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1.0 INTRODUCTION

The 1990 Amendments (1990 Amendments) to the Clean Air Act
amended title I of the Clean Air Act (ACT) by adding a new
subpart 2 to part D of section 103. The new subpart 2
addresses ozone nonattainment areés. Section 183 (c) of the
new subpart 2 provides that:

(w]ithin 3 years after the date of the

enactment of the [CAAA], the Administrator

shall issue technical documents which identify

alternative controls for all categories of

stationary sources of...oxides of nitrogen

" which emit, or have the potential to emit

25 tons per year or more of such pollutant.
These documents are to be subsequently revised and updated as
the Administrator deems necessary.

Fossil fuel-fired utility boilers have been identified as a
category of stationary sources that emit more than 25 tons of
nitrogen oxides (NOy) per year. This alternative control
techniques (ACT) document provides technical information for
State and local agencies to use in developing and implementing
regulatory programs to control NOy emissions from fossil
fuel-fired utility boilers. Additional ACT documents are
being or have been developed for other stationary source
categories. o

The information provided in this ACT document has been
compiled from previous EPA documents, literature searches, and
contacts with utility boiler manufacturers, individual utility

companies, engineering and construction firms, control
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equipment vendors, and Federal, State, and local regulatory
agencies. A summary of the findings from this study is ‘
presented in chapter 2.0. Descrlptlons of fossil fuel-fired
utility boilers are given in chapter 3.0. A discussion of
uncontrolled and baseline NO, emissions from utility boilers
is presented in chapter 4.0. Alternative NOy control
techniques and expected levels of performance are discussed in
chapter 5.0. Chapter 6.0 discusses costs and cost
effectiveness of each Nox control technique. Chapter 7.0
discusses the environmental and energy impacts associated with'
NOy control techniques. Information used to derive the costs
of each NOy control technology is contained in appendix A.




2.0 SUMMARY

The purpose of this document is to provide technical
information that State and local agencies can use to develop
strategies for reducing nitrogen oxides (NOx) emissions from
_f0551l fuel-fired utility boilers. This chapter presents a
summary of the information contained in this document,
including uncontrolled and controlled NOy emissions data,
alternative control techniques (ACT's), capital and annual
costs, cost effectiveness, and secondary environmental and
energy impacts associated with the various NOx control
techniques. Section 2.1 presents a summary of fuel use in
utility boilers, section 2. 2 presents an overview of NOx
formation, and sectlon 2. 3 describes utility boiler types and
uncontrolled NOyx em1551on levels. Section 2.4 gives an
overview of ACT's. The performance and costs of NOx controls
for coal fired boilers is presented in section 2.5. The
performance and costs of NOx controls for natural gas— and
oil-fired boilers is given in section 2.6. Secondary
environmental impacts of NOx controls are summarized in
section 2.7.

2.1 SUMMARY OF FUEL USE IN UTILITY BOILERS

As of year-end 1990, the operable capacity of U. S. electric
power plants totaled approxlmately 690,000 megawatts (MW). Of
this, coal-fired generating capacity accounted for
approximately 43 percent, or 300,000 MW. Coal that is fired
in utility boilers can be classified by different ranks, i.e.,
anthracite, bituminous, subbituminous, and llgn;te Each ranm
of coal has specific characteristics which can influence NOx
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emissions. ‘Thése characteristics include heating value,
volatile matter, and nitrogen content. _
As of year-end 1990, natural gas- and oil-fired boilers
accounted fof approximately 28 percent of the total U. s.
generating capacity. Of this, natural gas-fired generating
capacity accounted for about 17 percent (120,000 MW) and oil-
fired units, the remaining 11 percent (77,000 MW). The term
- "fuel oil" covers a broad range of petroleum products-—from a

light petroleum fraction (similar to kerosene) to a heavy

residue. However, utility boilers typically fire No. 6 oil
(residual oil). '

2.2 OVERVIEW OF NO, FORMATION

 The formation of NOy from a specific combustion device is
determined by the interaction of chemical and pPhysical
processes occurring within the furnace. - The three principal
NO; forms are "thermal" NOx, "prompt" NOx, and "fuel" NO,.
Thermal and fuel NOy account for the majority of the NO,
formed in coal- and oil-fired utility boilers; however, the
relative contribution of each of the total NOy formed depends
on the combustion process and fuel charactefistics, Natural
gas contains virtualiy no fuel nitrogen; therefore, the
majority of the NOx in these‘boilers is thermal NO,.

Thermal NOy results from the oxidation of atmospheric
nitrogen in the high-temperature, post-flame region of a -
combustion system. The major factors that influence thermal
NOy formation are temperature, concentrations of oxygen and
nitrogen, and residence time; If the temperature or the
- concentration of oxygen or nitrogeh can be reduced Quickly
after combustion, thermal NOy formation can be suppressed or
quenched{ _

:Prompt NO, is formed in the combustion system through the
- reaction of hydrocarbon fragments and atmospheric nitrogen. o !
As opposed to the slower formation of thermal NOx, prompt NOy
is formed rapidly and occufs on a time scale comparable to the
 energy release reactions (i.e., within the flame). Thus, it
‘is not possible to Quench prompt NOx formation as it is for
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thermal NOy formation. However, the contribution of prompt
NOyx to the total NOy emissions of a system is rarely large.

The oxidation of fuel-bound nitrogen (fuel NOy) is the
principal source of NOy emissions from combustion of coal and
some oils. All indications are that the oxidation of fuel-
bound nitrogen compounds to NOyx is rapid and occurs on a time
scale comparable to the energy release reactions during
combustion. The primary technique for controlling the
formation of fuel NOy is delayed mixing of fuel and air so as
to promote conversion of fuel-bound nitrogen to Nz rather than
NOyx. As with prompt NOx, fuel NOyx formation cannot be
quenched as can thermal NOX.

' The formation of thermal, prompt, and fuel NOy in combustion
systems is controlled by modifying the combustion gas
temperature, residence time, and turbulence (sometimes
referred to as the "three T's"). Of primary importance are
the localized conditions-within and immediately following the
flame zone where most combustion reactions occur. In utility
boilers, the "three T's" are determined by factors associated
with boiler and burner design, fuel characteristics, and
boiler operating conditions. '
2.3 DESCRIPTION OF BOILER TYPES AND UNCONTROLLED NOyx
EMISSIONS | |

The various types of fossil fuel-fired utility boilers
include tangentially-fired, single and opposed wall-fired,
cell burner, cyclone, stoker, and fluidized bed combustion
(FBC) . Each type of furnace has specific design
characteristics which can influence NOyx emissions levels.
These include heat release rate, combustion temperatures,
residence times, combustion turbulence, and ongen levels.

As mentioned, NOx emission rates are a function of various
design and operating factors. Pre-new source performance
standards (NSPS) boilers were not designed to minimize NOyx
emission rates; therefore, their NOyx emissions are indicative
of uncontrolled emission levels. Boilers subject to the
subpart D or Da NSPS have some type of NOyx control and their
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NOy emissions.are considered to be baseline emissions. To
define uncontrolled NOy emissions for the pre-NSPS boilers,
emissions data from various databases and utility retrofit
applications were examined. To define bageline NOy emissions
for the subpart D and Da boilers, the NSPS limits as well as
emissions data from various databases were examined.

Table 2 1 summarizes the uncontrolled and baseline NOy
emission levels from conventional utility boilers. The NOy
levels are presented as a range and a typical level.  The
typical level reflects the mode, or most common value, of the
NOyx emissions data in the various databases for the different
types of boilers.

The range reflects the NOy emissions expected on a short-
term basis for most boilers of a given fuel and boiler type.
However, the actual NOy emissions from a specific boiler may
be outside this range due to unit-specific design and
operating conditions. Additionally, averaging time has an
important impact on defining NOyx levels. The achievable
emission limit for a boiler increases as the averaging time
decreases. For example, a boiler that can achieve a _
particular'NOx limit on a 30-day basis may not be able to
achieve that same limit on a 24-hour basis.

' The_tangential'boilers are designed with vertically stacked
nozzles in the furnace corners that inject_stratified layers
of fuel and air into'relatively low-turbulence areas. This |
creates fuel-rich regions in an overall fuel-lean environment.
' The fuel ignites in the fuel-rich region before the layers are
mixed in the highly turbulent center fireball. Local peak
temperatures and thermal NOy are lowered by the off- _
stoichiometric combustion conditions. Fuel NOy formation is
suppressed by the delayed mixing of fuel and air, which allows
fuel-nitrogen compounds a greater residence tlme in a fuel-
rich environment. . _ _ _

Tangential boilers typically have the 1owest'NOx emissions
of all conventional utility boiler types. As shown in
table 2-1, the'coal—fired, pre-NSPS tangential boilers have
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NOx emissions in the range of 0.4 to 1. 0 pound per million
British thermal unit (lb/MMBtu), with typical NOy emissions of
0.7 lb/MMBtu For the tangential boilers subject to subpart D
standards, the NOx emissions are in the range of 0.3 to

0.7 lb/MMBtu with typical NOx emissions of 0.6 1b/MMBtu. The
NOx emissions for the subpart Da boilers are in the range of
0.3 to 0.5 1b/MMBtu, with typical NOyx emissions of

0.5 lb/MMBtu

The oil-fired, pre-NSPS tangential boilers have NO4 _
emissions in the range of 0.2 to 0.4 1b/MMBtu (0.3 1b/MMBtu
typical). For the boilers subject to subpart D and Da
standards, the NOy, emissions are in the range of 0.2 to
- 0.3 1b/MMBtu with typical emissions of 0. 25 1b/MMBtu. The Nox
emissions from the natural gas-fired, pre-NSPS tangential
boilers range from 0.1 to 0.9 1b/MMBtu (0.3 1b/MMBtu typical).
For the boilers subject to subpart D and Da standards, the NOx
emissions are in the range of 0.1 to 0.2 1b/MMBtu with typical
emissions of 0.2 1b/MMBtu.

The various types of wall-fired boilers include single,
opposed, and cell burner. Single wall-fired boilers have
several rows of burners mounted on one wall of the boiler,
while opposed wall-fired boilers have multlple rows of burners
mounted on the two opposing walls. Cell-burner units have two
or three vertlcally aligned, closely-spaced burners, mounted
on opposing walls of the furnace. Single, opposed, and cell
burners boilers all have burners that inject a fuel-rich
mixture of fuel and air into the furnace through a central
nozzle. Additional air is supplied to the burner through
surrounding air registers. 0f these types of wall-fired
boilers, the cell burner is the most turbulent and has the
highest NOy emissions. _

Table 2-1 presents the ranges and typical NOyx emissions for
wall-fired boilers. For the pre-NSPS, dry-bottom, wall-fired
boilers firing coal, the NOy emissions are in the range of 0.6
to 1.2 1b/MMBtu with typical NOy emissions of 0.9 1b/MMBtu.
The range of NO4 emissions for these bomlers subject to
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subpart D and subpart Da are in the range of 0.3 to

0.7 1b/MMBtu and 0.3 to 0.6 1b/MMBtu, respectively. The
typical NOy emissions for the subpart D, wall-fired boilers
are 0.6 1lb/MMBtu, while 0.5 1lb/MMBtu is typical for the
subpart Da boilers.

Theipre-NSPS} wet-bottom, wall-fired boilers firing coal
have NOx emissions in the range of 0.8 to 1.6 1b/MMBtu with
typical NOy emissions of 1.2 lb/MMBtu. The pre-NSPS cell-type

"boiler has NOx emissions in the range of 0.8 to 1.8 1lb/MMBtu
with typical NOy emissions of 1.0 1lb/MMBtu.

The NOx emissions for the oil-fired pre-NSPS wall boilers
are in the range of 0.2 to 0.8 1lb/MMBtu with'typical NOy
emissions of O.S lb/MMBtu. The natural gas-fired pre-NSPS
single wall-fired boilers have NOy emissions in the range of
0.1 to 1.0 1b/MMBtu with typical NOx levels of 0.5 1lb/MMBtu.
The opposed wall, pre-NSPS boilers firing natural gas ranged
from 0.4 to 1.8 1lb/MMBtu with typical NOx of 0.9 1lb/MMBtu.

Vertical-fired boilers have burners that are oriented
downward from the top, or roof, of the furnace. They are
usually designed to burn solid fuels that are difficult to
ignite. The NOx emissions from these boilers are shown on
table 2-1 and range from 0.6 to 1.2 1b/MMBtu. The typical NOyx
emissions from these boilers are 0.9 1lb/MMBtu. The vertical
oil-fired boilers have NOy emissions in the range of 0.5 to
1.0 1b/MMBtu with typical NOy level of 0.75 lb/MMBtu.

Another type of utility boiler is the cyclone furnace.

