
Investigation of Potential Exhaust Emissions Reductions using Biodiesel Blends in a Conventional Diesel Engine

ERMD Report #98-26718(2)

Prepared by: Lisa Graham, Peter Howes and Greg Rideout ENVIRONMENTAL TECHNOLOGY CENTRE EMISSIONS RESEARCH AND MEASUREMENT DIVISION

Environment Canada Environnement Canada

This report has not undergone detailed technical review by the Environmental Technology Advancement Directorate. The content does not necessarily reflect the views and policies of Environment Canada. Mention of trade names or commercial products does not constitute endorsement for use.

This unedited version is undergoing a limited distribution to transfer the information to people working in related studies. This distribution is not intended to signify publication and if the report is referenced, the author should cite it as an unpublished report of the Directorate indicated below.

Any comments concerning its content should be directed to:

Environment Canada Environmental Technology Advancement Directorate Environmental Technology Centre Ottawa Ontario K1A 0H3

Summary

The Emissions Research and Measurement Division (ERMD) of Environment Canada tested a light duty diesel truck on a chassis dynamometer over the four-phase Federal Test Procedure (FTP). The vehicle was tested at two temperatures using a commercially available low sulfur diesel fuel (LSD) and LSD blended with 10%, 20%, and 30% soybean oil methyl ester.

Samples of dilute exhaust were obtained using a constant volume sampling system and mass emission rates for the following emissions were determined:

- criteria emissions (CO, NO_x, THC) and CO₂
- methane and non-methane organic compounds,
- methyl and ethyl esters of soybean oil,
- carbonyl compounds,
- total particulate matter (TPM)

This vehicle also provided a first attempt at collecting emissions samples for the more detailed characterization of emissions under the PERD¹ funded project "Determination of the concentration, composition and sources of airborne carbonaceous particles in Canada". The following emissions were determined as part of this project:

- PM_{2.5} mass emissions,
- particle phase ions,
- particle phase organic and elemental carbon
- vapour phase organic acids
- vapour phase and particle bound polycyclic aromatic hydrocarbons (PAH), polycyclic aromatic sulphur heterocycles (PASH), and nitro polycyclic aromatic hydrocarbons (NO₂-PAH), and
- particle phase alkanes and biomarker compounds.

The use of biodiesel blends resulted in the following statistically significant (95% confidence) changes in emissions over the base fuel:

- o B10 gives a statistically significant decrease in NO_X emissions (4.5%) and THC emissions (10-20%) over the base fuel at the standard test temperature.
- o B20 gives a statistically significant decrease in THC emissions (hot start only 34%) over the base fuel at the standard test temperature. NO_x emissions remain essentially unchanged.
- o B30 gives a statistically significant decrease in THC emissions (27-37%) over the base fuel at the standard test temperature.
- B20 gives a statistically significant increase (20%) in CO₂ emissions in the cold temperature cold start test as compared to the base fuel.

No statistically significant differences in TPM emissions were observed among the fuels. Increases in acrolein, PAH and NO₂-PAH emissions were observed with the biodiesel blends as compared to the base fuel, though there was insufficient data for statistical significance tests.

¹ PERD (Program on Energy Research and Development) is a joint program sponsored by Natural Resources Canada, Environment Canada and Health Canada with the goal of supporting federal government research activities in the area of effective, efficient use of energy resources.

Operation at cold ambient temperatures generally results in increased emissions regardless of the fuel used. The increase is greatest on cold start. Once the engine and emission control system have reached operating temperature, very little difference in emissions is observed.

Emissions of vapour phase organic acids were measured and emission rates of formic, acetic and glycolic acid were found at levels similar to the non-methane hydrocarbon emissions.

For the standard temperature tests, organic carbon accounts for approximately 55% of the particle mass while elemental carbon accounts for approximately 40% of the mass. Particle phase ions (ammonium, sulphate and nitrate) comprise a tiny fraction of the total mass. For the cold temperature tests, the organic carbon fraction increases to approximately 80% of the mass. It is suspected that lubricating oil contributes significantly to the increase observed at cold temperature. This hypothesis is supported by the significant increase in both the n-alkane and petroleum biomarker emission rates and a shift in the n-alkane distribution to lower carbon number.

The two methods for determining organic and elemental carbon composition (TOR and TOT) compare well for total carbon. The two methods differ in their distributions of organic and elemental carbon – largely due to the difference in approach for accounting for pyrolized carbon.

Table of Contents

SU	MMAR	Y	I
TA	BLE O	F CONTENTS	III
LI	ST OF T	ABLES	V
T.I.	ST OF F	IGURES	VI
171)			
1.	INTR	ODUCTION	7
2.	EXPE	RIMENTAL METHODS	8
2	2.1 V	EHICLE DESCRIPTION	8
2	2.2 T	EST FUEL	8
2	2.3 C	HASSIS DYNAMOMETER	8
2	2.4 T	EST CYCLES	8
2	2.5 S.	AMPLING METHODOLOGY	10
	2.5.1	Sampling System and Sample Collection	10
	2.5.2	Volatile and Semi-volatile Organic Compounds	10
	2.5.3	Methyl Esters	11
	2.5.4	Carbonyl Compounds	11
	2.5.5	Total Particulate Matter	11
	2.5.6	PAH, PASH, and NO ₂ -PAH	11
	2.5.7	<i>PM</i> _{2.5}	11
3.	ANAL	YTICAL METHODS	12
4	3.1 N	ETHANE AND NON-METHANE HYDROCARBON COMPOUND ANALYSES	12
-		EMI-VOLATILE NON-METHANE HYDROCARBON COMPOUND ANALYSIS	
		ARBONYL COMPOUND ANALYSIS	
		ARTICULATE MATTER MASS DETERMINATION	
•	3.4.1	TPM	
	3.4.2	PM _{2.5}	
1		AH, PASH, AND NO ₂ -PAH ANALYSES	
_		RGANIC AND ELEMENTAL CARBON	
-		ONS AND ORGANIC ACIDS	
		LKANES AND BIOMARKERS	
		LTS AND DISCUSSION	
		RITERIA EMISSIONS	
		ETHANE AND NON-METHANE HYDROCARBONS	
		ETHYL ESTERS	
		ARBONYLS	
		AH, PASH AND NO ₂ -PAH	
4		M _{2.5}	
	4.6.1	Mass	
	4.6.2	Organic and Elemental Carbon	
	4.6.3	Aerosol Precursors	
	4.6.4	Particle Phase Ions	
	4.6.5	Alkanes and Biomarkers	47
5	CONC	T USIONS	52

APPENDIX 1	53
REFERENCES	77

List of Tables

Table 1. Vehicle specifications	8
Table 2. Test fuel specifications	8
Table 3: Filter media used to collect PM _{2.5} samples	12
Table 4. Analytical conditions for volatile hydrocarbon analysis	13
Table 5. Analytical conditions for light hydrocarbon analysis	13
Table 6. Analytical conditions for semi-volatile hydrocarbon analysis	14
Table 7. PAH analytical conditions	16
Table 8. PASH analytical conditions	
Table 9. Target analytes and surrogates for PAH analytical method	16
Table 10. Target analytes and surrogates for PASH analytical method.	17
Table 11. NO ₂ PAH analytical conditions	
Table 12. Target analytes and surrogates for NO ₂ PAH analytical method	18
Table 13. Particle phase organic and inorganic ions and their detection limits (mg/mile)	19
Table 14. Gas phase organic acids and their detection limits (mg/mile).	20
Table 15. Emission rates (g/mile) and fuel consumption (L/100 km) at standard temperature (24°C).	23
Table 16. Emission rates (g/mile) and fuel consumption (L/100 km) at cold temperature (0°C)	24
Table 17. Summary of TPM emission rates (g/mile)	26
Table 18. ANOVA results comparing LSD and B10 emissions at 24 °C	28
Table 19. ANOVA results comparing LSD and B20 emissions at 24 °C	
Table 20. ANOVA results comparing LSD and B30 emissions at 24 °C	
Table 21. ANOVA results comparing LSD and B20 emissions at 0 °C	29
Table 22. ANOVA results comparing LSD emissions at 24 °C and 0°C.	29
Table 23. ANOVA results comparing B20 emissions at 24 °C and 0°C.	29
Table 24. Peak identification for Figure 9.	
Table 25. Summary of PM _{2.5} emission rates (g/mile)	

List of Figures

Figure 1.	LA-4 Driving Test Cycle	10
Figure 2.	ASE extraction scheme	21
Figure 3.	Separation scheme - column chromatography of DCM extracts	22
Figure 4.	Comparison of cold start and hot start criteria emissions at the two test temperatures	25
Figure 5.	Comparison of fuel consumption obtained for the test fuels at both test temperatures	26
	Comparison of TPM emission rates.	
Figure 7.	Comparison of cold start and hot start emission profiles for the LSD tests.	30
Figure 8.	Comparison of cold start and hot start emission profiles for the B20 tests.	31
Figure 9.	Chromatogram of the neat soybean methyl ester.	32
Figure 10.	Chromatogram of the low sulphur diesel fuel.	32
Figure 11.	Chromatogram of the B30 biodiesel blend.	33
Figure 12.	Comparison of carbonyl compound emission rates at standard temperature.	34
	Comparison of carbonyl compound emission rates at cold temperature.	
Figure 14:	Comparison of mass emission rates of PAHs.	36
Figure 15:	Comparison of mass emission rates of PASHs.	37
Figure 16:	Comparison of mass emission rates of NO ₂ PAHs.	37
Figure 17.	Comparison of TPM and PM _{2.5} emission rates.	39
Figure 18.	Comparison of total PM _{2.5} carbon to PM _{2.5} mass	40
Figure 19.	Distribution of carbon in PM _{2.5} samples.	41
Figure 20.	Comparison of TOR and TOT methods for determining organic and elemental carbon in P	$M_{2.5}$
samp	les	42
Figure 21.	Comparison of SO ₂ emissions (mg/mile FTP Composite).	43
Figure 22.	Comparison of NH ₃ emissions (mg/mile FTP Composite) showing sampling difficulties.	See
text f	or details	44
Figure 23.	Comparison of vapour phase organic acid emissions (FTP composite mg/mile)	45
Figure 24:	Mass emission rates for particle phase ion collected on Teflon filters (mg/mile FTP compos	site),
		46
Figure 25.	Comparison of particle phase n-alkane compositions for the test fuels.	48
	Effect of test temperature on particle phase n-alkane composition.	
Figure 27.	Comparison of particle phase biomarker compound compositions for the test fuels	50
Figure 28.	Effect of test temperature on particle phase petroleum biomarker composition.	51

1. Introduction

Due to more stringent diesel tailpipe emission regulations around the world, technology for reducing toxic emissions continues to evolve. Improvements in engine and combustion design, oxidation catalysts, particulate traps and alternate fuel technology have provided significant reductions in exhaust emissions. Characteristics of the diesel engine such as high efficiency, durability, reliability and low operating costs have traditionally made it a mainstay of the heavy-duty truck and bus vehicle industry. Recently, the diesel engine has begun to attain a growing share of the light duty market as well. However, with the increase in diesel vehicle sales there is a proportional increase in fuel consumption and emissions.

Fuel quality and composition have exhibited significant effects on diesel exhaust emissions. Biodiesel is defined as the mono alkyl esters of long chain fatty acids derived from renewable lipid feed stocks, such as vegetable oils and animal fats for use in compression ignition (diesel) engines. The methyl soyate biodiesel, derived from soybean oil, is an alternative fuel used in neat form, or as a blending agent with petroleum based diesel in order to reduce emissions of unburned hydrocarbons, carbon monoxide and particulate matter.

In this study, the Emissions Research and Measurement Division of Environment Canada conducted an investigation of potential exhaust emission reductions on a light duty diesel truck that was operated on a commercial low sulphur diesel fuel, and various percentage blends of the base diesel with methyl soyate at two different operating temperatures.

The following emissions were determined:

- criteria emissions (CO, NO_x, THC) and CO₂
- methane and non-methane organic compounds,
- methyl and ethyl esters of soybean oil,
- carbonyl compounds,
- total particulate matter (TPM)

This vehicle also provided a first attempt at collecting emissions samples for the more detailed characterization of emissions under the PERD² funded project "Determination of the concentration, composition and sources of airborne carbonaceous particles in Canada". The following emissions were determined as part of this project:

- PM_{2.5} mass emissions,
- particle phase ions,
- particle phase organic and elemental carbon
- vapour phase organic acids
- vapour phase and particle bound polycyclic aromatic hydrocarbons (PAH), polycyclic aromatic sulphur heterocycles (PASH), and nitro polycyclic aromatic hydrocarbons (NO₂-PAH), and
- particle phase alkanes and biomarker compounds.

The vehicle was tested on a chassis dynamometer over the four-phase Federal Test Procedure (FTP). The vehicle was tested at two temperatures using a commercially available low sulfur diesel fuel (LSD) and LSD blended with 10%, 20%, and 30% soybean oil methyl ester.

² PERD (Program on Energy Research and Development) is a joint program sponsored by Natural Resources Canada, Environment Canada and Health Canada with the goal of supporting federal government research activities in the area of effective, efficient use of energy resources.

2. Experimental Methods

2.1 Vehicle Description

The test vehicle was a 1998 Dodge Ram 2500 4X4 P/U equipped with a 5.9 Litre 24-valve Cummins Turbo Diesel engine with two-way oxidation catalyst and had accumulated 8759 kilometers prior to the project. The vehicle specifications are summarized in Table 1.

Table 1. Vehicle specifications.

Engine Type	4-cycle in-line 6-cylinder
Aspiration	Turbocharged, charge air cooled
Bore and Stroke	4.02 in. x 4.72 in.
Displacement	5.9 Litre (359 in. ³)
Compression Ratio	16.3:1
Peak Torque	420 lb-ft (from 1600 to 2700 rpm)
Advertised Power	215 hp @ 2700 rpm
Governed Speed	3200 rpm
Inertia Weight	6128 lbs.
Road Load Horsepower	16.0

2.2 Test Fuel

The baseline fuel used in the program was a commercially available low sulfur diesel (<0.05 %), and various percentage blends of methyl soyate (methyl ester of soybean oil) were blended with this fuel. The soyate blending agent was provided by the Ontario Soybean Growers Marketing Association. Standard temperature testing was conducted with 10%, 20%, and 30%, by volume, mixtures of the methyl soyate with the baseline diesel fuel. Each time a fuel blend was prepared, a sample of the fuel was collected for laboratory analysis. The analysis provided fuel blend density, fuel fraction carbon, hydrogen, oxygen, and additional fuel parameters. The test fuel specifications are summarized in Table 2.

Table 2. Test fuel specifications

Specification	Low Sulfur Diesel	B10	B20	B30
Wt. % Carbon	86.6	86.1	85.2	84.6
Wt. % Hydrogen	13.2	13.2	12.9	12.8
Wt. % Oxygen	0	0.7	1.9	2.6
Density (kg/m ³)	841.0	845.4	852.9	854.1
Trace N ₂ (ng/ul)	72.8	-	-	-
Wt. % Sulfur	0.049	-	-	-
Cetane Number	44.4	-	-	-

2.3 Chassis Dynamometer

The chassis dynamometer is a 60.96 cm diameter single roll electric dynamometer. The inertia and road load were simulated by a direct current motor with a fully regenerative power converter. This system has the capability of testing vehicles with inertia weight of up to 5000 kilograms and road load setting of up to 37.3 kilowatts. In this project the vehicle was tested at an inertia setting of 2780 kilograms and a road load at 80 kilometres per hour of 11.92 kilowatts.

2.4 Test Cycles

The driving cycle used for this project was the LA-4 Driving Schedule. This cycle is comprised of the first two phases of the Urban Dynamometer Driving Schedule (UDDS), which is used for certification of new vehicles. Each test incorporated two consecutive repeats of the LA-4 cycle, a cold start and a hot start, with a ten-minute soak between repeats.

The LA-4 test cycle is separated into two sampling phases. The first phase is called the Transient phase and includes the engine crank followed by 505 seconds of driving at an average speed of 41 km/h, covering a distance of 6.2 km. The second phase is called the Stabilized phase immediately follows the first and is 865 seconds in duration with an average speed of 25.7 km/h. At the conclusion of this phase the vehicle and sampling systems are turned off for a ten-minute soak period. After the soak, the vehicle and sampling systems are restarted and the second LA-4 cycle repeated. This four-phase test sequence provided a complete UDDS test cycle as well as an additional fourth sample phase. The first two phases collectively are referred to as the cold start portion and the last two phases are referred to as the hot start portion. A speed versus time plot of the LA-4 test cycle is presented in Figure 1.

The 4-phase FTP is an earlier version of the current 3-phase Urban Dynamometer Driving Schedule (UDDS) cycle, the emissions certification driving cycle used in Canada and the U.S. The fourth phase was dropped from the UDDS as the emissions obtained during that phase were nearly identical to the second phase. This phase was retained for the current testing program as it made collecting samples to obtain a composite emission rate possible. Emission rates for the UDDS and the 4-phase FTP tests are usually quoted as a composite or weighted average over the three or four phases. The composite emission rate for both tests is mathematically identical, just the weighting factors for the phases are different to account for the deleted fourth phase in the UDDS. Retaining this phase allowed samples to be collected over the cold start and hot start portions that could be weighted to obtain the desired composite emission rate. This calculation is illustrated below. Equation 1 shows the 4-phase composite emission rate calculation for a given species and Equation 2 shows the 3-phase composite emission rate calculation. Since the driving cycle for phase 2 and phase 4 are identical and emission rates for phases 2 and 4 were found to be not significantly different, it is obvious how Equation 1 can be written as Equation 2.

$$FTP_{4comp} = 0.43 \left(\frac{m_1 + m_2}{d_1 + d_2} \right) + 0.57 \left(\frac{m_3 + m_4}{d_3 + d_4} \right)$$
 Equation 1

$$FTP_{3comp} = 0.43 \left(\frac{m_1 + m_2}{d_1 + d_2} \right) + 0.57 \left(\frac{m_2 + m_3}{d_2 + d_3} \right)$$
 Equation 2

where $m_i = \text{mass of a given compound emitted per phase } i$

 d_i = distance travelled in phase i

The mass of a given compound emitted per phase is given by Equation 3.

$$m_i = V_i * D * \left(C_{si} - C_{ai} \left(1 - \frac{1}{DF_i} \right) \right)$$
 Equation 3

where V_i = total dilute exhaust volume of phase i

D =density of species

 C_{si} = dilute exhaust concentration of species, phase i (ppm)

 C_{ai} = dilution air concentration of species, phase i (ppm)

 DF_i = dilution factor of phase i

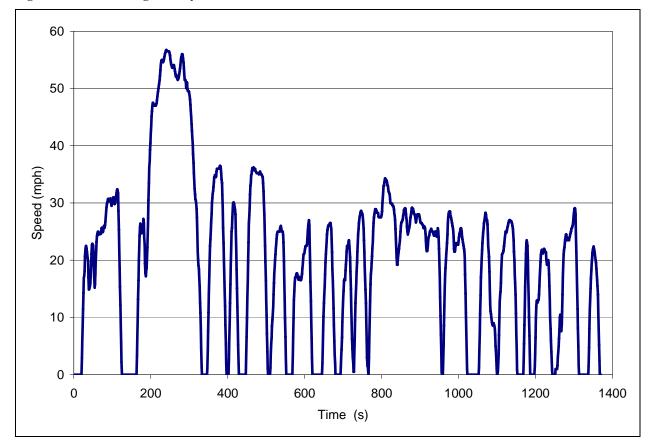


Figure 1. LA-4 Driving Test Cycle

2.5 Sampling Methodology

2.5.1 Sampling System and Sample Collection

All of the exhaust produced by the vehicle was collected and diluted using a total exhaust dilution constant volume sampling (CVS) system. The total dilute exhaust volume flow rate was 750 scfm (21 237 L/min). The dilution air was taken from the test cell and was conditioned by removing particulate matter using a HEPA filter resulting in a particle removal efficiency of 99.9%. The organic composition of the dilution air was reduced and stabilized by passing it through a bed of activated carbon.

2.5.2 Volatile and Semi-volatile Organic Compounds

The detailed hydrocarbon analysis of diesel exhaust requires two separate samples to be collected. Dilute exhaust was drawn through a Tenax adsorbent tube (SKC 226-35-03, two sections 100 mg/50 mg separated with glass wool) to collect hydrocarbons from C_7 - C_{26} (SvNMHC). The sample not retained by the Tenax tube was collected in a Tedlar bag for analysis of methane and C_2 - C_{12} hydrocarbons (NMHC). This methodology was used as it allows for analysis of the full C_1 - C_{26} range of hydrocarbons. A set of hydrocarbon samples was collected during the cold start portion and another set was collected during the hot start portion. One dilution air sample was collected over both the cold start and hot start portions. An SvNMHC sample was not required for the dilution air as the air was conditioned through activated carbon as described previously.

The NMHC and SvNMHC samples were drawn from the dilution tunnel through 3/8" OD probe and 1/4" Teflon line using a diaphragm pump. An electronic mass flow controller was used to provide a constant sample flow rate of 0.5 L/min.

2.5.3 Methyl Esters

Methyl esters were determined from the same Tenax sample and analysis as SvNMHCs.

2.5.4 Carbonyl Compounds

Carbonyl compounds were sampled by passing dilute exhaust through a 2,4-dinitrophenylhydrazine (2,4-DNPH) coated Sep-Pak silica cartridge. The carbonyl compounds selectively react with the 2,4-DNPH to form hydrazones that are retained on the cartridge.

One dilute exhaust carbonyl sample was collected during each of the four phases of the FTP. Dilution air carbonyl samples were also collected, one for the cold start portion and another for the hot start portion.

The carbonyl samples were drawn from the dilution tunnel through a 3/8" OD probe and 1/4" Teflon line using a diaphragm pump. An electronic mass flow controller was used to provide a constant sample flow rate of 1.0 L/min.

2.5.5 Total Particulate Matter

Dilute exhaust was drawn through a stainless steel ½" OD probe inserted into the tunnel along the axis of the flow. The dilute exhaust was drawn from the tunnel through the sample media by a rotary vane pump at a flow rate of 40 L/min controlled using an electronic mass flow controller.

Total particulate mass samples were collected by drawing dilute exhaust through a 70 mm diameter Pallflex filter (type T60A20) held in the single stainless steel holder upstream of the polyurethane foam plugs (PUFs). This filter served a dual purpose: the filter sample was used for total particulate matter mass determination and then was analysed for PAH, PASH, and NO₂-PAH.

2.5.6 PAH, PASH, and NO₂-PAH

The material used to make the PUFs was #1032 density polyurethane foam. The PUFs were cleaned by Soxhlet extraction with methanol and cyclohexane. Two PUFs were placed in each of the stainless steel sleeves ready for sampling. The PUFs were not removed from their stainless steel sleeves until returned to the analytical laboratory. The PUF sleeves were stored wrapped in aluminum foil and sealed in zip-seal bags. As the NO₂-PAH compounds are ultraviolet light sensitive, the filters and PUFs were handled very quickly in near darkness.

The overall dimensions of the pair of PUFs were 75 mm diameter by 150 mm long and separated from the filter by approximately 100 mm. This distance was allowed for the flow to expand to the full diameter of the PUF plug. The PUF canister, used to house the PUF sleeve, was manufactured from aluminum but all sample-wetted surfaces within the canister were either stainless steel or Teflon.

The sample media used to obtain a sample for PAH, PASH, and NO_2 -PAH analysis consisted of a single 70 mm diameter Pallflex filter (type T60A20) to obtain the particle phase sample and backed up with a PUF sleeve to obtain the vapour phase sample. Two filter samples were collected per test, one filter during the cold start portion and another during the hot start portion, while only one PUF sleeve was used to collect the gas-phase sample over both cold start and hot start portions. This sampling strategy results in an "average" rather than a "composite" emission rate.

2.5.7 PM_{2.5}

Two-stage filter packs with 2.5 μ m cyclones and flow straighteners were used to collect PM_{2.5} samples on various filter media. Table 3 summarizes the particulate matter samples that were collected. Two ½" OD probes were inserted into the dilution tunnel along the axis of flow to collect the dilute exhaust. Each probe was fitted with a flow splitter that directed dilute exhaust to two 2.5 μ m diameter cut cyclones. The

cyclones were equipped with flow straighteners and filter packs for sample collection. One set of filters was used to collect dilution air samples over the 4 phases.

Table 3: Filter media used to collect PM_{2.5} samples

Source	Media	Sample
Dilute Exhaust	Teflon	Mass, anions and cations
	Carbonate coated cellulose	SO_2
	Quartz	Alkane and biomarker analysis
	KOH coated quartz	Vapour phase organic acids
	Quartz	Alkane and biomarker analysis
	Citric acid coated cellulose	NH_3
	Quartz	OC/EC
	Quartz	OC/EC
Dilution air	Teflon	Mass, anions and cations
	Carbonate coated cellulose	SO_2
	Quartz	Alkane and biomarker analysis
	KOH coated quartz	Vapour phase organic acids
	Quartz	OC/EC
	Citric acid coated cellulose	NH ₃

PM_{2.5} samples were collected on Teflon membrane filters (Gelman Teflo R2PJ047, 2μm pore size, 47 mm diameter). These Teflon filters were used for gravimetric determinations and anions and cations analyses.

Situated behind the Teflon filter was a Carbonate coated cellulose filter used to collect samples for SO2.

Quartz fibre filters (Pallflex 2500 QAT-UP, 47 mm diameter, pre-fired to 900°C for 3 hours to remove all carbon) were used for organic and elemental carbon (OC/EC) analyses. Two quartz filters were used in series, the first filter collected the particulate matter sample, the second filter was used to measure the amount of carbon desorbed from the first filter during sample collection and the amount of carbon adsorbed to the filter media from the gas phase. A selection of these filters were analyzed by two methods.

Two quartz filters, pre-cleaned as described above, were used to collect sample for alkane and biomarker analysis. One quartz filter had downstream from it a citric acid coated filter to determine NH₃ emissions. The other quartz filter had downstream from it a potassium hydroxide (KOH) coated quartz filter to collect sample for vapour phase organic acid determination.

3. Analytical Methods

3.1 Methane and Non-methane Hydrocarbon Compound Analyses

Approximately 165 non-methane hydrocarbon compounds were determined using a Hewlett Packard 5890 Series II gas chromatograph with a flame ionization detector. An Entech M7000 cryogenic concentrator was used for sample concentration and introduction. The analytical conditions are summarized in Table 4. Data was acquired using the Hewlett Packard GC-ChemStation (Windows NT) software. The analytical method was calibrated using external standards on a per component basis. The hydrocarbon gas phase standards used were prepared in-house using a permeation tube gas standard generator (Kin-Tek Laboratories, LaMarque, Texas).

The detection limits for this set of analytical conditions is approximately 0.5 ng/L in the dilute exhaust or 0.03 mg/mile.

