REGIONAL AIR POLLUTION STUDY
Point Source Emission Inventory

bу

Fred E. Littman
Robert W. Griscom
Otto Klein
Air Monitoring Center
Rockwell International
Creve Coeur, MO 63141

Contract 68-02-1081 Task Order 55

Project Officer

Francis A. Schiermeier
Regional Air Pollution Study
Environmental Sciences Research Laboratory
11640 Administration Drive
Creve Coeur, MO 63141

ENVIRONMENTAL SCIENCES RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY RESEARCH TRIANGLE PARK, N.C. 27711

DISCLAIMER

This report has been reviewed by the Environmental Sciences Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

ABSTRACT

Emissions data from stationary point sources in the St. Louis Interstate Air Quality Control Region (AQCR) have been gathered during the calendar year of 1975. Data for "criteria" pollutants will be available on an hourly basis. Emissions from large sources are based on hourly, measured values of pertinent operating parameters. Those from smaller sources, between 10 and 1000 tons per year are based on annual data modified by a detailed operating pattern.

An emission factor verification program has been initiated. It is carried out by source testing of typical sources using standard EPA methods. Results obtained so far indicate good agreement for SO values. The data obtained for NO and particulates originating from combusion sources tend to indicate that the existing factors are too high by variable but substantial amounts.

CONTENTS

ABSTRACT	iii
FIGURES	vii
TABLES	viii
1.0 SUMMARY	1
2.0 INTRODUCTION	2
3.0 EMISSION DATA ACQUISITION	3
4.0 EMISSION FACTOR VERIFICATION STUDIES	7
4.1 INTRODUCTION	7
4.2 DISCUSSION: METHODS AND RESULTS	8
5.0 CONCLUSIONS	15
APPENDIX I: EMISSION FACTOR CALCULATIONS	16
APPENDIX II: SOURCE TEST REPORTS	24
ILLINOIS POWER CO/WOOD RIVER PLANT/ALTON, ILLINOIS	25
APPENDIX A: PARTICULATE CALCULATIONS	52
APPENDIX B: FIELD DATA	74
HIGHLAND POWER AND LIGHT/HIGHLAND, ILLINOIS	104
APPENDIX A: PARTICULATE CALCULATIONS	130
APPENDIX B: FIELD DATA	141
CARLING BREWING CO/STAG BREWERY BELLEVILLE, ILLINOIS	155
APPENDIX A: PARTICULATE CALCULATIONS	173
APPENDIX B: FIELD DATA	186

TABLE OF CONTENTS (CON'T)

		PAGE
GENERAL MOTORS	S ASSEMBLY DIVISION/ST. LOUIS, MO.	,211
APPENDIX A:	PARTICULATE CALCULATIONS	239
APPENDIX B:	FIELD DATA	252
AMOCO OIL REF	INERY/WOOD RIVER, ILLINOIS	27
APPENDIX A:	PARTICULATE CALCULATIONS	297
APPENDIX B:	FIELD DATA	313 :

FIGURES

Number		Page
1	RAPS MAJOR POINT SOURCE EMISSIONS	4
2	POINT SOURCE LISTING	6

TABLES

Number		Page
1	COMPARISON OF MEASURED AND CALCULATED FLOWS	9
2	COMPARISON OF SO EMISSIONS BASED ON CALCULATED AND MEASURED FLOWRATES	12
3	COMPARISON OF "STANDARD" AND EXPERIMENTAL EMISSION FACTORS	1.3

1.0 SUMMARY

Emissions data from stationary point sources in the St. Louis Interstate AQCR have been gathered during the calendar year of 1975. Data for "criteria" pollutants – SO_2 , NO_χ , Particulates, CO and Hydrocarbons – will be available on an hourly basis. Emissions from large sources are based on hourly, measured values of pertinent operating parameters. Those from smaller sources, between 10 and 1000 tons per year of SO_2 , for example, are based on annual data modified by a detailed operating pattern.

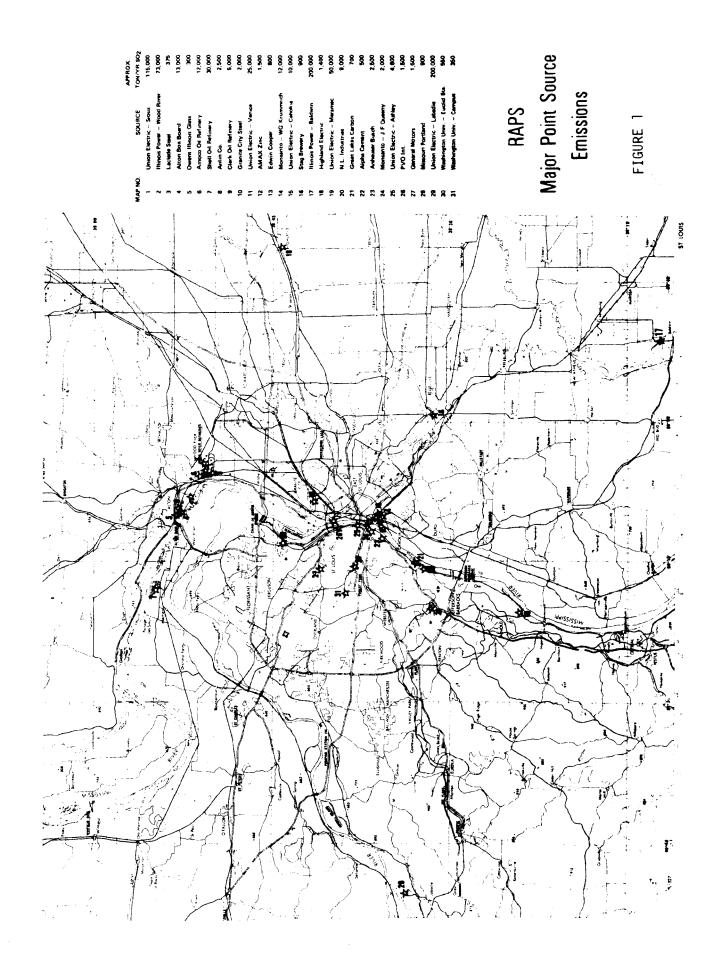
An emission factor verification program has been initiated. It is carried out by source testing of typical sources using standard EPA methods. Results obtained so far indicate good agreement for $\rm SO_2$ values. The data obtained for $\rm NO_\chi$ and particulates originating from combustion sources tend to indicate that the existing factors are too high by variable but substantial amounts.

2.0 INTRODUCTION

This is the third of a series of reports describing the operation of the Regional Air Pollution Study (RAPS) Point Source Emission Inventory. The two prior reports dealt with the methodology (EPA 450/3-74-054) and the first six months of operation of the inventory (SC553.T016FR). This report describes the data acquisition for May through December 1975, as well as the emission factor verification program carried out by stack sampling during the same period.

3.0 EMISSION DATA ACQUISITION

During the period of 1 May to 31 December 1975, the collection of hourly, measured data from all major sources of $\rm SO_2$ was continued. The methodology used is described in detail in "Point Source Emission Inventory - Final Report, Task Order 16, Phase II" EPA Contract No. 68-02-1081, dated May 1975.


Hourly process or consumption data covering 145 points were recorded and coded on punched cards as described in the same report. The cards were verified and processed through an editing routine (also described in the named report). The information was then transferred to the Univac 1110 computer at the National Environmental Research Center at Research Triangle Park, NC. Major point sources in the St. Louis AQCR are shown in Figure 1.

The emissions from 60 smaller sources were obtained and recorded as annual data, together with the operating patterns. The pattern is capable of indicating the actual operating hours, operating days (in Julian form) and weekly patterns by days. For example, the entry

D:2-48, 50-184, 186-244, 246-365, W:1-5, H:8-17

denotes the operation of a plant which normally operates Monday through Friday (W:1-5), from 8 AM to 5 PM (H:8-17), but is closed down for New Year's (D:1), Washington's Birthday (D:49), Independence Day (D:185), and Labor Day (D:245). If an hourly output for a specific hour and day is requested, the computer will first make sure the plant was operating that day, then divide the annual number by the actual number of hours of operation for a 5 day week, 9 hours a day operation, less the number of days when the plant was shut down.

A 3 month long strike at Union Electric Company delayed the acquisition of data from all U.E. plants; however, since the resumption of normal conditions, the delayed data are forthcoming.

Arrangements are being made with all companies furnishing data to continue the data collection through 1976. It appears that most, if not all, companies will again cooperate in this effort.

Once the necessary output programs become fully operational, it will be possible to obtain emissions for criteria pollutants emanating from stationary sources for any one-hour period in the St. Louis AQCR for the calendar year of 1975. The information for hydrocarbon emissions will be refined and supplemented under a separate task order next year.

A typical printout, showing hourly data for Particulates, SO_2 , NO_χ , Hydrocarbons (HC) and CO, is shown in Figure 2. The printout gives name and address of the source, its classification, location in UTM coordinates, stack parameters, fuel analysis and method of calculation, in addition to the emission values.

STACK ID: 01 FOINT ID: 01 SIC: 4911 ARCK: 070 GWNERSHIF: UTILITY 03: UNION ELECTRIC CO HIGHWAY M LABADIE 63055 5200: MISSING STATE OR CITY CODE 1680: FRANKLIN CO 26: MISSOURI

- >100MMBTU FULUWET	FUEL CONTENT ******** SULFUR: 3.05 % ASH: 10.11 % HEAT: 21.99 MBTU/SPC
BITUMINOUS COAL	## ISSION FACTORS *********** *********** ************
SCC(1-01-002-01); EXTCOMB BOILER - ELECTRIC GENERATM- BITUMINDUS COAL	STACK PARAMETERS ********** STACK HEIGHT: 700 FT STACK DIAMETER: 20.5 FT GAS TEMPERE: 285 F GAS TEMPERE: 1500000 CFM BOILER CAPACITY:5387 MBTU/HR CD:
SCC(1-01-002-01);	UTM GRID COORDINATES ********* UTM ZONE: 15 HORIZONTAL: 688.37 NM UERTICAL: 4270.23 NM

	EFFICTENCIES 98.0 % 0 % 0 % 0 %	
CDNTROL EQUIPMENT *************	*SECONDARY CONTROLS* FART: NO EQUIPMENT SUX: NO EQUIPMENT NUX: NO EQUIPMENT HC: NO EQUIPMENT CO: NO EQUIPMENT	
	FRIMARY CONTROLS DOES: FLECTROSTATC PRELIFITATOR-HIGH EFFICIENCY SOX; NO EQUIPMENT NOX; NO EQUIPMENT HC; NO EQUIPMENT CO: NO EQUIPMENT	

TA TE	11011	DABT	>00	>07		0.0
******** **********	** *** **	******	*************	************	*******	*****
	0	497.92	21954.44	5682,77	56.83	189.43
	-	505.42	22284,94	5768.32	57.68	192,28
	C4	540.76	23843.00	6171.61	61.72	205,72
10/ 1/74	119	478.65	21104.60	5462.79	54.63	182.09
	4	475.44	20942.95	5426.13	54.26	180.87
	n	476.51	21010.17	5438,35	54.38	181.28
	9	522,55	23040.36	5963.86	59.64	198.80
	Ø	542.90	23937,43	6196.06	61.96	206.54
	6	482,93	21293.45	5511.68	55.12	183,72
	10	447.60	19735,39	5108,38	51.08	170.28
	11	452,95	19971.46	5169,49	51.69	172,32
	1.2	4055.09	20065.89	5193.93	51.94	173.13
	13	458.30	20207,53	5230.60	52,31	174,35
	4-	458,30	20207.53	5230.60	52,31	174,35
	T.	454,02	20018.68	5181.71	51.82	172.72
	1.6	528,98	23323,65	6037,18	60.37	201.24
	1.7	531,12	23418.07	6061.62	60.62	202.05
	18	533,26	23512,50	6086.07	60.86	202.87
	1.9	534,33	23559.72	6098,29	86.09	203,28
	20	538,62	23748.57	6147.17	61.47	204.91
	21	537.54	23701.36	6134.95	61.35	204.50
	22	534,33	23559.72	6098,29	86.09	203.28

FIGURE 2 - POINT SOURCE LISTING

4.0 EMISSION FACTOR VERIFICATION STUDIES

4.1 INTRODUCTION

Emission estimates are based on consumption or production figures from which emissions are calculated using an emission factor. Emission factors are averaged numbers relating emissions to consumption or process data. In some cases, the relationship is direct and relatively uncomplicated. For example, for every ton of bituminous coal burned, a total of $38\underline{S}$ pounds of sulfur dioxide is produced, where \underline{S} indicates the sulfur content of the fuel, on a weight percent basis. Thus, if a plant burns 100 tons of 3% sulfur coal per hour, it emits

$$100 \times 38 \times 3 = 11,400$$

11,400 lbs of SO_2 per hour. Since in this particular case the sulfur is contained in the fuel and is converted virtually completely to SO_2 , the numbers resulting from the use of the emission factor are quite accurate and reliable.

If, on the other hand, we wish to determine the amount of oxides of nitrogen produced by the same operation, a somewhat different situation ensues. The emission factor for a boiler burning bituminous coal, as given in the EPA publication AP-42 "Compilation of Air Pollution Emission Factors", varies with both boiler type and size, from 6 to 55 lbs. of NO_χ per ton of coal. This is because the factors affecting NO_χ production include flame and furnace temperature, residence time of the combustion gases, rate of cooling, amount of excess air, as well as the amount of nitrogenous compounds in the fuel. Thus, the emission factor of 18, which is applicable to a pulverized coal boiler of this size, is an averaged value. Actual values may depart significantly from the numbers obtained by such a factor.

In order to improve the accuracy of the emission inventory gathered at St. Louis, a number of representative sources were sampled and their stack effluents analyzed. An attempt was made to encompass a wide variety of the larger point sources: large and medium sized power plants burning coal, fuel oil and gas; industrial boilers of different types and sizes; and industrial

operations, such as catalyst recovery units in a petroleum refinery, known or suspected of being major sources of pollution.

The program is an ongoing one; during 1975, the following sources were sampled:

Illinois Power's Wood River Power Plant

Boiler No. 1, operated on gas

Boiler No. 1, operated on fuel oil

Boiler No. 4, operated on coal

Highland Power Plant, Highland, Illinois

Boiler No. 3, operated on coal

Stag Brewery, Belleville, Illinois

Boiler No. 1, operated on coal

General Motors Power Plant, St. Louis

Boiler No. 2, operated on coal

Amoco Refinery, Hartford, Illinois

Boiler No. 6, operated on oil and gas Catalyst Regeneration Unit

Complete stack sampling reports are attached as Appendix II.

4.2 DISCUSSION: METHODS AND RESULTS

In general, the test methods specified in the Appendix of Part 60, CFR Title 40, "Standards of Performance for New Stationary Sources" were used. The methods include:

- Method 1 Sample and Velocity Traverses
 - 2 Determination of Stack Gas Velocity
 - 3 Gas Analysis for ${\rm CO_2}$, Excess Air and Dry Molecular Weight
 - 4 Determination of Moisture in Stack Gases
 - 5 Determination of Particulate Emissions
 - 6 Determination of SO_2 Emissions
 - 7 Determination of Nitrogen Oxide Emissions

The only deviation from these methods was the use of a higher probe and oven temperature in Method 5. A temperature of 325° was used instead of 250° F to avoid any problems with condensation of sulfuric acid.

Serious problems were encountered with stack gas velocity measurements using Method 2. Using mass balance methods as a check, it became apparent that the values obtained with an S-type pitot tube, used in accordance with Method 2, were too high by varying, but substantial amounts. Reproducibility was adequate, and repeated calibration of the pitot tube indicated that correct readings were obtained. A careful check of the literature indicated that high readings had been observed by other investigators. Burton (1) indicated that values of 104 to 150% of the rated value can be obtained. Grove (2) presented data indicating that a) significant errors are always positive and b) they can be very large. The most common source of errors is due to cyclonic flow, unfortunately a fairly common occurrence in power plant stacks, where "double entry" stacks (two boilers feeding one stack) are frequently used.

TABLE 1
COMPARISON OF MEASURED* and CALCULATED** FLOWS

Location	Flow. Measured	, SCFH Calculated	% Δ
Wood River #1	10,086,750	8,237,263	+22.5
Wood River #4	17,981,280	13,089,200	+37.4
Highland Power	1,386,070	910,920	+52.2
Stag Brewery	1,394,990	782,900	+78.2
Monsanto	1,687,655	1,563,000	+ 8.0
General Motors	1,598,005	1,434,847	+11.4
Amoco	2,543,040	-	-

^{*} Using S-type Pitot tube, EPA Method 2

^{**} Based on stoichiometry and excess air.

⁽¹⁾ Burton, C.S., Quantitation of Stack Gas Flow, Jnl., APCA 22, pp. 631-635 (1972).

⁽²⁾ Grove, D.J. and Smith, W.S., <u>Pitot Tube Errors due to Misalignment and Non-streamlined Flow</u>, Stack Sampling News, 1974.

One way of ascertaining the correctness of the data is by comparing the mass flow of SO_2 calculated from fuel consumption and sulfur analysis of the fuel, on one hand, with the value obtained from stack gas flow and analysis, on the other. The former is calculated according to Eq. 1

$$W_{SO_2} = W_c \times 38 \times S \quad , \tag{1}$$

where

 W_{SO_2} - weight of SO_2 produced, 1bs/hr

 W_{c} - weight of coal consumed, Tons/hr

S - % sulfur in coal, dry basis

This value should be equal to one obtained from EQ. 2

$$W_{SO_2} = C_{SO_2} \times Q_S$$
 (2)

where

 C_{SO_2} - Concentration of SO_2 in stack gas, lbs./SCF

 Q_{ς} - Stack gas flow rate, SCF/hr

For example, the flow rate for Boiler #4 at Wood River was calculated thusly:

		Boiler #4	1	0xyger	n Required For
Composition	of Coal	Lb-mols/100	lbs Coal		stion, mols
С	61.43%	5.12	(1)		5.12
H ₂	4.38	(2.19)	(2)		(1.09)
S	3.21	0.10	(3)		0.10
02	9.67	0.30			30
N_2	1.11	0.04	(4)		-
H ₂ O (moistu	re)11.82	(0.66)	(2)		-
Ash	8.55				
Chlorides	0.02				-
	100.19				6.01 mols oxygen
			Average Fycess	10% Air. 40%	2 40

Average Excess Air: 40% 2.40

Total 8.41

Corresponding Nitrogen 31.77

Assumed reactions:

- $(1) \quad C + O_2 \rightarrow CO_2$
- (2) Excluded from calculation for \underline{dry} flue gas
- $(3) S + O_2 \rightarrow SO_2$
- (4) Oxidation reaction uncertain

Dry flue gases per 100 lbs coal, lb-mols:

A comparison of results is shown in Table 2. As can be seen from Table 2, the values obtained using flow rates based on mass balance show a much better agreement with values obtained from emission factors, than those based on pitot measurements.

-11-

TABLE 2

COMPARISON OF SO₂ EMISSIONS BASED ON

CALCULATED AND MEASURED FLOWRATES

Location	W _{SO2} - Weight of	SO ₂ Produced, Bas	ed on
	Emission Factor	Calc. Gas Flow	Measured Gas Flow
Wood River #1 (oil)	153 lbs/hr	178 1bs/hr	217 lbs/hr
Wood River #4	5245	5104	7035
Highland Power	414	433	65 8
Stag Brewery	75	82	125
General Motors	479	472	546
Amoco (boiler) (catalytic cracker)	309 708	- -	320 354

For this reason, calculated flow rates were used whenever there was an indication of non-linear flow in the stack, as indicated by the fact that turning the pitot tube 90° on axis did not give a zero reading on the manometer.

Using the most reliable available results, experimental emission factors were calculated for SO_2 , NO_χ and particulates for the sources tested so far. These emission factors are compared with "standard" emission factors, taken from AP-42, in Table 3. Calculations are shown in Appendix I.

TABLE 3

COMPARISON OF "STANDARD" AND EXPERIMENTAL EMISSION FACTORS

<u> </u>	Stan	dard	Standard Emission Factors	Fact	ors	Experi	menta	Experimental Emission Factors	on Fac	tors
Location	×202	NO.	NO _x Part**	2H 02	ЭН	×20s	NO _x	NO _x Part**	00	웃
Wood River #1 (gas fired) $^{(1)}$	ı	009	10	17	-	ı	105	ı	2.8	1
#1 (oil fired) $^{(2)}$	1448	105	∞	т	2	1685	16	1.0	4.	.17
#4 (coal fired) ⁽³⁾	388	18	17A		0.3	378	1.4	10.0A		.02
Highland Power (coal fired) $^{(3)}$	388	15	5A	2	_	408	4.1	.4A		
Stag Brewery (coal fired) ⁽³⁾	388	15	5A	2	, —	418	7.2	1.9A	ω.	.14
General Motor (coal fired) ⁽³⁾	388	15	13A	2		378	10.8	23.6	.7	.03
Amoco ⁽²⁾ Boiler #6	1608	69	50		۴.	ı	ı	ı	ı	ı
Cat. Cracker Recovery ⁽⁴⁾	493	71	242	1	220	246	153	360	I	.48

percentage sulfur in fuel

V**

(1)

percentage ash in fuel; emissions before control equipment lbs per 10^6 cu. ft. lbs. per 10^3 gal. Both process gas and fuel oil were burned simultaneously.

lbs. per ton of coal (2) (3) (4)

lbs. $10^3~\text{bbl}$ fresh feed. Unit equipped with electric precipitator and CO boiler -

Even though relatively few source tests have been run so far, certain conclusions can be drawn from the results obtained:

- Determinations of stack gas volumes according to EPA Method 2 is uncertain. Incorrect results are obtained in a high number of cases, since the basic assumption of laminar flow, parallel to the walls of the stack does not pertain in many cases.
- 2. Engineering calculations of mass flow, based on ultimate analysis of the fuel and determinations of the excess air in the stack gases, give reasonably accurate results. This is borne out by sulfur balance calculations. For example, the average experimental emission factors for SO₂ for coal burning installations comes out to 38.75<u>S</u> compared with 38<u>S</u> suggested in AP-42.
- 3. The emission factors shown in Table 3 are applicable to the specific installations for which they were obtained. However, definite patterns appear to exist, which seem to have more general validity:
 - a) Emission factors for NO_{χ} for combustion sources appear to be too high by a variable, but substantial margin. The experimentally obtained factors range from a low of 7.7% to 72% of the applicable AP-42 factors.
 - b) Experimental emission factors for particulates similarly vary from 8 to 58% of the applicable AP-42 factors for installations which do not have precipitators. In the presence of the latter, their assumed efficiency becomes an overriding factor.
 - c) Hydrocarbon and CO emissions, which are rather insignificant for combustion sources, likewise run less than suggested by AP-42 factors.

5.0 CONCLUSIONS

The RAPS Point Source Emission Inventory has produced an extensive and accurate data base with an hourly resolution for the base year of 1975, with a temporal resolution of 1 hour for the important point sources in the AQCR-70.

The emission factor verification program, though somewhat limited in scope, indicates that good accuracy can be expected from the SO_2 inventory. Estimates for oxides of nitrogen and particulates appear to be on the high side and may have to be adjusted by changes in the emission factors.

The continuation of the program for another year will do much in improving the definition of the data obtained so far.

APPENDIX I EMISSION FACTOR CALCULATIONS

WOOD RIVER #1 - GAS FIRED

Burn Rate: 580×10^3 SCF/hr Sulfur: - Ash: - Flow Rate: 8,237,280 SCFH

 $\frac{NO_{\chi}}{NO_{\chi}}$ expected .580 x 600 = 348 lbs/hr found: 7.4 x 10^6 lbs/SCF (average)

 $7.4 \times 10^6 \times 8,237,280 = 60.9 \text{ lbs.}$

Experimental EMFAC: $600 \times \underline{60.9} = 105$

CO expected: $.580 \times 17 = 9.9 \text{ lbs/hr}$

found: 2.5 ppm

2.5 x 10^6 x 8,237,280 x 28.3 x $\frac{28}{22.4}$ x 2.205 x 10^3 = 1.6 lb/hr

Experimental EMFAC: $17 \times \frac{1.6}{9.9} = 2.76$

WOOD RIVER #1 - OIL FIRED

Burn Rate: 3.66 x 10³ gal/hr Sulfur: .29% Ash: - Flow Rate: 8,237,263 SCFH

 $\underline{S0}_2$ expected: 3.66 x 144 x .29 = 152.8 lbs/hr

found: 178.0 lbs/hr

Experimental EMFAC: $144 \times \frac{178}{152.8} = 167.7$

 $\frac{NO_{\chi}}{}$ expected: 3.66 x 105 = 384.3 lbs/hr

found: $7.1 \times 10^6 \times 8,237,263 = 58.5 \text{ lbs/hr}$

Experimental EMFAC: $105 \times \frac{58.5}{384.3} = 16.0$

<u>CO</u> expected: $3.66 \times 3 = 11.0 \text{ lbs/hr}$

found: $2.5 \times 10^{-6} \times 8,237,263 \times \frac{28.3}{22.4} \times \frac{28}{454} = .635 = 1.6 \text{ lbs/hr}$

Experimental EMFAC: $3 \times \frac{1.6}{11.0} = .44$

PARTICULATE expected: 3.66 x 8 = 29.3 lbs/hr

found: $4.55 \times 10^7 \times 8,237,263 = 3.7 \text{ lbs/hr}$

Experimental EMFAC: $8 \times \frac{3.7}{29.3} = 1.0$

HC expected: $3.66 \times 2 = 7.3 \text{ lbs/hr}$

found: 1.7 ppm

1.7 x 10^{-6} x 8,237,263 x $\frac{28.3}{22.4}$ x $\frac{16}{454}$ = .635 lbs/hr

Experimental EMFAC: $2 \times .635 = .17$

WOOD RIVER #4 - COAL FIRED

Burn Rate: 43 T/hr Sulfur: 3.21% Ash: 10.95% Flow Rate: 13,089,200 SCFH

SO₂ expected: 5245 lbs/hr

found: 5104 lbs/hr

Experimental EMFAC: $38 \times \frac{5104}{5245} = 36.97$

 $\frac{NO_{\chi}}{found}$ expected: 18 x 43 = 774 lbs/hr found: 4.46 x 10⁶ lb/SCF

 $4.46 \times 10^6 \times 13,089,200 = 58.37$ lbs/hr

Experimental EMFAC: $18 \times \frac{58.4}{774} = 1.36$

Particulates: expected: $43 \times 17 \times 10.95 = 8004 \text{ lbs/hr}$

Less: Precipitator at 99.5% off = 7964

40 1bs/hr

found: 23.45 lbs/hr

Experimental EMFAC: $17 \times \frac{23.5}{40} = 9.96$

HC expected: $43 \times .3 = 12.9 \text{ lbs/hr}$

found: 1.3 ppm

1.3 x 10^6 x 13,089,200 x $\frac{28.3}{22.4}$ x $\frac{16}{454}$ = .76 lbs/hr

Experimental EMFAC: $.3 \times \frac{.76}{12.9} = 0.018$

HIGHLAND POWER COMPANY

Burn Rate: 6702 lbs/hr 3.25% Sulfur 10.98% Ash Flow Rate: 910,920

SO₂: expected: 414 lbs/hr

found: 433 lbs/hr

Experimental EMFAC: $38 \times \frac{433}{414} = 39.7$

expected: $\frac{6702}{2000}$ x 15 = 50.26 lbs/hr \underline{NO}_{Y} :

found: $1.5 \times 10^5 \times 910,920 = 13.66 \text{ lbs/hr}$

Experimental EMFAC: $15 \times \frac{13.7}{50.3} = 4.1$

expected $\frac{6702}{2000}$ x 5 x 1.95 = 183.5 lbs/hr found: 1.76 x 10⁵ x 910,920 = 16 lbs/hr Particulates:

Experimental EMFAC: $5 \times \frac{16}{183.5} = 0.44$

STAG BREWERY

Burn Rate: 3604 lbs/hour Sulfur: 3.25% Ash 10.98% Flow Rate: 782900

SCFM

<u>\$0</u>2 expected: 74.9 81.4 lbs/hr founded: 79.0 91.1 lbs/hr

Experimental EMFAC: $38 \times \frac{79}{749} = 40.1 \quad 38 \times \frac{91.1}{81.4} = 42.5$

NO_X expected: $\frac{3604}{2000}$ x 15 = 27.0 lbs/hr found: 1.65 x 10⁵ lbs/SCF

 $1.65 \times 10^5 \times 782,900 = 12.9$ lbs/hr

Experimental EMFAC: $15 \times \frac{12.9}{27} = 7.16$

 $3604 \times 5 \times 10.98 = 98.9$ lbs/hr Particulates expected:

found: 37 lbs/hr

Experimental EMFAC: $5 \times \underline{37} = 1.87$ 98.9

Hydrocarbons: expected: $\frac{3604}{2000}$ x 1 = 1.8 lbs/hr

found: 7 ppm

782,900 x 7 x 10^6 x $\frac{28.3}{22.4}$ x $\frac{16}{454}$ = .24 lbs/hr

Experimental EMFAC: $1 \times .24 = .14$

CO expected: $1.802 \times 2 = 3.6 \text{ lbs/hr}$

found: 8.9 ppm = .54 lbs/hr

Experimental EMFAC: $2 \times \frac{.54}{3.6} = .30$

GENERAL MOTORS

SO₂ expected: 479 lbs/hr

found: 472 lbs/hr

Experimental EMFAC: $38 \times \frac{472}{479} = 37.4$

NO_X expected: $\frac{7491}{2000}$ x 15 = 56.2 lbs/hr found: 2.81 x 10⁵ x 1,434,847 = 40.3 lbs/hr

Experimental EMFAC: $15 \times \frac{40.3}{56.2} = 10.8$

Particulates expected: $\frac{7491}{2000}$ x 13 x 10.9 = 531 lbs/hr

less: Precipitation at 98% $\frac{520}{11}$ lbs/hr

found: $1.396 \times 10^5 \times 1,434,847 = 20.0$ lbs/hr

Experimental EMFAC: $13 \times \frac{20}{11} = 23.6$

C0 expected: $\frac{7491}{2000}$ x 2 = 7.5 lbs/hr

found: 1,434,847 x 25 x 10^6 x $\frac{28.3}{22.4}$ x $\frac{28}{454}$ = 2.8 lbs/hr

Experimental EMFAC: $2 \times \frac{2.8}{7.5} = .74$

expected: $\frac{7491}{2000}$ x 1 = 3.8 lbs/hr

found: 1,434,847 x 1.8 x 10^6 x $\frac{28.3}{22.4}$ x $\frac{16}{454}$ = .11 lbs/hr

Experimental EMFAC: $1 \times .11 = .03$

AMOCO - BOILER #6

Burn Rate: 64,063 SCF/W Refinery Gas 308 gal/hr Fuel Oil Sulfur 3.5% Flow Rate: 21,453,040 1.4%

S0₂ expected: $64.063 \times 3.5 \times 1.069^* = 239.7$ *Spec. Emission Factor $.308 \times 1.4 \times 160 = \frac{68.9}{308.6}$

found: $1.26 \times 10^4 \times 2,543,040 = 320.2$ lbs/hr

AMOCO - CATALYTIC CRACKER RECOVERY

Feed Rate: 34,485 bbl/day fresh feed Flow Rate: 5,160,271

S0₂ expected: $34.485 \times 493 \times \frac{1}{24} = 708 \text{ lbs/hr}$ found: $5,160,271 \times 6.853 \times 10^5 = 353.6 \text{ lbs/hr}$

Experimental EMFAC: $493 \times 354 = 246.3$

NO_X expected: $34.485 \times 71 \times \frac{1}{24} = 102.0 \text{ lbs/hr}$ found: $4.26 \times 10^5 \times 5,160,271 = 219.8 \text{ lbs/hr}$

Experimental EMFAC: $71 \times \frac{220}{102} = 153$

Particulates expected: $34,485 \times 242 \times \frac{1}{24} = 347.7 \text{ lbs/hr}$ less precipitator at 94% $\frac{327.9}{19.8}$

found: 29.5 lbs/hr

Experimental EMFAC: $242 \times \frac{29.5}{19.8} = 360$

HC expected: $34.485 \times 220 \times \frac{1}{24} = 316.1 \text{ lbs/hr}$ found: $5,160,271 \times 3 \times \frac{28.3}{22.4} \times \frac{16}{454} = .69 \text{ lbs/hr}$

Experimental EMFAC: $220 \times \underline{.69} = .48$

APPENDIX II SOURCE TEST REPORTS

SOURCE TEST REPORT

ILLINOIS POWER COMPANY

WOOD RIVER PLANT

ALTON, ILLINOIS

BOILERS NO. 1 AND 4

JUNE, 1975

Tested by: Rockwell International

R.W. Griscom O.C. Klein F.E. Littman W.G. Norris R.G. Ducker

TABLE OF CONTENTS

		PAGE
1.0	SUMMARY	29
2.0	INTRODUCTION	30
3.0	PROCESS DESCRIPTION	31
4.0	SOURCE TEST DESCRIPTION	34
5.0	PROCESS OPERATION	37
6.0	DISCUSSION	38
7.0	SAMPLING & ANALYTICAL PROCEDURES	39
	7.1 PARTICULATE MATTER 7.2 NITROGEN OXIDE 7.3 SULFURIC ACID MIST AND SULFUR DIOXIDE 7.4 PARTICLE SIZE	39 39 41 43
8.0	RESULTS	4 5
	APPENDIX A: PARTICULATE CALCULATIONS	52
	APPENDIX B: FIELD DATA	74

TABLES

	·	PAGE
TABLE 1	BOILER NO. 1/SUMMARY OF RESULTS	46
TABLE 2	BOILER NO. 4/SUMMARY OF RESULTS	47
TABLE 3	COMPARISON OF RESULTS	48
TABLE 4	MINOR CONSTITUENTS	49
TABLE 5	PARTICLE SIZE DETERMINATION/RUN 1	50

FIGURES

		PAGE
FIGURE 1	BOILER NO. 1	32
FIGURE 2	BOILER NO. 4	33
FIGURE 3	PLOT PLAN/WOOD RIVER PLANT	34
FIGURE 4 & 5	SAMPLING LOCATION, AND ARRANGEMENTS FOR TEST	35
FIGURE 6 & 7	SAMPLING LOCATION AND SET UP	36
FIGURE 8	PARTICULATE SAMPLING TRAIN	40
FIGURE 9	SULFURIC ACID MIST SAMPLING TRAIN	42
FIGURE 10	ANDERSEN STACK SAMPLER	44
FIGURE 11	PARTICLE SIZE DISTRIBUTION/BOILER NO. 4	51

1.0 SUMMARY

In conjunction with the RAPS project, a limited stack testing program is being conducted. This report details the results obtained on boilers No. 1 and 4 at the Wood River Plant of the Illinois Power Company.

The stack testing included the following pollutants: SO_2 , particulates, NO_{χ} , $\mathrm{H}_2\mathrm{SO}_4$, and hydrocarbons. Orsat analysis for CO_2 , CO , and O_2 were also performed. Detailed results are included in this report. Although these tests were not conducted to ascertain compliance with Illinois standards, it is of interest that the emissions were well within limits, with the exception of SO_2 emissions from the coal fired boiler No. 4.

We acknowledge and appreciate the excellent cooperation we obtained from both local and home office representatives of Illinois Power Co.

2.0 INTRODUCTION

The current stack testing program is being conducted in conjunction with the emission inventory work for the St. Louis RAPS project. The emission inventory is being compiled using published emission factors. The stack testing is being conducted to evaluate the emission factors and to gather information for additional emission factors.

This stack test was conducted at the Illinois Power Co.-Wood River Plant in Alton, Illinois. Testing was performed on boiler No. 1 during natural gas and oil firings and on boiler No. 4 during coal firing. The test on boiler No. 1 was during the week of 16 June 1975 and the test on boiler No. 4 was during the week of 23 June.

Boiler No. 1 is a gas and/or oil fired, 450,000 pounds per hour steam generating unit. There are no stack emission controls on boiler No. 1. Boiler No. 4 is a pulverized coal fired, 713,000 pounds per hour steam generating unit. There are mechanical and electrostatic precipitators on boiler No. 4.

Both units were sampled for total particulates, nitrogen oxides, hydrocarbons, sulfur dioxide, sulfuric acid mist, carbon dioxide and oxygen. Boiler No. 4 was also sampled for particle size distribution.

3.0 PROCESS DESCRIPTION

Boiler No. 1 was built by Combustion Engineering and installed in 1949. It was originally operated as a pulverized coal fired unit but was converted to gas and/or oil fired. The unit is rated at 450,000 lbs per hour steam at 1325 psi and 1010° F. Boiler No. 1 is a forced draft unit and it has no stack emission controls. This boiler is illustrated in Figure 1. Boilers 1, 2 and 3 are similar units and are served by a common stack. The stack is of brick construction, 250 ft tall and 15.5 ft inside diameter at the top.

Boiler No. 4 was built by Combustion Engineering and installed in 1954. It is a pulverized, coal-fired steam generating unit. The unit is rated at 713,510 lbs per hour at 1500 psi and 1005°F. The boiler is an induced draft type and it is equipped with centrifugal and electrostatic precipitators, rated at 99.5% collection efficiency. This boiler is illustrated in Figure 2.

Boiler No. 4 is served by a brick stack, 250 ft tall and, 17 ft inside diameter at the top.

There is a Monsanto CATOX, sulfur dioxide scrubber installed on unit No. 4 adjacent to the electrostatic precipitator. This unit is currently not in operation and should have no effect on this source test.

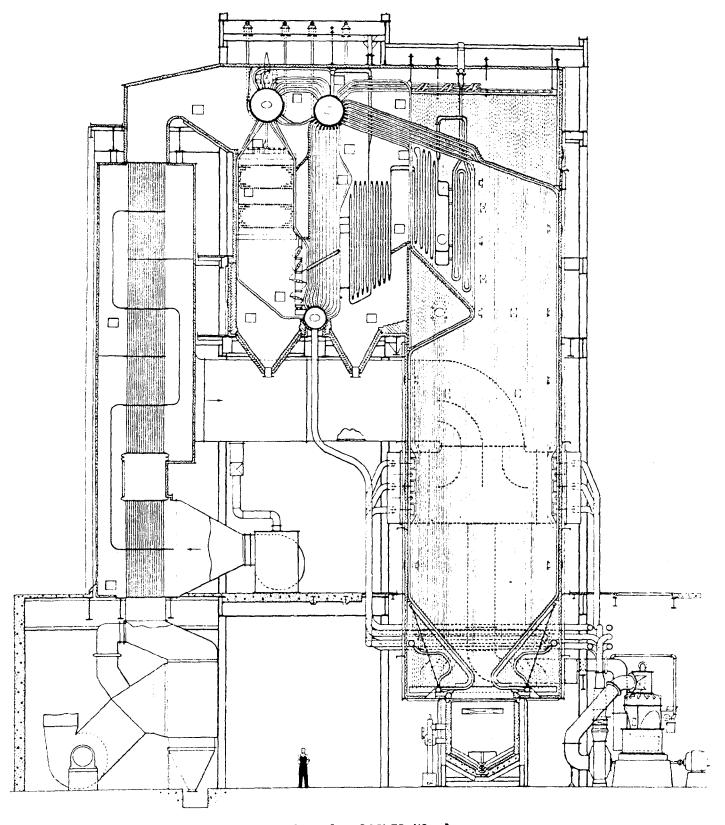
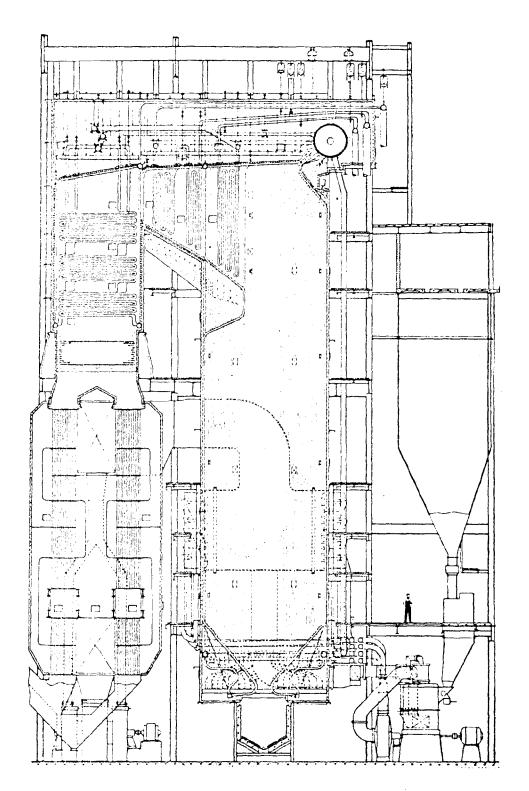


FIGURE 1 - BOILER NO. 1
C-E STEAM GENERATING UNIT


MAX. CONT. CAP.-450,000 LB PER HR AT 1325 PSI AND 1010 F TOTAL TEMP.

WOOD RIVER POWER STATION

Illinois Power Company, Wood River, Ill.

DESIGNED AND BUILT BY COMBUSTION ENGINEERING - SUPERHEATER, INC.

32

FIGURE 2 - BOILER NO. 4 C-E REHEAT STEAM GENERATOR

CAPACITY -- 713,510 LB PER HR AT 1500 PSI AND 1005 FTOTAL TEMP. REHEAT TO 1005 F

WOOD RIVER POWER STATION

Illinois Power Company, Wood River, Ill.

Designed and Built by COMBUSTION ENGINEERING-SUPERHEATER, INC.

SARGENT & LUNDY, Consulting Engineers

4.0 SOURCE TEST DESCRIPTION

Boiler No. 1 was tested in the duct work, just ahead of where the duct combines with flow from Boiler No. 2 (see Figure 3 below).

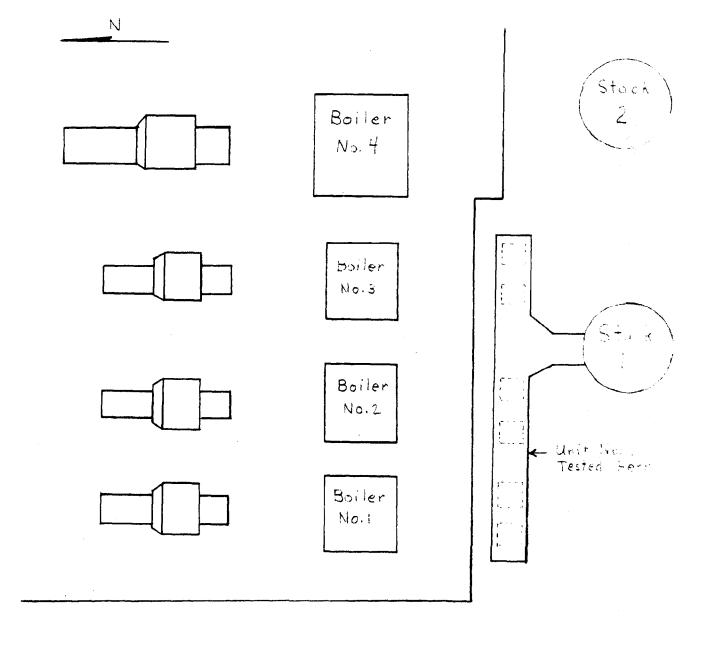


FIGURE 3 - WOOD RIVER PLANT, PLOT PLAN

At this sampling point the duct is 7'1" x 11'6 5/8" inside dimensions. To obtain forty-two sampling points, eight, 3 inch sampling ports were welded in place, approximately 17 1/2 inches apart vertically and six points were sampled at each port. This sampling point is only 1-2 duct diameters from the nearest induced draft fan outlet and is therefore not an ideal spot for sampling, but it is the best available location for testing this boiler without going to the large expense of constructing a sampling platform on the stack.

As it turned out, the bottom sampling port was at the same level as the build-up of particulates in the duct. The inside duct dimensions are then revised for this point to $7'1" \times 10'8 5/8"$.

Figures 4 and 5 illustrate the sampling location and arrangement for this test.

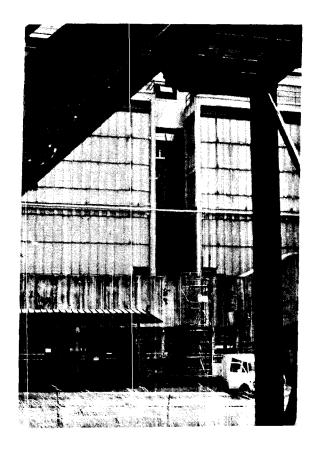
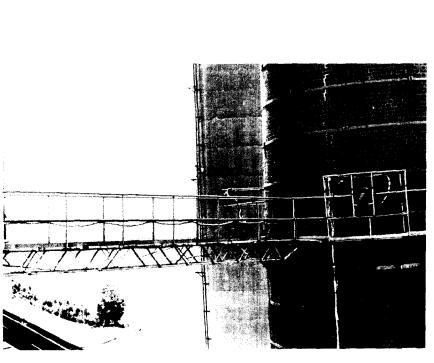


FIGURE 4


FIGURE 5

The test on boiler No. 4 was performed on a platform on the stack at roof top level, approximately 140 feet above ground level. This platform was installed for the testing of this unit in conjunction with the evaluation of the CATOX scrubbing system. There is a ramp connecting this platform to the roof of the power plant building.

At this level there are four 6 inch ports installed at 90 degrees around the stack. At each of these points on the platform, there are extensions to the platform to allow for a good working area and for set-up and supporting sampling equipment. An adapter was made to give us a 3 inch coupling to attach to for our supporting monorail.

At this location the stack diameter is 24.75 feet and it is approximately four diameters from the inlet to the stack. A full traverse of the stack was performed with eighteen sampling points on the traverse.

Figures 6 and 7 illustrate the sampling location and set-up for this test.

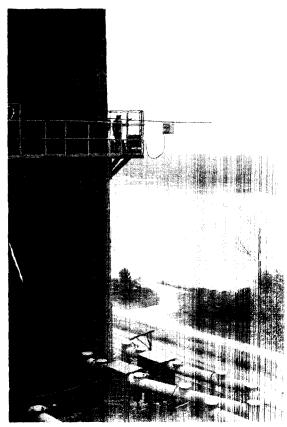


FIGURE 6

FIGURE 7

5.0 PROCESS OPERATION

Boiler No. 1 was tested 17 June to 20 June. On 17 and 18 June, the boiler was fired with natural gas only and on 19 June and 20 June the boiler was fired with distillate oil only. During testing periods on all four days the boiler was under constant load of 420,000 lbs per hour steam. There was only one short fluctuation for approximately 30 minutes on 19 June when some oil burners malfunctioned. Only one time was there any excessive emissions from stack No. 1 and this was due to an unbalanced fuel/air ratio in getting boiler No. 1 up to full load prior to our testing.

Boiler No. 4 was tested from 24 June to 27 June. During this entire sampling period the load on this boiler was maintained almost constant, with a generator output of 100 MW. There were no noticeable excessive emissions during this period. Ashes are blown from the boiler at approximately 10:30 AM and 3:00 PM. There was no visible change in emissions during these periods, although the actual amount of particulates apparently increased as shown by our particle size testing before and during this time period.

6.0 DISCUSSION

The EPA standard method 2, Volumetric Flow Rate Determination, has come under question as a result of this testing. On boiler No. 1 the flow rate as determined by method 2 is 168,113 SCFM compared to a flow rate determined stoichiometrically from the fuel rate and fuel composition of 137,288 SCFM. At the sampling point for boiler No. 1, method 2 was not applied precisely since only 42 points were used instead of perhaps 48 or 50 due to the bottom port being blocked, but by observing the values that were obtained it is unlikely that more sampling points would bring these two flow rates into agreement.

On boiler No. 4 the average flow rate determined by method 2 is 299,688 SCFM compared to an average flow rate of 218,497 SCFM determined stoichiometrically. At the sampling point for boiler No. 4 only one complete traverse was made per test instead of two on perpendicular diameters as described in method 2. Despite this, the values obtained corresponded with values obtained by other testers of this unit, so it is felt that this test is a valid measurement using method 2.

The flow rate determined stoichiometrically compares very well with the expected flow as seen by a comparison of sulfur dioxide emissions using both flow rates. Using the published emission factor of 38 S, which allows for a 95% conversion of sulfur in the coal to sulfur dioxide emission, the emissions should be 5245 lb/hr. With the flow rate using method 2 the emissions would be 6689 to 7318 lb/hr, which is definitely too great. With the stoichiometric flow rate the emissions would be 4877 to 5335 lb/hr, which is a reasonable result. For this reason the emissions determined using the stoichiometric flow rate are reasoned to be the correct results. For comparison the emissions are expressed using both flow rates.

On boiler No. 4 the coal scales were not functioning during the test period. The fuel firing rate of 43 tons per hour was determined by comparing the operating conditions with similar conditions on record as part of the ongoing emission inventory.

7.0 SAMPLING AND ANALYTICAL PROCEDURES

All testing was performed with sampling equipment from Joy Manufacturing, designed for isokinetic sampling to enable testing by EPA standard methods.

Gas flow rates were calculated using the observed gas temperature, molecular weight, pressure and velocity, and the flow area. The gas velocity was calculated from gas velocity head measurements made with an S-type pitot tube and a magnehelic pressure gauge, using standard method 2.

Moisture contents were determined by passing a measured amount of gas through chilled impingers containing a known volume of deionized water, measuring the increase in volume of the impingers liquid and the increase in weight of silica gel used to finally dry the gas, and calculating the amount of water vapor in the sample from this increase and the measured amount of gas.