. Cyclone furnaces are wet-bottom and fire the fuel in a highly
turbulent combustion c¢ylinder. Table 2-1 shows the range (0.81
to 2.0 1b/MMBtu) and typical NOx level (1.5 1lb/MMBtu) for
these boilers. There have not been any wet-bottom wall-fired,
cell, cYclone, or vertical boilers built since the subpart D
or subpart Da standards were established. L

Stoker boilers are designed to feed solid fuel on a grate -
within the furnace and remove the ash residual. The NOyx

" emissions from these boilers are in the range of 0.3 to
0.6 1b/MMBtu with typical NOx levels of 0.5 1b/MMBtu.
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Fluidized bed combustlon is an 1ntegrated technology for
reduc1ng both sulfur dioxide (803) and NOy during the '
combustion of coal. These furnaces operate at much lower
temperatures and have lower NOx emissions than conventional
types of utility boilers. While larger FBC units may be
feasible, at this time the largest operating unit is 203 MW.
Table 2-2 gives the NOyx emissions for the FBC using combustion
controls to limit NO, formation, and also when using selective
noncatalytic reduction (SNCR). The Nox‘emiSSions from FBC
without SNCR are in the range of 0.1 to 0.3 1lb/MMBtu with
typical NOx levels of 0.2 lb/MMBtu. The NOy emissions from
FBC with SNCR are in the range of 0.03 to 0.1 1b/MMBtu with
typical NOy levels of 0.07 lb/MMBtu. _

2.4 OVERVIEW OF ALTERNATIVE CONTROL. TECHNIQUES

Alternative control techniques for reducing NOy emissions
from new or existing fossil fuel-fired utility boilers can be
grouped into one of two fundamentally different methods--
combustion controls and post-combustion controls (flue gas
treatment). Combustion controls reduce NOyx formation during
the combustion process and include methods such es_operational
modifications, flue gas recirculation (FGR), overfire air
(OFA), low NOyx burners (LNB), and reburn. The retrofit
feasibility, Nox'reduction potential, and costs of combustion
controls are largely influenced by boiler design and operating
charecteristics such as firing configuration, furnace size,
heat release rate, fuel type, capacity factor, and the
condition of existing equipment. Flue gas treatment controls
reduce NOyx emissions after its formation and include SNCR and
selective catalytic reduction (SCR).

Operational modifications involve changing certain boiler
operational parameters to create conditions in the furnace
that will lower NOy emissions. Burners-out-of-service (BOOS)
consists of removing individual burners from service by
stopping the fuel flow. The air flow is maintained through
the idle burners to create a staged-combustion atmosphere
within the furnace. Low excess air (LEA) involves operating
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TABLE 2-2. NOy EMISSION LEVELS FROM FLUIDIZED BED
COMBUSTION BOILERS

NOy emissions@

- Classification (lb/MMBtu)
Combustion controls only 0.1-0.3
(0.2)
With SNCRP | ~0.03-0.1
(0.07)

aNOy emissions shown are the expected ranges from
table 4-5. The typical NOyx level is shown in parentheses.

brluidized bed boilers with SNCR reduction for NOx control
as original ecquipment.




the_boiier'at the lowest level of excess air“possible without
jeopardizing good combustion. And, biased firing (BF) .
involves injecting more‘fuel to some burners and reducing the
amount of fuel to other burners to create a staged-combustion
environment. To implement these operational modifications,
the boiler must have the flexibility to change combustion
conditions and have excess pulverizer capacity- (for coal
firing). Due to their original design type or fuel
characteristics, some boilers may not be'amenable to the
distortion of the fuel/air mixing pattern imposed by BOOS and
BF. Also, some boilers may already be operating at the lowest
‘excess air level. -

Flue gas recirculation is a flame-quenching strategy in
which the recirculated flue gas acts as a diluent to reduce
combustion temperatures and oxygen concentrations in the
combustionvzone. This method is effective for reducing
thermal NOx and is used on natural gas- and oil-fired boilers.
Flue gas recirculation can also be combined with operational
modifications or other types of combustion controls on natural
gas- and oil-fired boilers to further reduce NOx emissions.
Flue gés'recirculation is used on coal-fired boilers for steam
temperature control but is not effectlve for NOx control on
" these boilers. _ o

Overfire air is another technique for staging the combustion
process to reduce the formation of NOyx. Overfire air ports
are installed above the top row of burners on wall and |
tangential boilers. The two types of OFA for tangential
bdile:s are'close-éoupled overfire air (CCOFA) and separated
overfire air (SOFA). The CCOFA ports are incorporated into
the main windbox whereas the SOFA ports are installed above
the main windbox using separate ducting. The two typés of OFA
for wall-fired boilers are analogous to the tangential units.
Conventional OFA has ports above the burners and utilizes the
air from the main windbox. Advanced OFA has separate ductwork
above the main windbox and, in some cases,'separate fans to
provide more penetration of OFA into the furnace.
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Low NOy burners are designed to delay and control the mixing
of fuel and air in the main combustion zone. Lower combustion
temperatures and reducing zones are created by the LNB which
lower thermal and fuel NOx. Low NOx burners can sometimes be
fitted directly into the existing burner opening; however,
there may be instances where changes to the high-pressure
waterwall components may be required. Low NOx burners have
been applied to both tangentially- and wall-fired boilers in
new and retrofit applications. While tangential boilers have
ncoal and air nozzles" rather than "burners" as in wall-fired
boilers, the term "LNB" is used in this document for both

' _ tangential and wall applications.

Retrofit applications must have compatible'and adequate
ancillary equipment, such as pulverizers and combustion
control syétems,-to minimize carbon monoxide and unburned
carbon emissions and to optimize the performance of the LNB.

} The NSPS subpart D and subpart Da standards have been met with:

: LNB on new boilers; however, they tend to have larger furnace
volumes than pre-NSPS boilers which results in lower NOx
emissions. '

Low NOx burners and OFA can be combined in some retrofit

- applications provided there is sufficient height above the top
row of burners. However, there is limited retrofit experience
with combining LNB and OFA in wall-fired boilers in the United
States. There is more experience in retrofitting LNB and OFA
in tangential boilers since most LNB for these boilers use
some type of OFA (either CCOFA or SOFA). Some new boilers
subject to subpart Da standards have used a combination of LNB
and OFA to meet the NOyx limits. Low NOy burners can also be
combined with operational modifications and flue gas treatment

 controls to further reduce NOy emissions. |

Reburn is a NOx control technology that involves diverting a

portion of the fuel from the burners to a second combustion
area (reburn zone) above the main combustion zone. Completion
air (or OFA) is then added above the reburn zone to complete
fuel burnout. The reburn fuel can be either natural gas, oil,

2-11




or pulverized coal; however, most of the experience is with
natural gas reburning. There are many technical iésues in
applying reburn, such as maintaining acceptable boiler
performance when a large amount of heat iﬂput is moved from
the main combustion zone to a different area of the furnace.
Utilizing all the carbon in the fuel is also an issue when
pulverized coal is the reburn fuel.

Reburn can be applied to most boiler types and is the only
known combustion NOy control technique for cyclone boilers
although flue gas treatment controls may be effective on these
boilers. There are only four full-scale demonstrations of
reburn retrofit on coal-fired boilers in the United States,
two of which have been on cyclone boilers, one on a _
tangentlally fired boiler, and one on a wall-fired boiler.

All of these installations are on boilers smaller than 200 MW.
There is one full-scale reburn + LNB project on a 150 MW wall-
fired boiler. To date, there have not been any reburn
1nstallat10ns on new boilers.

A similar technology is natural'gas co-firing which consists
- of injecting and combusting naturel_gas near or concurrently
with the main fuel (coal, o0il, or natural gas). There is one
full-scale application of natural gas co-firing on a 400 MW
tangentlal coal-fired boiler reported in this document .
| Two commercially available flue gas treatment technologies
for reducing NOy em1551ons from existing fossil fuel ut111ty
boilers are SNCR and SCR. Selectlve noncatalytic reduction
involves injecting ammonia (NH3) or urea into the flue gas to
yield elemental nitrogen and water. By-product emissions of
SNCR are N50 and NH3 slip. The NH3 or urea must be injected
into spec1flc high-temperature zones in the upper furnace or
convective pass for this method to be effective. If the flue
gas temperature at the point of NH3 or urea injection is above
the SNCR operating range, the injected reagent will exidize to
form NOx. If the flue gas temperature is below the SNCR
0perating range, the reagent does net react with NOy and is
emitted to the atmosphere as NH3. Ammonia emissions must be
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minimized because NH3 is a pollutant and can also react with
sulfur oxides in the flue gas to form ammonium salts, which
can deposit on downstream eguipment such as air heaters.

The other flue gas treatment method, SCR, involves injecting
NH3 into the flue gas in the presence of a catalyst.
- gelective catalytic reduction promotes the reactions by which
NOx is converted to elemental nitrogen and water at lower
temperatures than required for SNCR. The SCR reactor can be
placed before the air preheater (hot-side SCR) or after the
air preheater (cold-side SCR). The catalyst may be made of .
precious metals (platinum or palladium), base metal oxides
(vanadium/titanium are most common), Or zeolites (crystalline
aluminosilicate compounds).. The performance of the SCR system
is influenced by the flue gas temperature and moisture, fuel
sulfur and ash content, NH3/NOyx ratio, NOx concentration at
the SCR inlet, oxygen level, flue gas flow rate, space
velocity, and catalyst condition. While SCR has been applied
to some natural gas- and oil-fired boilers in the United
States (primarily California), its use in the United States on
coal has been limited to slip-stream applications. Several _
full-scale utility coal-fired SCR systems are currently under
construction on new boilers. . ‘

Flue gas treatment controls can be combined with combustion |
controls to achieve additional NOx reduction. Conceivably,
either SNCR or SCR could be used with LNB; however, there is
only one application of SNCR + LNB in the United States on a
coal-fired boiler and it is in the early stages of
demonstration. When combining LNB with SCR or SNCR, the
design of the system is critical if the two NOx control
technologies are to achieve maximum reduction. In some cases,
LNBE can be designed to achieve the majority of the NOx
reduction, with SNCR or SCR used to "trim" the NOy to the
desired level.




2.5 SUMMARY OF PERFORMANCE AND COSTS OF NO, CONTROLS FOR
COAL-FIRED UTILITY BOILERS
2.5.1 Performance of NO, Controls _

A summary of NOx emissions from coal-fired boilers with
combustion NOy controls is given in table 2-3. The table
includes the NOx reduction potential, typical uncontrolled NOx
levels, expected controlled NOy levels for pre-NSPS boilers,
and typical baseline NOy levels for NSPS boilers. The typical
uncontrolled NO, levels for the pre-NSPS boilers are based on
actual retrofit applications, published information, the
National Utility Reference File (NURF), the EPA's AP-42
emission factors, and utility-supplied’data. For the NSPS
boilers, the.typical,baseline levels were derived from-Nog
emission data from boilers with NOx controls as original
equipment. The tYpical uncontrolled NOyx level for a 9pecific
boiler may differ from those shown in table 2-3. Therefore,
the expected controlled NOy emission level should be.adjﬁsted
accordingly. The expected controlled NOy levels were
determined by applying the range of NOx reduction potential
(percent) to the typical uncontrolled NOy level.

Operational modifications have been shown to reduce NOy
emissions by 10-20 percent from pre-NSPS tangential boilers
from uncontrolled NOy levels of 0.7 lb/MMBtu to approximately
0.55 to 0.65 lb/MMBtﬁ. Pre-NSPS wall-fired boilers with
uncontrolled NOy, emissions of 0.9 1b/MMBtu may be reduced to
0.7 to 0.8 1b/MMBtu with operational modifications. Post-NSPS
boilers may be originally designed to operate with LEA as part
of the overall NO; control strategy; therefore, additional |
reductions with operational modifications may only reduce NOy
marginally. There were no data available concerning the
effectiveness of operational controls on these boilers.

Emissions data from two pre-NSPS boilers indicate that
- retrofit of OFA can reduce NOyx emissions from such boilers by
20 to 30 percent. Based on these data, pre-NSPS tangential
boilers with retrofit OFA are expected to have controlled NOy
emissions of 0.50 to 0.55 1lb/MMBtu. Corresponding wall-fired
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boilers with uncontrolled NOy levels of 0.9 1b/MMBtu are
expected to have controlled NOy emissions of 0.60 to

- 0.70 1b/MMBtu with OFA. However, not all pre-NSPS boilers
have enough furnace height above the top row of burners to
accommodate OFA ports.