Table 4. Analytical conditions for volatile hydrocarbon analysis

Column	HP1 50m x 0.32 mm x 1 μm film Column head pressure 80 kPa	
Oven Program	-50°C hold 5 min, 10°C/min to 50°C, 5°C /min to 200 °C, hold 2 min.	
Detector	FID, 300 °C	
Sample	50 mL on glass bead/Tenax trap	
Concentration	microscale purge and trap mode.	

The preconcentrator system does not allow for the determination of methane and sometimes the C_2 hydrocarbons are not well retained on the trap. Methane was determined and confirmation of the C_2 and C_3 hydrocarbons was accomplished by simple gas loop injection onto a capillary column. The sample loop was flushed with sample, the pressure inside the loop allowed to equilibrate to ambient conditions and the contents of the loop were injected directly onto the capillary column. A Hewlett Packard 5890 Series II gas chromatograph equipped with a gas sampling valve and a flame ionization detector was used for the analysis. Data was acquired using the Hewlett Packard GC-ChemStation (Windows NT) software. The analytical conditions are summarized in Table 5. The detection limit for methane using this method is approximately 10 ng/L in the dilute exhaust or 0.6 mg/mile.

Table 5. Analytical conditions for light hydrocarbon analysis

Column	GS-Q 30 m x 0.53 mm	
	column head pressure 9 psig	
Oven Program	40°C hold 1.1 min, 25 °C/min 130 °C hold 7.3 min	
Detector	FID, 180 °C	
Sample	0.25 mL sample loop,	
_	sample valve at 100 °C	

The list of target analytes for the complete analysis, indicating co-eluting compounds, is given in Appendix 1.

3.2 Semi-volatile Non-methane Hydrocarbon Compound Analysis

For analysis of the semi-volatile non-methane hydrocarbons (SvNMHC), the Tenax adsorbent was removed from the glass sampling tube and the adsorbed hydrocarbons were solvent extracted using high purity pentane (Caledon Laboratories). Solvent desorption was accomplished by placing the Tenax material in a $3.7\,$ mL vial, pipetting $2.0\,$ mL pentane into the vial and shaking vigorously for a few minutes. The desorption was complete in a few minutes and recovery has been determined from separate studies to be nearly complete for hydrocarbons up to C_{26} . An aliquot of this pentane extract was analysed by GC-FID. Standards were prepared from commercially available petroleum product standards (PIANO analysis standards from Supelco Canada). A Hewlett Packard $5890\,$ Series II gas chromatograph with a flame ionization detector and HP $7673\,$ autoinjector with the nanolitre injection volume option was used for the analysis. The analytical conditions are summarized in Table $6.\,$ Data was acquired using the Hewlett Packard GC-ChemStation (Windows NT) software.

A large number of peaks appear in the chromatogram between the normal paraffins from C_{12} - C_{26} which were not identified. These peaks were not reported.

Detection limits for the hydrocarbons in the pentane extract were approximately 20 ng/mL which corresponds to 3.5 ng/L in the dilute exhaust or 0.2 mg/mile

Table 6. Analytical conditions for semi-volatile hydrocarbon analysis

Column	DB1 60 m x 0.25 mm x 0.25 μm film
	column head pressure 165 kPa
Oven Program	35°C hold 5 min, 2 °C/min to 275 °C,
	hold 5 min
Detector	FID 300 °C
Sample	0.5μL injection volume
_	splitless inlet 250 °C

3.3 Carbonyl Compound Analysis

Carbonyl cartridges were prepared by the ERMD and contained approximately 2 mg 2,4-DNPH. Carbonyl compounds selectively react with the 2,4-DNPH forming hydrazones which are retained on the cartridge. The 2,4-DNPH-carbonyl hydrazones were eluted from each Sep-Pak cartridge and the solution was made up to volume in a graduated centrifuge tube with HPLC grade Acetonitrile (J.T. Baker). An aliquot of this solution was analyzed by reverse phase HPLC with UV-Visible detection. A Hewlett Packard 1090M HPLC with a diode-array detector, 100 vial autosampler and the DOS HPLC-3D ChemStation software was used for sample analysis. The ratio of transmitted light intensity at two wavelengths is used as the signal for quantitation. The method reports 24 carbonyl compounds, though 8 of the 24 individual compounds are reported as pairs as they co-elute. External calibration standards were prepared in-house from the pure carbonyl compounds and purified 2,4-DNPH. A calibration check mix was run after every 10th sample to monitor detector response and retention time drifts. Near baseline resolution was obtained for the acrolein-acetone-propionaldehyde triplet.

Details of the analytical conditions are given in Table 3. Detection limits for this method are 0.04-0.06 µg/mL of hydrazone in the extract or 0.08-0.3 mg/mile.

Table 3: Analytical conditions for carbonyl analysis

Column	2 of ODS Hypersil 3 μm packing 100 mm x 2.1 mm. 10 mm guard column of same material.
Gradient	62.5% MeOH/H ₂ O to 65% MeOH at 12.5 min, hold to 15 min. to 82.5% MeOH at 30 min column flush at 100% MeOH for 5 min equilibration at initial conditions for 5 min oven temperature 40°C flow rate 0.25 mL/min, injection volume 2.5 μL
Detector	signal at 370 nm; bandwidth 30 nm reference at 550 nm; bandwidth 60 nm

Lot blanks were analyzed using the same procedure as the samples to determine blank contamination levels. Samples were then corrected for blank levels as required. Emission rates were also corrected for dilution air levels.

3.4 Particulate Matter Mass Determination

3.4.1 TPM

Total particulate mass was determined gravimetrically by weighing humidity and temperature equilibrated conditioned filters before and after sampling. Filters were conditioned in a dessicator for a minimum of 16 hours before each mass determination. A Mettler AE240 semi-micro balance was used for all mass measurements. After the final weighing, the filters were stored in polystyrene petri dishes, sealed with paraffin wax strips, wrapped in aluminum foil, placed in plastic zip-seal bags, and then stored in a freezer until submitted for PAH, PASH, and NO₂-PAH analyses.

3.4.2 PM_{2.5}

The Teflon membrane filters were humidity and temperature equilibrated for a minimum of 16 hours before gravimetric determinations were performed. A Mettler MT5 microbalance, with a resolution of 0.001 mg, was used. Filter masses were determined as an average of two consecutive measurements, within 0.002 mg of one another, for each of the initial and final mass measurements.

3.5 PAH, PASH, and NO2-PAH Analyses

The filter and PUF samples were analysed for PAH, PASH and NO₂PAH by the Analysis and Air Quality Division (AAQD) of Environment Canada using their standard method as summarized below. PASH and PANH methods were also developed by AAQD. The methods for analysis of PASH is described in detail in "Status Report on Method Development for the Analysis of Polycyclic Aromatic Heterocycles with Sulphur and/or Nitrogen" and "Status Report − II (July 99 to June 00) on Method Development for the Analysis of Polycyclic Aromatic Heterocycles with Sulphur and/or Nitrogen." The method is briefly summarized below.

It is known that generally, the heavier PAH compounds are associated with particulate material and that the lighter PAH compounds are in the vapour phase. For this study, samples were submitted as two filters and a PUF and treated as one sample. As the distribution of PAH between the vapour phase and particle bound phase is dependent on sampling conditions such as flow rate, pressure drop across the filter, temperature of the dilute exhaust when it is sampled, differentiating between vapour phase and particle phase PAH using this type of sample is not possible.

The filters were folded twice and placed in between two PUFs inside a large (500 mL) pre-cleaned Soxhlet apparatus. The surface of the top foam plug was spiked with PAH and NO₂PAH surrogates before extraction. Sample was extracted with dichloromethane at a rate of 3-5 cycles/hour for 16-20 hours. During the extraction and concentration, the florescent lights were off to minimize degradaton of the NO₂PAH. The raw extract was concentrated to approximately 3 to 5 mL by rotary evaporation and then filtered through anhydrous sodium sulphate. The concentrated dichloromethane extract was exchanged to cyclohexane by adding 30 mL of cyclohexane and reducing to approximately 3 to 5 mL by rotary evaporation. The extract was made up to 10 mL and split in half, one half for PAH and PASH, the other half for NO₂-PAH.

PAH and PASH Cleanup: an open glass column (25 cm x 1.5 cm ID), filled with approximately 6 g 5% deactivated silica gel and topped with approximately 1 g sodium sulphate, was conditioned with 10 mL of cyclohexane. When the cyclohexane drained to bed level, the sample extract was quantitatively transferred onto the column with approximately 5 mL of cyclohexane rinses. The column was eluted with 10 mL cyclohexane and the eluate archived. This fraction contains non-polar compounds. The PAH and PASH were then eluted with 15-mL of 1:1 cyclohexane/acetone into a calibrated centrifuge tube. The extract was concentrated to approximately 0.4 mL by nitrogen blow-down. After adding 50 μ L internal standard, the extract was made up to 0.5 mL for GC/MS analysis.

The final extract was analysed for PAH by GC/MS under the operating conditions summarized in Table 7. The detection limit for the analytical method is 5-10 ng per sample. Table 9 summarises the target analytes and the surrogates used for monitoring sample recovery for this method.

Table 7. PAH analytical conditions

Instrument	HP 5890 Series II GC interfaced directly to HP 5970 MSD.
Injection	1 μL, on-column
Column	30 m DB-5 fused silica, 0.25 mm ID and 0.25 μm film thickness
Oven Program	90°C for 1 min, to 200°C at 20 °C/min, to 210°C at 3 °C/min, then to 280°C at 5 °C/min
	and hold for 15 min
Detection Mode	Electron Impact (EI), Selected Ion Monitoring (SIM);
	Scan time 1 s or less, dwell time 50-100 ms/ion
	A minimum of two characteristic ions per compound are monitored.

Table 8. PASH analytical conditions

Instrument	HP 5890 Series II GC interfaced directly to HP 5970 MSD.
Injection	1 μL, cool on-column
Column	30 m DB-XLB fused silica, 0.25 mm ID and 0.25 μm film thickness
Oven Program	90°C for 2 min, to 200°C at 25 °C/min, to 280°C at 1.5 °C/min and hold for 6 min
Detection Mode	Electron Impact (EI), Selected Ion Monitoring (SIM);
	One-step acquisition of 17 ions, dwell time 50 ms/ion
	A minimum of two characteristic ions per compound are monitored.

Table 9. Target analytes and surrogates for PAH analytical method

•	
Acenaphthalene (AL)	Perylene (PER)
Acenaphthene (AE)	3-Me-Cholanthrene (MCH)
Fluorene (FL)	Indeno(1,2,3-cd)pyrene (IP)
2-Methylfluorene (MFL)	Dibenz(ah)anthracene (D(ah)A)
Phenanthrene (PHE)	Benzo(b)chrysene (B(b)C)
Anthracene (AN)	Benzo(ghi)perylene (B(ghi)P)
Flouranthene (FLT)	Anthanthrene (ANT)
Pyrene (PY)	
Benzo(a)fluorene (B(a)FL)	Surrogates:
Benzo(b)flourene (B(b)FL)	d ₁₀ -Acenaphthalene
1-Me-Pyrene (MPY)	d ₁₀ -Anthracene
Benzo(ghi)fluoranthene (B(ghi)F)	d ₁₀ -Pyrene
Benz(a)anthracene (B(a)A)	d ₁₂ -Benzo(a)Anthracene
Triphenylene (Tri)	d ₁₂ -Benzo(a)Pyrene
Chrysene (C)	d ₁₄ -Dibenzo(ah)Anthracene
7-methylbenz(a)anthracene (MB(a)A)	d ₁₂ -Benzo(ghi)Perylene
Benzo(b)fluoranthene (B(b)FLT)	
Benzo(k)fluoranthene (B(k)FLT)	Internal Standard:
Benzo(e)pyrene (B(e)P)	d ₁₀ -Fluoranthene
Benzo(a)pyrene (B(a)P)	

Table 10. Target analytes and surrogates for PASH analytical method.

PASH	Acronym
thionaphthene	Thionaphthene
dibenzothiophene	DBT
naphtho(2,1-b)thiophene	N(2,1b)T
2-methyldibenzothiophene	2-MDBT
8-methylnaphtho(2,1-b)thiophene	8-MN(2,1b)T
5-methylnaphtho(2,1-b)thiophene	5-MN(2,1b)T
4,6-dimethyldibenzothiophene	4,6-DMDBT
1,8-dimethyldibenzothiophene	1,8-DMDBT
1,3-dimethyldibenzothiophene	1,3-DMDBT
phenanthro(4,3-b)thiophene	Pa(4,3b)T
phenanthro(3,4-b)thiophene	Pa(3,4b)T
phenanthro(2,1-b)thiophene	Pa(2,1b)T
phenanthro(2,3-b)thiophene	Pa(2,3b)T
anthra(2,3-b)thiophene	A(2,3b)T
10-methylbenzo(b)naphtho(2,1-d)thiophene	10-MBbN(2,1d)T
2-methylbenzo(b)naphtho(2,1-d)thiophene	2-MBbN(2,1d)T
8-methylbenzo(b)naphtho(1,2-d)thiophene	8-MBbN(1,2d)T
5-methylbenzo(b)naphtho(2,1-d)thiophene	5-MBbN(2,1d)T
6-methylbenzo(b)naphtho(2,1-d)thiophene	6-MBbN(2,1d)T
8-methylbenzo(b)naphtho(2,3-d)thiophene	8-MBbN(2,3d)T
11-methylbenzo(b)naphtho(2,3-d)thiophene	11-MBbN(2,3d)T

 NO_2PAH Cleanup: The other half extract was filtered through a 0.45 μ m PTFE filter before being blown down to dryness and re-dissolved in 1 mL DMSO. Aliphatic compounds were removed by liquid-liquid extraction with hexane (1 mL x 3). The DMSO solution was diluted with 3 mL water and extracted 3 times with 3 mL cyclohexane. The cyclohexane extract was concentrated and fractionated on a HPLC silica column. The NO_2PAH were eluted with 45% DCM in hexane. This fraction was blown-down to dryness and reconstituted with 50 μ L Recovery Standard before the GC-HRMS analysis.

The final extract was analysed for NO₂PAH by high resolution gas chromatography/ high resolution mass spectrometry (HRGC/HRMS) under the operating conditions summarized in Table 11. The detection limit for the analytical method is approximately 10-100 pg per sample for mono-nitrated species and approximately 40-100 pg per sample for dinitro species. Table 12 summarises the target analytes and the surrogates used for monitoring sample recovery for this method.

Table 11. NO₂PAH analytical conditions

1	<u></u>
Instrument	HP 5890 Series II GC
Injection	Splitless, 280°C
Column	30 m DB-5 fused silica, 0.25 mm ID and 0.25 μm film thickness
Oven Program	90°C for 1 min, to 200°C at 20 °C/min, hold 1 min., 10 °C/min to 290 °C,
	hold 13 min
Mass Spectrometer	AutoSpec Q / 10,000 Resolution
Ionisation Mode	NCI using UHP methane as reagent gas, Selected Ion Recording
	Source pressure: 2-4 x 10 ⁻⁵ torr
	Source temperature: 260 °C

Table 12. Target analytes and surrogates for NO₂PAH analytical method

1,3-dinitropyrene 2-nitrofluorene 9-nitroanthracene 1,6-dinitropyrene 1,8-dinitropyrene 2-nitroanthracene 9-nitrophenanthrene 7-nitro-12-methylbenzo(a)anthracene) 2-nitrofluoranthene 12-ethyl-6-nitrochrysene 3-nitrofluoranthene 4-nitropyrene Surrogates: 1-nitropyrene 9-nitrofluorene-d₉ 2-nitropyrene 3-nitrofluoranthene-d₉ 7-nitrobenz(a)anthracene 9-nitroanthracene-d₉ 6-nitrochrysene 1-nitropyrene-d₉ 1-nitrobenzo(e)pyrene 6-nitropyrene-d₉ 6-nitrobenzo(a)pyrene 6-nitrochrysene-d₁₁ 4-nitrobenzo(e)pyrene 6-nitrobenzo(a)pyrene-d₁₁ 3-nitrobenzo(e)pyrene 3-nitrobenzo(a)pyrene Recovery Standard: 2-nitrodibenzodioxin-d7 1-nitrobenzo(a)pyrene 2-nitrobenzo(a)pyrene 9-nitrodibenzo(a,c)anthracene

3.6 Organic and Elemental Carbon

PM_{2.5} samples collected on quartz filters were submitted for organic and elemental carbon analysis to two laboratories. Selected filters were cut in half and were analyzed using the Thermal/Optical Reflective (TOR) method at the Desert Research Institute, Reno, Nevada. All of the filters were analyzed using the Thermal Optical Transmittance (TOT) method (also known as NIOSH Method 5040) at the Mining and Mineral Sciences Laboratories, Natural Resources Canada, Sudbury, Ontario.

For the TOR Method, a 0.5 cm² punch is taken from each filter sample. This filter punch is heated sequentially at temperatures of 120, 250, 450 and 550 °C in a pure helium atmosphere to evolve volatile carbon. The sample is heated further to 550, 700 and 800 °C in a 2% oxygen in helium atmosphere. The carbon dioxide evolved is converted to methane that is quantified using a flame ionisation detector. The reflectance from the deposit side of the filter is monitored throughout the analysis. This reflectance decreases during the volatilization in a helium atmosphere owing to the pyrolysis of organic material. When oxygen is added, the reflectance increases as the light absorbing carbon is combusted and removed. Organic carbon is defined as that which evolves prior to re-attainment of the reflectance and elemental carbon as that material that evolves after the original reflectance has been attained. The definitions of organic fractions OC1, OC2, OC3, OC4 and elemental carbon fractions EC1, EC2, and EC3 are operational (i.e. based on analysis temperature program) rather than fundamental. This does not matter in source apportionment studies provided that both source and ambient samples are analysed in the same way. The TOR method has been used in a majority of source apportionment studies in the U.S. ¹ and in Canada². There is interest in Canada to adopt the TOT method for determining organic and elemental carbon as an instrument is now commercially available.

For the TOT method, a 1.5 cm² punch is taken from each filter sample. This filter punch is heated sequentially at temperatures of 300, 600 and 900 °C in a pure helium atmosphere to evolve volatile carbon. The sample is cooled to 600 °C, the atmosphere is changed to 2% oxygen in helium and the sample is heated further at 600, 750 and 940 °C. The carbon dioxide evolved is converted to methane that is quantified using a flame ionisation detector. The transmittance of laser light by the filter sample is monitored throughout the analysis. This transmittance decreases during the volatilization in a helium atmosphere owing to the pyrolysis of organic material. When oxygen is added, the transmittance increases as the light absorbing carbon is combusted and removed. Organic carbon is defined as that which evolves

prior to re-attainment of the reflectance and elemental carbon as that material that evolves after the original transmittance has been attained.

3.7 Ions and Organic Acids

After gravimetric determinations, the Teflon membrane filters were submitted for determining particle phase organic and inorganic ions by ion chromatography and capillary electrophoresis. The potassium carbonate and citric acid coated cellulose filters and the potassium hydroxide coated quartz filter were submitted for sulphate ion, ammonium ion and organic acid analyses respectively. These analyses were performed by the Analysis and Air Quality Division at the Environmental Technology Centre of Environment Canada.

The Teflon filter samples were first wetted with 120 µL isopropanol and then extracted into 12 mL deionised water by ultrasonication for 30 minutes. The extracts were analysed by three methods: gradient ion chromatography for inorganic and organic anions, isocratic ion chromatography for inorganic cations and capillary electrophoresis for organic acids. Both ion chromatography methods used suppressed conductivity detection while the capillary electrophoresis method used indirect UV detection at 214 nm³. Table 13 summarises the complete suite of organic and inorganic ions determined from the Teflon filters using these three methods and their respective detection limits.

The potassium carbonate coated filters were extracted into $10 \text{ mL } 0.09\% \text{ H}_2\text{O}_2$ in deionised water and ultrasonicated for 30 min. The peroxide was necessary to ensure the complete oxidation to sulphate ion. The extracts were analysed for sulphate ion by isocratic ion chromatography with suppressed conductivity detection. The detection limit for this method is approximately 0.17 mg/mile.

The citric acid coated filters were extracted into 10 mL deionised water and ultrasonicated for 30 minutes. The extracts were analysed for ammonium ion by isocratic ion chromatography with suppressed conductivity detection. The detection limit for this method is approximately 0.02 mg/mile.

The potassium hydroxide coated filters were extracted into 10 mL deionised water with ultrasinication for 30 minutes. The extract was then passed through an ion exchange cartridge to exchange the excess potassium ions for hydrogen ions in the solution to permit better chromatography. These extracts were analysed by capillary electrophoresis using indirect UV detection³. Table 14 summarises the complete suite of organic acids determined using this method and their respective detection limits.

Table 13. Particle phase organic and inorganic ions and their detection limits (mg/mile).

Particle Phas	se Anions	S	Particle Phase	Particle Phase Inorganic Cations			
	DL	QL		DL	QL		
Fluoride	0.003	0.015	Lithium	0.006	0.021		
Acetate	0.045	0.145	Sodium	0.027	0.089		
Propionate	0.081	0.273	Ammonium	0.027	0.092		
Formate	0.021	0.071	Potassium	0.057	0.193		
MSA	0.057	0.187	Rubidium	0.126	0.418		
Chloride	0.021	0.065	Cesium	0.075	0.243		
Nitrite	0.006	0.021	Magnesium	0.015	0.050		
Bromide	0.012	0.039	Manganese	0.045	0.151		
Nitrate	0.006	0.021	Strontium	0.069	0.225		
Sulphate	0.033	0.119					
Oxalate	0.021	0.068					
Phosphate	0.012	0.039					

Table 14. Gas phase organic acids and their detection limits (mg/mile).

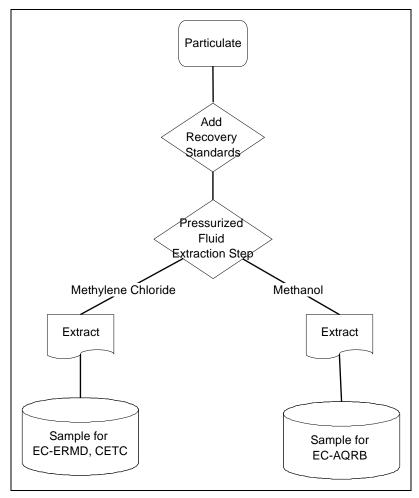
	Ion Chromatography (Capillary	Electrophoresis
	DL	QL	DL	QL
malonic	0.016	0.055	0.216	0.714
formic	0.014	0.047	0.114	0.377
glycolic	0.030	0.097	0.199	0.653
acetic	0.030	0.097	0.122	0.403
lactic			0.199	0.653
propionic	0.054	0.182	0.081	0.266
benzoic			0.199	0.653
succinic	0.034	0.109	0.182	0.602
glutaric			0.186	0.616
oxalic			0.193	0.639

3.8 Alkanes and Biomarkers

Quartz filters were submitted for analyses of alkanes and biomarkers to the CANMET Energy Technology Centre of Natural Resources Canada. The analytical methodology can be found in their reports entitled "Determination of the Concentration, Composition and Sources of Airborne Carbonaceous Particles in Canada. Analytical Methodologies for Determination of Paraffins and Biomarkers. Phase 1" and "Phase 2." The method is briefly summarized below.

The goal of the method development work was to establish a sample extraction and cleanup procedure that would allow analysis of non-polar compounds, the suite of PAH compounds and polar compounds from a single sample. This study is the first attempt at implementing the combined procedure on a set of samples. The results for the non-polar alkanes and biomarkers are reported. The fractions generated containing the suite of PAH compounds and the polar compounds were used in further method development studies and quantitative results are not available.

The filters were received in polystyrene petri dishes, sealed with parafilm, wrapped in aluminum foil and sealed in plastic bags. They were stored in the freezer (<-20°C) prior to analysis.


Distilled chromatographic grade solvents including acetone, cyclohexane, toluene, dichloromethane (DCM) and methanol were used without further purification. Silica gel (100-200 mesh, pore size 150\AA , pore $1.2\text{cm}^3/\text{g}$, active surface $320\text{ m}^2/\text{g}$), as purchased from Aldrich (Milwaukee, WI) was used. The silica is placed into a large chromatographic column and eluted with 2 volumes of methanol followed by 2 volumes of DCM. The silica is transferred to a large beaker and allowed to air dry overnight. Next, the silica is dried in an oven at 75°C for several hours then activated at 250°C for 24 hours and stored at this temperature until use. Deactivated silica is prepared by adding 5 % water to activated silica (w/w) and shaking vigorously until no clumps are observed.

Aliphatic standards, deuterotetracosane, and 5- α -androstane were obtained from Chiron Laboratories (Trondheim, Norway), Chromatographic Specialties, Ultra Scientific/VWR and Aldrich (Milwaukee, WI). The alkylcyclohexane, sterane and hopane standards were purchased from Chiron Laboratories (Trondheim, Norway). Deuterotetracosane, 5- α -androstane and β , β -hopane were used as internal recovery standards.

ASE OPERATIONAL CONDITIONS

In Figure 2, the particulate-loaded filters are placed in the extraction cell of the pressurized solvent extractor ASE 200 from DIONEX (hereafter referred to as ASE) after being spiked with appropriate alkane, biomarker and PAH recovery standards. The filters are extracted sequentially with DCM followed by methanol.

Figure 2. ASE extraction scheme

The DCM extract is solvent exchanged to cyclohexane and concentrated to less than 0.5mL in an automated solvent evaporator from Zymark.

CHROMATOGRAPHIC COLUMN SEPARATION

Figure 3 shows the solvent separation scheme used for all the samples analyzed in this phase. In this scheme, approximately 5 g of 5% H_2O deactivated silica are transferred to a 1.5 cm (id) \times 25 cm chromatography column packed at the bottom with glass wool and topped with approximately 1 g of precleaned sodium sulphate. Before each fractionation step, the sample vial was rinsed with \sim 1-2 mL of the appropriate solvent.

Each cyclohexane fraction was concentrated to $1~\mathrm{mL}$ or less using the Zymark automated solvent evaporator. When necessary, these fractions were further concentrated to a preinjection volume of 0.1- $1.0~\mathrm{mL}$ using nitrogen blowdown in a precalibrated vial or Kuderna-Danish concentrator.

Figure 3. Separation scheme - column chromatography of DCM extracts

GAS CHROMATOGRAPHY-MASS SPECTROMETRY

The analysis for alkanes, pristane, phytane and biomarker compounds was performed on an HP 6890GC equipped with a 5972a or 5973 mass selective detector (MSD). System control and data acquisition were achieved with an HP MS Chemstation (Windows95 or Windows NT series). Instrumental and measurement parameters were described in detail in the previous report.

The MSD was operated in scan mode to obtain spectral data for identification of components and in the selected ion monitoring mode (SIM) for quantitative analysis of target compounds:

- m/z 85 ions for alkanes, pristane and phytane
- m/z 177 and 191 ions for hopanes/triterpanes
- m/z 217 and 218 ions for steranes

Quantitative measurements of alkanes and biomarkers were achieved using the external standard method. Paraffin concentrations were obtained using the HP Chemstation software. Biomarker concentrations were determined using peak integration listings of m/z ion pairs 177/191 and 217/218 from the HP Chemstation software as input data for BIOMQUANT, a dedicated software package written in Visual Basic at CETC to handle standard calibration curves and concentration calculations for samples.