The stack gas concentrations of carbon dioxide, oxygen, carbon monoxide, and nitrogen by difference were measured with a standard Orsat apparatus. These concentrations and the moisture content were used to determine molecular weight of the stack gas.

7.1 PARTICULATE MATTER

Standard method 5 was used for determining particulate emissions with the exception that the probe and oven were operated at $300-350^{\circ}F$. Measured stack gas samples were taken under isokinetic conditions. The samples were passed through a cyclone, fiberglass filter, impingers, pump, a meter and an orifice as shown in Figure 8.

The total particulate matter collected in each test was the sum of the filter catch plus material collected ahead of the filter in the sampling train. The amount of filter catch is determined by the difference in the weight of the filter before and after the test, after dessicating. The particulate matter from other portions of the train were determined by rinsing the probe, cyclone and all glassware ahead of the filter with acetone, evaporating to dryness and weighing.

7.2 NITROGEN OXIDE

Using method 7, gas samples were withdrawn from the stack into evacu-

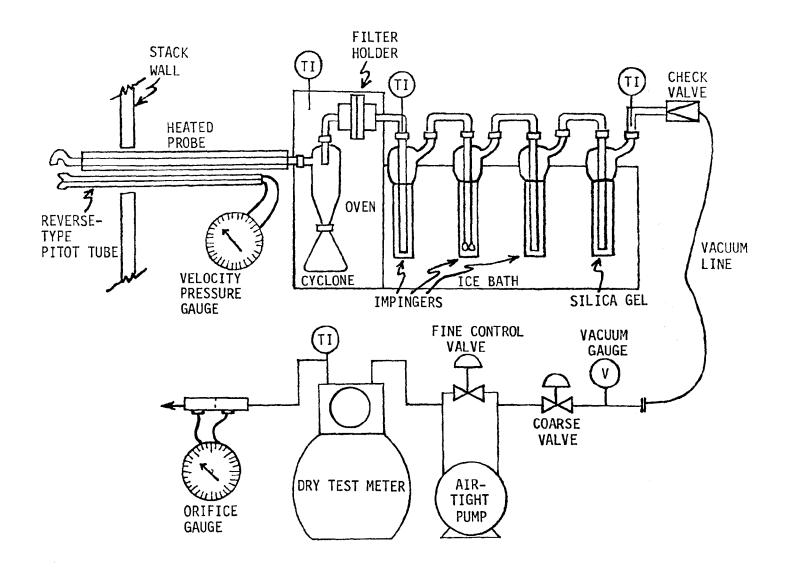


FIGURE 8
PARTICULATE SAMPLING TRAIN

ated 2-liter flasks containing a dilute solution of hydrogen peroxide and sulfuric acid. The hydrogen peroxide oxidizes the lower oxides of nitrogen (except nitrous oxide) to nitric acid. The resultant solution is evaporated to dryness and treated with phenol disulfonic acid reagent and ammonium hydroxide. The yellow trialkali salt of 6-nitro-1-phenol-2, 4-disulfonic acid is formed, which is measured colorimetrically.

7.3 SULFURIC ACID MIST AND SULFUR DIOXIDE

The "Shell Method"* was chosen for this determination due to uncertainties which exist about the validity of the results using method 8. A gas sample is drawn from the stack using a heated probe and passed through a water cooled, coil condenser maintained below the dew point of sulfuric acid at $140^{\circ}-194^{\circ}F$, followed by a fritted glass plate and then passed through a chilled impinger train with two impingers containing an isopropanol and hydrogen peroxide mixture and followed by an impinger containing silica gel for drying. This set-up is shown in Figure 9.

The condensed sulfuric acid mist in the coil condenser is water washed from the condenser. The final determination is made by titrating the solution with barium chloride, using a thorin indicator. Isopropanol must be added to the solution to be titrated to improve the rapidity with which the barium sulfate precipitates during titration.

Sulfur dioxide in the gas sample is oxidized to sulfur trioxide the impingers containing the hydrogen peroxide. Sulfur dioxide is then determined by titrating the hydrogen peroxide solution with barium chloride, using a thorin indicator.

* Lisle, E.S. and J.D. Sensenbaugh, "The Determination of Sulfur Trioxide and Acid Dew Point in Flue Gases", Combustion, Jan. 1965.

Goksøyr, H. and K. Ross, "The Determination of Sulfur Trioxide in Flue Gases", J. Inst. Fuel, No. 35, 177, (1962).

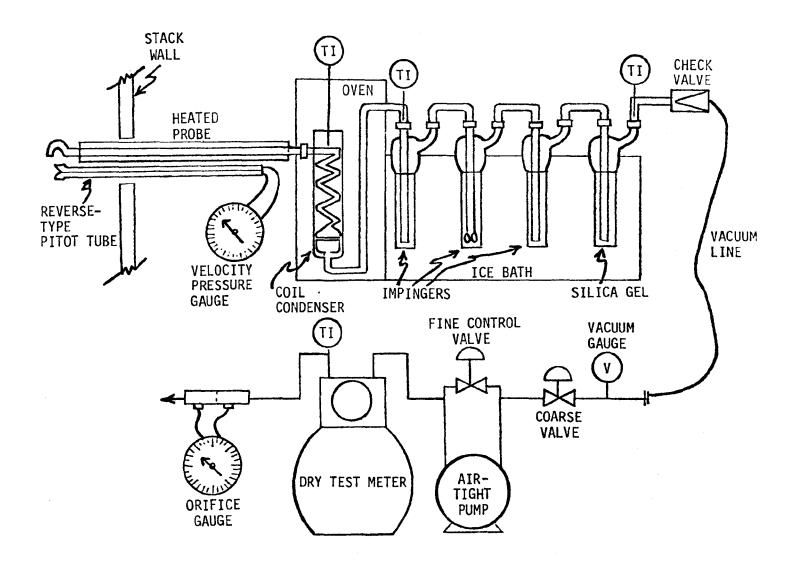


FIGURE 9
SULFURIC ACID MIST SAMPLING TRAIN

7.4 PARTICLE SIZE

An Andersen, fractionating, inertial impactor is used for the determination of particle size in the range of approximately 0.5 to 10.0 microns. The sampling head is placed either in the stack at the end of the sampling probe or in the oven after the heated sample probe. A sample of stack gas is drawn isokinetically through the sampler (see Figure 10). The particulate matter is fractionated and collected on the plates inside the sample head and a determination is made by the difference in weight of the plates before and after testing. Results are expressed for particles of unit density.

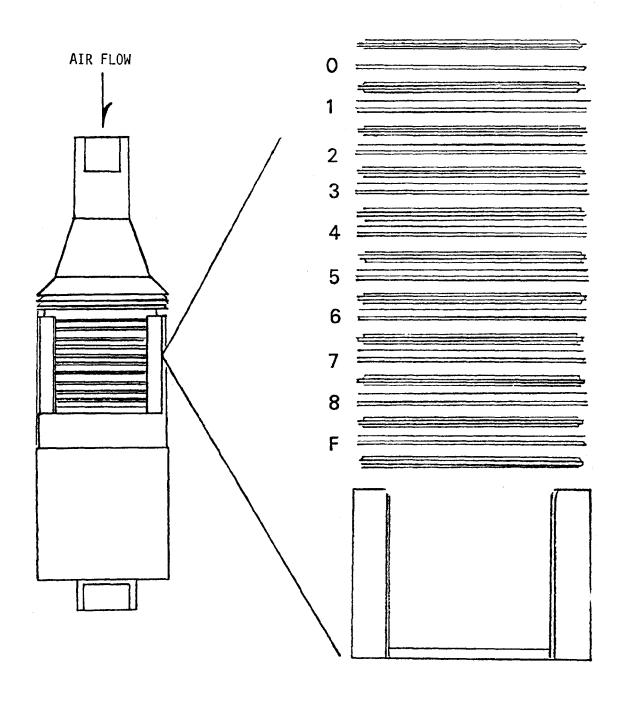


FIGURE 10
ANDERSEN STACK SAMPLER

8.0 RESULTS

The results obtained from these tests are summarized in Table 1 and 2. As discussed previously, the main flow of pollutant is based on calculated, rather than measured, flow rates. The actual calculations and field data are attached as Appendixes A and B. Although these tests were performed for research purposes and not as part of compliance procedures, standard EPA methods were used (except as indicated). It is thus of interest to compare the results obtained with State of Illinois standards. A comparison is shown in Table 3.

TABLE 1
Boiler No. 1
SUMMARY OF RESULTS

Date	6/18	6/19	6/20	
Stack Flow Rate - SCFM * dry		137,288		
% Water Vapor - % Vol.		10.1		
% CO2 - Vo1 % dry		10.3		
% 0 ₂ - Vol % dry		8.9		
% Excess air @ sampling point		70.7		
SO ₂ Emissions - 1bs/10 ⁶ Btu			0.35	
NO _X Emissions - 1bs/10 ⁶ Btu	0.08	0.12	0.10	
H2SO4 Mist - 1bs/10 ⁶ Btu			0.01	
Particulates Probe, Cyclone, & Filter Catch				
lbs./hr.		3.7		
lbs/10 ⁶ Btu		0.007		
Total Catch				
lbs./hr.				
lbs/10 ⁶ Btu				
% Isokinetic Sampling		79.8		

*70⁰ F, 29.92" Hg Calculated flow, dry

TABLE 2
Boiler No. 4
SUMMARY OF RESULTS

Date	6/25	6/26	6/27	
Stack Flow Rate - SCFM * dry	218497	218,497	218,497	
% Water Vapor - % Vol.	8.25	8.16		
% CO ₂ - Vol % dry	16.4	14.7	15.3	
% 0 2 - Vol % dry	6.4	5.6	5.5	
% Excess air 0 sampling point	45.3	35.9	35.3	
SO ₂ Emissions - 1bs/10 ⁶ Btu		5.77	5.27	
NO _X Emissions - 1bs/10 ⁶ Btu	0.65	0.62		
H2SO4 Mist - lbs/10 ⁶ Btu		0.05	0.05	
Particulates Probe, Cyclone, & Filter Catch			,	
lbs./hr.	29.8	17.1		
lbs/10 ⁶ Btu	0.03	0.02		
Total Catch				
lbs./hr.				
lbs/10 ⁶ Btu				
% Isokinetic Sampling	96.8	93.4		

*70⁰ F, 29.92" Hg Calculated Flow, dry

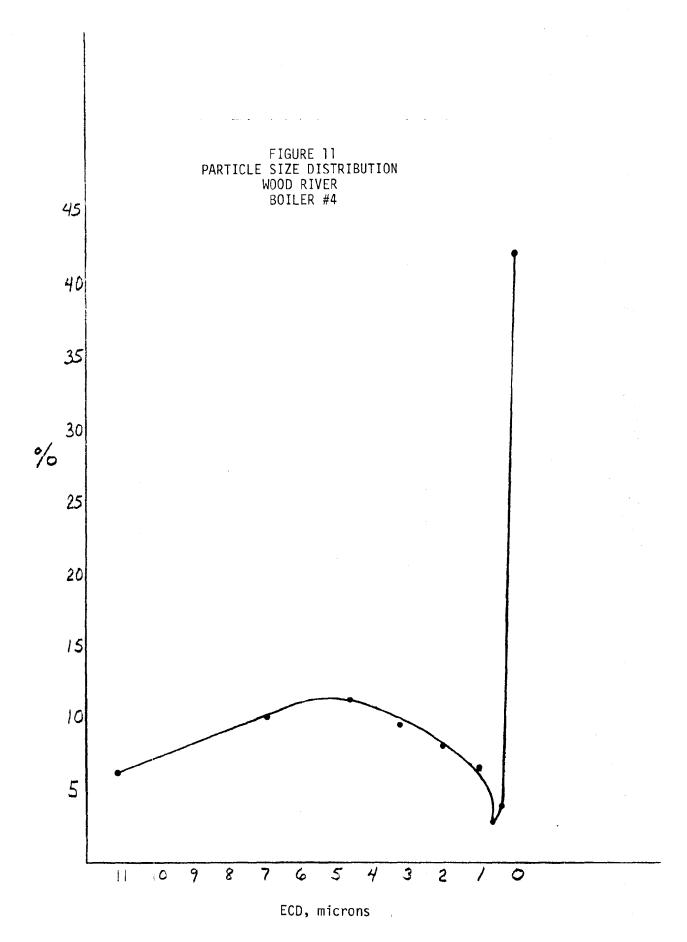
TABLE 3

COMPARISON OF RESULTS

Pollutant	Fuel	Standard lbs/10 ⁶ Btu	Found 1bs/10 ⁶ Btu	Comment
so ₂	Gas			Boiler l
	Oil (Dist)	0.3	0.35	Boiler 1
	Coal	1.8	5.52	Boiler 4
NOx	Gas	0.3	0.08	Boiler l
	Oil(Dist)	0.3	0.11	Boiler l
	Coal	0.9	0.64	Boiler 4
Particulates	Gas	0.1		Boiler 1
	Oil	0.1	0.007	Boiler 1
	Coal	0.1	0.02	Boiler 4

Minor Constituents are summarized in Table 4.

TABLE 4
MINOR CONSTITUENTS


	Boiler No. 1	Boiler No. 4
H ₂ SO ₄ (mist)	0.01 lbs/10 ⁶ Btu	0.05 lbs/10 ⁶ Btu
CO	2.5 ppm (Avg)	
Hydrocarbon	1.7 ppm (Avg)	1.3 (Avg)

In addition to measuring particulate loadings, a particle size analysis was made using an Andersen impactor. The results are shown in Table 5 and Figure 11. The high percentage of particles less than 0.4 microns in diameter is probably spurious. Microscopic examination indicates the presence of large ammonium sulfate particles, which apparently were formed by subsequent reactions of ammonia with sulfuric acid. The latter, present in vapor form at stack temperature, was apparently retained by the glass fiber filter.

TABLE 5
PARTICLE SIZE DETERMINATION

Tes	st: Run 1	Boil	er #4	Da	te: 61	27		
Plate	Tare(g)	Final(g)	Net(mg)	Filter Net	Total	% of Total	Cum %	ECD (Microns)
1	20.4725	20.4746	2.1			4.2	100.0	11.1 \$ a cove
2	21.4719	21,4753	3.4			10.0	93.8	6.95
3	21.6035	21.6073	3.8			11.2	83.8	4.45
4	22.5153	22.5185	3.2			9.4	72.6	3. <i>25</i>
5	11. 7385	11.7412	2.7			8.6	63.2	2.05
6	11.4893	11.4915	2.2			6.5	55.2	1.05
7	11.7404	11.7418	0,9			2.7	48.7	0.64
8 *	21.4087	21.4100	1.3			3,8	46.0	0.43
Back Up)			14.3		42.2	42.2	<0.43
1 IIICGI		Total	19.6	14.3	33.9	•		:
Te	est: Run 2	Boile	er #4	Dat	e: 6/2	27		
Plate	Tare(g)	Final(g)	Net(mg)	Filter Net	Total	% of Total	Cum %	ECD (Microns)
ı	20,1922	20,1955	3.3			7.7	100.0	11.1 \$ above
2	21.3713	21. 3758	4.5			10.6	92.3	4.195
3	21.6884	21.6920	3.6			8.5	81.7	4.65
4	22.3725	22.3768	4.3			10.1	73.2	3.25
5	11.6966	11.7003	3.7			8.7	63.1	2.05
6	11.6809	11.6836	2.7			6.3	54.4	1.05
7	11.6868	11.6892	2.4			5.6	48.1	0,64
8 *	20.9214	20.9219	0,5			1.2	42.5	0.43
Back Up)			17.6		41.3	41,3	<0.43
			25.0	17.6	42.6	•	_	

* Weighed after test, cleaned, tared

APPENDIX A PARTICULATE CALCULATIONS

PARTICULATE CALCULATIONS

Volume of dry gas sampled at standard conditions - 70° F, 29.92 "Hg

$$Vm_{Std} = \left(\frac{Vm}{CF_{m}}\right) \left(\frac{Pm}{Pstd}\right) \left(\frac{Tstd}{Tm}\right) = 0.0334 \left(\frac{Vm}{1.021}\right) \left(\frac{Pm}{Pstd}\right) \left(\frac{Pm}{13.6}\right)$$

Vm_{std} = Volume of dry gas sampled at standard conditions, ft³

Vm = Meter volume sampled, ft³

1.021 = Meter correction factor

 P_{m} = Meter pressure, barometric pressure, P_{R} , plus orifice pressure, AH, in. Hg.

Pstd = Standard pressure, 29.92 in. Hg.

Tstd = Standard temperature, 530° R or 70° F

 $Tm = Meter temperature, 530^{\circ} R for compensated meter$

CFm = Meter correction factor

Volume of water vapor at standard conditions

$$V_{W} = V_{1c} \left(\frac{\rho H_{20}}{MH_{20}} \right) \left(\frac{R T_{std}}{P_{std}} \right) \qquad \frac{1b.}{454 \text{ gm.}} = 0.0474 \times V_{1c}$$

Vw = Volume of water vapor at standard conditions, ft³

 V_{1c} = Volume of liquid collected in impingers and silica gel, ml.

pH20 = Density of water, lg/ml.

M H₂O = Molecular weight of water, 18 lb/lb mol

R = Ideal gas constant, 21.83 in. Hg. - cu. ft./lb-mol - ^OR

% Moisture in Stack Gas
% M = 100 x
$$\frac{Vw \text{ std}}{Vm_{\text{std}} + Vw_{\text{std}}}$$

Average molecular weight of dry stack gas

$$MW_{D} = \left(\%CO_{2} \times \frac{44}{100}\right) + \left(\%O_{2} \times \frac{32}{100}\right) + \left(\%N_{2} \times \frac{28}{100}\right)$$

Molecular weight of stack gas

$$MW_W = \left(\frac{100 - \% M}{100} \times MW_D\right) + \left(\frac{\%M}{100} \times 18\right)$$

Stack velocity at stack conditions

$$V_s = 85.48 \times C_p \left(\frac{Ts \times \Delta P \text{ avg.}}{Ps \times MW_W} \right)^{-1}/2$$

 $V_s = stack \ velocity, \ fps.$

85.48 = pitot constant,
$$\frac{ft}{sec}$$
. $\left(\frac{lb.}{lb. Mols - oR}\right)^{1/2}$

 C_p = pitot coefficient, dimensionless

 T_s = average stack temperature, ${}^{O}R$

 P_s = stack pressure, barometric pressure plus static pressure, in. Hg.

 ΔP Avg = average differential pressure, in. H_20

Stack gas volume at standard conditions

$$Qs = 3600 \left(1 - \frac{\%M}{100} \right) V_s \quad A \left(\frac{Tstd}{Ts} \quad \frac{Ps}{Pstd} \right)$$

 Q_s = stack gas volume flow rate, SCF/hr

A =stack cross sectional area, ft²

3600 = seconds per hour

$$Qs' = Q_s \div 60 = SCFM$$

Per cent isokinetic sampling

$$I = 1.667 \left[(0.00267) \quad V_{1c} + \frac{V_{mc}}{T_{m}} \left(P_{B} + \frac{\Delta H}{13.6} \right) \right] T_{s}$$

$$\Theta V_{s} P_{s} A_{n}$$

I = per cent isokinetic sampling

1.667 = minutes per second, X 100

0.00267 =
$$\frac{\rho_{\text{H20}}}{M_{\text{H2}0}}$$
 X R X $\frac{1b}{454 \text{ gm}}$.

 Θ = sampling time, min.

 A_n = cross sectional area of sampling nozzle, ft²

Particulate emission

$$C_s = 2.205 \times 10^{-6} \left(\frac{M_n}{Vm_{std}}\right)$$

 C_s = particulate emission, lb/scf

 $2.205 \times 10^{-6} = pounds per mg.$

Mn = total mass of particulate collected, mg.

$$C_E = C_S \times Q_S = 1b/hr$$

 C_{E}^{-1} = particulate emission per hour

$$C_{H} = C_{E} \div H$$

 $\mathbf{C}_{\mathbf{H}}$ = particulate emission, 1b. per million BTU

H = heat input, million BTU per hour

Excess air at sample point

% EA =
$$\frac{100 \times \% O_2}{(0.266 \times \% N_2) - \% O_2}$$

- % EA = excess air at sample point, %
- 0.266 = ratio of oxygen to nitrogen in air by volume

Test: IP - Wood River - #1 Blr. Date:
$$G//9$$

Stack Velocity Vs = 85.48 × C_p $\left[\frac{Ts \times P \text{ avg}}{P_s \times MW_w}\right]$ 1/2

85.48 × (0.86) $\left[\frac{743}{29.9} \times \frac{O.717}{29.9}\right]$ 1/2 = $\frac{57.84}{29.9}$ fps

Stack Gas Volume Qs = $3600\left(1 - \frac{8M}{100}\right)$ (Vs)(A)(Tstd) $\left(\frac{P_s}{Ts}\right)$ $\left(\frac{P_s}{P_s td}\right)$

3600 $\left[1 - \frac{(10.1)}{100}\right]$ (57.84) (25.59) $\frac{530}{(743)}$ $\frac{(29.9)}{29.92}$ = $\frac{10.086}{29.92}$ 75.3 SCFH

Stack Emission Rate $C_s = 2.205 \times 10^{-6}\left(\frac{M_D}{V_{MStd}}\right)$

2.205 × 10^{-6} $\left(\frac{15.7}{76.059}\right)$ = $\frac{47.55 \times 10^{-7}}{(5/2.4)}$ 1b/scf

 $C_E = C_s \times Q_s = (4.55 \times 10^{-7})$ (10,086,753) = $\frac{4.59}{(5/2.4)}$ 1b/hr

 $C_H = C_E \div H = \left(\frac{4.59}{(5/2.4)}\right) = \frac{8.96 \times 10^{-3}}{(5/2.4)}$ 1b/106 Btu

Isokinetic Variations I = 1.667 $\left[\frac{(0.00267)}{530}\right]$ V1_C + $\frac{V_m}{Tm}\left(P_B + \frac{\Delta H}{13.6}\right)$ Ts

 $\frac{0.59}{530}$ (126.) (57.84) (29.9) (3.406 × $\frac{D^2}{13}$) (743.) = $\frac{79.8}{29.92}$

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 0_2}{(0.266 \times \% \ N_2) - \% \ 0_2}$$

 $\frac{100 (8.9)}{(0.266 \times \% 0.8) - (8.9)} = \frac{70.7\%}{}$

Material collected (ng) =

Filter Catch =
$$65.1$$
Dry Catch = 41.8
TOTAL = 106.9

Gas Volume Vm = 0.0334 $\left(\frac{Vm}{1.021}\right)^{0}$ $\left(\frac{Vm}{13.6}\right)^{0}$ $\left(\frac{Vm}{13.6}\right)^{0}$

0.0334 $\left(\frac{106.23}{1.021}\right)^{0}$ $\left(\frac{Vm}{13.6}\right)^{0}$ $\left(\frac{Vm}{13.6}\right)^{0}$ $\left(\frac{Vm}{13.6}\right)^{0}$ $\left(\frac{Vm}{1.021}\right)^{0}$ $\left(\frac{Vm}{13.6}\right)^{0}$ $\left(\frac{V$

Test: IP - Word River - * 4 Bir Date:
$$6/25$$

Stack Velocity Vs = 85.48 × C_p $\begin{bmatrix} Ts \times P \text{ avg} \\ P_s \times Mw_w \end{bmatrix}$ 1/2

85.48 × (0.86) $\begin{bmatrix} 156.9 \times 6.058 \\ 29.66 \times 29.83 \end{bmatrix}$ 1/2 = 16.37 fps

Stack Gas Volume Qs = $3600 \left(1 - \frac{8M}{100}\right)$ (Vs)(A) $\left(\frac{Tstd}{Ts}\right)$ $\left(\frac{P_s}{Pstd}\right)$

3600 $\left[1 - \frac{8.25}{100}\right]$ (16.37) (420.9) $\frac{530}{(256.9)}$ $\frac{(24.66)}{29.92}$ = $\frac{18.049.238}{29.92}$ SCFH

Stack Emission Rate $C_s = 2.205 \times 10^{-6} \left(\frac{M_D}{V_M std}\right)$

2.205 × 10^{-6} $\frac{106.9}{(103.724)}$ = $\frac{2.27 \times 10^{-6}}{1000}$ 1b/scf

 $C_E = C_s \times Q_s = (2.27 \times 10^{-6})$ (18.049.238) = $\frac{41.01}{1000}$ 1b/hr

 $C_H = C_E \div H = \left(\frac{41.01}{925.0}\right) = \frac{0.044}{1000}$ 1b/106 Btu

Isokinetic Variations I = 1.667 $\left(0.00267\right)$ V1c + Vm $\left(P_B + \frac{\Delta H}{13.6}\right)$ is $\frac{8.75}{13.6}$ (0.00267) (196.9) + $\frac{109.442}{530}$ (29.63 + $\frac{1.46}{13.6}$) (256.9) = $\frac{96.848}{13.6}$

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 0_2}{(0.266 \times \% \ N_2) - \% \ 0_2}$$

 $\frac{100 \ (\ \emptyset, \% \)}{(0.266 \times 77, 2) - (\ \emptyset, \% \)} = \frac{4/5, 3\%}{(0.266 \times 77, 2)}$

Test: IP-Wood River - #4 Bir Date:
$$6/26$$

Stack Velocity Vs = 85.48 × C_p $\left[\frac{T_S \times P \text{ avg}}{P_S \times M_W}\right]$ 1/2

85.48 × (0.86) $\left[\frac{763.6 \times 0.057}{29.65 \times 29.55}\right]$ 1/2 = $\frac{1}{10.38}$ fps

Stack Gas Volume Qs = $3600\left(1 - \frac{2M}{100}\right)$ (Vs)(A) $\left(\frac{T_Std}{T_S}\right)$ $\left(\frac{P_S}{P_Std}\right)$

3600 $\left[1 - \frac{(8.16)}{100}\right]$ (16.38) $\left(480.9\right)$ $\frac{530}{(763.6)}$ $\frac{(29.65)}{29.92}$ = $\frac{17.913.319}{17.913.319}$ SCFH

Stack Emission Rate $C_S = 2.205 \times 10^{-6}\left(\frac{M_D}{V_MStd}\right)$

2.205 × 10^{-6} $\frac{(58.7)}{(99.241)}$ = $\frac{1.304 \times 10^{-6}}{100}$ 1b/scf

 $C_E = C_S \times Q_S = (1.304 \times 10^{-6})$ $\frac{1}{29.32}$ 1b/106 Btu

1sokinetic Variations I = 1.667 $\left(\frac{(0.00267)}{(0.00267)}\right)$ V_{1c} + $\frac{V_M}{Im}$ $\left(\frac{P_B}{P_B} + \frac{AH}{13.6}\right)$ Ts

1.667 $\left(\frac{(12.6)}{(10.00267)}\right)$ (186.1) + $\frac{99.959}{29.92}$ (1.36×0⁻³)

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 0_2}{(0.266 \times \% \ N_2) - \% \ 0_2}$$

 $\frac{100 \ (5.6)}{(0.266 \times 79.7) - (5.6)} = 35.7\%$

STOICHIOMETRIC FLOWRATE CALCULATIONS

Boiler #1

Oil Com	nposition	mols/100#		mo1s	0 ₂ required	
H ₂ N ₂ O ₂	0.29% 86.4 12.7 0.2 0.2 trace	÷ 32 ÷ 12 ÷ 2 = 6.35 ÷ 28 = 0.007 ÷ 32	x 1 x 1 x 0.5 x -1			
Btu	140,000 Btu/gal	Theor	etical 0 ₂	=	10.378	
Excess	air = 70.7%	exces 0 ₂ To	s 0 tal ²	=	7.337 17.715	
$N_2 = 3$	3.76 x 0 ₂			=	66.608	
Mols Flue Gas = $C0_2$ + $S0_2$ + N_2 + 0_2 + N_2 = 7.200 + 0.009 + 0.007 + 7.337 + 66.608 = 81.161						
Flue Gas = $58.54 \times 386.7 \frac{ft^3}{mol}$ = 31385 scf/100#						
@61gpm	@61gpm = 61 x 7.171 $\frac{\#}{\text{gal}}$ x $\frac{1}{100\#}$ x 22637.4 = 137,288 SCFM					
	= 8,237,263 SCFH					

STOICHIOMETRIC FLOWRATE CALCULATIONS

Boiler #4

Composition o	f Coal	Lb-mols/100	lbs Coal	Oxygen Required for Combustion, mols
С	61.43%	5.12	(1)	5.12
н ₂	4.38	(2.19)	(2)	(1.09)
S	3.21	0.10	(3)	0.10
02	9.67	0.30		30
N ₂	1.11	0.04	(4)	-
H ₂ 0 (moisture)	11.82	(0.66)	(2)	-
Ash	8.55	-		
Chlorides	0.02			**************************************
	100.19			6.01 Moles oxygen

Average Excess Air: 40% 2.40

Assumed reactions:

Total

8.41

(1)
$$C + O_2 \rightarrow CO_2$$

Corresponding Nitrogen 31.77

- (2) Excluded from calculation for dry flue gas
- (3) $S + O_2 \rightarrow SO_2$
- (4) Oxidation reaction uncertain

Dry flue gases per 100 lbs coal, lb-mols:

@ 43 tons coal/hour

= 13,089,200 SCF#

 $NO_{\mathbf{X}}$ EMISSION DATA

Date 6/17 + 6/18 Gas Fired

Run No.	1	2	3	4	/	7	3	4
Time	-	_	-	1	1130	1200	1400	1430
µg NO ₂	blank	252	276	285	155	182	142	155
T _i - Initial Flask Temp, ^O F	70	40	40	90	90	90	90	40
T _f - Final Flask Temp, ^O F	90	90	90	90	90	90	90	90
V _{fc} - Flask Volume, ml.	2047	2038	2039	2028	2047	2038	2039	2028
P _i - Initial Flask Pres, "Hg	3.0				entral and the transition of the law are seen			
P _f - Final Flask Pres, "Hg	29,7	4			anda wery passages, - m mekti			in the co
1b/scf NO ₂ ×10.6		8.4	9.8	10.1	5,5	3, ي	5,0	5,5
1b/10 ⁶ Btu NO ₂		0.12	0.14	0.14	0.08	0.09	0.07	0,08

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_{f} - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/ml} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

${\rm NO}_{\rm X}$ EMISSION DATA

0-4-	6/19	0:1	Fired
Date_	6117	<u> </u>	rirea

Run No.	1	2	3	4	5	6	7	8
Time	1200	1230	1300	1330	1400	1500	1530	1600
μg NO ₂	220	212	196	224	227	214	223	220
T _i - Initial Flask Temp, ^O F	90					and and an interpretation	an anni an i an i an i an i an i an i a	in
T _f - Final Flask Temp, ^O F	90	o valinta						
V _{fc} - Flask Volume, ml.	2047	2038	2039	2028	2025	2052	2052	2.056
P _i - Initial Flask Pres, "Hg	3.0	-			age and the contract of the co		and the second	
P _f - Final Flask Pres, "Hg	29.7	***********						-
1b/scf NO ₂ ×10 ⁻⁶	7.7	7.5	6.9	8,0	8.1	7,5	7.8	7, 7
1b/10 ⁶ Btu NO ₂	0,12	0.12	0.11	0,13	0,13	0.12	0.13	8,12

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{\text{lb/scf}}{\mu\text{g/ml}} \left(\frac{\mu\text{g NO}_2}{\text{Vsc}}\right) = \text{lb/scf NO}_2$$

$NO_{_{\mathbf{X}}}$ EMISSION DATA

Date 6/20 Oil Fired

Run No.	1	2	3	4		
Time	1335	1350	1330	1355		
µg NO ₂	173	173	162	173		
T _i - Initial Flask Temp, ^O F	90					
T _f - Final Flask Temp, ^O F	90					
V _{fc} - Flask Volume, ml.	2047	2038	2039	2028		
P _i - Initial Flask Pres, "Hg	3,0					
P _f - Final Flask Pres, "Hg	29.8					
7b/scf NO ₂ ×10 ⁻⁶	6.1	6.2	5.7	6,0		
1b/10 ⁶ Btu NO ₂	0,10	0,10	0.09	0.19		

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/ml} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

H₂SO₄ MIST and SO₂ EMISSION DATA

Date	6/20	6/20 6/20	
Run No.	/	2 1+2	
V _{mc} -Meter Volume, Ft ³	7.513	7.079 14.592	
Vmstd-Meter Volume, Std. Cond.	7.336	6.912 14,248	
PB-Barometric Pressure, "Hg	29.84	29.84	
ΔH-Avg. Orifice Pres. Drop, "H ₂ O	0.1	0,1	
V _t -Vol. of Titrant, ml.	0.4	0.4 43.5	
$V_{ extsf{tb}} ext{-Vol.}$ of Titrant for Blank, ml.	nil	nil nil	
Vsoln ^{-Vol.} of Solution, ml.	100	100 500	
V _a -Vol. of Aliquot, Titrated, ml.	10	10 50	
1b/scf H ₂ SO ₄ ×10 ⁻⁷	5.89	6.25	
1b/10 ⁶ Btu H ₂ SO ₄	0.01	0.01	
1b-scf SO ₂ ×/o ⁻⁵		2.15	
1b/10 ⁶ Btu SO ₂		0.35	

Vmstd = 0.0334
$$\frac{\text{(Vm)}}{\text{CF}_{\text{m}}}$$
 $\left(P_{\text{B}} + \frac{\Delta H}{13.6}\right)$
 CF_{m} = Meter correction factor

$$C_{S02} = \left(7.05 \times 10^{-5} \frac{1b-1}{g-m1}\right) \left(V_t - V_{tb}\right) \left(\frac{N}{V_a}\right) \left(\frac{V_{soln}}{V_a}\right) = 1b/scf$$

Hydrocarbon Results

Test: 1P-Wood River # Date: 6/18		Time:	1120
Carbon Monoxide: /.	.29	ppm	
Methane: //	.81	ppm	
Total Hydrocarbons, as CH4: /	,37	ppm	
Test: Wood River #1 Date: 6/18		Time:	1420
Carbon Monoxide:	4.33	ppm	
Methane:	0.85	ppm	
Total Hydrocarbons, as CH ₄ :	1.90	ppm	
Test: Wood River #1 Date: 6/19		Time:	1200
Carbon Monoxide:	0.272	ppm	
Methane:	0.604	ppm	
Total Hydrocarbons, as CH4:	1.539	ppm	
Test: Wood River #1 Date: 6/19		Time:	
Carbon Monoxide:	0.373	ppm	
Methane:	0.639	ppm	
Total Hydrocarbons, as CH4:	2,112	ppm	

$NO_{\mathbf{x}}$ EMISSION DATA

Date_ 6/25

Run No.	1	2	3	4	5	6	9	10
Time	1220	1310	1420	1425	1610	1640	1710	1715
μg NO ₂	1290	1500	1160	1320	1180	1220	1220	1420
T _i - Initial Flask Temp, ^O F	90							
T _f - Final Flask Temp, ^O F	90							
V _{fc} - Flask Volume, ml.	2047	2038	2039	2018	2025	2052	2052	2056
P _i - Initial Flask Pres, "Hg	3.0	-						
P _f - Final Flask Pres, "Hg	29.6			ton the the	Maragan of Physician Communication	adjusted of the state of the state of		
1b/scf NO ₂ ×10 ⁻⁵	4,5	5,3	4.1	4.7	4.2	4.3	4.3	5.0
16/10 ⁶ Btu NO ₂	0,64	0.75	0.58	0.67	0.60	0.61	0.61	0.71

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/ml} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

 NO_{X} EMISSION DATA

		1	
Date_	61	26	

Run No.	/	2	3	4	5	6	9	10
Time	1200	1230	1330	1335	1415	1445	1515	1520
ид NO ₂	1250	1370	940	1210	1150	1250	1320	1450
T _i - Initial Flask Temp, ^O F	90			- · · · · · ·				
T _f - Final Flask Temp, ^O F	90							
V _{fc} - Flask Volume, ml.	2047	2038	2039	2028	2025	2052	2052	2056
P _i - Initial Flask Pres, "Hg	3,0			at the physical deleter and the second				
P _f - Final Flask Pres, "Hg	29.6							
1b/scf NO ₂ × 10 ⁻⁵	4.4	4,8	3.3	4.3	4.1	4.4	4.6	5,/
1b/10 ⁶ Btu NO ₂	0.62	0,68	0.47	0.61	0,58	0,62	0.65	C.72

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/ml} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

H₂SO₄ MIST and SO₂ EMISSION DATA

Date	6/26	6/26	6/27	6/27	6/27
Run No.	1	1	1	2	1+2
V _{mc} -Meter Volume, Ft ³	7.695	7.695	7,452	7.301	
Vmstd-Meter Volume, Std. Cond.	7.537	7,537	7.206	7.060	14,266
PB-Barometric Pressure, "Hg	29.62		29.55	29,55	
ΔH-Avg. Orifice Pres. Drop, "H ₂ O	0.1		0.1		
V _t -Vol. of Titrant, ml.	5.9	17.4	5,9	5.6	30./
V _{tb} -Vol. of Titrant for Blank, ml.	nil	ni/	ni/	ni/	nil
Vsoln ^{-Vol.} of Solution, ml.	100	250	100	100	250
V _a -Vol. of Aliquot, Titrated, ml.	2.5	1.0	25	2.5	1.0
1b/scf H ₂ S0 ₄ ×10 ⁻⁶	3.4		3,5	3,4	
1b/10 ⁶ Btu H ₂ SO ₄	0.05		0.05	0,05	
1b-scf S0 ₂ ×10 ⁻⁴		4.07			3.72
1b/10 ⁶		5.77			5,27

Vmstd = 0.0334
$$\frac{\text{(Vm)}}{\text{CF}_{\text{m}}}$$
 $\left(P_{\text{B}} + \frac{\Delta H}{13.6}\right)$
 CF_{m} = Meter correction factor

$$C_{SO2} = \left(7.05 \times 10^{-5} \frac{1b-1}{g-m1}\right) \left(V_{t} - V_{tb}\right) \left(\frac{N}{V_{a}}\right) = \frac{1b}{scf}$$

$$V_{mstd}$$

HYDROCARBON ANALYSIS

TEST: IP Wood River #4 DATE: 6/26 TIME: 1400

COMPOUND	CONCENTRATION (ppm)
Ethane Propane 1 - Butene n - Butane iso - Pentane cis, 2 - Pentene 1 - Hexene n - Hexane 3,3 dimethyl, 1 - Pentene 2,4 dimethyl Pentane + Benzene 1 - Heptene n - Heptane Toluene Ethyl Benzene meta-, para-, xylene orthoxylene	0.074 0.043 0.015 0.018 0.016 0.046 0.117 0.029 0.068 0.040 0.016 0.065 0.113 0.394 0.087
C3's C4's C5's C6's C7's	0.043 0.052 0.143 0.308 0.185 0.622

APPENDIX B FIELD DATA

SUPPLEMENTARY PROCESS & EMISSION DATA FOR POWER PLANTS

Test number	6/17	6/18	6/19	6/20*
Net Unit Load - MW		43		
Boiler Heat Rate - BTU/KW hr.		13,893		
Boiler Heat Input - 10 ⁶ BTU/hr.	592.3	597.4	512.4	512.4
Emission Level - 1b./10 ⁶ BTU				
Particulates				
so ₂				
NO _x				
Fuel Heating Value - BTU/lb.	1030 Btu/CF	1030 8tu/cF	19520	
Fuel Burning Rate During Test - lb./hr.	575 103CF/hr	580 103CF/hr	GI GPM	
Fuel Ash Content - %				
Additive Rate - 1b/hr.				

* Assumed same as 6/19

ORSAT FIELD DATA

Location ILL. POWER - BOILER /	Comments:
Date	
Time	
Onemater	

Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
6-17	1.8 % 7.2 %	9.2 %	0.0%
6-17	7.2 %	9.2 % 8.4 %	0.0 %

6.18 Mw dry = .072 (44) + .084 (32) + .844 (28)
3.2 2.7 23.6 = 29.5 Mw (dry)

@ 16.5 % H2 O

Mw wet .165 (18) , 835 (-72)(44) + .835(-084)(32) + .835(844) 28

2.97 2.65 2.24 19.73 = 27.66

ORSAT FIELD DATA

Location ILL POWER CO. ALTON, ILL.	Comments:	
Date	No.1 BOILER	
Time		TEAM LITTMAN
Operator		GRISCOM. ILLEIN

DATE	Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
6-19.75	1120 hrs.	8.6	17.6/9.0	17.6
	1600 hrs.	12.0	20.8/8.8	20.8
6.20-75	1130 hrs.	15.0	23.2/8.2	23.2
	1300 hrs.	11.4 *	16.4/5.0	16.4
	avg. 6/19	10.3	8.9	0.0
			,	

* Sampled at economizer -- plant sample point on 4th floor of boiler house

90			3	14 in		_			Stack Temp.		290	290	280	290	290	285		280	380	290	290	300	300		The second second
85-90		e % /5	ing OF (4	In.	10 F.	Setting Z	Avg. AH		Stack Press. In. Hg																
Ambient Temp ^O F	Press. "Hg	Moisture	Box Setting	Tip Dia.,	Length	Heater Se	A		Probe Temp OF		130	150	175	180	180	175		35/	/ 70	/70	722	180	180		
umbient	Bar. Pr	Assumed	Heater	Probe T	Probe L	Probe H	Avg. A P		Box Temp o _F		315	310	305	3/0	3/5	325		370	360	350	340	335	335	L	
RIANKS	CAVI.	each	, i.e.		i.i.	1-14	4		Pump Vacuum In. Hg.	Gauge	5.5	8.5	0.77	0.//	2.5			4.5	12.5		15	15	12.5		
	1	start ot							Impinger of Temp.	Outlet	80	70	53	65	53	20		90	70	70	7.5	80	85		
FIELD DATA	1 1	the			4				Impinger OF Temp.	Inlet	185	330	330	330	345	350		210	280	380	280	285	280	ı 	
Ĕ,	, l	at			0 H / 12				ice AH 20	Actual	9.0	0.7	7.3	7.3	7.0	. 2		0,5	<i>ي</i> ٪	7.5	7.5	7.5	6.0	L	
i-	•	Read and record test point.		i i	o *				Orifice in H20	Desired	0.6	7.0	7.3	7.3	07	. 2		0.5	6.7	1.5	1.65	7.5	6.7		
VERV	27	Read	4-1						Pitot in H20 A P		0.45	0.75		9.9	0.75	0.15		 35,	9.0	1.1	7.3	77	0.9	•	
WOOD RIVER		BOILER					33		Dry Gas Meter, CF		126.445	128.150	130.34	132.90	135.14	(37		138.9	140.3	142.	145.2	8741	150.45	152.920	
IP WOO		#	8/		ox No.	x No.	Meter A H@ 1.033		Clock		12:08	13:11	13:14	13:17	13.30	12:23	12:30	1:58	7:07	3:04	7:07	2:10	2:13	2:16	
Plant I	Run No.	Location	Date 6-18	Operator	Sample Box No.	Meter Box No.	Meter A	C Factor	Point		9-1	1.5	1.4	6-7	7-3	1-1		2-1	2.3	2.0	2.4	2.5	3-6		

Run No.1

										<u> </u>	T	T	1	T	<u> </u>	T		_			 -		
Stack Temp) T	290	290	29.5	300	300	300																
Stack Press.	311, 111g													-									
Probe Temp	, T		(50	/70	175	081	08/	-11															
Box Temp	D I	3/5	325	325	320	0,30	320																
Pump Vacuum In Hg	Gauge	7	11.5	15	/5	/5	7																
nger OF	Outlet	00/	85	85	33	00/	105																
Impinger Temp	Inlet Outlet	0//	235	255	255	360	360																
се д Н	Actua1	4.	7.3	7.5	7.5	7.5	7.2	,					,										
Orifice A H In. H20	Desired	4.0	7.3	1.5	1.5	1.5	7.3																
Pitot In H20	- J	٤,	6	1.1	1,1	/:/	0.0	,												andrea Ballandella : Andreas Per Per Per			
Dry Gas Meter, CF		153.93	154.4	156.6	1.28.1	16/6	7 751	166.920													The state of the s		
Clock Time		2:58	10:0	3:04	3:07	3:10	3:73	21/50															
Point		13.	3.2	B.B	5.4	3.5	3-5	to															

Comments Fifter No. 5

Plant IP WOOD RIVER
Run No. 2

Location #/8/r

Date 6-19

Operator

Sample Box No.

VERY IMPORTANT - FILL IN ALL BLANKS
Read and record at the start of each test point.

Ambient Temp OF 90°F

Bar. Press. "Hg 29.86

Assumed Moisture % /6 %
Heater Box Setting OF 325 ©

Probe Tip Dia., In. 1410

Probe Length 10ff.

Probe Heater Setting 4 280 300°

Avg. AP Avg. AH

C Factor

Meter A H@ / 032

Point	Clock	Dry Gas Meter, CF	Pitot in H20	Orifice in H20	Orifice AH in H20	Impinger OF Temp.	ł	Pump Vacuum	Box Temp	Probe Temp	Stack Press.	Stack Temp.
			d √					In. Hg.	· · ·) T.	In. Hg.	·
	,			Desired Actual	Actual	Inlet	Inlet Outlet Gauge	Gauge				
/-/	8/://	167.100	9'	.85	. 85	185	70	76.5	330	345	0.5	280
7.3	17:31		7/8	7.3	7.0	210	65	17.5	330	300		285
1.3	pc://	171.05	9/8	7.5	9.0	330	65	7.5	340	3/5		285
1.4	11:27	773.73	3/8	7.5	0.9							
1.5	11:30	175.30	8/8	1.4	60	250	68	7.75	350	3/5		285
9-1	55://	177.40	5,	. 7	.7	300	20	13.5	355	3/5		280
	11:36	179.255										
3.1	12:35	12:35 1/81,430	6.4	0.55	.55	335	7.5	8	340	305		270
2.2	12:38	183.000	1.00	6.3	.95	255	20	17.5	350	290		370
2.3	13:41	185,10	10/8	1.7	,95	365	20	17.5	355	305		270
2-4	12:44	187.30	11/8	1.8	.95	270	70	17.5	355	300		270
2.5	13:47	1883	8/01	7.7	.95	275	7.5	17.5	355	295		360
3.6	12:50	191.4	0.75	1.05	. 25	280	7.5	17	360	300		360
	12:53	193,360										
		The same of the sa		A	*				-			

Com o tes Particulates. 0.01429 +. 0016 : 101879

Meter Out

Stack Temp	Ľ.	270	270	280	280	260	350			780	285	290	290	290	290		280	295	300	385	395	395			
Stack Press.	शाः गाः																								
Probe Temp	Ť.	240	295	3/5	325	330	320			430	370	380	290	<i>żoż</i>	305		230	275	3/5	330	330	330			
Box Temp	L,	355	360	355	360	365	365			325	330	335	340	345	350		340	345	350	350	355	365			
Pump Vacuum Tn Hg	Gauge	5.5	17.5	7.5	17.5	17.5	7.5			5.5	/7	17	17	17	/7		3.5	14.5	6)	9/	17				-
Impinger ^O F Femp	Outlet	80	70	65	65	70	20			80	65	65	65	65	70		90	80	7.5	7.5	80	80			
Impir Temp	Inlet	220	255	270	375	-385	290			305	240	255	365	370	365		195	250	270	275	280	285			
ce à H O	Actua1	<i>με</i> ,	1.0	0.7	7.0	7.0	07				1.0	0.7	7.0	7.0	0.7		0.15	0.8	0.7	6.0	0.8	9.0	`		
Orifice A In. H20	Desired	HE.	1.4	9.1	9./	7.6	6.3			. 28	/:/	1:7	/ '/	1.3	7.2		41.0	8.0	.68	6.0	1.1	1.7			
Pitot In.H20 A P	- J	. 25	7.0	8/8	3/8	8/6	.95			0.3	0.8	c. 8	800	0.95	0.55		0.1	90	5.0	59.	8	8.			
Dry Gas Meter, CF		193,360	194.6	196.6	178.6	200.75	202.7	204.845		204.845	206.0	207.65	209.8	311.9	2/4,0	3/6.062	216.062	2/6.98	2/8.85	720.7	222.75	3748	226.840	The second secon	
Clock		1:40	1:43	97:1	1:49	1:52	7:55	1:58		2:58	3:01	3:04	3:07	07:50	3:/3	3:16	45.5	5.67	3:60	4.03	20.7	4.09	5.0	***************************************	
Point		3.1	3	1,2		らら	3-8	cff		4.1	4.0	3	1.	4.5	4.6	off	1.5	5.3	5.3	7 6	5.6	5-6	ito		
		ussetabout	1.20 for 10 mm	12 oto 11 currers	J	40// /5250	· 1	h	1		!	A		81	-	*. 	 meter 1/6 %			·		·	-	1	<u></u>

Comments

Kun #

										Т	_						 		T -						Τ	T		
Stack Temp	0F	295	300		388		3/5				300		295		295													
Stack Press.	In. ng																											
Probe Temp	90 1	2/5	280		290		280				285		340		320													
Box Temp	H0	345	350		355		355				345		360		365													
Pump Vacuum	In. Hg Gauge	4.5	13.5		14.5		/4		3//	3.5	70		2		/0										The second secon		The same of the sa	and the speciment of the same
Iger OF	utlet	90	80		75		7.5				85		80		85													
Impinger Temp	Inlet Outlet	195	255		275	,	280				255		275		285				C.									
ед Н	Actual	6.2	0.8	65	0.8	.95	8.0		ſ	6:3	0.55	0.55	0.67	0.7	0,5				2/500									
Orifice A H In. H20	Desired	0.3	0.8	,65	8,	7.0	0.8		(Y :	0.55	0.55	750	0.7	0.5				4 Dec	,								
Pitot In. H20	۲.	0,15	0.0	.45	0.6	0.7	0,6		3/ "	6.15	6.4	0.4	5,0	0.55	0.35				Full 0							and the second s		
Dry Gas Meter, CF		226.840	227.85	238.7	23145	233.45	235.5	237455	23//200	201700	238.48	240.1	341.78	243.55	245,35	246.980		,	10/e									
Clock I		4:55	4:56		,				67.3	1	5:52		5:58		6:04	6:07			Betto									
Point		1-9	6.2	6.3	6.4	6.5	9-9	Ho	1	+	7.2	7.3	7.4	7.5	7.6	off		05	8.3	8.5	2.4	8.5	8.6	#,				

Comments VS=85.48(.86)(.717) /2(243)/2 //2

. 75.51 (.847)(.929)=57.84 fps

meter 185 m

PARTICULATE CLEANUP SHEET

Date: 6/19/75	Plant: IP - WOOD RIVER
Run Number: 2	Location Of Sample Port: #1 Boiler Duct
Operator:	Barometric Pressure: 29.86 in Hg.
Sample Box No.	Ambient Temperature 90°F
Impinger H ₂ 0	Silica Gel
Volume After Sampling 361 ml	Weight After 373.2 g
Impinger Prefilled With 200 ml	Weight Before 353,/ g
Volume Collected 16 ml	Moisture Weight 20.1g Moisture Total 181.1g
Dry Probe and Cyclone Catch:	Container No.
	Extra No. Weight Results
Probe, Cyclone, Flask And Front Of Filter Acetone Wash:	Container No Weight Results C.CO/Sg
Filter Papers and Dry Filter Parti	
Filter No. Container No. Filte	
4	Filter Particulate Weight O.CIM2 g
	Total Particulate Weight <u>8.0157</u> g
	0234 (77.715) (29.86+ 0.784) = 76.059 cu.
Vwsta 0.0474 (181.1)= 8.58	st a ft.
70M = 8.584 76.059+5.584 = .101	=> 10.1 % moisture

Date 6/17 \$ 6/18
Plant IP-WOOD RIVER - BLR #1
Sample Collected By O. Klein
Run No.
Power Stat Setting

Field Data	1	6/17 6/18							
Clock Time		_	-	_	1130	1200	1400	1430	
Flask number		2	3	4	,	2	3	4	
Volume of flask less correction (m1)	2047	2038	2039	2018	2047	2038	2039	3028	
Pressure before sampling in. Hg.	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Pressure after sampling, in. Hg.	29.7	29,7	29.7	29.7	29.7	29.7	29.7	29.7	
Flask temperature, ^o F	90	90	90	90	90	90	90	90	

Date 6/19		
Plant IP- Wood	RIVER - BLR.	#/
Sample Collected By	O. Klein	
Run No		
Power Stat Setting		

Field Data

Clock Time	1200	1230	1300	1330	1400	1500	1530	1600
Flask number	1	2	3	4	5	6	7	8
Volume of flask less correction (ml)	2047	2038	2039	2028	2025	3027	2052	2056
Pressure before sampling in. Hg.	3.0	3,0	3.0	3.0	3.0	3.0	3,0	3.0
Pressure after sampling, in. Hg.	29.7	29.7	29.7	29.7	29.7	29.7	29.7	24.7
Flask temperature, ^o F	90	90	90	90	90	90	90	70

Pressure before sampling in. Hg.