Some NSPS boilers have OFA as part of the original NOx
control equipment. One application of OFA on a subpart Da
boiler was shown to reduce NOyx by approximately 25 percent;
however, OFA and the original LNB did not reduce NOx to the
NSPS limit and the LNB had to be replaced. Another
application of OFA on a subpart D boiler reduced NOx by
approximately 20 percent to the NSPS limit. There are no data
available concerning the effectiveness of retrofitting OFA on
a NSPS boiler. o ' ‘

With retrofit LNB (including CCOFA) on pre-NSPS tangential
boilers, the controlled NOy emissions are expected to be
reduced by 35 to 45 percent to 0.40 to 0.45 1lb/MMBtu from an
uncontrolled level of 0.7 1b/MMBtu. With LNB on wall-fired
boilers, the NOy emissions are expected to be reduced by 40 to

50 percent to 0.45 to 0.55 1b/MMBtu from an uncontrolled level

of 0.9 1b/MMBtu. The cell boilers are also expected to

_ average 0.45 to 0.50 1b/MMBtu with LNB (50 to 55 percent
reduction) from an uncontrolled level of 1.0 1b/MMBtu;
Results from 18 retrofit applications were used to estimate
the effectiveness of LNB. | | _

Some post-NSPS boilers were designed with LNB to meet the
subpart D and subpart Da standards and the NO, emissions are
in the range of 0.35 to 0.50 1b/MMBtu for tangential boilers
and 0.25 to 0.50 lb/MMBtu for wall boilers. Results from 22
new applications were used to estimate the effectiveness of
LNB. ' '

For the pre-NSPS tangential boilers with retrofit LNB + OFA,
the controlled NOyx em1551ons are expected to be reduced by 40
to 50 percent to 0.35 to 0.40 lb/MMBtu from an uncontrolled
level of 0.7 lb/MMBtu. Wall-fired boilers with uncontrolled
NOx of 0.9 lb/MMBtu are expected to be reduced to 0.35 to
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0.45 1b/MMBtu (50 to 60 percent reduction) with LNB + AOFA.
cell-fired boilers are expected to average 0.40 to

0.50 1b/MMBtu (50 to 60 percent reduction) from an _
uncontrolled level of 1.0 1b/MMBtu. The effectiveness of
LNB + OFA is based on 11 retrofit applications.

Some post-NSPS boilers were designed with LNB + AOFA to meet
the subpart D and subpart Da standards and the NOx emissions
range from 0.25 to 0.50 1b/MMBtu for tangential and 0.40 to
0.55 1b/MMBtu for wall boilers. As a retrofit control, the
combination of LNB + AOFA may be applicable to only the
boileré with sufficient furnace height and volume to
accommodate the additional air ports. The effectiveness of
LNB + AOFA on new boilers is based on results from two
applications. ‘

With reburn retrofit on pre-NSPS tangential boilers, the NOyx
emissions are expected to be 0.30 to 0.3% 1b/MMBtu. For the
wall-fired boilers, the NOy emissions are expected to be 0.35
to 0.45 1b/MMBtu, whereas the NOy emissions are is expected to
be 0.6 to 0.75 lb/MMBtu for cyclone boilers. These emission
rates are based on limited data from four reburn retrofit
projects on pre-NSPS boilers less than 200 MW in size. Based
on these data, 50 to 60 percent reduction is estimated for all
boiler types. One natural gas co-firing application on a
450 mw coal-fired boiler yielded only 20 to 30 percent NOx
reduction. There are no NSPS boilers in operation with reburn
as original or retrofit equipment. However, it is estimated
that these boilers can achieve approximately the same
reduction (50 to 60 percent)'as pre-NSPS boilers since they
may have large furnace volumes and should be able to
accommodate the reburn and completion air ports above the top
row of burners. |

As shown in table 2-4, applying SNCR to pre-NSPS tangential
boilers is expected to reduce NOx emissions by 30 to
60 percent to 0.30 to 0.50 lb/MMBtu. For wall-fired boilers,
the NOx emissions are expected to average 0.35 to
0.65 1b/MMBtu with SNCR. It is estimated that the range of
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controlled NOx emigsions from the cell and cyclone boilers
retrofit with SNCR would be 0.40 to 0.70 1lb/MMBtu and 0.60 to
1.10 1lb/MMBtu, respectively. However, SNCR has not been
applied to any cell and cyclone boilers at this time. The
predicted effectiveness of SNCR for pre-NSP§ boilers is based
on three full-scale applications on coal-fired boilers (two
wall-fired and one vertical-fired). There are no data
available from any conventional NSPS utility boilers with SNCR
as original or retrofit equipment. However, the same NOy
reduction (30 to 60 percent) is expected on these boilers as
on pre-NSPS boilers. ' _

The FBC boilers designed with SNCR as original equipment
have NOyx emissions 50 to 80 percent jower than FBC boilers
without SNCR and have emissions in the range of 0.03 to

0.10 1b/MMBtu. This is based on results from seven original
applications of SNCR on FBC boilers.

The remaining flue gas treatment control, SCR, has had very
1imited application on coal firing in the United States.
However, SCR is being used in Japan and Germany on a number of
coal-fired utility boilers. Primary concerns associated with
transfef of foreign SCR performance data to the U.S. are the
higher sulfur and alkali céntents in many U.S. coals, both of
which mﬁy act as catalyst poisons and thereby reduce catalyst
activity and jifetime. The predicted effectiveness of SCR is
75 to 85 percent, which is based on data from thrée pilot-
scale applications in the U.S. By retrofitting SCR on
pre-NSPS boilers, the estimated NOx emissions from tangential
and wall boilers would be 0.10 to 0.20 1b/MMBtu'and 0.15 to |
0.25 1lb/MMBtu, respectively. predicted emissions from cell
and cyclone boilers would be 0.15 to 0.25 1b/MMBtu and 0.25 to
0.40 lb/MMBtu, respectively. Since there are no full-scale
applications on coal in the United States, the expected ranges
of NOy reduction and NOx emissions are estimated.

The comwbination of LNB + SNCR is estimated to reduce NOx
emissions by 50 to 80 percent;'however,sthis combination of
controls has only been applied to one coal-fired boiler and
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the results indicate approximately 70 percent reduction. For
the pre-NSPS tangential boiiers, the NOy emissions are
expected to be in the range of 0.15 to 0.35 lb/MMBtu The NO4
emissions from the pre-NSPS wall boilers are expected to be in
the range of 0.20 to 0.45 1b/MMBtu. For the cell boilers, the
NOx emissions are expected to be in the range of 0.20 to
0.50 1b/MMBtu. For the NSPS boilers, the NOx reduction from
LNB + SNCR is expected to be the same as SNCR alone (30 to
60 percent from the NSPS levels) since these boilers already
have LNB as original equipment. However, there are no
applications of LNB + SNCR as original egquipment on new
boilers yet. | | -

By combining LNB + AOFA + SCR, it is'estimated that 85 to
95 percent NOy reduction can be achieved on pre-NSPS boilers.
For these boilers, the NOx emissions are expected to be in the
range of 0.05 to 0.15 1b/MMBtu, depending on boiler type. For
the NSPS boilers, the NOx reduction are expected to be the
same as for SCR alone (75 to 85 percent from NSPS levels),
since these boilers mey already have LNB + AOFA as original
equipment. However, there are no applications of LNB + AQFA +
SCR as original equipment in operation on new boilers at this
time. This combination-of controls has not been applied to
existing pre-NSPS boilers either; therefore, these reductions
and controlled levels are estimates only and have not been
demonstrated.
2.5.2 Costs of NO, Controls

The estimated costs for controlling NOy emissions are based
on data from utilities, technology vendors, and published
literature. The actual costs for both new and retrofit cases
depend on a number of boiler- spec1f1c factors, and a
partlcular Nox control technology may not be applicable to
some individual boilers. The costs presented here are meant
to provide general guidance for determining costs for similar
situations. The costs are presented in 1991 dollars.
However, cost indices for 1992 dollars are only 0.85 percent




lower than 1991 dollars; therefore, the values in this section
are indicative of the 1991-1992 timeframe.

Table 2-5 presents a summary of the cost effectlveness of
various NOyx controls applied to coal-fired utility boilers.

The costs presented are for LNB, LNB + AOFA, reburn, SNCR,

SCR, LNB + SNCR, and LNB + AOFA + SCR applied to both
tangential and wall boilers. Costs for reburn, SNCR, and SCR
are given for cyclone boilers, and costs for SNCR are given
for FBC boilers. The costs are based on various factors as
described in chapter 6. The cost estimates for SNCR are for a
low-energy, urea-based SNCR system as they were found to be
comparable in cost to a high-energy NH3-based SNCR system. '

For tangential boilers, the cost effectiveness ranges from a
low of $100 per ton for LNB (a new 600 MW baseload boiler) to
a high of $12,400 per ton for LNB + AOFA + SCR (a 100 MW
peaking boiler and a 2-year catalyst life). The retrofit of
LNE or LNB + AOFA is estimated to result in the least cost per
ton of NOy removed for the tangential boilers. The cost |
effectiveness for LNB ranges from $100 to $1,800 per ton. The}
cost effectiveness for LNB + AOFA ranges from $170 to $3,300
per ton. The primary cause of the higher cost effectiveness
values is boiler duty cycle (i.e., capacity factor). The
retrofit of SCR or LNB + AOFA + SCR is estimated to be the

| highest cost per ton of NOy removed. The cost effectiveness
for SCR ranges from $1,580 to $12,200 per ton. The cost
effectiveness for LNB + AOFA + SCR ranges from $1,500 to
$12,400 per tonmn. |

Figure 2-1 shows the NOyx control cost effectlveness for a
300 MW baseload tangential boiler. As shown, LNB and LNB +
AOFA have the lowest cost effectiveness for controlled NOx
levels of 0.35 to 0.45 1b/MMBtu. The large variation in
reburn cost effectiveness (on this and other figures in the
section) is driven primarily by the fuel price differential
between natural gas and coal ($0.50 to $2.50/MMBtu). The cost
effectiveness of individual control techniques increases as
the controlled NOy emissions decrease.
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For wall boilers, the cost effectiveness ranges from a low
of $180 per ton for LNB (a new 600 MW baseload boiler) to a
high of $11,100 for LNB + AOFA + SCR (a 100 MW peaking boiler
and a 2-year catalyst life). Typically, the retrofit of LNB
or LNB + AOFA is estimated to result in the lowest cost per
ton of NOy removed for the wall boilers. The cost _
effectiveness for LNB ranges from $180 to $3,200 per ton. The
cost effectiveness for LNB + AOFA ranges from $270 to $5,470
per ton. The retrofit of SCR or LNB + AQOFA + SCR is estimated
to have the highest cost per ton of NOy removed. The cost
effectiveness of SCR ranges from $1,290 to $9,650 per ton.

The cost effectiveness of LNB + AOFA + SCR ranges from $1,300
to $11,100 per ton. |
'Figure 2-2 shows the NOy control cost effectiveness for a

300 MW baselbad wall boiler. As shown, LNB and LNB + AOFA
have the lowest cost effectiveness for controlled NOy levels
of 0.35 to 0.55 1b/MMBtu. Reburn is also cost effective if
the price of the reburn fuel is economical. )

Estimated cost effectiveness for reburn, SNCR, and SCR for
cyclone boilers are also shown in table 2-5. The retrofit of
reburn and SNCR has the lowest estimated cost per ton of NOyx
removed whereas retrofitting SCR has the highest. The cost
effectiveness of reburn ranges from $290 to $2,770 per ton and
the cost effectiveness of SNCR ranges from $510 to $1,780 per
ton. The cost effectiveness of SCR ranges from $810 to $5,940
per ton. Figure 2-3 shows the NOx control cost effectiveness .
' for a 300 MW baseload cyclone boiler. The large wvariation in
SNCR cost effectiveness is driven primarily by the variability
in chemical costs and NOx reductions among individual boilers.
' The cost effectiveness for SNCR applied to FBC boilers is.
given in table 2-6 and ranges from a low of $1,500 per ton
(200 MW baseload) to a high of $5,400 per ton (50 MW cycling).