4. Results and Discussion

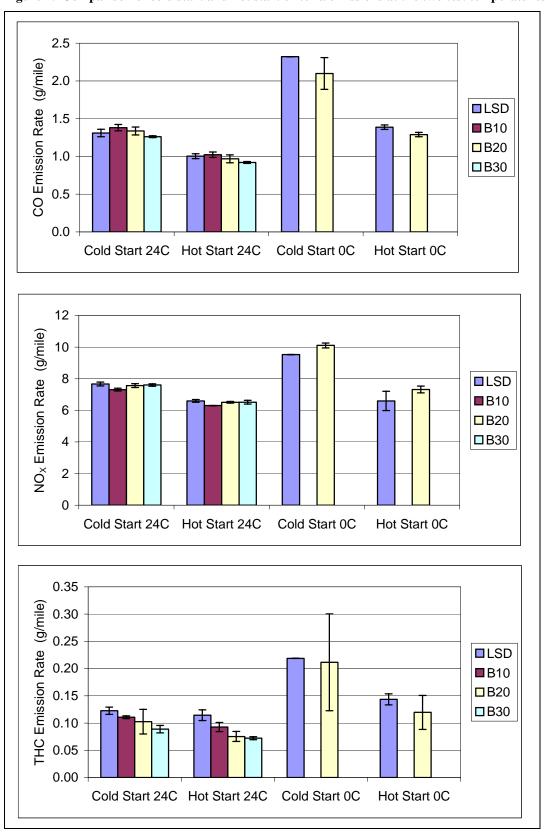
Exhaust emission tests were conducted on a light duty truck over a four phase FTP cycle consisting of two LA-4 driving cycles using low sulphur diesel fuel and various biodiesel blends. The following section provides the summarized results of this testing while the complete body of results is contained in Appendix 1

4.1 Criteria Emissions

The average mass emission rates of the criteria emissions (CO, NO_X, THC), CO₂, and fuel consumption with the standard deviation (*in italics*) obtained for each fuel at standard temperature and cold temperature are presented in Table 15 and Table 16. Emission rates over the entire cold start and hot start tests were calculated and are compared in Figure 4. The fuel consumption obtained over the cold start and hot start tests are compared in Figure 5.

Table 15. Emission rates (g/mile) and fuel consumption (L/100 km) at standard temperature (24°C)

Fuel	Test Cycle		СО	CO ₂	NO _X	THC	FC
							(L/100 km)
LSD Col	Cold Start	Phase 1	1.42	599	7.67	0.105	13.98
			0.02	5	0.15	0.006	0.11
		Phase 2	1.21	619	7.69	0.139	14.45
			0.07	2	0.11	0.008	0.06
	Hot Start	Phase 1	0.88	522	5.75	0.086	12.18
			0.03	2	0.10	0.012	0.06
		Phase 2	1.12	594	7.39	0.140	13.85
			0.03	5	0.09	0.008	0.11
B10	Cold Start	Phase 1	1.51	583	7.31	0.105	13.59
			0.07	9	0.06	0.003	0.18
		Phase 2	1.26	653	7.32	0.116	15.19
			0.04	63	0.11	0.004	1.44
	Hot Start	Phase 1	0.88	515	5.52	0.073	11.97
			0.04	14	0.05	0.008	0.29
		Phase 2	1.16	572	7.05	0.111	13.31
			0.03	27	0.04	0.009	0.63
B20	Cold Start	Phase 1	1.52	606	7.66	0.093	14.01
			0.07	4	0.15	0.009	0.05
		Phase 2	1.17	616	7.49	0.112	14.22
			0.04	6	0.10	0.047	0.21
	Hot Start	Phase 1	0.84	528	5.72	0.061	12.19
			0.04	9	0.08	0.006	0.22
		Phase 2	1.09	600	7.25	0.089	13.86
			0.06	5	0.03	0.012	0.15
B30	Cold Start	Phase 1	1.44	589	7.64	0.088	13.61
			0.01	11	0.19	0.003	0.38
		Phase 2	1.10	617	7.58	0.090	14.24
			0.01	14	0.05	0.011	0.18
	Hot Start	Phase 1	0.81	521	5.70	0.057	12.01
			0.02	9	0.13	0.004	0.31
		Phase 2	1.02	593	7.29	0.086	13.67
			0.02	3	0.11	0.003	0.20


Table 16. Emission rates (g/mile) and fuel consumption (L/100 km) at cold temperature (0°C)

Fuel	Test Cycle		CO	CO ₂	NO _X	THC	FC
							(L/100 km)
LSD	Cold Start	Phase 1	2.21	660	11.55	0.213	15.44
		Phase 2	2.42	564	7.68	0.224	13.23
	Hot Start	Phase 1	1.19	511	5.79	0.112	11.93
			0.05	81	0.46	0.009	1.88
		Phase 2	1.57	581	7.34	0.173	13.59
			0.02	84	0.75	0.011	1.96
B20	Cold Start	Phase 1	2.36	784	11.72	0.262	18.16
			0.43	11	0.47	0.147	0.02
		Phase 2	1.86	687	8.61	0.165	15.89
			0.01	9	0.15	0.035	0.43
	Hot Start	Phase 1	1.10	595	6.53	0.101	13.75
			0.02	4	0.10	0.026	0.29
		Phase 2	1.47	656	8.06	0.137	15.18
			0.03	18	0.33	0.036	0.63

In general, very small changes were observed at the test temperature of $24^{\circ}C$ as the biodiesel blend increased. The most dramatic change was observed in the THC emissions where a steady decrease in emission rate was observed as the biodiesel blend increased. As the THC analyzer is calibrated with propane and is intended to respond to hydrocarbons (C_xH_y), if the composition of the exhaust changes significantly – such as an increase in oxygen-containing hydrocarbons that have a different response at the analyzer than propane does – the analyzer may be underestimating the true organic carbon emission rate. The organic carbon composition of the gas phase emissions must be fully characterized to substantiate this possible explanation.

The emissions measured at the cold test temperature (0°C) were greater than those measured at the standard test temperature (24°C), especially during the cold start portion of the test. The fuel consumption was also substantially greater at the cold test temperature.

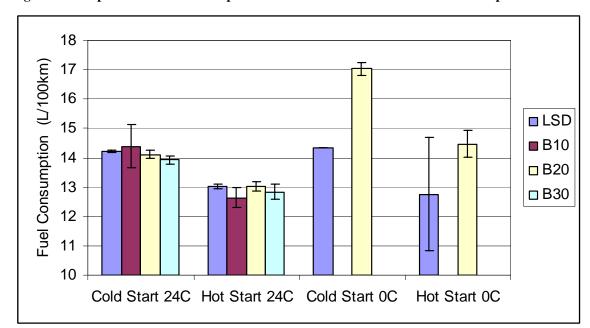


Figure 5. Comparison of fuel consumption obtained for the test fuels at both test temperatures.

Table 17 presents the mass emission rates of total particulate matter (TPM) retained on the Pallflex 70 mm T60A20 filter that was placed upstream of the PUF. These results are compared in Figure 6. Cold start emissions were generally greater than the hot start emissions at both test temperatures. The cold temperature TPM emission rates were substantially greater than the standard temperature emission rates.

Table 17. Summary of TPM emission rates (g/mile).

	Cold	Start	Hot Start		
24 °C	avg	stdev	avg	stdev	
LSD	0.073	0.008	0.072	0.001	
B10	0.073	0.002	0.066	0.003	
B20	0.068	0.009	0.069	0.003	
B30	0.084	0.010	0.078	0.003	
0 °C					
LSD	N/A		0.109	(1 sample)	
B20	0.153	0.045	0.069	0.031	

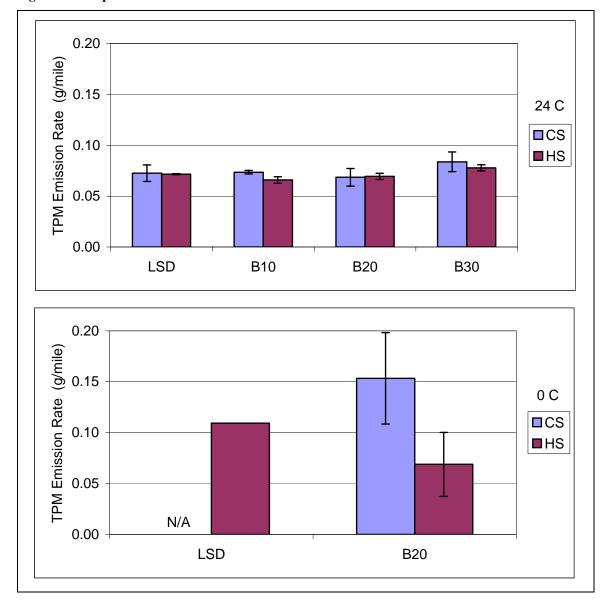


Figure 6. Comparison of TPM emission rates.

Analysis of variance (ANOVA) was conducted on the gaseous criteria emissions and TPM emissions to determine whether the observed changes were significant. Table 18 through Table 21 show the results of the ANOVA comparing the emissions from each of the biodiesel blends to the emissions from base low sulphur diesel fuel. Those changes that are indicated as statistically significant are so at the 95% confidence interval.

- o B10 gives a statistically significant decrease in NO_X emissions (4.5%) and THC emissions (10-20%) over the base fuel at the standard test temperature.
- B20 gives a statistically significant decrease in THC emissions (hot start only 34%) over the base fuel at the standard test temperature. NO_X emissions remain essentially unchanged.
- B30 gives a statistically significant decrease in THC emissions (27-37%) over the base fuel at the standard test temperature.

o B20 gives a statistically significant increase (20%) in CO₂ emissions in the cold temperature cold start test as compared to the base fuel.

Table 22 and Table 23 show the results of the ANOVA on the test temperature effect.

- \circ CO, NO_X and THC emissions were greater at cold temperature than at standard temperature for the base fuel. The CO₂ emissions were essentially unchanged.
- O CO, CO₂, NO_X and THC emissions were greater at cold temperature than at standard temperature for the B20 blend. The TPM emissions on the cold temperature cold start were more than double that at standard temperature, but due to the large variation in the cold temperature results, the difference was not statistically significant.

Table 18. ANOVA results comparing LSD and B10 emissions at 24 °C.

Test		LSD	B10	%change	Pvalue	Significant
Cold Start	CO	1.31	1.38	5.4	0.129	No
Hot Start		1.00	1.02	2.0	0.514	No
Cold Start	CO_2	609	619	1.6	0.640	No
Hot Start		559	544	-2.7	0.170	No
Cold Start	NO_X	7.67	7.31	-4.7	0.013	Yes
Hot Start		6.60	6.30	-4.5	0.004	Yes
Cold Start	THC	0.12	0.11	-9.7	0.047	Yes
Hot Start		0.11	0.09	-19.0	0.045	Yes
Cold Start	TPM	0.073	0.073	1.3	0.856	No
Hot Start		0.072	0.066	-7.9	0.121	No

Table 19. ANOVA results comparing LSD and B20 emissions at 24 °C.

Test		LSD	B20	%change	Pvalue	Significant
Cold Start	CO	1.31	1.34	2.0	0.505	No
Hot Start		1.00	0.97	-3.4	0.348	No
Cold Start	CO_2	609	611	0.3	0.446	No
Hot Start		559	565	1.0	0.166	No
Cold Start	NO_X	7.67	7.57	-1.4	0.276	No
Hot Start		6.60	6.51	-1.4	0.111	No
Cold Start	THC	0.12	0.10	-16.4	0.196	No
Hot Start		0.11	0.08	-34.1	0.001	Yes
Cold Start	TPM	0.073	0.068	-5.6	0.676	No
Hot Start		0.072	0.069	-3.1	0.417	No

Table 20. ANOVA results comparing LSD and B30 emissions at 24 °C.

Test		LSD	B30	%change	Pvalue	Significant
Cold Start	СО	1.31	1.26	-3.7	0.175	No
Hot Start		1.00	0.92	-8.3	0.014	Yes
Cold Start	CO ₂	609	603	-0.9	0.092	No
Hot Start		559	557	-0.3	0.685	No
Cold Start	NO_X	7.67	7.60	-0.9	0.457	No
Hot Start		6.60	6.52	-1.3	0.383	No
Cold Start	THC	0.12	0.09	-27.5	0.004	Yes
Hot Start		0.11	0.07	-36.9	0.002	Yes
Cold Start	TPM	0.073	0.084	15.4	0.275	No
Hot Start		0.072	0.078	8.6	0.072	No

Table 21. ANOVA results comparing LSD and B20 emissions at 0 °C.

Test		LSD	B20	%change	Pvalue	Significant
Cold Start	CO	2.32	2.10	-9.6	0.545	No
Hot Start		1.39	1.29	-7.0	0.078	No
Cold Start	CO ₂	610	733	20.2	0.008	Yes
Hot Start		547	627	14.5	0.310	No
Cold Start	NO_X	9.53	10.11	6.1	0.204	No
Hot Start		6.59	7.32	11.0	0.253	No
Cold Start	THC	0.22	0.21	-3.2	0.959	No
Hot Start		0.14	0.12	-16.7	0.411	No

^{*} insufficient TPM data for ANOVA.

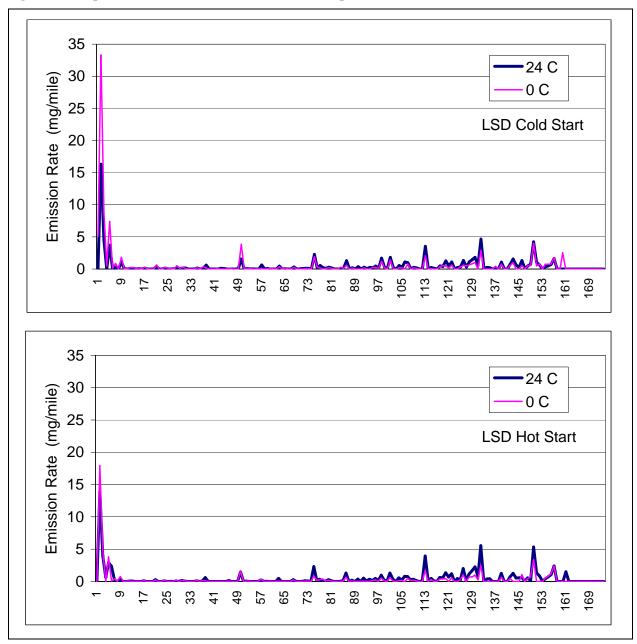
Table 22. ANOVA results comparing LSD emissions at 24 °C and 0°C.

Test		24 C	0 C	%change	Pvalue	Significant
Cold Start	CO	1.31	2.32	77.2	0.003	Yes
Hot Start		1.00	1.39	38.3	0.001	Yes
Cold Start	CO_2	609	610	0.2	0.520	No
Hot Start		559	547	-2.1	0.801	No
Cold Start	NO_X	7.67	9.53	24.2	0.006	Yes
Hot Start		6.60	6.59	-0.1	0.984	No
Cold Start	THC	0.12	0.22	78.4	0.007	Yes
Hot Start		0.11	0.14	25.4	0.050	Yes

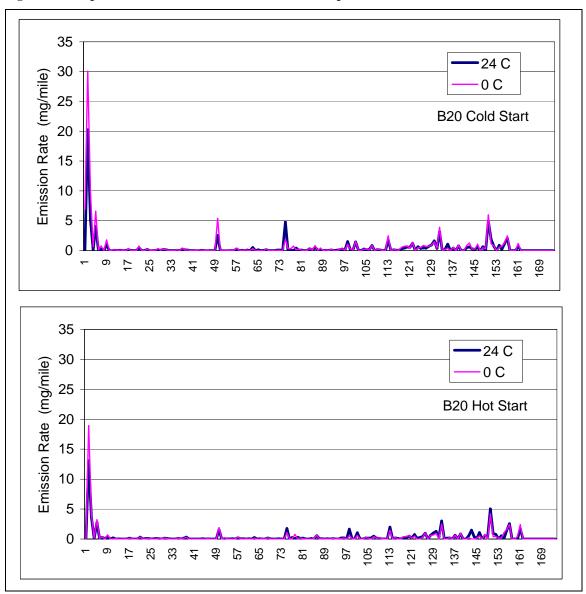
^{*} insufficient TPM data for ANOVA.

Table 23. ANOVA results comparing B20 emissions at 24 °C and 0°C.

Test		24 C	0 C	%change	Pvalue	Significant
Cold Start	CO	1.34	2.10	57.0	0.000	Yes
Hot Start		0.97	1.29	33.1	0.001	Yes
Cold Start	CO_2	611	733	20.1	0.000	Yes
Hot Start		565	627	10.9	0.000	Yes
Cold Start	NO_X	7.57	10.11	33.6	0.000	Yes
Hot Start		6.51	7.32	12.4	0.000	Yes
Cold Start	THC	0.10	0.21	106.5	0.033	Yes
Hot Start		0.08	0.12	58.6	0.022	Yes
Cold Start	TPM	0.068	0.153	124.0	0.120	No
Hot Start		0.069	0.069	-0.8	0.983	No


4.2 Methane and Non-methane Hydrocarbons

Methane and non-methane hydrocarbons were determined were determined for the cold start and hot start tests. Hydrocarbon profiles for the cold start and hot start tests at both temperatures are shown in Figure 7 and Figure 8. The complete dataset is given in Appendix 1, along with the compound names that correspond to the identifier numbers shown in the figures. As is typical of diesel emissions, the methane emission rate was very low, often reported as zero when the dilution air concentration was subtracted. The hydrocarbon emissions are dominated by light compounds (<C₃). For standard temperature tests, the light hydrocarbons account for between 30% and 40% of the total named hydrocarbon emissions while for the cold temperature tests, this increases to 50%. The total named hydrocarbons account for 40% to 80% of the total hydrocarbons determined by the test cell analyzer. This is largely due to the method not identifying a significant fraction of the semivolatile material. Only the straight chain hydrocarbons are determined above C_{12} .


The cold start emissions are greater than the hot start emissions at both test temperatures. Cold temperature operation causes an increase in emissions for both the cold start and hot start tests. The profiles of the C_3 +

hydrocarbons don't change substantially with test cycle or with test temperature, only the magnitude changes.

Figure 7. Comparison of cold start and hot start emission profiles for the LSD tests.

4.3 Methyl Esters

The biodiesel blend used in this study was a methyl ester of soybean oil. A sample of the neat ester was diluted with pentane analysed using the same method as the SvNMHC samples to determine where in the chromatogram the ester compounds would appear. The chromatogram of the neat material is shown in Figure 9. The ester compounds were identified as given in Table 24. The low sulphur diesel fuel and the B30 biodiesel blend were diluted and analyzed in the same way and the resulting chromatograms are shown in Figure 10 and Figure 11. The classic straight chain hydrocarbon pattern of diesel fuel is readily apparent in these two figures. None of the ester compounds were found in the vapour phase dilute exhaust samples. Due to their low volatility, it is likely that if they survived the combustion process, they would be found in the particle phase. These compounds were not determined in the particle phase.

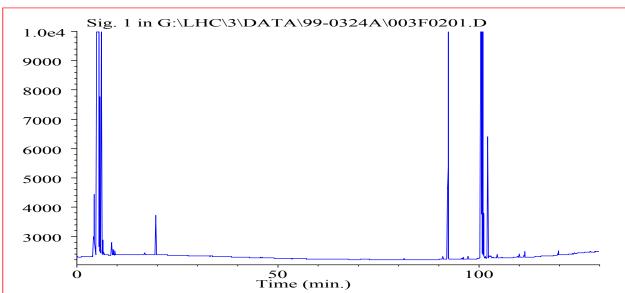
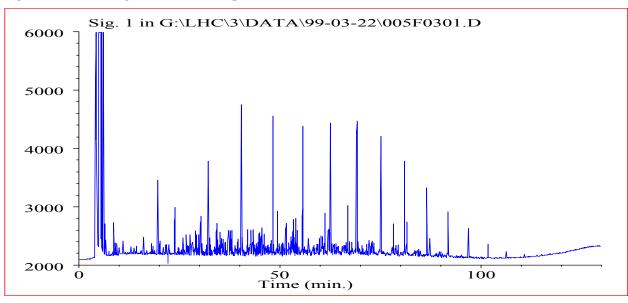



Figure 9. Chromatogram of the neat soybean methyl ester.

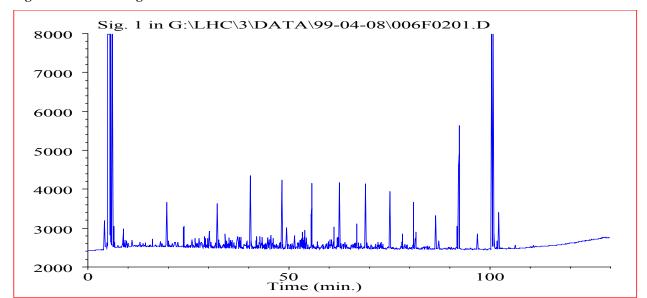


Figure 11. Chromatogram of the B30 biodiesel blend.

Table 24. Peak identification for Figure 9.

Ester	Retention Time (min)
Palmitic acid methyl ester (C16:0)	92.65
Linoleic acid methyl ester (C18:2)	100.86
Linolenic acid methyl ester (C18:3)	100.99
Oleic acid methyl ester (C18:1)	101.24
Stearic acid methyl ester (C18:0)	102.57
Eicosenonic acid methyl ester (C20:1)	110.43
Arachidic acid methyl ester (C20:0)	111.69
Behenic acid methyl ester (C22:0)	120.13
Lignoceric acid methyl ester (C24:0)	128.17

4.4 Carbonyls

Carbonyl compounds were determined on the cold start and hot start tests. The complete set of results are tabulated in Appendix 1. The average cold start and hot start results for each fuel at standard temperature are shown in Figure 12 and the cold temperature results are shown in Figure 13. The cold start emission rates are generally greater than the hot start emission rates at both test temperatures. The cold temperature cold start emissions are greater than the standard temperature cold start emissions while the hot start emissions at both test temperatures are very similar. There are no significant changes in the formaldehyde and acetaldehyde emissions with changes in the test fuel, but acrolein emissions are greater (100-300%) on the biodiesel blends than they are on the base fuel. There is insufficient data to determine whether these increases are statistically significant. The vehicle is equipped with an oxidation catalyst, so changes in engine-out emissions will not be apparent from measured tailpipe emissions. Many questions remain unanswered such as:

Are engine out emissions of formaldehyde and acetaldehyde greater with the biodiesel blends but the catalyst is effective in reducing them to levels seen with the base fuel?

- o Is the engine out emission rate of acrolein greater with the biodiesel blends and the catalyst ineffective in reducing the level to that seen with the base fuel?
- o Is acrolein formed over the catalyst from other combustion products of the biodiesel blends?

Figure 12. Comparison of carbonyl compound emission rates at standard temperature.

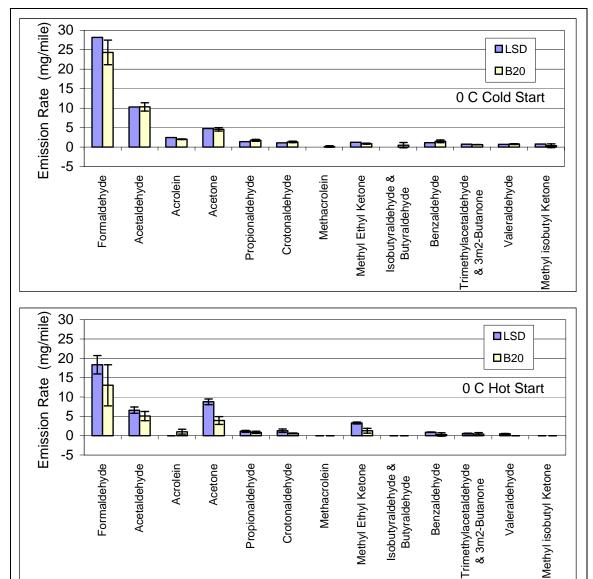


Figure 13. Comparison of carbonyl compound emission rates at cold temperature.

4.5 PAH, PASH and NO₂-PAH

Emission rates for PAH, PASH and NO2-PAH are tabulated in Appendix 1. Figure 14, Figure 15 and Figure 16 present the mass emission rate (μg/mi) of PAH, PASH, and NO₂PAH compounds, respectively. The PAH results are shown on two panels due to the large difference in emission rates of the lighter compounds as compared to the heavier compounds. The first panel shows species that are more volatile, thus found predominantly in the vapour phase. The second panel shows species that are largely particle bound. Samples of the dilution air were not collected for PAH, PASH, and NO₂-PAH analysis, so the reported results are not corrected for dilution air concentrations. The PAH and NO₂-PAH analytical results were corrected for surrogate recovery which provides upper limits of the emission rates. PASH results are not corrected for surrogate recovery. The general trend observed is that PAH and NO₂-PAH emissions tend to increase with the use of biodiesel blends, but the increase does not seem to directly correlate with the blend level. The PASH emission rates do not change with fuel. It is suspected that these compounds arise largely from the lubricating oil, not the fuel.

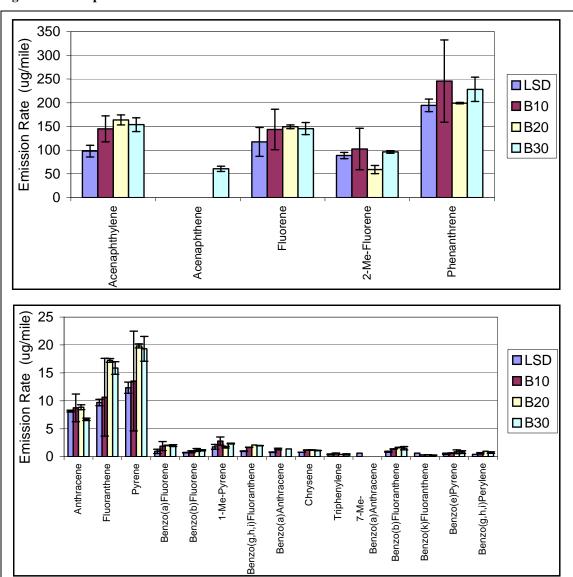
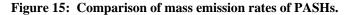



Figure 14: Comparison of mass emission rates of PAHs.