Pressure after sampling, in. Hg.

Flask temperature, ^oF

Date6/20						
Plant IP - WOOD RIVER - BA	LR # 1	,				
Sample Collected By O. Klein						
Run No.						
Power Stat Setting						
Field Data						
Clock Time	1335	1350	1330	ر اعتدار		
Flask number	1	2	3	4		
Volume of flask less correction (m1)	2047	2010				

3.0 3.0 3.0

90 90

29.7 29.7 29.7 29.7

GAS SAMPLING FIELD DATA

Material Sampled For Sulfuric Mist \$ 502								
Date 6-20-75								
Plant Wood River Location #1 Boiler								
Bar. Pressure 29.84 "Hg Comments:								
Ambient Temp 90° oF								
Run No/								
Power Stat Setting Probe-4 @ 315 F								
Filter Used: Yes No X Shell method								
Operator								

Clock	Meter	Pitot					ratures			
Time	(Ft. ³)	in. H ₂ 0	in H ₂ 0 ⊿ H	Stack	Probe	Coil	Impi In	Inger Out		
		<u> </u>					111	out		
12:02	253.747	0.7	Olin HaO	290°F	310°F	65°C				
12:07	254.000	0.7	0.1		315°F		145°F	85°F		
12:12	256.27	0.7	0.1		3/0°F	73°c	135°F	85°F		
13:17	257,55	0.7	0.1		305°F		130°F	82°F		
12:22	258,82	0.7	0.1		315°F	73 °c	125°F	82°F		
/2:27	760,10	0.7	O. / (In Vac		315°F		135°F	82°,		
12:32	261.260	0.7	off		315°F	72%	120 °F	85°F		

Comments:

GAS SAMPLING FIELD DATA

Material Sampled For $Su/$	furic	Mist €	502			
Date <u>6-20</u>						
Plant Wood River		Location	#16	3/r		
Bar. Pressure 29.84	''Hg	Comments:				
Ambient Temp 90	o _F					
Run No 2	•					
Power Stat Setting	-					
Filter Used: Yes	No					
Operator			en 7			. h
			30 A	Impinger.	5 770 C 3	manged

0.1	1 1/2 4	Dias	0:5:	77				
Clock Time	Meter (Ft. 3)	Pitot in. H ₂ 0	Orifice in H ₂ 0		peratu		T	
1 Time	(FC.)	111. 1120 11 P	△ H	Stack	Probe	Coil	In	nger Out
	\ <u></u>	F					711	out
1:07	261.260	0.7	0./		355°F	76°c	170 °F	95°F
1:12	262.475	0.7	0./		345°F		170°F	90°F
1:17	263.68	0.7	0.1(1 in Vac)	335°F	80°c	155°F	90°F
1:22	264.875	0.7	0.1	1	325°F	18°c	145°F	90°F
1:27	266.02	0.7	0.1		į	1	1	88°F
1:32	267.18	0.7	0.1		325°F	77°c	135%	90°F
1:37	268.339		off					

Comments:

SUPPLEMENTARY PROCESS & EMISSION DATA FOR POWER PLANTS

Test number	6/25	6/26	6/27	
Net Unit Load - MW	100	100	100	
Boiler Heat Rate - BTU/KW hr.				
Boiler Heat Input - 10 ⁶ BTU/hr.	925.0	925.0	925.0	
Emission Level - 1b./10 ⁶ BTU				
Particulates				
so ₂				
NO _x				
Fuel Heating Valve - BTU/lb.	10756	10756	10756	
Fuel Burning Rate During Test - lb./hr.	86000	86000	86000	
Fuel Ash Content - %				
Additive Rate - lb/hr.				

ORSAT FIELD DATA

Location <u>ILL POWER (C. ALTON, ILL</u> .	Comments:	
Date	No. 4	BOILER
Time		TEAM
Operator		GRISCOM KLEIN NORRIS

DATE	Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
6. 25-75	1340 hrs.	16.4	22.8/6.4	22.8
6-26-75	1245 hrs.	13.2	19.0/5.8	19.0
	1535 hrs.	16.2	21.6/5.4	21.6
6-27.75	1030 hrs.	15.3	20.8/5.5	20.8

Heater Box Setting OF @ 4 330 F Bar. Press. "Hg 29.63 Probe Tip Dia., In. 12 \mathcal{H} 3 Filter

Probe Heater Setting

Static press. 0.4 in \mathcal{H}_{2} 0 Avg. Δ P. 05 Avg. Δ H Assumed Moisture % & Ambient Temp OF 85 Probe Heater Setting Probe Length 10 ft. Read and record at the start of each test point. VERY IMPORTANT - FILL IN ALL BLANKS PARTICULATE FIELD DATA Location # 4 Stack Plant Wood River Meter A H@ 1.022 Date 6-25.75 Sample Box No. Meter Box No. Run No. Operator

0.55

C Factor

о У с		0		0	D							 -
Stack Temp.		170	360	310	320		320	320	320	320		
Stack Press. In. Hg.												
Probe Temp OF		270	6.0 335 330	6.0 350 335	395		315 255	335	23C	340		
Box Temp OF		330	335	350	345		315	305	6.5 300	6/5		
. •	Gauge	2.5	0.0	_				6.5 305 235	6.5	6.5		
Impinger OF Temp.	Outle	9	9	270 65	65		65	270 65	265 65	265 65		
Impii OF T	Inlet	225	240	270	275		270 65	270	265	265		
Orifice ΔH in H20	Desired Actual Inlet Outlet Gauge	0.5 0.5 225 60 2.5 330 270	1.35 1.35 240 60	1.4	1.4	1.5	9.7	7.6	7.5	7.5		
Orifice in H20	Desired	0.5	i	1.4	1.4	1.5	9:1	9:7	6.5	1.5		
Pitot in H2O △P		0.030	0.05	0.055	0.055	0.06	0.065	0.065	900	0.06		
Dry Gas Meter, CF		769.350	273.0	278.0	285. /	291.0	297.4	304.0	310.0	3/6.0	27:45 321.965	
Clock		700									24:45	
Point		/	\sim	'n	٦	Ŋ	9	7	8	6		
-91-	-	550.0	USC AP OF	actual variation	\$0.0-70.	av9.=0.055	`	probe \$ oven	Setting up	40,7	Strong breeze	-

		met				 -			· —			,	 ,	-	, -	,	r	 ·	 	 		_	₁	
Stack Temp	o _F	210	280	310	020	020	320	330	320															
Stack Press.	In. Hg																							
Probe Temp	цо	365	305	335	325	3/5	3/0	(4) 025(305(7)	285(T))													
Box Temp	OF	360	370	380	355	345	38	3556	350	350														
Pump	In. Hg Gauge	4.0	7.0	8,0	8.0		7.0	7.0	8.0	7.0														
Impinger ^{OF} Temp	Outlet	53	63	શ	20	\mathcal{Z}	75	80	22	2														
Impir Temp	Inlet	345	380	285	2%0	285	275	285	275	27.5			100.1											
е д Н	Actua1	0%	7.5	1.75	7.75	1.75	6.5	رن رن	7.75	1.5														
Orifice A H In, H20	Desired	0.7	5.1	1,75	7.75	7.75			40															
Pitot In. H20	⊿ .	20.0	0.06	0.07	0.07	700	0.06	0.06	20.0	0.0%										and the second of the second o				
Dry Gas Meter CF		331.965	3.36.8	333	3394			358	364	370	375,985													
Clock		4.35				-	-									-								. –
Point		8/	17	19	1.5	14	Ċ	0	//	/0														

Comments

PARTICULATE CLEANUP SHEET

Date: 6/25	Plant: 1P WOOD RIVER
Run Number:	Location Of Sample Port: #4 Boile, Stack
Operator:	Barometric Pressure: 29.63
Sample Box No.	Ambient Temperature 85
Impinger H ₂ 0	Silica Gel
Volume After Sampling 368.5ml	Weight After 5/6.5 g
Impinger Prefilled With 200 ml	Weight Before 488.1 g
Volume Collected 168.5 ml	Moisture Weight <u>28.4g</u> Moisture Total <u>196.7</u> g
Dry Probe and Cyclone Catch:	Container No.
	Extra No Weight Results g
Probe, Cyclone, Flask And Front Of Filter	
Acetone Wash:	Container No.
	Extra No Weight Results Q.04/6 g
Filter Papers and Dry Filter Parti	culate
Filter No. Container No. Filte	r No. Container No.
<u>3</u>	Filter Particulate Weight 0,065/ g
	Total Particulate
	Weight <u>0.1067</u> g

[%] Moisture By Volume

		1		₩.		$\neg \tau$	-		- -	\top			-	T	-	
			5.	Stack Temp.		175	320	320	530	320	320	320			-	
np of 90° / 118 29.63 sture % 8%	In. /2	Setting	1	Stack Press. In. Hg.												
Ambient Temp OF	: 1	eater Set	0.06 Avg. Δ H	Probe Temp OF		340	325		330	320		330				
Ambient Bar, Pr Assumed Heater	Probe Tip Dia Probe Length	Probe Heater	Avg. A P	Box Temp oF		330	330 330	34015	345	350(4)	335	355				
F		<u>α</u> ,	∢	Pump Vacuum In. Hg.	cauge	7	90	6	0		9	9				
			420	nger emp.	Outlet	65	63	69	60	345	2	74				
TE FIELD DATA - FILL IN ALL at the start			0.4in H20	Impinger OF Temp.	Inlet	230	245	280	290	295	285	280				
151			φ, φ,	се ДН	Actua1	0.75	1.25	7.75	1.75	1.75	7.35	7.25				
пра			# 2 Filter Static press.	Orifice in H20	Desired	0.75	1.75	52.7	1.75	1.75	1.25	7.25				
VERY Read test			# 3	Pitot in H20 AP		0.03	0.05	0.07	0.07	0.07	500	20.0				
wer — — — — — — — — — — — — — — — — — — —			27	Dry Gas Meter, CF		375,985	380		398	405.7	4/6.5	433	427.050			
Plant Wood River Run No. 2 Location A/r # 4 Date 6.26	ox No.	x No.	Meter A H@ 7.033 C Factor .55	Clock		54:11							12:78			
Plant Wood Run No. 2 Location A// Date 6.26	Operator Sample Box No.	Meter Box No.	Meter Al C Factor	Point		8/	7/	/5	14	30	//	0/				

3	Stack Stack	Press. Temp	In, Hg Or
	Probe	Temp	10
	Box	Temp	0.11
	_ dwn_d	Vacuum	In. Hg
	Impinger OF	Temp	
	Orificed H	In. H20	
	Fitot	In. H ₂ 0	d V

Stack Temp	L.	320	325	320	320	320	320	320	320	225		-											
Stack Press.	811:11 8																						
Probe Temp	Š.	/70	315 (7)	355 (5)	335	255(7)	285(6)	330	305	310													
Вох	Э Д	3/5(7)		380(4)	360		30.5(5)	360	345	325													
Pump Vacuum	Gauge Gauge	8.5	8.5	8.5	8.5	2.0	8.0	8.0	8.0	2.0								e de la constitución de la const					
Impinger ^{GF} Temp	Outlet	25	77	70	77	7.5	70	80	25	85													
Impi Temp	Inlet	185	300	280	281	265	350	255	260	255													
ce A H	Actua1	7.5	5.7	7.5	6.5	5.7	7.5	1.5	7.5	0 ′													
Orifice A In. H20	Desired	7.5	7.5	6.5	1.5	5.7	7.5	1.5	7.5	07													
Pitot In H20	3 T	90.0	0.06	0.06	0.06	0.00	0.08	0.06	900	20.0													
Dry Gas Meter, CF		427.050	433	438.7	445.5	451.5	456.0	462.0	468.0	473.5	478.043											-	
Clock																							
Point		6	8	7	9	c,	X	<i>ب</i>	7														
		2 P VETICS	0.00.00										-95	ō-						 	_		•

Cornents Freig may be a plant leak at joint at end of probe

PARTICULATE CLEANUP SHEET

Date: 6/26	Plant: 1P WOOD RIVER
Run Number: #2	Location Of Sample Port: #4 BOILER STACK
Operator:	Barometric Pressure: 29.62
Sample Box No.	Ambient Temperature 90
Impinger H20	Silica Gel
Volume After Sampling 358 ml	Weight After 528.1 g
Impinger Prefilled With 100 ml	Weight Before 500.0 g
Volume Collected	Moisture Weight 28./g Moisture Total 186./g
Dry Probe and Cyclone Catch:	Container No.
,	Extra No Weight Results g
Probe, Cyclone, Flask And Front Of Filter	
Acetone Wash:	Container No.
	Extra No Weight Results <u>0.02/5</u> g
Filter Papers and Dry Filter Parti	culate
Filter No. Container No. Filte	r No. Container No.
_2	Filter Particulate Weight 0.0372 g
	Total Particulate
	Weight <u>0.0587</u> g

[%] Moisture By Volume

Date6/25
Plant IP WOOD RIVER BOILER 10.4
Sample Collected By O. Klein
Run No.
Power Stat Setting

Field Data

Clock Time	1220	1310	1420	1425	1610	1640	17/0	175
Flask number	1	2	3	4	5	6	9	10
Volume of flask less correction (ml)	2047	2038	2037	2 028	262	2052	2054	2051
Pressure before sampling in. Hg.	3.0							
Pressure after sampling, in. Hg.	29.6							
Flask temperature, ^o F	90							

Date 6/26
Plant IP-WOOD RIVER BOILER NO. 4
Sample Collected By O. Klein
Run No.
Power Stat Setting

Field Data

Clock Time	1200	1230	1330	1335	1415	1445	1515	1520
Flask number	1	2	3	4	5	6	7	10
Volume of flask less correction (m1)	2047	2038	2039	3028	2025	2052	2054	2057
Pressure before sampling in. Hg.	3.0							
Pressure after sampling, in. Hg.	29.6	-						
Flask temperature, ^o F	90					٠.		

GAS SAMPLING FIELD DATA

Material Sampled For Soz & Soz
Date 6-26
Plant Wood Piver Location #4B/r
Bar. Pressure 29.62 "Hg Comments:
Ambient Temp 90 °F
Run No / Traverse Point #5
Power Stat Setting
Filter Used: Yes No Shell Method
Operator

2 4 PM

Clock	Meter	Pitot	Orifice	Tem	peratu	res		
Time	(Ft. ³)	in. H20	in H ₂ 0	Stack	Probe	Coi1		nger
ļ	<u> </u>	<u>Р</u>	ΔH				In	Out
0	478.045	0.05	0.1	325				
5	479.5	0.05	0.1	325	280	83	170	80
10	481	0.05	0.1	325	28.5	82.5	150	82
15	482	0.05	0.1	ي چ	305	81	135	83
20	483.2	0.05	0.1	325	3/8(55	779	130	83
25	484.4	0.00	0.1	ى پەت	300	77.5	120	85
30	485.740							

Comments:

GAS SAMPLING FIELD DATA

Material Sampled For So	3 & 5.0 B
Date <u>6.27</u>	
Plant Wood River	Location #4
Bar. Pressure 29.547	"Hg Comments:
Ambient Temp <u>85</u>	o _F
Run No	Traverse Point #5
Power Stat Setting	
Filter Used: Yes	No
Operator	

10:55

Clock	Meter	Pitot	Orifice in H ₂ 0	Temperatures				
Time	(Ft. ³)	in. H20		Stack	Probe	Coil	Impinger	
		ΔP	⊿ H				In	Out
0	485.748	0.055	0.1	320	280	73		
5	486.5	0.055	0.1	<i>3</i> 20	295	78	\55	70
10	488	0.055	0.1	320	3/5(7	78	135	72
15	489.5	0.055	0./		300(C		130	77
20	490.8	0.055	0./	320	300	77	125	72
25	492	0.055	0./	320	3/0	76	125	72
30	493.200							

- 1. Moisture condenses by the impinger inlet Theme veli from ambient cooling
- 2. Probe setting has to be at 7 to Keep tempup wasval for the glass probe

GAS SAMPLING FIELD DATA

Material Sampled For 503	2503
Date <u>6.27</u>	
Plant Wood River	Location # 4
Bar. Pressure <u>29.55</u> "Hg	Comments:
Ambient Temp <u>85</u> °F	
Run No 2 Trav	erse Point #5
Power Stat Setting	
Filter Used: Yes No	
Operator	

11:50

Clock	Meter	Pitot	Orifice	Теп	peratu	res		
Time	(Ft. ³)	in. H20	in H ₂ O	Stack	Probe	Coil		nger
		ΔP	AH			°C	<u>In</u>	Out
0	493.200	0.055	0./	325	3/8(7)	748	160°F	85°F
5	494.4	0.055	0.1	325	<i>320</i>	°c 83.5	170°F	80°F
10	495.7	0.055	0.1		320			78°F
15								
20	498.1	0.055	0.1	375	<u> 328</u>	8/8	132 5	750;
25	499.3	0.055	0./	330	330(7)	80°C	130 F	80°F
30	500.50/							

Comments:

Size	A Ambient Temp OF 90	Bar, Press. "Hg	Assumed Moisture % 8	Heater Box Setting OF	Probe Tip Dia., In.	Probe Length	Probe Heater Setting	Avg.ΔP Avg.ΔH	
Anderson-Particle Size	PARTICULATE FIELD DATA VERY IMPORTANT - FILL IN ALL BLANKS	and the property of	test point.						
	Plant Wood River	Run No.	Location #4	Date 6-37	Operator	Sample Box No.	Meter Box No.	Meter A H@ 7.032	C Factor

Stack Temp.	asseme	325											
Stack Press. In. Hg.													
Stack Temp													
Box Temp OF		165	285	300	270	275	275						
Impinger Pump OF Temp. Vacuum In. Hg.	Gauge	9	9	9	2	9	9						
nger emp.	Outlet	7.5	70	70	70	70	72						
Impinger OF Temp.	Inlet	5//	08/	561	200	3/0	3/5						
Р	Actual	1.4	1.4	1.4	4.1	1.4	1.4						
Orifice in H20	Dosired Actual	7.4	4.1	7.4	4.1	7.4	1.4						
Pitot in H20 AP		0.055	assumed	, ,				Ho					
Dry Gas Meter, CF		1:05 500.501				530.18	538.35	545.850					
Clock		1:05	7:15	1:25	25:1								
Point		5											

										Stack Temp.	2500	3250											
	0		~	g OF	In.		ing	Avg. AH		Stack Press. In. Hg.	9,	3											
	emp OF	ss. "Hg		Box Setting		ıgth	iter Setting	Avg		Stack Temp OF												+	
	Ambient Temp ^O F	Bar, Press.	Assumed Moisture	Heater Bo	Probe Tip Dia.,	Probe Length	Probe Heater	Avg. AP		Box Temp oF		305	300	300	1	305	325						
i)	BLANKS			H	7	C ₄	d.	A		Pump Vacuum In. Hg.	Gauge												
Gathele Siz		art of								Impinger OF Temp.	Outlet	80	79	82	·	80	80						
12/27	FIELD DATA	the st								Impi OF T	Inlet	310	235	335	٠	240	355						
-		record at the start of each								се ДН 10	Actual	41	1:4	1.4	1.4	1.4	1.4						
100012 700	⊢ ∢¦	and	poir							Orifice in H20	Desired	1.4	1.4	1.4	7.4	1.4	1.4						
H	VERY	Read	test							Pitot in H20 &P		0.055	assumed										
	Tiver		7							Dry Gas Meter, CF		545.850	553,45	563		576	584	591.671					THE RESEARCH COMPANY OF THE PROPERTY OF THE PR
	Plant Wood River	#	18/1 #	5-37		30x No.	X No.	Н@ /.С∴		Clock		31.18	2:28	2:38	2:48	2:58	3:08	3.18					
	Plant <u>/</u>	Run No.	Location Bl	Date 6-37	Operator	Sample Box No.	Meter Box No.	Meter A H@	C Factor	Point		9											

SOURCE TEST REPORT
HIGHLAND POWER & LIGHT
HIGHLAND, ILLINOIS
BOILER NO. 3
JULY, 1975

Tested by: Rockwell International

R.W. Griscom

0.C. Klein

F.E. Littman

TABLE OF CONTENTS

		PAGE
1.0	SUMMARY	108
2.0	INTRODUCTION	109
3.0	PROCESS DESCRIPTION	110
4.0	SOURCE TEST DESCRIPTION	111
5.0	PROCESS OPERATION	113
6.0	DISCUSSION	114
7.0	SAMPLING AND ANALYTICAL PROCEDURES	115
	7.1 PARTICULATE MATTER	115
	7.2 NITROGEN OXIDE	117
	7.3 SULFURIC ACID MIST AND SULFUR DIOXIDE	117
	7.4 PARTICLE SIZE	119
8.0	RESULTS	121
	APPENDIX A: PARTICULATE CALCULATIONS	130
	APPENDIX B: FIELD DATA	141

TABLES

		PAGE
TABLE 1	BOILER 3/SUMMARY OF RESULTS	122
TABLE 2	COMPARISON OF RESULTS	123
TABLE 3	PARTICLE SIZE DETERMINATION/TEST NO. 1	124
TABLE 4	PARTICLE SIZE DETERMINATION/TEST NO. 3	125

FIGURES

		PAGE
FIGURE 1	POSITIONING OF UNI-STRUTS TO CARRY EPA EQUIPMENT	111
FIGURE 2	GAS ANALYSIS AND PROBE ADJUSTMENT BY OPERATOR IN CHERRY PICKER BUCKET	111
FIGURE 3	DETAIL SHOWING UNI-STRUTS AT 90° PLACEMENT ON STACK OPERATOR ADJUSTS PITOT POSITION	112
FIGURE 4	PARTICULATE SAMPLING TRAIN	116
FIGURE 5	SULFURIC ACID MIST SAMPLING TRAIN	118
FIGURE 6	ANDERSEN STACK SAMPLER	120
FIGURE 7	PARTICLE SIZE DISTRIBUTION/BOILER NO. 3	126
FIGURE 8	TOTAL PARTICULATE FILTER	127
FIGURE 9	SMALL CARBONACEOUS PARTICLES AND SULFATES FROM STAGE 5 OF ANDERSEN IMPACTOR	128
FIGURE 10	CARBONACEOUS PARTICLES AND SULFATES FROM STAGE 6 OF ANDERSEN IMPACTORS	128
FIGURE 11	ANDERSEN IMPACTOR BACK-UP FILTER	129
FIGURE 12	CYCLONE COLLECT	129

1.0 SUMMARY

In conjunction with the RAPS project, a limited stack testing program is being conducted. This report details the results obtained on boiler No. 3 at the Highland Power and Light Co. in Highland, Illinois.

The stack testing included the following pollutants: SO_2 , particulates, NO_χ , and $\mathrm{H}_2\mathrm{SO}_4$. Orsat analysis for CO_2 , CO_3 , and O_2 were also performed. Detailed results are included in this report. Although these tests were not conducted to ascertain compliance with Illinois standards, it is of interest that the particulate emissions are within limits while the SO_2 emissions are not.

We acknowledge and appreciate the excellent cooperation we obtained from the officials of the power company and the City of Highland.

2.0 INTRODUCTION

The current stack testing program is being conducted in conjunction with the emission inventory work for the St. Louis RAPS project. The emission inventory is being compiled using published emission factors. The stack testing is being conducted to evaluate the emission factors and to gather information for additional emission factors.

This stack test was conducted at the Highland Power and Light Co. in Highland, Illinois. Testing was performed on boiler No. 3 during the week of 14 July 1975.

Boiler No. 3 is a coal fired, 75,000 pounds per hour steam generating unit. There are no emission controls on this unit. This boiler was sampled for total particulates, particle size, nitrogen oxides, sulfur dioxide, sulfuric acid mist, carbon dioxide, and oxygen.

3.0 PROCESS DESCRIPTION

Boiler No. 3 was built by Union Iron Works and installed in 1959. It is equipped with a traveling grate stoker which is gravity fed. The economizer has not been used for 10 years. The boiler was originally rated at 75,000 pounds per hour steam, however, present operating capacity is approximately 60,000 pounds per hour. Steam pressure is maintained at approximately 610 psi. Boiler No. 3 is an induced draft unit and has no stack emission controls. The stack is of steel construction, 90 feet tall and 5 feet inside diameter.

4.0 SOURCE TEST DESCRIPTION

Boiler No. 3 was tested in the stack, approximately 35 feet above the ground. The City of Highland provided the use of a "cherry picker" for the period of testing. The testing arrangement is illustrated in Figure 1, 2 and 3.

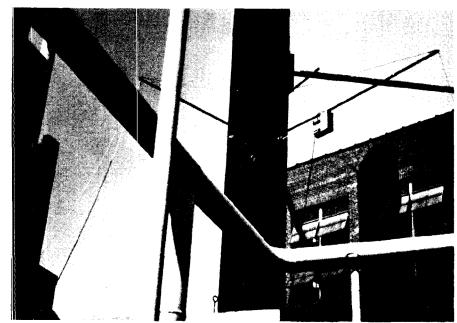
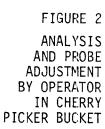



FIGURE 1
POSITIONING OF
UNI-STRUTS TO
CARRY THE EPA
EQUIPMENT

-111-

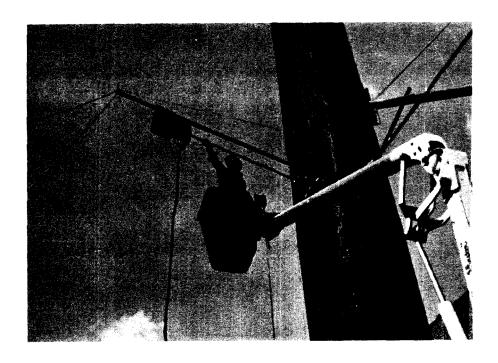


FIGURE 3

DETAIL SHOWING UNI-STRUTS AT 90 DEGREE PLACEMENT ON STACK.

OPERATOR ADJUSTS PITOT POSITION.

The No. 3 stack is 5.0 feet inside diameter and approximately 90 feet tall. This sampling point is approximately 5 diameters from the flue gas inlet. In accordance with the EPA Standard Method 1, fourteen sampling points were chosen on each of two perpendicular diameters. Two, 3 inch couplings were installed on the stack for use as sampling ports.

5.0 PROCESS OPERATION

Boiler No. 3 was tested 14 July to 16 July. During this testing period, the load on the boiler remained fairly constant since this boiler drives a turbine which provides the baseline electrical generation for the plant. Generator output was generally between 4000 and 4300 KW. There was no visible change in emissions during testing. Ashes were pulled almost every hour. During these periods visible emissions didn't change, but the flow rate in the stack increased.

6.0 DISCUSSION

A problem exists about the use of EPA Standard Method 2, Volumetric Flow Rate Determination. On boiler No. 3 the flow rate determined by method 2 is 23101.2 SCFM compared to a flow rate determined stoichiometrically from the fuel rate and fuel composition of 15182 SCFM. At this sampling point this should have been a good check of method 2, since it was a reasonable distance downstream, 5 diameters, and two complete, perpendicular traverses were made.

The flow rate determined stoichiometrically compares very well with the expected flow as seen by a comparison of sulfur dioxide emissions using both flow rates. Using the published emission factor of 38S, which allows for a 95% conversion of sulfur in the coal to sulfur dioxide emission, the emissions would be 413.87 lb/hr. With the flow rate using method 2 the emissions would be 658.4 lb/hr, which is definitely too great. With the stoichiometric flow rate the emissions would be 432.6 lb/hr, which is a reasonable result. For this reason the emission determined using the stoichiometric flow rate are reasoned to be the correct results.

To determine the amount of coal consumed, the generator output and a ratio of kw to pounds of coal were used to calculate coal consumption. The ratio used was based on operating records for the previous month. Using the current ratio of 1.6, the average fuel consumption for 15 July was 6702.4 lb/hr.

During testing for particle size, the first run was with the Andersen impactor in the stack while the other two were run with the impactor in the oven. For this test, a problem existed which forced the use of an unheated probe. With the impactor in the stack this is no problem, however with the impactor in the oven there was probably some condensation in the probe which increases the weight of particulates.

7.0 SAMPLING AND ANALYTICAL PROCEDURES

All testing was performed with sampling equipment from Joy Manufacturing, designed for isokinetic sampling to enable testing by EPA standard methods.

Gas flow rates were calculated using the observed gas temperature, molecular weight, pressure and velocity, and the flow area. The gas velocity was calculated from gas velocity head measurements made with an S-type pitot tube and a magnehelic pressure gauge, using standard method 2.

Moisture contents were determined by passing a measured amount of gas through chilled impingers containing a known volume of deionized water, measuring the increase in volume of the impingers liquid and the increase in weight of silica gel used to finally dry the gas, and calculating the amount of water vapor in the sample from this increase and the measured amount of gas.

The stack gas concentrations of carbon dioxide, oxygen, carbon monoxide, and nitrogen by difference were measured with a standard Orsat apparatus. These concentrations and the moisture content were used to determine molecular weight of the stack gas.

7.1 PARTICULATE MATTER

Standard method 5 was used for determining particulate emissions with the exception that the probe and oven were operated at $300-350^{\circ}F$. Measured stack gas samples were taken under isokinetic conditions. The samples were passed through a cyclone, fiberglass filter, impingers, pump, a meter and an orifice as shown in Figure 4.

The total particulate matter collected in each test was the sum of the filter catch plus material collected ahead of the filter in the sampling train. The amount of filter catch is determined by the difference in the weight of the filter before and after the test, after dessicating. The particulate matter from other portions of the train was determined by rinsing the probe, cyclone and all glassware ahead of the filter with acetone, evaporating to dryness and weighing.

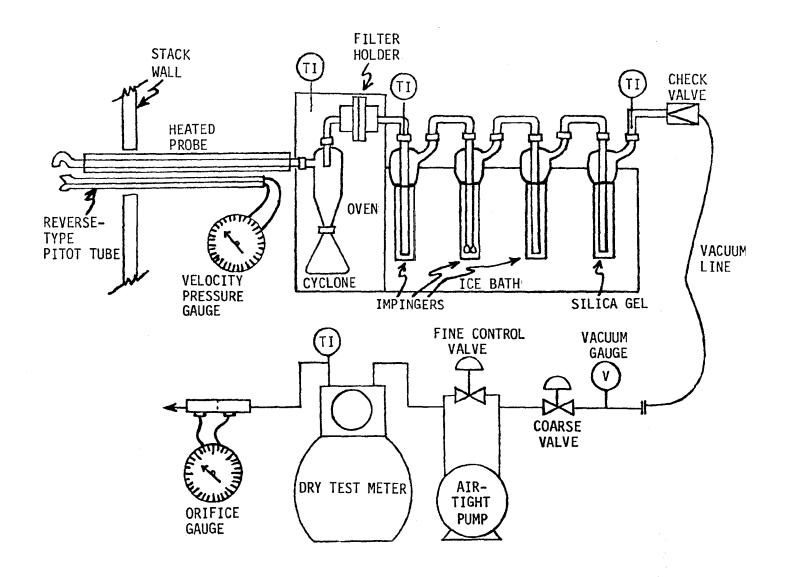


FIGURE 4
PARTICULATE SAMPLING TRAIN

7.2 NITROGEN OXIDE

Using method 7, gas samples were withdrawn from the stack into evacuated 2-liter flasks containing a dilute solution of hydrogen peroxide and sulfuric acid. The hydrogen peroxide oxidizes the lower oxides of nitrogen (except nitrous oxide) to nitric acid. The resultant solution is evaporated to dryness and treated with phenol disulfonic acid reagent and ammonium hydroxide. The yellow trialkali salt of 6-nitro-1-phenol-2, 4-disulfonic acid is formed, which is measured colorimetrically.

7.3 SULFURIC ACID MIST AND SULFUR DIOXIDE

The "Shell Method"* was chosen for this determination due to uncertainties which exist about the validity of the results using method 8. A gas sample is drawn from the stack using a heated probe and passed through a water-cooled, coil condenser maintained below the dew point of sulfuric acid at $140^{\circ}-194^{\circ}F$, followed by a fritted glass plate and then passed through a chilled impinger train with two impingers containing an isopropanol and hydrogen peroxide mixture and followed by an impinger containing silica gel for drying. This setup is shown in Figure 5.

The condensed sulfuric acid mist in the coil condenser is water washed from the condenser. The final determination is made by titrating the solution with barium chloride, using a thorin indicator. Isopropanol must be added to the solution to be titrated to improve the rapidity with which the barium sulfate precipitates during titration.

Sulfur dioxide in the gas sample is oxidized to sulfur trioxide the impingers containing the hydrogen peroxide. Sulfur dioxide is then determined by titrating the hydrogen peroxide solution with barium chloride, using a thorin indicator.

*Lisle, E.S. and J.D. Sensenbaugh, "The Determination of Sulfur Trioxide and Acid Dew Point In Flue Gases", Combustion, Jan. 1965.

Goksøyr, H. and K. Ross "The Determination of Sulfur Trioxide in Flue Gases", J. Inst. Fuel, No. 35, 177, (1962)

-117-

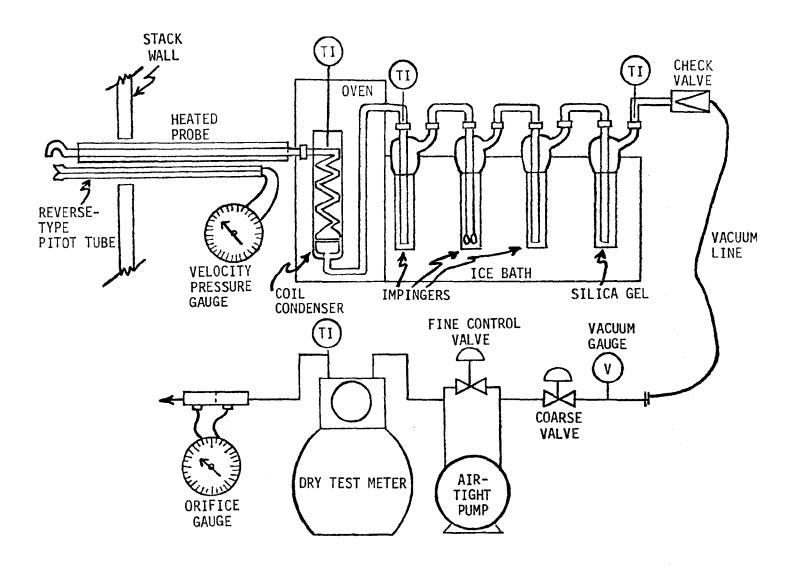


FIGURE 5
SULFURIC ACID MIST SAMPLING TRAIN

7.4 PARTICLE SIZE

An Andersen, fractionating, inertial impactor is used for the determination of particle size in the range of approximately 0.5 to 10.0 microns. The sampling head is placed either in the stack at the end of the sampling probe or in the oven after the heated sample probe (see Figure 6). A sample of stack gas is drawn isokinetically through the sampler. The particulate matter is fractionated and collected on the plates inside the sample head and a determination is made by the difference in weight of the plates before and after testing. Results are expressed for particles of unit density.

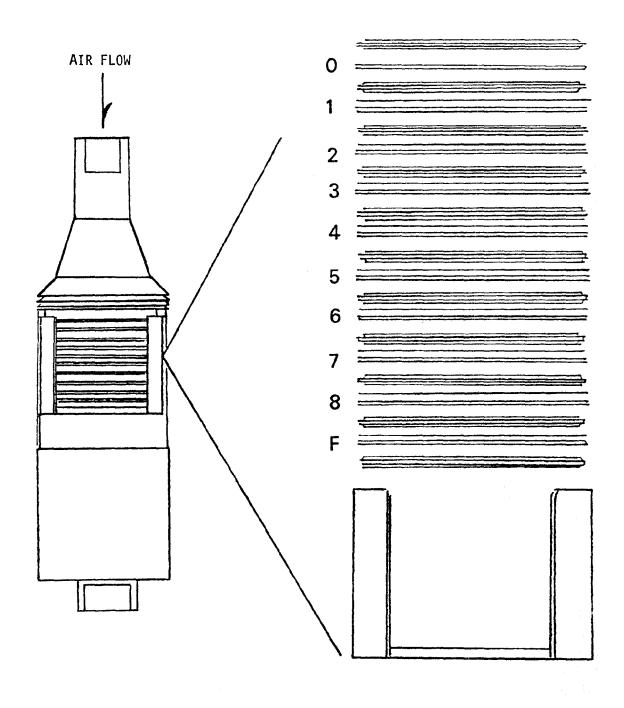


FIGURE 6
ANDERSEN STACK SAMPLER

8.0 RESULTS

The results obtained from this test are summarized in Table 1. As discussed previously, the main flow of pollutant is based on calculated, rather than measured flow rates. The actual calculations and field data are attached as Appendixes A and B. Although these tests were performed for research purposes and not as part of compliance procedures, standard EPA methods were used (except as indicated). It is thus of interest to compare the results obtained with State of Illinois standards. A comparison is shown in Table 2.

TABLE 1
Boiler 3 - Highland Power SUMMARY OF RESULTS

Date	7/15/75	7/16/75		·
Stack Flow Rate - SCFM * dry	15182	16962		
% Water Vapor - % Vol.	8.798	8.55		
% CO ₂ - Vol % dry	14.0	11.8		
% 0 ₂ - Vol % dry	4.3	5.2	!	
% Excess air @ sampling point	24.7	30.8		
SO ₂ Emissions - 1bs/10 ⁶ Btu	5.9			
NO _X Emissions - 1bs/10 ⁶ Btu	0.17	0.24		
H2SO4 Mist - 1bs/10 ⁶ Btu	0.04			
Particulates Probe, Cyclone, & Filter Catch				
lbs./hr.	16.08			
lbs/10 ⁶ Btu	0.22			
Total Catch				
lbs./hr.				
1bs/10 ⁶ Btu				
	·			
% Isokinetic Sampling	92.67			

*70⁰ F, 29.92" Hg Calculated, dry

TABLE 2
COMPARISON OF RESULTS

Pollutant	Standard 1bs/10 ⁶ BTU	Found lbs/10 ⁶ BTU
S0 ₂	1.8	5.9
NO _x	no standard for sources < 250x10 ⁶ BTU/hr	0.19
Particulates	0.23	0.22

The only minor constituent measured during this test was sulfuric acid mist which was determined to be $0.04~\mathrm{lbs/10}^6~\mathrm{BTU}$.

In addition to measuring particulate loadings, a particle size analysis was made using an Andersen impactor. The results are shown in Tables 3 and 4 and Figure 7. The high percentage of particles less than 0.5 microns in diameter is probably spurious. Microscopic examination indicates the presence of large ammonium sulfate particles, which apparently were performed by subsequent reactions of ammonia with sulfuric acid. The latter, present in vapor form at stack temperature, was apparently retained by the glass fiber filter. The results for the first few plates on runs 2 and 3 are misleading since the cyclone was ahead of the Andersen impactor and it fairly effectively removes the larger particles.

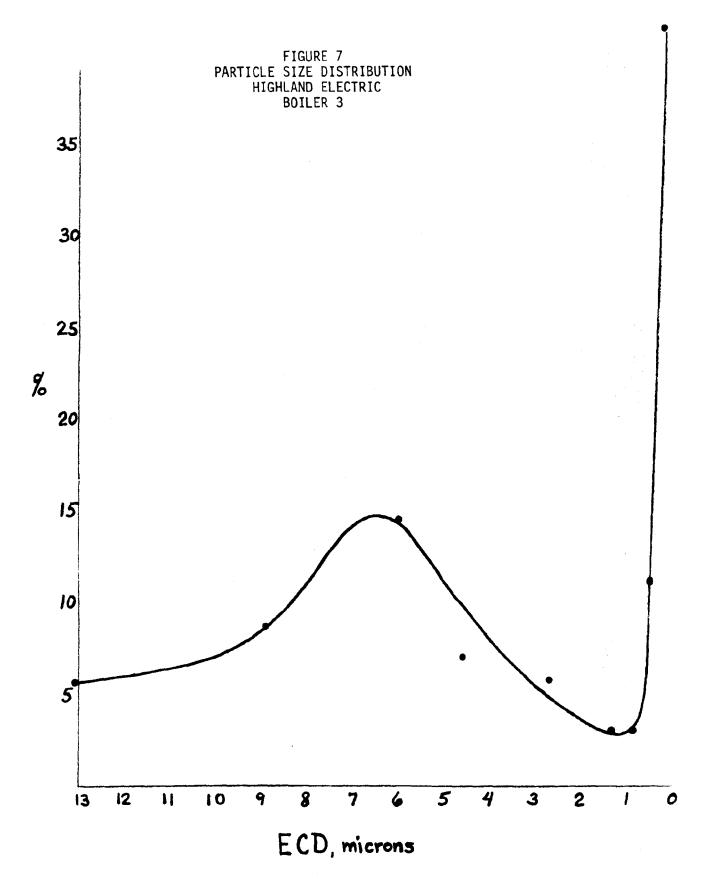

Some of the photomicrographs are included for illustration. Figure 8 is of the total particulate filter from the run on 15 July. It shows bits of unburned to partially burned coal and sulfate needles. Figure 9 is from stage 5 of the impactor and shows small carbonaceous particles and sulfates, which are the white, shiny areas. Figure 10 is from stage 6 of the impactor and shows less carbonaceous particles and much more sulfate particles. The sulfate particles are definitely recrystallized on the filter since they follow filter fibers and are much larger than the impactor plate holes would allow.

TABLE 3
PARTICLE SIZE DETERMINATION

T	est: No. 1	HIGHLAN	D POWER	Da	te: Ju	14 16,	1975		
Plate	Tare(g)	Final(g)	Net(mg)	Filter Net	Total	% of Total	Cum %	ECD (Microns)	
1	20.4711	20.4745	3.4			5.6	100.0	13.12 4 A	Bov ë
2	21.4703	21.4755	5.2			8.7	94.4	8.96	
3	21,6021	21.6108	8.7			14.5	85.7	6.02	
4	22,5136	22.5178	4.2			7.0	71.2	4.61	
5	11.7377	11.7412	3,5			5.8	64.2	2.64	
6	11,4886	11,4904	1.8			3,0	58.4	1.34	
7	11.7399	11.7418	1.9		,	3.1	55.4	٥,83	
8	21,4084	21.4150	6.6			11.0	52.3	0.55	
Back U Filter	_			24.8		41.3	41.3	40.55	
		Total	35.3	24.8	60.1	100,0)		
r	Test: No.2			Date	:: Jul	16,1	915		
Plate		Final(g)	Net(mg)	Date Filter Net	o: Jula Total	\$ 0f Total	Cum %	ECD (Microns)	
	Tare(g)		Net(mg)	Filter	- Jul 1	% of	Cum %		BOVE
Plate				Filter	- Jul 1	% of Total	Cum %	(Microns)	BOVE
Plate 1	Tare(g)	20.1918	J.4	Filter	- Jul 1	% of Total	Cum %	(Microns)	BOVE
Plate	Tare(g) 20, 1914 21, 3706	20.1918	5.4 6.1	Filter	- Jul 1	% of Total 1.8 0.4	Cum % 100.0 98.2	(Microns) 12,64 4 A 7,46	BOVE
Plate 1 2 3	Tare(g) 20. 1914 21. 3706 21. 6880	20.1918 21.3707 21.6884	0.4 0.1 0.4	Filter	- Jul 1	% of Total 1.8 0.4 1.8	100.0 98.2 91.8	(Microns) 12,64 4 A 7,46 5,27	BOVE
Plate 1 2 3 4	Tare(g) 20, 1914 21, 3706 21, 6880 22, 3718	20.1918 21.3707 21.6884 22.3721	5.4 6.1 6.4 5.3	Filter	- Jul 1	% of Total 1.8 0.4 1.8	Cum % 100.0 98.2 91.8 96.0	(Microns) 12,64 4 A 7,46 5,27 3,86	BOVE
Plate 1 2 3 4 5	Tare(g) 20.1914 21.3706 21.6880 22.3718 11.6965	20.1918 21.3707 21.6884 22.3721 11.6972	5.4 6.1 6.4 5.3 6.7	Filter	- Jul 1	* of Total 1.8 0.4 1.8 1.3 3.1	Cum % 100.0 98.2 91.8 96.0 94.7	(Microns) 12,64	BOVE
Plate 1 2 3 4 5	Tare(g) 20.1914 21.3706 21.6880 22.3718 11.6965 11.6807	20.1918 21.3707 21.6884 22.3721 11.6972 11.6813	0.4 0.1 0.4 0.3 0.7	Filter	- Jul 1	* of Total 1.8 0.4 1.8 1.3 3.1 2.6	Cum * 100.0 98.2 91.8 96.0 94.7 91.6	(Microns) 12,64 4 A 7,46 5,27 3,86 2,34 1,17	BOVE
Plate 1 2 3 4 5 6 7	Tare(g) 20.1914 21.3706 21.6880 22.3718 11.6965 11.6867 20.9210	20.1918 21.3707 21.6884 23.3721 11.6972 11.6813	0.4 0.1 0.4 0.3 0.7 0.6 1.2	Filter	- Jul 1	% of Total 1.8 0.4 1.8 1.3 3.1 2.6 5.3	Cum \$ 100.0 98.2 91.8 96.0 94.7 91.6 89.0 83.7	(Microns) 12,64 4 A 7,46 5,27 3,86 2,34 1,17 0,71	BOVE

TABLE 4
PARTICLE SIZE DETERMINATION

Τe	est: No.3	HIGHLAN	o Pour	. Da	te: Jul	1416,1	که ،		
Plate	Tare(g)		Net(mg)	Plate Pilter Net		% of Total	Cum %	ECD Microns)	
1	0.1436	0.1442	0.6	1.1	1.7	4.8	100.0	12.87	ABLVE
2	0.1496	0.1198	0.2	1.4	1.6	4.5	95.2	8.07	
3	0.1452	0.1457	0.5	0.8	1.3	3,6	90.7	5.85	
4	0.1476	0.1482	0.6	1.1	1.7	4.8	87.1	3,98	
5	0.1480	0.1490	1.0	8.0	1.8	5,0	82,3	2.34	
6	0.1502	0.1512	1.0	0.9	1.9	5,3	77.3	1.18	
7	0,1497	0.1525	2.3	1.0	3,3	9.2	72.0	9.75	
8	0,1470	0.1538	6.8	0.7	7,5	21.0	62.8	0.49	
Back U	IP 0.211C	0.2232	12.2	2.7	14.9	41.8	41,8	40.49	
		Total	25,2	10,5	35.7	7 100.0	5		
r	Cest:			Dat	e:				
Plate	Tare(g)	Final(g)	Net(mg)	Filter Net	Total	% of Total	Cum %	ECD (Microns)	
1			e .	0,6		2.4	100,0	12.87	ALL PE
2				3,2		9.8	97.6	8.07	
3				0.5		2,0	96.8	5,85	
4				0.6		2.4	94.8	3.98	
5				1.0		4.0	42.4	2.34	
6	4			1.0		4.0	88.4	1,18	
7	т			2.3		9.1	84.4	5,75	
8				6.8			75.3	0,49	
Back U Filter				12,2		48.3		·	
		Total	,	25.2		100.0			

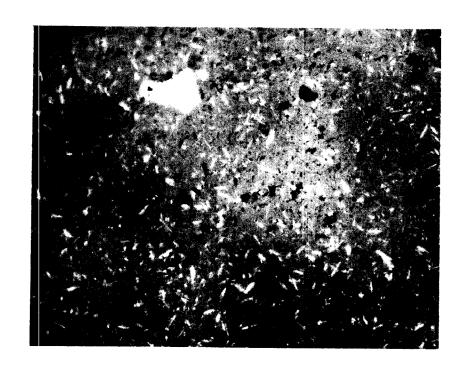


FIGURE 8
TOTAL PARTICULATE FILTER

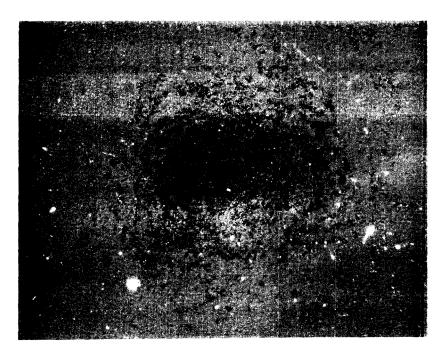
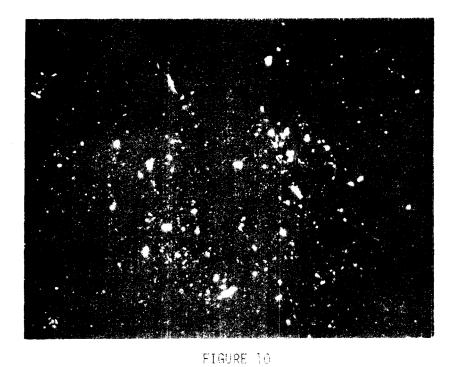



FIGURE 9

SMALL CARBONACEOUS PARTICLES AND SULFATES FROM STAGE 5 OF ANDERSEN IMPACTOR. WHITE SHINE PARTICLES ARE SULFATES.