In all cases, the factor having the greatest potential
impéct on the cost effectiveness of NOx controls is boiler
capacity factor. Depending on the control technology, the
cost effectiveness associated with reducing NOy emission from
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a peaking-duty boiler (10 percent capacity factor) is 2 to 5
times higher than for a baseload boiler (65 percent capac1ty
factor). Other significant factors influencing control
. technology cost effectiveness are the economic life of the
control éystem, the boiler size, and the uncontrolled NOy
level. : _
2.6 SUMMARY OF PERFORMANCE AND COSTS OF NOyx CONTROLS FOR
NATURAL GAS- AND OIL-FIRED UTILITY BOILERS
2.6.1 Performance of NO, Controls |
A summary of NOy emissions from natural gas- and oil- flred
boilers with retrofit combustion controls is given in
table 2-7. The table includes the NOy reduction potential for
each technology, typical uncontrolled NOy levels, and expected
controlled NOx levels. These data are based on actual
retrofit applications, published literature, NURF, the EPA's
~ AP-42 emission factors, and information obtained from
utilities. The. typical uncontrolled Nox‘levél for a specific
boiler may differ from those shown in table 2-7. Therefore,
the expected‘controlled NOy emission level should be adjusted‘
accordingly. The expected controlled NOy levels were
determined by applying the range of NOy reduction potential
(percent) to the typical uncontrolled NOy level.
For pre-NSPS tangential boiiers, the uncontrolled NOy level

of 0.30 1b/MMBtu is expected to be reduced to 0.15 to
0.20 1b/MMBtu (30 to 50 percent reduction) with operational
modifications such as BOOS + LEA. Corresponding pre-NSPS
wall-fired boilers with uncontrolled NOx emissions of
0.50 1lb/MMBtu are expected to be reduced to 0.25 to

0.35 1b/MMBtu with operational modifications. Data was not
available for operational controls on boilers subject to
subpart D and subpart Da standards; however, it is estimated
that these boilers may achieve approximately the same
- reduction (30 to 50 percent) as the pre-NSPS boilers. The
effectiveness of ope:ationai controls are based on eight
retrofit applications. | .
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The pPre-NSPS tangentlal b011ers are expected to reduce NO,
from an uncontrolled level of 0.30 1b/MMBtu to a controlled
NOy level of 0.15 to 0.20 1b/MMBtu with FGR (45 to 55 percent
“reduction). Corresponding wall-fired boilers are expected to
have COntfolled'NOx emissions of 0.25 to 0.30 1b/MMBtu with
FGR. The post-NSPS boilers are expected to achieve the same
percent reduction as the pre-NSPS boilers (45 to 55 percent).
The effectlveness of FGR is based on two retrofit
applications. ‘ :

With retroflt OFA on pre-NSPS tangential bomlers, the
controlled Nox emissions are expected to be 0.15 to
0.30 1b/MMBtu and ‘'the wall-fired boilers are expected to be
0.30 to 0.45 1b/MMBtu. Some post-NSPS boilers may be designed
or retrofitted with OFA to meet the subpart D and subpart Da
standards and are expected to be in the range of 0.10 to
0.25 1b/MMBtu depending on fuel. | However, OFA is typically
combined with other combustion modifications such as LEA
rather than used alone. The estimated percent reductlon is
based on four applications of OFA + LEA_en_pre~NSPS:boi1ers.

With retrofit LNB on pre-NSPS tangential boilers, the
controlled NOx emissions are expected to be 0.15 to
0.20 1b/MMBtu and the wall-fired boilers are expected to be
0.25 to 0.35 1b/MMBtu (30 to 50 percent reduction). Some
post-NSPS wall and tangentlal boilers may be designed with LNB
to meet the subpart D and subpart Da standards and are in the
range of 0.10 to 0.25 lb/MNBtu depending on fuel. Results
from six pre-NSPS retrofit appllcatlons were used to estimate
the effectlveness of LNB. :

By comblnlng FGR + BOOS (or OFA) + LNB on pre-NSPS
tangential and wall b01lers, the controlled NOy emissions are
expected to be 0.05 to 0. 20 1b/MMBtu. Some post-NSPS boilers
may be designed with FGR + BOOS‘+ LNB that meet the subpart D
and subpart Da standards and are in the range of 0.05 to

0.25 1b/MMBtu. These results are based on two pre-NSPS
boilers.




With reburn on pre-NSPS tangential and wall boilers firing

0il, the NOy emissions are estimated to be 0.10 to
0.20 1b/MMBtu and 0.20 to 0.25 lb/MMBtu, respectively.
However, reburn experience on oil-fired boilers is very
1imited and the expected controlled emissions are estimated.
There are no post-NSPS oil- fired boilers with reburn as
original equipment. The effectiveness of reburn on oil- fired
boilers is based on the coal-fired experience and is estimated
to be 50 to 60 percent reduction.

Table 2-8 presents a summary of expected NOy emissions from

natural gas- and oil- fired boilers with flue gas treatment
alone and combined with combustion controls. For pre-NSPS
tangential b01lers with SNCR, the expected controlled NOx
level is expected to be 0.20 to 0.25 1b/MMBtu, whereas the
range for wall-fired boilers is 0.30 to 0.40 lb/MMBtu (25 to
40 percent). These results are based on two SNCR application
on oil boilers and ten SNCR applications on natural gas'
boilers. For post-NSPS boilers with SNCR, the expected
controlled NOyx level is 0.10 to 0.25 lb/MMBtu retrofit
depending on boiler type. However, there are no data from
post-NSPS boilers with SNCR, nor are there data from post- -NSPS
boilers designed with SNCR as original equlpment Therefore,
these reductions and controlled levels are estlmated

For pre-NSPS tangential boilers, the expected controlled NOyx
is 0.03 to 0.10 1b/MMBtu with retrofit SCR. The expected
controlled NO, for wall-fired boilers is 0.05 to
0.10 lb/MMBtu. For post-NSPS boilers, the expected controlled
NOx levels is 0.05 to 0.25 lb/MMBtu depending on boiler type.
These results are based on one pilot-scale and one full-scale
application. There are no data from post-NSPS boilers with
retrofit SCR, nor are there data from post-NSPS boilers
designed with SCR as original equipment. Therefore, these
reductions and controlled levels are estimates only.

The comblnatlon of LNB + SNCR is estimated to reduce NOx
emissions by 70 to 80 percent and data from one application of
LNB + OFA + SNCR on a coal-fired boiler shows 70-85 percent
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reduction across the load range. For pre-NSPS tangential

poilers, the NOy emissions are expected to be in the range of
0.05 to 0.10 1b/MMBtu. For pre-NSPS wall-fired boilers, the
NOy emissions are expected to be 0.01 to 0.15 1b/MMBtu. There
are no data from post-NSPS boilers with LNB + SNCR as original
or retrofit equipment; therefore, these reductions and are
estimated controlled levels.
By combining LNB + AOFA + SCR, it is estimated that 85 to
95 percent NOyx reduction can be achieved. The NOx emissions
are expected to be in the range of 0.02 to 0.1 1b/MMBtu and
the post-NSPS boilers are expected to be in the range of 0.05
to 0.25 1lb/MMBtu. This control technology combination has not
yet been applied to existing or new boilers; therefore, these
reductions and controlled levels are estimates.
2.6.2 Costs of NOy Controls
Table 2-9 presents a summary of the cost effectiveness of
various NOy controls applied to hatural gas- and oil-fired
utility boilers. The costs presented are for LEA + BOOS, LNB,
LNB + AOFA, reburn, SNCR, SCR, LNB + SNCR, and LNB + AQFA +
SCR applied to both tangential and wall boilers. The costs
are based on the various factors described in chapter 6.
For tangential boilers, the cost effectiveness ranges from a
low of $70 per ton for LEA + BOOS (a new 600 MW baseload
‘boiler) to a high of $16,900 per ton for LNB + AOFA + SCR
(100 MW oil-fired peaking boiler and a 3-year catalyst life).
The retrofit of LEA + BOOS or LNB is estimated to have the
lowest cost per ton of NOx removed for the tangential boilers.
The cost effectiveness value of LEA + BOOS ranges from $70 to
$500 per ton. The cost effectiveness value for LNB ranges |
from $250 to $4,200 per ton. The retrofit of SCR or LNB +
AOFA + SCR is estimated to have the highest cost per ton of
NOx removed. The cost effectiveness value of SCR ranges from
$1,530 to $11,700 per ton for natural gas- -fired units and from
- $1,800 to $14,700 per ton for oil- -fired units. The cost
effectiveness of LNB + AOFA + SCR ranges from $1,650 to
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$14,200 per ton for natural gas-fired units and from $1,900 to
$16,900 per ton for oil-fired units. Figure 2-4 shows the NO
control cost effectiveness for a 300 MW baseload tangential
boiler. As shown, LEA + BOOS and LNB have the lowest cost
effectiveness value for controlled NOy emissions of 0.1 to
0.2 1b/MMBtu. For controlled NOyx emissions of less than
0.1 1b/MMBtu the cost effectiveness increases. '
‘Fdr the wall boilers, the cost effectiveness ranges from a
low of $40 per ton for LEA + BOOS (a new 600 MW baseload
boiler) to a high of $12,700 per ton for LNB + AOFA 4 SCR
(100 MW oil-fired peaking boiler and a 3-year catalyst life).
The retrofit of LEA + BOOS or LNB is estimated to have the |
lowest cost per ton of NOyx removed for the wall boilers. The
cost effectiveness of LEA +'BOOS ranges from $40 to $300 per
ton. The cost effectiveness of LNB ranges from $300 to $5,800
“Per ton. The retrofit of SCR or SCR + LNB + AOFA is estiméted
Lo be the highest cost per ton of NOyx removed. The cost
effectiveness of SCR ranges from £970 to $7,200 per ton for
natural gas-fired units and from $1,130 to $8,940 per ton for
.oil-fired units. Figure 2-5 shows the NOy control cost
effectiveness for a 300 Mw baseload wall boiler. As shown,
LEA + BOOS and LNB have the lowest cost effectiveness for
controlled NOy emissions of 0.25 to 0.35 1b/MMBtu. For

controlled NOy emissions of less than 0.25 1b/MMBtu, the cost
effectiveness increases.

The effects of various pPlant parameters (e.g., capacity
factor, economic life, boiler size, uncontrolled NOyx levels)
on the cost effectiveness of individual NOx controls are
similar to those for coal-fired boilers. Due to lower
uncontrolled NOy levels, the cost effectiveness of applying
controls to 0il- and natural gas-fired boilers is higher than
for coai—fired boilers. |
2.7 SUMMARY OF IMPACTS OF NOy CONTROLS _

2.7.1 Impacts from'ggmbggtion'NOE Controls

Combustion'Nox controls suppress both thermal and fuel NOy

formation by reducing the peak flame temperature and by |
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delaying the mixing of fuel with the combustion air. However,

this can result in a decrease in boiler efficiency for several
reasons. For coal-fired boilers, an increase in carbon
monoxide (CO) emissions and unburned carbon (UBC) levels, as
well as changes in the thermal profile and heat transfer
characteristics of the boiler, may result from combustion
controls. For natural gas- and oil-fired boilers, CO
emissions ¢ould also increase, although adverse effects are
infrequently reported from these boilers. The effects from
combustion NOx controls are influenced by boiler design and
operational characteristics such as furnace type, fuel type,
condition of existing equipment, and age.

Table 2-10 summarizes the impacts from combustion NOx
controls on fossil fuel-fired utility boilers. Based on
limited data, the CO emissions increase on most installations
with use of operational modifications on coal-fired boilers
and decrease on natural gas and oil boilers. There were no
- reported effects on UBC levels or boiler efficiency with the
use of operational modifications. .

overfire air on one coal-fired boiler resulted in a 5 to
85 parts per million (ppm) decrease in CO emissions from
uncontrolled levels. The level of CO emissions with OFA on
the natural gas- and oil-fired boilers ranged from 26-830 ppm.
The UBC level for coal-fired boilers increased approximately
two- to three-fold with OFA and the boiler efficiency
decreased by 0.4 to 0.7 percentage points. |

Low NOx burners retrofit on coal-fired boilers resulted in
- an increase of both CO and UBC for most applications, and the
boiler efficiency decreased by 0.5 to 1.5 percentage points.
For natural gas- and oil-fired boilers, the controlled level
of CO was 1 to 220 ppm. There were no reported effects on
boiler efficiency for these boilers.

The combination of LNB and OFA on coal-fired boilers
resulted in a slight increase in both CO and UBC. The boiler
efficiency decreased by 0.2 to 0. 9 percentage points.. There
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were no reported effects on the natural gas- and oil-fired
boilers with LNB and OFA.

With reburn applied to coal-fired b01lers, both CO and UBC
increased and the boiler efficiency decreased by 0.5 to
1.5 percentage points. There were no data available for
reburn applied to oil-fired boilers.

2.7.2 Impaéts from Flue (Gas Treatment Controls

Flue gas treatment controls remove NOyx by a reaction of
injected NH3 or urea in the upper furnace or the convective
pass or by a reaction of NH3 in the presence of a catalyst at
lower temperatures. These controls can produce unreacted
reagents in the form of NH3 slip which can be emitted into the
atmosphere or can be adsorbed onto the fly ash. The NH3 slip
can also react with sulfur trioxide (SO3) from firing coal or
0il and deposit as ammonium sulfate compounds in downstream
equipment. Nitrous oxide (N20) emissions are typically higher
on boilers with urea-based SNCR systems. Very limited data
are available; however, NH3-based SNCR may yield N3O levels
equal to 4 percent of the NOx reduced and urea-based SNCR may
yield N0 levels of 7 to 25 percent of the NOy reduced. Flue
gas treatment controls also require additional energy to run
pumps, heaters, auxiliary process equipment, and to overcome
any additional pressure drop due to the catalyst beds or from
downstream equipment that may be plugged. The additional
pressure drop from downstream equipment plugging could
ultimately affect unit availability. '

Table 2-11 summarizes the impacts from SNCR and SCR systems.
Increases of CO emissions due to the urea-based SNCR system
have been reported since urea (NH,CONHy) has CO bound in each
molecule injected. If that CO is not oxidized to CO3, then CO
will pass through to the stack. Ammonia-based SNCR does not
contain bound CO, so use of NHy as an SNCR reagent would not
increase stack emissions of either CO or COz. The NHj slip
for these fossil fuel-fired boilers ranged from 10 to 110 ppm.
For FBC, the CO emissions were in the range of 10 to 110 ppm
and NH3 slip was in the range of 20 to 30 ppm.
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Limited data were available for installation of SCR in the
United States.

