 0.73 1.02 0.25	57.96 0.87 5.37	78.77+- 1.70+- 2.93+- 3.71+- 0.11+-	3.49 0.05 0.07 0.07 0.07	2 2 2 2 2 2	100.0 100.0 100.0 100.0
CUUNEXPL	0.07+- 34.51+-	0.01	0.02	0.01	0.03+-	0.00	2	100.0

SUM 281.08

100.00

AVE. MASS 281.08 UG/M3

- *A STANDARD DEVIATION OF THE MEAN (STANDARD ERFOR)
- *B STANDARD DEVIATION OF THE DISTRIBUTION
- *C AVERAGE SOURCE CONTRIBUTION UNCERTAINTY

Average Source Contributions for Regime 3: Cold, Clear, Calm Days

REGIME 3
TOTAL PARTICLE FRACTION
SAMPLING PERIOD: 81/12/09 TO 82/01/21
NUMBER OF SAMPLES : 3
AVERAGE CHI-SQUARED : 0.55

SOURCE	MEAN	*A	*8	* C	MEAN (PERCE	* A	#>MDC	%>MDC
					50 (A. 1.1)(A.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			
RWC	129.37+-	19.46	33.71	34.51	84.06+-	0 89	3	100.0
TRANS	3.14+-	0.30	0.51	0.56	2.13+-	0.37	3	100.0
MARIN	10.42+-	1.62	2.81	5.60	6.79+-	0.61	3	100.0
DUST	9.43+-	9.43	16.34	0.55	4.81+-	4.81	1	100.0
SULFT	6.62+-	0.62	1.08	0.83	4.44+-	0.67	3	100.0
HH4	0.13+-	0.11	0.19	0.02	0.07+-	0.06	2	100.0
N 0 3	1.30+-	0.21	0.36	0.16	0.89+-	0.20	3	100.0
CU	0.11+-	0.04	0.07	0.01	0.08+-	0.03	3	100.0
UNEXPL	i.33+-	¢.77	1.33	No	1 . 0 1+-	0.60		

SUM 161.86 AVE. MASS 153.47 UG/M3 104.28

Table 10

Average Source Contributions for Regime 4: Clear, Calm, Warmer Days

REGIME 4
SUMMAR PARTICLE FRACTION SAMPLING PERIOD: 81/02/07 TO 82/12/31
NUMBER OF SAMPLES : 4
AVERAGE CHI-SQUARED : 0.42

SOURCE	MEAN	* A	*8	* C	MEAN	* A	#>MDC	%>MDC
					(PERCE	MT)		
RWC	73.41+	-13.62	27.24	19.74	80.98+-	5.18	4	100.0
TRANS	3.12+	- 0.74	1.49	0.56	3.45+-	0.45	4	100.0
MARIH	1.77+	- 1.77	3.54	1.23	1.56+-	1.56	1	100.0
DUST	0.18+	- 0.18	0.36	0.06	0.41+-	0.41	1	25.0
DIST	1.66+	- 1.66	3.33	0.61	1.46+-	1.46	i	100.0
SULFT	5.04+	- 0.76	1.53	0.81	6.15+-	1.25	4	100 0
N03	1.33+	- 0.27	0.54	0.16	1.47+-	0.09	4	100 0
CU	0.06+	- 0.02	0.04	0.01	0.07+-	0.03	3	75.0
UNEXPL	6.04+	2.69	5.39		6.52+-	2.30	-	

SUM 92.61

102.06

AVE. MASS 90.80 UG/M3

^{*}A - STANDARD DEVIATION OF THE MEAN (STANDARD ERROR)

^{*}B - STANDARD DEVIATION OF THE DISTRIBUTION

^{*}C - AVERAGE SOURCE CONTRIBUTION UNCERTAINTY

Table 11

Average Source Contributions for Regime 5: Snow/Rain, Calm Days

REGIME 5 TOTAL PARTICLE FRACTION

SAMPLING PERIOD: 81/12/15 TO 82/11/28

NUMBER OF SAMPLES : 3

AVERAGE CHI-SQUARED : 0.65

SOURCE	MEAN	* A	*8	* €	MEAN *A	#>MDC	%>MDC
		-(UGZ	M3)		(PERCENT)		
RWC	83.22+-	7.95	13.78	22.32	122.04+-20.93	3	100 0
TRANS	1.59+-	0.42	0.73	0.29	2.14+- 0.12	3	100 0
MARIN	5.99+-	3.05	5.28	3.62	9.10+- 5.96	2	100.0
SULFT	3.97+-	0.47	0.81	0.59	5.99+- 1.59	3	100 0
HH4	0.47+-	0.23	0.41	0.06	0.56+- 0.22	3	100 0
H03	0.65+-	0.29	0.50	0.09	0.85+- 0.43	3	100 0
CU	0.08+-	0.02	0.03	0.01	0.13+- 0.05	3	100.0
UHEXPL	0.00+-	0.00	0.00	***	0.00+- 0.00		
SUM	95.97				140 81		