CARBONACEOUS PARTICLES AND SULFATES FROM STAGE 6 OF ANDERSEN IMPACTOR. NOTE INCREASE IN AMOUNT OF SULFATE FROM STAGE 5 TO STAGE 6.

Figure 11 is the backup filter for the impactor and it shows mostly sulfates with some very fine carbonaceous particles. Figure 12 is of material collected in the cyclone. There are a large variety of particle sizes, although somewhat misleading due to agglomeration of particles, and there is the presence of fused and partially fused glassy material and minerals.

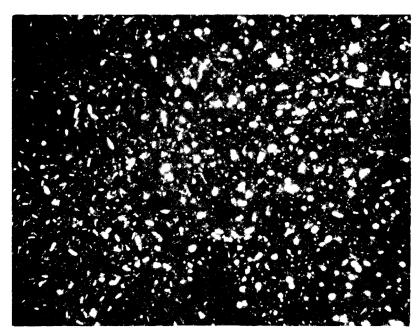


FIGURE 11

ANDERSEN IMPACTOR BACK-UP FILTER SHOWING VERY FINE CARBONACEOUS MATERIAL AND A GREAT NUMBER OF SULFATE CRYSTALS.

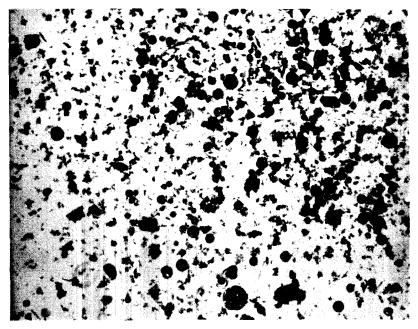


FIGURE 12 CYCLONE COLLECT. NOTE AGGLOMERATION AND PARTICULARLY THE SPHERES OF FUSED GLASSY PARTICLES.

APPENDIX A PARTICULATE CALCULATIONS

PARTICULATE CALCULATIONS

Volume of dry gas sampled at standard conditions - 70° F, 29.92 "Hg

$$Vm_{std} = \left(\frac{Vm}{CF_{m}}\right) \left(\frac{Pm}{Pstd}\right) \left(\frac{Tstd}{Tm}\right) = 0.0334 \left(\frac{Vm}{1.021}\right) \left(\frac{PB}{Ps} + \frac{\Delta H}{13.6}\right)$$

Vm_{std} = Volume of dry gas sampled at standard conditions, ft³

 $Vm = Meter volume sampled, ft^3$

1.021 = Meter correction factor

 P_{m} = Meter pressure, barometric pressure, P_{R} , plus orifice pressure, AH, in. Hg.

Pstd = Standard pressure, 29.92 in. Hq.

Tstd = Standard temperature, 530° R or 70° F

Tm = Meter temperature, 530° R for compensated meter

CFm = Meter correction factor

Volume of water vapor at standard conditions

$$V_W = V_{1c} \left(\frac{\rho H_2 O}{M H_2 O} \right) \left(\frac{R T_{std}}{P_{std}} \right) \qquad \frac{1b.}{454 \text{ gm.}} \qquad = 0.0474 \times V_{1c}$$

Vw = Volume of water vapor at standard conditions, ft³

V₁ = Volume of liquid collected in impingers and silica gel, ml.

 ρ H₂O = Density of water, lg/ml.

M H_2O = Molecular weight of water, 18 lb/lb mol

R = Ideal gas constant, 21.83 in. Hg. - cu. ft./lb-mol - 0 R

$$\frac{\% \text{ Moisture in Stack Gas}}{\% \text{ M} = 100 \text{ x}} \frac{\text{Vw std}}{\text{Vmstd} + \text{Vwstd}}$$

Average molecular weight of dry stack gas

$$MW_{D} = \left(\%CO_{2} \times \frac{44}{100}\right) + \left(\%O_{2} \times \frac{32}{100}\right) + \left(\%N_{2} \times \frac{28}{100}\right)$$

Molecular weight of stack gas

$$MW_W = \left(\frac{100 - \% M}{100} \times MW_D\right) + \left(\frac{\%M}{100} \times 18\right)$$

Stack velocity at stack conditions

$$V_s = 85.48 \times C_p \left(\frac{Ts \times \Delta P \text{ avg.}}{Ps \times MW_W} \right)^{-1}/2$$

V_s = stack velocity, fps.

85.48 = pitot constant,
$$\frac{ft}{sec}$$
. $\left(\frac{1b}{1b} \cdot \frac{1b}{sec}\right)^{1/2}$

 $C_{\rm p}$ = pitot coefficient, dimensionless

 T_s = average stack temperature, OR

 P_s = stack pressure, barometric pressure plus static pressure, in. Hg.

 ΔP Avg = average differential pressure, in. H_20

Stack gas volume at standard conditions

$$Qs = 3600 \left(1 - \frac{\%M}{100} \right) V_s \quad A \left(\frac{Tstd}{Ts} \quad \frac{Ps}{Pstd} \right)$$

 Q_s = stack gas volume flow rate, SCF/hr

A =stack cross sectional area, ft²

3600 = seconds per hour

$$Qs' = Q_s \div 60 = SCFM$$

Per cent isokinetic sampling

$$I = 1.667 \left[(0.00267) \quad V_{1C} + \frac{V_{mC}}{T_{m}} \left({}^{P}_{B} + \frac{\Delta H}{13.6} \right) \right] T_{S}$$

$$\Theta V_{S} P_{S} A_{n}$$

I = per cent isokinetic sampling

1.667 = minutes per second, X 100

$$0.00267 = \frac{{}^{\circ}H_20}{{}^{\circ}H_20} \quad X \quad R \quad X \quad \frac{1b.}{454 \text{ gm}.}$$

 Θ = sampling time, min.

 A_n = cross sectional area of sampling nozzle, ft²

Particulate emission

$$C_s = 2.205 \times 10^{-6} \left(\frac{M_n}{Vm_{std}}\right)$$

 C_s = particulate emission, lb/scf

$$2.205 \times 10^{-6} = pounds per mg.$$

Mn = total mass of particulate collected, mg.

$$C_F = C_S \times Q_S = 1b/hr$$

 $C_{\overline{E}}$ = particulate emission per hour

$$C_H = C_E + H$$

 C_{H}^{-} = particulate emission, lb. per million BTU

H = heat input, million BTU per hour

Excess air at sample point

% EA =
$$\frac{100 \times \% O_2}{(0.266 \times \% N_2) - \% O_2}$$

- % EA = excess air at sample point, %
- 0.266 = ratio of oxygen to nitrogen in air by volume

PARTICULATE SAMPLING CALCULATIONS

PARTICULATE SAMPLING CALCULATIONS

Test:
$$H_{1.3} L_{1.0.0} L_{1.0.0}$$

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 0_2}{(0.266 \times \% \ N_2) - \% \ 0_2}$$

 $\frac{100 (4,3)}{(0.266 \times 8/.7) - (4.3)} = 24.7\%$

STOICHIOMETRIC FLOWRATE CALCULATION

Boiler #3

Coal	Composition	mols/100#		mols 0 ₂ require	ed
S H ₂ O 7/15/75 Agh Btu	3.25% 12.89 10.98 10856 Btu/lb	÷ 32 x 1 ÷ 18 = 0.716		= 0.102	
5/27/67 H ₂ 02 02	61.63% 4.37 0.77 8.86	÷ 12 ÷ 2 = 2.185 ÷ 28 = 0.028 ÷ 32 Theoretic	x -1	=-0.277	
Exces	s air = 24.7%	excess 0 ₂	2	= <u>1.495</u> 7.549	
$N_2 = $	3.76 x 0 ₂			=28.384	

Mols Flue Gas =
$$CO_2$$
 + SO_2 + N_2 + O_2 + N_2 + O_3 + O_4 + $O_$

Sulfur Check - SO_2 emissions

by emission factor $6702.4 \div 2000 \times 38 \times 3.25 = 413.9 \text{ #/hr } \text{SO}_2$ using calculated flow

910,896 x 4.75 x
$$10^{-4} \frac{1b}{SCF} = 432.6 \#/hr SO_2$$

NO_{X} EMISSION DATA

Date 7/15/75

Run No.	1	2	3	4	5	6	7	છે
Time	0915	\005	1053	1110	1300	1340	1400	1400
μg NO ₂	492	428	408	326	428	183	3,26	346
T _i - Initial Flask Temp, ^O F	90							
T _f - Final Flask Temp, ^O F	120							
V _{fc} - Flask Volume, ml.	2047	2018	2039	2028	2 02 5	2052	2054	2057
P _i - Initial Flask Pres, "Hg	2.55				gan kang at ting disemble to de-	Action to a supply of the state of		
P _f - Final Flask Pres, "Hg	30.2					and a fine of the second second second		
1b/scf NO ₂ ×10 ⁻⁵	1.771	1.548	1.475	1.185	1.558	0.657	1.170	1.240
1b/10 ⁶ Btu N0 ₂	0.22	0,19	0.18	0.15	0,20	0.08	0,15	0.16

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/ml} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

 ${\rm NO}_{\rm X}$ EMISSION DATA

Date 7/16/75

Run No.	1	2	3	4		
Time	094/5	1320	13 SO	1350		
µg NO ₂	552	472	5 52	472		
T _i - Initial Flask Temp, ^O F	90					
T _f - Final Flask Temp, ^O F	120					
V _{fc} - Flask Volume, ml.	2047	2038	2039	2028		
P _i - Initial Flask Pres, "Hg	2,35					
P _f - Final Flask Pres, "Hg	30,2	- aug/tess				
1b/scf NO ₂ ×10 ⁻⁵	1.987	1.707	1.996	1.7/5		
1b/10 ⁶ Btu NO ₂	0,26	0.22	0.26	0.23		

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/ml} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

H₂SO₄ MIST and SO₂ EMISSION DATA

Date	7/15	7/15	7/15		
Run No.	,	2	1+2		
V _{mc} -Meter Volume, Ft ³	6,237	5.751	11.988		
Vmstd-Meter Volume, Std. Cond.	6.163	5.683	11.846		
P _B -Barometric Pressure, "Hg	30.2	30.2			
ΔH-Avg. Orifice Pres. Drop, "H ₂ O	0.1	0.1			
V _t -Vol. of Titrant, ml.	1.8	1.8	31.92		
$V_{ extsf{tb}} extsf{-Vol.}$ of Titrant for Blank, ml.	nil	n:1	nil		
Vsoln ^{-Vol.} of Solution, ml.	250	250	250		
V _a -Vol. of Aliquot, Titrated, ml.	25	25	1.0		
1b/scf H ₂ SO ₄ ×10 ⁻⁶	3.15	3.42			
1b/10 ⁶ Btu H ₂ SO ₄	0.04	0.04			
1b-scf SO ₂ ×10 ⁻⁴			4.75		
1b/10 ⁶ Btu SO ₂			5.9		

Vmstd = 0.0334
$$\frac{\text{(Vm)}}{\text{CF}_{\text{m}}}$$
 $\left(P_{\text{B}} + \frac{\Delta H}{13.6}\right)$

CH₂SO₄ = $\left(1.08 \times 10^{-4} \frac{\text{lb-l}}{\text{g-ml}}\right)$ $\left(V_t - V_{tb}\right)$ $\left(\frac{N}{N}\right)$ $\left(\frac{V_{soln}}{V_a}\right)$ = lb/scf $\frac{N}{N}$ = 0.01 Normal Barium Perchlorate

$$C_{S02} = \left(7.05 \times 10^{-5} \frac{1b-1}{g-m1}\right) \left(V_t - V_{tb}\right) \left(\underline{N}\right) \left(\frac{V_{Soln}}{V_a}\right) = 1b/scf$$

APPENDIX B
FIELD DATA

SUPPLEMENTARY PROCESS & EMISSION DATA FOR POWER PLANTS

Test number	7/15/75	7/16/76		
Net Unit Load - AW KW	4188.9	4457.1		
Boiler Heat Rate - BTU/KW hr.				
Boiler Heat Input - 10 ⁶ BTU/hr.	72.76	77.4		
Emission Level - 1b./10 ⁶ BTU				·
Particulates				
so ₂				
VO _x		٠.		
Fuel Heating Valve - BTU/1b.	10856	10856		
Fuel Burning Rate During Test - lb./hr.	6702.4	7131.4		
Fuel Ash Content - %	10,98	10,98		
Additive Rate - lb/hr.			,	

	7/15	_7	1/16
time	Kω	time	KW
9	4600	9	5000
10	4400	10	4 200
į l	4200	11	4200
12	4200	• •	
1	4200	12	4300
2	4000	!	4300
3	4000	3	4600
4	4000	9	4600
5	4100		4457.1
	4188.9		

Fuel Consumption Basis: 1.6 lb Coal / 1 KW
Calculated Flow Rates: 7/15 910,896 SCFH
7/16 1,017,736 SCFH

ORSAT FIELD DATA

	Location 2	Highland,	I //.	Comments:
	Date	15-75		
	Time			
	Operator _	///ein		
		<u></u>	Т	r
	Test	(CO ₂) Reading 1	(0 ₂) Reacing 2	(CO) Reading 3
7-1575	0845 hrs	14.0/14.0	18.2/4.2	18.2/0.0
	1235 hrs.	14.0/14.0	18.4/4.4	18.4/0.0
		·		
7. 1 5 75	1005 hrs	11.4/11.4	16.0/4.6	16.0/0.0
	1330 hrs.	12.2 / 12.2	18.0/ 5.8	18,0/0.0
			·	/
	-			

30.2 8 8 8 3%	1-1 =	Stack Stack Fress. Temp. In. Hg. OF	0.22 505 8505 8505 8505 8506 8	
ress. "Hg d Moisture % Box Setting Tip Dia., In	er Set	Probe S Temp F Or I	245 3220 3220 3220 3320 3320 3320 3320 332	
Ambient Bar. Pre Assumed Heater B		Box Temp op	310 305 325 346 325 325 325 325 325 325 325 325 325 325	!
BLANKS E of each A	in the Q	Pump Vacuum In. Hg. Gauge	0.244745	
			2000 2000 200 200 200 200 200 200 200 2	1
FILL IN ALL t the start		Impinger OF Temp.	200 200 200 200 200 200 200 200 200 200	
ATE d at		Lce AH 20 Actual	747 747 747 747 747 747 747 725 725 725 725 725 725 725 725 725 72	
н в Ф		Orifice in H20 Desired Ac		
VERY Read test		Pitot in H20 AP	20.00 25.50	
Boiler STACK 75 1504/XLEIN	.022	Dry Gas Meter, CF	746.091 747.50 745.51 756.1 756.1 766.50 7150.80 7150.80 7150.80 7150.80 7150.80 7150.80	
# 2 # 3 15 15 15 15 15 15 15	Box No. A H @ 1.022 or 0.55	Clock	10:06 -1-66	
Plant High Run No. Location Date Operator	Sample Box No. Meter Box No. Meter A H@	Point	- 224 10 21 20 a o - 14 20 4 77	

		Stack Temp.	280 550 550 550 550 550 550 550 550 550 5	1
e c	Setting Avg H	Stack Press. In. Hg.		A comment of the comm
Temp OF css. "Hg Moisture % Box Setting	Dia th	Probe Temp of	22 22 22 22 22 22 22 22 22 22 22 22 22	
Ambient Temp Bar, Press. ' Assumed Moist Heater Box Se	Probe Tip Probe Leng Probe Heat Avg. & P	Box Temp OF	3225 2225 3445 3500 3500 3500 3500 3500 3500 350	
WKS cach		Pump Vacuum In. Hg. Gauge	13.5 13.5 13.5 13.5 13.5	7.
		Impinger OF Temp.	82 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
TELD		<u> </u>	200 200 200 200 200 200 200 200 200 200	
ATE - 1		ice 2H 20 Actual	7.4.4.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	; ; ;
a Q		Orifice in H20 Desired, Ac-		
VERY Read rest		Pitot in H20 AP	0,200 W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W	
Power Co		Dry Gas Meter, CF	80000000000000000000000000000000000000	, , , , , ,
\$ BOK	Box No.	Clock	44.40.00 40.	
Plant Hismings Run No. 1 Location #5 Bo Date 7/(5/75	OperatorSample BoxMeter H	Point	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	

PARTICULATE CLEANUP SHEET

Date: _^1/15/75	Plant: Mighton Power Co
Run Number: 1	Location Of Sample Port: 30'ABOVE 4ND. IN STACK
Operator:	Barometric Pressure: 30,20 IN. 19
Sample Box No.	Ambient Temperature 90'F
Impinger H ₂ 0	Silica Gel
Volume After Sampling 401 ml	Weight After 5372 g
Impinger Prefilled With 2∞ ml	Weight Before 500co g 300 TARE
Volume Collected 201 ml	Moisture Weight 37.2 g Moisture Total 238.2 g
Dry Probe and Cyclone Catch:	Container No:
: :	Extra No. Weight Results g
Probe, Cyclone, Flask And Front Of Filter	
Acetone Wash:	Container No.
	Extra No. Weight Results 0.7029 g
Filter Papers and Dry Filter Partic	culate
Filter No. Container No. Filter	r No. Container No.
11	Filter Particulate Weight Q. 2338 g
	Total Particulate Weight 0.9367 g

[%] Moisture By Volume

OXIDES OF NITROGEN FIELD DATA

Date	15-75		
Plant His	ghiaric	Electric	Boller#3
Run No.			
Power Stat	Setting		

Field Data

Clock Time	9:15	10:06	10.51	11:18	1:00	1:40	2:00	2:00
Flask number	/	2	J	4	5	6	9	10
Volume of flask less correction (m1)	2047	2038	2039	2028	2025	2052	2054	2057
Pressure before sampling in. Hg.	6.5	6,5	6.0	5.8	6.3	6.2	6.5	6.5
Pressure after sampling, in. Hg(atre)	30,20	0 پر مو	30,20	30.70	30.20	30,20	3020	JC
Flask temperature, OF	90	90	90	90	90	90	90	90

OXIDES OF NITROGEN FIELD DATA

Date 7/16/75
Plant SIGHALAND ELEVILIC
Sample Collected By
Run No.
Power Stat Setting

Field Data

Clock Time	0945	1320	1350	1350		
Flask number	ι	ک	3	4		
Volume of flask less correction (m1)	2047	2038	2039	20:28		
Pressure before sampling in. Hg.	6.5	6.5	6.5	6.5		
Pressure after sampling, in. Hg.	30.2	30.2	30. ~	30,2		
Flask temperature, ^O F	90	30	%	90		

GAS SAMPLING FIELD DATA

Material Sampled For H2 SC4 & SO2
Date 7- 15-75
Plant Highland Electric Co. Location Boiler #3
Bar. Pressure 30.2 "Hg Comments:
Ambient Temp <u>95</u> °F
Run No / Point 2-7
Power Stat Setting
Filter Used: Yes No
Operator Griscon Milein

Clock	Meter	Pitot	Orifice	Ten	peratu	res		
Time	(Ft. ³)	in. H20	in H ₂ 0	Stack	Probe	Coil		nger
		∆ P	4 H				In	Out
3:35	864.102	0.30	0.1	570	290	70 °C	1.40 F	90°F
3:40	865.1	0.32	0.1	560	305		150 F	85°F
3:45	866.3	0.34	0./	560	310	74°C	1359	85 G
3:50	867.3	0.34	0.1	55c	3 20	7/8	135°F	88 F
3:60	8695	0,30	0.1	550	3/5		125°F	90 °F
4:05	870.339						<u> </u>	
	,							

Comments:

GAS SAMPLING FIELD DATA

Material Sampled For $H2$	Sc = & S 0 2
Date <u>7-/5-75</u>	<u> </u>
Plant Highland	Location <u>Stack 3</u>
Bar. Pressure 30.2	'Hg Comments:
Ambient Temp 95	P _F
Run No 2	Point 7-7
Power Stat Setting	
Filter Used: Yes	No
Operator Griscom / K	<u>lein</u>

Clock	Meter	Pitot	Orifice	Ten	peratu	res		
Time	(Ft. ³)	in. H ₂ 0 ∆ P	in H ₂ 0 ⊿ H	Stack	Probe	Coil		nger
<u> </u>	 	ZAP	An				In	Out
4:18	870.339	0.30	0./	550	320°F	53°C	130°F	95°F
4:23	871.3	0.30	0.1	550	320°F		155°F	90 °F
4:28	872.5	0.34	0./	550	330 °F	82°C	185°F	97 °F
4:33	873.35	0.38	0.1	560	335 °F		1859	92°F
4:38	874.25	0.38	0./	560	340 F	80°C	150 %	130 °F
4:43	875.2c	0.36	0./	560	340°F		140°F	135° p
4:48	876.090					75 °C		

Comments:

\ .		Bar, Press. "Hg Jo. < O	Heater Box Setting OF	Probe Tip Dia., In. 3/8	Probe Length 5 H. Stcc.	Probe Heater Setting	AVB. D P 0,37 AVB. DH 1,7	
Anderson Particle Size Test	PARTICULATE FIELD DATA VERY IMPORTANT - FILL IN ALL BLANKS	Read and record at the start of each test point.					backup filter # 6	
	Plant High are	Kun No. Location Goller # 3 Hack	Date 7-16.75	Operator Griscom/Mein	Sample Box No.	Meter Box No.	Meter A H@ 1.022	C Factor 0.52

In. Ilg. OF
OF IT
In. Hg.
111.

	Ambient Temp OF 90	Bar. Press. "Hg 30.3	Assumed Moisture % β	Heater Box Setting OF 340 66	Probe Tip Dia., In. 3/8	Probe Length SH. Steel	Probe Heater Setting	AVG. AP Q.Z. AVG. AH 1.3	
Anderson Particle Size Test	PARTICULATE FIELD DATA VERY IMPORTANT - FILL IN ALL BLANKS	Dead and record at the ctant of each	test point.					Backup Filter # 3	
,	Plant Highland Electric	Run No. 3	Location Soller#3 Stack	Date 7-16-75	Operator Griscom/ Michia	Sample Box No.	Meter Box No.	Meter A H@ / 022	C Factor . 56

	Meter, CF	in H20	in H20	1	OF Tem	Impinger Fump box OF Temp. Vacuum Temp In. Hg. OF	Temp OF	Temp OF	Press. In. Hg.	Temp.
		200000 B	Desired Actual	Actual	Inlet O	utlet		:	-	250558
1352	891.270		6.7				340			550
1263	893.3			6.7			340			
1255	894.0			6.			340			
1257	895.4			6/			335			
1259	1:288			6.			335			
1301	898.7			6%			335			
600	900. /	:		6.			335			
	900.31	-								
			,							
						2				

	Inderson Particle Dire lest	
Plant Highland Electric	PARTICULATE FIELD DATA	Ambient Temp OF 90
Run No.	VERY IMPORTANT - FILL IN ALL BLANKS	Bar. Press. "Hg 30.3
Location Boiler#3 Street	Read and record at the start of each test point.	Assumed Moisture % &
Date 7.16.75		Heater Box Setting ^{OF}
Operator Griscon Miein		Probe Tip Dia., In. 3/8
Sample Box No.		Probe Length Stee
Meter Box No.		Probe Heater Setting
Meter A H@	Backso Filter #4	Avg.ΔP Avg.ΔH
C Factor		

Stack Temp.	V	0											
1	23522	560											
Stack Press. In. Hg.	- 1												
Stack Temp													
Box Temp o _F		280	320	325	らいら	330							
Impinger Pump Box OF Temp. Vacuum Temp In. Hg.	Gauge												
nger emp.	Outlet		2			70							
Impi OF T	Inlet												
Orifice AH in H20	Actual		Ç.',	67		6.1							Ì
Orifi in H2	Desired Actual	€ ′											
Pitot in H20 A P	\$ 2055	0,0											
Dry Gas Meter, CF		900,210	03.50	5.5.0%	905.9	1006	907050						
Clock		0	6	7	0	Q.	10 01						
Point		2-12					:						!

PARTICULATE CLEANUP SHEET

Date: 7/14/75	Plant: HIGHLAND ELECTRIC
Run Number: Andersen 1,2,3	Location Of Sample Port: #3 Boiler Stuck
Operator:	Barometric Pressure:
Sample Box No.	Ambient Temperature
Impinger H ₂ 0	Silica Gel
Volume After Sampling 252 ml	Weight After 509.5 g
Impinger Prefilled With 200 ml	Weight Before 500.0 g
Volume Collected 52 ml	Moisture Weight 4.5g Moisture Total 61.5g
Dry Probe and Cyclone Catch:	Container No.
	Extra No Weight Results g
Probe, Cyclone, Flask And Front Of Filter Acetone Wash:	Container No Weight Results 261.5 mg
Filter Papers and Dry Filter Parti	iculate
Filter No. Container No. Filte	er No. Container No.
	Filter Particulate Weight //8.4 mg
	Total Particulate Weight 379,7mg
$C_s = 2.205 \times 10^{-6}$ $\left(\frac{379}{31.17}\right)$ $\frac{9}{6}$ Meisture $0.047\% \times 61.5 =$	$\frac{19}{8} = \frac{2.69 \times 10^{-5}}{15.6} \times \frac{1.3}{15.6} = 31.178$
$\frac{2.915}{(21.118+2.415)} = \frac{8.915}{(21.118+2.415)}$. <u>55</u> % -154-

PRELIMINARY SOURCE TEST REPORT CARLING BREWING CO. - STAG BREWERY BELLEVILLE, ILLINOIS BOILER NO. 1

4 NOVEMBER 1975

TESTED BY: Rockwell International

R.W. Griscom

O.C. Klein

F.E. Littman

TABLE OF CONTENTS

		PAGE
1.0	SUMMARY	159
2.0	INTRODUCTION	160
3.0	PROCESS DESCRIPTION	161
4.0	SOURCE TEST DESCRIPTION	162
5.0	PROCESS OPERATION	164
6.0	DISCUSSION	165
7.0	SAMPLING AND ANALYTICAL PROCEDURES	167
8.0	RESULTS	168
	APPENDIX A: PARTICULATE CALCULATIONS	173
	APPENDIX B: FIELD DATA	186

TABLES

		PAGE
TABLE 1	COMPARISON OF FLOW RATE DETERMINATIONS	166
TABLE 2	SUMMARY OF RESULTS	169
TABLE 3	COMPARISON OF RESULTS	169
TABLE 4	PARTICLE SIZE DETERMINATION (TEST: STAG - ANDERSON #1 & #2)	170
TABLE 5	PARTICLE SIZE DETERMINATION (TEST: STAG - ANDERSON #3)	171
TABLE 6	HYDROCARBON ANALYSIS	172

FIGURES

		PAGE
FIGURE 1	SAMPLING LOCATION FOR BOILER	
	NO. 1	163

1.0 SUMMARY

In conjunction with the RAPS project, a limited stack testing program is being conducted. This report summarizes the results obtained on boiler No. 1 at the Stag Brewery in Belleville, Illinois. Some work remains on the combustion efficiency of the unit to better clarify some of the obtained results. A final report will be issued at that point.

The stack testing included the following pollutants: SO_2 , particulates, NO_X , H_2SO_4 , and hydrocarbons. Orsat analysis for CO_2 , CO, and O_2 were also performed. Results of these tests are included in this report. Although these tests were not conducted to ascertain compliance with Illinois standards, it is of interest that the particulate emissions and the SO_2 emissions are just slightly above the limits.

We acknowledge and appreciate the excellent cooperation we obtained from the officials of the Stag Brewery.

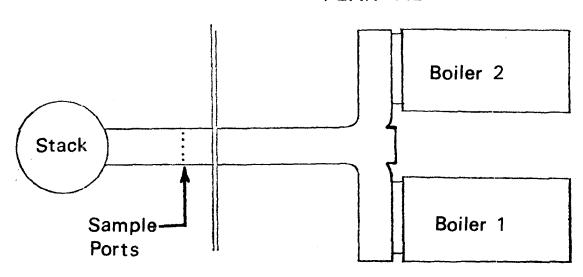
2.0 INTRODUCTION

The current stack testing program is being conducted in conjunction with the emission inventory work for the St. Louis RAPS project. The emission inventory is being compiled using published emission factors. The stack testing is being conducted to evaluate the emission factors and to gather information for additional emission factors.

This stack test was conducted at the Stag Brewery in Belleville, Illinois. Testing was performed on boiler No. 1 on 11, 12 and 13 August and 15, 16 and 20 October 1975.

Boiler No. 1 is a coal fired, 50,000 pounds per hour steam generating unit. There are no emission controls on this unit. This boiler was sampled for total particulates, particle size, nitrogen oxides, sulfur dioxide, sulfuric acid mist, carbon dioxide, oxygen and hydrocarbons.

3.0 PROCESS DESCRIPTION


Boiler No. 1 was built by Henry Vogt Boiler Co. and was installed in 1939. It is equipped with a gravity fed, traveling grate stoker. Steam pressure is maintained at approximately 125 psi. The firing rate of the boiler is directly controlled by the steam requirements of the brewery. As a result, there is a considerable fluctuation in the steam load throughout the day. Boiler No. 1 is a natural draft unit and has no stack emission controls. The stack is of brick construction and is 225 feet tall and 8 feet inside diameter.

4.0 SOURCE TEST DESCRIPTION

Boiler No. 1 was tested in the ductwork between the boilers and the stack. This is a common duct for both boilers 1 and 2, however, boiler No. 2 was not in operation at the time of testing. The sampling location is illustrated in Figure 1.

The duct at this point is 52.5 inches wide by 102 inches deep. The cross-section of the duct at this point is not rectangular since fly ash is deposited at the bottom and sloped to one side. Sample points were chosen accordingly to avoid sticking the probe into this fly ash. In accordance with the EPA Standard Method 1, thirty-five sampling points were chosen, seven at each of five sampling ports. Five, 4-inch pipe nipples were installed on the duct for use as sampling ports.

PLAN VIEW

Elevation

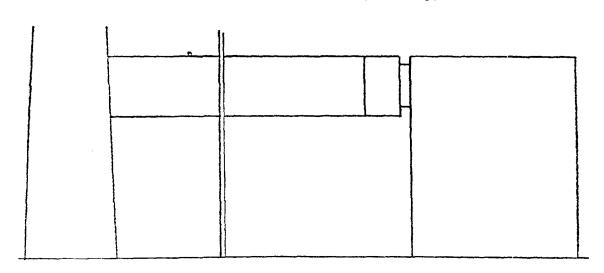


FIGURE 1
SAMPLING LOCATION FOR BOILER NO. 1

5.0 PROCESS OPERATION

As mentioned previously, the firing rate on this boiler is determined by the steam requirements of the plant operation. As a consequence, load fluctuations of up to 100% occurred. During testing on 16 October, the boiler load was reduced considerably since no brewing operations were taking place that day. The load that day remained very constant. Ashes are pulled approximately once an hour. At those times the flow rate in the ductwork increased.

During testing in August, high sulfur coal was being burned; in October low sulfur coal, (1% S), was used.

6.0 DISCUSSION

Flow determinations were made in accordance with EPA Standard Method 2, using an S-Type Pitot Tube. This method gives correct results as long as the pitot tube is positioned normally to the flow of gases. This is no problem as long as the flow of gases is laminor and parallel to the walls of the ducts. However, if the flow is turbulent or vortex-type, the readings obtained are incorrect, with a positive bias (too high). The existence of a turbulent condition can be ascertained by turning the pitot tube 90° on its axis. A zero reading should then result. If no zero reading is obtained, the results are open to question.

In the duct being tested, the existence of turbulence was evident by the fact that a zero reading could not be obtained except on 16 October when the boiler was operated under reduced load. Actually, the flow rate on that day was not much lower than under full load conditions, but the gases consisted of a large excess of air and little combustion products. As a result, the flue gas temperature was lower.

Under conditions when satisfactory flow measurements cannot be obtained, a stoichiometric calculation of flow rates can be made, based on fuel consumption, fuel composition, combustion rate and excess air. As a check on the correctness of the assumption, the mass flow of $\rm SO_2$ can be calculated based on gas flow and $\rm SO_2$ concentration on one hand, and fuel consumption and sulfur analysis on the other. The conversion of sulfur in coal to $\rm SO_2$ is straightforward and occurs with 95% efficiency.

To determine the amount of coal consumed, the steam output and a boiler efficiency were used to calculate coal consumption. The boiler efficiency was determined by comparing steam output to coal usage on thirteen high production day shifts. By this method an efficiency of 82.5% was determined.

Table I shows the comparison of the results obtained by the two methods.

TABLE 1
COMPARISON OF FLOW RATE DETERMINATIONS

DATE	FLOW RATE Measured C	AP-42*	so ₂	(lbs/hr) BASEL Calculated Flow	OON Measured Flow	
8/12	1,394,989	782,909				
10/20		736,170	74.9		81.4	
10/20		776,420	79.0		91.1	

^{*} Compilation of air pollutant.

Emission Factors, EPA Publ. No. AP-42

A small problem still remains in that these SO_2 emissions are still higher than predicted by emission factors. There is evidence to believe that the combustion efficiency of this boiler is very poor. If this is the case, then some amount of coal goes unburned. The stoichiometric flow rate determination is based upon complete combustion of the coal and, therefore, the actual flow rate would be less if combustion is not complete and the SO_2 emissions would be closer to the predicted results. This assumption will be evaluated shortly with a coal and ash analysis. Following this test, a final report on this installation will be completed.

7.0 SAMPLING AND ANALYTICAL PROCEDURES

All testing was performed with sampling equipment from Joy Manufacturing, designed for isokinetic sampling to enable testing by EPA standard methods. The following EPA methods were utilized during testing:

Method 1: Sample and Velocity Traverse

Method 2: Volumetric Flow Rate Determination

Method 3: Gas Analysis by Orsat Method

Method 4: Stack Gas Moisture Determination

Method 5: Determination of Particulate Emissions

Method 7: Determination of Nitrogen Oxide Emissions

In addition, a modified method 8 using the "Shell Method for Sulfuric Mist" was used for sulfuric mist and sulfur dioxide. Particle size determinations were made using an Andersen fractionating, inertial impactor. Hydrocarbon grab samples were taken.

8.0 RESULTS

The results obtained from this test are summarized in Table 2. As previously discussed, the pollutant emissions are based on calculated, rather than measured, flow rates. Although these tests were performed for research purposes and not as part of compliance procedures, standard EPA methods were used. It is thus of interest to compare the results obtained with State of Illinois standards. A comparison is shown in Table 3.

Since the measured flow rate is higher than the calculated flow rate, the testing for particulates was apparently conducted at greater than isokinetic conditions and the results are then higher than they should be. For this reason, it would appear that for the testing on 12 August, this boiler is very nearly within compliance.

The results of a sample taken on 6 August for hydrocarbon was:

Carbon Monoxide: 8.93 ppm
Methane: 0.33 ppm

Total Hydrocarbons, as CH_{Δ} :

6.97 ppm

The results of another sample for hydrocarbons taken on 11 August are given in Table 6. The total amounts to 7.14 ppm.

IABLE Z
SUMMARY OF RESULTS

Date	8/11	8/12	10/15	10/16	10/20
Stack Flow Rate - SCFM * dry	13048	13048	13604	12359	12605
% Water Vapor - % Vol.		9.02		4.7	
% CO ₂ - Vol % dry		10.5	9.3	5.6	11.55
% 0 ₂ - Vol % dry		10.4	10.8	14.8	8.7
% Excess air @ sampling point		97.7	103.3	232.2	69.5
SO ₂ Emissions - 1bs/10 ⁶ Btu			2.4		2.35
NO _X Emissions - 1bs/10 ⁶ Btu	0.36	0.37		_	
H2SO4 Mist - 1bs/10 ⁶ Btu					0.031
Particulates Probe, Cyclone, & Filter Catch					
lbs./hr.		37.03		7.46	
lbs/10 ⁶ Btu		0.95		0.37	
Total Catch					
lbs./hr.					
lbs/10 ⁶ Btu					
% Isokinetic Sampling					

^{*70°} F, 29.92" Hg

TABLE 3

COMPARISON OF RESULTS

POLLUTANT	ILLINOIS STATE STANDARDS 1bs/10 ⁶ BTU	FOUND 1bs/10 ⁶ BTU
S02	1.8	2.4, 2.3, 2.4
NOχ	No standard for sources <250 X 10 ⁶ BTU/hr	0.36, 0.31
Particulates 8/12 10/16	0.28	0.95 0.37

In addition to measuring particulate loadings, a particle size analysis was made using an Andersen impactor. The results are shown in Tables 4 and 5.

TABLE 4
PARTICLE SIZE DETERMINATION

TEST:	STAG - ANDE	RSEN #1				DATE: 8/13
PLATE	NET(mg)	FILTER NET	TOTAL	% OF TOTAL	CUM %	ECD (MICRONS)
7	13.7			18.6	18.6	12.28 & Above
2	10.6			14.3	32. 9	7.72
3	6.4			8.7	41.6	5.15
4	4.9			6.6	48.2	3.63
5	2.6			3.5	51.7	2.23
6	3.1			4.2	55.9	1.15
7	1.5			2.0	5 7. 9	0.70
8	10.9			14.8	72.7	0.47
BACK UP FILTER	20.2			27.3	100.0	<0.47
TOTAL	73.9			100.0		
TEST:	STAG - ANDE	RSEN #2				DATE: 8/13
TEST: PLATE	STAG - ANDE NET(mg)	RSEN #2 FILTER NET	TOTAL	% OF TOTAL	CUM %	DATE: 8/13 ECD (MICRONS)
		FILTER	TOTAL		CUM %	ECD
PLATE	NET(mg)	FILTER	TOTAL	TOTAL		ECD (MICRONS)
PLATE 1	NET(mg) 9.4	FILTER	TOTAL	TOTAL 14.6	14.6	ECD (MICRONS) 12.28 & Above
PLATE 1 2	NET(mg) 9.4 6.4	FILTER	TOTAL	TOTAL 14.6 9.9	14.6 24.5	ECD (MICRONS) 12.28 & Above 7.72
PLATE 1 2 3	NET(mg) 9.4 6.4 5.2	FILTER	TOTAL	TOTAL 14.6 9.9 8.1	14.6 24.5 32.6	ECD (MICRONS) 12.28 & Above 7.72 5.15
PLATE 1 2 3 4	NET (mg) 9.4 6.4 5.2 4.3	FILTER	TOTAL	TOTAL 14.6 9.9 8.1 6.7	14.6 24.5 32.6 39.3	ECD (MICRONS) 12.28 & Above 7.72 5.15 3.63
PLATE 1 2 3 4 5	NET (mg) 9.4 6.4 5.2 4.3 3.0	FILTER	TOTAL	TOTAL 14.6 9.9 8.1 6.7 4.6	14.6 24.5 32.6 39.3 43.9	ECD (MICRONS) 12.28 & Above 7.72 5.15 3.63 2.23
PLATE 1 2 3 4 5 6	NET (mg) 9.4 6.4 5.2 4.3 3.0 2.6	FILTER	TOTAL	TOTAL 14.6 9.9 8.1 6.7 4.6 4.0	14.6 24.5 32.6 39.3 43.9 47.9	ECD (MICRONS) 12.28 & Above 7.72 5.15 3.63 2.23 1.15
PLATE 1 2 3 4 5 6 7	NET (mg) 9.4 6.4 5.2 4.3 3.0 2.6 3.0 6.8	FILTER	TOTAL	TOTAL 14.6 9.9 8.1 6.7 4.6 4.0	14.6 24.5 32.6 39.3 43.9 47.9 52.5	ECD (MICRONS) 12.28 & Above 7.72 5.15 3.63 2.23 1.15 0.70
PLATE 1 2 3 4 5 6 7 8	NET (mg) 9.4 6.4 5.2 4.3 3.0 2.6 3.0 6.8	FILTER	TOTAL	TOTAL 14.6 9.9 8.1 6.7 4.6 4.0 4.6 10.5	14.6 24.5 32.6 39.3 43.9 47.9 52.5 63.0	ECD (MICRONS) 12.28 & Above 7.72 5.15 3.63 2.23 1.15 0.70 0.47

TABLE 5
PARTICLE SIZE DETERMINATION

TEST:	STAG - ANDER	SEN #3				DAT	ΓE: 8/	13
PLATE	NET(mg) PLATE	NET(mg) FILTER	TOTAL	% OF TOTAL	CUM %	ECD (MICRO	NS)	
1	3.3	16.1	19.4	25.2	25.2	12.28	& Above	•
2	2.5	5.0	7.5	9.7	34.9	7.72		
3	2.1	4.3	6.4	8.3	43.2	5.15		
4	1.8	2.3	4.1	5.3	48.5	3.63		
5	1.2	2.0	3.2	4.2	52.7	2.22		
6	1.5	1.4	1.9	2.5	55.2	1.12		
7	1.7	6.1	7.8	10.1	65.3	0.69		
8	2.0	7.2	9.2	11.9	77.2	0.46		
BACK UP FILTER		17.6	17.6	22.8	100.0	<0.46		
TOTAL	16.1	62.0	77.1	100.0				
TEST:	STAG - ANDER	SEN #3				DAT	E: 8/	13
PLATE	TARE(g)	FINAL(g)	NET(mg)	FILTER NET	TOTAL	% OF TOTAL	CUM%	ECD (MICRONS)
1				16.1		26.0	26.0	12.28 & Above
2				5.0		8.1	34.1	7.72
3				4.3		6.9	41.0	5.15
4		TERS		2.3		3.7	44.7	3.63
5	ONL	Υ		2.0		3.2	47.9	2.22
6				1.4		2.3	50.2	1.12
						2.5	30.2	1.12
7				6.7		9.8	60.0	0.69
7 8								
				6.1		9.8	60.0	0.69

TABLE 6

HYDROCARBON ANALYSIS

TEST: STAG #1	DATE: 8/11/75	TIME:
COMPOUND		<pre>CONCENTRATION(ppb)</pre>
Sthane		76.6
Propane		57.3
isobutane		46.5
1-Butene		29.2
n-Butane		28.2
Isopentane		4.9
1-Pentene		2.5
n-Pentane		5.4
2-methyl Pentane		3.4
2- ^m ethy1, 1-Pentene		2.8
1-Hexene		38.3
n-Hexane		115.1
3,3-dimethy1, 1-Pentene		22.9
2,4-dimethyl Pentane & Ben	nzene	34.4
7 methylcyclopentene & 2M	C3 Hexene	10.4
Cyclohexane		4.9
2-methyl Hexane		1.8
3-methyl Hexane		2.9
1-Heptene		8.6
n-Heptane		12.2
Toluene		49.9
2,2,5-trimethyl Hexane		3.4
1-Octene		6.8
n-Octane		3.6
Ethylbenzene		37.3
meta, para Xylene		72.2
Orthoxylene		18.9
n-Nonane		6.3
N-Propylbenzese		4.7
1,3,4 Trimethyl Benzene	-172-	3.5

APPENDIX A PARTICULATE CALCULATIONS

PARTICULATE CALCULATIONS

Volume of dry gas sampled at standard conditions - 70° F, 29.92 "Hg

$$Vm_{std} = \left(\frac{Vm}{CF_{m}}\right) \left(\frac{Pm}{Pstd}\right) \left(\frac{Tstd}{Tm}\right) = 0.0334 \left(\frac{Vm}{1.021}\right) \left(\frac{Pm}{Pstd}\right) \left(\frac{Pm}{13.6}\right)$$

 Vm_{std} = Volume of dry gas sampled at standard conditions, ft³

 $Vm = Meter volume sampled, ft^3$

1.021 = Meter correction factor

 P_{m} = Meter pressure, barometric pressure, P_{R} , plus orifice pressure, AH, in. Hg.

Pstd = Standard pressure, 29.92 in. Hg.

Tstd = Standard temperature, 530° R or 70° F

Tm = Meter temperature, 530° R for compensated meter

CFm = Meter correction factor

Volume of water vapor at standard conditions

$$V_W = V_{1c} \left(\frac{\rho H_{20}}{MH_{20}} \right) \left(\frac{R \text{ Tstd}}{P \text{std}} \right) \qquad \frac{1b.}{454 \text{ gm.}} \qquad = 0.0474 \text{ x } V_{1c}$$

Vw = Volume of water vapor at standard conditions, ft³

 V_{lc} = Volume of liquid collected in impingers and silica gel, ml.

 oH_2O = Density of water, lg/ml.

M H₂O = Molecular weight of water, 18 lb/lb mol

R = Ideal gas constant, 21.83 in. Hg. - cu. ft./lb-mol - OR

$$\frac{\% \text{ Moisture in Stack Gas}}{\% \text{ M = 100 x}} \frac{\text{Vw std}}{\text{Vmstd} + \text{Vwstd}}$$

Average molecular weight of dry stack gas

$$MW_{D} = \left(\%CO_{2} \times \frac{44}{100}\right) + \left(\%O_{2} \times \frac{32}{100}\right) + \left(\%N_{2} \times \frac{28}{100}\right)$$

Molecular weight of stack gas

$$MW_{W} = \left(\frac{100 - \% M}{100} \times MW_{D}\right) + \left(\frac{\%M}{100} \times 18\right)$$

Stack velocity at stack conditions

$$V_s = 85.48 \times C_p \left(\frac{Ts \times \Delta P \text{ avg.}}{Ps \times MW_W} \right)^{-1}/2$$

 $V_s = stack \ velocity, fps.$

85.48 = pitot constant,
$$\frac{\text{ft}}{\text{sec.}} \left(\frac{\text{lb.}}{\text{lb. Mols - oR}} \right)^{1}/2$$

 $C_{\rm p}$ = pitot coefficient, dimensionless

 T_s = average stack temperature, OR

 P_s = stack pressure, barometric pressure plus static pressure, in. Hg.

 ΔP Avg = average differential pressure, in. H_2^0

Stack gas volume at standard conditions

$$Qs = 3600 \left(1 - \frac{\%M}{100} \right) V_s \quad A \left(\frac{Tstd}{Ts} \quad \frac{Ps}{Pstd} \right)$$

 Q_s = stack gas volume flow rate, SCF/hr

 $A = \text{stack cross sectional area, ft}^2$

3600 = seconds per hour

$$Qs' = Q_s \div 60 = SCFM$$

Per cent isokinetic sampling

$$I = 1.667 \left[(0.00267) \quad V_{1c} + \frac{V_{mc}}{T_{m}} \left(P_{B} + \frac{\Delta H}{13.6} \right) \right] T_{s}$$

$$\Theta V_{s} P_{s} A_{n}$$

I = per cent isokinetic sampling

1.667 = minutes per second, X 100

0.00267 =
$$\frac{\rho_{\text{H}20}}{M_{\text{H}2}0}$$
 X R X $\frac{1b}{454 \text{ gm}}$.

 Θ = sampling time, min.