There were no data for SCR on CO emissions

from the pilot- or full-scale applications. ‘The NH3 slip for

the pilot-scale SCR application on coal and oil was less than
20 ppm. The NH3 slip for one full-scale SCR application on
natural gas and oil was in the range of 10 to 40 ppm.






3.0 OVERVIEW AND CHARACTERIZATION.OF UTILITY BOILERS

This chapter presents an overview and characterization of
utility boilers. The chapter is divided into four main
sections: utility boiler fuel use in the United States,
fossil fuel characterlstlcs, utility boiler designs, and the
impact of fuel properties on boiler design.
3.1 UTILITY BOILER FUEL USE IN THE UNITED STATES

Approximately 71 percent of the generating capability of
electrical power plants in the United States is based on
fossil fuels, as shown in figure 3-1.' Generating capability
is the actual electrical generating performance of the unit.
The primary fossil fuels burned in electric utility boilers
are coal, oil, and natural gas. Of these fuels, coal is the
most widely used, accounting for 43 percent of the total U. S.
generating capability and 60 percent of the fossil fuel |
generating capability. Coal generating capacity is followed
by natural gas, which represents 17 percent of the total
generating capability and 24 percent of the fossil fuel
generating capability. 0il represents 11 percent of the total
and 15 percent of the fossil fuel generating capability.

As shown in figure 3-2, most of the coal-firing
capability is east of the Mississippi River, with the
51gn1f1cant remainder being in Texas and the Rocky Mountain
reglon - Natural gas is used primarily in the South Central
gtates and California as shown in figure 3-3. 0il is
predominantly used in Florida and the Northeast as shown in
figure 1-4.% TFuel economics and environmental regulations
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frequently affect regional use patterns. For example, coal is
not used in California because of stringent air quality
limitations. N ‘ :
3.2 PFOSSIL FUEL CHARACTERISTICS

This section contains information on the three fossil

fuels used for electric power generation: coal, oil, and
natural gas.

3.2.1 Coal _ _

Coals are classified by rank, i.e., according to their
progressive alteration in the natural metamorphosis from
lignite to anthracite. Volatile matter, fixed carbon,
inherent.moisturefand oxygen are all indicative of rank, but
no one item completely defines it. The American Society for
Testing and Materials (ASTM) classified coals by rank, ‘
according to fixed carbon and volatile matter content, or
heating (calorific) value. Calorific value is calculated on a
moist, mineral-matter-free basis and shown in table 3-1.° The
ASTM classification for high rank (older) coals uses volatile
matter and fixed carbon contents. The coal rank increases as

- the amount of fixed carbon increases and the amounts of
volatile matter and moisture decrease. Moisture and volatile
matter are driven from the coal during its metamorphism by
pressure and heat, thus raising the fraction of fixed carbon.
These values are not suitable for ranking low rank coals.
‘Lower ranking (younger) coals are classified by calorific
(heating).value and caking (agglomerating) properties which
vary little for high rank coals but appreciably and '
systematically for low rank coals.

The components of a coal are customarily reported in two
different analyses, known as "proximate" and "ultimate."
Proximate analysis separates coal into four fractions:

(1) water or moisture; (2) volatile matter, consisting of
gases and vapors driven off when coal is heated; (3) fixed
carbon, the coke-like residue that burns at higher
temperatures after_the volatile matter has been driven Off;

3-6
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and (4) mlneral 1mpur1t1es, or coal ash, left when the coal is.
completely combusted. ‘

In addition to proximate analysis, which gives
information on the behavior of coal when it is heated,
"ultimate analysis" identifies the primary elements in coal.

- These elements include carbon, hydrogen, nitrogen, oxygen, and
sulfur. Ultimate analyses may be given on several bases,
according to the application. For coal classification, the
moist, mineral-matter-free basis is generally used. For
combustion calculations, coal is analyzed as-received,
including moisture and mineral matter. Table 3-2 presents
sources and analyses of various ranks of as-received coals.®’
The nitrogen contents of these coals are generally less than
2 percent and does not vary systematically with coal rank.

Various physical properties of coal such as the type and
distribution of mineral matter in the coal and the coal's
"slagging" tendencies are of importance when burning coal.
‘Mineral matter influences options for washing the coal to

remove ash and sulfur before combustion, the performance of .
air pollutlon control equipment, and the disposal
characteristics of ash collected from the boiler and air
pollution control equipment. Slagging properties influence
the selection of boiler operating conditions, such as furnace
operating temperature and excess air levels, and the rate and
efficiency of coal conversion to usable thermal energy.

3.2.1.1 Anthracite Coal Anthracite is a hard,
slow- -burning coal characterlzed by a high percentage of fixed
carbon, and a low percentage of volatlle matter. Anthracite
coals typically contain 0.8 to 1.0 weight-percent nitrogen.®
Because of its low volatile matter, anthracite is difficult to
ignite and is not commonly burned in utility boilers.

Specific characteristics of anthracitic coals are shown in

tables 3-1 and 3-2. 1In the United States, commercial
~anthracite production occurs almost exclu51vely in

Pennsylvanla. ‘
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3.2.1.2 Bituminous Coal. By far the largest group,
bituminous coals are characterized as having a lower
fixed-carbon content, and higher volatile matter content than
anthracite. Typical nitrogen levels are 0.9 to 1.8 weight-
percent.® Specific characteristics of bituminous c¢oals are

shown in tables 3-1 and 3-2. Bituminous coals are the prlmary
coal type found in the United States, occurring throughout -
much of the Appalachlan, Midwest, and Rocky Mountain regions.
Key distinguishing characteristics of bituminous coal are its
relative volatile matter and sulfur content, and its slagging
and agglbmerating characteristics. As a general rule, low-
‘volatile-matter and low-sulfur-content bituminous coals are
found in the Southern Appalachian and the Rocky Mountain
regions. Although the amount of volatile matter and sulfur in
coal are independent of each other, coals in the northern and
central Appalachian region and the Midwest frequently have
medium to high contents of both..

3.2.1.3 Sgbbltumlnoug Coal. Subbituminous coals have
Stlll higher moisture and volatile matter contents. Found
primarily in the Rocky Mountain region, U. S. subbituminous
coals generally have low sulfur content and llttle tendency to
‘agglomerate The nitrogen content typically ranges from 0.6
to 1.4 we:.ght-’percent_.a Specific characteristics of
subbituminous coals are shown in tables 3-1 and 3-2. Because
of the low sulfur content -in many subbituminous coals, their
use by electric utilities grew rapidly in the 1970's and
1980's when lower sulfur dioxide (802) emissions were
mandated. Their higher moisture content and resultlng 1ower
heating value, however, influence the economics of shlpplng
and their use as an alternate fuel in bozlers orlglnally
des1gned to burn bituminous coals.

3.2.1.4 Lignite. Lignites are the least metamorphesized
coals and have a moisture content of up to 45 percent,
‘resulting in lower heating values than hlgher ranklng coals
The nitrogen content of lignites generally range from 0.5
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to 0.8 weight-percent.a Specific characteristics of lignite
are shown in tables 3-1 and 3-2. Commercial lignite
production occurs primarily in Texas and North Dakota.
Eecause of its high moisture content and low heating value,
lignite is generally used in power plants located near the
producing mine.
3.2.2 0il

- Fuel oils produced from crude oil are used as fuels in
the electric utility industry. The term "fuel o0il" covers a
broad range of petroleum products, from a light petroleum
- fraction similar to kerosene or gas oil, to a heavy residue
left after distilling off fixed gases, gasoline, gas oil, and
other lighter hydrocarbon streams.

To provide commercial standards for petroleum reflnlng,
specifications have been established by the ASTM for several
grades of fuel oil and are shown in table 3-3.° Fuel oils are!
graded according to specific gravity and viscosity, the
lightest being No. 1 and the heaviest No. 6. Typical
properties of the standard grades of fuel oils are given in
table 3-4."""

Compared to ¢oal, fuel oils are reiatively easy to burn.
Préheating is not required for the lighter oils, and most
heavier oils are also relatively simple to handle. Ash
content is minimal compared to coal, and the amount of
particulate matter (PM) in the flue gas is correspondingly
‘small.

Because of the relatively low cost of No. 6 residual oil
compared with that of lighter oils, it is the most common fuel
oil burned in the electric utility industry. Distillate oils
are alsgo burned, but because of higher cost are generally
limited to startup operations, peaking units, or applications
where low PM and SO, emissions are required. |

The U. §. supply of fuel oils comes from both domestic
and foreign production. The composition of individual fuel
oils will vary depending on the source of the crude oil and
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~ the extent of refining opeérations. Because of these factors
and the economics of oil transportation, fuel 0il supplies
vary in composition across the United States, but are
relatively uniform with the exception of sulfur content. In
general, ash content varies from nil to 0.5 percent, and the
nitrogen content is typically below 0.4 weight percent for

grades l through 5 and 0.4 to 1.0 welght percent for
grade 6.

3.2.3 Natural Gas _

Natural gas is a desirable fuel for steam generation
because it is practically free of noncombustible gases and
residual ash. _When burned, it mixes very efficiently with
air, providing complete combustion at low excess air levels
and eliminating the'need for particulate control systems.

- The analyses of selected samples of as- collected natural
gas from U. 8. fields are shown in table 3-5. Prior to
distribution, however, most of the inerts (carbon dioxide
[CO2] and nitrogen), sulfur compounds, and liquid petroleum
gas (LPG) fractions are removed during purification processes.
As a result, natural gas supplies burned by utilities are
generally in excess of 90 percent methane, with nitrogen
contents and typically ranging from 0.4 to
0.6 percent. 13:24,15

Although the free (molecular) hydrogen content of natural
gas is low, the total hydrogen content is high. Because of
the high hydrogen content of natural gas relative to that of
0il or coal, more water vapor'is formed during combustion.
Because of the latent heat of water, the efficiency of the
steam generation is lowered. This decrease in efficiency must
be taken into account in the design of the boiler and when -
evaluating the use of natural gas versus other fuels.

3.3 VUTILITY BOILER DESIGNS

The basic purpose of a utility boiler is to convert the
chemical energy in a fuel 1nto thermal energy that can be used
by a steam turbine. To achieve this objective, two
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fundamental processes are necessary: combustion of the fuel
by mixing with oxygen, and the transfer of the thermal energy
from the resulting combustion gases to working £luids such as
hot water and steam. The physics and chemistry of combustion,
‘and how they relate to nitrogen oxides (NOy) formation, are
discussed in chapter 4 of this document. The objective of
this section is to provide background information on the basic
physical components found in utility boilers and how they work
together to prdduce steam. _

3.3.1 Fundamentals of Boiler Design and Operation

A utility boiler consists of several major subassemblies
as shown in figure 3-5. These subassemblies include the fuel
preparation system, air supply system, burners, the furnace,
and the convective heat transfer system. The fuel preparation
system, air supply, and burners are primarily involved in
converting fuel into thermal energy in the form of hot
combustion gases. The last two subassemblies are involved in
the transfer of the thermal energy in the combustion gases to
the superheated steam required to operate the steam turbine
and produce electricity. | _

The NO, formation potential of a boiler is determined by
the design and operation of the fuel preparation equipment,
air supply, burner, and furnace subassemblies. The potehtial
for reducing Nox after it forms is primarily determined by the
design'of the furnace and convective heat transfer system and,
in some cases, bylthe operation of the air supply system.:

Three key thermal processes occur in the furnace and
convective sections of a boiler. First, thermal energy is
released during controlled mixing and combustion of fuel and
oxygen in the burners and furnace. Okygen is typically
supplied in two, and sometimes three, separateée air streams.

‘Primary‘air is mixed with the fuel béfore introducing the fuel
into the burners. 1In a coal-fired boiler, primary air is also
used to dry and transport the coal from the fuel preparation
system (e.g., the pulverizers)_tb the burners. Secondary air
is supplied through a windbox surrounding the burners, and is
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mixed with the fuel after the fuel is injected into the burner
zone. Finally, some boilers are equipped with tertiary air
(sometimes called "overfire air"), which is used to complete
combustion in boilers having staged combustion burners. A
detailed discussion of the importance of each of these air

supplies as it relates to NOy formation and control is
presented in chapter 4.

Utility boiler furnace walls are formed by multiple,
closely-spaced tubes filled with high-pressure water. Water
flows into these "water tubes" at the bottom of the furnace

~and rises to the steam drum located at the top of the boiler.
In the second key thermal process, a portion of the thermal
energy formed by combustion is absorbed as radiant energy by
the furnace walls. During the transit of water'through the
water tubes, the water absorbs this radiant energy from the
furnace. Although the temperature of the water within these
tubes can exceed 540 OC (1,000 OF) at the furnace exit, the
pressure within the tubes is sufficient to maintain the water
as a iiquid rather than gaseous steam.