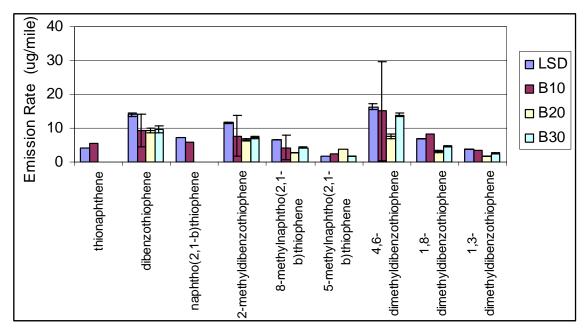
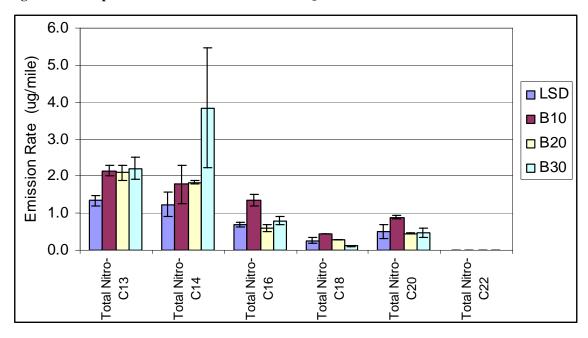



Figure 16: Comparison of mass emission rates of NO₂PAHs.

4.6 PM_{2.5}

For regulatory purposes, particulate matter emissions are sampled as total particulate matter (TPM). There is no size selection imposed on the sample stream before it is drawn through the filter media during sample collection. For use in source apportionment studies, particulate matter emissions are sampled using a cyclone to obtain either PM_{10} or $PM_{2.5}$ samples. This is done to facilitate comparison to the PM_{10} and $PM_{2.5}$ ambient air samples that are routinely collected.

In the present study $PM_{2.5}$ cyclones were used. The combustion particles in freshly diluted vehicle exhaust are all smaller than 1 μ m in diameter. The observed differences between TPM and $PM_{2.5}$ mass emission rates determined in this study are due to several factors. The first factor is the CVS used to dilute the raw exhaust. Over time, a layer of particulate matter accumulates on the inner surfaces of the system and particles are re-entrained in the exhaust sample. These particles are much larger than exhaust particles and can contribute significantly to the mass of a TPM sample. These particles are removed from the $PM_{2.5}$ sample stream by the cyclone. The second factor is the different filter media used for the two samples. The TPM samples are collected on Teflon coated glass fibre filters (Pallflex T60A20) while the $PM_{2.5}$ samples collected for mass emission rate determination are collected on Teflon membrane filters (Gelman Teflo 2 μ m pore size). The membrane filters have a much higher efficiency for smaller particles than do the Teflon coated glass fibre filters. The Teflon coated glass fibre filters also show some adsorption of vapour phase organic material while the Teflon membrane filters do not. The third factor is similar in some ways to the first in that any particles generated from the exhaust system (rust, catalyst attrition) are also excluded from the $PM_{2.5}$ sample but remain as part of the TPM sample.

4.6.1 Mass

Table 25 presents the mass emission rates of particulate matter less than $2.5 \mu m$ diameter retained on the 47 mm diameter Teflon membrane filters. A comparison of the $PM_{2.5}$ emission rates and the TPM emission rates is shown in Figure 17. The measured $PM_{2.5}$ emission rates are approximately 45% lower than the measured TPM emission rates. This difference seems large in the context of the possible reasons given above.

Table 25. Summary of $PM_{2.5}$ emission rates (g/mile).

	Cold	l Start	Hot	Start
24°C	avg	stdev	avg	stdev
LSD	0.040	(1 sample)	0.035	0.002
B10	0.035	0.013	0.039	0.003
B20	0.046	0.001	0.041	0.002
B30	0.046	0.010	0.038	0.013
0°C				
LSD	0.128	(1 sample)	0.088	0.013
B20	0.142	0.022	0.100	0.012

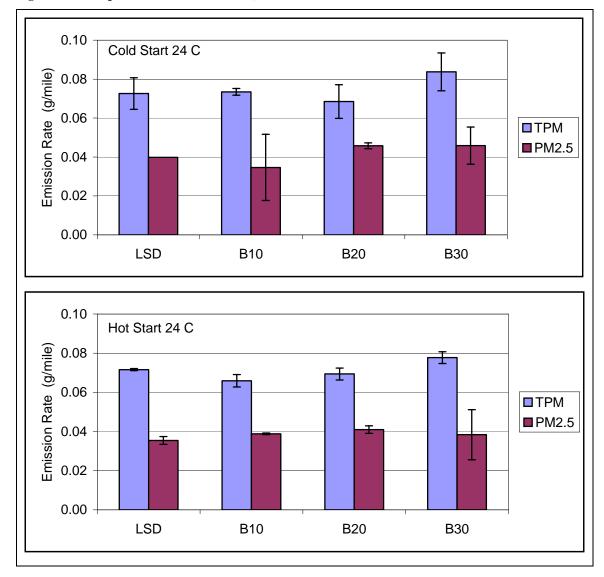


Figure 17. Comparison of TPM and PM_{2.5} emission rates.

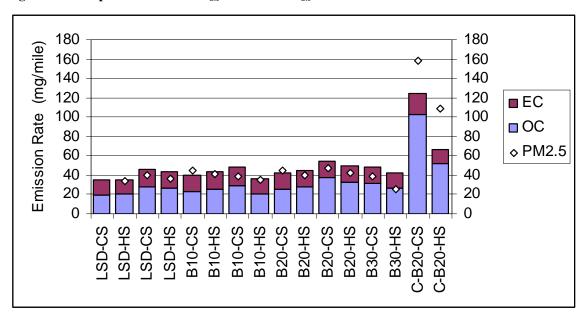
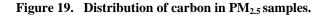
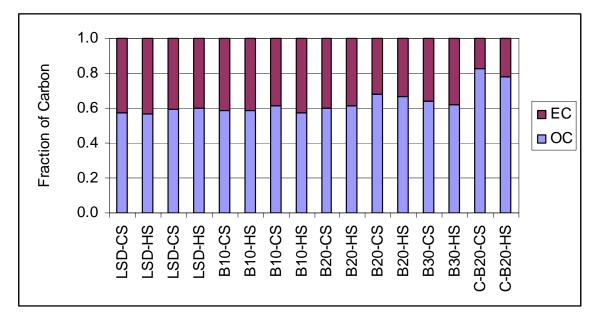
4.6.2 Organic and Elemental Carbon

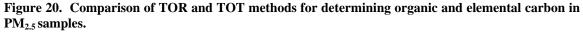
Samples of particulate matter (PM_{2.5}) were collected on pre-fired quartz filters for analysis of organic and elemental carbon by two different methods – Thermal Optical Transmittance (TOT) and Thermal Optical Reflectance (TOR). The TOT technique is used in the NIOSH 5040 method for determining elemental carbon in occupational health studies while the TOR technique is used by the Desert Research Institute (DRI) and has found application in a large number of U.S. ambient air studies. All samples were submitted for analysis by the TOT method. Selected samples were submitted for analysis by the TOR method for comparison.

Two filters were collected in series to allow for correction of organic carbon adsorbed by the filter media from the gas phase. The results presented below have been corrected for adsorbed organic carbon by subtracting the amount organic carbon found on the secondary quartz filter from the amount found on the primary quartz filter. This correction method is the one used in ambient air studies, but may be inadequate for vehicle emission studies as the organic carbon concentration in the gas phase is much greater than found

in ambient air samples. The magnitude of the correction is on average 32% of the uncorrected organic carbon amount.

Emission rates for organic, elemental and total carbon as determined by both methods are presented in Appendix 1. The total carbon emission rate as determined by the TOT method is compared to both the TPM and the PM_{2.5} mass emission rates in Figure 18. For nearly all the standard temperature samples, the total carbon emission rate is equal to or greater than the measured PM_{2.5} mass emission rate. This is not possible since the carbon analysis does not include any of the hydrogen bonded to the organic carbon. The PM_{2.5} mass includes other particle phase species such as sulphate and ash (metal oxides). This is evidence that the organic carbon correction is insufficient for vehicle emission samples. The last two data points in the figure are for the cold temperature tests on B20. It appears that there may be substantial material that is not carbonaceous in these samples.


Figure 18. Comparison of total PM_{2.5} carbon to PM_{2.5} mass.

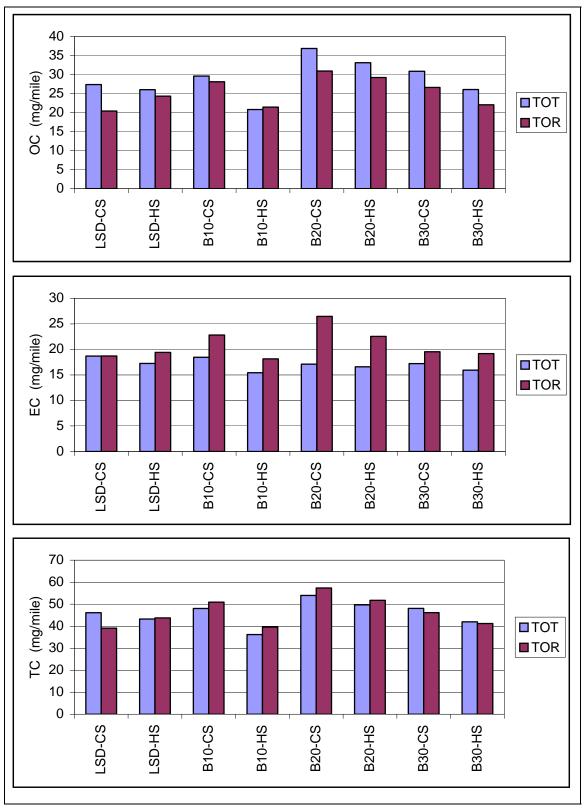

Figure 19 shows the change in distribution of carbon in $PM_{2.5}$ samples with change in fuel and test temperature. There appears to be a very slight increase in organic carbon content at standard temperature with the use of biodiesel fuels. A significant increase in organic carbon content appears with a decrease in test temperature. This might suggest the need for cold temperature vehicle emission profiles when using winter ambient air samples in source apportionment work.

Figure 20 shows a comparison of the results for organic, elemental and total carbon obtained by the two methods. The TOT method tends to give organic carbon results about 14% greater and elemental carbon results about 16% lower than the TOR method. The overall difference in total carbon results from the two methods is less than 2.5%, well within the measurement uncertainties of the two methods. The difference in the distribution of organic and elemental carbon between the two methods results from the manner in which the correction for pyrolized carbon is accomplished. Since neither method is an absolute measurement, an assessment for which method is correct cannot be done. Therefore it is important to ensure that when conducting source apportionment work, the emission source profiles and the ambient air receptor profiles are developed from data that is obtained from the same method whenever possible.

4.6.3 Aerosol Precursors

To simplify the discussion of aerosol precursor emissions, the FTP composite emission rates will be used. The FTP composite emission rate is a weighted average of the cold start and hot start emission rates. The complete set of emission rates is given in Appendix 1.

Sulphur dioxide (SO₂) is determined from potassium carbonate coated filters. The KOH coated filters used to determine organic acids also shows some capacity for capturing SO₂, though the sampling efficiency appears to be lower than the carbonate filters.

Sulphur dioxide when emitted into the atmosphere undergoes further oxidation to SO_3 , which then reacts with water vapour to form sulphuric acid. The sulphuric acid is neutralized by ammonia to form particle phase ammonium sulphate. Figure 21 shows the measured SO_2 emission rates. A pattern similar to the fuel consumption results shown in Figure 5 is observed where a slight increase is seen in changing from the base fuel to B10 then a consistent decrease with increasing fuel blend. SO_2 emissions arise from the fuel sulphur as well as burning lubricating oil. Since the sulphur contents of the blends were not determined, it is not possible to determine whether the increase in SO_2 emissions results from the fuel or from an increase in oil consumption.

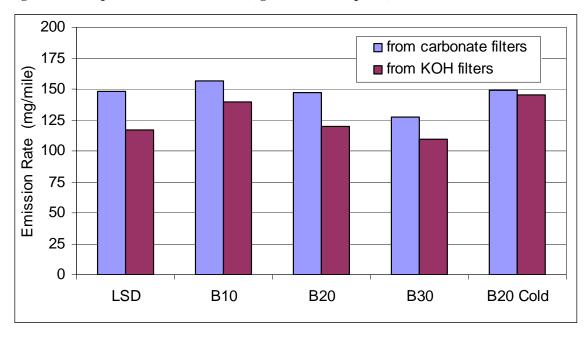


Figure 21. Comparison of SO₂ emissions (mg/mile FTP Composite).

Ammonia (NH_3) is determined using citric acid coated filters. The efficiency of the reaction depends on there being sufficient water present on the filter. It appears from the results shown in Figure 22 that the filters were slowly drying out as the study ran. These results are not considered reliable.

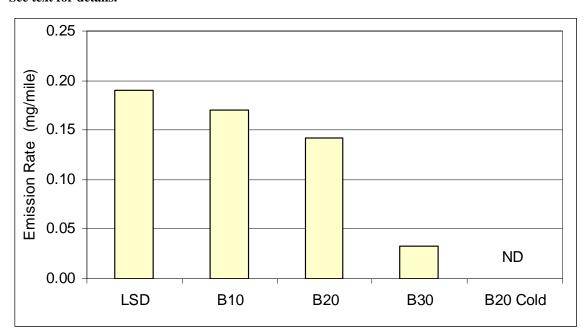


Figure 22. Comparison of NH₃ emissions (mg/mile FTP Composite) showing sampling difficulties. See text for details.

Vapour phase organic acids were determined on KOH coated quartz filters. This study represents the first attempt at determining organic acids in vehicle exhaust. The samples were analyzed by two different methods to confirm the identity of the acids and to cover a range of concentrations. The IC method has better detection limits than the CE method, but the CE method is able to detect a wider range of compounds. Emission rates for those compounds detected in the vehicle exhaust are shown in Figure 23. Emission rates of organic acids are of the same order of magnitude as the non-methane hydrocarbons. Formic, acetic and glycolic acids are the most predominant of the acids measured. The acetic acid emission rate appears somewhat erratic as the fuel changes while the formic and glycolic acid emissions appear to decrease with increasing biodiesel blend.

For high concentrations, the results from the two methods agree well. The difference in detection limits between the two methods is seen for glycolic, propionic and methanesulphonic acids.

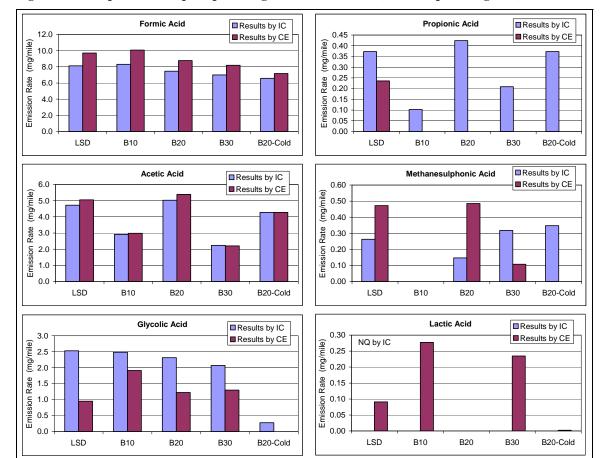
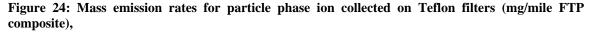
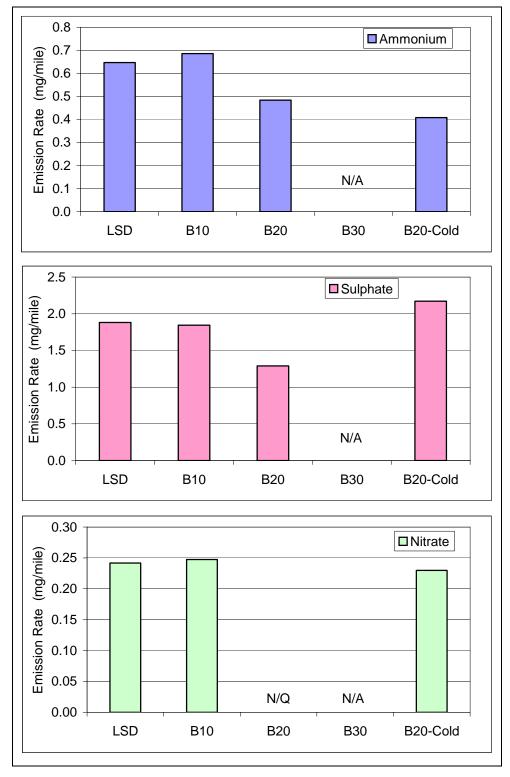
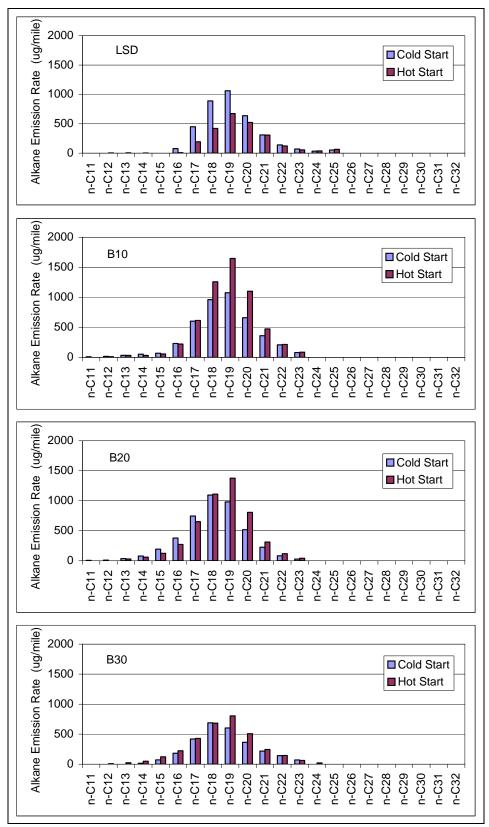




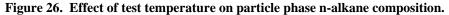
Figure 23. Comparison of vapour phase organic acid emissions (FTP composite mg/mile).

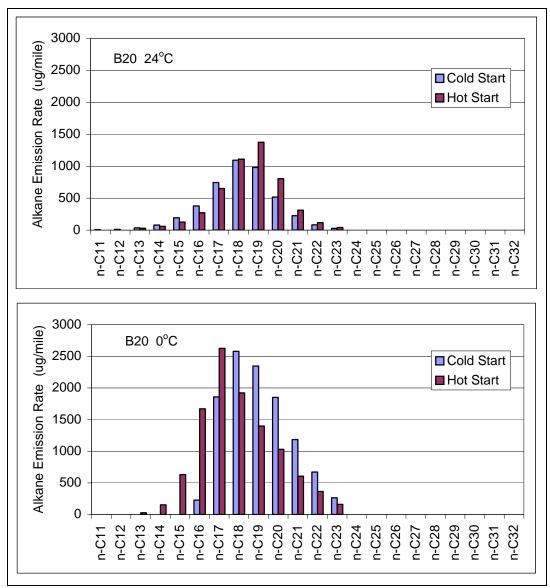
4.6.4 Particle Phase Ions

Particle phase ions were determined by IC from the Teflon membrane filters. These ionic species form a very small fraction of the $PM_{2.5}$ mass. The emission rates of the major ions found in the particulate matter samples are shown in Figure 24. The complete data set is given in Appendix 1.

4.6.5 Alkanes and Biomarkers


Particle phase n-alkanes and petroleum biomarker compounds were determined in selected samples. These compounds are useful in source apportionment studies. In total, these compounds account for only a few percent of the total organic carbon content of the particulate matter samples. The complete data sets for these compounds are presented in Appendix 1.


The n-alkane compositions are compared for each of the test fuels in Figure 25 while the effect of test temperature on measured n-alkane compositions is shown in Figure 26. The same pattern as observed with organic carbon composition is seen in these results, with a slight increase in emission rate in changing from the base fuel to B10, followed by a decrease in emission rate with increasing biodiesel blend. A shift in the peak of the n-alkane distribution is also seen between the cold start and hot start emissions. The hot start emissions tend to peak one carbon number greater than the cold start emissions. The effect of test temperature is dramatic in the n-alkane composition. The cold temperature emission rates are much greater than the standard temperature emission rates and a shift is also seen in the peak of the n-alkane distribution with the cold temperature distribution showing a peak one carbon number lower than the standard temperature distribution. These compounds appear in the emissions both from the fuel and from the lubricating oil. The shift in the peak of the distributions may be a result of the change in relative importance of the fuel versus the lubricating oil as the source under different operating conditions.


The petroleum biomarker compositions are compared for each of the test fuels in Figure 27 while the effect of test temperature on measured petroleum biomarker compositions is shown in Figure 28. Note the low emission rates of these compounds. Again, an increase in emission rate is seen with the change in fuel from the base fuel to B10. Thereafter, the emission rates appear constant with the change in biodiesel blend. It is thought that these compounds appear in the emissions as a result of burning lubricating oil rather than from the fuel, since the boiling points of these compounds put them outside the distillation range of the fuel.

The sample from the base fuel test (Jan. 13/99) was from the test with the lower of the two TPM emission rates. This may explain the increase observed in changing from the base fuel to B10.

80 Emission Rate (ug/mile) LSD □ Cold Start 70 60 ■ Hot Start 50 40 30 20 10 **S15 S13 S**23 H19 **S**24 Nor S11,S12 **S**22 H17 80 (ng/mile) B10 ■ Cold Start 70 ■ Hot Start 60 50 **Emission Rate** 40 30 20 10 **S13 S15** H19 **S**23 Nor S11,S12 **S**22 **S**24 H17 80 Emission Rate (ug/mile) B20 70 ■ Cold Start 60 ■ Hot Start 50 40 30 20 10 **S15** H19 **S13 S**22 **S**23 **S24** Nor H17 S11,S12 80 70 60 (ng/mile) B30 ■ Cold Start ■ Hot Start 50 40 30 **Emission Rate** 20 10 0 **S13 S**23 H19 S11,S12 **S**22 **S24** Š H17

Figure 27. Comparison of particle phase biomarker compound compositions for the test fuels.

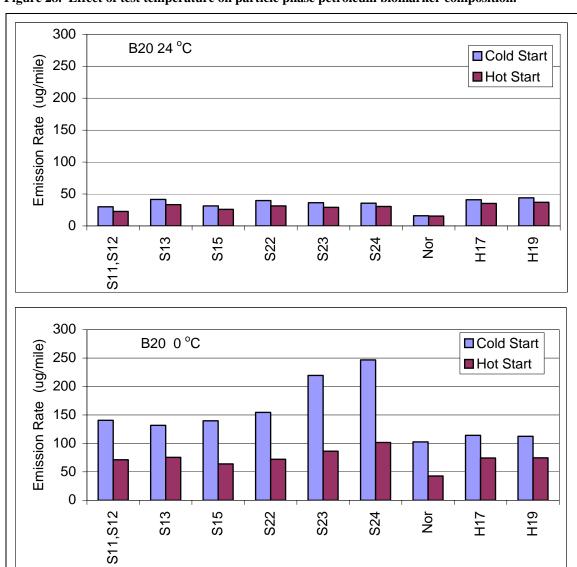


Figure 28. Effect of test temperature on particle phase petroleum biomarker composition.

5. Conclusions

The use of biodiesel blends resulted in the following statistically significant (95% confidence) changes in emissions over the base fuel:

- o B10 gives a statistically significant decrease in NO_X emissions (4.5%) and THC emissions (10-20%) over the base fuel at the standard test temperature.
- B20 gives a statistically significant decrease in THC emissions (hot start only 34%) over the base fuel at the standard test temperature. NO_X emissions remain essentially unchanged.
- B30 gives a statistically significant decrease in THC emissions (27-37%) over the base fuel at the standard test temperature.
- B20 gives a statistically significant increase (20%) in CO₂ emissions in the cold temperature cold start test as compared to the base fuel.

No statistically significant differences in TPM emissions were observed among the fuels. Increases in acrolein, PAH and NO₂-PAH emissions were observed with the biodiesel blends as compared to the base fuel, though there was insufficient data for statistical significance tests.

Operation at cold ambient temperatures generally results in increased emissions regardless of the fuel used. The increase is greatest on cold start. Once the engine and emission control system have reached operating temperature, very little difference in emissions is observed.

Emissions of vapour phase organic acids were measured and emission rates of formic, acetic and glycolic acid were found at levels similar to the non-methane hydrocarbon emissions.

For the standard temperature tests, organic carbon accounts for approximately 55% of the particle mass while elemental carbon accounts for approximately 40% of the mass. Particle phase ions (ammonium, sulphate and nitrate) comprise a tiny fraction of the total mass. For the cold temperature tests, the organic carbon fraction increases to approximately 80% of the mass. It is suspected that lubricating oil contributes significantly to the increase observed at cold temperature. This hypothesis is supported by the significant increase in both the n-alkane and petroleum biomarker emission rates and a shift in the n-alkane distribution to lower carbon number.

The two methods for determining organic and elemental carbon composition (TOR and TOT) compare well for total carbon. The two methods differ in their distributions of organic and elemental carbon – largely due to the difference in approach for accounting for pyrolized carbon.

The attempt made to measure ammonia emissions was not successful due to sample collection problems. The citric acid coated filters require moisture in the filter for the reaction to occur. It is thought that the filters slowly dried out over the course of the study resulting in a steadily decreasing trend in ammonia emission rates. A change in the filter preparation and storage procedures will be necessary.