 A_n = cross sectional area of sampling nozzle, ft²

Particulate emission

$$C_s = 2.205 \times 10^{-6} \left(\frac{M_n}{Vm_{std}}\right)$$

 C_s = particulate emission, lb/scf

 $2.205 \times 10^{-6} = pounds per mg.$

Mn = total mass of particulate collected, mg.

$$C_E = C_S \times Q_S = 1b/hr$$

 $\mathbf{C}_{\mathbf{F}}$ = particulate emission per hour

$$C_H = C_F \div H$$

 $C_{H}^{}$ = particulate emission, lb. per million BTU

H = heat input, million BTU per hour

Excess air at sample point

% EA =
$$\frac{100 \times \% 0_2}{(0.266 \times \% N_2) - \% 0_2}$$

- % EA = excess air at sample point, %
- 0.266 = ratio of oxygen to nitrogen in air by volume

Material collected (mg)

TOTAL =
$$1672.2$$

Gas Volume
$$Vm_{std} = 0.0334 \left(\frac{V_m}{CF_m}\right) \left(P_B + \frac{H}{13.6}\right)$$

$$0.0334 \frac{(81.037)}{(1.01)} \left(29.30 + \frac{1.4}{13.6}\right) = \frac{78.795}{13.6} \text{ SCF}$$

$$Vw = 0.0474 \times V1c$$

$$0.0474 (163 \text{ m1}) = 7.726 \text{ SCF}$$

$$\frac{100 \times (7.726)}{(78.795) + (7.726)} = 8.93 \%$$

Molecular Weight of dry stack gas

$$MW_D = \%CO2 \times 0.44 + \%O2 \times 0.32 + \%N2 \times 0.28$$

$$(10.5 \times 0.44) + (10.4 \times 0.32) + (79.1 \times 0.28) = 30.20$$

Molecular Weight of stack gas

$$MWW = \frac{100 - \%M}{100} X MW_D + \frac{\%M}{100} X 18$$

$$\begin{bmatrix} \frac{100 - 8.93}{100} & x & 30.2 \end{bmatrix} + \begin{bmatrix} \frac{8.92}{100} & x & 18 \end{bmatrix} = \frac{29.11}{100}$$

Test: Stag Boiler #1 Date:
$$8/12/25$$

Stack Velocity $V_S = 85.48 \times C_p \left[\frac{T_S \times P_{avg}}{P_S \times MW_W} \right] 1/2$
 $85.48 \times (C,86) \left[\frac{997.7 \times C.0.78}{29.37 \times 29.11} \right] 1/2 = \frac{22.182}{29.37 \times 29.11}$

The stack Gas Volume $Q_S = 3600 \left(1 - \frac{8M}{100} \right) \left(V_S \right) \left(A \right) \left(\frac{T_S td}{T_S} \right) \left(\frac{P_S}{P_S td} \right)$
 $3600 \left[1 - \left(\frac{8.93}{100} \right) \right] \left(22.183 \right) \left(\frac{36.82}{100} \right) \frac{530}{(997.7)} \left(\frac{29.92}{29.92} \right) = \frac{1.376.369}{1.376.369} \text{ SCFH}$

Stack Emission Rate $C_S = 2.205 \times 10^{-6} \left(\frac{M_D}{V_{MS} td} \right)$
 $2.205 \times 10^{-6} \left(\frac{1072.2}{72.795} \right) = \frac{41.68 \times 10^{-5}}{1000} \frac{1}{1000} \text{ blysef}$
 $C_E = C_S \times Q_S = \left(\frac{4.68 \times 10^{-5}}{29.12} \right) = \frac{1.667}{1000} \left[\frac{(0.00267)}{1000} V_{1C} + \frac{V_M}{T_M} \left(\frac{P_S}{P_S} + \frac{\Delta H}{13.6} \right) \right]_{TS}$
 $\frac{6 \times V_S}{530} = \frac{1.667}{13.6} \left[\frac{(0.00267)}{(22.183)} \left(\frac{29.37}{13.6} \right) \left(\frac{29.77}{13.6} \right) \right] = \frac{88.98 \times 1}{13.6}$
 $\frac{6 \times V_S}{530} = \frac{1.667}{13.6} \left(\frac{(0.00267)}{13.6} \right) \left(\frac{(29.77)}{13.6} \right) = \frac{88.98 \times 1}{13.6} \left(\frac{(29.77)}{13.6} \right)$

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 0_2}{(0.266 \times \% \ N_2) - \% \ 0_2}$$

 $\frac{100 (/0.4)}{(0.266 \times /9./) - (/0.4)} = \frac{97.7\%}{}$

STOICHIOMETRIC FLOWRATE CALCULATIONS

Boiler #1 8/12/75

	Coal Compo Peabody			1	Mols/100#		Mols	0 ₂ required
7/15/75	S H ₂ O ASh Btu	3.25% 12.89 10.98 10856	Btu/lb	÷	32 18 = 0.716	x 1	=	0.102
5/27/67	C H N2 02	6163 4.37 0.77 8.86		÷	12 2 = 2.185 28 = 0.028 32		= =	5.136 1.093 -0.277
						Theoretical	02	6.054
	@ 97.7 % E	Excess	air				=	5.915 11.969
	$N_2 = 3.76$	× ⁰ 2					=	45.003 56.972

Mols Flue Gas = 5.136 + 0.102 + 5.915 + 45.003 + 0.028 = 56.184 mols $56.184 \times 386.7 \frac{ft^3}{mol} = 21726.4$ SCF/100# coal @ 70° F, latm.

$$\frac{31.775 \times 10^3 \times 1015.7}{.825}$$
 = 3.91198 x 10⁷ Btu/hr input

3.91198 x
$$10^7 \div 10856 = 3603.5 \text{ #/hr coal}$$

3603.5 x $\frac{1}{100}$ x 21726.4 = 782909.1 SCFH, dry

${\rm NO}_{\rm X}$ EMISSION DATA

Date 8/1/75

Run No.	1	2	3	4	<i>3</i>	6	
Time	1200	1210	1415	1420	1425	1430	
µg NO ₂	532	5 <u>5</u> 2	472	5/2	388	388	
T _i - Initial Flask Temp, ^O R	90			a de la compansión de l			
T _f - Final Flask Temp, ^O R	120						
V _{fc} - Flask Volume, ml.	2047	2038	2037	2028	2025	2052	
P _i - Initial Flask Pres, "Hg	2.66			k ag i ng i gy administration (190	and the second continues	,	
P _f - Final Flask Pres, "Hg	29.26			area a compression will des cress			
1b/scf NO ₂ ×10 ⁻⁵	1.99	2.08	1.78	1, 94	1.47	1,45	
1b/10 ⁶ Btu NO ₂	0.40	0.42	0,36	0.39	0,29	0.29	

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/m1} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

NO_{x} EMISSION DATA

Date 8/12/75

Run No.	1	2	3	4	5	6	9	10
Time	1215	1220	1520	1525	1530	1535	1550	1555
μg NO ₂	408	428	-	388	346	346	444	490
T _i - Initial Flask Temp, ^O R	90							
T _f - Final Flask Temp, ^O R	120		-	و رواه (۱۹۰۰ به و مراسم بعد الاستعمال				
V _{fc} - Flask Volume, ml.	2072	2063		2053	2020	2017	2019	2082
P _i - Initial Flask Pres, "Hg	2.66							
P _f - Final Flask Pres, "Hg	29,30							
1b/scf NO ₂ ×10 ⁻⁵	1,53	1.61		1.47	1.31	1.29	1.66	1.83
1b/10 ⁶ Btu NO ₂	٥,31	0,32		0.29	0.26	0.26	0.33	0.37

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/m1} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

Test: Stag - Boiler #1 Date: 8/13/75

Material collected (mg)

Filter Catch = 247.8Dry Catch = 49.6

= 292,4 TOTAL

Gas Volume
$$Vm_{std} = 0.0334 \left(\frac{V_{m}}{CF_{m}}\right) \left(P_{B} + \frac{H}{13.6}\right)$$

$$0.0334 \left(\frac{24.87}{(1.01)}\right) \left(24.3 + \frac{1.4}{13.6}\right) = 24.208 \text{ SCF}$$

Volume of water vapor Vw = 0.0474 X Vlc

$$0.0474 \ (61.0 \ m1) = 2.871 \ SCF$$

$$\frac{\% \text{ Moisture}}{\% \text{M} = 100 \text{ X}} \frac{\text{Vwstd}}{\text{Vmstd}} + \text{Vwstd}$$

$$\frac{100 \times (2.891)}{(24.208) + (2.891)} = \frac{10.67}{\%}$$

Molecular Weight of dry stack gas

$$MW_D$$
 = %CO2 X 0.44 + %O2 X 0.32 + %N2 X 0.28

$$(11.2 \times 0.44) + (9.2 \times 0.32) + (79.6 \times 0.28) = 30.16$$

Molecular Weight of stack gas

$$MWW = \frac{100 - \%M}{100} \times MW_D + \frac{\%M}{100} \times 18$$

$$\left[\frac{100 - 10.67}{100} \times 30.16\right] + \left[\frac{10.67}{100} \times 18\right] = \frac{28.86}{100}$$

Test: Boiler # 1 - Anderson: 1, 2,3 Date:
$$8//3/75$$

Stack Velocity Vs = 85.48 x C_p $\left[\frac{Ts \times P \text{ avg}}{P_s \times M_W}\right]$ 1/2

85.48 x (2.86) $\left[\frac{1025.7 \times 0.08}{24.37 \times 2.8.26}\right]$ 1/2 = 22.877 fps

Stack Gas Volume Qs = $3600\left(1 - \frac{8M}{100}\right)$ (Vs)(A) $\left(\frac{1\text{std}}{1\text{s}}\right)$ $\left(\frac{P_s}{P_s\text{td}}\right)$

3600 $\left[1 - \frac{(10.67)}{100}\right]$ (22.871) (36.82) $\frac{530}{(1025.7)}$ $\frac{(27.37)}{29.92}$ = $\frac{1,373.980}{29.92}$ SCFH

Stack Emission Rate $C_s = 2.205 \times 10^{-6} \left(\frac{M_D}{V_{MStd}}\right)$

2.205 x 10^{-6} $\left(\frac{292.4}{(24.202)}\right)$ = $\frac{2.66 \times 10^{-5}}{(24.202)}$ 1b/scf

 $C_E = C_s \times Q_s = (2.66 \times 10^{-5})$ (1,373,480) = $\frac{36.59}{(45.416)}$ 1b/106 Btu

Isokinetic Variations I = 1.667 $\left[\left(0.00267\right) \times V_{1c} + \frac{V_m}{Im} \left(P_B + \frac{\Delta H}{13.6}\right)\right]$ 1s

8. Ps. An (30) (22.877) (29.37) (1.36×10⁻³)

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 0_2}{(0.266 \times \% \ N_2) - \% \ 0_2}$$

 $\frac{100 (9, 2)}{(0.266 \times 79, 4) - (9, 2)} = \frac{76.84}{\%}$

Hydrocarbon Results

Test: Stag - # 1 Boiler	Date:	8/6	Time:
Carbon Monoxide:			8,93 ppm
Methane:			0.33 ppm
Total Hydrocarbons,	as CH4:		6.97 ppm
Test:	Date:	·	Time:
Carbon Monoxide:			ppm
Methane:			mqq
Total Hydrocarbons,	as CH ₄ :		ppm
Test:	Date:		Time:
Carbon Monoxide:			ppm
Methane:			mad
Total Hydrocarbons,	as CH_4 :		ppm
Test:	Date:		Time:
Carbon Monoxide:			mqq
Methane:			ppm
Total Hydrocarbons,	as CH4:		mqq

APPENDIX B FIELD DATA

SUPPLEMENTARY PROCESS DATA FOR POWER PLANTS

Date	8/11-8/13		
Net Unit Load - MW			
Average Steam Load - 10 ³ lb/hr			
Boiler Heat Input			
Fuel Burning Rate - 1b/hr			
Fuel Heating Value - BTU/1b	10856		
Fuel Sulfur Content - %	3,25		
Fuel Ash Content - %	10,98		
Fuel Moisture Content %	12.89	_	

8/11 NO_ 31.775×103 lb/hr stoam 39.12×106 Btu/hr 3603.5 lb/hr roal 782909 SCFH

8/12 NOx # Part.

31.775×103 16/hrsteam

39.12 ×106 Btu/hr

3603.5 16/hr coal

782909 SCFH

8/13 Andersen 1,2,3
36,889×103 16/hrstrum
45.416×106 Bfu/hr
4183.5 16/hrcon/
811669 SCFA

ORSAT FIELD DATA

Location Stag	Brewery	Comments:
Date 8-12-75		
Time		
Onerator		

	Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
#	1115	10.6	24:2/13.6	24.2
	1240	12.0	24:2/13.6 20.6/ 8.6	24.2 20.6
	1535	9.0	21.2/12.2	21.2
			7	
	aug.	10.5	10.4	0.0
İ	d			
Ī				
ĺ				

* There is reason to believe that this number is not valid and has been eliminated from the average.

ORSAT FIELD DATA

Location Stag Brewery Date 8-13.75	Comments:
Date 0-70.70	
Time	
Operator	

Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
1045	11.6	20.8/9.2	20.8
1045	11.6	20.8/9.2	20.8 20.0
		ī	
aug.	11.2	9.2	0.0

90 29.30 ng of 4.5 In. 12 inch	otting	Stack Stack Press. Temp. In. Hg. OF	0.9 580		260	560	530	530	50.5	560	580	580		580	570		
Temp OF ses. "Ilg Moisture Sox Settipping."	0.08	Probe Temp Op	90	160	170				95	09/	180	185		700	2/0		
Ambient Bar. Pre Assumed Heater E Probe Ti	Probe II. Avg.∆P	Box Temp oF	3/0	320	330	335	350	355	340	345	350	355		365	375	:	
each	TT - 4	Pump Vacuum In. Hg.	90		7.5	: : : : : : : : : : : : : : : : : : : :		011	200		10.0	611		14.0			
DATA N ALL BLA start of		Impinger OF Temp.	8	2		2%		ļ., į	55	7	2	11		80	30		
FIELD D FILL IN		Impi OF T	02/	190	215	230	255	265	200	250	360	265		205	280		
ATE d at		ice AH 20 Actual	1.05	1.05	1.05	20.1	7.	7.6	7.3	10%	1.4	1.6	1.75	1.2	1.75	•	
PAR IMPC and poin		Orifice in H2O		1.05	1.05	1.05	7	7.	7.3	7	7.7	9'	1.75	61	1.75		
VERY Road test		Pitot in H20 A P	90.0	- 1	0,06	0.0	0.00	0.09	0.07	0.07	8000	0.09	0.70	0.11	0.10		
Grewery House Stack	36	Dry Gas Moter, CF	1070,655	1072.	10 75.0	1077.1	1081.4	1083.7	1086.255	3	00	1083.1	7	1098.3	:	1103.890	Jewing asher
tag 6	Box No.	Cl ock	10:30	3	36	200	25	48	10:51	E.E.	36	20	\$	45	48	11:21	10:35 (3/0 W/100
Plant Stag Run No. 2 Location Cowc Date 8-12-7 Operator Gra Sample Box No.	Meter Bo Meter I	Point	1-1	7.7	, C.	1.5	9-1	1-7	400	2-3	5	2-4	2.5	3-6	2-7	t off	10:15

Point Clock 6.7 7.96 6.7 7.96 6.7 6.4 6.7 6.4 6.7 7.5 6.7 7.5 7.5 7.	Meter CF // C6. 890 // C6. 1 // C6. 2 /	Pitot In. H20 0,0 7 0,0 7 0,0 7 0,0 7 0,0 6 0,0	Orifice In. H20 In. H2	Actual Actual Actual	Temp Temp	nger of	Pump Vacuum In. Hg	Box	insolution of the second of th	Stack Press.	Stack Temp OF	
7	// (5.5) // (6.7) // (6.7) // (6.7) // (6.7)	000000000000000000000000000000000000000	ु ५	/ctual	1	hit let	In. Hg	_	elo:	ln. Ilg	Jo	
2 2 2	// (66.7 // (66.7 // (66.7 // (66.7 // (66.7 // (66.7)		5	77	,	 > + > ()	Gauge	· · · · ·				
7.7	1106.1		5	3	200	00	ć) ćv	200	00/		450	
, X, X,	116.		50	•	230	72		(A)	500		1004	
, , , , , , , , , , , , , , , , , , ,	1116.		50	ヘン	0,45	75		رن رن	/70		5 5	
, X, X,	11.15.	0 0 7 0	5	7	250	75		ر. ري			(v)	070
77	11/5, 1	0 7 0	42	7:1	200	22		رق	185		ر ري	
77	1118,	0	4)	\9 \;	265	75		33.33				
N. Y.	1130,615	0.05		1.75	270	77	13.0	345	190		580	
	1130.615	0.05										
. †	(6,9	6.0	190	55	20		20		570	
		0,00	o, O	1.05	000	5	:	320				
つ	1134.7	10,00		7.3	250	25	9.0	370			000 000	
1	17571	0,00	. !	7	250	75	10.01	0/2			0770	
	1129.5	800	7.7	1:1	ن د:' ۲'۱	1/2		3/0			540	
	1.001	6.00		\s \\ \\	30%	32		6,0	1		6/	
7 43	1134.5	0.09	:	9%	255	80		320		1	570	
							:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
<i>"</i>	1137.0	0.00	1.4	1.4	2/0	80	60,5	340		10 to	400	
	1139.8	0.07	77	7.3	340	70		345			430	
5-3 33	8.1411	0.00	1.4	1.4	350	73	:	355	- :		500	
	11443	80,0	1.4	1.4	250	72		330		:	510	
	1146.8	80.0	71	7.7	250	25		330	96	:	520	
	1149.2	80.0	9%	\ \ \	255	,, ,,		330			540	
	NOT 7507	or elianos	ted due	to the	45h 641	1/d UE 1	zduct					
	~~	ルモン		`						• `	17745	
				 : : :								
		0.078arg.									Aug. 5377	

Commonts 12:45-1:00 Blowing ashes
Pobe has shorted again 4 & Staverse with heat off
2:30-2:45 Blowing ashes

PARTICULATE CLEANUP SHEET

Date: 8/12/25 Run Number: 2 Operator: Gricon / Klein Sample Box No.	Location Of Sample Port: #1 Boiler Duct Barometric Pressure: 29,30
Impinger H ₂ 0 Volume After Sampling 34/ ml Impinger Prefilled With 200 ml Volume Collected /4/ ml	Silica Gel Weight After 322 g Weight Before 300,0 g Moisture Weight 22,0 g Moisture Total /63,7 g
Dry Probe and Cyclone Catch:	Container No Weight Results g
Probe, Cyclone, Flask And Front Of Filter Acetone Wash:	Container No Weight Results /.5090 g
	r No. Container No.
	Weight <u>0.1632</u> g Total Particulate Weight <u>1.6722</u> g

% Moisture By Volume

OXIDES OF NITROGEN FIELD DATA

Date	8/1	1/7	5		
Plant_	Stag	alar	Boiler	#/	The second secon
	Collected				

Field Data

Clock Time	1200	1210	1415	1420	1425	1430	
Flask number	1	2	3	4	5	6	
Volume of flask (ml)*	2047	2038	2039	2028	2025	2052	
Pressure before sampling in. Hg.	2.66				- Market and control of the control		
Pressure after sampli <mark>ng, in.</mark> Hg.	29,26				-		
Flask temperature, ^O F	120		manu ay again an indire an		t i s Manus sakuta		

^{*} Flask + valve - 25 ml. for absorbing solution

OXIDES OF NITROGEN FIELD DATA

Date	8/12/75		_
Plant_	Stag-Blr.	* /	_
	Collected By K		_

Field Data

Clock Time	1215	1220	1520	1525	1530	l 535	/550	1555
Flask number	/	2	3	4	ح	9	Ŷ	10
Volume of flask (ml)*	2047	5038		2028	2025	2052	2054	2057
Pressure before sampling in. Hg.	2.66				gradiate con de Pource			·
Pressure after sampling, in. Hg.	29,30				graen, . v po			
Flask temperature, ^O F	120				a see see			

^{*} Flask + valve - 25 ml. for absorbing solution

			7.7	Anderson	ر م	10 F 3 12C	:				
Plant Stag Brewery	ag Br	ewery		PARTIC	ULATIE F	ATA(vmbjent	Ambient Temp ^O F	90	
REE NO. Anderces #	And ore	# **	VIIIV	IMPORTAN		E IN ALL S	SAVAS	Bar, Pro	Press. Tilg	29.5	30
Ť	#		Read		at	the start of	each		ž		1
Location	1 50	Location Boiler Stack	test	point.			•	rssamed	Assumed Moisture	0.00	2,5
Date 8/13/75	21/51						-14	Heater B	Box Setting	ng OF	
Operator Griscom	Grisco	om /Klein						Probe Tip	Dia.,	In. //	- - -
,		l	,		1	-				70	
Sample Box No.	× No.		Andersen	てれる	300	plates	- 3 - 6	Probe Length	ngth 5	1t. 91ass	5.5
Meter Box No.	No.)	Probe He	Heater Set	Setting	
Moter 1.43 1.026	0.	26					1	Avg. S P	0,08 Avg H	9 H	1.4
C Factor											
Point	Clock	Dry Gas Mcter, CF	Pitot in H20 • P	Orifice in H20	се Д Н	Impinger OF Temp.	Punn Vacuum In. Ilg.	Box Temp OF	Probe Temp	Stack Press. In. Hg.	Stack Temp.
			•	Desired	Actual .	InlettOutlet	ct				
3-3	10:50	1160,155	0,0	7:7	1.4	150 85	12.5	305	780		580
		1161.8	0.0%	77	7.7	175 10	;	315	3/5		580
	i.		0,0 0,0	<i>"</i> ,	1, 4	- -		6			
	:	1165,0	000	7,7	7.7	220 70		ر ان ان	330		3
		100	O O	1,4	1,4			345	330		540
00;11 11;00	:	168,384	Ö ox	1							555
		8.227 51	•			-					
		-							:	i	
	1							:		i	
									;		
											:
						:	:				†
100.0		P. 11. 2. A.L.				1				:	:
1			3								

	90 29.30 % 10.5	Stans otting	Stack Stack Press. Temp. In. Hg. oF	540 550 550 560
	nt Temp OF Press. "Hg ned Moisture rr Box Setti	Inp Dia. Length	t Probe Temp Op	300 250 320 320 330 320 340 330 350 340
5120	1 4	Probe Probe Avg. △	uger Pump Box mp. Vacuum Tem In. Hg. Op Outlet	
Particle S	1	plates only	Impinger OF Temp. Inlet Outl	145 80 200 68 200 68 215 68
Anclers en P	PARTICULATE FIELD DATA IMPORTANT - FILL IN ALL and record at the start point.	in oven	Orifice AH in H20 Desired Actual	P. 1
And	Read c	Ancierson	Pitot in H20 •	
	en #2 ler Stack	1014	Dry Gas Moter, CF	1168.382 1170.1 1173.2 1174.5 1176.610
	Plant Stag Brewery Run No. Andersen #2 Location #1 Boiler Stack Date 8/13/75	Sample Box No. Meter Box No. Meter A H & 1.026	Clock	1:48 2007 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1
	Plant Run N Locat Bate	Sample B Meter Bo Meter C	Point	3.3

Plant Stag Brewery Run No. Andersen #3 Location # Roiler Stack Date 8/13/75 Operator Griscom/Klein Sample Box No. Notor Box No. No. Notor Box No.	Pito 0,000,000 F	PART MINGER IN SOCIETY OF IN STREET		1	2 H · · · · · · · · · · · · · · · · · ·	NWKS Pump Vacuum In. Ilg Gauge /2.0	Rar. Press. 'Assumed Moist Heater Box School Find Distribution of Probe Length Probe Heater Avg. AF Avg. AF Box Probe Tength Temp Temp Op. 133 330 330 335 335 335 335 335	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	30 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
		: :					!		
							:		
	;		:						3
		1							
· · · · · · · · · · · · · · · · · · ·						-			1
1:13 - tulling Ashes									
,									

PARTICULATE CLEANUP SHEET

eation Of Sample Port: #1 Boiler Dui
rometric Pressure: 29.30
pient Temperature <u>fo</u> °
lica Gel
ight After <u>3/0.5</u> g
ight Before <u>3000</u> g
isture Weight 10,5g Moisture Total 61.0g
ntainer No.
tra No. Weight Results g
ntainer No.
tra No Weight Results 49,6 g
ate
o. Container No.
Filter Particulate Weight 242.8 g
Total Particulate Weight 292.4 g

[%] Moisture By Volume

Material collected (mg)

Filter Catch
Dry Catch
Acetone Wash

TOTAL

Gas Volume
$$Vm_{std} = 0.0334 \left(\frac{V_m}{CF_m}\right) \left(P_B + \frac{H}{13.6}\right)$$

$$0.0334 \left(\frac{55.44}{1.01}\right) \left(29.61 + \frac{0.516}{13.6}\right) = \frac{54.355}{13.6} \text{ SCF}$$

Volume of water vapor Vw = 0.0474 X Vlc

$$0.0474 (56 m1) = 2.654 SCF$$

$$\frac{100 \times (2.654)}{(54.355) + (2.654)} = 4.66 \%$$

Molecular Weight of dry stack gas

$$MW_D = \%CO2 \times 0.44 + \%O2 \times 0.32 + \%N2 \times 0.28$$

$$(5.6 \times 0.44) + (14.8 \times 0.32) + (79.6 \times 0.28) = 29.488$$

Molecular Weight of stack gas

$$MWW = \frac{100 - \%M}{100} X MW_D + \frac{\%M}{100} X 18$$

$$\begin{bmatrix} 100 - 4.66 & \times 29.488 \end{bmatrix} + \begin{bmatrix} 4.66 & \times 18 \end{bmatrix} = \underbrace{28.953}$$

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 0_2}{(0.266 \times \% \ N_2) - \% \ 0_2}$$

= $\frac{100 \ (14.8)}{(0.266 \times 79.6) - (14.8)} = 232.2\%$

STOICHIOMETRIC FLOWRATE CALCULATIONS

Boiler #1 10/15/75

Coal Comp	osition	mols/100#	mols 0	₂ required
Ç	65.00%	÷ 12 x 1	= '	5.417
S	1.04	± 32 x 1	=	0.033
H2	4.50	$\div 2 = 2.25 \times 0.5$	=	1.125
N2	1.0	\div 28 = 0.036		
02	7.94	\div 32 = 0.248 x-1	=	-0.248
0 <u>-</u> Ash	8.34			
Moist	12.18	\div 18 = 0.677		
Btu	10.390 Btu/lb			
		Theoretical O ₂	= -	6.327 mols
Excess ai	ir = 103.3%	excess 0 ₂	=	6.536
		Total 0 ₂ -	=	12.863
$N_2 = 3.76$	5 x O ₂		=	48.364

Mols Flue Gas =
$$\frac{CO_2 + SO_2 + N_2 + O_2 + N_2}{5.417 + 0.033^2 + 0.036 + 26.536 + 48.364 = 60.386 mols}$$

Flue Gas =
$$60.386 \times 386.7 \frac{f+3}{mol}$$
 = 23,351.3 SCF/100#

@ 29.5 x
$$10^3$$
 lb/hr steam = $\frac{29.5 \times 10^3 \times 1015.7}{0.825}$ = 36.319 x 10^6 BTU/hr

$$36.319 \times 10^6 \div 10390 = 3495.6 \text{ lb/hr coal}$$

3495.6
$$x \frac{1}{100} \times 23,351.3 = 816267 \text{ SCFH}$$

= 13604 SCFM

H2SO4 MIST and SO2 EMISSION DATA

Date	10/15		10/20	10/20	10/20	10/20
Run No.	1		1	1	2	2
V _{mC} -Meter Volume, Ft ³	16.583		12.965		12.794	
Vmstd-Meter Volume, Std. Cond.	16.171)	2.653		12,486	
PB-Barometric Pressure, "Hg	29,48		29.51		29.51	
ΔH-Avg. Orifice Pres. Drop, "H ₂ O	0.1		0.1		0.1	
V _t -Vol. of Titrant, ml.	9,92		3.6	8,47	4,2	9.08
V _{tb} -Vol. of Titrant for Blank, ml.	nil		nil	Kil	nil	n //
Vsoln ^{-Vol.} of Solution, ml.	250		100	250	100	250
V _a -Vol. of Aliquot, Titrated, ml.	1,0		20	1.0	20	1.0
1b/scf H ₂ SO ₄ x10 ⁻⁶			1.536		1.816	
1b/10 ⁶ Btu H ₂ SO ₄			0.029		0.034	
1b-scf SO ₂ x10°4	1.081			1.207		1.281
1b/10 ⁶ Btu SO ₂	2.4			2.3		2,4

Vmstd = 0.0334
$$\frac{\text{(Vm)}}{\text{CF}_{\text{m}}}$$
 $\left(P_{\text{B}} + \frac{\Delta H}{13.6}\right)$
 CF_{m} = Meter correction factor

CH₂SO₄ =
$$\left(1.08 \times 10^{-4} \frac{\text{lb-l}}{\text{g-ml}}\right)$$
 $\left(V_t - V_{tb}\right)$ $\left(\frac{N}{N}\right)$ $\left(\frac{V_{SOln}}{Va}\right)$ = lb/scf $\frac{N}{N}$ = 0.01 Normal Barium Perchlorate

$$c_{SO2} = \left(7.05 \times 10^{-5} \frac{1b-1}{g-m1}\right) \left(V_t - V_{tb}\right) \left(\frac{N}{V_a}\right) = \frac{V_{soln}}{V_{mstd}} = \frac{1b}{scf}$$

SUPPLEMENTARY PROCESS DATA FOR POWER PLANTS

Date	10/15	10/16	10/20-1	10/20-2
Net Unit Load - MW				
Average Steam Load - 10 ³ 1b/hr	29.5	14.83	32.0	33.75
Boiler Heat Input 106 Btw/kr	36.3	20.1	39.4	41.55
Fuel Burning Rate - 1b/hr	3495.6	1933	3791,8	39,991
Fuel Heating Value - BTU/1b	10390	10390	10390	10390
Fuel Sulfur Content - %	1.04	1.04	1.04	1.04
Fuel Ash Content - %	8.34	8.34	8.34	8,34
Fuel Moisture Content %	12.18	12.18	12.18	12.18

Calculated flow Rates:

10/15 816,267 SCFH

10/16 741,556 SCFH

10/20-1 736,170 SCFH

10/20-2 776,420 SCFH

ORSAT FIELD DATA

Location .	Sta	q - Boile	er #1	Comments:
Date	10/15	4 10/16	* 10/20	-
Time				_
Operator	KI	ein		-

Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
1310	9,2	11.0	0.0
1350	9,4	10.6	0.0
10/16	5,6	14.8	0.0
1130	5,8	9.0	0.0
10/20	11.5	8.9	0.0
1135	11,6	8.5	0,0
		i !	

	Stack Temp. OF	480	086	386	790	480	05/5	586		38%	584	:485	485	८०ऽ	205	58			
70° 61 10° 61 10° 61 10° 61 10° 61	Stack Press. In. Hg.	-0.9																	
oFgure %/, In/Av	Probe Temp OF	125	170	185	195	195	200	230		145	210	225	225	210	225	230			
BLANKS Bar. Press "Hg_art of Assumed Moisture Probe Tip Dia., Itherwitter Probe Length_aw Avg. ΔP	Box Temp OF	325	3/0	305	305	305	3/0	320		335	340	335	325	330	3.30	330			
	Pump Vacuum In. Hg. Gauge		3,0					0,9		4.5			4.5						
ELD DATA IN ALL BLANK the start of cobe Thermin	Impinger OF Temp. Inlet Outlet		59	5.5	5.8	59	58	59		5,8	25	5/	55	7.5	5.5	53		P. C. Connection of the Connec	
IELD DAIN ALL IN ALL STANDS	Impi OF 1 Inlet		195	190	061	195	205	230		170	210	215	017	2/0	235	230			
PARTICULATE FIELD DATA MPORTANT-FILL IN ALL B and record at the star test point. Lest point. Lest point. Lest point. Lest point. Lest point. Lest point.	Se AH) Actual	po	0,9	50	94	150	0.17	5810		0,50	, , ,	۵, s ⁻	150	0.76	0,76	320			
1 1 1 1 1 1 1 1	Orifice in H ₂ O Desired A	4'0	ī. Ö	9.4	0.4	0.57	0.27	0,85		0,20	2,0	0.5	0,57	0.76	0,76	0.85			
VERY I Read each Tro	Pitot in H ₂ O ∆P	50%	0.02	2010	0.02	0,03	0.04	0.045		0.025	0.025	5,00	0.03	0,04	0,04	0.0%			
m Klein	Dry Gas Meter, CF	1705,760	2,6011	1708.8	0.0/1/	1711.5	1713,2	1715,3	1716.965	17/6,965	1718.6	130.1	1721. 7	1723. 3	1725.2	1727,1	1129,080		
Plant Stag Run No. 1 Location Bir # 1 Date 10/16 Operator Gristom Meter AH0 C Factor	Clock	Sh:01	. 48	1.8:	,54	:57	11:00	fo:	11:00	11:45	36:	15:	154	157	12:00	103	90:21		
Plant Stag Run No. 1 Location Bl Date 10 Operator G Meter AH@ C Factor	Point	1-1	1-2	5-1	1-4	2-1	1-6	1-7	110	2.1	2.2	2-3	2-4	2-5	2-6	6.7	3,50		

K Stack Stack		470	470	470	475	7.80	480	514		485	180	480	490	490	480	460		180	490	485		470	470	460			487.20
be Stack Press.		0	0	 О	<u>ل</u>	0	0	0		0	Ь	V ₂	٠.	5	0	7						_	^	_			
Probe Temp	<u>.</u>	120	200	230	225	240	230	220		130	195	205	205	225	250	255		150	210	215		240	250	1250			
Box Temp		320	320	320	320	325	330	335		 340	340	340	355	335	340	340		340	335	335		335	340	340			·
Fump Vacuum In. Hg.		3.5				4.0				3,5						5.5		4,0									
nger emp.	Outlet	58	54	7.5	34	54	5-5	5.5		62	57	5-7	25	58	9	Z		ક	9	9		10	63	65			
Impinger ^O F Temp.	Inlet Outlet	05/	205	215	2/5	225	220	225		140	215	5/2	2/5	235	245	240		170	225	220		240	240	250			
se AH)	Actual	60	0.0	6'6	2,0	50	0,5	5.0		6.4	0.4	6'0	0.5	0.5	0.5	51.12		0.4	2.4		6,4	6.9	0.57	15.0			0,516
Orifice in H ₂ 0	Desired	6.0	0.4	0'0	7,0	2,0	0,5	0,5		7,0	9.9	<i>O</i> .4	5.0	5,0	50	11.0		9.0	6.4		Ø, 4'	6'0	6.57	0.57			
pitot in H2O	7.7	0,02	0.02	200	20,0	0.025	0,025	0,025		0,02	0.02	200	0,025	0.025	0,025	70.0		0,00	0,02		5,0,0	0,02	0.03	0.03			9200
Dry Gas. Meter, cF	<u>.</u>	1729,080	1730,5	1231.9	1733,3	8 HEL1	4.9861	1737.9	025,6211	1739.550	17 40,9	5.5HC1	1743,8	17.45.5	1747.1	1748.7	1750.020	1750,620	1756.5		1754	1755	1757.8	1759.7	0027961		55,44 cF
Clock		12:48	47	h51	:57	00:	:03	90'	60:	1,45	: 48	151	75:	:57	2 :00	:03	2:06	7:47	55.	(5)	3.6	129	3,02	105	3108		
Point		3-1	-2	- 3	7,-	lg r	9,	-	250	1-13	^.s	~3	h-	. სე 1	9-	- 7	off	1	-2	٦,	þ÷	4.7	9-	١- ١) to		COMMENTS

PARTICULATE CLEANUP SHEET

Date: 10/16	Plant: Stag
Run Number:	Location Of Sample Port: Boile, #1
Operator: Griscom Klein	Barometric Pressure: 29.61
Sample Box No.	Ambient Temperature 70 F
Impinger H ₂ 0	Silica Gel
Volume After Sampling 24/ ml	Weight After <u>S/5.0</u> g
Impinger Prefilled With 200 ml	Weight Before 500,0 g
Volume Collected	Moisture Weight /5 g Moisture Total 56 g
Dry Probe and Cyclone Catch:	Container No.
	Extra No. Weight Results
Probe, Cyclone, Flask And Front Of Filter	
Acetone Wash:	Container No.
	Extra No. Weight Results 0.1605
Filter Papers and Dry Filter Parti	culate
Filter No. Container No. Filte	r No. Container No.
	Filter Particulate Weight 0,0874 g
	Total Particulate Weight O.2477 g

[%] Moisture By Volume

GAS SAMPLING FIELD DATA

Material Sampled For SC	2 \$ 5	ე	
Date 10/15/75			
Plant Stag		Location _	Boiler #1
Bar. Pressure 29.48	''Hg	Comments:	29.48 in. Hg ground 29.445 in. Hg stack
Ambient Temp 75	o _F		29.445 in.Hg stack
Run No			
Power Stat Setting			
Filter Used: Yes	No		
Operator Griscom Kl	lein		

Clock	Meter	Pitot	Orifice	Ten	peratu	res OF	es OF				
Time	(Ft. ³)	in. H ₂ 0	in H ₂ 0	Stack	Probe	Coil		inger			
		Δ P	∆ H			Oven	In	Out			
12:55	1689.162	0,03	0.1	540	235	158	105	70			
1:05	1692	0.04	0.1	550	278	183	135	61			
1:15	1694.8	0.04	0.1	565	275	180	130	3 ک			
1:25	1697.75	0.05	0.1	565	275	170	124	63			
1:35	1700,65	0.04	0.1	550	278	178	130	65			
1:45	1703.15	0.02	0.1	540	278	170	126	66			
155	1705,745										

Comments: 30,000 165 coal charged on 7-3 shift aug. 29.5 × 103 16/hr steam

GAS SAMPLING FIELD DATA

Material Sampled For	502 4	503
Date 10/20/75		
Plant Stag		Location Boiler #1
Bar. Pressure	''Hg	Comments: 29.505 in Hg. ground 29.465 in Hg. stack
Ambient Temp 75	o _F	29.465 in. Hg. stack
Run No		
Power Stat Setting		
Filter Used: Yes	No _	
Operator Griscom	Klein	

Clock	Meter	Pitot	Orifice	Tem	peratu	res OF		
Time	(Ft. ³)	in. H20	in H ₂ 0	Stack	Probe	Coil		nger
	 	ΔP	△ H				In	Out
11:10	1783,420	0.07	0,1	590	275	144	135	80
11:20	1785.6	0.05	0.1	575	325		160	70
11:30	1788.0	0.06	0.1	550	295		155	70
11:40	1790,1	0.05	0.1	570	310	168	148	69
11:50	1792,3	0.06	0.1	550	285		132	69
12:00	1794.4	0.055	0.1	530	275	166	124	68
12:10	1796.385					17/		
		4						
	12,965 CF							

Comments: 1. Could not get a zero reading on the pitot-apparently too much turbulence.

2. AP dropped off from 0.07 to 0.05 right after the operator stopped pulling askes.

GAS SAMPLING FIELD DATA

Material Sampled For <u>SO</u> 2	<u> \$50.</u>
Date 10/20	
Plant Stag	Location #1 Boiler
Bar. Pressure 29.5/ "Hg	Comments
Ambient Temp 75 OF	
Run No 2	
Power Stat Setting	
Filter Used: Yes No	
Operator Griscom Klein	

Clock	Meter	Pitot	Orifice	Ten	peratu	res OF		
Time	(Ft. ³)	in. H20	in H ₂ 0	Stack	Probe	Coil		nger
		AP	ΔΗ		 	<u> </u>	In	Out
12:35	1796.386	0.02	0.1	505	275	150	110	69
12:45	1798.4	0.04	0.1	570	275	155	135	65
12:55	1800.7	0.035	0.1	580	290		130	45
1:05	1803.1	0,035	0.1	550	290		125	65
1:15	1865,2	0.04	0.1	590	295		120	48
1:25	1807.3	0.03	0.1	560	305	155	120	69
1:35	1809,180							

Comments: 12.794/ CF

SOURCE TEST REPORT GENERAL MOTORS ASSEMBLY DIVISION ST. LOUIS, MISSOURI

BOILER NO. 2

TESTED BY: ROCKWELL INTERNATIONAL

R.W. Griscom

O.C. Klein

F.E. Littman

TABLE OF CONTENTS

		PAGE
1.0	SUMMARY	215
2.0	INTRODUCTION	216
3.0	PROCESS DESCRIPTION	217
4.0	PROCESS OPERATION	218
5.0	SOURCE TEST DESCRIPTION	219
6.0	SAMPLING AND ANALYTICAL PROCEDURES	222
	6.1 PARTICULATE MATTER	222
	6.2 NITROGEN OXIDE	225
	6.3 SULFURIC ACID MIST AND SULFUR DIOXIDE	225
	6.4 PARTICLE SIZE	228
7.0	RESULTS	231
8.0	DISCUSSION	236
	APPENDIX A: PARTICULATE CALCULATIONS	239
	APPENDIX B: FIELD DATA	252

TABLES

		PAGE
TABLE 1	SUMMARY OF RESULTS	232
TABLE 2	PARTICLE SIZE DISTRIBUTION	233
TABLE 3	HYDROCARBON ANALYSIS	235
TABLE 4	COMPARISON OF FLOW RATE DETERMINATIONS	237

FIGURES

		PAGE
FIGURE 1	SAMPLING LOCATION FOR BOILER NO. 2	220
FIGURE 2	OPERATOR POSITIONING SAMPLING UNIT AT TEST LOCATION	221
FIGURE 3	SUPPORTING STRUCTURE FOR SAMPLING EQUIPMENT	221
FIGURE 4	OPERATOR DETERMINING STACK GAS COMPOSITION WITH ORSAT APPARATUS	223
FIGURE 5	PARTICULATE SAMPLING TRAIN	224
FIGURE 6	OPERATOR EVACUATING FLASK FOR NITROGEN OXIDES TESTING	226
FIGURE 7	OPERATOR FILLING EVACUATED FLASK WITH STACK GAS SAMPLE	226
FIGURE 8	SULFURIC ACID MIST SAMPLING TRAIN	227
FIGURE 9	SAMPLING UNIT WITH ANDERSEN SAMPLER IN OVEN	229
FIGURE 10	ANDERSEN STACK SAMPLER	230
FIGURE 11	PARTICLE SIZE DISTRIBUTION/BOILER 2	234

1.0 SUMMARY

In conjunction with the RAPS project, a limited stack testing program is being conducted. This report details the results obtained on boiler no. 2 at the General Motors Assembly Plant in St. Louis, Missouri.

The stack testing included the following pollutants: SO_2 (sulfur dioxide), particulates, NO_{χ} (nitrogen oxides), H_2SO_4 (sulfuric acid mist) and hydrocarbons. Orsat analysis for CO_2 (carbon monoxide), and O_2 (oxygen) were also performed. Results of these tests are included in this report. Although these tests were not conducted to ascertain compliance with St. Louis standards, it is of interest that the particulate emissions are within the limits. The SO_2 emissions standards are not applicable for this time of the year, nor for an individual boiler in an installation.

We acknowledge and appreciate the excellent cooperation we obtained from the engineering department and the power plant personnel at General Motors.

2.0 INTRODUCTION

The current stack testing program is being conducted in conjunction with the emission inventory work for the St. Louis RAPS project. The emission inventory is being compiled using published emission factors. The stack testing is being conducted to evaluate the emission factors and to gather information for additional emission factors.

This stack test was conducted at the General Motors Assembly Plant in St. Louis, Missouri. Testing was performed on boiler no. 2 on 8,9 and 10 September 1975.

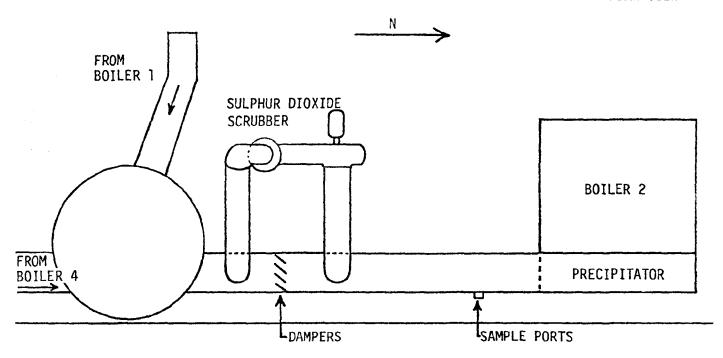
Boiler no. 2 is a coal-fired, 80,000 pounds per hour steam generating unit. The unit is equipped with a cyclone, mechanical precipitator. This boiler was sampled for total particulates, particle size, NO_χ , SO_2 , H_2SO_4 CO_2 and O_2 .

3.0 PROCESS DESCRIPTION

Boiler no. 2 was built by Union Iron Works and was installed in November 1952. It is equipped with a gravity fed spreader stoker. Steam pressure is maintained at approximately 165 psi. The firing rate is controlled to match the demands of the assembly plant. At shift changes the load drops off 20-25% for an hour or two. The capacity of this boiler is rated at 80,000 pounds of steam per hour.

This boiler is equipped with a Western Precipitation Multi-cyclone mechanical precipitator rated at 98% efficiency. Boiler no. 2 is an induced draft unit and uses a common stack with boilers 1, 3, and 4. The stack is of brick construction and is 225 feet tall and 13 feet inside diameter at the top.

This boiler and no. 4 boiler are equipped with caustic scrubbers for removing $S0_2$. These scrubbing units are in operation from October through March for compliance with the local St. Louis standards.


4.0 PROCESS OPERATION

Boiler no. 2 was tested 8 September to 10 September. During the testing period the boiler load remained fairly constant. Because of shift change, the load started to decrease between 2 and 2:30 PM. Testing was generally completed prior to 2 PM. Ashes were pulled on the boiler at approximately 11:30 AM and 1:30 PM each day.

5.0 SOURCE TEST DESCRIPTION

Boiler no. 2 was tested in the ductwork between the boiler and the stack and ahead of the takeoff for the $\rm SO_2$ scrubber. The sampling location and testing arrangement are illustrated in Figures 1, 2, and 3.

The duct at this point is 49 inches wide by 5 feet high. This location was between four and five diameters from the last bend in the duct. In accordance with EPA Standard Method 1, thirty-two sampling points were chosen, eight at each of four sampling ports. General Motors already had four, 3-inch pipe couplings installed for use as sampling ports.

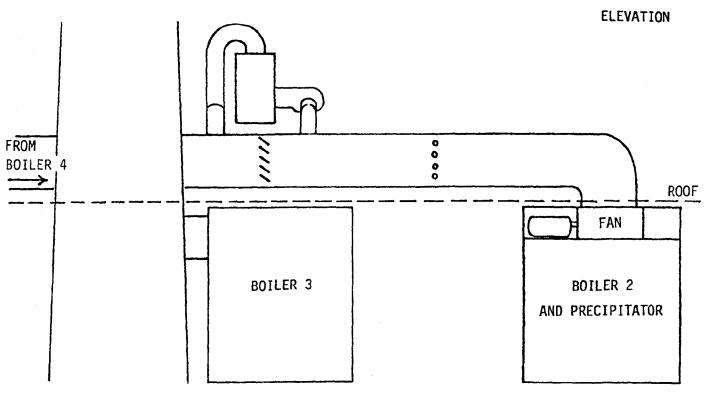


FIGURE 1 SAMPLING LOCATION FOR BOILER 2

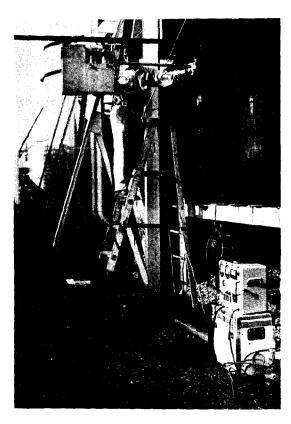


FIGURE 2

OPERATOR POSITIONING SAMPLING UNIT AT TEST LOCATION

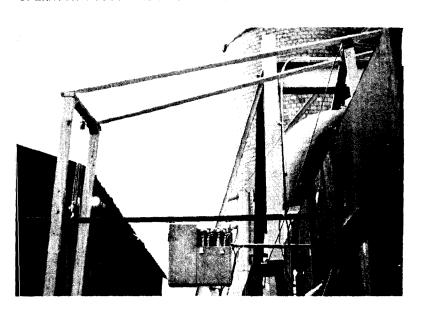


FIGURE 3
SUPPORTING STRUCTURE FOR SAMPLING EQUIPMENT

6.0 SAMPLING AND ANALYTICAL PROCEDURES

All testing was performed with sampling equipment from Joy Manufacturing, designed for isokinetic sampling to enable testing by EPA standard methods.

Gas flow rates were calculated using the observed gas temperature, molecular weight, pressure and velocity, and the flow area. The gas velocity was calculated from gas velocity head measurements made with an S-type pitot tube and a magnehelic pressure gauge, using standard method 2.

Moisture contents were determined by passing a measured amount of gas through chilled impingers containing a known volume of deionized water, measuring the increase in volume of the impingers liquid and the increase in weight of silica gel used to finally dry the gas, and calculating the amount of water vapor in the sample from this increase and the measured amount of gas.

The stack gas concentrations of ${\rm CO}_2$, oxygen, ${\rm CO}_3$, and nitrogen by difference were measured with a standard Orsat apparatus. This method is shown in Figure 4. These concentrations and the moisture content were used to determine molecular weight of the stack gas.