At the exit to the furnace, typical gas temperatures are
1,100 to 1,300 ©C (2,000 to 2,400 ©F), depending on fuel type
and boiler design. At this point, in the third key process,
the gases enter the convective pass of the boiler, and the
balance of the energy retained by the high-temperature gases
is absorbed as convective energy by the convective heat

| transfer system (superheater, reheatef, economizer, and air
preheater). In the convective pass, the combustion gases are
typically cooled to 135 to 180 ©C (275 to 350 OF).

The fraction of the total energy that is emitted as
radiant enefgy depends on the type of fuel fired and the
temperature within the flame zone of the burner. Because of

- its ash content, coal emits a significant amount of radiant
energy, whereas a flame produced from burning gas is
relatively transparent and produces less radiant flux. As a
result, coal-fired boilers are designed'tb recover a
significant amount of the total thermal energy formed by
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combustion through radiant heat transfer to the furnace walls,
while gas-fired boilers are designed to recover most of the
total thermal energy through convection.

The design and operating conditions within the convective
pass of the boiler are important in assessing NOy control
options because two of these options--selective noncatalytic
reduction (SNCR) and selective catalytic reduction (SCR)--are
designed to operate at temperatures found in and following the

convective pass.
3.3.2 Furnace Confiqurations and Burner Types

There are a number of different furnace configurations
used in utility boilers. For purposes of presentation, these
configurations have been divided into four groups:
tangentially-fired, wall-fired, ¢yclone-fired, and
stoker-fired. Wall-fired boilers are further subdivided based
on the design and location of the burners.

3.3.2.1 Tangentially-Fired. The tangentially-fired
boiler is based on the concept of a single flame zone within
the furnace. As shown in figure 3-6, the fuel-air mixture 1n
a tangentlally fired boiler projects from the four corners of
the furnace along a line tangential to an imaginary cylinder
located along the furnace centerline.'® As shown in |
figﬁre 3-7, the burners in this furnace design are in a
stacked assembly that includes the windbox, primary fuel
supply nozzles, and secondary air supply‘nozzles.16

As fuel and air are fed to the burners of a
tangentially-fired boiler and the fuel is combusted, a
rotating "fireball" is formed. The turbulence and air-fuel
mixing that take place during the initial stages of combustion
in a tangentially-fired burner are low compared to other types
of boilers. However, asg the flames impinge upon each other in
the center of the furnace during the intermediate stages of
combustion, there is sufficient turbulence for effective
mixing and carbon burnout. Primarily because of their
tangential firing pattern, uncontrolled tangentially-fired
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boilers generally emit relatively lower NOy than other
uncontrolled boiler designs.

The entire windbox, including both the fuel and air
nozzles,_tilts uniformly. This allows the fireball to be
moved up and down within the furnace in order to control the
furnace exit gas temperature and provide steam temperature
control during variations in load. 1In addition, the tilts on
coal-fired units automaticaily compensate for the decreases in
furnace-wall heat absorptién due to ash deposits. As the
surfaces of the furnace accumulate ash, the heat absorbed from
the combustion products decreases. The burners are then
tilted upwards'to'increase the temperature of the flue gas
entering the convective pass of the boiler. Furnace wall
fouling will cause the heat to rise in the furnace normally
resulting in downward tilts, while fouling in the convective
sections can cause the reverse. Also, when convective tube
fouling becomes severe, soot blowers are used to remove the
coating on the tubes. The sudden increase in heat absorption
by the clean tubes necessitates tilting the burners down to
their original position. As the fouling of the tubes resumes,
the tilting cycle repeats itself.. _

Tangentially-fired boilers commonly burn coal. However,
oil or gas are also burned in tangential burners by inserting
additional fuel injectors in the secondary air components
adjacent to the pulverized-coal nozzles as shown in
figure 3-7.

Approximately 10 percent of the tangentially-fired
boilers are twin-furnace desigﬁ. These boilers, which are
generally larger than 400 megawatts (MW), include separate
identical furnace and convective pass components physically
joined side by side in a single unit. The flue gas streams
from each furnace remain separate until joined at the stack.

3.3.2.2 Wall-Fired. Wall-fired boilers are
characterized by multiple individual burners located on a
single wall or on opposing walls of the fufnace. In contrast
to tangentially-fired boilers that produce a single flame
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envelope, or fireball, each of the burners in a wall-fired
boiler has a relatively distinct flame zone. Depending on the
design and location of the burners, wall-fired boilers can be
subcategorized as single-wall, opposed-wall, cell, vertical,
arch, or turbo.

3.3.2.2.1 Single wall. Thé single-wall design consists
of several rows of circular-type burners mounted on either the
front or rear wall of the furnace. Figure 3-8 shows the
burner arrangement of a typical single-wall-fired boiler.’

In circular burners, the fuel and primary air are
introduced into the burner through a central nozzle that
imparts the turbulence needed to produce short, compact
flames. Adjustable inlet vanes located between the windbox .
and burner impart a rotation to the preheated secondary air
from the windbox. The degree of air swirl, in conjunction
with the flow~shaping contour of the burner throat,
establishes a recirculation pattern extending into the
furnace. After the fuel is ignited, this recirculation of hot,
combustion gases back towards the burner nozzle provides

8

*ﬁ thermal energy needed for stable combustion.
| Circular burners are used for firing coal, oil, or
+ natural gas, with some designs featuring multi-fuel

capability. A circular burner for pulverized coal, oil, and
natural gas firing is shown in figure 3-9." To burn fuel oil
at the high rates demanded in a modern boiler, circular
burners must be equipped with oil atomizers. Atomization
provides high oil surface area for contact with combustion
air. ‘The oil can be atomized by the fuel pressure or by a
compressed gas, usually steam or air. Atomizers that use fuel
pressure are generally referred to as uniflow or return flow
mechanical atomizers. Steam- and air-type atomizers provide

efficient atomization over a wide load range, and are the most
commonly used,

In natural gas-fired burners, the fuel can be supplied
through a perforated ring, a centrally located nozzle, or
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Figure 3-8. Single wall-fired boiler.™
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Gas-Fired Lighter . ' T

Figure 3-9. Circular-type burner for pulverized
. coal, o0il, or gas.
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radial spuds that con51st of a gas plpe with multiple holes at
- the end.

' Unlike tangentially-fired boiler designs, the burners in
wall fired boilers do not tilt. Superheated steam
temperatures are instead controlled by excess air levels, heat
input, flue gas recirculation, and/or steam attemperation
(water spray). In general, wall-fired boilers do not
incorporate the twin-furnace design. :

3.3.2.2.2 QOpposed-wall. Opposed-wall-fired boilers are |
similar in design to single wall-fired units, differing only |
in that two furnace walls are equipped with burners and the
furnace is deeper. The opposed-wall design consists of
several rows of circular-type burners mounted on both the

front and rear walls of the furnace as shown in figure 3-10.

3.3.2.2.3 Cell. Cell-type wall-fired boilers consist of
two or three closely-spaced burners, i.e., the cell, mounted
on opposed walls of the furnace. ‘Furneces‘equipped with cell

burners fire coal, o0il, and natural gas. Figure 3-11 shows a
natural gas-fired cell burner employing spud-type firing
elements.”’ The close spacing of these fuel nozzles generates
hotter, more turbulent flames than the flames in circular-type
burners, resulting in a higher heat release rate and higher
NOx emission levels than with circular burners. Cell-type
boilers typically have relatively small furnace sizes with
high heat input. |

3.3.2.2.4 Yertical-, arch- and turbo-fired.

Vertically-fired boilers use circular burners that are |
oriented downward, rather than horizontally as with wall-fired
boilers. Several vertical-fired furnace designs exist,
including roof-fired boilers, and arch-fired and-turbo-fired
boilers, in which the burners are installed on a sloped
section of furnace wall and are fired at a downward angle.

Vertically-fired boilers are used primarily to burn -solid
fuels that are difficult to ignite, such as anthracite. They
require less supplementary fuel than the horizontal wall- or
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Figure 3-10. Opposed wall-fired boiler.
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tangéntially-fired systems, but have more complex firing and
operating characteristics.

Figure 3-12 shows an arch-fired boiler where pulverized
coal is introduced through the nozzles, with heated combustion
air discharged around the fuel nozzles and through adjacent
secondary port_s.21 Tertiary air ports are located in rows
along the front and rear walls of the lower section of the
furnace.

This firing mode generates a long, looping flame in the
lower furnace, with the hot combustion products discharging up
through the center. Delayed introduction of the tertiary air
provides the turbulence needed to complete combustion. The
flame pattern ensures that the largest entrained solid fuel
particles (i.e., those with the lowest surface area-to-weight
ratio) have the longest residence time in the furnace.

Roof-fired boilers are somewhat similar in design, having
the burners mounted on the roof of the furnace, but discharge
combustion gases through a superheater section located at the
bottom of the furnace, rather than through an opening at the
top of the boiler. 1In a coal-fired boiler design, the flames
from individual burners do not impinge on each other as in an

arch-fired boiler, and residence times in the furnace are
shorter.

Turbo-fired boilers are unique because of their
venturi-shaped cross-section and directional flame burners as
shown in Figure 3-13.%* 1In turbo-fired boilers, air and coal -
are injected downward toward the furnace bottom. Like arch-
fired boilers, turbo-fired boilers generate flames that
penetrate into the lower furnace, turn, and curl upward. Hot @
combustion products recirculate from the lower furnace and
flow upward past the burner level to the upper furnace, where
they mix with the remaining fuel and air. This type of firing
system produces long, turbulent flames.
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3.3.2.3 Cyclone-Fired. Cyclone-fired boilers burn :
crushed, rather than pulverized, coal. As shown in

figure 3-14, fuel and air are burned in horizontal cylinders, !
producing a spinning, high-temperature flame.” Only a small i
amount of wall surface is present in the cylinder and this |
surface is partially insulated by the covering slag layer. |
Thus, cyclone-fired boilers have a combination of high heat |
release rate and low heat absorption rates, which results in
very high flame temperatures and conversion of ash in the coal
into a molten slag. This slag collects on the cylinder walls
and then flows down the furnace walls into a siag tank located
below the furnace. As a result of the high heat release rate,
the cyclone-fired boilers are characterized by high thermal
NOyx formation.

Because of their slagging design, cyclone-fired boilers
are almost exclusively coal-fired. However, some units are
also able to fire oil and natural gas. Figure 3-15 shows the
sihgle-Wall firing and opposed-wall firing arrangements used
for cyclomne firing.“ For smaller boilers, sufficient firing ‘
capacity is usually attained with cyclone burners located in !
only one wall. For large units, furnace width can often be
reduced by using opposed firing.

3.3.2.4  Stoker-Pired. There are several types of
stoker-fired boilers used by utilities. The most common
stoker type is the spreader stoker. Spreader stokers are
designed to feed solid fuel onto a grate within the furnace
and remove the ash residue. ' _

Spreader stokers burn finely crushed coal particles in
suspension, and larger fuel particles in a fuel bed on a grate
as shown in figure 3-16.% The thin bed of fuel on the grate
is fuel-burning and responsive to variations in load.

However, relatively low combustion gas velocities through the }
|
‘

boiler are necessary to prevent fly ash erosion, which reésults
from high flue-gas ash loadings.

Spreader stokers use continuous-ash-discharge traveling
grates, intermittent-cleaning dump grates, or reciprocating
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Figure 3-14. Cyclone burner.
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One-Wall Firing Opposed Firing

Figure 3-15. Firing arrangements used with
cyclone~fired boilers.
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continuous-cleaning grates. They are capable of burning all
types of bituminous and lignitic coals. Because of material |
handling limitations, the largest stokers used by utilities \
are roughly 50 MW or less. ' !

3.3.2.5 Fluidized Bed Combustion Boilers. Fluidized bed
combustion (FBC) is an integrated technology for reducing
sulfur dioxide (S02) and NOyx emissions during the combustion
of coal and is an option for repowering or for a new boiler.
In a typicél FBC boiler, crushed coal in combination with
inert material (sand, silica, alumina, or ash) and/or a
sorbent (limestone) are maintained in a highly turbulent
suspended state by the upward flow of primary air from the
windbox located directly below the combustion floor. This
fluidized state provides a large amount of surface contact
between the air and solid particles, which promotes uniform
and efficient combustion at lower furnace temperatures,
between 860 and 900 ©C (1,575 and 1,650 ©F) compared to 1,370
and 1,540 ©C (2,500 and 2,800 OF) for conventional coal-fired
boilers. Furnace internals include fluidizing air nozzles,
fuel-feed ports, secondary air ports, and waﬁerwalls lined at
the bottom with refractory. Once the hot gases leave the
combustion chamber, they pass through the convective sections
of the boilér which are similar or identical to components
used in conventional boilers. Fluidized bed combustion
boilers are capable of burning low grade fuels. Unit sizes,
as offered by manufacturers, range between 25 and 400 MW. The
largest FBC boilers installed are typically closer to 200 MW.