SUM 95.97

140.81

AVE. MASS 74.57 UG/M3

Table 12

Average Source Contributions for Regime 6: Dry, Calm, Days with Potential High Fugitive Dusts

REGIME 6

TOTAL PARTICLE FRACTION

SAMPLING PERIOD: 83/03/04 TO 83/03/04

NUMBER OF SAMPLES :

AVERAGE CHI-SQUARED : 1.02

SOURCE	MEAN	* A	*8	* C	MEAN	* A	#>4DC	%>MDC
		(UG/	M3)		(PERCE	HT)		
RWC	31.79+	- 6.99	9.88	9.20	25.24+-		2	100.0
TRANS	1.01+	0.66	0.93	0.42	0.63+-	0.19	2	100.0
DUST	77.78+-	-41.86	59.20	4.03	52.26+-	6.98	2	100.0
DIST	7.74+-	- 7.74	10.95	1.99	9.76+-	9.76	1	100.0
SULFT	1.15+-	1.15	1.62	0.24	0.57+-	0.57	1	50.0
HH4	0.14+-	0.14	0.20	0.06	0.18+-	0.18	1	100.0
H03	1.22+-	0.18	9.26	0.15	1.00+-	0.31	2	100.0
CU	0.03+-	0.03	0.05	0.01	0.02+-	0.02	1	50 0
UNEXPL	19.77+-	18.34	25.94		10.34+-	8.53	=0	

SUM 140.63

100.00

AVE. MASS 140 63 UG/M3

^{*}A - STANDARD DEVIATION OF THE MEAN (STANDARD ERPOR)

^{*}B - STANDARD DEVIATION OF THE DISTRIBUTION

^{*}C - AVERAGE SOURCE CONTRIBUTION UNCERTAINTY

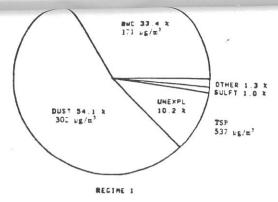


Figure 9. Average source contributions during highest exposure days in the Fall of 1982 when dry, cold and calm weather conditions prevailed. No snow cover or precipitation for preceding week and average temperature of 10° .

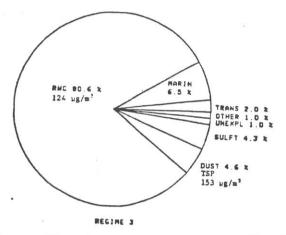


Figure 11. Average source contributions for Regime 3: cold, clear, calm days with average temperature of about 12°.

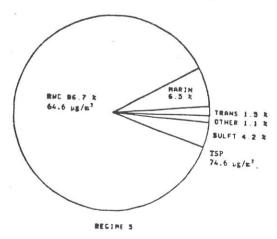


Figure 13. Average source contributions for Regime 5: snow/rain, calm days with average temperature of 30°.

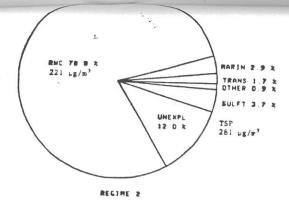


Figure 10. Average source contributions during highest exposure days during the 1981/1982 Winter. No snow cover or precipitation for preceding week and average temperature of -5° .

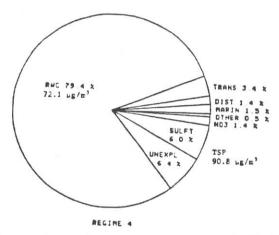


Figure 12. Average source contributions for Regime 4: clear, calm, warmer days with average temperature of 28°.

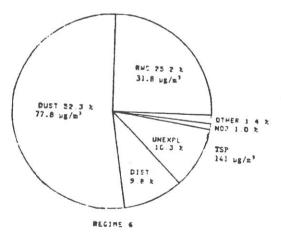


Figure 14. Average source contributions for Regime 6: dry, calm days with potential for high fugitive dust. Average temperature was 27°.