5.1 PARTICULATE MATTER

Standard method 5 was used for determining particulate emissions with the exception that the probe and oven were operated at $300-350^{\rm O}$ F. Measured stack gas samples were taken under isokinetic conditions. The samples were passed through a cyclone, fiberglass filter, impingers, pump, a meter and an orifice as shown in Figure 5.

The total particulate matter collected in each test was the sum of the filter catch plus material collected ahead of the filter in the sampling train. The amount of filter catch is determined by the difference in the weight of the filter before and after the test, after dessicating. The particulate matter from other portions of the train was determined by rinsing the probe, cyclone and all glassware ahead of the filter with acetone, evaporating to dryness and weighing.

-222-

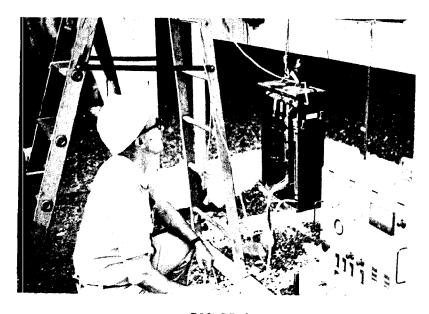


FIGURE 4

OPERATOR DETERMINING STACK GAS COMPOSITION

WITH ORSAT APPARATUS

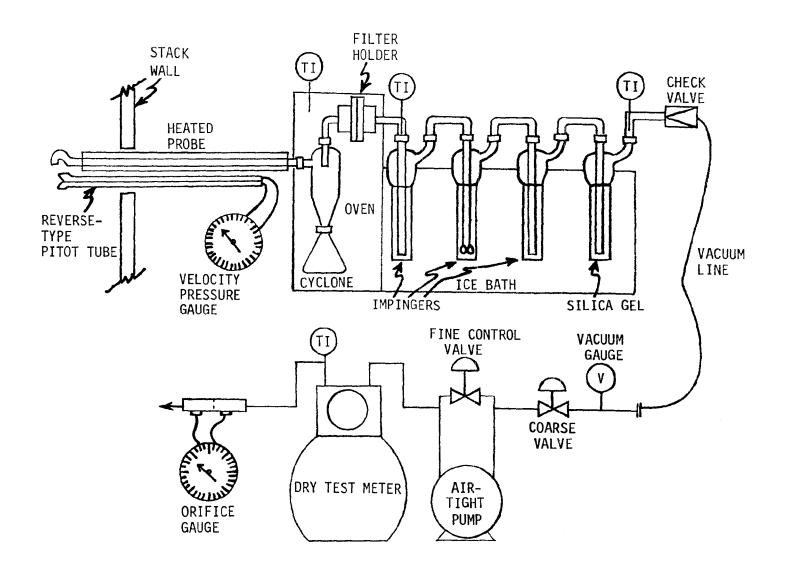


FIGURE 5
PARTICULATE SAMPLING TRAIN

6.2 NITROGEN OXIDE

Using method 7, gas samples were withdrawn from the stack into evacuated 2-liter flasks containing a dilute solution of hydrogen peroxide and sulfuric acid. The hydrogen peroxide oxidizes the lower oxides of nitrogen (except nitrous oxide) to nitric acid. The resultant solution is evaporated to dryness and treated with phenol disulfonic acid reagent and ammonium hydroxide. The yellow trialkali salt of 6-nitro-1-phenol-2, 4-disulfonic acid is formed, which is measured colorimetrically. The field procedure is shown in Figures 6 and 7.

6.3 SULFURIC ACID MIST AND SULFUR DIOXIDE

The Shell method was chosen for this determination due to uncertainties which exist about the validity of the results using method 8.* A gas sample is drawn from the stack using a heated probe and passed through a water-cooled, coil condenser maintained below the dew point of sulfuric acid at $140^{\circ}-194^{\circ}F$, followed by a fritted glass plate and then passed through a chilled impinger train with two impingers containing an isopropanol and hydrogen peroxide mixture and followed by an impinger containing silica gel for drying. This setup is shown in Figure 8.

The condensed sulfuric acid mist in the coil condenser is water washed from the condenser. The final determination is made by titrating the solution with barium chloride, using a thorin indicator. Isopropanol must be added to the solution to be titrated to improve the rapidity with which the barium sulfate precipitates during titration.

Sulfur dioxide in the gas sample is oxidized to sulfur trioxide in the impingers containing the hydrogen peroxide. Sulfur dioxide is then determined by titrating the hydrogen peroxide solution with barium chloride, using a thorin indicator.

*Lisle, E.S. and J.D. Sensenbaugh, "The Determination of Sulfur Trioxide and Acid Dew Point in Flue Gases," Combustion, Jan. 1965.

Goksoyr, H. and K. Ross, "The Determination of Sulfur Trioxide in Flue Gases," J. Inst. Fuel, No. 35, 177, (1962)

FIGURE 6

OPERATOR EVACUATING FLASK FOR NITROGEN OXIDES TESTING



FIGURE 7

OPERATOR FILLING EVACUATED FLASK WITH STACK GAS SAMPLE

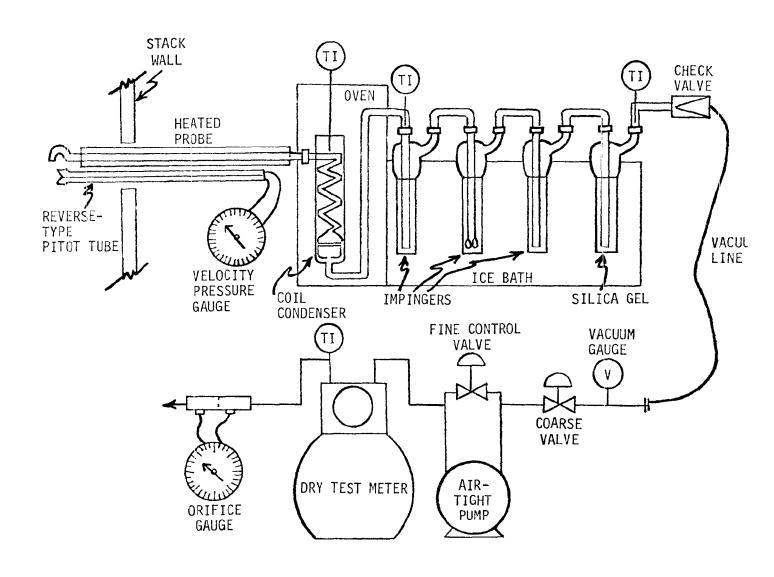


FIGURE 8
SULFURIC ACID MIST SAMPLING TRAIN

6 4 PARTICLE SIZE

An Andersen fractionating inertial impactor is used for the determination of particle size in the range of approximately 0.5 to 10.0 microns. The sampling head is placed in the oven after the heated sampling probe and a sample of stack gas is drawn isokinetically through the sampler. The particulate matter is fractionated and collected on the plates inside the sample head and a determination is made by the difference in weight of the plates before and after testing. Results are expressed for particles of unit density. The sampling arrangement is shown in Figure 9. The sampling head assembly is shown in Figure 10.

6.5 HYDROCARBONS

Gas samples were withdrawn from the stack using a vacuum pump to fill Tedlar bags. The composition of the hydrocarbons was determined by gas chromatograph.

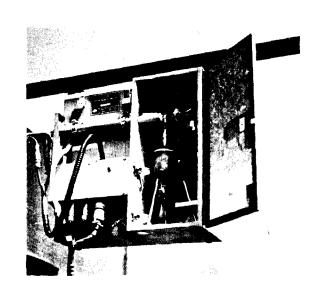


FIGURE 9

SAMPLING UNIT WITH ANDERSEN SAMPLER IN OVEN

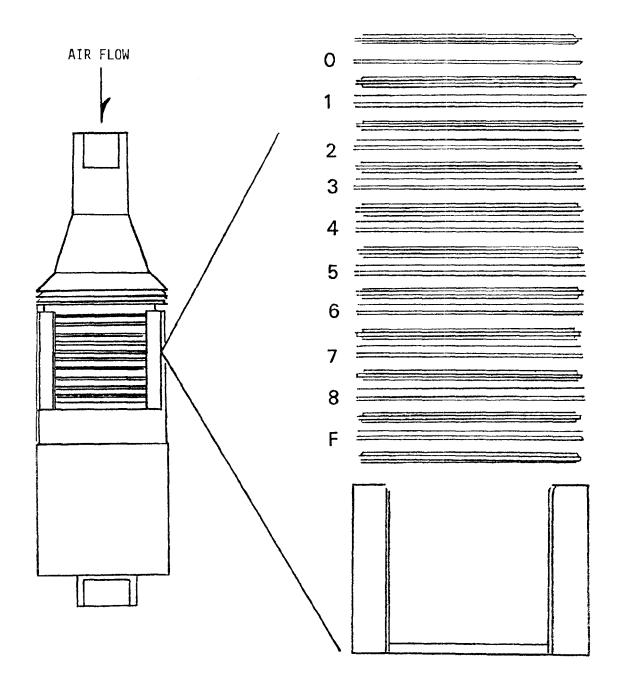


FIGURE 10
ANDERSEN STACK SAMPLER

7.0 RESULTS

The results obtained from this test are summarized in Table 1. As explained in the following discussion, the pollutant emissions are based on calculated, rather than measured, flow rates. Although these tests were performed for research purposes and not as part of compliance procedures, standard EPA methods were used. Due to the seasonal nature of the local SO_2 regulations the only applicable standard is for particulates. It is of interest to note that this boiler is within the standard: 0.28 lb/ $\mathrm{10}^6$ Btu compared to the standard of 0.40 lb/ $\mathrm{10}^6$ Btu.

In addition to measuring particulate loadings, a particle size analysis was made using an Andersen impactor. The results are shown in Table 2 and Figure 11.

The results of two samples taken on 8 September for hydrocarbons were:

Carbon Monoxide:	26.80	and	23.04	ppm
Methane:	0.23	and	0.25	ppm
Total Hydrocarbons, as CH _a :	1.31	and	2.30	mgg

The major components of several hydrocarbon samples taken on 8 and 9 September are given in Table 3.

TABLE 1 SUMMARY OF RESULTS

Date	9/8	9/9	9/10		
Stack Flow Rate - SCFM * dry	27,041	26,633	26,633		
% Water Vapor - % Vol.	8.34	7.3 8			
% CO2 - Vol % dry	11.16	10.65		:	
% 0 ₂ - Vol % dry	8.37	9.25			
% Excess air @ sampling point	64.2	76.72			
SO ₂ Emissions - 1bs/10 ⁶ Btu		5.81	6.14		
NO _X Emissions - 1bs/10 ⁶ Btu	0.49	0.48			
H2S04 Mist - 1bs/10 ⁶ Btu		0.19	0.16		
Particulates Probe, Cyclone, & Filter Catch					
lbs./hr.	20.41	20.03			
lbs/10 ⁶ Btu	0.25	0.24			
Total Catch					
lbs./hr.					
1bs/10 ⁶ Btu					
	110.0				
% Isokinetic Sampling	119.3	110.8			

^{*70°} F, 29.92" Hg

TABLE 2
PARTICLE SIZE DISTRIBUTION

Test:	GM-Andersen #1 Oven Temperature = 300 ⁰ F	Date:	9/10
Plate	Filter Net (m	g) % Of Total	ECD (Microns)
1	1.1	1.43	16.8
2	1.7	2.21	10.7
3	3.5	4.55	7.1
4	4.7	6.10	4.9
5	4.6	5.97	3.1
6	4.6	5.97	1.6
7	3.5	4.55	0.99
8	5.3	6.88	0.66
Backup	Filter <u>48.0</u>	62.34	<0.66
Total	77.0	100.00	
Test:	GM-Andersen #2 Oven Temperature = 370.9°F	Date:	9/11
Plate	Filter Net (m	g) % Of Total	ECD (Microns)
7	1.2	2.39	17.3
2	1.4	2.78	10.9
3	3.3	6.56	7.3
4	5.3	10.54	5.0
5	4.8	9.54	3.2
6	4.5	8.95	1.7
7	3.2	6.36	1.0
8	3.8	7.55	0.68
Backup	Filter 22.8	45.33	<0.68

100.00

50.3

Tota1

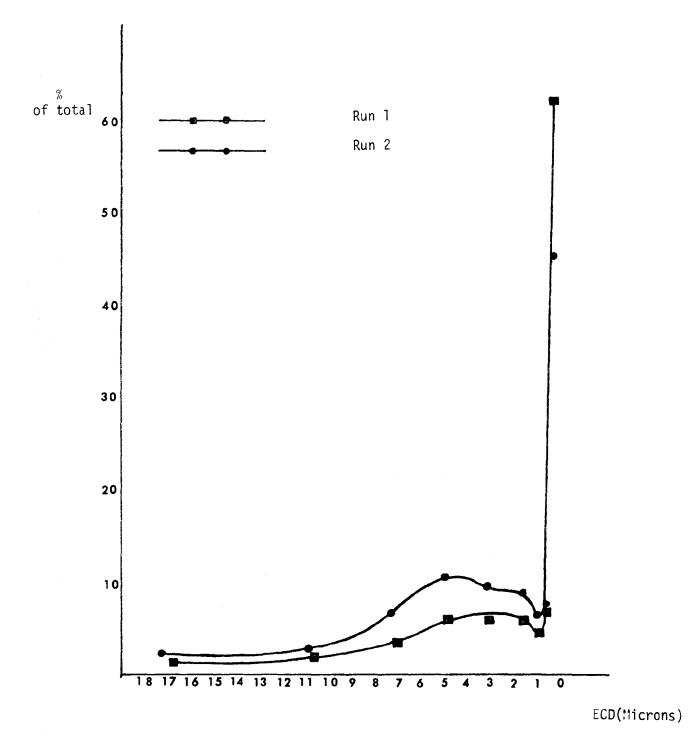


FIGURE 11
PARTICLE SIZE DISTRIBUTION
GENERAL MOTORS
BOILER 2

TABLE 3
HYDROCARBON ANALYSIS
(Concentrations in ppb as Carbon)

Compound

	9/8	9/8	9/9	9/9
Ethane-Ethylene	51.7	70.7	48.0	70.3
Acetylene	15.8	29.7	33.7	25.1
Propylene	3.1	7.1		1.7
Propane	29.3	20.2	22.1	33.7
Isobutane	20.3		14.8	25.6
1-Butene & Isobutylene		52.1		29.9
Butane	62.4	72.0	16.9	21.5
Pentane	2.1	9.1	7.4	22.3
Isopentane	6.7	9.2	4.3	21.5
Hexane	52.1	31.7	136.7	95.2
Benzene & 2,4-Dimethyl Pentane	66.3	53.5	14.6	18.7
1-Methylcyclopentane & 2M-C3-Hexane	21.2	37.9		
Toluene	143.4	62.6	76.5	115.3
Ethyl Benzene	58.7	65.2	83.1	100.1
Meta, Para - Xylene	130.3	141.8	182.6	180.4
Ortho-Xylene	29.3	30.4	38.4	40.9

8.0 DISCUSSION

Flow determinations were made in accordance with EPA Standard Method 2, using an S-type pitot tube. This method gives correct results as long as the pitot tube is positioned normally to the flow of gases. This is no problem as long as the flow of gases is laminar and parallel to the walls of the duct. However, if the flow is turbulent or vortex-type, the readings obtained are incorrect, with a positive bias (too high). The existence of a turbulent condition can be ascertained by turning the pitot tube 90° on its axis. A zero reading should then result. If no zero reading is obtained, the results are open to guestion.

In the duct being tested, the existence of turbulence was evident by the fact that a zero reading was not obtained with a 90° rotation of the probe.

Under conditions when satisfactory flow measurements cannot be obtained, a stoichiometric calculation of flow rates can be made, based on fuel consumption, fuel composition, combustion rate and excess air. As a check on the correctness of the assumption, the mass flow of $\rm SO_2$ can be calculated based on gas flow and $\rm SO_2$ concentration on one hand, and fuel consumption and sulfur analysis on the other. The conversion of sulfur in coal to $\rm SO_2$ is straightforward and occurs with 95% efficiency.

To determine the amount of coal consumed and Btu input, coal scale readings were checked against the actual steam production. This ratio was also compared with a ratio determined by power plant supervision over several previous months. On 10 September the coal scale readings averaged 7314 lbs/hour and the steam flow averaged 66,910 pounds of steam per hour. This gives a ratio of 9.15 pounds of steam per pound of coal. The ratio used by plant supervision is 9.3. Since these two ratios are so close, the ratio of 9.3 determined by plant supervision was the one used for all determinations of coal consumption during the test.

Table 4 shows the comparison of the results obtained by the two methods.

TABLE 4

COMPARISON OF FLOW RATE DETERMINATIONS

and a second	FLOW RATE	E, SCFH	<u> 50</u> 2 (1b		
Date	Measured	Calculated	AP-42*	Calculated Flow	Avg. Measured Flow
9/8	1,622,490	1,403,921			
9/9	1,598,005	1,434,847	478.5	472.0	545.9
 9/10		1,396,329	480.0	501.3	578.1

 $[\]star$ Compilation of Air Pollutant Emission Factors, EPA Publ. No. AP-42

STOICHIOMETRIC FLOWRATE CALCULATIONS BOILER #2

Coal Composition

```
Moisture 7.71%
Ash
          10.895
          3.465 \div 32 = 0.108 \times 1 = 0.108
S
С
         62.0 \div 12 = 5.167 \times 1 = 5.167
          5.0 \div 2 = 2.500 \times 5 = 1.25
H_2
          1.0 \div 28 = 0.036
N_2
02
           9.9 \div 32 = 0.309 x-1 =-0.309
                                       6.216
@ 70.46% Excess Air
                                      4.380
                                     10.596
N_2 = 3.76 \times 0_2
                                   = 39.840
```

Mols Flue Gas =
$$CO_2$$
 + SO_2 + N_2 + EA + N_2 = 5.167 + 0.108 + 0.036 + 4.38 + 39.84 = 49.53 mols/100#

On 9/9 7268.8 lb/hr coal during SO_2 test 49.53 x 386.7 x 72.688 = 1,392,211.5 SCFH

On 9/9 7491.4 lb/hr coal during particulate test $49.53 \times 386.7 \times 74.914 = 1,434,846.6$ SCFH

9/8 7329.9 1b/hr 1,403,921.1 SCFH

9/9 1,434,846.6 SCFH Part. 1,392,211.5 SCFH SO₂

9/10 1,396,329.4 SCFH SO₂ 1,363,385.8 SCFH Andersen

APPENDIX A PARTICULATE CALCULATIONS

PARTICULATE CALCULATIONS

Volume of dry gas sampled at standard conditions - 70° F, 29.92 "Hg

$$Vm_{s}td = \left(\frac{Vm}{CF_{m}}\right)\left(\frac{Pm}{Pstd}\right)\left(\frac{Tstd}{Tm}\right) = 0.0334\left(\frac{Vm}{1.021}\right)\left(\frac{PB}{13.6} + \frac{\Delta H}{13.6}\right)$$

 Vm_{std} = Volume of dry gas sampled at standard conditions, ft^3

 $Vm = Meter volume sampled, ft^3$

1.021 = Meter correction factor

 P_m = Meter pressure, barometric pressure, P_R , plus orifice pressure, ∆H, in. Hg.

Pstd = Standard pressure, 29.92 in. Hq.

Tstd = Standard temperature, 530° R or 70° F

Tm = Meter temperature, 530° R for compensated meter

CFm = Meter correction factor

Volume of water vapor at standard conditions

$$V_W = V_{1c} \left(\frac{\rho H_{20}}{MH_{20}} \right) \left(\frac{R \text{ Tstd}}{P \text{std}} \right) \qquad \frac{1b.}{454 \text{ gm.}} = 0.0474 \times V_{1c}$$

Vw = Volume of water vapor at standard conditions, ft³

V₁ = Volume of liquid collected in impingers and silica gel, ml. ρ H₂O = Density of water, lg/ml.

M H_2O = Molecular weight of water, 18 lb/lb mol

R = Ideal gas constant, 21.83 in. Hg. - cu. ft./lb-mol - 0 R

$$\frac{\% \text{ Moisture in Stack Gas}}{\% \text{ M} = 100 \times \frac{\text{Vw std}}{\text{Vmstd} + \text{Vwstd}}}$$

Average molecular weight of dry stack gas

$$MW_{D} = \left(\%CO_{2} \times \frac{44}{100}\right) + \left(\%O_{2} \times \frac{32}{100}\right) + \left(\%N_{2} \times \frac{28}{100}\right)$$

Molecular weight of stack gas

$$MW_{W} = \left(\frac{100 - \% M}{100} \times MW_{D}\right) + \left(\frac{\%M}{100} \times 18\right)$$

Stack velocity at stack conditions

$$V_s = 85.48 \times C_p \left(\frac{Ts \times \triangle P \text{ avg.}}{Ps \times MW_W} \right)^{-1/2}$$

 $V_s = stack \ velocity, fps.$

85.48 = pitot constant,
$$\frac{ft}{sec}$$
. $\left(\frac{1b}{1b} \cdot \frac{1b}{nols - oR}\right)^{1/2}$

 $C_{\rm p}$ = pitot coefficient, dimensionless

 $T_s = average stack temperature, OR$

 $P_{\rm S}$ = stack pressure, barometric pressure plus static pressure, in. Hg.

 ΔP Avg = average differential pressure, in. H_2^0

Stack gas volume at standard conditions

$$Qs = 3600 \left(1 - \frac{\%M}{100} \right) V_s \quad A \left(\frac{Tstd}{Ts} \quad \frac{Ps}{Pstd} \right)$$

 Q_s = stack gas volume flow rate, SCF/hr

A = stack cross sectional area, ft^2

3600 = seconds per hour

$$Qs' = Q_s \div 60 = SCFM$$

Per cent isokinetic sampling

$$I = 1.667 \left[(0.00267) \quad V_{1c} + \frac{V_{mc}}{T_{m}} \left({}^{P}_{B} + \frac{\Delta H}{13.6} \right) \right] \quad T_{s}$$

$$\Theta \quad V_{s} \quad {}^{P}_{s} \quad A_{n}$$

I = per cent isokinetic sampling

1.667 = minutes per second, X 100

$$0.00267 = \frac{\rho_{H2}0}{M_{H2}0} \quad X \quad R \quad X \quad \frac{1b}{454 \text{ gm}}.$$

 Θ = sampling time, min.

 A_n = cross sectional area of sampling nozzle, ft²

Particulate emission

$$c_s = 2.205 \times 10^{-6} \left(\frac{M_n}{Vm_{std}}\right)$$

 C_s = particulate emission, lb/scf

$$2.205 \times 10^{-6} = pounds per mg.$$

Mn = total mass of particulate collected, mg.

$$C_E = C_S \times Q_S = 1b/hr$$

 C_F = particulate emission per hour

$$C_{H} = C_{F} \div H$$

 $C_{\mbox{\scriptsize H}}$ = particulate emission, lb. per million BTU

H = heat input, million BTU per hour

Excess air at sample point

% EA =
$$\frac{100 \times \% 0_2}{(0.266 \times \% N_2) - \% 0_2}$$

- % EA = excess air at sample point, %
- 0.266 = ratio of oxygen to nitrogen in air by volume

PARTICULATE SAMPLING CALCULATIONS

Test: Blr. 2 - Run 1

Date: 9/8/75

Material collected (mg)

Filter Catch Dry Catch Acetone Wash

= 294.5 TOTAL

Gas Volume
$$Vm_{std} = 0.0334 \left(\frac{V_m}{CF_m}\right) \left(P_B + \frac{H}{13.6}\right)$$

$$0.0334 \left(\frac{44.74}{1.01}\right) \left(30.16 + \frac{0.46}{13.6}\right) = \frac{44.672}{13.6} \text{ SCF}$$

Volume of water vapor $Vw = 0.0474 \times V1c$

$$0.0474 (85.8 ml) = 4.067$$
 SCF

 $\frac{\% \text{ Moisture}}{\% \text{ Moisture}} \qquad \% \text{M} = 100 \text{ X} \frac{\text{Vwstd}}{\text{Vmstd}} + \text{Vwstd}$

$$100 \times \frac{(4.067)}{(44.672) + (4.067)} = 8.34 \%$$

Molecular Weight of dry stack gas

 $MW_D = \%C02 \times 0.44 + \%02 \times 0.32 + \%N2 \times 0.28$

 $(1/1/6 \times 0.44) + (8.37 \times 0.32) + (80,47 \times 0.28) = 30.12$

Molecular Weight of stack gas

$$MW_W = \frac{100 - \%M}{100} \times MW_D + \frac{\%M}{100} \times 18$$

$$\left[\frac{100 - 8.34}{100} \times 30.12\right] + \left[\frac{8.34}{100} \times 18\right] = \frac{29.125}{100}$$

PARTICULATE SAMPLING CALCULATIONS

Date: 9/8/75

Test: Blr. 2 - Run I

Stack Velocity Vs = 85.48 x C_p
$$\left[\frac{Ts \times P \text{ avg}}{P_s \times Mw_w}\right]$$
 1/2

85.48 x (0.85) $\left[\frac{883.7 \times 0.299}{30.13 \times 29.125}\right]$ 1/2 = 39.869 fps

Stack Gas Volume Qs = 3600 $\left(1 - \frac{2M}{100}\right)$ (Vs)(A) $\left(\frac{Tstd}{Ts}\right)$ $\left(\frac{P_s}{Pstd}\right)$

3600 $\left[1 - \frac{(8.34)}{100}\right]$ (39.869) (20.42) $\frac{530}{(883.7)}$ $\frac{(30.13)}{29.92}$ = 1,622,489.7 SCFH

Stack Emission Rate
$$C_s = 2.205 \times 10^{-6} \left(\frac{M_n}{V_{MStd}} \right)$$

2.205 x 10⁻⁶ $\left(\frac{294.5}{44.672} \right) = \frac{1.454 \times 10^{-5}}{44.672}$ lb/scf

$$C_E = C_S \times Q_S = (1.454 \times 10^{-5})$$
 $(1,403,921) = 20.41$
 $C_H = C_E \div H = (20.41) = 0.25$
 $(1,403,921) = 10/10^6 \text{ Btu}$

Isokinetic Variations I = 1.667
$$\left[(0.00267) V_{1c} + \frac{Vm}{Tm} \left(P_B + \frac{\Delta H}{13.6} \right) \right]_{TS}$$

$$\frac{\theta V_S P_S A_n}{530} \left(30.16 + \frac{0.46}{13.6} \right) \left(883.7 \right) = 1/9.3\%$$

$$(96) (34.50) (30.13) (3.407 \times 10^{-1})$$

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 0_2}{(0.266 \times \% \ N_2) - \% \ 0_2}$$

* Stoichiometric Q_s = 1,403,921.1 scph

 $V_s = \frac{1,403,921}{1,622,490} \times 39.869 = 34.50 \text{ fps}$

-245-

PARTICULATE SAMPLING CALCULATIONS

Material collected (mg)

Gas Volume
$$Vm_{std} = 0.0334 \left(\frac{V_m}{CF_m}\right) \left(P_B + \frac{H}{13.6}\right)$$

$$0.0334 \left(\frac{42.61}{1.01}\right) \left(30.14 + \frac{0.40}{13.6}\right) = \frac{42.51}{13.6}$$
SCF

$$\frac{100 \times (3.385)}{(42.511) + (3.385)} = \frac{7.38}{\%}$$

Molecular Weight of dry stack gas

$$MW_D = \%C02 \times 0.44 + \%02 \times 0.32 + \%N2 \times 0.28$$

$$(10.65 \times 0.44) + (9.25 \times 0.32) + (80.1 \times 0.28) = 30.07$$

Molecular Weight of stack gas

$$MWW = \frac{100 - \%M}{100} X MW_D + \frac{\%M}{100} X 18$$

$$\left[\frac{100 - 7.38}{100} \times 30.07\right] + \left[\frac{7.38}{100} \times 18\right] = \frac{29.192}{100}$$

PARTICULATE SAMPLING CALCULATIONS

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 0_2}{(0.266 \times \% \ N_2) - \% \ 0_2}$$

**Stoichiemetric $Q_s = 1,434,847$
 $V_s = \frac{1,434,847}{1.598.005} \times 39.445 = 35.42 \% \qquad -247-$

STOICIOMETRIC FLOWRATE CALCULATIONS

Boiler #2

Coal Composition	1	Mols/100#	Mols 0 ₂ required
Ash	7.71% 10.895 3.465 ÷ 32 =	0.108 x 1	= 0.108
S C H N2 N2 O2	3.465 ÷ 32 = 62.0 ÷ 12 = 5.0 ÷ 2 =	5.167 x l 2.500 x .5	= 5.1 67 = 1.25
N2 N2	1.0 ÷ 28 = 9.9 ÷ 32 =	0.036	
02	9.9 + 32 -	0.309 X -1	6.216
@ 70.46% Exces	s air		4.380 10.596
$N_2 = 3.76 \times 0_2$	<u>.</u>		= 39.840
Mols Flue Gas	= CO ₂ + SO ₂ + N ₂ + 5.167 + 0.108 ² +	$EA + N_2 = 0.036 + 4.38 + 39.$	84 = 49.53 mols/100#
on 9/9 7268.8	lb/hr coal during	SO ₂ test	
49.53 x 386.7	x 72.688 = 1,392,2	11.5 SCFH	
on 9/9 7491.4	lb/hr coal during	particulate test	
49.53 x 386.7	x 74.914 = 1,434,8	46.6 SCFH	

${\rm NO}_{\times}$ EMISSION DATA

	0/0/
Date	9/8/75

Run No.	1	2	3	4	5	6	
Time	1150	1200	1230	1230	1325	1330	
ug NO ₂	865	865	865	815	760	760	
T _i - Initial Flask Temp, ^O F	90	90	90	90	90	90	
T _f - Final Flask Temp, ^O F	95	95	95	95	95	95	
V _{fc} - Flask Volume, ml.	2047	2038	2039	2028	2025	2052	
P _i - Initial Flask Pres, "Hg	2.5	2.5	2.5	2,5	2,5	2,5	
P _f - Final Flask Pres, "Hg	30.16	30,16	30.16	30.16	30.16	30,16	
1b/scf NO ₂ ×10 ⁻⁵	2,97	2,98	2.98	2.82	2.64	2.60	
1b/10 ⁶ Btu NO ₂	0,51	0,51	0.51	0,48	0.45	0,45	

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/ml} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

 $NO_{\mathbf{X}}$ EMISSION DATA

Date 9/9/75

Run No.	/	2	3	4	5	6	7	8
Time	0910	0912	1008	1010	1040	1042	1240	1245
μg NO ₂	970	1020	710	760	760	760	760	760
T _i - Initial Flask Temp, ^O F	90	90	90	90	90	90	90	90
T _f - Final Flask Temp, ^O F	95	95	95	95	95	95	95	95
V _{fc} - Flask Volume, ml.	2047	2038	2639	2028	2025	2052	2052	2056
P _i - Initial Flask Pres, "Hg	2.5	2.5	2.5	2.5	2,5	2,5	2.5	2.5
P _f - Final Flask Pres, "Hg	30.16	30.16	30.16	30.16	30.16	30.16	30.16	30.16
lb/scf NO ₂ ×10 ⁻⁵	3.33	3.52	2.45	2.63	2.64	2.60	2.60	2.60
1b/10 ⁶ Btu NO ₂	0.57	0.60	0.42	0.45	0,45	0.45	0.45	0.45

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/ml} \left(\frac{\mu g NO_2}{Vsc} \right) = 1b/scf NO_2$$

H₂SO₄ MIST and SO₂ EMISSION DATA

Date	9/9	9/9	9/9	9/10	9/10	9/10
Run No.	/	2	1#2	1	2	1#2
V _{mc} -Meter Volume, Ft ³	7,513	6,923	14,436	10,339	8,899	19,238
Vmstd-Meter Volume, Std. Cond.	7,565	6.971	14,536	10.376	8,931	19,307
°B-Barometric Pressure, "Hg	30.14	30,14	30,14	30,04	30,04	30.04
ΔH-Avg. Orifice Pres. Drop, "H ₂ O	0.1	0.1	0,1	0.1	0.1	0.1
V _t -Vol. of Titrant, ml.	8.4	5,9	27.99	9.8	6,8	3 9. 33
$ m Y_{tb} ext{-Vol.}$ of Titrant for Blank, ml.	hil	nil	nil	nil	nil	ni/
Vscln-Vol. of Solution, ml.	100	100	250	100	100	250
V _a -Vol. of Aliquot, Titrated, ml.	10	10	1	10	10	1
1b/scf H ₂ SO ₄ × ₁₀ -6	12,00	9,14		10.20	8.22	
16/10 ⁶ Btu H ₂ SO ₄	0.21	0.16		0.17	0.14	
1b-scf S02 ×10-4			3,39		3,59	
]b/10 ⁶			5.81		6.14	

Vmstd = 0.0334
$$\frac{\text{(Vm)}}{\text{CF}_{\text{m}}}$$
 $\left(P_{\text{B}} + \frac{\Delta H}{13.6}\right)$
 CF_{m} = Meter correction factor

CH2SO4 =
$$\left(1.08 \times 10^{-4} \frac{1b-1}{g-m1}\right)$$
 $\left(V_t - V_{tb}\right)$ $\left(\frac{N}{V_t}\right)$ $\left(\frac{V_{soln}}{V_t}\right)$ = 1b/scf $\frac{N}{V_t}$ = 0.01 Normal Barium Perchlorate

$$c_{S02} = \left(7.05 \times 10^{-5} \frac{1b-1}{g-m1}\right) \left(V_t - V_{tb}\right) \left(\frac{N}{V_a}\right) = \frac{V_{soln}}{V_a} = \frac{1b}{scf}$$

APPENDIX B FIELD DATA

SUPPLEMENTARY PROCESS DATA FOR POWER PLANTS

Date	9/8	9/9	9/10	
Net Unit Load - MW				
Average Steam Load - 10 ³ lb/hr				
Boiler Heat Input ×10 6 BTu/	hr 82.0	83.8/81.3	81.6/79.6	
Fuel Burning Rate - lb/hr				
Fuel Heating Value - BTU/lb	11187			
Fuel Sulfur Content - %	3,465			
Fuel Ash Content - %	10.895			
Fuel Moisture Content %	7.71			

9/8
use 82.0 × 10 6 Btu/hr

	particulates + Nox	9/9 for so2 \$.	503
9:00 AM	70×103 lb/hr steam	11:30 70×1	0 ³
9:30	70	12:00 67	
10:00	סר	12:30 70	
10:30	68	1:00 71	
11:00	7 <i>0</i>	1:30 69	
11:30	70	2:00 63	
	69.67×103 15/4r	2:30 63	
÷9.	3 = 7491.4 16/hr coal	67.6×	103 15/hr
	87= 83,8 x10 Btu/Lr	÷9,3= 726 ×11187= 81	1.3 ×106 Btu/hr input

ORSAT FIELD DATA

Location	Ger	eral	Motors	- St. Louis Comments:
Date	9/8	9/9	, 9/10	
Time				
Operator	Kle	in		

Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
9/8	10.7	8.7	0
1105	11.8	8.2	0
1315	11.0	8.2	0
9/9	10.5	8.9	0
0950	10,8	9.6	0
•			
9/10	10.3	9,9	0
1025	11.4	9.2	0
1315	11. 2	8.8	0

Probe Tip Dia., In. 38 -> //4 Probe Length 5 ft a lass Heater Box Setting OF 4 Probe Heater Setting S Assumed Moisture % /0 Ambient Temp OF 85 Avg. AH Bar, Press. "Hg _ Avg. AP Read and record at the start of each test point. PARTICULATE FIELD DATA
VERY IMPORTANT - FILL IN ALL BLANKS Location # & BoneR Meter A H@ 1,022 21/8/15 Plant GMAD Sample Box No. Meter Box No. Run No. Operator C Factor

(335%)

																			_
Stack Temp. o _F		390	420	0440	440	440	435	0440	0440		3/0	420	430	430	430	740	05 /	435	
Stack Press. In. Hg.	0 7 H	4.0-																	
Probe Temp o _F		340	340	300	330	335	370	340	310		3/5	320	335	335	345	375	365	350	
Box Temp o _F		310	335	290	315	330	350	350	350		340	330	335	335	340	340	345	350	
Pump Vacuum In. Hg.	Gauge			4.0														5.5	
	Inlet Outlet	80	63	70	80)	S S	66	<i>©</i>	89		08	75	72	72	72	73	72	70	
Impinger ^O F Temp.	Inlet	091	210	190	220	245	260	270	275		215	260	245	260	250	255	260	265	
се ДН 0	Actua1	1.15	<i>5'1</i>	6,48	250	25.0	644	0,65	29.0		0,35	0.35	0.25	~; 0	~ 0	٥, ٢	30 50 30	Ċ.	
Orifice AH in H20	Desired Actual	- 15	1.4	84.0	55'0	550	/h/n'0	590	5910		25,0	55,0	0,25	2.0	0.5	200	97.0	\$ \frac{1}{2} \fra	
Pitot in H20 &P		0,18	0.21	0.35	4.0	4.0	56.0	9.50	o N		0.25	57.0	0	6.14	ž O	0.12	0.35	o o	
Dry Gas Meter, CF		1219.490	1222	1225	9221	1227.5	1229,4	1230,8	1232. 2		1233.8	1235.0	1236.3	1237,4	125819	1.239.4	4.04	61/121	シント
Clock		(0:37	10:40	01:11	11:13	11:16	11:19	11:22	11;25	11:28	11:45	11:48	11:51	45:11	1:37	8:2	12103	30:21	17:53
Point		<i>(-)</i>	1-2	1-3	1-4	S-1	9-1	1-7	∞ <u>+</u>	} \$0	1-2	2-2	2.3	7-7	2.5	9·2	3.7	⊗ ~	ت غ
		-2	55-	->	> 040	- 2	\(\frac{1}{2}\)	nazle											

-255-

12:23 1243.50 0.25 0.34 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.55 0.35 0.4	Inlet Outlet 95 85 10 13 210 70 270 70 270 70 270 70 270 270		- I		In Ha	
12:23 1243.50 0.25 0,34 0.34 12:26 1245 0.25 0.24 0.34 0.34 12:29 1246. 0.12 0.2 0.3 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.12 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.55 0.15 0.15 0.15 0.15 0.15 0.4		Gauge) L	I,	S11: 118) T
12:26 1245 0.25 0.34 0.34 0.34 0.34 0.34 0.34 0.35 12:32 1246. 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.			335	270		360
12:29 1246, 0, 2 0, 3 0, 3 0, 3 12:32 1247, 4 0, 1 0, 2 0, 3 0, 3 0, 3 12:35 1249, 6 0, 16 0, 2 0, 2 0, 2 0, 1 0, 3 0, 1 0, 4 0, 4 0, 4 12:34 0, 55 0, 15 0, 45 0, 45 0, 45 1:04 1253, 4 0, 3 0, 45 0,			335	315		420
12:32 1247.4 0, 2 0, 3 0, 3 0, 3 0, 2 0, 1 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 4			335	335		420
12:35 1246.5 0.16 0.2 0.2 12:38 1246.6 0.16 0.2 0.2 12:41 1250.1 0.3 0.4 0.4 12:47 1252.0 0.55 0.75 0.75 1:01 1253.410 0.4 0.55 0.55 1:04 1255.2 0.32 0.45 0.45			335	335		430
12:38 1249,6 0.16 0.2 0.2 12:41 1250.1 0.3 0.4 0.4 12:44 1252.0 0.55 0.75 0.75 12:47 1253.41 0.55 0.55 1:01 1253.40 0.4 0.55 0.55			340	340		435
12:41 12:50.1 0,3 0.4 0.4 12:44 12:52.0 0.55 0,75 0.75 12:47 12:53.41 0.55 0,55 1:01 12:53.410 0,4 0,55 0.55 1:04 12:55.2 0.32 0,45 0.45	_					
12:49 1252.0 0.55 0,75 0.75 12:47 125341 0.55 0,75 0.75 1:01 1253.410 0,4 0.55 0.55 1:04 1255.2 0.45 0.45			335	335		940
12:47 1253.41 0,55 1:0 1253.410 0,4 0,55 0.55 1:04 1255.2 0,45 0,45			340	340	The state of the s	0.57
1:0 1253.410 0,4 0,55 0.55 0.55 1:04 1255.2 0.45 0.45 0.45	4				-	
1:04 1255.2 0.32 0.45 0.45			340	3/5		410
	270 70		335	300		4.30
4-3 1:07 1256,7 0.22 0.45 0.45	! }	4	 			4 25
1.10 1.28 0.4 0.4	265 70		340	345		430
1:13 1259.2 0.25 0.34 0.35	270 70		345	350		430
1260,5 0,3 0,42 0,42	17 215		350	360		\$30
1:19 1262 6,25 0.34 0,35						
12631 0.24 0.32 0.35	280 72		350	340		425
1:15 1264230						
						1
				and descriptions of the special part of the sp		
					A Annual de Manual de Manu	

-256-

85 36,14 2,5	9 44	H		Stack Stack Press. Temp. In. #8. OF	H30	0.4 430		750	1	440	440		330	430	076	074	440	110	440	770
ing %	s., In.	ter Sctting Avg. AH		Probe Stack Temp Press.	H	300 -0	310	3/5	315	325	330	2	3/5	330	335	325	335	070	350	350
Ambient Temp ^O F. Bar, Press, ^H Hg. Assumed Moisture Heater Box Settin	Probe Tip Dia Probe Length	Probe Heater Avg.ΔP		Box Temp oF		325		355	'	345	345	4_	350		اد	350	350	345	345	050
BLANKS of each					etgange	3.5	10.1		,	\dashv	0.9		5	2				-		_
i i				Impinger OF Temp.	Inlet Outlet	90 72	_	275 65			340 65	2	160 75		255 70	255 70	255 70	255 77	7	72 52
ATE 1				ФΗ	Actual I	6.03		0.35		+	0.6	1	0.35 /	ū	0.2	5	0.15 3	0.2	0.35 3	0.9
PAF IMPC and poir				Orifice in H20	Desired	0.28	0.33	0,33	5.33	2.0	0.0	;	0.35		0.0	0.15	0.15	0.2	5	
VERY Read test				Pitot in H20 AP		0.3		0.23		0.3	0.45	3	0.25	7	0.15	0.7	0.7	0.15	0.35	6.6.5
)/ LE R		1.026		Dry Gas Meter, CF		1264,270	1265.5	1268.1	1269.4	1270,7	1272	1275,55	1275,545	1376.7	1278	1379	1.0861	17810	1282.0	2536
Fiant SMAD Run No. 2 Location # 2 Bolger Date 9/9/75	lox No.	0	6,53	Clock		7016	9:09	9:15	81:6	12:5	9:29	9:30	9:43	97:46	6:18	9:51	4:55	8518	10:01	1/10
Fiant Run No. Location Date	Operator Sample Box No.	Meter Box No. Meter △ H@	C Factor	Point		1-1	7-5	2-1	<u>ئ</u>	1-6	~- ×-	330	2-1	2-2	5-3	3.6	\?	3.5	2	¢ .