Appendix 1

Mass emission rates of hydrocarbon compounds (mg/mi)

Test Date	Ja	anuary	13/99	J	anuary	15/99	J	anuary	18/99	F	'ebruar	y 2/99
Fuel	Lov	v Sulfu	r Diesel	Lo	w Sulfu	r Diesel	В	iodiese	l 10 %	В	iodiese	l 10%
Temperature (°C)		22.9	9		22.0	6		24.	1		24	3
	Cold	Hot	Composite									
	Start	Start		Start	Start		Start	Start		Start	Start	
methane							0.34		0.15			
ethylene	16.12	12.06	13.81		13.90	15.02	19.21	13.53	15.97	18.98	13.88	16.07
acetylene	4.21	3.88	4.02	4.74	4.04	4.34	4.92	4.08	4.44	5.81	4.02	4.79
ethane		2.47	1.41		0.43	0.24	0.27		0.12	0.26		0.11
propylene	4.39		1.89	3.86		1.66	4.41		1.89	6.88		2.96
propane	0.02	46.94	26.76	0.03		0.01				0.01	0.08	0.05
propyne										2.85		1.23
isobutane					0.16	0.09		0.09	0.05			
isobutene/1-butene	1.56		0.67	0.71		0.31	0.95		0.41	1.95		0.84
13-butadiene	0.10		0.04									
n-butane					0.29	0.16		0.06	0.04			
t2-butene	0.18	0.02	0.09	0.10		0.04	0.11		0.05	0.07		0.03
22-dm-propane	0.13		0.06	0.11		0.05	0.11		0.05	0.11		0.05
1-butyne										0.06		0.02
c2-butene	0.09	0.04	0.06	0.01		0.00	0.05		0.02			
12-butadiene												
3m1-butene	0.15		0.06	0.16		0.07		0.12	0.07	0.12		0.05
2m-butane				0.00	0.52	0.30	0.00	0.24	0.14			
14-pentadiene												
2-butyne												
1-pentene	0.32		0.14	0.40		0.17	0.50		0.22	0.38		0.16
2m1-butene	0.03		0.02									
n-pentane		0.04	0.02		0.08	0.05	0.01	0.04	0.03			
2m-13-butadiene	0.13		0.06	0.17		0.07	0.04		0.02	0.13		0.06
t2-pentene	0.08		0.04	0.05		0.02	0.09		0.04			
c2-pentene												
2m2-butene				0.07		0.03		0.08	0.05			
22-dm-butane	0.13		0.06	0.17		0.07	0.29		0.13			
cyclopentene				0.06		0.03	0.08		0.03	0.02		0.01
4m1 & 3m1-pentene	0.10		0.04	0.20		0.09	0.14		0.06	0.05		0.02
cyclopentane	0.16		0.07	0.18		0.08	0.13	0.02	0.07	0.11		0.05
23-dm-butane		0.06	0.04	0.01	0.02	0.01		0.03	0.02			
c/t-4m2-pentene												
2m-pentane				0.01	0.02	0.01	0.02	0.06	0.04			
3m-pentane	0.07	0.14	0.11	0.15	0.01	0.07	0.05	0.11	0.08			
2m1-pentene												
1-hexene	0.11		0.05	0.17		0.07	0.28		0.12	0.18		0.08
n-hexane	1.10	1.02	1.06	0.13	0.19	0.16	0.15	0.17	0.16		0.19	0.11
c/t-3-hexene												
t2-hexene												
2m2-pentene												
t-3m2-pentene												
c2-hexene				0.26	0.45	0.36	0.40	0.62	0.52			
c-3m2-pentene	0.07		0.03	0.12		0.05	0.24		0.10			
22-dm-pentane												
m-cyclopentane	0.01	0.26	0.15	0.02	0.01	0.01	0.04	0.03	0.03		0.06	0.04
24-dm-pentane		0.01	0.00	0.01	0.01	0.01	0.00		0.00		0.01	0.01
223-tm-butane												
1m-cyclopentene	0.11		0.05									
benzene	1.79	1.70	1.74	1.34	1.24	1.29	2.24	1.64	1.90	2.22	1.62	1.88
33-dm-pentane	''-					.=-	0.22		0.10			
cyclohexane	0.04	0.04	0.04	0.06	0.08	0.07	0.05	0.06	0.06		0.05	0.03
2m-hexane	9.03	8.76	8.88	0.04	0.25	0.16	1.57	0.05	0.70		1.09	0.62
23-dm-pentane	0.02	0.00	0.01	0.03	0.23	0.02	0.05	0.03	0.04		0.03	0.02
11-dm-cyP	0.02	0.00	0.01	0.05	0.01	0.02	0.05	0.15	0.09	0.00	0.05	0.02
cyclohexene								0.10	0.07	0.09		0.04
3m-hexane	0.06		0.03	0.06	0.04	0.05	0.60	0.05	0.28	0.07	0.16	0.09
Jone Horanic	0.00		0.05	0.00	0.04	0.05	0.00	0.03	0.20		0.10	0.07

c-13-dm-cyP 0.05 0.03 0.06 0.05 0.06	24	sel 10% 4.3
Cold Start Start Composite Cold Start	old Hot	
Start Start <th< th=""><th></th><th></th></th<>		
c-13-dm-cyP 0.05 0.03 0.06 0.05 0.06	art Star	-
3e-pentane/t-13-dm-cyP 0.08 0.00 0.04 0.08 0.08 0.09 0.07 0.08	0.02 0.02	
t-12-dm-cyP 6.08 5.30 5.64 1.13 1.46 1.32 2.84 1.59 2.13 4.5		
224-tm-pentane/1- 0.08 3.50 3.64 1.13 1.40 1.32 2.64 1.37 2.13 4.5	0.28	
heptene	0.20	0.10
t3-heptene		
n-heptane 0.74 0.73 0.73 0.32 0.25 0.28 0.54 0.44 0.48 0.2	22 0.27	0.25
c3-heptane		
t2-heptene 0.12 0.05 0.10 0.05 0.07 0.0	03	0.01
c2-heptene		
22-dm-hexane	07 0 10	0.14
m-cyH/c12-dm- cyP/113-tm-cyP	07 0.19	0.14
12-dm-cyH		
25-dm-hexane/e-cyP 0.03 0.01 0.04 0.02 0.03 0.00 0.01	0.05	0.03
24-dm-hexane/223-tm-	0.14	
pentane		
33-dm-hexane/ctc124- 0.10 0.12 0.11 0.12 0.08 0.10 0.08 0.08 0.08 0.08	03 0.11	0.07
tm-cyP		
ctc123-tm-cyP 0.09 0.08 0.09 0.13 0.06 0.09 0.09 0.07 0.08 0.0		
234-tm-pentane 0.01 0.01 0.07 0.03 0.01 0.00 0.00	0.07	
toluene/233-tm-pentane 2.29 2.94 2.66 2.25 1.67 1.92 2.32 2.01 2.15 2.0		
23-dm-hexane/2m3e- 0.07 0.38 0.24 0.22 0.08 0.14 0.14 0.03 0.08 0.1	19 0.22	0.21
pentane/112-tm-cyP	00 0.23	0.13
4m-C7/3m3e-C5/34-		
dm-C7/1m-cyH	0.57	0.24
3m-heptane	0.00	0.00
3e-hexane/c-13-dm-		
cyH/cct-124-tm-cyP		
t-14-dm-cyH 0.23 0.11 0.16 0.13 0.14 0.13 0.26 0.23 0.24 0.0	06 0.12	0.09
225-tm-hexane 0.09 0.04 0.07 0.04 0.14 0.11 0.13		
11-dm-cyH	•	0.16
1-octene 0.07 0.03 0.07 0.11 0.09 0.3		0.16
224-tm-hexane/11em- 0.10 0.13 0.12 0.17 0.15 0.16 0.1	14 0.12	0.13
n-octane/t12-dm-cyH	60 0.82	2 0.73
t2-octene 0.17 0.07 0.17 0.16 0.17	0.02	0.75
	02 0.13	0.08
244-tm-hexane/ip-cyP		
c2-octene 0.87 0.71 0.78 0.02 0.01 0.19 0.13 0.15		
235-tm-hexane		
44&22&26-dm- 0.08 0.29 0.20 0.34 0.34 0.21 0.09		
heptane/c12-dm-cyH	0.1	0.00
24-dm-heptane		0.00 0.22
hip-cyr/ccc-133-till-	23 0.21	0.22
25-dm-heptane 0.36 0.17 0.25 0.21 0.20 0.20 0.28 0.23 0.25 0.1	13 0.27	0.21
33-dm-heptane		
114-tm-cyH 0.13 0.17 0.15 0.18 0.17 0.17 0.09 0.09 0.09 0.2		
e-benzene 1.99 0.92 1.38 1.52 1.02 1.24 1.34 1.21 1.27 0.6	66 0.44	0.54
cct124-tm-cyH 28.85 29.55 29.25 4.13 5.03 4.64 7.80 4.85 6.12 5.8		
35-dm-heptane 0.20 0.08 0.09 0.04 0.2		0.09
m&p-xylene/23-dm- 0.99 1.52 1.29 1.62 1.57 1.59 0.82 0.52 0.65 1.4	44 1.43	1.43
heptane		
34-dm-heptane/4m- locations 0.47 0.39 0.42		
octane 4e-heptane		
2m-octane/246-tm- 0.17 0.13 0.15 0.85 0.65 0.73 0.17 0.07 0.4	44	0.19
hexane 0.17 0.13 0.13 0.03 0.03 0.73 0.17 0.07 0.5		0.17
ctc-124-tm-cyH	26 0.33	0.30
3m-octane/33-de- 1.22 1.32 1.28 1.17 0.80 0.96 0.47 0.53 0.51 0.5		0.21
C5/3e-C7		
o-xylene 1.18 1.28 1.24 1.06 1.09 1.08 0.93 0.95 0.95 0.6		
112-tm-cyH 0.20 0.09 0.27 0.16 0.20 0.09	0.09	
1-nonene 0.06 0.02 0.37 0.16 0.20 0.09 0.1	10	0.04

Fuel	T .					15/99	•		7 18/99		C 10 1 11 11 11 11 11 11 11 11 11 11 11 1	y 2/99
	Lov		r Diesel	Lov		r Diesel	В		el 10 %	В	iodiese	
Temperature (°C)		22.9)		22.	6		24.	1		24.	3
	Cold	Hot	Composite	Cold	Hot	Composite		Hot	Composite	Cold	Hot	Composite
t3-nonene	Start 0.04	Start 0.28	0.18	Start 0.20	Start 0.41	0.32	Start 0.22	Start 0.17	0.20	Start 0.24	Start 0.18	0.20
ib-cyP	0.04	0.20	0.03	0.20	0.41	0.52	0.10	0.17	0.04	0.24	0.20	0.11
c3-nonene		0.0.	0.05				0.10	0.22	0.12	0.26	0.20	0.11
n-nonane	3.62	3.99	3.83	3.44	3.45	3.45	2.47	2.52	2.50	1.83	1.70	1.76
t2-nonene		0.09	0.05		0.18	0.10				0.20		0.08
c2-nonene	0.28	0.09	0.17	0.15	0.13	0.14	0.35		0.15			
ip-benzene		0.52	0.29	0.14	0.14	0.14		0.36	0.21	0.44	0.40	0.42
22-dm-octane		0.08	0.04		0.13	0.07						
ip-cyH	0.24		0.10	0.64	0.71	0.68	0.41		0.18	0.39	0.42	0.40
nb-cyP	0.13	0.31	0.23	0.66	0.77	0.72	0.50	0.27	0.37	0.12	0.50	0.33
33-dm-octane	1.27	1.56	1.44	1.27	1.24	1.25	0.56	0.68	0.63	0.67	0.35	0.49
n-propylbenzene	0.23	0.73	0.51	1.11	0.78	0.92	0.34	0.67	0.53	0.55	0.60	0.58
3e-toluene 23-dm-octane	1.10	1.19	1.15	1.24	1.45	1.36	1.93	0.25	0.98	0.70	0.49	0.58
4e-toluene		0.37	0.21	0.22	0.56	0.41	0.53	0.28	0.39		0.14	0.08
135-tm-benzene	0.38	0.20	0.21	0.22	0.39	0.50	0.33	0.28	0.39	0.06	0.14	0.03
2m-nonane	1.58	1.54	1.56	1.10	1.19	1.15	0.82	1.26	1.07	0.17	0.56	0.39
3e-octane	1.50	1.54	1.50	1.10	0.27	0.16	0.48	1.20	0.21	0.30	0.50	0.13
3m-nonane	1.16	1.30	1.24	1.01	1.84	1.48	1.02	0.67	0.82	0.73	0.55	0.63
2e-toluene	1.49	2.31	1.96	1.44	1.56	1.51	1.01	1.11	1.07	0.70	1.76	1.30
124-tm-benz/tb-benz/1-	1.89	2.19	2.06	1.86	2.62	2.30	1.36	1.48	1.43	0.99	1.14	1.08
decene												
1b-cyH	0.52	0.53	0.52	0.52	0.65	0.59	0.42	0.34	0.37	0.42		0.18
n-decane	5.01	6.23	5.70	4.30	5.30	4.87	3.35	3.73	3.57	3.18	2.83	2.98
ib-benzene												
sb-benzene		0.31	0.18	0.43	0.46	0.45				0.36		0.15
3-ip-toluene		0.45	0.26	0.17	0.40	0.30	0.42	0.37	0.39	0.74		0.32
123-tm-benzene	0.09		0.04									
4-ip-toluene					0.65	0.37				0.25		0.11
indan				0.04				0.04	0.00	0.00	0.54	0.00
2-ip-toluene	1.19	1.41	1.32	0.94	1.08	1.02	0.94	0.84	0.88	0.92	0.74	0.82
13-de-benzene												
14-de-benzene	0.46	0.71	0.60	1.06	0.79	0.90	0.72	0.72	0.72	0.73	0.71	0.72
3-np-toluene 4-np-toluene/nb-	1.12	1.30	1.22	2.34	1.25	1.71	1.34	0.72	1.06	0.73	0.71	0.72
benz/13dm5e-benzene	1.12	1.50	1.22	2.34	1.23	1./1	1.54	0.04	1.00	0.02		0.27
12de-benzene	0.46	0.59	0.54	0.78	0.52	0.63	0.54	0.39	0.46		0.75	0.43
2-np-toluene	0.40	0.45	0.26	0.76	0.43	0.43	0.54	0.37	0.40		0.75	0.43
14dm-2e-benzene	0.97	0.56	0.74	0.81	0.64	0.71	1.58	2.17	1.92	1.28	1.01	1.12
13dm-4e-benzene			***	****								
12dm-4e-benzene	0.69	0.48	0.57	0.37	0.45	0.41	0.46	0.44	0.45	0.53	0.42	0.46
13dm-2e-benzene		0.30	0.17	0.78	0.92	0.86				0.92	0.75	0.82
n-undecane/12-dm-3e-	3.70	5.16	4.53	4.61	5.65	5.21	4.20	4.71	4.49	4.35	3.99	4.15
&1245-ttm-benzene												
2mb-benzene	0.87	1.41	1.18	0.77	1.09	0.95	2.61	0.90	1.63	2.46		1.06
tb-2m-benzene	0.59	0.83	0.72	0.72	0.89	0.82	0.80	0.53	0.64	0.91	0.91	0.91
1234-ttm-benzene		0			0.7-		0.0-	0	A =-	0.55	0.7-	
npentyl-benzene		0.57	0.33		0.53	0.30	0.88	0.61	0.72	0.60	0.53	0.56
tb-35dm-benzene		0.40	0.04	0.46	0.53	0.30	0.44	0.48	0.46	0.40	0.42	0.41
tb-4e-benzene	1.10	0.42	0.24	0.46	0.85	0.68	0.49	0.80	0.67	0.46	0.49	0.48
n-dodecane	1.19	2.23	1.78	1.87	2.56	2.26	1.73	2.59	2.22	2.21	2.43	2.33
135-TE-BENZENE												
124-TE-BENZENE N-HEXYLBENZENE												
N-C13		1.44	0.82		1.57	0.90	1.31	1.96	1.68	1.32	1.91	1.66
N-C14		1.77	0.02		1.51	0.70	1.51	1.70	1.00	1.54	0.36	0.20
N-C15											0.50	0.20
N-C16												
N-C17					0.46	0.26		0.60	0.34			
N-C18								00				
N-C19												
N-C20												
N-C21												
N-C22												
N-C23												
N-C24												

Test Date	Ja	anuary	13/99	J	anuary	15/99	J	anuary	18/99	F	'ebruar	y 2/99
Fuel	Lov	v Sulfu	r Diesel	Lo	w Sulfu	ır Diesel	В	iodiese	l 10 %	В	iodiese	d 10%
Temperature (°C)		22.9			22.	6		24.	1		24.	3
	Cold	Cold Hot Composite C		Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite
	Start	Start		Start	Start		Start	Start		Start	Start	
N-C25	112.03	72.14	89.29			•				38.85		16.70
N-C26	1.31		0.56							3.10		1.33

Test Date			ry 4/99			ry 8/99			y 26/99			y 27/99			y 28/99
Fuel	В	iodies	el 20%	В	iodies	el 20%	Bi	iodies	el 30 %	Bi	iodies	el 30 %	Bi	iodies	el 30 %
Temperature		24	.2		24	.1		23	.2		24	.8		24	.7
(°C)															
	Col	Hot	Composit	Col		Composit	Col	Hot	Composit	Col	Hot	Composit	Col		Composit
	d	Star	e	d	Star	e	d	Star	e	d	Star	e	d	Star	e
	Star t	t		Star	t		Star t	t		Star t	t		Star	t	
methane	l l			t			ı			ι	0.45	0.26	t		
ethylene	21.8	15.9	18.50	19.0	11.4	14.73	154	13.6	14.43	17.9	12.0	14.59	19.8	12.7	15.79
<i>cuity</i> 10110	7	5	10.00	3	9	1, 5	3	8	1 1.15	8	4	1,	0	7	10.77
acetylene	6.04	3.92	4.83	4.54	3.81	4.12	3.72	4.32	4.06	4.66	4.70	4.68	4.64	4.51	4.57
ethane				0.26		0.11				0.33		0.14	0.34		0.15
propylene	4.26		1.83	6.86	0.06	2.95	6.34		2.72	3.73	0.25	1.61	4.34		1.86
propane	2.11		0.91		0.86	0.49	0.03		0.01	0.11	0.35	0.25	0.05		0.02
propyne isobutane	2.11		0.91		0.79	0.45	0.01		0.01	0.01	0.02	0.02	0.06	0.45	0.28
isobutane/1-				0.77	0.79	0.43	0.01		0.32	1.07	0.02	0.02	1.03	0.43	0.28
butene				0.77		0.55	0.75		0.52	1.07		0.10	1.03		0.11
13-butadiene				0.06		0.02				0.15		0.07			
n-butane					1.30	0.74				0.01	0.15	0.09	0.16	0.49	0.35
t2-butene				0.01		0.00		0.02	0.01	0.13		0.06	0.15		0.07
22-dm-propane				0.13		0.06		0.07	0.04	0.09		0.04	0.10		0.04
1-butyne				0.05		0.02		0.06	0.04	0.11		0.05	0.11		0.05
c2-butene 12-butadiene								0.06	0.04	0.11		0.05	0.11		0.05
3m1-butene				0.16		0.07	0.12		0.05	0.14		0.06	0.22		0.09
2m-butane					1.15	0.68	0.12		0.03		0.17	0.00		0.97	0.85
14-pentadiene				0.00	0.18	0.10				0.07	0.17	0.11	0.00	0.57	0.05
2-butyne															
1-pentene				0.44		0.19	0.41		0.18	0.48		0.21	0.54		0.23
2m1-butene										0.08		0.03			
n-pentane					0.16	0.09	0.03		0.01	0.06		0.03		0.13	0.14
2m-13-butadiene				0.24	0.01	0.10 0.00	0.19	0.03	0.08	0.16 0.08		0.07 0.03	0.18 0.09		0.08 0.04
t2-pentene c2-pentene					0.01	0.00	0.08	0.03	0.05	0.08		0.03	0.09		0.04
2m2-butene					0.06	0.03	0.07		0.03	0.06		0.03		0.06	0.03
22-dm-butane				0.24		0.10	0.09		0.04	0.25		0.11	0.20		0.09
cyclopentene							0.05	0.02	0.03	0.07		0.03	0.09		0.04
4m1 & 3m1-				0.17		0.07	0.13		0.06	0.10		0.04	0.12		0.05
pentene															
cyclopentane				0.27	0.05	0.12	0.06	0.01	0.03	0.06	0.05	0.05		0.12	0.09
23-dm-butane c/t-4m2-pentene				0.01	0.05	0.03					0.01	0.01	0.04	0.01	0.03
2m-pentane				0.00	0.09	0.05				0.02	0.01	0.02	0.08	0.03	0.05
3m-pentane					0.01	0.03	0.06		0.02	0.02	0.01	0.02		0.03	0.03
2m1-pentene										****					
1-hexene				0.28		0.12	0.20		0.09	0.25		0.11	0.30		0.13
n-hexane	0.39	0.29	0.34		0.34	0.24		0.15	0.17		0.21	0.20	0.30		0.25
c/t-3-hexene				0.12		0.05	0.12		0.05	0.08		0.03	0.13	0.08	0.10
t2-hexene															
2m2-pentene t-3m2-pentene															
c2-hexene														0.32	0.18
c-3m2-pentene				0.10	0.10	0.10							0.14	0.52	0.06
22-dm-pentane				0	0	3.10							'		3.00
m-cyclopentane				0.01	0.00	0.01	0.05	0.02	0.03	0.04	0.03	0.03	0.06	0.05	0.05
24-dm-pentane					0.02	0.01				0.01		0.00	0.02	0.01	0.01
223-tm-butane															
1m-cyclopentene	2.02	1.25	1.50	2.54	1.60	2.05	214	1 71	1.00	2.40	1.67	2.02	2.71	1.05	2.22
benzene 33-dm-pentane	2.02	1.25	1.58	2.54	1.68	2.05	2.14	1.71	1.90	2.49	1.67	2.02	0.16	1.85	2.22 0.07
cyclohexane				0.02	0.04	0.03	0.03	0.02	0.03	0.03	0.04	0.03		0.04	0.07
2m-hexane					0.04	0.03		0.02	0.60		2.31	1.66		0.56	0.04
23-dm-pentane					0.02	0.01		0.00	0.00		0.06	0.07	0.03		0.03
11-dm-cyP										0.10		0.04			
cyclohexene															
3m-hexane	0.46	0.46	0.46		0.02	0.03	0.01	0.03	0.02	0.06	0.06	0.06	0.04	0.05	0.04
c-13-dm-cyP	l			0.31		0.13	1			l			l		

Test Date			ry 4/99			ry 8/99			y 26/99			y 27/99			y 28/99
Fuel	В		el 20%	В		el 20%	Bi		el 30 %	Bi		el 30 %	Bi		el 30 %
Temperature (°C)		24	.2		24	.1		23	3.2		24	.8		24	.7
(°C)	Col	Hot	Composit	Col	Hot	Composit	Col	Hot	Composit	Col	Hot	Composit	Col	Hot	Composit
	d	Star	e	d	Star	e	d	Star	e	d	Star	e	d	Star	e
	Star	t		Star	t		Star	t		Star	t		Star	t	
2	t			<u>t</u>	0.07	0.07	<u>t</u>		0.02	t			0.00		0.02
3e-pentane/t-13- dm-cyP				0.08	0.07	0.07	0.07		0.03				0.06		0.03
t-12-dm-cvP		0.80	0.46	0.35	0.68	0.54	2.00	2.02	2.01	2.31	3.91	3.22	2.59	2.17	2.35
224-tm-	1.34		0.58	0.16		0.07				0.10		0.04	0.39	0.43	0.41
pentane/1-															
heptene t3-heptene															
n-heptane	0.61	0.60	0.60	0.50		0.22	0.28		0.12	0.58	0.21	0.37	0.08		0.04
c3-heptane															
t2-heptene				0.20	0.11	0.15							0.06		0.03
c2-heptene 22-dm-hexane	0.07		0.03												
m-cyH/c12-dm-	0.07		0.03	0.22	0.19	0.20	0.14	0.13	0.14	0.19	0.14	0.16	0.17	0.18	0.17
cyP/113-tm-cyP															
12-dm-cyH															
25-dm-hexane/e- cyP	0.23		0.10	0.02	0.00	0.01		0.02	0.01	0.07		0.03	0.05	0.06	0.05
24-dm-				0.01		0.00		0.06	0.03	0.06	0.00	0.03	0.10	0.11	0.10
hexane/223-tm-				0.01		0.00		0.00	0.03	0.00	0.00	0.03	0.10	0.11	0.10
pentane															
33-dm-				0.07	0.08	0.07									
hexane/ctc124- tm-cyP															
ctc123-tm-cyP				0.07		0.03									
234-tm-pentane				0.05		0.02				0.02		0.01	0.09	0.11	0.10
toluene/233-tm-		1.39	6.43	1.79	2.03	1.93	2.58	1.62	2.03	1.88	1.51	1.67	2.78	2.46	2.60
pentane 23-dm-	1			0.12	0.07	0.09	0.17	0.02	0.09	0.24	0.11	0.17	0.21	0.19	0.20
hexane/2m3e-				0.12	0.07	0.09	0.17	0.02	0.09	0.24	0.11	0.17	0.21	0.19	0.20
pentane/112-tm-															
cyP															
2m-heptane				0.18	0.53	0.38	0.76	0.60	0.67		0.22 0.39	0.26 0.36	0.04	0.85	0.89
4m-C7/3m3e- C5/34-dm-							0.76	0.00	0.67	0.33	0.39	0.30	0.94	0.83	0.89
C7/1m-cyH															
3m-heptane	0.23		0.10		0.08	0.18					0.09	0.10	0.11		0.05
3e-hexane/c-13-				0.16	0.19	0.18				0.15	0.10	0.12		0.09	0.05
dm-cyH/cct-124- tm-cyP															
t-14-dm-cyH					0.08	0.04	0.11	0.14	0.13				0.11	0.14	0.13
225-tm-hexane								0.07	0.04						
11-dm-cyH	0.00		0.14						0.04	0.08		0.03			
1-octene 224-tm-	0.33		0.14	0.08		0.04	0.09		0.04	0.00	0.07	0.08	0.07		0.03
hexane/11em-cvP				0.08		0.04				0.09	0.07	0.08	0.07		0.03
n-octane/t12-dm-		0.50	0.50	0.71	0.71	0.71	0.55	0.44	0.49	0.47	0.53	0.51	0.82	0.52	0.65
суН															
t2-octene ccc-123-tm-cyP				0.10	0.12	0.15	0.11	0.12	0.11	0.10	0.09	0.10	0.14	0.11	0.12
244-tm-				0.19	0.12	0.13				0.10	0.09	0.10			
hexane/ip-cyP															
c2-octene								0.34	0.19		0.08	0.05	0.09	0.12	0.10
235-tm-hexane				0.24		0.10				0.00	0.11	0.10			
44&22&26-dm- heptane/c12-dm-				0.24		0.10				0.09	0.11	0.10			
cyH															
24-dm-heptane															
np-cyP/ccc-135-							0.09	0.13	0.11				0.10	0.10	0.10
tm-cyH/e-cyH				0.24	0.22	0.29	0.15	0.19	0.17	0.10	0.14	0.12	0.14	0.12	0.13
25-dm-heptane 33-dm-heptane				0.34	0.22	0.28 0.07		0.19			0.14	0.12 0.15	0.14	0.12	0.13
114-tm-cyH					0.22	0.28	0.13	0.17	U.17		0.10	0.10	0.16	V.1 f	0.07
e-benzene	0.79	0.45	0.60	0.67	0.66	0.66	0.94	1.18	1.08	1.04	0.32	0.63	0.14	0.86	0.55