Fluidized bed combustion technologies based on operation
at atmospheric and pressurized conditions have been developed.
The atmospheric FBC (AFBC) syétem shown in figure 3-17 is
similar to a conventional utility boiler in that the furnace
operates at near atmospheric pressure and depends upon heat
transfer of a working fluid (i.e., water) to recover the heat
released during combustion.® Pressurized FBC (PFBC) operates
at pressures greater than atmospheric pressure and recovers
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Figure 3-17. Simplified AFBC process flow diagram.
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energy through both heat transfer to a working £fluid and the
use of the pressurized_gas to power a gas turbine. i
0 3.3.2.5.1 Atmospheric fluidized bed combustion. There }
are two major categories of AFBC boilers: the bubbling bed, i
and the circulating bed designs. 1In the bubbling bed design, |
coal and limestone are continuously fed into the boiler from
over or under the bed. The bed materials, consisting of |
unreacted, calcined, and sulfated limestone, coal, and ash,
are'suspended by the combustion air blowing upwards through
the fluidizing air nozzles. The desired depth of the
fluidized-bed is maintained by draining material from the bed.
Some bed material is entrained in the upflowing flue gas and
escapes the combustion chamber. Approximately 80 to
90 percent of this fly ash is collected in the cyclone and is
then either discarded or reinjected into the bed. Reinjection
of ash increases combustion efficiency and limestone
utilization. In general, combustion efficiency increases with
longer freeboard residence times and greater ash recycle
rates. Fly ash not collected in the cyclone is removed from

the flue gas by an electrostatic precipitator (ESP) or fabric
filter.

The circulating fluidized bed design is a more recent
development in AFBC technology; The two major differences
between circulating and bubbling AFBC's are the size of the
limestone particles fed to the system, and the velocity of the
fluidizing air stream. Limestone feed to a bubbling bed is
generally less than 0.1 inches in size, whereas circulating
beds use much finer limestone particles, generally less than
0.01 inches. The bubbling bed also incorporates relatively
low air velocities through the unit, ranging from 4 to
12 feet per second (ft/sec).?”® This creates a relatively
stable fluidized bed of solid particles with a well-defined
upper surface. Circulating beds employ velocities as high as
30 ft/sec.? as a result, a physically well-defined bed is
not formed; instead, solid particles (coal, limestone, ash,
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sulfated limestone, etc.) are entrained in the transport
air/combustion gas stream. These solids are then separated
from the combustion gases by a cyclone or other separating
device and circulated back into the combustion region, along
with fresh coal and limestone. A portion of the collected
solids are continuously removed from the system to maintain
material balances. Circulating beds are characterized by very
high recirculated solids flow rates, up to three orders of
magnitude higher than the combined coal/limestone feed rate.%‘
' Circulating AFBC's are dominating new FBC installation,
in part due to their improved performance and enhanced fuel
flexibility.“' Some specific advantages of circulating bed
over bubbling bed designs include:
. Higher combustion efficiency, exceeding 90 percent;
. Greater limestone utilization, due to high recyclé
of unreacted sorbent and small limestone feed size
(greater than 85 percent S0; removal efficiency is
projected with a Ca/S ratio of about 1.5, with the
potential for greater than 95 percent 805 removal
efficiency); '
. Potentially fewer corrosion and erosioﬁ problems,
compared to bubbling bed designs with in-bed heat
transfer surfaces;

. Less dependence on limestone type, since reactivity
is improved with the fine particle sizes; and
. Reduced solid waste generation rates, because of

lower limestone requirements.

3.3.2.5.2 Pressurized filuidized bed combustion.
Pressurized FBC is similar to AFBC with the exception that
combustion occurs under pressure. By operating at pressure,
it is possible to reduce the size of the combustion chamber
and to develop a combined-cycle or turbocharged boiler capable
of operation at higher efficiencies than atmospheric systems.
The turbocharged boiler approach recovers most of the heat
from the boiler through a conventional steam cycle, leaving
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only sufficient energy in the gas to drive a gas turbine to
pressurize the combustion air. The combined cycle system
extracts most of the system's energy through a gas turbine
followed by a heat recovery steam generator and steam turbine.
3.3.3 Other Boiler Components

This section discuses additional boiler components
including pulverizers (fuel preparation éystem), air supply
system, and superheaters/reheaters, economizers, and air
heaters‘(heat transfer system).

3.3.3.1 PRulverizers. Cyclone-fired or stoker-fired
boilers use crushed coal, but most other boilers use
pulverized coal. The only fuel preparation system discussed
here is the pulverizer. Pulverized coal is favored over other
forms of coal because pulverized coal mixes more intimately
with the combustion air and burns more rapidly. Pulverized
coal also burns efficiently at lower excess air levels and is |
more easily 1lit and controlled.” | %

To achieve the particle size reduction required for
proper combustion in pulverized coal-fired beoilers, machines
known as pulverizers (also referred to as "mills") are used to
grind the fuel. Coal pulVerizers are classified according to
their operating speed. LowFspeed pulverizers consist of a
rotating drum containing tumbling steel balls. This
pulverizer type can be used with all types of coal, but is

particularly useful for very abrasive coals having a high
silica content. '

Most medium-speed pulverizers are ring-roll and ball-race
mill designs, and are used for all grades of bituminous coal.
Their low power reguirements and quick response to changing
boiler loads make them well-suited for utility boiler
applications. They comprise the largest number of
medium-speed pulverizers, and the largest number of coal
pulverizers overall. .High-speEd pulverizers include impact or
hammer mills and attrition mills and are also used for all
grades of bituminous coal.




The capacity of a pulverizer is affected by the
grindability of the coal and the required fineness. The
required fineness of pulverization varies with the type of
coal and with the size and type of furnace, and usually ranges
from 60 to 75 weight-percent passing through a 200 mesh
(74 micrometers [um]) screen. To ensure minimum carbon loss
from the furnace, high-rank coals are fregquently pulverized to
a finer size than coals of lower rank. When firing certain
low-volatile coals in small pulverized coal furnaces, the
fineness may be as high as 80 weight-percent through a
200 mesh screen in order to reduce carbon loss to acceptable
levels.” )

Coal enters the pulverizer with air that has been heated
to 150 to 400 ©C (300 to 750 ©F), depending on the amount of
moisture in the coal. The pulverizer provides the mixing
necessary for drying, and the pulverized coal and air mlxture
then leaves the pulverlzer at a temperature ranging from
55 to 80 ©C (130 to 180 °F). 1

The two basic methods used for moving pulverized coal to
the burners are the storage or bin-and-feeder system, and the
direct-fired system. In the storage system, the pulveriéed
coal and air (or flue gas) are separated in cyclones and the '
coal is then stored in bins and fed to the burners as needed.
In direct-fired systemé, the coal and air pass directly fromf
the pulverizers to the burners and the desired firing rate is
regulated by the rate of pulverizing.

3.3.3.2 Air Supply System. Key air supply system
components are fans and windboxes. The purpose of these
components are to supply the required volumes ©f air to the
pulverizers and burners, and to transport the combustion gases
from the furnace, through the convective sections, and on to
the air pollution control equipment and stack.

The fans determine the static pressure of the boiler,
which can be characterized as forced-draft, balanced-draft, or
induced draft. A forced-draft boiler operates at static |
pressures greater than atmospheric, a balanced-draft boiler
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operates with static pressures at or slightly below
atmospheric, and an induced-draft boiler operates at less than
atmospheric pressure. Four types of fans are used:
forced-draft, primary-air, induced-draft, and
gas-recircuiation,

Forced-draft fans are located at the inlet to the !
secondary air supply duct. These fans supply the secondary or 3
tertiary air used for combustion. The air is typically routed ;
through the air preheater and then to the windbox. Forced-
draft fans are used on both forced-draft and balanced-draft
boilers.

Primary air fans are located before or after the fuel
preparation systems, and provide primary air to the burners.
In pulverized coal boilers, primary air fans are used to
supply'air to the pulverizers and then to transport the
coal/air mixture to the burners. There are two types of
primary air fans: mill exhauster fans and cold air fans. A
mill exhauster fan is located between the pulverizer and the
windbox and pulls preheated combustion air from the secondary
air supply duct through the pulverizers. Cold air fans are
located before the pulverizers and provide ambient air to the
pulverizers through a separate ducting system. Primary air
fans are used in all boilers.

Induced-draft fans are generally located just before the
stack. These fans pull the combustion gases through the
furnace, convective sections, and air pollution control
equipment. Induced draft fans are used on balanced-draft
boilers to maintain a slightly negative pressure in the
furnace. Induced draft fans are used on induced-draft boilers
to maintain negative static pressure. In this arrangement,
the induced-draft fan are also designed with sufficient static
head to pull secondary air through the air preheater and
windbox. _ _

Gas recirculation fans are used to transport partially
cooled combustion gases from the economizer outlet back to the
furnace. Gas recirculation can be used for several purposes, \
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including control of steam temperatures, heat absorption

rates, and slagging. It is also sometimes used to control

flame temperatures, and thereby reduce NOy formation on gas-
and oil-fired boilers. _

The second part of the air supply system is the windbox.

A windbox is essentially an air plenum used for distributing

secondary air to each of the burners. The flow of air to

individual burners is controlled by adjustable air dampers.

' By opening or closing these dampers, the relative flow of air
to individual burners can be changed. To increase or decrease
the total air flow to the furnace, the differential pressure
between the wiridbox and furnace is changed by adjusting the
fans. In boilers having tertiary air injection, tertiary air
can be supplied from the windbox supplying secondary air or by
a separate windbox. Separate windboxes allow greater control

~of the tertiary air supply rate.

3.3.3.3 Superheaters/Reheaters. To produce electricity,f
a steam turbine converts thermal energy (superheated steam)
into mechanical energy (rotation of the turbine and electr1ca1
generator shaft). The amount of electricity that can be
produced by the turbine-generator system is directly related
to the amount of superheat in the steam. If saturated steam
is utilized in a steam turbine, the work done results in a
loss of energy by the steam and subsequent condensation of a
portion of the steam. This moisture, in the form of condensed
water droplets, can cause excessive wear of the turbine
blades. If,'however; the steam is heated above the saturation
temperature level (superheated), more useful energy is
available prior to the point of excessive steam condensation
in the turbine exhaust. .

To provide the additional heat needed to superheat the
steam recovered from the boiler steam drum, a superheater is
installed in the upper section of the boiler. In this area of
the boiler, flue gas temperatures generally exceed 1,100 ©C
(2,000 OF). The superheater transfers this thermal energy to
the steam, superheating it. The steam is then supplied to the
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turbine. 1In some turbine designs, steam recovered from the.
turbine after part of its available enérgy has been used is
routed to a reheater located in the convective pass just after ?
the superheater. The reheater transfers additional thermal i
energy ffom the flue gas to the stream, which is supplied to a |
second turbine.

Superheaters and reheaters are broadly classified as
convective or radiant, depending on the predominate mechanism
of heat transfer to the absorbing surfaces. Radiant
superheaters usually are arranged for direct exposure to the
furnace gases and in some designs form a part of the furnace
enclosure. In other designs, the surface is arranged in the
form of tubular loops or platens of wide lateral spacing that
extend into the furnace. These surfaces are exposed to
high-temperature furnace gases traveling at relatively low
speeds, and the transfer of heat is principally by radiation.

Convective-type superheaters are more common than the
radiant type. They are installed beyond the furnace exit in
the convection pass of the boiler, where the gas temperatures
are lower than those in the furnace. Tubes in convective
superheaters are usually arranged in closely-spaced tube banks
that extend partially or completely across the width of the
gas stream, with the gases flowing through the relatively

narrow spaces between the tubes. The principal mechanism of
3

heat transfer is by convection.’
- The spacing of the tubes in the superheater and reheater
is governed primarily by the type of fuel fired. 1In the
high-gas-temperature zones of coal-fired boilers, the
adherence and accumulation of ash deposits can reduce the gas
flow area and, in some cases, may completely bridge the space'
between the tubes. Thus, in coal-fired boilers, the spaces
between tubes in the tube banks are increased to avoid excess
pressure drops and to ease ash removal .” However, because the

combustion of oil and natural gas produces relatively clean
flue gases that are free of ash, the tubes of the superheaters
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and reheaters can be more closely spaced in coal- and natural
gas-fired boilers and the superheaters and reheaters
themselves are more compact.

3.3.3.4 Economizers. Economizers improve boiler
efficiency by recovering heat from the moderate-temperature
combustion gases after the gases leave the superheater and
reheater.

Economizers are vertical or horizontal tube banks that
heat the water feeding the furnace walls of the boiler.
Economizers receive water from the boiler feed pumps at a
temperature appreciably lower than that of saturated steam.
Economizers are used instead of additional steam-generating
surface because the flue gas at the economizer is at a
temperature below that of saturated steam. Although there is
not enough heat remaining in the flue gases for steam '
generation at the economizer, the gas can be cooled to lower
temperatures for greater heat recovery and economy.