GMAD # 2 Plun

Stack Temp	Io	430	440	0 11	0 44	440	440	440	077		430	077	445	450	450	450	450	450	
Stack Press.	In. Hg					;			-						- The second second second second second				
Probe Temp	ŭ, O	300	0,00	330	ى ر ر	340	355	345	330		350	350	050	000	340	305	330	330	
Вох Тетр	o Li	340	340	340	040	340	340	345	345		345	345	350	345	350	345	345	350	
Pump Vacuum	лл. нд Gauge		:	3			and the second s		N. CORD. Co.	And the second s			:	5.0					
Ger OF	utlet	79	63	<i>্</i>	64	55	65	67	63			ري د	の い	65	53	55	65	65	
Impinger Temp	Inlet Outlet	150	250	255	250	250	250	250	200			1	~	18	N	3	R	\sim	
е Д Н	Actual	4.0	0.3	0, 25	0.15	0.15	0.16	0.36	0.83		0.55	0	0.55	0.42	0.4	0 در	0.55	0.7	
Orifice A In, H20	Desired	7.0	س	0.32	0.15	2.14	0.16	0.35	0.87		0.55	o o	0.55	0. 42	0.43	0,0	0.55	0,7	
	4	o, o	0,0	0, 16	0.73	0.1	0.14	0.25	2.0		7.0	0.45	. :	3		5		5,0	
Dry Gas Meter CF		1785.10	1286.6	787.7	1288.8	1289.7	1280,7	1391.4	226	1294.35	294,355	13861	12927	788X	300.8	1302.2	1303.7	1305,3	
Clock D Time N		10:18 1	•	1 / 6			, EE:		0	72	10:53/	:56 /	0	ノアロンノ	.05/	000	/ //:	/ //:	(1:72)
Point		3-7	3	Ĵ	7	3	9	-7	9	Ho	4.1.	?	D	, 4 -	- 5	9	- 7	0	to off

PARTICULATE CLEANUP SHEET

Date: 9/8/75	Plant: GMAD						
Run Number:	Location Of Sample Port: #2 Boiler						
Operator:	Barometric Pressure: 30.16						
Sample Box No.	Ambient Temperature &5						
Impinger H ₂ 0	Silica Gel						
Volume After Sampling 272 ml	Weight After 519.0 g						
Impinger Prefilled With 200 ml	Weight Before 505,2 g						
Volume Collected 72.0 m1	Moisture Weight 13.8g Moisture Total 85.8g						
Dry Probe and Cyclone Catch:	Container No.						
	Extra No Weight Results g						
Probe, Cyclone, Flask And Front Of Filter Acetone Wash:	Container No.						
	Extra No Weight Results 0.1494 g						
Filter Papers and Dry Filter Partic	culate						
Filter No. Container No. Filter	r No. Container No.						
	Filter Particulate Weight O.145/ g						
	Total Particulate						
	Weight <u>0.2945</u> g						

% Moisture By Volume

PARTICULATE CLEANUP SHEET

Date: 9/9/75	Plant: GMAD
Run Number: 2	Location Of Sample Port: #2 Boiler
Operator:	Barometric Pressure: 30.14
Sample Box No.	Ambient Temperature 85
Impinger H ₂ 0	Silica Gel
Volume After Sampling 260 ml	Weight After 528,4 g
Impinger Prefilled With 200 m1	Weight Before 519.0 g
Volume Collected 60 m1	Moisture Weight 9.4 g Moisture Total 69.4 g
Dry Probe and Cyclone Catch:	Container No.
	Extra No. Weight Results
Probe, Cyclone, Flask And Front Of Filter Acetone Wash:	Container No.
	Extra No Weight Results O.1388 g
Filter Papers and Dry Filter Parti	culate
Filter No. Container No. Filte	r No. Container No.
	Filter Particulate Weight 0.1303 g
	Total Particulate
	Weight <u>0.269/</u> g

[%] Moisture By Volume

OXIDES OF NITROGEN FIELD DATA

Date	9/8	/75	un angert en West Malanapean auch en en en en en en en en	
Plant _	Genera	1 Me	tors	
Sample	Collected	В.у	Klein	

Field Data

Clock Time	1150	1200	/230	1230	1325	/330	
Flask number	1	2	3	4	5	6	
Volume of flask (ml)*	2047	2038	2039	2028	2025	2052	
Pressure before sampling in. Hg.	۲،5	2.5	2.5	5.2	2,5	5.5	
Pressure after sampling, in. Hg.	30.16	30.16	30,16	30.16	30.16	30,16	
Flask temperature, ^O F	90	90	90	90	90	90	

^{*} Flask + valve - 25 ml. for absorbing solution

OXIDES OF NITROGEN FIELD DATA

Date9	19/75		
Plant G	eneral Mote	ors	
Sample Collec	ted By KI	ein	

Field Data

Clock Time	0910	0912	1008	1010	1040	1042	1240	1245
Flask number	1	2	3	4	Š	6	7	8
Volume of flask (ml)*	2047	2038	2039	2028	2025	2052	205 2	2056
Pressure before sampling in. Hg.	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Pressure after sampling, in. Hg.	30.14	30.14	30-14	30.14	30.14	30,14	30.14	30,14
Flask temperature, ^O F	90	90	40	40	90	90	90	90

^{*} Flask + valve - 25 ml. for absorbing solution

Material Sampled For SO₂ \$	SO ₃
Date 9/9/75	
Plant GMAD	Location #2 BOILER
Bar. Pressure 30.14 "Hg	Comments: Point 2-6
Ambient Temp 90 °F	
Run No	
Power Stat Setting	
Filter Used: Yes No	
Operator	

Clock	Meter	Pitot	Orifice	Temperatures OF					
Time	(Ft. ³)	in. H20	in H ₂ 0	Stack	Probe	Coil		nger	
		△ P	△ H				In	Out	
1:00	1327.042	0.15	0.1	450	325		120	85	
1:05	1328.3	0.15	0.1	450	325	160	130	75	
1:/0	1329.6	0.15	0.1	445	340	170	145	75	
1:15	1330.9	0.15	0.1	440	350	175	140	76	
1:20	1332.2	0.12	0.1	445	325	174	135	77	
1:25	1333.5	0.15	0.1	440	315	170	130	80	
1130	1334.630								
,									

Comments: 7.588 ft³

Material Sampled For	SO 3
Date 9/9/75	
Plant GMAD	Location #2 BOILER
Bar. Pressure 30.14 "Hg	Comments: Point 2-6
Ambient Temp 90 oF	
Run No 2	
Power Stat Setting	
Filter Used: Yes No _	m
Operator	

Clock Meter		Pitot	Orifice	Tem				
Time	(Ft. ³)	in. H20	in H ₂ 0	Stack	Probe	Coil		nger
		△ P	∆ H				In	Out
1:40	1334.630	0.15	0.1	440	300	145	110	82
1:45	1336.0	0.15	0.1	440	340	152	120	74
1:50	1337.0	0.12	0.1	440	3 25	164	140	74
1:55	1338.2	0.12	0.1	430	3 25	170	135	75
2:00	1339.3	0.12	0.1	430	320	170	130	76
2:05	1340.5	0.15	0.1	435	310	165	125	77
2:10	1341.622							

Comments: 6.992 ft3

Material Sample	d For	SO2 4	503		
Date 9/10/	75				
Plant <u>GM</u>	4D		Location _	#2 BOILER	
Bar. Pressure	30.04	''Hg	Comments:		
Ambient Temp	80	o _F			
Run No					
Power Stat Sett	ing				
Filter Used: Y	es	_ No _			
Operator					

Clock	Meter	Pitot	Orifice								
Time	(Ft. ³)	in. H ₂ 0	in H ₂ 0	Stack Probe		Stack Probe		Probe Coil		Impinger	
	ļ	∆ P	A H				In	Out			
9:13	1341.630	0.18	0.1	430	270	175	130	89			
9:18	1342.9	0.2	0.1	430	305	170	150	79			
9;28	1345.	0.2	0.1	430	300	165	125	79			
9:38	1347,5	0.19	0.1	435	315		120	80			
9:48	1349.8	0.2	0.1	430	330	160	118	81			
9:58	1352.072										
								<u> </u>			

Comments: 10.442 \$t3

Coal Counter 8:45 966511 1 count = 200

10:05 966562

12:55 96666

2:00 966 703

192 × 200 = 38400

Material Sampled For 50_2	\$ SO ₃
Date 9/10/75	
Plant GMAD	Location #2 BOILER
Bar. Pressure <u>30.04</u> "H	g Comments:
Ambient Temp <u>85</u> °F	
Run No 2	
Power Stat Setting	
Filter Used: Yes No	o
Operator	

Clock	Meter	Pitot	Orifice	<u> </u>				
Time	(Ft. ³)	in. H ₂ 0	in H20 △H	Stack	Probe	Coil	Impi In	nger Out
10:10	1352.072	0.2	0.1	440	280	140	140	88
10:15	1353,15	0.19	0.1	440	290		160	85
10:25	1355.25	0.18	0.1	440	330	166	150	83
10:35	1357.2	0,2	0.1	440	355		130	87
10:45	1359.1	0,2	0.1	440	315	160	125	88
10:55	1361,060	0,2						

Comments: 8.988 ft3

1 1 1 1	1 1	1	F					1	1				1	ГТ	- 1	 -	
	5		Stack Temp.		430	430	2 2 2 2 2	435	435	435	435	430	200				
30.05 20.05 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	Probe Tip Dia., In. 1/4 Probe Length 5 ft. glass Probe Heater Sctting	Avg. A H	Stack Press. In. Hg.	0,7	4.0-												
Ambient Temp OF 90 Bar. Press. "Hg 30 Assumed Moisture % Heater Box Setting OF	Tip Dia., In. Length 5 ft. Heater Sctting	¥	Probe Temp O _F	-	290	295	305	330	320	325	315	325	2				
Ambient Bar. Pro Assumed Heater B	Probe Tip Dia Probe Length Probe Heater	Avg. A P	Box Temp o _F		300	305	298	305	293	300	545	38	3				
<u></u>		¥	Pump Vacuum In. Hg.	Gauge	5.5					6.0							
VIA NLL BLA			iger smp.	Outlet	2	7/	5 5	22	11	17	2/	7					
FILL IN ALL t the start			Impinger OF Temp.	Inlet	061	5,0	20%	220	224	230	235	240	4				
ATE I	0 < e x		Orifice AH in H20	Actual	0.4	2.0	\$ \$0 \$0	20	4.0	5'0	0.4	900	5				
ı T	ج		Orific in H20	Desired	h.0	6.4	770	0.41	14.0	0.41	0.4	0,36					
VERY Read test	Filters		Pitot in H20 AP		0,29	62.0	3,29	0,0	5,0	e G	0.29	0,26	/3.5				
D COON		22	Dry Gas Meter, CF		1361,060	1362.38	1363.75	1366.40	1367.75	1369.03	1370.35	1371.75	/374.283				
Plant GMAD Run No. 1 - Andergen Location #2 Boller Date 9/10/75	ox No.	н@ 1.022	Clock		11:45	11:48	וֹטָּי :	1:51	12:00	12103	12:06	12:03	12:15				
Plant Run No. Location Date	Operator Sample Box No.	Meter Δ H@ C Factor	Point		2-7												

			Stack Temp.	-	430	430	430	430	430	430	430	430			
30.04 % 8.5 g of 7	, In. //4 Setting 7	Avg.∆H	Stack Press. In. 446.	0.1H	7 6.0-	*	2 4	7	7	7		3			
Ambient Temp OF 90 Bar, Press. "Hg 30,04 Assumed Moisture % 8,6 Heater Box Setting OF		Avg	Probe Temp OF		+	325	300	320	320	230	330	345			
Ambient Bar, Pre Assumed Heater B	Probe Tip Dia Probe Length Probe Heater	Avg. A P	Box Temp o _F		360	365	363	367	360	375	380	390			
		Ä	Pump Vacuum In. Hg.	Gauge	5.5			<u>ه</u>							
ATA ALL BLANKS art of eac				Outlet	90	75	73	73	75	20	75	86			
FILL IN ALL			Impinger ^O F Temp.	Inlet	175	255	200	280	285	295	300	310			
ATE d a	0 × e u		се ДН	Actual	6.4	2.0	2 6	2.0	9.0	200	2.0	4'0			
	<u>.</u> <u>.</u>		Orifice in H20	Desired	6.4	938	0.00	0,33	2.0	0,24	0.38	0.37			
VERY Read test	Filters		Pitot in H20 AP		0.29	0.28	0.23	0.24	0.27	0.20	0.28	0,27			
ersen 2. Leid			Dry Gas Meter, CF		1374, 283	1175.6	1378,28	1374.7	1381.0	1383.6	1385.0	1 4	1381.660		
Plant SMAD Run No. 2. Andersen Location #2 Bolher Date 9/10/75	ox No.	не	Clock		1:13	: 15	1:2/	45:1	1:27	1:33	136	1:39	26:		
Plant Run No. Location Date	Operator Sample Box No.	Meter Δ H@ C Factor	Point		2.7										

PARTICULATE CLEANUP SHEET

Date: 9/10/75	Plant: GMAD
Run Number: Andersen 1 = 2	Location Of Sample Port: #2 BoiLER
Operator:	Barometric Pressure: 30.04
Sample Box No.	Ambient Temperature
Impinger H ₂ 0	Silica Gel
Volume After Sampling <u>241</u> ml	Weight After 515.4 g
Impinger Prefilled With 200 ml	Weight Before <u>506.0</u> g
Volume Collected 41 ml	Moisture Weight 9,4 g Moisture Total 50.4 g
Dry Probe and Cyclone Catch:	Container No.
	Extra No Weight Resultsg
Probe, Cyclone, Flask And Front Of Filter Acetone Wash:	Container No.
	Extra No. Weight Results 0.0406g
Filter Papers and Dry Filter Parti	culate
Filter No. Container No. Filte	r No. Container No.
Backup Filt	Filter Particulate Weight 0.1273 g
Filters	
Backup 8	Total Particulate Weight 0./679 g

[%] Moisture By Volume

Particle Size Determination

тє	est: /			Dat	te: 9//	0/75		
Plate	Tare(g)	Final(g)	Net(mg)	Filter Net	Total	% of Total		ECD (Microns)
1	0.1489	0.1500	. •	1.1		1.43	1,43	16.8
2	0.1437	0.1454		1.7		2.21	3.64	10.7
3	0,1470	0.1505		3.5		4.55	8.19	7./
4	6,1416	0.1463		4.7		6.10	14.29	4.9
5	0.1512	8:221.0		4.6		5,97	20,26	3./
6	0.1444	0.1490		4.6		5,97	26.25	1.6
7	011492	01527		3. 5		4.55	30,78	0,99
8	0.1437	0.1490		5,3		6.88	37.66	0.66
Back U	IP 0.2145	0,2625		48.0	Ó	2,34	100.0	2066
		Total		77.0		100.0		
T	est: 2			Date	: 9/10	175		
Plate	Tare(g)	Final(g)	Net(mg)	Filter Net	Total	% of Total	Cum %	ECD (Microns)
1	0.1485	0.1497		1.2		2,39	2,39	17,3
2	0,1410	0.1424		1.4		2:78	5.17	10,9
3	0,1525	6.1558						7 2
4		•		3.3		6.56	11.73	7.3
-	0.1400	0.1453		3,3 5,3	/	6.56		5.0
5	0.1400						22,27	
		0.1453		5,3	•	9,54	22,27	5.0
5	0,1523	0.1453		5,3 4.8	\	9,54 9,54 8,95	22,27 31,81	<i>5.0</i> 3.2
5 6	0.1523	0.1453 0.1571 0.1506		5.3 4.8 4.5	8 4	9,54 9,54 8,95	22,27 31,81 40,76	5.0 3.2 1.7
5 6 7 8	0.1461 0.1468 0.1488	0.1453 0.1571 0.1506 0.1500		5.3 4.8 4.5 3.2	8 4	9,54 9,54 8,95 9,36	22,27 31,81 40,76 47,12	5.0 3.2 1.7 1.0
5 6 7 8 Back U	0.1461 0.1468 0.1488	0.1453 0.1571 0.1506 0.1500 0.1526	-270	5.3 4.8 4.5 3.2 3.8 22.8 50.3	4.	9,54	22,27 31,81 40,76 47,12 54,67	5.0 3.2 1.7 1.0 0.68

SOURCE TEST REPORT

AMOCO OIL REFINERY

WOOD RIVER, ILLINOIS

BOILER NO. 6 - POWERHOUSE

AND

CATALYTIC CRACKER REGENERATOR

TESTED BY: ROCKWELL INTERNATIONAL

R.W. Griscom

O.C. Klein

F.E. Littman

TABLE OF CONTENTS

		PAGE
1.0	SUMMARY	275
2.0	INTRODUCTION	276
3.0	PROCESS DESCRIPTION	277
4.0	PROCESS OPERATION	27 8
5.0	SOURCE TEST DESCRIPTION	279
6.0	SAMPLING AND ANALYTICAL PROCEDURES	283
	 6.1 PARTICULATE WEIGHT 6.2 NITROGEN OXIDE 6.3 SULFURIC ACID MIST AND SULFUR DIOXIDE 6.4 PARTICLE SIZE 6.5 HYDROCARBONS 	283 285 285 287 287
7.0	RESULTS	289
	APPENDIX A: PARTICULATE CALCULATIONS	297
	APPENDIX B: FIELD DATA	313

TABLES

		PAGE
TABLE 1	SUMMARY OF RESULTS BOILER NO. 6	290
TABLE 2	SUMMARY OF RESULTS CATALYTIC CRACKER REGENERATOR	291
TABLE 3	COMPARISON OF RESULTS	292
TABLE 4	PARTICLE SIZE DISTRIBUTION	293
TABLE 5	HYDROCARBON ANALYSIS BOILER NO. 6	295
TABLE 6	HYDROCARBON ANALYSIS CATALYTIC CRACKER REGENERATOR	296

FIGURES

		PAGE
FIGURE 1	SAMPLING EQUIPMENT SET UP AT SE PORT - BOILER NO. 6	280
FIGURE 2	SAMPLING EQUIPMENT SET UP AT SW PORT - BOILER NO. 6	280
FIGURE 3	CATALYTIC CRACKER REGENERATOR, PRECIPITATOR AND STACK	281
FIGURE 4	STACK, SAMPLING PLATFORM, AND CRANE FOR HOISTING	281
FIGURE 5	SAMPLING EQUIPMENT SUPPORT	282
FIGURE 6	SAMPLING EQUIPMENT SETUP FOR TESTING	282
FIGURE 7	PARTICULATE SAMPLING TRAIN	234
FIGURE 8	SULFURIC ACID MIST SAMPLING TRAIN	286
FIGURE 9	ANDERSEN STACK SAMPLER	288
FIGURE 10	PARTICLE SIZE DISTRIBUTION - BOILER NO. 6	294

1.0 SUMMARY

In conjunction with the RAPS project, a limited stack testing program is being conducted. This report details the results obtained on boiler no. 6 in the powerhouse and the stack for the catalytic cracker regenerator at the Amoco Oil Refinery in Wood River, Illinois.

The stack testing included the following pollutants: sulfur dioxide (SO_2), particulates, nitrogen oxides (NO_χ), sulfuric acid mist ($\mathrm{H}_2\mathrm{SO}_4$), and hydrocarbons. Orsat analysis is for carbon dioxide (CO_2), carbon monoxide (CO_3), and oxygen (O_3) were also performed. Results of these tests are included in this report. The tests on boiler no. 6 were not conducted to ascertain compliance with Illinois standards. Amoco Oil may choose to use the test on the catalytic cracker regenerator for demonstrating compliance since the precipitator on this unit was just recently installed. Thus, it is of interest to note that this unit is in compliance with the regulations for particulates, SO_2 and CO_3 .

The test on the catalytic cracker regenerator was witnessed by E. Sullivan, R. Yoder, and J.C. Rhodes of Amoco and Dr. John Reed of Illinois EPA Permit Section and Mr. Fred Smith of Illinois EPA Testing Section.

We acknowledge and appreciate the excellent cooperation we obtained from the management and engineering personnel of the Amoco Oil Refinery.

2.0 INTRODUCTION

The current stack testing program is being conducted in conjunction with the emission inventory work for the St. Louis RAPS project. The emission inventory is being compiled using published emission factors. The stack testing is being conducted to evaluate the emission factors and to gather information for additional emission factors.

This stack test was conducted at the Amoco Oil Refinery in Wood River, Illinois. Testing was performed on the No. 6 boiler at the powerhouse on 4, 5 and 6 November 1975 and on the Catalytic Cracker Regenerator on 12 and 17 November 1975.

Boiler No. 6 is an oil and gas fired, 200,000 pounds per hour steam generating unit. There are no emission controls on this unit. This boiler was sampled for total particulates, particle size, nitrogen oxides, sulfur dioxide, sulfuric acid mist, carbon dioxide, oxygen and hydrocarbons.

The Catalytic Cracker Regenerator was recently equipped with an electrostatic precipitator. This stack test may be used as a compliance test on the newly installed precipitator. This unit was sampled for total particulates, nitrogen oxides, sulfur dioxide, sulfuric acid mist, carbon dioxide, oxygen, carbon monoxide and hydrocarbons.

3.0 PROCESS DESCRIPTION

Boiler no. 6 was built in 1954 by Babcock and Wilcox. The boiler is fired with a combination of plant oil and gas streams. Steam pressure is approximately 600 psi. This boiler "swings" with the plant, that is, it picks up upsets or changes in plant operation or demands. The capacity of this boiler is rated at 200,000 pounds of steam per hour. For environmental concerns this boiler has been derated to less than 250 x 10^6 Btu/hr input.

There are no stack emission controls on this boiler. Boiler no. 6 is an induced draft unit and exhausts through a masonary lined, steel stack which is 159 feet tall and 8.5 feet inside diameter.

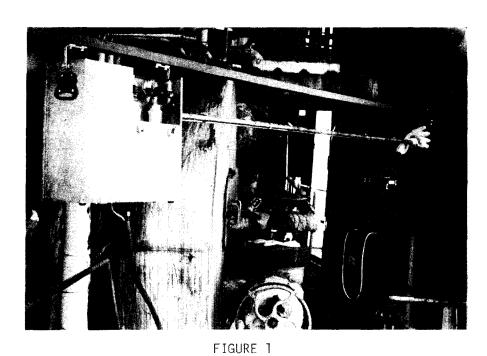
The Catalytic Cracker Regenerator has had an electrostatic precipitator installed during 1975. This precipitator was started up at the end of October 1975. There is also a waste boiler being installed ahead of the precipitator but this was not in operation at the time of testing. The stack is of steel construction and is 171 feet tall and 8 feet inside diameter.

4.0 PROCESS OPERATION

Boiler no. 6 was tested on 4,5 and 6 November 1975. During the testing the boiler load remained fairly constant even though it was picking up any changes in plant operation. This boiler was fired on refinery gas, fuel oil, and "slop" oil during testing. Since there are no individual meters there was no way of knowing how much of each fuel was being burned. There were no visible changes in emissions during testing.

The Catalytic Cracker Regenerator was tested on 12 and 17 November 1975. Since the startup of the precipitator during late October there had been some problems with the precipitator. During testing, the conveyors that remove the collected material from the precipitator were not operating. This did not seem to interfere with testing. On 17 November, however, there was a short in one of several compartments of the precipitator and the precipitator was only kept in operation for our particulate test. The tests for sulfur dioxide, sulfuric acid mist, and nitrogen oxides were run with the precipitator by-passed. Visible emissions at this time increased significantly.

Since the waste heat boiler was still being installed during testing, water was being sprayed into the gas stream to drop the gas temperature from $1,000^{0}$ F to 600^{0} F to prevent damage to the precipitator. This condition raised the flue gas moisture content to approximately 29%.


5.0 SOURCE TEST DESCRIPTION

Boiler no. 6 was tested in the stack. The sampling location and testing arrangement are shown in Figures 1 and 2. Figure 2 illustrates how the sampling equipment was somewhat obstructed. In order to make a complete traverse at this sample port, a short 5 foot probe was used for the near points and a longer 10 foot probe was used for the far sample points.

The stack is 8.5 foot inside diameter. The sampling location was approximately 36 feet from the stack inlet which is perpendicular to the stack. This means that the sample ports are 4 diameters from the inlet. In accordance with EPA Standard Method 1, 36 sampling points were chosen, 18 on a traverse. A 3-inch pipe coupling, pipe nipple, and reducing flange were used to attach to an existing standard 4-inch flange on the sample ports.

The Catalytic Cracker Regenerator was tested in the stack after the precipitator. Figure 3 illustrates the regenerator to the right followed by the precipitator in the center and the stack to the left. Figure 4 shows the stack and sampling platform and the crane used to hoist the sampling equipment up to the platform. The testing arrangement is shown in Figures 5 and 6.

The stack is 8 foot inside diameter and the sampling location is approximately 80 feet from the stack inlet. In accordance with EPA Standard Method 1, since the sampling location was more than 8 diameters from the inlet, 12 sample points were chosen, 6 on a diameter. A 3-inch pipe coupling, pipe reducer, and a 4-inch flange were used to attach to the existing 4-inch flanges on the sample ports.

SAMPLING EQUIPMENT SET UP AT SE PORT - BOILER NO. 6

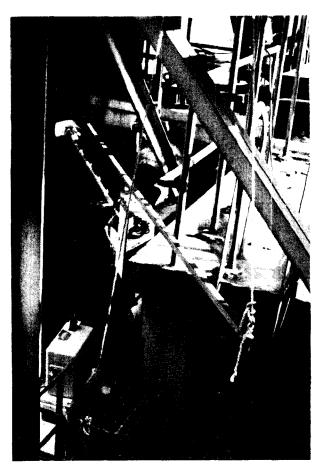


FIGURE 2

SAMPLING EQUIPMENT SET UP AT SW PORT - BOILER NO. 6

-280-

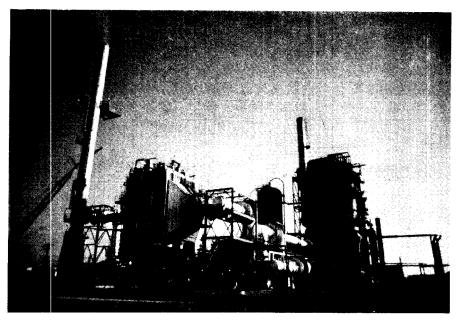


FIGURE 3

CATALYTIC CRACKER REGENERATOR, PRECIPITATOR, AND STACK

FIGURE 4

STACK, SAMPLING PLATFORM, AND CRANE FOR HOISTING -281-

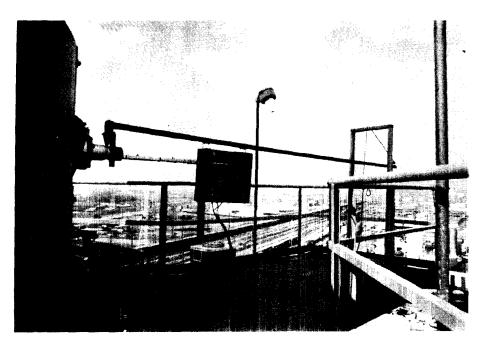


FIGURE 5
SAMPLING EQUIPMENT SUPPORT

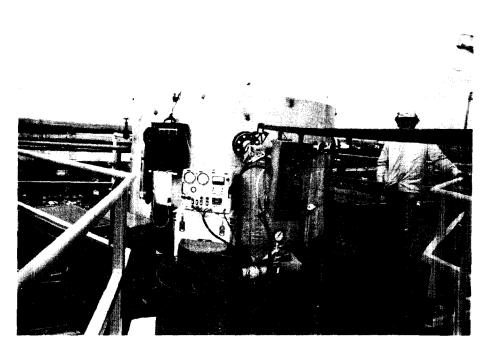


FIGURE 6
SAMPLING EQUIPMENT SET UP FOR TESTING

6.0 SAMPLING AND ANALYTICAL PROCEDURES

All testing was performed with sampling equipment from Joy Manufacturing, designed for isokinetic sampling to enable testing by EPA standard methods.

Gas flow rates were calculated using the observed gas temperature, molecular weight, pressure and velocity, and the flow area. The gas velocity was calculated from gas velocity head measurements made with an Stype pitot tube and a magnehelic pressure gauge, using standard method 2.

Moisture contents were determined by passing a measured amount of gas through chilled impingers containing a known volume of deionized water, measuring the increase in volume of the impingers liquid and the increase in weight of silica gel used to finally dry the gas, and calculating the amount of water vapor in the sample from the increase and the measured amount of gas.

The stack gas concentrations of carbon dioxide, oxygen, carbon monoxide, and nitrogen by difference were measured with a standard Orsat apparatus. These concentrations and the moisture content were used to determine molecular weight of the stack gas.

6.1 PARTICULATE MATTER

Standard method 5 was used for determining particulate emissions with the exception that the probe and oven were operated at 300-350 $^{\rm O}{\rm F}$. Measured stack gas samples were taken under isokinetic conditions. The samples were passed through a cyclone, fiberglass filter, impingers, pump, a meter and an orifice as shown in Figure 7.

The total particulate matter collected in each test was the sum of the filter catch plus material collected ahead of the filter in the sampling train. The amount of filter catch is determined by the difference in the weight of the filter before and after the test, after dessicating. The particulate matter from other portions of the train was determined by rinsing the probe, cyclone and all glassware ahead of the filter with acetone, evaporating to dryness and weighing.

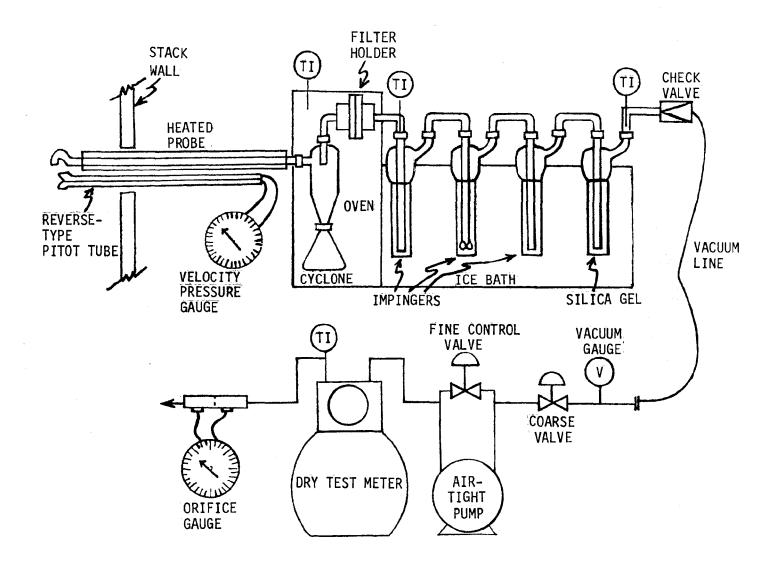


FIGURE 7
PARTICULATE SAMPLING TRAIN

6.2 NITROGEN OXIDE

Using method 7, gas samples were withdrawn from the stack into evacuated 2-liter flasks containing a dilute solution of hydrogen peroxide and sulfuric acid. The hydrogen peroxide oxidizes the lower oxides of nitrogen (except nitrous oxide) to nitric acid. The resultant solution is evaporated to dryness and treated with phenol disulfonic acid reagent and ammonium hydroxide. The yellow trialkali salt of 6-nitro-1-phenol-2, 4-disulfonic acid is formed, which is measured colorimetrically.

6.3 SULFURIC ACID MIST AND SULFUR DIOXIDE

The Shell method was chosen for this determination due to uncertainties which exist about the validity of the results using method 8. A gas sample is drawn from the stack using a heated probe and passed through a water-cooled coil condenser maintained below the dew point of sulfuric acid at 140°-194°F, followed by a fritted glass plate and then passed through a chilled impinger train with two impingers containing an isopropanol and hydrogen peroxide mixture and followed by an impinger containing silica gel for drying. This setup is shown in Figure 8.

The condensed sulfuric acid mist in the coil condenser is water washed from the condenser. The final determination is made by titrating the solution with barium chloride, using a thorin indicator. Isopropanol must be added to the solution to be titrated to improve the rapidity with which the barium sulfate precipitates during titration.

Goksoyr, H. and K. Ross, "The Determination of Sulfur Trioxide in Flue Gases," J. Inst. Fuel, No. 35, 177, (1962)

^{*} Lisle, E.S. and J.D. Sensenbaugh, "The Determination of Sulfur Trioxide and Acid Dew Point in Flue Gases," Combustion, Jan. 1965.

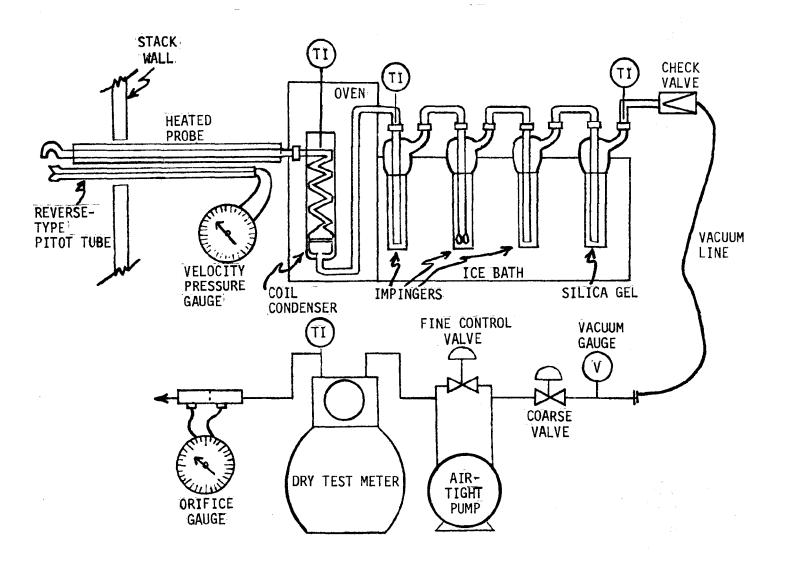


FIGURE 8
SULFURIC ACID MIST SAMPLING TRAIN

Sulfur dioxide in the gas sample is oxidized to sulfur trioxide in the impingers containing the hydrogen peroxide. Sulfur dioxide is then determined by titrating the hydrogen peroxide solution with barium chloride, using a thorin indicator.

6.4 PARTICLE SIZE

An Anderson fractioning inertial impactor is used for the determination of particle size in the range of approximately 0.5 to 12.0 microns. The sampling head is placed in the oven after the heated sampling probe and a sample of stack gas is drawn isokinetically through the sampler. The particulate matter is fractionated and collected on the plates inside the sample head and a determination is made by the difference in weight of the plates before and after testing. Results are expressed for particles of unit density. The sampling head assembly is shown in Figure 9.

6.5 HYDROCARBONS

Gas samples were withdrawn from the stack using a vacuum pump to fill **Ted-**lar bags. The composition of the hydrocarbons was determined by gas chromato-**graph.utilizing**:a:Beckman:68000for:CO; CH₄, and total hydrocarbons and a. Perkin Elmer 900 for the complete hydrocarbon breakdown.

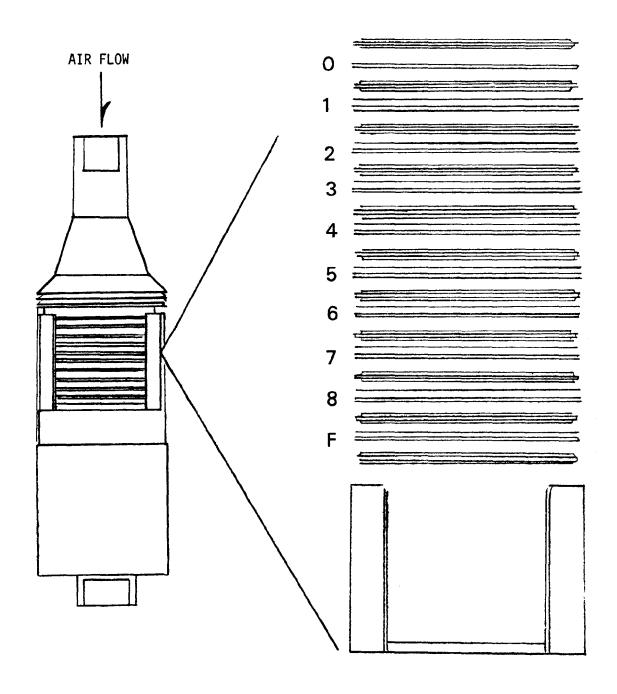


FIGURE 9
ANDERSEN STACK SAMPLER

7.0 RESULTS

Results obtained from the test on boiler no. 6 are shown in Table 1. Results obtained from the test on the Catalytic Cracker Regenerator are shown in Table 2. Although these tests were performed for research purposes, standard EPA methods were used. Since the test on the Catalytic Cracker Regenerator may be used for compliance, it is of interest to compare the results with the State of Illinois standards. A comparison is shown in Table 3.

In addition to measuring particulate loadings on boiler no. 6, a particle size analysis was made using an Andersen impactor. The results are shown in Table 4 and Figure 10.

The average results of hydrocarbon samples taken on boiler no. 6 on 4 and 5 November are:

Carbon Monoxide:

1.11 ppm

Methane:

1.07 ppm

Total Hydrocarbons, as CH_{Δ}

3.28 ppm

The major hydrocarbon components of these samples are given in Table 5.

The average results of hydrocarbon samples taken on the Catalytic Cracker Regenerator on 10 and 12 November are:

Carbon Monoxide:

28.91 ppm

Methane:

0.13 ppm

Total hydrocarbon results are not available due to a malfunction of the analyzer. A complete analysis of the major components indicates that the total hydrocarbons are approximately 2-3 ppm. The major components are given in Table 6.

TABLE 1
SUMMARY OF RESULTS - BOILER NO. 6

Date	11/4	11/5	11/6	
Stack Flow Rate - SCFM * dry	54,010	47,766	42,348	
% Water Vapor - % Vol.	13.19	12.67		
% CO ₂ - Vol % dry	10.33	10.83		
% 0 ₂ - Vol % dry	5.90	6.30		
% Excess air @ sampling point	35.6	39.6		
SO ₂ Emissions - 1bs/10 ⁶ Btu			1.88	
NO _X Emissions - 1bs/10 ⁶ Btu	0.45	0.58		
H2SO4 Mist - 1bs/10 ⁶ Btu			0.021	
Particulates Probe, Cyclone, & Filter Catch		·		
lbs./hr.				
lbs/l0 ⁶ Btu				
Total Catch				
lbs./hr.	26.4	32.2		
1bs/10 ⁶ Btu	0.14	0.18		
% Isokinetic Sampling	100.4	92.7		

^{*70°} F, 29.92" Hg

TABLE 2
SUMMARY OF RESULTS - CATALYTIC CRACKER REGENERATOR

Date	11/12	11/17		
Stack Flow Rate - SCFM * dry	87,367	84,642		
% Water Vapor - % Vol.	27.98	29.9		
% CO ₂ - Vol % dry	16.5	17.2		
% 0 ₂ - Vol % dry	1.65	1.4		
% Excess air @ sampling point	8.1	6.8		
SO ₂ Emissions - PPM		419		
NO _X Emissions - PPM	71.2	362.7		
H2SO4 Mist - PPM		3.4		
Particulates Probe, Cyclone, & Filter Catch				
lbs./hr.		·		
lbs/10 ⁶ Btu				
Total Catch				
lbs./hr.	18.7	27.4		
lbs/10 ⁶ Btu				
% Isokinetic Sampling	116.3	100.26		

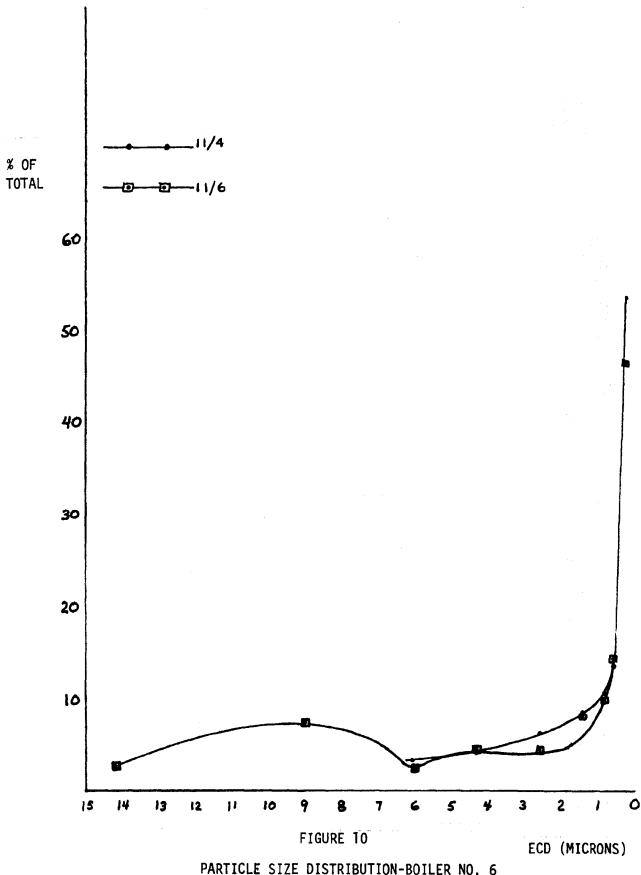

^{*70°} F, 29.92" Hg

TABLE 3
COMPARISON OF RESULTS

SOURCE	POLLUTANT	ILLINOIS STATE STANDARD	AMOUNT FOUND
Boiler No. 6	Particulates	0.1 lb/10 ⁶ Btu	0.16 1b/10 ⁶ Btu
	so ₂	1 1b/10 ⁶ Btu	1.9 1b/10 ⁶ Btu
	СО	200 ppm	1.1 ppm
Catalytic Cracker			
Regenerator	Particulates	80.1 lb/hr	23.1 1b/hr
	so ₂	2000 ppm	419.0 ppm
	CO	200 ppm	28.9 ppm

TABLE 4
PARTICLE SIZE DETERMINATION

TEST: AMOCO	- BOILER NO. 6		DATE: 11/4
Plate	Filter Net (mg)	% Of Total	ECD (microns)
1	0.0	0.0	14.4 & above
2	0.0	0.0	9.1
3	4.0	3.57	6.1
4	4.7	4.19	4.3
5	6.9	6.16	2.6
6	9.8	8.74	1.4
7	11.7	10.44	0.84
8	15.1	13.47	0.56
Backup	<u>59.9</u>	<u>53.43</u>	<0.56
	112.1	100.00	
TEST: AMOCO -	- BOILER NO. 6		DATE: 11/6
Plate	Filter Net (mg)	% Of Total	ECD (microns)
1	1.7	2.75	14.2 & above
2	4.6	7.44	9.0
. 3	1.4	2.27	6.0
4	2.6	4.21	4.3
5	2.7	4.37	2.6
6	5.1	8.25	1.4
7	6.1	9.87	0.83
8	8.9	14.40	0.55
Backup	28.7	46.44	<0.55
	61.8	100.00	

PARTICLE SIZE DISTRIBUTION-BOILER NO. 6
-294-

TABLE 5
HYDROCARBON ANALYSIS
BOILER NO. 6

COMPOUND	CONCENTRATION (ppl	as C)
	11/4	11/5
Ethane	20.7	16.8
Ethylene	36.3	27.8
n-Propane	35.5	34.3
Acetylene	35.0	32.8
n-Butane	55.7	52.2
Isopentane	11.1	7.5
n-Pentane	5.4	8.4
Hexane	29.7	33.0
Benzene + 2,4 DM-C ₅		18.5
Heptane		15.1
2,5 dimethyl Hexane		10.9
Toluene	33.3	94.6
1, Octene	38.9	128.5
Octane	4.1	9.1
Ethyl Benzene	24.3	56.7
m, p-Xylene	123.2	290.3
o-Xylene	37.5	79.0
Nonane	13.2	19.1
n-Propyl Benzene	9.7	49.6
1,3,5 trimethyl Benzene	16.4	

TABLE 6

HYDROCARBON ANALYSIS

CAT CRACKER REGENERATOR

COMPOUND	CONCENTRATION 11/10	(ppb as C) 11/12
Ethane		19.5
Ethylene		12.8
n-Propane		51.3
Acetylene		9.5
Isobutane		16.7
n-Butane		4.7
Propylene		3.7
Isopentane		1.4
n-Pentane		5.1
Hexane	41.3	
Benzene + 2,4 DM Pentane	38.1	
Heptane	27.6	
Toluene	46.1	
1, Octene	29.3	
Octane	4.4	
Ethyl Benzene	18.6	
m,p-Xylene	111.2	
o-Xylene	38.1	
Nonane	10.4	

APPENDIX A PARTICULATE CALCULATIONS

PARTICULATE CALCULATIONS

Volume of dry gas sampled at standard conditions - 70° F, 29.92 "Hq

$$Vm_{Std} = \left(\frac{Vm}{CFm}\right) \left(\frac{Pm}{Pstd}\right) \left(\frac{Tstd}{Tm}\right) = 0.0334 \left(\frac{Vm}{1.021}\right) \left(\frac{Pm}{Pstd}\right) \left(\frac{Pm}{13.6}\right)$$

 Vm_{std} = Volume of dry gas sampled at standard conditions, ft^3

 $Vm = Meter volume sampled, ft^3$

1.021 = Meter correction factor

 P_m = Meter pressure, barometric pressure, P_R , plus orifice pressure, AH, in. Hg.

Pstd = Standard pressure, 29.92 in. Hg.

Tstd = Standard temperature, 530° R or 70° F

Tm = Meter temperature, 530° R for compensated meter

CFm = Meter correction factor

Volume of water vapor at standard conditions

$$v_W = v_{1c} \left(\frac{\rho H_{20}}{MH_{20}} \right) \left(\frac{R \text{ Tstd}}{P \text{std}} \right) \qquad \frac{1b.}{454 \text{ gm.}} \qquad = 0.0474 \times V_{1c}$$

 V_W = Volume of water vapor at standard conditions, ft³

V_{1c} = Volume of liquid collected in impingers and silica gel, ml.

 ρ H₂O = Density of water, lg/ml.

M H_2O = Molecular weight of water, 18 1b/1b mol

R = Ideal gas constant, 21.83 in. Hg. - cu. ft./lb-mol - 0 R

% Moisture in Stack Gas
% M = 100 x
$$\frac{Vw \text{ std}}{Vmstd + Vwstd}$$

Average molecular weight of dry stack gas

$$MW_{D} = \left(\%C0_{2} \times \frac{44}{100}\right) + \left(\%0_{2} \times \frac{32}{100}\right) + \left(\%N_{2} \times \frac{28}{100}\right)$$

Molecular weight of stack gas

$$MW_W = \left(\frac{100 - \% M}{100} \times MW_D\right) + \left(\frac{\%M}{100} \times 18\right)$$

Stack velocity at stack conditions

$$v_s = 85.48 \times C_p \left(\frac{Ts \times \Delta P \text{ avg.}}{Ps \times MW_W} \right)^{-1/2}$$

 $V_s = stack \ velocity, fps.$

85.48 = pitot constant,
$$\frac{\text{ft.}}{\text{sec.}} \left(\frac{\text{lb.}}{\text{lb.}} \frac{\text{lb.}}{\text{oR}} \right)^{1/2}$$

 C_{p} = pitot coefficient, dimensionless

 $T_s = average stack temperature, OR$

 P_s = stack pressure, barometric pressure plus static pressure, in. Hg.

 ΔP Avg = average differential pressure, in. H_2O

Stack gas volume at standard conditions

$$Qs = 3600 \left(1 - \frac{\%M}{100} \right) V_s \quad A \left(\frac{Tstd}{Ts} \quad \frac{Ps}{Pstd} \right)$$

 Q_s = stack gas volume flow rate, SCF/hr

A = stack cross sectional area, ft^2

3600 = seconds per hour

$$Qs' = Q_s \div 60 = SCFM$$

Per cent isokinetic sampling

$$I = 1.667 \left[(0.00267) \quad V_{1c} + \frac{V_{mc}}{T_{m}} \left({}^{P}_{B} + \frac{\Delta H}{13.6} \right) \right] T_{s}$$

$$\Theta V_{s} P_{s} A_{n}$$

I = per cent isokinetic sampling

1.667 = minutes per second, X 100

0.00267 =
$$\frac{\rho_{H20}}{M_{H2}0}$$
 X R X $\frac{1b}{454 \text{ gm}}$.

 Θ = sampling time, min.

 A_n = cross sectional area of sampling nozzle, ft^2

Particulate emission

$$C_s = 2.205 \times 10^{-6} \left(\frac{M_n}{Vm_{std}} \right)$$

 C_S = particulate emission, lb/scf

 $2.205 \times 10^{-6} = pounds per mg.$

Mn = total mass of particulate collected, mg.

$$C_E = C_S \times Q_S = 1b/hr$$

 C_{E} = particulate emission per hour

$$C_{H} = C_{\dot{E}} \div H$$

 $\mathbf{C}_{\mathbf{H}}$ = particulate emission, lb. per million BTU

H = heat input, million BTU per hour

Excess air at sample point

% EA =
$$\frac{100 \times \% 0_2}{(0.266 \times \% N_2) - \% 0_2}$$

- % EA = excess air at sample point, %
- 0.266 = ratio of oxygen to nitrogen in air by volume

Test: Amoco - Blr. 6 - Run / Date: 11/4/75

Material collected (mg) =

Filter Catch = 2/7,3

Dry Catch = Acetone Wash = 59.

TOTAL = 277.0

Gas Volume
$$Vm_{std} = 0.0334 \left(\frac{V_m}{CF_m}\right) \left(P_B + \frac{H}{13.6}\right)$$

$$0.0334 \left(\frac{76.078}{(1.01)}\right) \left(29.68 + \frac{0.9695}{13.6}\right) = \frac{74.850}{13.6}$$
SCI

Volume of water vapor Vw = 0.0474 X Vlc

0.0474 (240 m1) = 1/.376 SCF

$$\frac{100 \times (11.376)}{(74.85) + (11.376)} = 13.19 \%$$

Molecular Weight of dry stack gas

$$MW_D = \%C02 \times 0.44 + \%02 \times 0.32 + \%N2 \times 0.28$$

$$(10.33 \times 0.44) + (5.9 \times 0.32) + (83.77 \times 0.28) = 29.889$$

Molecular Weight of stack gas

$$MWW = \frac{100 - \%M}{100} \times MW_D + \frac{\%M}{100} \times 18$$

$$\left[\frac{100 - 13.19}{100} \quad X \quad 29.889 \quad \right] + \left[\quad \frac{13.19}{100} \quad X \quad 18 \right] = \frac{28.321}{100}$$

Excess Air at Sample Point

Test: Amoco - Blr. 6 - Run 2 Date: 11/5/75

Material collected_(mg) =

Filter Catch = 290.9

Dry Catch = Sq. 7

TOTAL = 350,6

Gas Volume
$$Vm_{std} = 0.0334 \left(\frac{V_m}{CF_m}\right) \left(P_B + \frac{H}{13.6}\right)$$

$$0.0334 \frac{(69.735)}{(1.01)} \left(29.75 + \frac{0.8196}{13.6}\right) = 68.745 \text{ SCF}$$

Volume of water vapor Vw = 0.0474 X Vlc

0.0474 (2/0.4m1) = 9.973 SCF

$$\frac{100 \times (9.973)}{(68.745) + (9.973)} = \frac{12.67}{\%}$$

Molecular Weight of dry stack gas

$$MW_D = \%C02 \times 0.44 + \%02 \times 0.32 + \%N2 \times 0.28$$

$$(10.83 \times 0.44) + (6.3 \times 0.32) + (82.83 \times 0.28) = 29.973$$

Molecular Weight of stack gas

$$MWW = \frac{100 - \%M}{100} \times MW_D + \frac{\%M}{100} \times 18$$

$$\left[\frac{100 - 12.67}{100} \times 29.973\right] + \left[\frac{12.67}{100} \times 18\right] = \frac{28.456}{100}$$

Test:
$$[3 \mid r, \& - \Re un \ 2]$$
 Date: $///5/75$

Stack Velocity $V_S = 85.48 \times C_p \left[\frac{T_S \times P \text{ avg}}{P_S \times M_W} \right] \ 1/2$
 $85.48 \times (0.8\%) \left[\frac{908.42 \times D./324}{24.7/ \times 28.756} \right] \ 1/2 = 27.73 \text{ fps}$

Stack Gas Volume $Q_S = 3600 \left(1 - \frac{8M}{100} \right) \left(V_S \right) \left(A \right) \left(\frac{T_S t d}{T_S} \right) \left(\frac{P_S}{P_S t d} \right)$
 $3600 \left[1 - \frac{(12.67)}{100} \right] (27.73) \left(52.745 \right) \frac{530}{908} \left(\frac{24.71}{29.92} \right) = \frac{2.865.983}{29.92} \text{ SCFH}$

Stack Emission Rate $C_S = 2.205 \times 10^{-6} \left(\frac{M_D}{V_M \text{ std}} \right)$
 $2.205 \times 10^{-6} \left(\frac{350.6}{(68.745)} \right) = \frac{1.125 \times 10^{-5}}{(177.0)} = \frac{10}{(177.0)} \text{ lb/hr}$
 $C_H = C_E \div H = \frac{(32.229)}{(177.0)} = \frac{0.78}{(177.0)} = \frac{10}{100} \text{ lb/106 Btu}$

Isokinetic Variations $I = 1.667 \left[(0.00267) V_{1C} + \frac{V_M}{Im} \left(P_B + \frac{\Delta H}{13.6} \right) \right] \text{Ts}$
 $0.00267 \times P_S A_D$
 0.00

Excess Air at Sample Point

$$\% EA = \frac{100 \times \% 02}{(0.266 \times \% N_2) - \% C_2}$$

$$\frac{100 (6.3)}{(0.266 \times 82.83) - (6.3)} = \frac{40.0 \%}{6}$$

NO_{X} EMISSION DATA

Boiler No. 6

Date 11/4/75

Run No.	1	2	3	4	5	6	7	8
Time	1045	1055	1130	1236	1250	1510	1515	1600
μg NO ₂	548	678	76	422	394	1000	1105	1045
T _i - Initial Flask Temp, ^O R	525	525	525	525	525	\$25	525	525
T _f - Final Flask Temp, ^O R	545	545	545	545	545	545	545	545
V _{fc} - Flask Volume, ml.	2047	2038	2039	2028	2025	2052	2052	2056
P _i - Initial Flask Pres, "Hg	2,5	2,5	2.5	2,5	2.5	2,5	2.5	2,5
P _f - Final Flask Pres, "Hg	29.65	29.65	29,65	29.65	29,65	29,65	29,65	29,65
1b/scf NO ₂ ×10 ⁻⁵	1.89	2,35	0.26	1.47	1.37	3.44	3.80	3, 5 8
1b/10 ⁶ Btu NO ₂	0.33	0,41	0.05	0.26	0.24	0.60	0.67	0.63

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \quad \frac{1b/scf}{\mu g/ml} \quad \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

NO_{X} EMISSION DATA

Boiler No. 6

	/)
Date	11/5/15

Run No.	1	2	3	4	5	6	
Time	0930	1000	1030	((1400	1405	
µg NO ₂	965	1110	910	950	1085	1160	
T _i - Initial Flask Temp, ^O F	530	530	£30	530	530	530	
T _f - Final Flask Temp, ^O F	550	550	550	550	550	550	
V _{fc} - Flask Volume, ml.	2047	2038	2039	2028	2025	2052	
P _i - Initial Flask Pres, "Hg	2.5	2.5	2.5	2,5	2.5	2,5	
P _f - Final Flask Pres, "Hg	29.75	29,75	29,75	29,75	29.75	29.75	
1b/scf NO ₂ ×10 ⁻⁵	3.34	3.86	3.16	3.32	3.80	4.01	
lb/10 ⁶ Btu NO ₂	1				0.61		

$$Vsc = \left(17.71 \frac{o_R}{in. Hg}\right) \qquad (Vfc) \qquad \left(\frac{p_f}{T_f} - \frac{p_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/ml} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

Date	11/6		116		
Run No.	1	/	2	2	
V _{mc} -Meter Volume, Ft ³	6.057		7,858		
Vmstd-Meter Volume, Std. Cond.	5.988		7.768		
PB-Barometric Pressure, "Hg	29.59		29.59		
ΔH-Avg. Orifice Pres. Drop, "H ₂ O	0.1		0.1		
V _t -Vol. of Titrant, ml.	9.8	1.6	15.05	3.05	
V _{tb} -Vol. of Titrant for Blank, ml.	ni/	·	nil		
Vsoln ^{-Vol.} of Solution, ml.	500 ·	100	500	100	
V _a -Vol. of Aliquot, Titrated, ml.	5	25	5	25	
1b/scf H ₂ SO ₄ x/0 ⁻⁶		1.154		1.696	
¹ b/10 ⁶ Btu H ₂ SO ₄		0.017		0.025	
1b-scf S0 ₂ ×10 ⁻⁴	1.154		1.366		
1b/10 ⁶ Btu 50 ₂	1.72		204		

Vmstd = 0.0334
$$\frac{\text{(Vm)}}{\text{CF}_{\text{m}}}$$
 $\left(P_{\text{B}} + \frac{\Delta H}{13.6}\right)$
 CF_{m} = Meter correction factor

CH2S04 =
$$\left(1.08 \times 10^{-4} \frac{\text{lb-l}}{\text{g-ml}}\right)$$
 (Vt - Vtb) (N) $\left(\frac{\text{V}_{\text{Soln}}}{\text{Va}}\right)$ = lb/scf Norma.