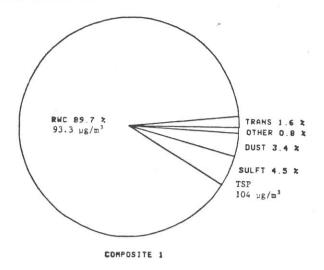


Figure 15. December, 1981, composite source contributions at Floyd Dryden.

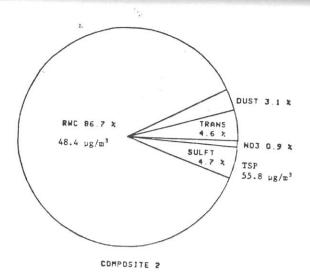


Figure 16. December, 1981, composite source contributions at Super Bear.

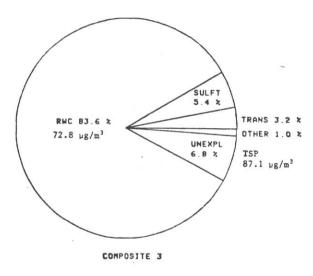


Figure 17. December, 1982, composite source contributions at Floyd Dryden.

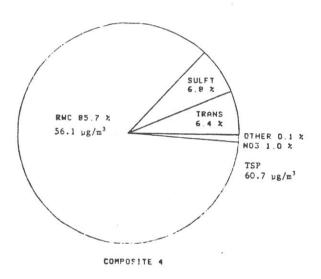


Figure 18. December, 1982, composite source contributions at Super Bear.

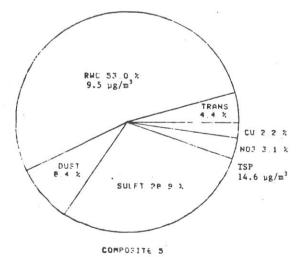


Figure 19. December, 1981, composite source contributions at the Juneau Municipal Building.

On the other hand, the transportation source contribution was lowest at the Floyd Dryden site, 2.8 $\mu g/m^3$, and highest at the Super Bear location, 4.2 $\mu g/m^3$. A similar pattern was noted for the December, 1981, composite samples.

4.0 CONCLUSIONS AND RECOMMENDATIONS

RWC sources typically contribute between 100 and 230 $\mu g/m^3$ of fine particulate mass on cold, calm days and are responsible for between 40% and 90% of the TSP, depending mainly on the relative contribution of crustal dust sources such as road and parking lot dust. The dust contributions were much more variable ranging from less than detection limits to over 300 $\mu g/m^3$, depending mainly on ground conditions (dry, snow, or rain). RWC impacts were highest at the Floyd Dryden site and lowest at the Municipal Building site, while transportation source contributions were highest at the Super Bear site.

The contribution of distillate oil combustion sources could not be defined but an extreme upper limit could be established by assuming all of the sulfate was from this source. Although such upper limits may be high by 2 to 10 fold, it clearly shows that this is far from being one of the most significant sources and it probably contributes less than about $10~\mu g/m^3$ in most cases.

Simple, low-cost, routine procedures for monitoring the impact of RWC sources can probably be developed and validated for the Mendenhall Valley and other relatively simple airsheds in Alaska. Those procedures might be based on such measurements as visibility, gaseous species, graphitic carbon by optical means, OC/EC ratios, fine particle mass, etc. Whatever procedure is selected, it would first have to be validated by intercomparison and correlation studies with other independent methods.

The largest uncertainty in the results of this study is in the oil combustion contribution. This uncertainty could be reduced considerably by sampling with a dichotomous sampler and focusing elemental analysis on the fine particle fraction (< 2.5 µm) where over 95% of the mass from these two sources would be deposited. The contribution of all three fine particle sources (RWC, oil, and transportation) would be defined much more precisely. Radiocarbon analysis would add independent confirmation for the relative contributions of these particulate sources. Radiocarbon analysis of carbon monoxide can also provide the most accurate assessment of the contribution of RWC to this criteria pollutant.

