WILDFIRE EMISSIONS IN CALIFORNIA

Fire Summit
Research Triangle Park
November 3, 2014
UNDERSTANDING THE ISSUES

- California’s Fire Ecology
- Calculating Emissions
- Planning/Regulatory Implications
CALIFORNIA FIRE ECOLOGY

- 160,000 square miles (over 100 million acres)
- Estimate that two-thirds of the State is land under public management
- Diverse land forms - land use, fuel types, fire frequency correlate
- 38 million people clustered in urban, agricultural, and urban-wildland interface settings
WILDFIRE OCCURRENCE

- Variations year to year
 - Time (usually not winter)
 - Place
 - Intensity
 - Fuel Type
CALFIRE WILDLAND FIRE STATISTICS

• Data from State Responsibility Area
• Number of fires not related to acres burned
• Greatest number of fires in the dry season (May-October)
• Largest fires in dry season
CALIFORNIA EMISSIONS INVENTORY

• Smoke is Smoke
 - Acres burned & fuel types recorded
 - Emissions calculated by pollutant
 - Inventory classification differs from planning and modeling use

• Anthropogenic Inventory
 - Managed Burning & Disposal
 - All planned and approved through Smoke Management Program
 - Agricultural and Prescribed Burning

• Natural Inventory
 - Wildfires (unplanned)

• Emissions Reported to Inventory
 - Ten-year average for wildfires (natural)
 - Managed Burning - annual district reports

2012 "Anthropogenic" Emissions Contribution to Annual Inventory (5409 TPD)

2012 "Natural" Emissions Statewide Contributions to Annual Inventory (5807 TPD)
WILDLAND FIRE METHODOLOGY

• Model – FOFEM

• Inputs
 - Fire perimeters – CalFIRE-FRAP, GeoMac
 - Fuels raster – FCCS (landfire.gov)
 - Moisture raster 1000-hr fuels – WFAS, monthly average by year

• Steps
 - Geoprocessing scripts - build FOFEM batch input file
 - Run FOFEM

• Post-process FOFEM batch output
 - Emission totals (flame, smolder) by individual fire and FCCS fuelbed
 - Add-on species (NH$_3$, N$_2$O, TNMHC)

• Other post-processing (for modeling with CMAQ)
 - hourly & vertical allocation, map emissions to 4x4 km grid, MEDS/NetCDF
 - Use FINN for fires outside California; speciate VOCs, PM
EXAMPLE: INDIVIDUAL FIRE EMISSIONS

- Emissions from “Fire 1532”
 - 31 tons TNMHC
 - 7 tons NOx
 - 46 tons PM10

- Inventory comparison with Mariposa County averages for “managed burning” versus “wildfire”
 - 2160 vs. 3083 tons TOG
 - 1231 vs. 1757 tons ROG
 - 43 vs. 92 tons NOx
 - 1591 vs. 2294 tons PM10

- Modeling Use
 - 4x4 km grid for criteria pollutants
 - 30x30 km grid for regional haze
AVERAGE VS. ANNUAL EMISSIONS

- Modeling known emissions
 - Seasonal vs. episode vs. daily
 - Model performance vs. future goals
- Air quality planning requirements and unplanned fires
 - Exceptional events for criteria pollutants
 - Monitoring data compared with local and regional emission changes for haze

Total for Federal & State Responsibility Areas
Regional Haze Base Years 2000-2004

Source: CalFire, 2011
CASE STUDY: REGIONAL HAZE

IMPROVE MONITOR: LAVO at Lassen Volcanic National Park, Shasta County Northern California

- Wildfire events are part of “Natural Conditions” that contribute to Regional Haze
- Particulate Organic Carbon “spikes” in data indicate fire emissions; correlates with haziest days
- Progress measured by 20% Worst Days each year, averaged over five years
- Model future year to calculate interim Reasonable Progress Goal (RPG)
- Baseline 5-year average (2000-2004) held constant for wildfire emissions to model first interim goal year (2018 – 365 days) using 30x30 kilometer grids over 13 western states
CASE STUDY: REGIONAL HAZE

IMPROVE MONITOR: LAVO at Lassen Volcanic National Park, Shasta County Northern California

- RPGs based on planned anthropogenic emissions reductions and constant natural emissions
- Visibility improvement progress demonstrated by anthropogenic emissions inventory reductions near LAVO because high wildfire years skewed data and masked progress

![Graph showing deciviews and tons per day](image)

Natural Inventory is multi-year average.
FUTURE CONSIDERATIONS

• Fire Emissions important to western states
 − Transported smoke from large fires
 − Change in fuels post-fire, and as land use and population evolves
 − Regional haze

• Technical contacts at CARB
 − Regional Haze: Christine.Suarez-Murias@arb.ca.gov
 − Fire Emissions Calculations: Klaus.Scott@arb.ca.gov