Barium Perchlorate

$$C_{SO2} = \left(7.05 \times 10^{-5} \frac{1b-1}{g-m1}\right) \quad \left(V_{t} - V_{tb}\right) \quad \left(\frac{N}{V_{a}}\right) \quad \left(\frac{V_{Soln}}{V_{a}}\right) = 1b/scf$$

Material collected (mg) =

Filter Catch = 33.0
Dry Catch = 32.9
TOTAL = 65.9

Gas Volume
$$Vm_{std} = 0.0334 \left(\frac{V_{m}}{CF_{m}}\right) \left(\frac{P_{B}}{P_{B}} + \frac{H}{13.6}\right)$$

$$0.0334 \left(\frac{42.80}{(1.01)}\right) \left(29.42 + \frac{0.926}{13.6}\right) = \frac{41.736}{13.6}$$
SCF

Volume of water vapor Vw = 0.0474 X Vlc

0.0474 (342 m1) = 16.211 SCF

 $\frac{\% \text{ Moisture}}{\text{Moisture}} \qquad \text{\%M = 100 X } \frac{\text{Vwstd}}{\text{Vmstd}} + \text{Vwstd}$

$$\frac{100 \times (16.211)}{(41.736) + (16.211)} = 27.176 \%$$

Molecular Weight of dry stack gas

$$MW_D = \%C02 \times 0.44 + \%02 \times 0.32 + \%N2 \times 0.28$$

$$(16.5 \times 0.44) + (1.65 \times 0.32) + (81.85 \times 0.28) = 30.706$$

Molecular Weight of stack gas

$$MWW = \frac{100 - \%M}{100} \times MW_D + \frac{\%M}{100} \times 18$$

$$\left[\frac{100 - 27,976}{100} \times 30,706\right] + \left[\frac{27.976}{100} \times 18\right] = \frac{27.151}{100}$$

Test:
$$C_A \dagger$$
 C_{racker} Date: $II/I 2/75$ Stack Velocity $V_S = 85.48 \times C_P$ $\left[\frac{T_S \times P \text{ avg}}{P_S \times MW_W}\right]$ $1/2$ $85.48 \times (0.86)$ $\left[\frac{IO(2.I) \times 0.91/4}{29.36I \times 27.75/I}\right]$ $1/2 = \frac{78.269}{129.36I \times 27.75/I}$ $1/2 = \frac{78.269}{100}$ fps $\frac{Stack Gas Volume}{100}$ $Q_S = 3600 \left(1 - \frac{2M}{100}\right)$ $(V_S)(A) \left(\frac{T_S td}{T_S}\right) \left(\frac{P_S}{P_S td}\right)$ 3600 $\left[1 - \frac{(27.916)}{100}\right]$ (78.269) (50.265) $\frac{530}{(0/2)}$ $\frac{(29.36I)}{29.92} = \frac{5.24I.998}{29.92}$ SCFH $\frac{Stack Emission Rate}{100}$ $C_S = 2.205 \times 10^{-6} \left(\frac{M_D}{V_M std}\right)$ 2.205×10^{-6} $\frac{(65.9)}{(4I.736)} = \frac{3.482 \times 10^{-6}}{100}$ $\frac{10}{V_S \times V_S}$ $\frac{1$

Excess Air at Sample Point

% EA =
$$\frac{100 \times \% \ 02}{(0.266 \times \% \ N_2) - \% \ 02}$$

 $\frac{100 \ (\ /.65)}{(0.266 \times 8/.85) - (/.65)} = \frac{8.2\%}{}$

Material collected (mg) =

TOTAL =
$$84.7$$

Gas Volume
$$Vm_{std} = 0.0334 \left(\frac{V_m}{cF_m}\right) \left(P_B + \frac{H}{13.6}\right)$$

$$0.0334 \left(\frac{35.21}{(1.01)}\right) \left(29.68 + \frac{0.652}{13.6}\right) = \frac{34.614}{13.6}$$
SCF

Volume of water vapor Vw = 0.0474 X Vlc

$$0.0474 (311.5 ml) = 14.765 SCF$$

$$\frac{100 \times (14.765)}{(34.614) + (14.765)} = \frac{29.9}{\%}$$

Molecular Weight of dry stack gas

$$MW_D = \%CO2 \times 0.44 + \%O2 \times 0.32 + \%N2 \times 0.28$$

$$(17.7 \times 0.44) + (1.4 \times 0.32) + (81.4 \times 0.28) = 31.028$$

Molecular Weight of stack gas

$$MWW = \frac{100 - \%M}{100} \times MW_D + \frac{\%M}{100} \times 18$$

$$\left[\frac{100 - 29.9}{100} \times 31.028\right] + \left[\frac{29.9}{100} \times 18\right] = \frac{27./3}{}$$

Test:
$$Amoco - Cat Cracker$$

Stack Velocity

Vs = 85.48 x C_p $\left[\frac{Ts \times P \text{ avg}}{P_s \times M_{W_w}}\right]$ 1/2

85.48 x (0.86) $\left[\frac{1039.3 \times 0.900}{29.614 \times 27.13}\right]$ 1/2 = $\frac{79.32}{29.614 \times 27.13}$ fps

Stack Gas Volume

Qs = 3600 $\left(1 - \frac{8M}{100}\right)$ (Vs)(A) $\left(\frac{1\text{std}}{Ts}\right)$ (Ps)

Stack Emission Rate

Cs = 2.205 x 10⁻⁶ $\left(\frac{M_D}{M_Std}\right)$ 29.92 = 5.018, 545 SCFH

Stack Emission Rate

Cs = 2.205 x 10⁻⁶ $\left(\frac{M_D}{M_Std}\right)$ 1b/scf

CF = Cs x Qs = (5.396 ×10) (5.078, 545) = $\frac{27.40}{100}$ 1b/hr

CH = CE ÷ H = $\frac{10}{100}$ 1 1b/106 Btu

Isokinetic Variations

I = 1.667 $\left(\frac{(0.00267)}{530}\right)$ (311.5) + $\frac{34.614}{530}$ (29.68 + $\frac{0.652}{13.6}$) (1039.3) = 100.26% (60) (79.32) (29.614) (2.4×10⁻⁴)

Excess Air at Sample Point

$$\% EA = \frac{100 \times \% O_2}{(0.266 \times \% N_2) - \% O_2}$$

$$\frac{100 (/. \%)}{(0.266 \times 8/. \%) - (/. \%)} = \frac{6.9 \%}{6.9 \%}$$

APPENDIX B FIELD DATA

$NO_{\mathbf{x}}$ EMISSION DATA

Cat. Cracker	Date 11/12 \$ 11/17							
Run No.	1.	2	3	4	5	6	7	8
Time	1015	1115	1210	1235	1305	1500	1530	1540
µg NO ₂	242	246	1000	1200	1180	1400	1320	1220
T _i - Initial Flask Temp, ^O R	510	510	530	530	530	530	530	530
T _f - Final Flask Temp, ^O R	530	530	550	550	550	550	550	550
V _{fc} - Flask Volume, ml.	2047	2038	2039	2028	2025	2052	2052	2056
P _i - Initial Flask Pres, "Hg	2,5	2,5	2.5	2,5	2.5	2.5	2.5	2.5
P _f - Final Flask Pres, "Hg	29.42	29.42	29,61	29.61	29.61	29.61	29.61	29.61
1b/scf NO ₂ ×10 ⁻⁵					f	4.86		
1b/10 ⁶ Btu NO ₂								
16/hr NO2	42.6	43.5	180.6	217.8	214.2	250.8	236.3	2/8.3

$$Vsc = \left(\frac{17.71}{\text{in. Hg}}\right) \qquad (Vfc) \qquad \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right) = scf$$

$$V_{fc} = V_f - 25$$

$$C = 6.2 \times 10^{-5} \frac{1b/scf}{\mu g/m1} \left(\frac{\mu g NO_2}{Vsc}\right) = 1b/scf NO_2$$

H₂SO₄ MIST and SO₂ EMISSION DATA

Cat Cracker

Date		11/17		11/17		
Run No.		1		2		
V _{mc} -Meter Volume,	Ft ³	7.386		11.955		
Vmstd-Meter Volume, S	td. Cond.	7.3065		11.826		
PB-Barometric Pressur	e, "Hg	29.61		29.61		
ΔH-Avg. Orifice Pres.	Drop, "H ₂ O	0.1		0.1		
V _t -Vol. of Titrant, m	1.	7.1	0.3		8.75	
V _{tb} -Vol. of Titrant f	or Blank, ml.	nil	nil	nil	níl	
Vsoln ^{-Vol} . of Solutio	n, ml.	500	100		100	
V _a -Vol. of Aliquot, T		5	50		50	
lb/scf H ₂ SO ₄	×10-6		0.089		1,598	
16/10 ⁶ Btu H ₂ SO ₄	16/hr		0.46		8.25	
lb-scf SO ₂	×10 ⁻⁵	6.851		6.856		
1b/10 ⁶ Btu SO ₂	16/hr	353.5		3 <i>53</i> .8		

Vmstd = 0.0334
$$\frac{\text{(Vm)}}{\text{CF}_{\text{m}}}$$
 $\left(P_{\text{B}} + \frac{\Delta H}{13.6}\right)$
 CF_{m} = Meter correction factor

CH2SO4 =
$$\left(1.08 \times 10^{-4} \frac{1b-1}{g-ml}\right)$$
 $\left(V_t - V_{tb}\right)$ $\left(\frac{N}{V_t}\right)$ $\left(\frac{V_{soln}}{V_a}\right)$ = 1b/scf $\frac{N}{V_t}$ = 0.01 Normal Barium Perchlorate

$$C_{S02} = \left(7.05 \times 10^{-5} \frac{1b-1}{g-m1}\right) \quad \left(V_{t} - V_{tb}\right) \quad \left(\underline{N}\right) \quad \left(\underline{V_{soln}}\right) = 1b/scf$$

$$V_{mstd}$$

SUPPLEMENTARY PROCESS DATA FOR POWER PLANTS

Boiler No. 6

	 		
11/4	11/5	11/6	
see	below		·
	11/9 See		

Steam loads checked over time of test

11/4

Part. 155.3×10^3 1b/hr = 185.8 × 106 Btu/hr NO_× 154.2×10^3 1b/hr = 184.5 × 106 Btu/hr Andersen 150.4×10^3 1b/hr = 180.0 × 106 Btu/hr

11/5

Part. 147.9×10^3 lb/hr = 177.0×10^6 Btu/hr NOx 148.4×10^3 lb/hr = 177.6×10^6 Btu/hr Andersen 150.6×10^3 lb/hr = 180.2×10^6 Btu/hr

11/6

Andersen 140.6 × 103 lb/hr = 168.3 × 106 Btu/hr SO2 \$ SO3 142.1 × 103 lb/hr = 170.1 × 106 Btu/hr

Boiler Feedwater; 290°F, 800 psi H= 259.3 Btu/#
Steam: 600 psig, superheated, 580°F H= 1276.5 Btu/#

Heat Output = 1276.5 - 259.3 = 1017.2 Btu/16 steam

Heat Input = Output + 85% = 1017.2 + 0.85

= 1196.7 Btu/16.5 team

ORSAT FIELD DATA

Location	lmoco	- Blr #6	Comments:
Date	- 11/6		
Time			
Operator	Klein		

	(0 ₂)	(CO)
Reading 1	Reading 2	Reading 3
10.6	5.7	0.0
10.4	5,8	0.0
10.0	6.2	0.0
11.0	6.4	0.0
10.7	6.5	0.0
10.8	6.0	0.0
9.2	7.0	0,0
		0/3
	10.0	Reading 1 Reading 2 10.6 5.7 10.4 5.8 10.0 6.2 11.0 6.4 10.7 6.5 10.8 6.0

	Stack Temp. OF	200	380	430	445	044	450	450	445	455	455		450	27	460	455	460	753	25%	
6 % 10 S In. 3/8 In. 4vg. Ang.	Stack Press. In. #9.	0.0																		
Po Gr	Probe Temp OF	150	200	230	242	245	250	562	230	235	240		305		252	255	092	350	300	
Ambient Temp OF Bar. Press "Hg Assumed Moisture % Probe Tip Dia., In. Probe Length 10.	Вох Тетр оF	310	310	312	325	3.30	330	335	335	345	350	350	345	345	345	345	345	345	345	
[vi	Pump Vacuum In. Hg. Gauge		5.0			7.5					0'8					0,0				
DATA ALL BLANKS start of	Impinger OF Temp. Inlet Outlet	64	-	55	57	59	09	9		68	_	63	60		_	61	62	62	3	006
ELD IN the	Imp OF Inlet	190	220	230	245	250	255	265	270	275	280	280	285	285	270	290	295	295		@ to
PARTICULATE FIELD DATA MPORTANT-FILL IN ALL BLANK and record at the start of test point.	Se AH O Actual	0.52	0.70	0,75	0.0	1,0	1.0	1,0	0'1	01	1.05	0,1	7.0	1.0	5/ '/	1,15	5/'/	102	2 //	th pitot
	Orifice in H ₂ O Desired A	25'0	0,70	0,75	6.0	1,0	1,0	1.0	1.0	1.0	1.05	0.7	0.1	7.0	1.15	1,15	1.15	1,2	1.2	its with 585
VERY 1	Pitot in H ₂ O ∆P	0.08	0,11	0.12	6.14	0.16	0,16	0116	0.16	0.16	0,165	0,16	0.16	0//6	8/10	8/10	81'0	61.0	61.0	all points
Blr. 5 5cm, Klein .026	Dry Gas Meter, CF	1886.415	6886.3	0.0681	87181	1894.2	1895.9	1898,3	1900,3	1902.8		1907	1905, 2	1911.5	1913.5	1916	19/8,3	1920.8	1923	on approx. 1925:00.
#6 1/4/2 Gri	Clock	06:01	:43	96:	:49	: 52	55;	:58	10:11	, o4	:07	91;	: 13	9::	61:	122	: 25	: 28	:3/	14
Plant Am Run No. Location Date III Operator Meter AH@. C Factor	Point	7-1	1-2	1-3	1-4	7-1	7 -1	7-1	08-1	1-9	1-10	1	1-12	1-13	1-14	1-15	2	1-17	81-1	Zero readings

0. 0.		[3	Ö	i.	l\n	10	150	<u></u>	0		/>					0	\		_	m	0		56 ac			47	03		436.55-
Stack Temp.	L.	chh	450	465	455	25/2	25.54	55/	65/7	460	455			760	450	450	175	09/ 7	460	463	760	`	1/11	}} }}		18/	873	}	73
Stack Press.)	Ì	
Probe Temp	<u>_</u>	760	210	010	28	30	335	0 E C	, C.	200	2.0			320	330	330	325	325	325	335	335								
Box Temp	<u>_</u>	300	300	C %;	1 0	3/5	310	320	0 0 0 0 0	325	523			270	3/5	330	345	350	355	355	350								
Pump Vacuum In. Hg.	Gauge	6.0	7.3		2.5			9.5							0.0	ر. د. ۲	ر. ۲ اه. ۲		7.0										
Impinger OF Temp.	Inlet Outlet	77	45		2	26	600	57	25	56	59			27	55.	50	55	3	00	60	179								
Impi OF T	Inlet	175	220		24%	250	255	7,00	260	270	270			175	230	240	246	700	7527	265	270	,		1					.
) AH	Actual	0.75		1.05	15/1	1.15	1.01	1.25	1.4	1.25	1.15			0.5	0.63	0.7	0.75	0.75	0,1	5.82	6.0		0.752.V	}			2 %.0	1. 18:3	6.90.43
Orifice in H ₂ O	Desired	6.75	6.95	1.05	1.75	1.15	1.00	1.25	1.4	1.25	1.15			6.5	0.63	0.7	0.75	0.75	0.75	0.82	6.9						\$	C	.
Pitot in H2O	7 2	41.0	61.0	21.0	0.16	57.0	4.0	٥.4	40.0	0.20	0.18			0.6	67.5	0.11	0.12	7.0	27.0	0.73	9.17		.344/S1.0	}			est it in		
Dry Gas Meter,	5	1935:053	1727	1920.5	1	14.52.6	1935.8	1938.2	1943.6	1943 2	1945.3-	1447 630		1947.630	1947.3	0 1561	1452.7	1454.1	1956.6	1953.8	1460.6	1962.475					342 18 MA		
Clock		12 27	. 30	. 33	78 :	48.	64	54.	1/2	15.	: 54	12:57		361	,31	ps:	1.37	0/1	Eh :) AC	64:	. 52				24	, ,		
Point		7-9	- 73	17 -	-12	6/-	h/ -	, C/ ~	وَ	- 77	ا برا	OFF		7-6	- 2	r)	7 -	٠٠,	7	6	· •	OFF					COMMENTS:		

Plant: Arioco
Location Of Sample Port: 46 EIR STACK
Barometric Pressure: 2968
Ambient Temperature 65
Silica Gel
Weight After 545 g
Weight Before 500 g
Moisture Weight 45 g Moisture Total 240 g
Container No.
Extra No Weight Resultsg
Container No.
Extra No. Weight Results 6.0597g
iculate
er No. Container No.
Filter Particulate Weight 0.2/73 g
Total Particulate

[%] Moisture By Volume

1 PARTICULATE FIELD DATA VERY Read eac Location # 6 Blr.
Date 11/5/25 Meter A H0 1.026 Griscom Plant Amoco C Factor _ Operator_ Run No.

ient Temp OF 70	Bar. Press "Hg 29.75	Assumed Moisture % /2	Probe Tip Dia., In. 3/8	Probe Length 5 ff & 10 ff	AVO. AP 0.17 AVO. AH
Y IMPORTANT-FILL IN ALL BLANKS Ambient Temp OF	Bar	de the start of	ch test point.	Prot	AVG

Stack Temp.		3/0	425	450	960	460	760	795	465		465	462	096	44.5	452	450	0.54	430	25%	450
Stack Press.	1	55'0-																		
Probe Temp	L)	260	280	290	310	300	315	323	320		120	160	200		205	200				200
Box Temp	<u>.</u>	300	305	310	325	330	340	340	333		3/0	313	312		325	313				318
Pump Vacuum In. Hg.		5%		0'5	5,5							0.0			٥,٢		2.5			20
Impinger OF Temp.	Inlet Outlet	22		ر ال	59	00	29	9	89		1 /	52	9		5	1				8 g
Impi OF 1	Inlet	120	180		36	220	238	240	240		051	228	245		250	255				520
е ΔН	Actual	5.0	5623	0.59	0,68	990	57.0	0,75	21.0		8.0	0,8	8.0	0.86	0.86	1.0	1.0	1,0	0.93	9,8'0
Orifice in H ₂ O	Desired	50	0,6250,623	1510	0,68	89'0	0.75	0.75			8'0	ذØ	0.8	0.8¢	0.86	1.0	01	1.0	26'0	98.0
Pitot in H2O	4.5	800	0,1	2600	0,11	11.0	210	21.0	21.0		0.13	6.13	2110	p1 '0	2119	91.0	91.0	91.0	510	41.0
Dry Gas Meter,	5	584.8002	2005.0	1.002	2 '8003	3010,5	2012.2	0.4100	2016.1	066 2102	2017.990	26102	211.05	2023,7	2025.7	74202	Lbroz	6-1802	1.4500	2038.150
Clock		9:35	9:38	16:	<i>hh</i> :	2	1,50	153	\$56	6516	51:01	81:	:21	124	137	3.00	: 33	34.	139	42 10:45
Point		1-2	2-2	2.3	2.4	2.5	2-6	2-7	8-8	940	2-4	2.10	11-7	2-13	2-13	5-14	21-15	2-(6	2-17	450 20-2
	•	-32	1-	Kar.	Arsba				•	-	7	•		\$	Peabe					•

Stack Temp.	-L.)	365	415	445	450	255%	460	460	460	455	460	460	460	760	460	4/62	460	160	460		4.804			
Stack Press.	In. Hg.																							
Probe Temp)	140	205	235		38				225														
Box Temp		280	280	286		315				335														
Pump Vacuum In. Hg.	Gauge	4.5				7.5							7.0											
Impinger OF Temp.	Inlet Outlet	0,60		53		69				69														
Imp OF	Inlet	051	200	210		235				270									-					
))	Actual	2.0				0.93	980	0.86	0,86	0,8	0,8	0,86	0,86	0,93	0.83	0.93	1.0	1.0	1.05		0.8191			
Orifice in H ₂ 0	Desired	2.0	0,62	0.74	0.79	0.43	0,86	0.86	3.86	0.8	0.8	0.86	0,86	0.93	0.93	0.93	1.0	1,0	1.05					
Pitot in H20	Δr	0,08	01.10	0.12	0.12	0.15	0,14	0.14	0.14	0,13	0.13	0.14	2.14	0.15	0.15	0,15	0,16	0.16	2110		0.1324			
Dry Gas Meter,	r.	2038,015	2039,6	2041.4	2043.3	2045.0	2047,5	2049.0	2051.2	2053.4	2055,2	2056.9	2058, 9	2061.2	206 3.0	2064.9	2067.1	2069.1	2071.2	025.2105	69.735			
Clock		85:11	14:	7.44	: 47	:50	:53	1.56	159	12:02	: 05	: 08	"	; 14	:17	, 20	; 23	: 26	129	12,32	124 121			
Point		1-1	7-7	1-3	1-4	7-1	7-6	1-7	1-8	1-9	0/-/	1-11	1-12	1-13	1-14	1-15	1-16	1-17	1-18	J.J.0	T561			

COMMENTS:

Date: ///5/75	Plant:
Run Number: 2	Location Of Sample Port: # 6 BLR.
Operator:	Barometric Pressure:
Sample Box No.	Ambient Temperature
Impinger H20	Silica Gel
Volume After Sampling 393ml	Weight After 517.4 g
Impinger Prefilled With 200 ml	Weight Before 500.0 g
Volume Collected /93 m1	Moisture Weight 17.4 g Moisture Total 21.4 g
Dry Probe and Cyclone Catch:	Container No.
	Extra No Weight Results g
Probe, Cyclone, Flask And Front Of Filter	
Acetone Wash:	Container No.
	Extra No. Weight Results 2.05 97 g
Filter Papers and Dry Filter Partic	culate
Filter No. Container No. Filter	r No. Container No.
	Filter Particulate Weight <u>0.2909</u> g
	Total Particulate Weight ₫ 2 5 6 6 g

[%] Moisture By Volume

OXIDES OF NITROGEN FIELD DATA

Date 11/4/75	
Plant Amocs Power	PLACET
Sample Collected By	Klein

Field Data

Clark Time								
Clock Time	10:45	10:55	11:30	12:30	12:53	15105	15:15	16 10
Flask number	1	2	3	4.	5	6	7	2
Volume of flask (ml)*	2047	2038	2039	2026	2025	2052	2052	20,00
Pressure before sampling in. Hg.	2.5	2.5	25	2.5	2.5	2.5	2.5	2.5
Pressure after sampling, in. Hg.	29.59	-	-	-	-	-	-	
Flask temperature, ^O F	85	_	-	-	-	-	-	

^{*} Flask + valve - 25 ml. for absorbing solution

OXIDES OF NITROGEN FIELD DATA

Date _	11/5	175	edirida esta esta esta esta esta esta esta est	in vale graansage territorioonioonioonioonioonioonioonioonioonio
Plant.	Amoce	- B1	#6	
Sample	Collected	Ву	Klein	

Field Data

Clock Time	0930	1000	1030	1200	1400	1405	
Flask number	/	2	3	4	5	6	
Volume of flask (ml)*	2047	2038	2039	2028	2025	2052	
Pressure before sampling in. Hg.	2.5	2.5	2.5	2.5	2.5	2.5	
Pressure after sampling, in. Hg.	2 9.75	29.75	29.75	29,75	29.75	24.75	
Flask temperature, ^O F	90	90	90	90	90	90	

^{*} Flask + valve - 25 ml. for absorbing solution

Material Sampled For 502 5 3	03
Date ///6/75	
Plant Amoco	Location & Boiler
Bar. Pressure 29.59 "Hg	Comments:
Ambient Temp 75 °F	
Run No/	
Power Stat Setting	
Filter Used: Yes No	
Operator GRISCOM Klein	

Clock	Meter	Pitot	Orifice	Ten	peratu	res OF		
Time	(Ft. ³)	in. H20	in H ₂ 0	Stack	Probe	Coil		nger
		Δ P	▲H				In	Out
10:40	2125.895	0.1	0.1	435	320	132	140	89
10:45	2127.3	0.1	6.1	435	305	142	180	76
10:50	2128.7	0./	0./	435	315	144	160	75
10:55	2130.1	0.11	0.1	438	320	145	148	75
11:00	2131.4	0.1	0.1	440	325	146	140	75
11 05	2132.013		· · · · · · · · · · · · · · · · · · ·					

Comments: 6-118 ft3
25.4 min.

Material Sampled For 50_2 ?	<u>503</u>
Date	
Plant Annoco	Location # 6 Boiler
Bar. Pressure 29.59 "Hg	Comments:
Ambient Temp 75 °F	
Run No 2	
Power Stat Setting	
Filter Used: Yes No	
Operator Griscom, Klein	

Clock	Meter	Pitot	Orifice	Ten	peratu	res OF				
Time	(Ft. ³)	in. H20	in H ₂ O	Stack	Probe	Coil		nger		
	<u></u>	ΔP	△ H				In	Out		
11:30	2132.013	0.1	0.1	435	295	152	175	85		
11:40	2134.65	0.1	0.1	440	320	157	160	80		
11:45	2136.0	0.1	0.1	440	306	158	195	80		
11.50	2137.3	0.1	0.1	440	300	157	140	78		
11.55	2138.7	0.1	8.1	440	300	157	135	80		
12:00	2139.950									
		+								

Comments: 7.937 ++3

	Stack Temp. OF	460 460	76° 76°	39%	
70 29.62 % 10 In. 3/8 5 ft Avg. AH	Stack Press. In. Hg.				
g g ure	Probe Temp OF	340 370	365		
Ambient Temp OF Bar. Press "Hg Assumed Moisture % Probe Tip Dia., In Probe Length	Box Temp 0F	36 0 385	390	385	
	Pump Vacuum In. Hg. Gauge	9.0	07/1	18/5	
TA L BLANK tart of	Impinger OF Temp. Inlet Outlet	75 70	70	28	
IELD DA IN ALI the s	Impi OF T Inlet	205		0 0 0	
LATE F VT-FILL cord at Sint.	e AH Actual	0,85	0,85	00.8	
VERY IMPORTANT-FILL IN ALL BLANKS Read and record at the start of each test point. E. Ther Set No. 1 Buckup No. 1	Orifice ΔH in H_20	0,85			
NERY Reacheach	Pitot in H2O ∆P	0.13	0.13	0,12	
21r x, Klein	Dry Gas Meter, CF	1962.495	1976.0	1488,10 1994,615 32,12 ft3	
Andersen # 6 Bly 11/4/15 Griscom HO	Clock	3:03	133	1988 153 1994 153 1994 153 1994 150 1994	
Plant Amocs Run No. Anderse Location #6 B Date /////5 Operator Griscan Meter AH0 C Factor	Point	2-9		50.25 min	

		3 A. 3 E & E 4 & E 6 F O	47.0	337	7636	
1 1 1 1 1 1 1 1 1 1		00000000000000000000000000000000000000				
	**.		800	10 00 00 00 00 00 00 00 00 00 00 00 00 0		
Ambie 7 Tegs Rer. Fress Pf. Assums: Motsch Probe Tip Pfe.		ä Ås		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
\$ \$ \$ \$ \$ \$		620ce				A A TOTAL CONTRACTOR C
	The state of the s	Imploger OF Team.	660	1822	0 72.	
TE FIELD DATA FILL IN ALL B d at the star		e AH j		1667 0600		
PARTICULATE SRY IMPORTANT FIL Read and record each test point.	Sec. 54.		· ***** •	9000 9000		
VERY Read each		Pitos in H20	0,13	0.13	0.14	
Rin No. And Sin #2 Location // Girls Date Open ator. Serisson, Hera		Dry Gas Meter, CF	2076.7	20.20.2	2095 8 2078,955	28,735
And Sis	: : : : :	<u>5</u> 8	5.5; 0.5;	2,00 100 110	1.20	
Plant Run No Location. Data Aperator.	Melor A Me. G factor	ن. ا ا	3~			

	Stack Temp. OF	054	435	435	445					
72 29,62 % /3 In. 3/8 S ft Avg. AH—	Stack Press. In. Hg.									
np oF "Hg Z; sture % Jia., In Av	Probe Temp OF	310	330	335	345					
Ambient Temp OF 22 Bar. Press "Hg 25.62 Assumed Moisture % /2 Probe Tip Dia., In. 3/ Probe Length S ff Avg. ΔP Avg. Δ	Box Temp oF	350	365	380	388					372.2
	Pump Vacuum In. Hg. Gauge	9,0	000/	10.3	10.7					
MTA BLANK tart of	Impinger OF Temp. nlet Outlet	75	e e	60	27					
TELD DA IN ALL the st	Impi OF T Inlet	200	275	295	3/5					
PARTICULATE FIELD DATA MPORTANT-FILL IN ALL BLANK and record at the start of test point.	e AH Actual	57.0	0.75	27.0	0.75					
	Orifice in H ₂ O Desired Ac	0.75		0.75	0.75					19 cm
VERY 1 Read each	Pitot in H ₂ O △P	0,12	0.77	0,13	0.12					+30 = 0.649
1r. # 3 2 Klein 25	Dry Gas Meter, CF	2106,470	21130	21/6.3	2/22.6	2125, 895				19.425 +
Plant Αμοςο Run No. Ανάξινεη Location #6 βlr. Date 11/6 /75 Operator Griscom Meter ΔΗθ 1.032 C Factor 0.495	Clock	9:15	: 25	:30	: 35	54:6				
Plant Run No. A Location Date III Operator C Factor	Point	8-1								

Particle Size Determination

Т	rest: Åmoc	0-Blr.6	Dat	te: 11/	4/15			
Flate	Oven	Temp. = 380 F Final(g) Net(mg)	Filter Net	Total	% of Total		ECD (icrons)	
1	0.1538	0,1.537	0.0		0.0	0.0	14.4 \$ 6	above
2	0.1448	D.1448	0.0		0.0	0.0	9.12	
3	0.1570	0.1610	4.0		3.57	3.57	6.12	
4	0.1506	0.1553	4.7		4.19	7,76	4.32	
5	J.1550	0.1619	6.9		6.16	13,92	2.64	
6	0.1488	0.1586	9.8		8.74	22,66	1.368	
7	0.1530	0.1647	11.7		10.44	33.10	0,84	
8	0.1500	0.1651	15.1		13.47	46.57	0.56	
Back Filte	Up 0.2146	0.2739	59,9		53,43	1000	6.56	
		Total	112,1		100.0			
	Test: Amo	co - Blr. 6	Date	e: 11/s	5/75			
Plate	Test: Amod Oven Tare(g)	co - Blr. 6 Temp. = 372.4°F Final(g) Net(mg)	Date Filter Net	Total	5/75 % of Total	Cum %	ECD (icrons)	
Plate	Test: Amod Oven Tare(g)	Temp. = 372.9°F Final(g) Net(mg)	Filter	Total	% of	(1)		bore
	Oven Tare(g)	Temp. = 372.4°F Final(g) Net(mg)	Filter Net	Total	% of Total	(1)	Microns)	bove
1.	Oven Tare (g) n	Temp. = 372.4°F Final(g) Net(mg)	Filter Net	Total	% of Total 0.54	(1)	1icrons) 14.4 4 a	bore
J. 2	Oven Tare(g)n 0.1603 0.1470	Temp. = 372.9°F Final(g) Net(mg) 0.1609 0.1481 0.1506	Filter Net O.6	Total	% of Total 0.54 0,99	(1)	1icrons) 14.4 4 a 9.0	bore
J. 2	Oven Tare(g) ⁿ 0,1603 0,1470 0,1462	Temp. = 372.9°F Final(g) Net(mg) 0.1609 0.1481 0.1506	Filter Net O,6 /,/ 4,4	Total	% of Total 0.54 0,99	(1)	1icrons) 14.4 \$a 9.0 6.0	bove
1. 2 3 4	Oven Tare(g) ⁿ 0.1603 0.1470 0.1462 0.1448	Temp. = 372.9°F Final(g) Net(mg) 0.1609 0.1481 0.1506 0.1561	Filter Net 0,6 1,1 4,4 6.3	Total	% of Total 0.54 0,99 3.97 5,69	(1)	1icrons) 14.4	bove
1. 2 3 4 5	Oven Tare (g) ⁿ 0.1603 0.1470 0.1462 0.1448 0.1444	Temp. = 372.9°F Final(g) Net(mg) 0.1609 0.1481 0.1506 0.1561 0.1502	Filter Net 0.6 1.1 4.4 6.3 5.8	Total	% of Total 0.54 0,99 3.97 5,69	(1)	1icrons) 14.4	bove
1. 2 3 4 5 €	Oven Tare (g) 0,1603 0,1470 0,1462 0,1448 0,1444 0,1489	Temp. = 372.9°F Final(g) Net(mg) 0.1609 0.1481 0.1506 0.1561 0.1502 0.1619	Filter Net 0.6 1.1 4.4 6.3 5.8 13.0	Total	% of Total 0.54 0,99 3.97 5,69 5,24	(1)	1icrons) 14.4 \$a 9.0 6.0 4.20 2.88 1.36	bore
1. 2 3 4 5 €	Oyen O.1603 O.1603 O.1470 O.1462 O.1448 O.1444 O.1489 O.1464 O.1466 UP forgot	Temp. = 372.9°F Final(g) Net(mg) 0.1609 0.1481 0.1506 0.1561 0.1502 0.1619 0.1593	Filter Net 0.6 1.1 4.4 6.3 5.8 13.0 12.9	Total	% of Total 0.54 0,99 3.97 5.69 5.24 1.75	(1)	1icrons) 14.4	bore

Particle Size Determination

T	est: Amoc	0 -Blr.6	٥	Dat	ce: 11/6/75	
Plate	Oven Tare(g)	Temp. = : Final(g)	372,2 F Net(mg)	Filter Net	Total % of Total	Cum % ECD (Microns)
1	0.1521	0.1538		1.7	2,75	14,23 \$ above
2	0.1413	0.1459		4.6	7.44	8.97
3	0,1429	0.1443		1.4	2.27	5,98
4	0.1452	0.1478		2.6	4.21	4.25
5	0.1461	0.1488		2.7	4,37	2.63
6	0.1426	0.1477		5.1	8,25	1.35
7	0.1431	0.1492		6.1	9.87	0,83
8	0.1461	0.1550		8.9	14.40	0.55
Back (Filter	1212.0 dr	0.2408		28.7	46,44	< 0.55
		Total		61.8	100,00	·
ŗ	Test:			Date	: :	
Plate	Test: Tare(g)	Final(g)	Net(mg)	Date Filter Net	e: Total % of Total	Cum % ECD (Microns)
		Final(g)	Net(mg)	Filter	Total % of	
Plate		Final(g)	Net(mg)	Filter	Total % of	
Plate		Final(g)	Net(mg)	Filter	Total % of	
Plate 1 2		Final(g)	Net(mg)	Filter	Total % of	
Plate 1 2 3		Final(g)	Net(mg)	Filter	Total % of	
Plate 1 2 3 4		Final(g)	Net(mg)	Filter	Total % of	
Plate 1 2 3 4 5		Final(g)	Net(mg)	Filter	Total % of	
Plate 1 2 3 4 5		Final(g)	Net(mg)	Filter	Total % of	
Plate 1 2 3 4 5 6 7	Tare(g)	Final(g)	Net(mg)	Filter	Total % of	

SUPPLEMENTARY PROCESS DATA FOR POWER PLANTS

Date		
Net Unit Load - MW		
Average Steam Load - 10 ³ 1b/hr		
Boiler Heat Input		
Fuel Burning Rate - lb/hr	:	
Fuel Heating Value - BTU/lb		
Fuel Sulfur Content - %		
Fuel Ash Content - %		
Fuel Moisture Content %		

	Operati	ing Data +	for Cat	Cracker	
Date	Fresh Feed (BBL/day)	Total Feed (BBL/day)	HCCO RECYCLE RATE (BBL/clay)	SLURRY RATE (BBL/day)	Catalyst Circulation Rate (TONS/min)
11/12	34485	35811	489	835	20.6
11/17	34769	35991	485	716	19.8

HCCO - Heavy Cat Cycle Oil

ORSAT FIELD DATA

Location Amoco - Cat Cracker	Comments:
Date 11/12 \$ 11/17	
Time	
Operator	

Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
11/12	16.4	2,0	0.0
1100	16.6	1, 3	0.0
11/17			
1/30	16.8	2,2	0.0
1520	17,2	2,2	0.0

	Stack Temp.	\$ 550		295	560	560	04.5		The second section is the second section of the second section is the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the section is the second section in the section is the second section in the section is the section in the section in the section is the section in the section is the section in the	545	550	255	550	055	045			552.1
29,42 29,42 In. '4 10ft Avg. AH.	Stack Press. In. Hg.	1		The state of the s					See A Company of Company Co.	and the same of th	-							
90 OF	Probe Temp OF		200	170		-			est training the second second	1,60	240							
ent Te Press ned Mo e Tip ! Leng	Box Temp oF	225	235	260	290	200	320	1000	e en	320	328	330	335	335	340			
	Pump Vacuum In. Hg. Gauge	0'0/	2, ?	20,50	76,57	70.57	10.0	A Thirthean British	The second section is a second section.	9.5	All the second s	15.5	13.5					
DATA ALL BLANKS start of	Impinger OF Temp. Inlet Outlet	* S	44	45	\$	4	48				48	55	60	89	10			
IN	Imp OF Inlet	120	!	195		230	-	1	apper to the second of	100	250	270	285	190	300			
PARTICULATE FIELD DATA MPORTANT-FILL IN ALL B and record at the startest point.	ce AH	26.0	0.86	0.76	0,86	96:0	0,86	4		0,85	0.87	0.92	11	1.1	1.1			0.526
	Orifice in H ₂ O Desired A	26'0	0.86	0,76	0.86	96'0	0,86			0,85	0,82	0.92	/:/	1,1) "/			
VERY J	Pitot in H ₂ O $_{\Delta}$ P	06'0	0,85	52'0	0,85	0,95	28.0			0.82	0,80	0,9	1.1	101	1.1			4.6.0
acker m, Klein 22	Dry Gas Meter, CF	2142,930	2147	2150	2153.7	2157	2161	2163,860		2163.860	21628	2171	2174.8	5'8(12	2182.5	2185.730		Vm = 42,80
Plant Amoco Run No. 1 Location Cat Cracker Date 11/12 Operator Griscom, Kle Meter A H@ 1.022 C Factor 0.40	Clock	10:30	:35	: 40	:45	: 50	3.5:	11:00		09:21	So:	: 10	: 15	, 20	; 25	12,30		
Plant A Run No. 1 Location Date 11/ Operator Operator C Meter A H@	Point	9-1	5-1	1-4	1-3	1-2)-/	tfo		2-6	2-5	7-7	2-3	2-2	1-2	- - -		

Date: 11/12/75	Plant: Amaca								
Run Number: #/	Location Of Sample Port: CRACKER PRECIP.								
Operator:	Barometric Pressure: 29.42								
Sample Box No.	Ambient Temperature 30 F								
Impinger H ₂ 0	Silica Gel								
Volume After Sampling 52/ ml	Weight After 521 g								
Impinger Prefilled With 200 ml	Weight Before 500 g								
Volume Collected 32/ ml	Moisture Weight 210g Moisture Total 342g								
Dry Probe and Cyclone Catch:	Container No.								
	Extra No Weight Results g								
Probe, Cyclone, Flask									
And Front Of Filter Acetone Wash:	Container No.								
	Extra No. Weight Results 0.0329g								
Filter Papers and Dry Filter Parti	culate								
Filter No. Container No. Filte	r No. Container No.								
	Filter Particulate Weight <u>0・0 ろこ</u> g								
	Total Particulate								
	Weight <u>0.0659</u> g								

[%] Moisture By Volume

		Stack Temp. OF	580	285	590	585	585	560		580	583	583	580	580	560			579.3
29.68	In. 1/4 10 ft Avg. AH_	Stack Press. In. H g .	-0.9															
np of "Hg sture %	ia., In hAv	Probe Temp OF		260	290						S S	275						
Ambient Temp of	Probe Tip Dia., In Probe Length 15 Avg. AP Avg	Box Temp OF	265	295	320	340	350	150		284	303	32.5	335	340	315			
·	Probe Probe Avg.	Pump Vacuum In. Hg.	7,0 7,0	2,9	6,0			7.0		7.0	7.0		7.0		2.0			
PARTICULATE FIELD DATA MPORTANT-FILL IN ALL BLANK and record at the start of		nger emp.	our let		55					70	60	64	_		63			
IELD D IN AL the s		Imp OF	Inter 165	L	240		265	270		170	230	253	260	275	280			
PARTICULATE FIELD DATA MPORTANT-FILL IN ALL B and record at the star	# 16	Se AH	Ac tua	イのうひ	45.0	0,68	21.0	8910		0.68	9,0	45.0	79'0	6,72	970			0.652
PARTICULATE FIELD DATA IMPORTANT-FILL IN ALL BLANKS I and record at the start of	test +er	Orifice in H ₂ O	o.66	40,0	0.54	0,68	57.0	8910		0,68	0166	750	7910	0.72	0,00			
VERY 1	- Ga	Pitot in H ₂ O ∆P	5'0	28'0	0,75	0.95	0.1	550		0.95	0.90	22.0	0.3	01	6.0			0.500
Gracker	m Klein	Dry Gas Meter, CF	2185.840	2189	2192	2194.5	57612	2 201	2203.480	2203.480	2206.5		2212.5	2215	2218	2221.050		Vrn= 35.21
Amoco 2 Ca+ Cr	Griscom	Clock	11:35	3::	:45	as:	25:	12:00	12:05	12:40	:45	05:	351	1:00	30%	1110		Vm
Plant Run No Location_ Date	Operator C Meter A H@_ C Factor	Point	2-6	2-5	2-4	2-3	2-2	2-1) to	2-	2.1	1-4	1-3	1.2	1-1	o, t		

Date: ////7/75	Plant: Amao									
Run Number: 2	Location Of Sample Port: CRACKER PRECEIVE									
Operator:	Barometric Pressure: 29.68									
Sample Box No.	Ambient Temperature 65°F									
Impinger H ₂ 0	Silica Gel									
Volume After Sampling 508 ml	Weight After 503.5 g									
Impinger Prefilled With 250 ml	Weight Before 5 on g									
Volume Collected 301 ml	Moisture Weight 3.5 g Moisture Total $3/1.5$ g									
Dry Probe and Cyclone Catch:	Container No.									
· ·	Extra No. Weight Results 0.05/8									
Probe, Cyclone, Flask And Front Of Filter										
Acetone Wash:	Container No.									
	Extra No Weight Results g									
Filter Papers and Dry Filter Parti	culate									
Filter No. Container No. Filte	r No. Container No.									
<u> 15</u>	Filter Particulate Weight 0.0329 g									
	Total Particulate									
	Weight <u>0.0147</u> g									

[%] Moisture By Volume

OXIDES OF NITROGEN FIELD DATA

Date	# 111	117	
Plant Amoco	- Cai	1 Cracker	
Sample Collected By	, <u>K</u>	lein	

Field Data	//	/12	11/17							
Clock Time	1015	1115	1210	1235	1305	1500	1530	1540		
Flask number	1	2	3	4	5	6	7	8		
Volume of flask (ml)*	2047	2038	2039	2028	2025	2052	2052	2056		
Pressure before sampling in. Hg.	2,5			-						
Pressure after sampling, in. Hg.	29,42	29,42	29.61	29.61	29.61	29.61	29.61	29.61		
Flask temperature, ^O F	70	70	90	90	90	90	90	90		

^{*} Flask + valve - 25 ml. for absorbing solution

Material Sampled For Soz & S	<u>03</u>
Date ///7/75	
Plant Amoco	Location Ceacker PRECIPITATOR
Bar. Pressure 296/ "Hg	Comments: PRECIPITATOR NOT IN CREAT IN
Ambient Temp 70 °F	
Run No/	
Power Stat Setting	
Filter Used: Yes No	
Operator Geiscam Klein	

Clock	Meter	Pitot	Orifice	Tem	peratu	res OF		
Time	(Ft. ³)	in. H ₂ 0	in H ₂ 0	Stack	Probe	Coil		nger
	 	▲P	△ H				<u>In</u>	Out
2:25	2221.050	0.8	0.1	585	220	168	180	72
2:30	2222.3	8.8	0./	585	280	170	190	67
2 35	2223.6	0.8	0./	585	300	170	160	66
2:40	2224.9	0.75	0.1	590	295	170	155	66
2:45								
2:50	2227.3	0.8	0./	590	315	177	190	66
2.55	2228.510							
	The state of the s							

off

Comments: 7.46 ++=

Material Sampled For 503	£ 503
Date //////3	7
Plant Amoco	
Bar. Pressure	'Hg Comments: Percipiration Nor Olekarays
Ambient Temp 70 °	PF
Run No 2	
Power Stat Setting	
Filter Used: Yes	No
Operator GRISCOM KLEIN	<i>j</i>

Clock	Meter	Pitot	Orifice	Ten	peratu	res ^O F		
Time	(Ft. ³)	in. H20	in H ₂ 0	Stack	Probe	Coil		nger
		△ P	ΔH				In	Out
3.45	2228.510	0.8	0.1	540	253	170	140	7s
4/30	2282.2	0.75	0.1	595	318	173	180	63
4.10	2234.3	0.8	٥./	600	305		145	60
420	223-1.3	0.3	0.1	600	315	166	143	ساتس
33	25/0-5/5							

Comments: 12. 75 ft³
4/3 pin/.

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)				
1. REPORT NO.	2.	3. RECIPIENT'S ACCESSIONINO.		
EPA-600/4-77-014				
4. TITLE AND SUBTITLE	5, REPORT DATE			
REGIONAL AIR POLLUTION STU	March 1977			
Point Source Emission Inventory		6. PERFORMING ORGANIZATION CODE		
7. AUTHOR(S)	8. PERFORMING ORGANIZATION REPORT NO.			
Fred E. Littman, Robert W.	. Griscom, and Otto Klein			
9. PERFORMING ORGANIZATION NAME AN	ND ADDRESS	10. PROGRAM ELEMENT NO.		
Rockwell International		1AA603		
Air Monitoring Center		11. CONTRACT/GRANT NO.		
11650 Administration Drive		68-02-1081		
Creve Coeur, MO 63141		Task Order 55		
12. SPONSORING AGENCY NAME AND ADD	PRESS	13. TYPE OF REPORT AND PERIOD COVERED		
Environmental Sciences Res	search Laboratory - RTP.NC	Final		
Office of Research and Development		14. SPONSORING AGENCY CODE		
U.S. Environmental Protect				
Research Triangle Park, N	EPA/600/09			
15. SUPPLEMENTARY NOTES	.0. 2//11			

16. ABSTRACT

Emission data from stationary point sources in the St. Louis Interstate Air Quality Control Region were gathered during 1975. Data for "criteria" pollutants were obtained on an hourly basis. Emissions from large sources were based on hourly, measured values of pertinent operating parameters. Those from smaller sources, between 10 and 1000 tons per year, were based on annual data modified by a detailed operating pattern. Examples of the data are presented in the report. The full set of data are available from the RAPS Data Bank.

An emission factor verification program was initiated by testing typical sources using standard EPA methods. Results indicate good agreement for SO₂ values. Data for NO₂ and particulates originating from combustion sources indicate that the existing factors are too high by variable but substantial amounts.

17.	7. KEY WORDS AND DOCUMENT ANALYSIS					
a	DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group			
*Air p *Emiss *Data *Colle		St. Louis, MO Stationary point sources	13В			
	TION STATEMENT E TO PUBLIC	19. SEGURITY CLASS (This Report)	21. NO. OF PAGES			
222,10		20. SECURITY CLASS (This page) UNCLASS IF IED	PCA16-AGI			

		·		
			·	