5.0 REFERENCES

- 1. DeCesar, R.T. and J.A. Cooper, "Medford Aerosol Characterization Study (MACS)," Final report to Oregon Dept. of Envir. Quality., Oregon Graduate Center Report, Feb. 3, 1981.
- Cooper, J.A. and J.G. Watson, "Portland Aerosol Characterization Study,"
 Final report to Oregon Dept. of Envir. Quality, Oregon Graduate Center
 Report, July 31, 1979.
- 3. Watson, J.G., Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon, Thesis, Oregon Graduate Center, Feb., 1979.
- 4. Kowalczyk, J.F. and W.T. Greene, "New Techniques for Identifying Ambient Air Impacts from Residential Wood Heating," in <u>Residential Solid Fuels</u>, Ed. J.A. Cooper and D. Malek, Oregon Graduate Center, p. 469, 1982.
- 5. Zoller, W., Univ. of Maryland, Private communication, June, 1980.
- 6. Muhlbaier, J.L., "A Characterization of Emissions from Wood-Burning Fireplaces," in <u>Residential Solid Fuels</u>, Ed. J.A. Cooper and D. Malek, Oregon Graduate Center, p. 164, 1982.
- 7. Pierson, W.R. and W.W. Brachaczek, "Particulate Matter Associated with Vehicles on the Road," proc. Auto. Eng. Cong. and Expo., Detroit, MI, Feb. 12, 1976.
- 8. Cooper, J.A., "Environmental Impact of Residential Wood Combustion Emissions and Its Implications," J. Air Pollution Control Assoc., 30 p. 855, 1980.
- 9. Murphy, D.J., R.M. Buchan, and D.G. Fox, "Ambient Particulate and Benzo(a)Pyrene Concentrations from Residential Wood Combustion, In a Mountain Resort Community," in <u>Residential Solid Fuels</u>, Ed. J.A. Cooper and D. Malek, Oregon Graduate Center, p. 495, 1982.
- 10. Particulate Polycyclic Organic Matter, U.S. National Academy of Sciences, Washington, D.C., 1972.

Appendix I

Meteorological Regime Characteristics

Mendenhall Valley TSP Source Apportionment Study Meteorological Characteristics of Selected Sample Days

- I. Weather Regime I; Cold, Clear, Calm conditions Temperature 5-25°F
 - 1. Floyd Dryden A 12/9/81 TSP = 196 ug/m³ Filter # 1218834
 4 days since rain, no snow cover at airport
 Meteorology:

Airport - Average Temperature = 22°F Ave. W.S. = 2.6 mph Ave. Dir. = 70° Floyd Dryden - no data

Montana Creek Average Temp = 13°F Ave W.S.= calm Ave. Dir = calm

2. Floyd Dryden A 1/19/82 TSP = 136 ug/m³ Filter # 2072989
4 days since snow, 17" snow cover at airport
Meteorology:

Airport Average Temp. = 14°F Ave. W.S. = 5.2 mph Ave. Dir = 30° Floyd Dryden Ave. Temp = 6°F Ave. W.S. = calm Ave. Dir = calm

3. Floyd Dryden B 1/21/83 TSP= 129 ug/m³ Filter # 3397394
Very calm and stagnent, little or no snow cover, 2 days no precipitation
Meteorology:

Airport - Average Temp. = 22°F Ave. W.S. = calm Ave. Dir. =calm Floyd Dryden - no data

- II. Weather Regime 2; Clear, calm, warmer Temperature 25-40°F
 - Floyd Dryden A 2/7/82 TSP = 118 ug/m³ Filter # 2072967 Fog, 2 days since snow, 26" snow cover at airport Meteorology:

Airport Average Temp = 28° Ave. W.S.= 1.7 mph Ave. Dir = 340° Floyd Dryden Av. Temp = 20° Ave. W.S. Calm Ave. Dir calm

- 2) Super Bear 2/7/82 TSP = 114 ug/m³ Filter # 2072960 Same as above
- 3) Floyd Dryden 12/31/82 TSP = 87 ug/m³ Filter # 2075763 Fog and smoke, trace precipitation with melting snow cover, AIR ALERT, Meteorological:

Airport Ave. Temp = 33°F Ave. W.S. = 2.5 mph Ave. Dir= 80° Floyd Dryden - no data

4) Floyd Dryden 2/26/83 TSP = 44 ug/m³ Filter # 3397875 Heavy fog, clear above, little or no snow cover, fog 2 previous days, no precipitation.