Part	Test Date			ry 4/99			ry 8/99			y 26/99			y 27/99			y 28/99
CC C	Fuel	В			В			Bi			Bi			Bi		
Col Hot Composit Col Hot Col Col	_		24	.2		24	.1		23	.2		24	.8		24	.7
Star Collection Star	(°C)	Col	Hot	Composit	Col	Hot	Composit	Col	Hot	Composit	Col	Hot	Composit	Col	Hot	Composit
Cart 124-m-cy 194 186 189 353 321 335 644 668 6.58 6.99 112 9.41 7.08 6.36 6.67 335-dm-heptane m&p-y-y-lene/23-dm-chane 1.6 0.87 0.99 1.88 1.53 1.68 0.64 0.25 0.42 0.55 0.33 0.42 0.63 0.35 0.47 0.68				-			_			_			_			- 1
Set 124-tm-cyH 1.94 1.86 1.89 3.53 3.21 3.35 6.44 6.68 6.58 6.99 11.2 9.41 7.08 6.36 6.67		Star	t		Star	t		Star	t		Star	t		Star	t	
3-d-m-heptane m&p-sylene/23-d-moctane de-heptane/Househane description of the mach period of the mode								_								
33-40m-heptane 1,16 0.87 0.99 1.88 1.53 1.68 0.64 0.25 0.42 0.55 0.33 0.42 0.63 0.35 0.47	cct124-tm-cyH	1.94	1.86	1.89	3.53	3.21	3.35	6.44	6.68	6.58	6.99		9.41	7.08	6.36	6.67
Makp-y-y-lene/24-	35-dm-hentane				0.23		0.10					3		0.15		0.07
dm-heptane da-heptane da-	1	1.16	0.87	0.99		1.53		0.64	0.25	0.42	0.55	0.33	0.42		0.35	
heptane heptane catane de-heptane de-hep																
Octome Age-heptane Cam-octume/246-morthexame Cam-octume/246-morthexame Cam-octume/246-morthexame Cam-octume/346-morthexame Cam-o	34-dm-				0.16		0.07									
4e-heptrane Zem-octane/246-tun-brexzne etc-124-mr-cytH 3m-octane/33-de- CC/3-eC-7	1															
2m-octane/24cturh-eyH 10m-hexane ctc-124-tm-eyH 2c2 0.79 0.28 0.22 0.09 0.14 0.16 0.15 0.18 0.08 0.08 0.09 0.14 0.20 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.09 0.08 0.09 0.14 0.20 0.17 0.11 0.11 0.11 0.11 0.11 0.12 0.05 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.13 0.05 0.17 0.12 0.05 0.17 0.11 0.13 0.05 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.13 0.05 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.13 0.05 0.17 0.19 0.15 0.17 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.19 0.15 0.17 0.17 0.17 0.19 0.15 0.17 0.17 0.19 0.15 0.17																
Im-hexame Ctc- 24-tmc-yH 3m-octane/33-de- Ctc- 24-tmc-yH 3m-octane 3m-onene 3m-onene	1				0.26	0.29	0.28	0.22		0.09	0 14	0.16	0.15	0.18		0.08
Sim-octane Side CS/19-C7 Oxylene Oxy					0.20	0.27	0.20	0.22		0.07	0.14	0.10	0.13	0.10		0.00
CS/Se-C7 O-sylene	ctc-124-tm-cyH				0.22	0.17	0.19	0.19	0.15	0.17	0.09	0.08	0.09	0.14	0.20	0.17
C-xylene 0.89 0.33 0.57 0.82 0.71 0.76 0.50 0.50 0.52 0.63 0.49 0.55 0.67 0.62 0.64 112-tm-cyH 1-nonene 0.15 0.06 0.11 0.10 0.09 0.04 0.12 0.05 15-nonene 0.15 0.06 0.11 0.10 0.12 0.07 15-nonene 0.16 0.22 0.13 0.10 0.12 0.07 15-nonene 0.2-nonene 0.13 0.25 0.19 0.18 0.22 0.13 15-nonene 0.69 0.65 0.67 0.52 0.19 0.18 0.22 0.13 15-nonene 0.69 0.65 0.67 0.52 0.19 0.18 0.22 0.13 15-nonene 0.69 0.65 0.67 0.52 0.53 0.53 0.46 0.60 0.22 0.23 0.21 0.22 0.25 0.28 0.27 15-nonene 0.58 0.40 0.48 0.75 0.13 0.40 0.66 0.62 0.55 0.40 0.80 15-nonene 0.58 0.40 0.48 0.75 0.13 0.40 0.66 0.66 0.62 0.25 0.44 0.38 0.45 0.52 0.69 15-nonene 0.58 0.40 0.48 0.75 0.13 0.40 0.66 0.62 0.55 0.40 0.80 0.10 0.52 0.66 0.66 15-nonene 0.58 0.40 0.48 0.75 0.13 0.40 0.66 0.65 0.67 0.65 0.67 0.65 0.67 0.69 0.54 0.80 0.16 15-nonene 0.58 0.40 0.48 0.75 0.13 0.40 0.66 0.62 0.55 0.40 0.10 0.25 0.66 0.60 15-nonene 0.58 0.40 0.48 0.75 0.13 0.40 0.66 0.62 0.55 0.40 0.10 0.20 0.20 0.27 0.20 0.23 15-nonene 0.58 0.40 0.48 0.42 0.25 0.33 0.34 0.26 0.27 0.20 0.25 0.28 0.27 0.22 0.23 0.21 0.22 0.29 0.69 15-nonene 0.58 0.40 0.48 0.45 0.45 0.60 0.66 0.65		0.41	0.33	0.37												
112-me-yH 1-nonene 1-nonene			0.22	0.55			0.50	0.50	0.54	0.50	0.62	0.40	0.55	0.65	0.60	0.64
1-nonene	-	0.89	0.33	0.57	0.82				0.54		0.63			0.67	0.62	0.64
13-nonene 1.36 2.28 1.88 2.19 1.87 2.00 1.33 1.20 1.26 1.35 1.39 1.37 1.46 1.37 1.41 1.21 1.21 1.22 1.22 1.22 1.22 1.23 1.24 1.25 1.	,				0.23	0.21					0.09	0.12		0.12		0.05
ib-cyP C3-nonene 1.36 2.28 1.88 2.19 1.87 2.00 1.33 1.20 1.26 1.35 1.39 1.37 1.46 1.37 1.41 1.40 1.20									0.10						0.11	
R-nonane 1.36 2.28 1.88 2.19 1.87 2.00 1.33 1.20 1.26 1.35 1.39 1.37 1.46 1.37 1.41					0.10		0.00	0.11			0.12		0.02	0.17		
C2-nonene C2-n	c3-nonene															
C2-nonene Ip-benzene C2-dm-octane Ip-benzene C2-dm-octane Ip-benzene C2-dm-octane Ip-benzene C3-dm-octane Ip-benzene C3-dm-octane C3		1.36	2.28	1.88	2.19	1.87	2.00	1.33	1.20	1.26	1.35	1.39	1.37	1.46	1.37	1.41
ip-benzene 22-dm-octane 1.0.23 0.13 0.05 0.14 0.15					0.11	0.25	0.10	0.10		0.00	0.10	0.16	0.17	0.10		0.00
22-dm-octane 1p-cyH 1p-c					0.11	0.25	0.19	0.18	0.22		0.19	0.16	0.17	0.19	0.22	
ip-cyH nb-cyP 0.75 0.24 0.49 0.38 0.42 0.19 0.24 0.22 0.23 0.21 0.22 0.25 0.28 0.27 0.20 0.23 0.33 0.35 0.25 0.28 0.27 0.20 0.23 0.33 0.35 0.3	*				0.13		0.05		0.22	0.13					0.23	0.13
nb-cyP 33-dm-octane nb-cyP 33-dm-octane nb-propylbenzene 38-dn-octane n-propylbenzene 38-doluene 1.87 1.23 1.50 0.97 0.73 0.83 0.68 0.28 0.45 0.99 0.11 0.27 0.12 0.26 0.11 0.27 0.12 0.26 0.11 0.27 0.12 0.26 0.11 0.27 0.12 0.28 0.24 0.26 0.26 0.25 0.26 0.27 0.27 0.27 0.27 0.28						0.38		0.19	0.24	0.22	0.23	0.21	0.22	0.25	0.28	0.27
n-propylbenzene n-propylbe								0.17	0.28							
3c-toluene 3-dim-octane 3-dim-octane 1.02 0.64 0.80 0.47 0.20 0.10 0.04 0.20 0.16 0.36 0.16 0.36 0.16 0.35 0.35 0.35 0.35 0.36 0.16 0.35	33-dm-octane			0.67	0.52	0.53			0.62	0.55	0.44	0.38	0.41		0.66	0.60
23-dm-octane 1.02 0.64 0.80 0.47 0.20 0.10 0.04 0.26 0.27 0.27 0.32 0.38 0.35	1 10								0.00							
4e-toluene 1.02 0.64 0.80 0.47 0.20 0.10 0.04 0.26 0.72 0.32 0.36 0.35 0		1.87	1.23	1.50	0.97	0.73	0.83	0.68	0.28	0.45	0.99	0.11	0.49	1.22	0.29	0.69
135-tm-benzene cm-nonane 0.70 0.97 0.85 0.09 0.05 0.07 0.35 0.33 0.34 0.26 0.27 0.27 0.32 0.38 0.35 0.35 0.36 0.37 0.48 0.44 0.40 0.53 0.48 0.54 0.53 0.54 0.54 0.55 0.55 0.55 0.66 0.74 0.74 0.75 0.74 0.75 0		1.02	0.64	0.80	0.47		0.20	0.10		0.04				0.36		0.16
2m-nonane 2m-n						0.05			0.33		0.26	0.27	0.27		0.38	
3m-nonane 2-toluene 1.32 1.08 1.18 0.83 0.92 0.88 0.76 0.64 0.69 0.81 0.59 0.68 0.65 0.60 0.62 0.62 0.70 0.58 0.45 0.82 0.66 0.62 0.71 0.71 0.72 0.72 0.72 0.75 0.87 0.75 0.87 0.75 0.87 0.89 0.75 0.75 0.89 0.75 0.75 0.89 0.75					0.60	0.74		0.37	0.48	0.44						0.54
2e-toluene 1.32 1.08 1.18 0.83 0.92 0.88 0.76 0.64 0.69 0.81 0.59 0.68 0.65 0.60 0.62 124-tm-benz/tb-benz/t-decene 1b-cyH 0.38 0.45 0.42 0.39 0.17 0.30 0.17 n-decane 3.16 3.22 3.19 3.09 3.01 3.05 2.40 2.97 2.73 2.47 2.39 2.42 2.89 2.80 2.84 123-tm-benzene 0.38 0.31 0.34 3.91 0.35 0.41 1.70 0.73 0.32 0.18 1.04 0.45 0.45 0.25 123-tm-benzene 4-ip-toluene 0.64 0.54 0.58 0.36 0.72 0.56 0.84 0.89 0.87 0.58 0.64 0.61 0.61 0.59 0.59 0.61 0.68 0.65 13-de-benzene 0.78 0.80 0.80 0.80 0.84 0.89 0.87 0.58 0.64 0.61 0.61 0.59 0.59 0.61 0.68 0.65 13-de-benzene 0.78 0.80 0.80 0.80 0.84 0.89 0.87 0.58 0.64 0.61 0.61 0.59 0.59 0.61 0.68 0.65 13-de-benzene 0.78 0.80 0.80 0.80 0.80 0.84 0.89 0.87 0.58 0.64 0.61 0.61 0.59 0.59 0.61 0.68 0.65 13-de-benzene 0.78 0.80 0.8																
124-tm-benz/tb-benz/1-decene 1b-cyH																
benz/1-decene 1b-cyH n-decane 1b-cyH n-decane 3.16 3.22 3.19 3.09 3.01 3.05 2.40 2.97 2.73 2.47 2.39 2.42 2.89 2.80 2.84																
Discrept Continue		2./1	2.12	2.37	1.22	1.08	1.14	0.89	1.13	1.04	0.91	0.96	0.94	0.80	1.11	0.98
n-decane sb-benzene sb-be		0.38	0.45	0.42	0.39		0.17				0.32		0.14			
Sab-benzene 3-ip-toluene 123-tm-benzene 4-ip-toluene 13-de-benzene 13-de-benzene 4-np-toluene 13-de-benzene 4-np-toluene 13-de-benzene 12de-benzene						3.01		2.40	2.97	2.73		2.39		2.89	2.80	2.84
3-ip-toluene 123-tm-benzene 123-tm-benzene 1-ip-toluene 13-de-benzene 1-ip-toluene																
123-tm-benzene							0.52			0.10			0.45			0.22
4-ip-toluene indan 0.64 0.54 0.58 0.68 0.72 0.56 0.36 0.72 0.56 0.56 0.72 0.56 0.58 0.64 0.61 0.59 0.59 0.44 0.25 0.44 0.25 0.61 0.68 0.65 2-ip-toluene 13-de-benzene 14-de-benzene 3-np-toluene 4-np-toluene/hbenz/13dmSe-benzene 12de-benzene 12de-benzene 12de-benzene 12de-benzene 12de-benzene 12dm-4e-benzene 13dm-4e-benzene 12dm-4e-benzene 0.22 0.40 0.32 0.87 0.70 0.77 0.60 0.59 0.59 0.59 0.60 0.60 0.64 0.67 0.58 0.60 0.59 0.59 0.59 0.60 0.63 0.63 0.63 0.63 0.66 0.67 0.58		0.49	0.35	0.41	1.70		0.73	1 20			1.04		0.45	0.75	0.20	
indan 2-ip-toluene 0.78 0.80 0.80 0.80 0.80 0.84 0.89 0.87 0.84 0.89 0.87 0.58 0.64 0.61 0.59 0.59 0.59 0.59 0.61 0.68 0.65 0.61 0.59 0.59 0.59 0.61 0.68 0.65 0.65 0.61 0.68 0.65 0.65 0.65 0.69 0.59 0.59 0.59 0.59 0.61 0.68 0.65 0.65 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.69 0.61 0.68 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65		0.64	0.54	0.58	0.36	0.72	0.56	1.36	0.70	0.99					0.29	0.17
2-ip-toluene 13-de-benzene 14-de-benzene 14-de-benzene 13-mp-toluene 0.22		0.04	0.54	0.56	0.50	0.72	0.50					0.44	0.25			
13-de-benzene 14-de-benzene 14-de-benzene 3-np-toluene 0.22		0.78	0.80	0.80	0.84	0.89	0.87	0.58	0.64	0.61	0.61			0.61	0.68	0.65
3-np-toluene 0.22 0.40 0.32 0.87 0.70 0.77 0.60 0.59 0.59 0.76 0.53 0.63 0.46 0.67 0.58	13-de-benzene															
4-np-toluene/nb-benz/13dm5e-benzene 1.38 2.22 1.86 0.75 0.43 12de-benzene 0.58 0.73 0.66 0.60 0.39 0.17 14dm-2e-benzene 0.61 1.20 0.94 0.54 0.94 0.77 0.54 0.94 0.77 0.87 0.56 0.69 0.54 0.48 0.50 0.74 0.64 0.69 13dm-4e-benzene 0.50 0.57 0.54 0.80 0.45 0.60 0.64 0.27 0.70 0.67 0.69 0.35 0.43 0.39			0.40	0.25	0.0-	0.70	0.55	0.50	0.50	0.50	0.5	0.55	0.72	0.15	0.7-	0.50
benz/13dm5e-benzene 12de-benzene 12de-benzene 0.58 0.73 0.66 2-np-toluene 14dm-2e-benzene 13dm-4e-benzene 12dm-4e-benzene 12dm-4e-benzene 0.50 0.57 0.54 0.80 0.45 0.60 0.64 0.27 0.70 0.67 0.69 0.35 0.43 0.39					0.87			0.60	0.59	0.59	0.76	0.53	0.63	0.46	0.67	0.58
benzene 12de-benzene 0.58 0.73 0.66 0.39 0.17 14dm-2e-benzene 13dm-4e-benzene 12dm-4e-benzene		1.58	2.22	1.86		0.75	0.43									
12de-benzene																
2-np-toluene 0.39 0.17 14dm-2e-benzene 0.61 1.20 0.94 0.54 0.94 0.77 0.87 0.56 0.69 0.54 0.48 0.50 0.74 0.64 0.69 13dm-4e-benzene 0.50 0.57 0.54 0.80 0.45 0.60 0.64 0.27 0.70 0.67 0.69 0.35 0.43 0.39		0.58	0.73	0.66												
13dm-4e-benzene	2-np-toluene	0.39		0.17												
12dm-4e-benzene 0.50 0.57 0.54 0.80 0.45 0.60 0.64 0.27 0.70 0.67 0.69 0.35 0.43 0.39		0.61	1.20	0.94	0.54	0.94	0.77	0.87	0.56	0.69	0.54	0.48	0.50	0.74	0.64	0.69
		0.50	0.55	0.51	0.00	0.45	0.60	0.64		0.27	0.70	0.67	0.60	0.25	0.42	0.20
					0.80			0.64	0.69			0.67			0.43	
13dm-2e-benzene					4 50			3 41				3 67			3 73	
dm-3e-&1245-		3.57	2.00	5.54	1.50	1.57	1.52	J. T1	5.07	5.07	2.00	5.07	5.70	3.27	5.15	5.54
ttm-benzene																

Test Date	F	ebrua	ry 4/99	F	ebrua	ry 8/99	Ja	nuar	y 26/99	Ja	nuar	y 27/99	Ja	nuar	y 28/99
Fuel	В	iodies	el 20%	В	iodies	el 20%	Bi	odies	el 30 %	Bi	odies	el 30 %	Bi	odies	el 30 %
Temperature		24	.2		24	.1		23	5.2		24	.8		24	.7
(°C)															
	Col	Hot	Composit	Col	Hot	Composit	Col	Hot	Composit	Col	Hot	Composit	Col	Hot	Composit
	d	Star	e	d	Star	e	d	Star	e	d	Star	e	d	Star	e
	Star	t		Star	t		Star	t		Star	t		Star	t	
	t			t			t			t			t		
2mb-benzene		1.21	1.23	2.62		1.64		1.56	1.34		0.35	1.00	1.87		1.95
tb-2m-benzene	0.80	0.89	0.85	0.68	0.68	0.68	0.68	0.55	0.61	0.85	0.24	0.50	0.73	0.72	0.72
1234-ttm-											1.02	0.58			
benzene															
npentyl-benzene				0.76	0.13	0.40		0.67	0.38	1.24		0.53	0.36		0.16
tb-35dm-benzene	0.61	0.46	0.53	0.37		0.16	0.73	0.48	0.59	0.28		0.12	0.63	0.61	0.62
tb-4e-benzene	1.10	0.84	0.95	0.47	0.45	0.46	0.45	0.42	0.43	0.64	0.66	0.65	0.33	0.41	0.37
n-dodecane	2.27	3.16	2.78	1.76	1.96	1.87	1.88	2.38	2.17	2.33	2.14	2.22	2.36	2.50	2.44
135-TE-															
BENZENE															
124-TE-															
BENZENE															
N-															
HEXYLBENZE															
NE															
N-C13	1.44	2.01	1.77		1.46	0.83	1.37	1.94	1.70	2.41	1.77	2.04	1.04	1.85	1.50
N-C14															
N-C15															
N-C16															
N-C17														1.10	0.63
N-C18															
N-C19															
N-C20															
N-C21															
N-C22	1.99	1.84	1.91												
N-C23															
N-C24															
N-C25															
N-C26		1.36	0.77												

Test Date	Fe	<u>bru</u> ar	y 16/99	F	ebruar	y 17/99	Fo	ebruar	y 18/99	F	ebruar	y 19/99
Fuel		Sulph	ur Diesel		w Sulfu	r Diesel		iodiese	el 20%		Biodiese	
Temperature (°C)		0.5			0	1		0			0	•
	Cold Start	Hot Start	Composite	Cold Start	Hot Start	Composite	Cold Start	Hot Start	Composite	Cold Start	Hot Start	Composite
methane	5.07	•	2.18	n/a		n/a	12.13		5.21	1.69		0.73
ethylene	33.30	17.92	24.53	n/a	16.06	n/a	32.97	17.25	24.01	27.15	20.62	23.43
acetylene	8.85	4.71	6.49	n/a	4.51	n/a	10.36	4.89	7.24	9.33	3.38	5.94
ethane	0.53		0.23	n/a	0.54	n/a	0.83		0.35	0.56		0.24
propylene	9.68		4.16	n/a	4.52	n/a	10.99		4.73	9.14		3.93
propane	0.13	0.10	0.11	n/a	0.91	n/a	0.20		0.09	0.10	0.12	0.11
propyne				n/a		n/a						
isobutane	0.15		0.07	n/a	0.10	n/a		0.04	0.02	0.02	0.02	0.02
isobutene/1-butene	1.78		0.77	n/a	0.89	n/a	1.99		0.85	1.58		0.68
13-butadiene	0.05		0.02	n/a	0.12	n/a	0.00	0.00	0.00	0.12	0.00	0.05
n-butane			0.02	n/a	0.12	n/a	0.09	0.08	0.08 0.04	0.12 0.14	0.00	0.05
t2-butene	0.20 0.21		0.09 0.09	n/a n/a	0.10 0.10	n/a n/a	0.10 0.25		0.04	0.14		0.06 0.08
22-dm-propane	0.21		0.09	n/a	0.10	n/a n/a	0.23		0.11	0.18		0.08
1-butyne c2-butene	0.07		0.03	n/a		n/a n/a	0.08	0.05	0.03	0.09		0.04
12-butadiene				n/a		n/a		0.03	0.03	0.07		0.03
3m1-butene	0.28		0.12	n/a	0.12	n/a	0.26		0.11	0.23	0.00	0.10
2m-butane	0.20	0.06	0.12	n/a	0.12	n/a	0.26		0.11	0.23	0.00	0.10
14-pentadiene	0.42	0.00	0.03	n/a	0.13	n/a n/a	0.03		0.02	0.04	0.01	0.03
2-butyne	0.42		0.16	n/a	0.49	n/a	0.42		0.16	0.40		0.17
1-pentene	0.68		0.29	n/a	0.33	n/a	0.83		0.36	0.73		0.31
2m1-butene	0.00		0.27	n/a	0.55	n/a	0.05		0.50	0.75		0.51
n-pentane	0.01	0.00	0.01	n/a	0.06	n/a		0.02	0.01	0.06		0.03
2m-13-butadiene	0.25	0.00	0.11	n/a	0.17	n/a	0.26	0.02	0.11	0.23		0.10
t2-pentene	0.12		0.05	n/a		n/a			****	0.11		0.05
c2-pentene	0.07		0.03	n/a		n/a						
2m2-butene				n/a		n/a	0.06		0.03	0.06		0.03
22-dm-butane	0.51		0.22	n/a	0.19	n/a	0.36		0.16	0.33		0.14
cyclopentene	0.11		0.05	n/a		n/a				0.11		0.05
4m1 & 3m1-pentene	0.17		0.07	n/a	0.08	n/a	0.17		0.07	0.14		0.06
cyclopentane	0.10	0.00	0.04	n/a	0.20	n/a	0.16		0.07	0.15		0.06
23-dm-butane				n/a		n/a						
c/t-4m2-pentene				n/a		n/a						
2m-pentane	0.09		0.04	n/a	0.08	n/a	0.33		0.14	0.08	0.01	0.04
3m-pentane	0.20		0.09	n/a	0.14	n/a	0.13	0.02	0.07	0.18		0.08
2m1-pentene				n/a		n/a						
1-hexene	0.36		0.16	n/a	0.12	n/a	0.45		0.19	0.36		0.16
n-hexane	0.20	0.09	0.13	n/a	0.06	n/a	0.09	0.31	0.21	0.07	0.24	0.17
c/t-3-hexene				n/a		n/a	0.15		0.07	0.10		0.04
t2-hexene				n/a		n/a						
2m2-pentene			0.02	n/a		n/a						
t-3m2-pentene	0.07		0.03	n/a		n/a	0.17		0.07			
c2-hexene				n/a	0.06	n/a	0.17		0.07		0.12	0.07
c-3m2-pentene				n/a	0.06	n/a	0.11		0.05		0.12	0.07
22-dm-pentane	0.00	0.08	0.00	n/a	0.07	n/a	0.11	0.07	0.09	0.09	0.07	0.00
m-cyclopentane 24-dm-pentane	0.08	0.08	0.08	n/a n/a	0.07	n/a n/a	0.11	0.07	0.09	0.09	0.07	0.08
223-tm-butane				n/a								
1m-cyclopentene				n/a		n/a n/a						
benzene	3.86	1.67	2.61	n/a	0.47	n/a	6.22	1.95	3.78	4.58	1.88	3.04
33-dm-pentane	3.80	1.07	2.01	n/a	0.47	n/a	0.22	1.93	3.76	4.36	1.00	3.04
cyclohexane	0.07	0.06	0.07	n/a	0.07	n/a	0.10	0.35	0.24	0.05	0.12	0.09
2m-hexane	0.07	0.00	0.07	n/a	0.07	n/a	0.10	0.02	0.24	0.05	0.12	0.02
23-dm-pentane				n/a	0.07	n/a	0.05	0.02	0.02	0.03		0.02
11-dm-cvP				n/a		n/a	0.05		0.02			
cyclohexene	0.07		0.03	n/a		n/a	0.06		0.02	0.05		0.02
3m-hexane	0.06	0.06	0.06	n/a	0.06	n/a	0.06	0.12	0.10	0.07	0.06	0.06
c-13-dm-cyP		00	2.00	n/a		n/a	0.07		0.03	2.07	2.00	
3e-pentane/t-13-dm-cyP				n/a		n/a	0.07		0.03			
t-12-dm-cyP	1.25	1.01	1.11	n/a	0.06	n/a	1.39	1.48	1.44	1.91	1.12	1.46
224-tm-pentane/1-	0.04	0.00	0.02	n/a	0.08	n/a	0.05	0.06	0.05	0.08		0.04
heptene		00		••	00	/ **		00		2.00		
t3-heptene				n/a		n/a						
n-heptane	0.08		0.03	n/a	0.10	n/a	0.57		0.25	0.07	0.29	0.20
c3-heptane				n/a		n/a						