Meteorology:

Airport - Ave. Temp 36° Ave. W.S. = 1.2 mph Ave. Dir = 220° Floyd Dryden Ave. Temp 36° Ave. W.S. = calm Ave Dir = calm Montana Creek Ave. Temp 34° Ave. W.S. = calm Ave. Dir = calm

Weather Regime 3 - Snow/rain, calm weather

1)

- Floyd Dryden B $11/28/82 \text{ TSP} = 114 \text{ ug/m}^3 \text{ Filter } \# 2075340$ snow/rain mix, rain 1 of 2 previous days, no snow cover Meteorology: Airport Ave Temp =32° Ave. W.S. = 1.6 mph Ave Dir = 60° Floyd Dryden Ave Temp = 30° Ave. W.S. = calm
- Ave. Dir = calm Floyd Dryden A 12/21/81 TSP = 49 ug/m³ filter # 1218848 2) Rain/drizzle, 7 days of previous rain, no snow cover Meteorology:

Airport Ave Temp = 34° Ave W.S. = 7.6 mph Ave Dir = 100° Floyd Dryden - no data

Floyd Dryden A 12/15/81 TSP = 60 ug/m³ Filter # 1218843 3) Rain/snow mix, snow previous day, 6" snow cover Meteorology:

Airport: Ave. Temp = 30° Ave. W.S. = 5.3 mph Ave. Dir = 90° Floyd Dryden - no data

III Weather Regime 3 - Snow/rain, calm weather

1)

snow/rain mix, rain 1 of 2 previous days, no snow cover
Meteorology:
Airport Ave Temp =32° Ave. W.S. = 1.6 mph Ave Dir = 60°

Floyd Dryden B $11/28/82 \text{ TSP} = 114 \text{ ug/m}^3 \text{ Filter } \# 2075340$

- Floyd Dryden Ave Temp = 30° Ave. W.S. = 1.6 mph Ave Dir = 60°

 Floyd Dryden Ave Temp = 30° Ave. W.S. = calm Ave. Dir = calm
- Floyd Dryden A 12/21/81 TSP = 49 ug/m³ filter # 1218848 Rain/drizzle, 7 days of previous rain, no snow cover Meteorology:

Airport Ave Temp = 34° Ave W.S. = 7.6 mph Ave Dir = 100° Floyd Dryden - no data

3) Floyd Dryden A 12/15/81 TSP = 60 ug/m³ Filter # 1218843
Rain/snow mix, snow previous day, 6" snow cover
Meteorology:

Airport: Ave. Temp = 30° Ave. W.S. = 5.3 mph Ave. Dir = 90° Floyd Dryden - no data

- IV Weather Regime 4- Dry, calm with high potential fugitive dusts
 - 1) Super Bear 3/4/83 TSP = 202 ug/m³ Filter # 3397285

Dry, calm, morning and evening inversion w/smoke, no precipitation for 4 days, AIR ALERT

Meteorology:

Airport Ave. Temp = 34° Ave W.S. = 3.8 mph Ave. W.D. = 220° Floyd Dryden Ave. Temp = 270° Ave. W.S. = 0.6 mph Ave. W.D. = 180°

2) Floyd Dryden B 3/4/83 TSP = 79 ug/m³ Filter # 3397283 Same as above Highest Exposure Days

- Super Bear 11/22/82 TSP = 390 ug/m³ Filter # 2075377 Dry, cold, calm, 7 days no precipitation, no snow cover Meteorology:
 - Airport Ave Temp = 19°F Ave W.S. = 0.9 mph Ave. Dir = 70° Floyd Dryden Ave Temp = 7°F Ave W.S. = calm Ave Dir = calm
- 2) Floyd Dryden B 11/19/82 TSP = 624 ug/m³ Filter # 2075397 Dry, cold, calm no precipitation 3 previous days, no snow cover Meteorology:

Airport Ave Temp = 15° Ave W.S. = 9.1 Ave Dir = 120° Floyd Dryden Ave Temp = 12° Ave. W.S. = 1/5 mph Ave Dir = 75°

- 3) Floyd Dryden A 11/22/82 TSP = 597 ug/m³ Filter # 2075378 Same as # 1 above
- 4) Floyd Dryden A 12/30/81 TSP = 256 ug/m³ Filter # 2072987 Cold, calm, 5 days since rain, no snow cover Meteorology:

Airport Ave Temp = 6° Ave W.S = 10.1 Ave Dir = 90° Floyd Dryden Ave Temp = -4° Ave W.S. = calm Ave Dir = calm

5) Floyd Dryden A 1/2/82 TSP = 306 ug/m³ Filter # 2072993 Cold, calm 8 days since rain, no snow cover Meteorology:

Airport Ave Temp = 6° Ave W.S. = 10.1 Ave. Dir = 110° Floyd Dryden Ave Temp = -7° Ave W.S. = calm Ave Dir = calm