Test Date			y 16/99			y 17/99			y 18/99			y 19/99
Fuel	Low		ur Diesel	Lo	w Sulfu	ır Diesel	E	Siodiese	el 20%	В	iodiese	el 20%
Temperature (°C)		0.3			0			0			0	
	Cold Start	Hot Start	Composite	Cold Start	Hot Start	Composite	Cold Start	Hot Start	Composite	Cold Start	Hot Start	Composite
t2-heptene	0.18	0.05	0.10	n/a	0.11	n/a	0.03		0.01			l
c2-heptene		0.77	0.44	n/a		n/a				0.29	0.12	0.19
22-dm-hexane				n/a		n/a						
m-cyH/c12-dm-	0.25	0.23	0.24	n/a	0.23	n/a	0.37	0.21	0.28	0.22	0.22	0.22
cyP/113-tm-cyP				,		,						
12-dm-cyH				n/a n/a		n/a n/a						
25-dm-hexane/e-cyP 24-dm-hexane/223-tm-				n/a		n/a n/a						
pentane				11/ a		11/ a						
33-dm-hexane/ctc124-		0.07	0.04	n/a		n/a	0.09		0.04			
tm-cyP												
ctc123-tm-cyP				n/a		n/a	0.07		0.03			
234-tm-pentane				n/a		n/a						
toluene/233-tm-pentane	1.89	0.83	1.29	n/a	0.25	n/a	2.08	1.10	1.52	1.78	1.05	1.37
23-dm-hexane/2m3e-	0.32	0.19	0.24	n/a	0.34	n/a	0.54	0.19	0.34	0.25		0.11
pentane/112-tm-cyP	0.10	0.27	0.22	,	0.07	,	0.20	0.14	0.25	0.16		0.07
2m-heptane	0.18	0.27 0.39	0.23 0.22	n/a	0.27	n/a	0.38 0.81	0.14	0.25	0.16 0.58		0.07
4m-C7/3m3e-C5/34- dm-C7/1m-cyH		0.39	0.22	n/a	0.58	n/a	0.81	0.57	0.67	0.38		0.25
3m-heptane	0.09	0.09	0.09	n/a	0.16	n/a	0.19		0.08	0.07	0.09	0.08
3e-hexane/c-13-dm-	0.21	0.19	0.20	n/a	0.17	n/a	0.31	0.16	0.23	0.18	0.17	0.17
cyH/cct-124-tm-cyP	0.21	0.17	0.20	11, 4	0.17	11/ 4	0.51	0.10	0.23	0.10	0.17	0.17
t-14-dm-cyH	0.10	0.09	0.09	n/a	0.07	n/a	0.12	0.07	0.09			
225-tm-hexane				n/a		n/a						
11-dm-cyH				n/a		n/a						
1-octene	0.29		0.12	n/a		n/a	0.40		0.17	0.32		0.14
224-tm-hexane/11em-	0.09	0.08	0.08	n/a	0.07	n/a	0.10		0.04		0.09	0.05
cyP	0.61	0.66	0.64	/-	0.15	/-	0.00	0.65	0.76	0.72	0.64	0.69
n-octane/t12-dm-cyH t2-octene	0.61	0.66	0.64	n/a n/a	0.15	n/a n/a	0.90	0.65	0.76	0.73	0.64	0.68
ccc-123-tm-cyP	0.14	0.12	0.13	n/a	0.12	n/a	0.21	0.09	0.14	0.63	0.10	0.33
244-tm-hexane/ip-cyP	0.14	0.12	0.13	n/a	0.12	n/a	0.21	0.07	0.14	0.03	0.10	0.55
c2-octene				n/a		n/a		0.08	0.04	0.23		0.10
235-tm-hexane				n/a		n/a						
44&22&26-dm-	0.17		0.07	n/a	0.18	n/a		0.12	0.07	0.13		0.06
heptane/c12-dm-cyH												
24-dm-heptane				n/a		n/a						
np-cyP/ccc-135-tm-		0.14	0.08	n/a		n/a	0.26		0.11		0.12	0.07
cyH/e-cyH	0.22	0.14	0.10	/	0.22	/-	0.40	0.12	0.25	0.20	0.15	0.17
25-dm-heptane 33-dm-heptane	0.23	0.14	0.18	n/a n/a	0.22 0.23	n/a n/a	0.40 0.19	0.13	0.25 0.08	0.20 0.23	0.15	0.17 0.10
114-tm-cyH	0.23	0.21	0.22	n/a	0.23	n/a	0.19	0.18	0.08	0.23	0.17	0.10
e-benzene	0.74	0.21	0.32	n/a		n/a	0.61	0.10	0.26	0.32	0.17	0.14
cct124-tm-cyH	4.21	2.91	3.47	n/a	0.16	n/a	4.31	6.20	5.39	4.69	4.63	4.65
35-dm-heptane	0.09		0.04	n/a		n/a						
m&p-xylene/23-dm-	0.83	0.63	0.72	n/a	0.30	n/a	1.02	0.43	0.68	0.93	0.67	0.78
heptane												
34-dm-heptane/4m-				n/a		n/a	0.29		0.13			
octane				,		,						
4e-heptane				n/a	0.27	n/a	0.16		0.07	0.20		0.17
2m-octane/246-tm- hexane				n/a	0.27	n/a	0.16		0.07	0.39		0.17
ctc-124-tm-cyH	0.27	0.22	0.24	n/a	0.15	n/a	0.20	0.21	0.20	0.06	0.32	0.21
3m-octane/33-de-C5/3e-	0.27	0.22	0.27	n/a	0.13	n/a	0.20	V.Z1	0.20	0.00	0.32	0.41
C7				••								
o-xylene	0.80	0.73	0.76	n/a	0.24	n/a	1.13	0.64	0.85	0.69	0.57	0.62
112-tm-cyH	0.16		0.07	n/a		n/a						
1-nonene	0.16		0.07	n/a	0.15	n/a	0.43		0.19	0.13		0.05
t3-nonene	0.19	0.17	0.18	n/a	0.09	n/a	0.22	0.14	0.17	0.15	0.14	0.15
ib-cyP		0.20	0.11	n/a		n/a		0.18	0.10		0.20	0.11
c3-nonene	2.00	1.72	1.07	n/a	0.22	n/a	2.00	1.51	2.15	1.02	0.20	0.11
n-nonane	2.06	1.73	1.87	n/a	0.23	n/a	3.00	1.51	2.15	1.92	1.47	1.67
t2-nonene c2-nonene	0.28		0.12	n/a n/a	0.23	n/a	0.13		0.05	0.22		0.10
ip-benzene	∪.∠8	0.38	0.12	n/a n/a	0.23	n/a n/a	0.13	0.28	0.05	0.22	0.37	0.10
22-dm-octane		0.50	0.22	n/a		n/a	0.22	0.20	0.20		0.51	0.21
122 ann octaine	l			11/ U		11/ (1	ı		Į.			l

Test Date	February 16/99 Low Sulphur Diesel				ebruary	y 17/99	Fe	ebruar	y 18/99	Fe	ebruary	y 19/99
Fuel						r Diesel			el 20%		iodiese	
Temperature (°C)		0.5	5		0			0			0	
• ` ` `	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite
	Start	Start	_	Start	Start		Start	Start	_	Start	Start	
ip-cyH	0.37	0.38	0.38	n/a	0.34	n/a	0.81	0.34	0.54	0.32	0.38	0.35
nb-cyP	0.53	0.40	0.45	n/a	0.27	n/a	1.15	0.43	0.74	0.27	0.43	0.36
33-dm-octane	0.48	0.44	0.46	n/a		n/a	0.94	0.52	0.70	0.59	0.54	0.56
n-propylbenzene	0.27	0.17	0.22	n/a	0.37	n/a	0.93	0.13	0.47	0.41	0.17	0.27
3e-toluene	0.50	1.38	1.00	n/a		n/a	0.15	1.29	0.80	1.33	0.80	1.03
23-dm-octane				n/a		n/a						
4e-toluene				n/a		n/a	0.57		0.24			
135-tm-benzene	0.32	0.30	0.31	n/a		n/a	1.04	0.27	0.60	0.37	0.24	0.29
2m-nonane	0.58	0.51	0.54	n/a		n/a	0.90	0.57	0.71	0.61	0.54	0.57
3e-octane	0.48	0.51	0.50	n/a	0.40	n/a	0.18		0.08	0.35		0.15
3m-nonane	0.65	0.67	0.66	n/a		n/a	1.76	0.62	1.11	0.66	0.59	0.62
2e-toluene	0.82	0.72	0.77	n/a		n/a	1.15	1.20	1.18	0.74	0.62	0.67
124-tm-benz/tb-benz/1-	1.00	0.53	0.73	n/a	0.22	n/a	1.92	0.96	1.37	0.85	0.90	0.88
decene												
1b-cyH				n/a		n/a	0.66		0.28		0.45	0.26
n-decane	2.90	2.48	2.66	n/a	0.30	n/a	4.78	2.64	3.56	3.09	2.23	2.60
ib-benzene		0.33	0.19	n/a		n/a	0.29		0.13			
sb-benzene				n/a		n/a	0.32		0.14			
3-ip-toluene	1.71		0.73	n/a	0.93	n/a	0.49	0.43	0.45	1.25		0.54
123-tm-benzene				n/a		n/a						
4-ip-toluene				n/a		n/a	0.92	0.13	0.47	0.49	0.82	0.68
indan				n/a		n/a						
2-ip-toluene	0.75	0.65	0.69	n/a		n/a	1.10	0.82	0.94	0.79	1.12	0.98
13-de-benzene				n/a		n/a						
14-de-benzene				n/a		n/a						
3-np-toluene	0.58	0.47	0.52	n/a		n/a	0.85	0.41	0.60	0.88		0.38
4-np-toluene/nb-	0.99		0.43	n/a		n/a	1.50	0.50	0.93	1.02		0.44
benz/13dm5e-benzene												
12de-benzene				n/a		n/a	0.54		0.23			
2-np-toluene				n/a		n/a	0.52		0.23			
14dm-2e-benzene	0.55	1.07	0.85	n/a		n/a	1.13	0.53	0.79	0.98	0.47	0.69
13dm-4e-benzene				n/a		n/a						
12dm-4e-benzene	0.49	0.76	0.64	n/a		n/a	0.51	0.75	0.65	0.42	0.78	0.63
13dm-2e-benzene	0.57	1.10	0.87	n/a		n/a	1.18		0.51			
n-undecane/12-dm-3e-	4.00	3.40	3.66	n/a	0.27	n/a	8.08	5.10	6.38	3.87	3.29	3.54
&1245-ttm-benzene												
2mb-benzene	2.94		1.26	n/a	2.18	n/a	4.17	0.81	2.25	4.19		1.80
tb-2m-benzene	0.79		0.34	n/a		n/a	0.65	0.86	0.77	0.96		0.41
1234-ttm-benzene				n/a		n/a	0.32		0.14			
npentyl-benzene	0.52	0.56	0.55	n/a		n/a	0.54	0.60	0.57			
tb-35dm-benzene	0.29		0.12	n/a		n/a	1.28	0.58	0.88			
tb-4e-benzene	0.43	0.54	0.49	n/a		n/a	1.75	0.79	1.20	0.29	0.79	0.58
n-dodecane	1.60	2.38	2.05	n/a		n/a	3.40	2.35	2.80	1.33	2.56	2.03
135-TE-BENZENE				n/a		n/a						
124-TE-BENZENE				n/a		n/a						
N-HEXYLBENZENE				n/a		n/a						
N-C13				n/a		n/a	2.33	3.03	2.73		1.77	1.01
N-C14				n/a		n/a						
N-C15				n/a		n/a	0.83		0.35			
N-C16				n/a		n/a						
N-C17	1			n/a		n/a	1					
N-C18	1			n/a		n/a	1					
N-C19				n/a		n/a						
N-C20				n/a		n/a						
N-C21	1			n/a		n/a	1					
N-C22				n/a		n/a						
N-C23				n/a		n/a						
N-C24				n/a		n/a						
N-C25				n/a		n/a						
N-C26				n/a		n/a						

Mass emission rates of carbonyl compounds (mg/mi)

Test Date	J	anuary	13/99	J	anuary	15/99	J	anuary	18/99	F	ebruar	y 2/99
Fuel	Lov	w Sulfu	ır Diesel	Lo	w Sulfu	ır Diesel	В	iodiese	d 10 %	В	iodiese	el 10%
Temperature (°C)		22.	9		22.	6		24.	1		24.	3
	Cold	Hot	Composite		Hot	Composite			Composite			Composite
	Start	Start		Start	Start		Start	Start		Start	Start	
Formaldehyde	19.65	2.49	9.87	20.55	16.24	18.09	22.27	16.92	19.22	0.15	3.23	1.91
Acetaldehyde	6.20	0.72	3.08	6.24	5.46	5.80	7.06	5.71	6.29		1.06	0.49
2-3 butandione												
Acrolein				1.18	0.40	0.74	2.52	1.19	1.76			
Acetone	7.31	3.58	5.18	6.09	1.06	3.22	3.14	2.76	2.92	3.18	5.48	4.49
Propionaldehyde	0.70		0.30	1.00	0.60	0.77	1.29	1.05	1.16			
Methoxyacetone												
Crotonaldehyde	0.95		0.41	0.77	0.02	0.35	0.58	0.89	0.76			
Methyl Vinyl Ketone												
Methacrolein												
Methyl Ethyl Ketone	0.98	1.38	1.21	2.17	0.27	1.09	0.67	0.70	0.69	2.00	2.51	2.29
Isobutyraldehyde &												
Butyraldehyde												
Benzaldehyde	0.05		0.02	0.38		0.16	0.50		0.22			
Isovaleraldehyde												
Trimethylacetaldehyde &	0.96	0.55	0.72	1.31		0.56				0.43		0.18
3m2-Butanone												
Valeraldehyde	1.38		0.59		0.10	0.06						
Acetophenone												
o-Tolualdehyde												
m&p-Tolualdehyde												
Methyl isobutyl Ketone	0.16		0.07									
Pinacolone												
Hexanaldehyde												

Test Date	F	ebruary	3/99	F	8/99				
Fuel	В	iodiesel 2	20%	В	iodiesel 2	20%	В	iodiesel 2	20%
Temperature (°C)		23.6			24.2			24.1	
-	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite
	Start	Start		Start	Start		Start	Start	
Formaldehyde	19.11	15.90	17.28	2.89	15.48	10.07	19.48	14.39	16.58
Acetaldehyde	5.13	5.12	5.12	1.08	5.21	3.43	5.88	4.53	5.11
2-3 butandione									
Acrolein	1.29	1.33	1.31		1.20	0.68	1.00	0.47	0.70
Acetone	5.63	5.24	5.41	5.50	4.57	4.97	5.42	4.90	5.12
Propionaldehyde	0.98	1.14	1.07		1.07	0.61	1.18	0.82	0.97
Methoxyacetone									
Crotonaldehyde	0.28	0.87	0.62		0.72	0.41	0.78	0.71	0.74
Methyl Vinyl Ketone									
Methacrolein									
Methyl Ethyl Ketone	1.90	1.75	1.81	2.37	2.00	2.16	2.51	1.46	1.91
Isobutyraldehyde & Butyraldehyde									
Benzaldehyde	0.89	0.40	0.61				0.51	0.45	0.48
Isovaleraldehyde									
Trimethylacetaldehyde & 3m2-		0.53	0.13	0.39		0.17	0.52		0.22
Butanone									
Valeraldehyde		0.50	0.28						
Acetophenone									
o-Tolualdehyde									
m&p-Tolualdehyde									
Methyl isobutyl Ketone									
Pinacolone									
Hexanaldehyde	0.43		0.18						

Test Date	J	anuary 2	6/99	J	anuary 2	7/99	January 28/99				
Fuel	B	iodiesel 3	0 %	В	iodiesel 3	80 %	В	iodiesel 3	80 %		
Temperature (°C)		23.2			24.8			24.7			
	Cold Start	Hot Start	Composite	Cold Start	Hot Start	Composite	Cold Start	Hot Start	Composite		
Formaldehyde	21.18	13.58	16.85		8.36	4.62	18.45	13.62	15.70		
Acetaldehyde	6.47	4.00	5.06		2.75	1.44	5.36	4.51	4.88		
2-3 butandione											
Acrolein	2.53	0.48	1.36				1.50	1.16	1.31		
Acetone	5.62	7.24	6.54	5.12	4.35	4.68	7.57	6.72	7.08		
Propionaldehyde	1.14	0.81	0.95		0.35	0.20	1.07	0.82	0.93		
Methoxyacetone											
Crotonaldehyde	0.76	0.29	0.50				0.45		0.19		
Methyl Vinyl Ketone											
Methacrolein											
Methyl Ethyl Ketone	1.84	2.82	2.40	2.33	1.84	2.05	3.25	2.38	2.75		
Isobutyraldehyde & Butyraldehyde											
Benzaldehyde	0.53		0.23					0.39	0.22		
Isovaleraldehyde											
Trimethylacetaldehyde & 3m2-	0.96	0.88	0.92		0.43	0.25		0.37	0.21		
Butanone											
Valeraldehyde	0.85		0.37					0.42	0.24		
Acetophenone											
o-Tolualdehyde											
m&p-Tolualdehyde											
Methyl isobutyl Ketone											
Pinacolone											
Hexanaldehyde											

Test Date	Fe	ebruar	y 16/99	F	ebruar	y 17/99	F	ebruar	y 18/99	F	ebruary	19/99
Fuel	Low	Sulph	ur Diesel	Lo	w Sulfu	ır Diesel	В	iodiese	el 20%	В	iodiese	1 20%
Temperature (°C)		0.5	5		0			0		0		
	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite
	Start	Start		Start	Start		Start	Start		Start	Start	
Formaldehyde	28.16	20.02	23.52	n/a	16.67	n/a	26.52	9.28	16.69	22.07	16.80	19.06
Acetaldehyde	10.29	7.16	8.50	n/a	6.01	n/a	11.08	4.22	7.17	9.56	5.89	7.47
2-3 butandione				n/a		n/a				0.46		0.20
Acrolein	2.43		1.04	n/a		n/a	1.93	0.57	1.15	2.06	1.46	1.72
Acetone	4.78	9.26	7.33	n/a	8.24	n/a	4.86	4.63	4.73	4.24	3.19	3.64
Propionaldehyde	1.39	1.29	1.33	n/a	0.94	n/a	1.90	0.62	1.17	1.57	1.03	1.26
Methoxyacetone				n/a		n/a						
Crotonaldehyde	1.09	1.56	1.36	n/a	0.95	n/a	1.46	0.49	0.91	1.19	0.67	0.89
Methyl Vinyl Ketone				n/a		n/a						
Methacrolein				n/a		n/a	0.29		0.12			
Methyl Ethyl Ketone	1.20	3.12	2.30	n/a	3.45	n/a	0.79	1.69	1.30	0.96	0.82	0.88
Isobutyraldehyde &				n/a		n/a	0.98		0.42			
Butyraldehyde												
Benzaldehyde	1.12	0.85	0.96	n/a	0.93	n/a	1.25		0.54	1.72	0.59	1.08
Isovaleraldehyde				n/a		n/a						
Trimethylacetaldehyde &	0.72	0.63	0.67	n/a	0.47	n/a	0.57	0.65	0.62	0.62	0.13	0.34
3m2-Butanone												
Valeraldehyde	0.68	0.53	0.60	n/a	0.38	n/a	0.85		0.37	0.68		0.29
Acetophenone				n/a		n/a						
o-Tolualdehyde				n/a		n/a						
m&p-Tolualdehyde				n/a		n/a						
Methyl isobutyl Ketone	0.78		0.33	n/a		n/a	0.67		0.29			
Pinacolone				n/a	0.43	n/a						
Hexanaldehyde				n/a		n/a	0.48		0.21			

Mass emission rates of TPM (g/mi)

Test Date	Fuel	Temperature (°C)	Cold Start	Hot Start	Composite
January 13/99	Low Sulphur Diesel	22.9	0.067	0.071	0.069
January 14/99	Low Sulphur Diesel	22.8	0.078	0.072	0.075
January 18/99	Biodiesel 10 %	24.1	0.071	0.067	0.069
January 19/99	Biodiesel 10 %	24.9	0.074	0.062	0.067
February 2/99	Biodiesel 10%	24.3	0.076	0.069	0.072
January 20/99	Biodiesel 20 %	24.4	0.075	0.067	0.070
January 21/99	Biodiesel 20 %	24.6	0.062	0.072	0.068
January 26/99	Biodiesel 30 %	23.2	0.095	0.081	0.087
January 27/99	Biodiesel 30 %	24.8	0.079	0.077	0.078
January 28/99	Biodiesel 30 %	24.7	0.077	0.075	0.076
February 17/99	Low Sulphur Diesel	0	n/a	0.109	n/a
February 18/99	Biodiesel 20%	0	0.185	0.091	0.132
February 19/99	Biodiesel 20%	0	0.122	0.047	0.079

Mass emission rates of PM_{2.5} (g/mi)

Test Date	Fuel	Temperature (°C)	Cold Start	Hot Start	Composite
January 13/99	Low Sulphur Diesel	24	n/a	0.034	n/a
January 14/99	Low Sulphur Diesel	24	0.040	0.037	0.038
January 18/99	Biodiesel 10 %	24	0.021	0.040	0.032
January 19/99	Biodiesel 10 %	24	0.045	0.041	0.042
February 2/99	Biodiesel 10%	24	0.039	0.036	0.037
January 20/99	Biodiesel 20 %	24	0.045	0.040	0.042
January 21/99	Biodiesel 20 %	24	0.047	0.042	0.044
January 26/99	Biodiesel 30 %	24	n/a	0.050	n/a
January 27/99	Biodiesel 30 %	24	0.053	0.040	0.045
January 28/99	Biodiesel 30 %	24	0.039	0.025	0.031
February 16/99	Low Sulphur Diesel	0	0.128	0.079	0.100
February 17/99	Low Sulphur Diesel	0	n/a	0.097	n/a
February 18/99	Biodiesel 20%	0	0.158	0.108	0.130
February 19/99	Biodiesel 20%	0	0.127	0.091	0.106

Mass emission rates of organic, elemental and total carbon (mg/mi) as determined by two analytical methods (TOT and TOR).

			TOT	TOR
Test Date	January 13/99	Cold Start		
Fuel	Low Sulphur Diesel	Organic Carbon	19.80	
Temperature (C)	24	Elemental Carbon	14.88	
1 ()		Total Carbon	34.67	
		Hot Start		
		Organic Carbon	20.09	
		Elemental Carbon	15.31	
		Total Carbon	35.39	
		Composite		
		Organic Carbon	19.96	
		Elemental Carbon	15.12	
		Total Carbon	35.08	
Test Date	January 14/99	Cold Start	33.00	
Fuel	Low Sulphur Diesel	Organic Carbon	27.38	20.41
Temperature (C)	24	Elemental Carbon	18.70	18.71
remperature (C)	24	Total Carbon	46.14	39.10
		Hot Start	40.14	39.10
			26.03	24.22
		Organic Carbon		24.32
		Elemental Carbon	17.25	19.41
		Total Carbon	43.28	43.75
		Composite	25.51	22 (1
		Organic Carbon	26.61	22.64
		Elemental Carbon	17.87	19.11
		Total Carbon	44.51	41.75
Test Date	January 19/99	Cold Start		
Fuel	Biodiesel 10 %	Organic Carbon	23.38	
Temperature (C)	24	Elemental Carbon	16.69	
		Total Carbon	40.07	
		Hot Start		
		Organic Carbon	25.27	
		Elemental Carbon	17.87	
		Total Carbon	43.14	
		Composite		
		Organic Carbon	24.45	
		Elemental Carbon	17.36	
		Total Carbon	41.82	
Test Date	February 2/99	Cold Start	13,02	
Fuel	Biodiesel 10%	Organic Carbon	29.59	28.11
Temperature (C)	24	Elemental Carbon	18.46	22.81
remperature (e)		Total Carbon	48.06	50.92
		Hot Start	10.00	30.72
		Organic Carbon	20.81	21.44
		Elemental Carbon	15.43	18.14
		Total Carbon	36.24	39.60
		Composite	30.24	39.00
			24.50	24.21
		Organic Carbon	24.58	24.31
		Elemental Carbon	16.73	20.15
T . D .	1 20/00	Total Carbon	41.32	44.47
Test Date	January 20/99	Cold Start	6 4 9 9	
Fuel	Biodiesel 20 %	Organic Carbon	24.98	

			TOT	TOR
Temperature (C)	24	Elemental Carbon	16.75	
• , ,		Total Carbon	41.72	
		Hot Start		
		Organic Carbon	27.82	
		Elemental Carbon	17.43	
		Total Carbon	45.25	
		Composite		
		Organic Carbon	26.60	
		Elemental Carbon	17.14	
		Total Carbon	43.73	
Test Date	January 21/99	Cold Start	15.75	
Fuel	Biodiesel 20%	Organic Carbon	36.89	30.93
Temperature (C)	24	Elemental Carbon	17.10	26.46
remperature (C)	24	Total Carbon	53.99	57.36
			33.99	37.30
		Hot Start	22.12	20.22
		Organic Carbon	33.12	29.23
		Elemental Carbon	16.60	22.55
		Total Carbon	49.72	51.78
		Composite		
		Organic Carbon	34.74	29.96
		Elemental Carbon	16.82	24.23
		Total Carbon	51.56	54.18
Test Date	January 27/99	Cold Start		
Fuel	Biodiesel 30 %	Organic Carbon	n/a	
Temperature (C)	24	Elemental Carbon	n/a	
. ,		Total Carbon	n/a	
		Hot Start		
		Organic Carbon	n/a	
		Elemental Carbon	n/a	
		Total Carbon	n/a	
		Composite	11/ 4	
		Organic Carbon	n/a	
		Elemental Carbon	n/a	
		Total Carbon	n/a	
Test Date	January 28/99	Cold Start	11/ a	
			20.06	26.62
Fuel	Biodiesel 30%	Organic Carbon	30.86	26.63
Temperature (C)	24	Elemental Carbon	17.22	19.55
		Total Carbon	48.08	46.18
		Hot Start		
		Organic Carbon	26.06	22.05
		Elemental Carbon	15.93	19.17
		Total Carbon	42.00	41.22
		Composite		
		Organic Carbon	28.12	24.02
		Elemental Carbon	16.49	19.33
		Total Carbon	44.61	43.35
Test Date	February 18/99	Cold Start		
Fuel	Biodiesel 20%	Organic Carbon	103.25	
Temperature (C)	0	Elemental Carbon	21.27	
r (0)	-	Total Carbon	125.37	
		Hot Start	-20.57	
		Organic Carbon	52.04	
		Elemental Carbon	14.88	
		Total Carbon	67.00	
	i	LLOIAL CAFDON	1 0/00	1

			TOT	TOR
		Organic Carbon	74.06	
		Elemental Carbon	17.63	
		Total Carbon	92.10	
Test Date	February 19/99	Cold Start		
Fuel	Biodiesel 20%	Organic Carbon	n/a	n/a
Temperature (C)	0	Elemental Carbon	n/a	n/a
		Total Carbon	n/a	n/a
		Hot Start		
		Organic Carbon	n/a	n/a
		Elemental Carbon	n/a	n/a
		Total Carbon	n/a	n/a
		Composite		
		Organic Carbon	n/a	n/a
		Elemental Carbon	n/a	n/a
		Total Carbon	n/a	n/a

Mass emission rates of SO_2 and NH_3 (mg/mile).

Test Date	Fuel	Temperature		SO_2		NH ₃
		(°C)		Carbonate	KOH	Citric
January 14/99	Low Sulphur Diesel	24	Cold Start	161	138	0.25
			Hot Start	137	99	0.14
			Composite	147	115	0.19
February 2/99	Biodiesel 10%	24	Cold Start	166	149	0.12
			Hot Start	147	132	0.22
			Composite	155	139	0.17
January 21/99	Biodiesel 20%	24	Cold Start	145	122	0.11
			Hot Start	148	118	0.17
			Composite	147	120	0.14
January 28/99	Biodiesel 30%	24	Cold Start	135	112	0.07
			Hot Start	121	108	0.00
			Composite	127	109	0.03
February 18/99	Biodiesel 20%	0	Cold Start	129	144	0.00
			Hot Start	166	146	0.00
			Composite	150	145	0.00

Mass emission rates of particle phase ions collected on Teflon filters (mg/mi).

Test Date	J	anuar	y 14/99	February 2/99		J	anuar	y 21/99	J	anuar	y 28/99	Fe	February 18/99		
Fuel	Low	Sulpl	hur Diesel	В	iodies	el 10%	P	Biodies	el 20%	В	iodies	el 30%	В	iodies	el 20%
Temperature		2	4		2	4		2	4	24				()
(C)															
(mg/mi)	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite
	Start	Start		Start	Start		Start	Start		Start	Start		Start	Start	
Fluoride										n/a		n/a			
Acetate										n/a		n/a			
Propionate										n/a		n/a			
Formate				0.05	0.20	0.14				n/a		n/a			
MSA										n/a		n/a			
Chloride		0.04	0.02	0.11	0.07	0.08	0.07	0.06	0.07	n/a		n/a		0.07	0.04
Nitrite					0.02	0.01				n/a		n/a	0.00		0.00
Bromide										n/a		n/a			
Nitrate	0.21	0.27	0.24	0.25	0.25	0.25				n/a	0.22	n/a	0.25	0.21	0.23
Sulphate	2.04	1.74	1.87	2.10	1.62	1.82	1.40	1.19	1.28	n/a	1.48	n/a	2.49	1.89	2.15
Oxalate										n/a		n/a			
Phosphate	0.09	0.11	0.10	0.12	0.08	0.10		0.14	0.08	n/a	0.11	n/a	0.11	0.09	0.10
Lithium										n/a		n/a			
Sodium							0.05	0.01	0.03	n/a		n/a		0.05	0.03
Ammonium	0.70	0.60	0.64	0.72	0.66	0.68	0.48	0.49	0.48	n/a	0.52	n/a	0.46	0.36	0.40
Potassium				0.46	0.58	0.53		0.44	0.25	n/a		n/a			
Rubidium										n/a		n/a			
Cesium										n/a		n/a			
Magnesium				0.05		0.02	0.12	0.03	0.07	n/a	0.04	n/a		0.07	0.04
Manganese										n/a		n/a			
Strontium										n/a		n/a			

missing values indicates compound determined but not detected. n/a indicates data not available.

Mass emission rates of vapour phase acids collected on KOH coated filters as determined by ion chromatography (mg/mi).

Test Date	J	anuary	14/99	February 2/99			J	anuary	21/99	January 28/99			February 18/99		
Fuel	Low	Sulphi	ur Diesel	В	iodiese	l 10%	В	iodiese	1 20%	В	iodiese	1 30%	В	iodiese	1 20%
Temperature		24		24			24		24			0			
(C)															
(mg/mile)	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite	Cold	Hot	Composite
	Start	Start		Start	Start		Start	Start		Start	Start		Start	Start	
Glycolic	2.81	2.28	2.51	2.89	2.12	2.45	2.48	2.17	2.30	2.28	1.88	2.06	0.38	0.19	0.27
Acetic	5.99	3.59	4.62	3.34	2.54	2.88	5.48	4.62	4.99	3.03	1.54	2.18	4.74	3.86	4.24
Propionic	0.56	0.20	0.36	0.22		0.09	0.52	0.34	0.42	0.44		0.19	0.38	0.36	0.37
Formic	9.64	6.77	8.00	9.73	7.06	8.20	8.70	6.34	7.36	7.89	6.20	6.92	7.35	5.89	6.52
MSA	0.32	0.21	0.26				0.18	0.12	0.14	0.36	0.28	0.31	0.40	0.30	0.34
Pyruvic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q
Glyoxylic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q
*Nitrite (NO)	84.84	29.17	53.11	35.46	29.15	31.86	57.40	64.19	61.27	38.56	28.79	32.99	58.45	54.84	56.39
*Nitrate	59.63	29.50	42.46	35.90	28.00	31.40	42.31	43.78	43.15	35.39	31.09	32.94	114.03	78.26	93.64
(NO_2)															
Glutaric	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q
Succinic															
Malonic															
Suberic															
*Sulphate	206.30	148.10	173.13	223.15	197.88	208.74	183.10	177.27	179.78	167.46	161.20	163.89	215.38	219.32	217.62
(SO_2)															
Oxalic															
Azelaic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q
Phthalic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q
Lactic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q
Benzoic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q

^{*}acid gases

missing values indicates compound determined but not detected. n/a indicates data not available. n/q indicates compound not determined by the method.

Mass emission rates of vapour phase acids collected on KOH coated filters as determined by capillary electrophoresis (mg/mi).

Test Date	J	anuar	y 14/99	F	ebrua	ry 2/99	J	anuar	y 21/99	J	anuar	y 28/99	F	ebrua	ry 18/99	
Fuel	Low Sulphur Diesel			Biodiesel 10%			Biodiesel 20%			В	iodies	sel 30%	Biodiesel 20%			
Temperature	e 24			24			24				2	4	0			
(C)																
	Cold Hot Composite							Cold Hot Composite			_					
	Start	Start		Start	Start		Start	Start		Start	Start		Start	Start		
Glycolic	1.07	0.84	0.94	2.30	1.57	1.88	1.33	1.13	1.21	1.53	1.10	1.28				
Acetic	6.71	3.58	4.92	3.51	2.53	2.95	6.09	4.76	5.33	3.03	1.48	2.14	4.97	3.65	4.22	
Propionic	0.50		0.22													
Formic	11.76	7.86	9.54	11.97	8.39	9.93	10.36	7.36	8.65	9.10	7.37	8.12	8.38	6.09	7.07	
MSA	0.48	0.47	0.47				0.54	0.44	0.48	0.23		0.10				
Pyruvic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	
Glyoxylic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	
*Nitrite (NO)	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	
*Nitrate	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	
(NO_2)																
Glutaric																
Succinic																
Malonic																
Suberic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	
*Sulphate	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	
(SO_2)																
Oxalic	n/a	12.07	6.88	n/a	2.91	1.66	3.12	n/a	n/a	5.51	9.71	7.90	n/a	n/a	n/a	
Azelaic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	
Phthalic	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	n/q	
Lactic	0.19		0.08	0.33	0.23	0.27				0.05	0.40	0.25	0.00		0.00	
Benzoic							0.12		0.05							

^{*}acid gases

missing values indicates compound determined but not detected. n/a indicates data not available. n/q indicates compound not determined by the method.

Mass emission rates of PAH compounds (µg/mi)

Date	13-Jan-99	14-Jan-99	19-Jan-99	2-Feb-99	20-Jan-99	21-Jan-99	27-Jan-99	28-Jan-99
Fuel	LSD-1	LSD-2	B10-1	B10-2	B20-1	B20-2	B30-1	B30-2
Acenaphthylene	89.1	107	164	126	156	171	164	144
Acenaphthene	<q1< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>64.7</td><td>56.8</td></ql<></td></ql<></td></ql<></td></q1<></td></ql<></td></q1<>	<ql< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>64.7</td><td>56.8</td></ql<></td></ql<></td></ql<></td></q1<></td></ql<>	<q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>64.7</td><td>56.8</td></ql<></td></ql<></td></ql<></td></q1<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>64.7</td><td>56.8</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>64.7</td><td>56.8</td></ql<></td></ql<>	<ql< td=""><td>64.7</td><td>56.8</td></ql<>	64.7	56.8
Fluorene	95.9	139	113	174	147	152	137	155
2-Me-Fluorene	93.5	84.1	71.5	133	65.1	53.0	98.0	94.4
Phenanthrene	185	204	184	307	200	198	246	210
Anthracene	8.0	8.3	7.0	10.5	9.1	8.6	6.8	6.5
Fluoranthene	9.3	10.1	5.7	15.6	17.6	16.9	16.7	15.1
Pyrene	11.6	13.1	7.2	19.9	20.1	19.6	20.9	17.8
Benzo(a)Fluorene	0.68	1.24	1.33	2.47	2.29	1.77	1.88	2.12
Benzo(b)Fluorene	0.74	0.71	0.76	1.01	1.16	1.22	1.22	1.08
1-Me-Pyrene	1.46	2.07	2.27	3.31	1.89	1.53	2.41	2.31
Benzo(g,h,i)Fluoranthene	0.96	1.02	1.67	1.70	2.19	1.97	1.99	1.96
Benzo(a)Anthracene	0.84	0.77	1.48	1.25	<ql< td=""><td><ql< td=""><td><ql< td=""><td>1.39</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>1.39</td></ql<></td></ql<>	<ql< td=""><td>1.39</td></ql<>	1.39
Chrysene	0.79	0.79	1.17	1.22	1.13	1.27	1.11	1.12
Triphenylene	0.47	0.36	0.64	0.54	0.40	0.37	0.32	0.47
7-Me-Benzo(a)Anthracene	0.63	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo(b)Fluoranthene	0.82	0.94	1.39	1.36	1.67	1.63	1.72	1.30
Benzo(k)Fluoranthene	0.63	<q1< td=""><td><ql< td=""><td>0.34</td><td>0.31</td><td>0.33</td><td>0.27</td><td>0.30</td></ql<></td></q1<>	<ql< td=""><td>0.34</td><td>0.31</td><td>0.33</td><td>0.27</td><td>0.30</td></ql<>	0.34	0.31	0.33	0.27	0.30
Benzo(e)Pyrene	0.44	0.61	0.67	0.62	0.90	0.87	1.00	0.65
Benzo(a)Pyrene	<ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""><td>0.42</td><td>0.37</td><td>0.32</td><td>0.30</td></ql<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><ql< td=""><td>0.42</td><td>0.37</td><td>0.32</td><td>0.30</td></ql<></td></q1<></td></ql<>	<q1< td=""><td><ql< td=""><td>0.42</td><td>0.37</td><td>0.32</td><td>0.30</td></ql<></td></q1<>	<ql< td=""><td>0.42</td><td>0.37</td><td>0.32</td><td>0.30</td></ql<>	0.42	0.37	0.32	0.30
Perylene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""></q1<></td></q1<>	<q1< td=""></q1<>
2-Me-Cholanthrene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Indeno(1,2,3-cd)Pyrene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Dibenzo(a,c)&(a,h)Anthracene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo(b)Chrysene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo(g,h,i)Perylene	<ql< td=""><td>0.42</td><td>0.70</td><td>0.53</td><td>1.22</td><td>0.73</td><td>0.84</td><td>0.65</td></ql<>	0.42	0.70	0.53	1.22	0.73	0.84	0.65
Anthanthrene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></q1<></td></ql<>	<q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></q1<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""></q1<></td></ql<>	<q1< td=""></q1<>

Mass emission rates of PASH compounds (µg/mi)

Date	13-Jan-99	14-Jan-99	19-Jan-99	2-Feb-99	20-Jan-99	21-Jan-99	27-Jan-99	28-Jan-99
Fuel	LSD-1	LSD-2	B10-1	B10-2	B20-1	B20-2	B30-1	B30-2
thionaphthene	4.20	<q1< td=""><td>5.45</td><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></q1<></td></q1<>	5.45	<q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></q1<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
dibenzothiophene	13.7	14.5	5.80	12.6	9.64	8.67	10.3	8.98
naphtho(2,1-b)thiophene	7.36	<q1< td=""><td>5.80</td><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></q1<></td></q1<>	5.80	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""></q1<></td></q1<>	<q1< td=""></q1<>
2-methyldibenzothiophene	11.6	11.6	3.41	11.9	6.89	6.24	7.53	6.91
8-methylnaphtho(2,1-b)thiophene	6.66	6.70	1.70	6.80	2.76	2.77	4.45	4.14
5-methylnaphtho(2,1-b)thiophene	<ql< td=""><td>1.76</td><td><ql< td=""><td>2.38</td><td>3.79</td><td><q1< td=""><td>1.71</td><td>1.73</td></q1<></td></ql<></td></ql<>	1.76	<ql< td=""><td>2.38</td><td>3.79</td><td><q1< td=""><td>1.71</td><td>1.73</td></q1<></td></ql<>	2.38	3.79	<q1< td=""><td>1.71</td><td>1.73</td></q1<>	1.71	1.73
4,6-dimethyldibenzothiophene	15.8	16.9	4.77	25.5	7.92	6.94	14.4	13.5
1,8-dimethyldibenzothiophene	7.01	7.06	<ql< td=""><td>8.16</td><td>3.44</td><td>2.77</td><td>4.79</td><td>4.49</td></ql<>	8.16	3.44	2.77	4.79	4.49
1,3-dimethyldibenzothiophene	3.85	3.88	<ql< td=""><td>3.40</td><td>1.72</td><td>1.73</td><td>2.74</td><td>2.42</td></ql<>	3.40	1.72	1.73	2.74	2.42
phenanthro(4,3-b)thiophene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<></td></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<></td></q1<></td></ql<>	<q1< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<></td></q1<>	<ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""></q1<></td></q1<>	<q1< td=""></q1<>
phenanthro(3,4-b)thiophene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
phenanthro(2,1-b)thiophene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
phenanthro(2,3-b)thiophene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
anthra(2,3-b)thiophene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
10-methylbenzo(b)naphtho(2,1-	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
d)thiophene			_			_		
2-methylbenzo(b)naphtho(2,1-	<ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<></td></q1<></td></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<></td></q1<></td></q1<>	<q1< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<></td></q1<>	<ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""></q1<></td></q1<>	<q1< td=""></q1<>
d)thiophene			_			_		
8-methylbenzo(b)naphtho(1,2-	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<>	<q1< td=""><td><ql< td=""></ql<></td></q1<>	<ql< td=""></ql<>
d)thiophene			_			_		
5-methylbenzo(b)naphtho(2,1-	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""></q1<></td></q1<>	<q1< td=""></q1<>
d)thiophene			_			_		
6-methylbenzo(b)naphtho(2,1-	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<>	<q1< td=""><td><ql< td=""></ql<></td></q1<>	<ql< td=""></ql<>
d)thiophene			_			_		
8-methylbenzo(b)naphtho(2,3-	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></q1<></td></ql<>	<q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></q1<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""></q1<></td></ql<>	<q1< td=""></q1<>
d)thiophene	_	-	_	-	-	-	-	-
11-methylbenzo(b)naphtho(2,3-	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""></q1<></td></ql<>	<q1< td=""></q1<>
d)thiophene	-	_	_	-	_	-	_	_

<ql indicates below detection limit</pre>

Mass emission rates of NO₂PAH compounds (μg/mi)

Date	13-Jan-99	14-Jan-99	19-Jan-99	2-Feb-99	20-Jan-99	21-Jan-99	27-Jan-99	28-Jan-99
Fuel	LSD-1	LSD-2	B10-1	B10-2	B20-1	B20-2	B30-1	B30-2
2- Nitrofluorene	<q1< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></ql<></td></ql<></td></ql<></td></q1<></td></q1<>	<q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></ql<></td></ql<></td></ql<></td></q1<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<>	<q1< td=""><td><ql< td=""></ql<></td></q1<>	<ql< td=""></ql<>
Total Nitro-C13	1.44	1.25	2.05	2.24	1.95	2.24	2.42	2.00
9-Nitroanthracene	0.53	0.64	0.49	1.01	0.89	0.92	1.03	0.81
2-Nitroanthracene	<q1< td=""><td>0.01</td><td>NDR</td><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<></td></q1<>	0.01	NDR	<q1< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></q1<>	<q1< td=""><td><ql< td=""></ql<></td></q1<>	<ql< td=""></ql<>
9-Nitrophenanthrene	<ql< td=""><td>0.02</td><td>NDR</td><td><ql< td=""><td>NDR</td><td>NDR</td><td><ql< td=""><td>0.20</td></ql<></td></ql<></td></ql<>	0.02	NDR	<ql< td=""><td>NDR</td><td>NDR</td><td><ql< td=""><td>0.20</td></ql<></td></ql<>	NDR	NDR	<ql< td=""><td>0.20</td></ql<>	0.20
Total Nitro-C14	1.00	1.48	1.42	2.15	1.81	1.86	4.99	2.70
2-Nitrofluoranthene	0.04	0.02	0.02	0.03	0.01	0.02	0.02	0.01
3-Nitorfluoranthene	<q1< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""><td>0.01</td><td>0.01</td></ql<></td></q1<></td></q1<></td></q1<></td></ql<></td></q1<>	<ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""><td>0.01</td><td>0.01</td></ql<></td></q1<></td></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""><td>0.01</td><td>0.01</td></ql<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><ql< td=""><td>0.01</td><td>0.01</td></ql<></td></q1<></td></q1<>	<q1< td=""><td><ql< td=""><td>0.01</td><td>0.01</td></ql<></td></q1<>	<ql< td=""><td>0.01</td><td>0.01</td></ql<>	0.01	0.01
4-Nitropyrene	0.03	<ql< td=""><td>0.03</td><td>0.02</td><td>0.02</td><td>0.02</td><td>0.02</td><td>0.02</td></ql<>	0.03	0.02	0.02	0.02	0.02	0.02
1-Nitropyrene	0.59	0.72	1.37	1.18	0.51	0.62	0.82	0.67
2-Nitropyrene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Total Nitro-C16	0.66	0.74	1.46	1.24	0.54	0.66	0.87	0.73
7-Nitrobenz(a)anthracene	0.07	0.12	0.17	0.15	0.09	0.09	0.06	0.04
6-Nitrochrysene	0.01	0.01	<q1< td=""><td>0.02</td><td><q1< td=""><td><q1< td=""><td>0.01</td><td>0.00</td></q1<></td></q1<></td></q1<>	0.02	<q1< td=""><td><q1< td=""><td>0.01</td><td>0.00</td></q1<></td></q1<>	<q1< td=""><td>0.01</td><td>0.00</td></q1<>	0.01	0.00
Total Nitro-C18	0.21	0.31	0.44	0.45	0.29	0.29	0.13	0.10
1-Nitrobenzo(e)pyrene	0.04	<ql< td=""><td><ql< td=""><td>0.05</td><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>0.05</td><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></ql<></td></ql<></td></ql<>	0.05	<ql< td=""><td><ql< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><q1< td=""></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""></q1<></td></q1<>	<q1< td=""></q1<>
6-Nitrobenzo(a)pyrene	0.21	0.39	0.73	0.67	0.37	0.42	0.40	0.28
4-Nitrobenzo(e)pyrene	0.03	<ql< td=""><td><q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></q1<></td></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></q1<></td></q1<>	<q1< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></q1<>	<ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<>	<q1< td=""><td><ql< td=""></ql<></td></q1<>	<ql< td=""></ql<>
3-Nitrobenzo(e)pyrene	0.04	0.04	0.03	0.06	0.01	0.02	0.02	0.01
3-Nitrobenzo(a)pyrene	0.03	<q1< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>0.01</td></ql<></td></ql<></td></ql<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>0.01</td></ql<></td></ql<></td></ql<></td></q1<></td></q1<>	<q1< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td>0.01</td></ql<></td></ql<></td></ql<></td></q1<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td>0.01</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>0.01</td></ql<></td></ql<>	<ql< td=""><td>0.01</td></ql<>	0.01
1-Nitrobenzo(a)pyrene	<q1< td=""><td><q1< td=""><td><q1< td=""><td>0.06</td><td><ql< td=""><td><ql< td=""><td>0.01</td><td>0.01</td></ql<></td></ql<></td></q1<></td></q1<></td></q1<>	<q1< td=""><td><q1< td=""><td>0.06</td><td><ql< td=""><td><ql< td=""><td>0.01</td><td>0.01</td></ql<></td></ql<></td></q1<></td></q1<>	<q1< td=""><td>0.06</td><td><ql< td=""><td><ql< td=""><td>0.01</td><td>0.01</td></ql<></td></ql<></td></q1<>	0.06	<ql< td=""><td><ql< td=""><td>0.01</td><td>0.01</td></ql<></td></ql<>	<ql< td=""><td>0.01</td><td>0.01</td></ql<>	0.01	0.01
2-Nitrobenzo(a)pyrene	0.03	<ql< td=""><td><q1< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td>0.02</td><td>0.01</td></ql<></td></ql<></td></q1<></td></q1<></td></ql<>	<q1< td=""><td><q1< td=""><td><ql< td=""><td><ql< td=""><td>0.02</td><td>0.01</td></ql<></td></ql<></td></q1<></td></q1<>	<q1< td=""><td><ql< td=""><td><ql< td=""><td>0.02</td><td>0.01</td></ql<></td></ql<></td></q1<>	<ql< td=""><td><ql< td=""><td>0.02</td><td>0.01</td></ql<></td></ql<>	<ql< td=""><td>0.02</td><td>0.01</td></ql<>	0.02	0.01
Total Nitro-C20	0.38	0.65	0.85	0.92	0.43	0.46	0.56	0.37
9-Nitrodibenzo(a,c)anthracene	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Total Nitro-C22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1,3-Dinitropyrene	0.03	<ql< td=""><td>0.01</td><td>0.02</td><td>0.01</td><td><ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<></td></ql<>	0.01	0.02	0.01	<ql< td=""><td><ql< td=""><td><q1< td=""></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""></q1<></td></ql<>	<q1< td=""></q1<>
1,6-Dinitropyrene	0.09	0.06	0.03	0.04	0.02	<ql< td=""><td>0.01</td><td><ql< td=""></ql<></td></ql<>	0.01	<ql< td=""></ql<>
1,8-Dinitropyrene	0.14	0.05	0.03	NDR	0.02	<ql< td=""><td>0.01</td><td><ql< td=""></ql<></td></ql<>	0.01	<ql< td=""></ql<>
7-Nitro-12-Methylbenzo(a)anthracene	0.03	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<></td></ql<>	<ql< td=""><td><q1< td=""><td><ql< td=""></ql<></td></q1<></td></ql<>	<q1< td=""><td><ql< td=""></ql<></td></q1<>	<ql< td=""></ql<>
12-Ethyl-6-Nitrochrysene	0.04	<ql< td=""><td><ql< td=""><td>0.08</td><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td>0.08</td><td><ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<></td></ql<>	0.08	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>

<ql indicates below detection limit</pre>

NDR indicates not detected due to incorrect isotope ratio

Mass emission rates of particle bound n-alkanes ($\mu g/mi$).

Test Date	January 13/99			Ja	nuary 19	/99	Ja	nuary 20)/99	Ja	nuary 2	7/99	Fel	ruary 1	8/99
Fuel	Low S	Sulphur	Diesel	Bio	diesel 10	0 %	Bio	odiesel 2	0 %	Bio	odiesel 3	30 %	Bio	odiesel 2	0%
Temperature	e 24			24			24				24		0		
(C)															
Alkanes	Cold	Hot	Comp	Cold	Hot	Comp	Cold	Hot	Comp	Cold	Hot	Comp	Cold	Hot	Comp
(ug/mile)	Start	Start		Start	Start		Start	Start		Start	Start		Start	Start	
n-C11				11		4.6	6.7		2.9						
n-C12		3.1	1.8	17	11	14	11		4.8		7.8	4.4			
n-C13		5.2	3.0	34	34	34	36	30	33		23	13		27	15
n-C14		2.1	1.2	54	34	43	79	60	68	15	49	35		152	87
n-C15				69	58	63	193	125	154	72	123	101		631	360
n-C16	78	7.6	38	233	223	227	379	272	318	183	223	206	228	1669	1049
n-C17	449	193	303	604	616	611	746	652	693	419	428	424	1858	2625	2295
n-C18	888	421	622	962	1260	1132	1095	1111	1105	689	683	685	2580	1920	2204
n-C19	1062	673	840	1078	1649	1403	981	1375	1206	604	804	718	2346	1397	1805
n-C20	638	522	572	660	1102	912	517	806	682	366	508	447	1851	1031	1384
n-C21	310	307	308	362	475	426	225	312	275	219	244	233	1184	605	854
n-C22	139	122	130	209	216	213	83	117	102	142	144	143	671	363	495
n-C23	70	55	61	80	88	84	29	42	36	70	63	66	263	160	204
n-C24	34	38	36								21	12			
n-C25	53	65	60												
n-C26															
n-C27															
n-C28															
n-C29															
n-C30															
n-C31															
n-C32															
	Cold	Hot	Dilution	Cold		Dilution	Cold	Hot	Dilution	Cold		Dilution	Cold	Hot	Dilution
	Start	Start	Air	Start	Start	Air	Start	Start	Air	Start	Start	Air	Start	Start	Air
CPI	1.08	1.06	1.18	1.05	1.03	1.08	1.02	1.07	1.08	1.00	1.02	0.95	1.05	1.06	n/a

Mass emission rates of petroleum biomarker compounds ($\mu g/mi$).

	Test Date	January 13/99			January 19/99			Jan	uary 2	0/99	Jan	uary 2	7/99	February 18/99			
	Fuel	Lo	Low Sulphur			Biodiesel 10 %			Biodiesel 20 %			diesel 3	30 %	Biodiesel 20%			
	Temperature (C)		Diesel 24			24			24			24			0		
ID		Cold	Hot	Comp			Comp			Comp			Comp			1	
		Start	Start		Start	Start		Start	Start		Start	Start		Start	Start		
S11,S12	20R-Baa-				36.0	22.2	28.1	30.0	22.6	25.7	28.9	25.2	26.8	141	71.3	101	
	cholestane, 20S-																
	aaa-cholestane																
S13	20R-aBB-		10.4	5.9	42.0	31.7	36.1	41.4	33.3	36.8	33.8	27.0	29.9	132	75.5	99.7	
	cholestane																
S15	20R-aaa-				21.8	17.2	19.2	31.2	25.8	28.1	34.5	25.9	29.6	140	64.0	96.6	
	cholestane																
S22	20S-aaa-	13.3	11.9	12.5	41.5	37.2	39.0	39.6	31.2	34.8	37.9	33.2	35.2	155	72.1	108	
	stigmastane																
S23	20R-aBB-	14.6	12.7	13.5	52.5	37.0	43.6	36.3	29.0	32.1	39.4	33.0	35.8	219	86.3	144	
	stigmastane																
S24	20S-aBB-	17.1	13.9	15.3	58.6	41.5	48.9	35.5	30.5	32.7	47.7	41.4	44.1	247	102	164	
	stigmastane																
Nor	Trisnorhopane				16.2	20.1	18.4	15.9	15.4	15.6	21.8	17.5	19.4	103	42.6	68.5	
H17	Norhopane	15.5	12.6	13.8	47.7	38.2	42.3	40.9	35.1	37.6	40.7	33.4	36.5	114	74.4	91.5	
H19	aB-hopane	17.7	14.1	15.6	52.4	36.8	43.5	44.0	36.8	39.9	39.7	33.4	36.1	112	74.7	90.9	

References

¹ Watson, J.G., Chow, J.C., Lowenthal, D.H., Pritchett, L.C., Frazier, C.A., Neuroth, G.R., Robbins, R.; "Differences in the Carbon Composition of Source Profiles for Diesel- and Gasoline-Powered Vehicles", Atmos. Environ., 28, 15, 2493-2505, 1994.

² Dr. J. Brook, Environment Canada, Atmospheric Environment Service; personal communication, April

³ Dabek-Zlotorzynska, E., Piechowski, M., McGrath, M., Lai, E.P.C.; Chromatographia, (2000), submitted.