3.3.3.5 Air Preheaters. Air preheaters are installed
following the economizer to further improve boiler efficiency j
by transferring residual heat in the flue gas to the incoming
combustion air. Heated combustion air accelerates flame
ignition in the furnace and accelerates coal drying in
coal-fired units.

In large pulverized coal boilers, air heaters reduce the
temperature of the flue gas from 320 to 430 ©C (600 to 800 OF)
at the economizer exit. Air preheaters reduce the temperature
to 135 to 180 ©C (275 to 350 ©OF). This energy heats the |
combustion air from about 25 ©C (80 OF) to between 260 and
400 ©C (500 and 750 ©F).%"

3.4 IMPACT OF FUEL PROPERTIES ON BOILER DESIGN
3.4.1 Coal

Regardless of the fineness of pulverization, coal fed to
the boiler essentially retains its as received mineral content
(ash). In a dry-ash or dry-bottom furnace, nearly all of the.
ash particles are formed in suspension, and roughly 80 percent
leave the furnace entrained in the flue gas. Slag-tap or
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wet-bottom furnaces operate at higher temperatures and
heat-release rates and, as a result, é portion of the ash ]
particles become molten, coalesce on the furnace walls, and ;
drain to the furnace bottom. In this case, approximately i
50 percent of the ash may be retained in the-furhace, with the

other 50 percent leaving the unit entrained in the flue gas.”
Because of their high heat release rates, wet-bottom furnaces
generally have higher thermal NOy formation than dry-bottom
furnaces.

Because longer reaction time is required for the
combustion of coal, furnaces for firing coal are generally
larger than those used for burning oil or natural gas. The
characteristics of the coal, which varies with rank,
determines the relative increase in furnace size shown in
figure 3-18.% Furnaces firing coals with low volatile
contents or high moisture or ash levels are larger than those
firing high volatile content coals. 1In addition, the
characteristics of the coal ash and the desired operating
temperature of the furnace will influence furnace size. The
furnace must be large enough to provide the furnace retention
time required to burn the fuel completely and cool the
combustion products. This is to ensure that the gas
temperature at the entrance to the convective pass is well
below the ash-softening temperature of the coal and the
metalurigical limits of the éuperheater tubes.

3.4.2 0il/Gas |

Oil-fired boilers do not require as large a furnace
volume as coal-fired boilers to ensure complete burning.
Because atomization of oil provides a greater amount of fuel
reaction surface for combustion than pulvefization of coal,
furnace residence times can be shorter. In addition, the
relatively‘low ash content of o0il essentially eliminates the

slagging problems that can occur in a small coal-fired
furnace.”’

Similarly, because the combustion gases contain less !
entrained ash, the convective pass of oil-fired boilers can be
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more compact, with more closely spaced tubes in the
superheater and reheater sections. In addition, oil-fired
units operaté at lower excess air levels than coal-fired
bollers; up to 20 percent less air volume per unit heat input
is required for oil firing.” !
The more compact design of oil-burning furnaces has an- i
effect on NOx emissipns from oil-fired.unitsw Even though the ﬁ
nitrogen content of the 0il is generally lower than that of ‘
coal, higher flame temperatures result in increased formation ‘
of thermal NOy. This thermal NOy contribution can more than
offset the lower fuel NOy contribution from the qil.37
Gas-fired boilers are similar in design to oil-fired
- boilers, as many gas-fired boilers were intended to fire oil
as a supplementary fuel. Boilers that are strictly gas-fired
have the smallest furnace volumes of all utility boilers,
because of the rapid combustion, low flame luminosity, and ash 3
free content of natural gas. Because the nitrogen content of |
natural gas is low, its combustion produces minimal fuel Ndx.
However, the compact furnaces and resulting high heat release ‘

rates of gas-fired boilers can generate high levels of thermal
a8 -
NOy . |

Some furnaces were originally designed and operated as
coal-fired furnaces and then converted to oil- and gas-fired
furnaces. Furnaces designed to burn coal have 1arger volumes
than furnaces originally designed to burn oil and/or natural
gas fuel. As a result, the furnace heat release rate is
lower, and NOy emissions from the converted furnaces may be
lower. '

Figure 3-19 shows the comparative sizes of coal, oil, and
natural gas utility boilers of the same generation ra\;ing.39
The differences in the designs are attributed to the heat
transfer characteristics of the fuels. The type of fuel being
burned directly influences the furnace dimensions, distance
above the top row of burners and the convective pass, furnace
bottom design, location of burners in relation to the furnace
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bottom, and design of the convective pass all are influenced
by the type of fuel being burned."
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4.0 CHARACTERIZATION OF NOx EMISSIONS

Nitrogen oxide (NOy) emissions from combustion devices are
comprised of nitric oxide (NO) and nitrogen dioxide (NO3).
For most combustion systems, NO is the predominant NOy
species. This chapter discusses how differences in boiler
design, fuel characteristics, and operating characteristics
can affect NOy emissions. Additionally, this chapter presents

uncontrolled/baseline NOy emission levels from various utilityj
boilers.

4.1 NOy FORMATION

The formation of NOy from a specific combustion device is
determined by the interaction of chemical and physical
processes occurring within the furnace. This section
discusses the three principal chemical processes for NOx
formation. These are: (1) "thermal" NOx, which is the
oxidation of atmospheric nitrogen; (2) "prompt" NOx, which is
formed by chemical reactions between hydrocarbon fragments and
atmospheric nitrogen; and (3) "fuel" NOy, which is formed from

chemical reactions involving nitrogen atoms chemically bound
within the fuel.

4.1.1 Thermal NO, Formation

"Thermal®” NOy results from the oxidation of atmospheric
nitrogen in the high-temperature post-flame region of a
combustion system. During combustion, oxygen radicals are
formed and attack atmospheric nitrogen molecules to start the
reactions that comprise the thermal NOy formation mechanism:

O+ Ny 2NO + N (4-1)
N+Oy®NO +0 (4-2)
N + OH®2 NO + H (4-3)



The first reaction (equation 4-1) is generally assumed to -
determine the rate of thermal NOy forﬁation because of its
high activation energy of 76.5 kcal/mole. Because of this
reaction's high activation energy, NOy formation is slower
than other combustion reactions causing large amounts of NO to
form only after the energy release reactions have equilibrated

(i.e., after combustion is "complete"). Thus, NO formation
can be approximated in the post-combustion flame region by: :
[NO] = ke-K/T [N5] [0511/2 ¢ | (4-4)
|

where: _ : |

[ ] are mole fractions,

k and K are reaction constants,

T is temperature, and t is time.

The major factors that influence thermal NOx formation are
temperature, oxygen and nitrogen concentrations, and residence
time. If temperature, oxygen concentrations, or nitrogen
concentrations can be reduced quickly after combustion,
thermal NOx formation is suppressed or "quenched".

Of these four factors, temperature is the most important.
Thermal NOx formation is an exponential function of . '
temperature (equation 4-4). One of the fundamental parameters _
affecting temperature is the local equivalence ratio®. Flame
temperature peaks at equivalence ratios near one as shown in
figure 4-1. If the system is fuel-rich, then there is not
sufficient oxygen to burn all the fuel, the energy release is
not maximized, and peak temperatures decrease. If the system
is fuel-lean, there are additional combustion gases to absorb
heat from the combustion reactions, thus decreasing peak
temperatures. A premixed flame® may exist in a wide range of

aEquivaience ratio'is defined as the fuel/oxidizer ratio

divided by the stoichiometric fuel/oxidizer ratio. The
equivalence ratio is given the symbol ¢.

a premixed flame exists when the reactants are mixed prior to
chemical reaction.
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Figure 4-1. Variation of flame temperature with
equivalence ratio
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equivalence ratios, and thus premixed flames have a wide range
of peak temperatures. However, a non-premixed flame® will
generally react near an equivalence ratio of one, causing high
peak temperatures. |

For utility boilers, the temperature is also related to the
heat release per unit of burner zone volume. Units with large
heat release rates per unit volume, may experience higher
temperatures, creating higher'NOx levels.
4.1.2 Prompt NOy Formation

Prompt Nox'formation is the formation of NOyx in the
combustion system through the reactions of hydrocarbon
fragments and atmospheric nitrogen. As opposed to the slower
thermal NOyx formation, prompt NOy, formation is rapid and
occurs on a time scale comparable to the energy release |
reactions (i.e., within the flame). Thus, it is not possible
to quench prompt NOy formation in the manner by which thermal
NOx formation is quenched. However, the contribution of
prompt NOy; to-the total NOyx emissions of a system is rarely
large.2

Although there is some uncertainty in the detailed i
mechanisms for prompt NOyx formation, it is generally believed
that the principal product of the initial reactions is
hydrogen cyanide (HCN) or CN radicals, and that the presence
of hydrocarbon species is esgssential for the reactions to take
place.3 The following reactions are the most likely initiating
steps for prompt NO,:"

CH + N; 2 HCN + N (4-5)
CHy + Nop 2 HCN + NH , (4-6)

The HCN radical is then further reduced to form NO and other
nitrogen oxides. :

Measured levels of prompt NOy for a number of hydrocarbon
compounds in a premixed flame show that the maximum prompt NOyx
is reached on the fuel-rich side of stoichiometry.5 On the

‘A non-premixed flame exists where the reactants must diffuse
into each other during chemical reaction.

!
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fuel-lean side of stoichiometry, few hydrocarbon fragments are
free to react with atmospheric nitrogen to form HCN, the
precursor to prompt NOy. With increasingly fuel-rich
conditions, an increasing amount of HCN is formed, creating
more NOy. However, above an equivalence ratio of ‘
approximately 1.4, there are not enough 0 radicals present to
react with HCN and form NO, so NO levels decrease.

4.1.3 [Euel NOy Formation

The oxidation of fuel-bound nitrogen is the principal source
of NOx emissions in combustion of coal and some oils. All
indications are that the oxidation of fuel-bound nitrogen
compounds to NO is rapid and occurs on a time scale comparable
to the energy release reactions during combustion. Thus, as
with prompt NOy, the reaction system cannot be quenched as it
can be for thermal NOy. _

Although some details of the kinetic mechanism for
conversion of fuel nitrogen to NO, are unresolved at the
present time, the sequence of kinetic processes is believed to
be a rapid thermal decomposition of the parent fuel-nitrogen
species, such as pyridine, picoline, nicotine, and quinoline,
to low molecular weight cdmpounds, such as HCN, and subsequent
decay of these intermediates to NO or nitrogen (Np). 1In |
stoichiometric or fuel-lean situations, the intermediates will
generally react to form NO over Ny, whereas in fuel-rich
systems, there is evidence that the formation of Nj is
competitive with the formation of NO. This may, in part, be
the cause of high NOy emissions in fuel-lean and
stoichiometric mixtures and lower NOy emissions in fuel-rich
systems.

Several studies have been conducted to determine factors
that affect fuel NOy emissions. One study on coal combustion
found that under pyrolysis conditions, 65 percent of the fuel
nitrogen remained in the coal after heating to 750 ©C
(1,380 ©OF) but only 10 percent remained at 1,320 ©C
(2,400 ©F).° This suggests that the formation of NOy may
depend upon the availability of oxygen to react with the
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nitrogen during coal devolitization and the initial Stages of i
combustion. If the mixture is fuel-rich, the formation of Ny |
may compete with the formation of NO, thus reducing NOy !
emissions. If the mixture is fuel-lean, the formation of NO 1
will be dominant, resulting in greater NO, emissions than i
under fuel-rich conditions. This also implies that the |
subsequent burning of the devolatilized coal char will have ‘
little effect on the formation of NO. ‘

Although the combustion study was for coal, it is probable
that the formation of fuel NOyx from oil is also related to the
vaporous reactions of nitrogen compounds. Afthough the
nitrogén-containing compounds in coal vaporize at varying
rates prior to completing combustion, the nitrogen-containing
compounds in oil are of similar molecular weight to other
compounds in the'oil, and thus vaporize at rates similar to
the other species in the oil. | _

The nitrogen content of the fuel affects the formation of
fuel NOx. Tests of burning fuel oils in a mixture of oxygen
and carbon dioxide (to exclude thermal NOy) show a strong
correlation between the percentage of nitrogén in the o0il and ' ‘
fuel NOy formation as shown in figure 4-2a.’ However, the
percentage of fuel nitrogen converted to NOy is not constant,
but decreasés with increasing fuel nitrogen as shown in
-figure 4-2b.” For coal, there is no readily apparent
correlation between the quantity of fuel nitrogen and fuel NOy
as shown in figure 4-3.° Note, however, that most of the
tested coals contained approximately 1.0 percent nitrogen or

- higher, whereas many oils contain less than 1.0 percent
nitrogen. The differences in the rates of conversion of fuel
nitrogen to NOy may be due to the different nitrogen levels in
oil and coal. ‘ |

During another study, fuel NOy was measured in a largé-
tangentially-fired coal utility boiler. Figure 4-4 shows that
fuel NOy formation correlated well with the fuel oxygen/
nitrogeh ratio), which suggests that fuel oxygen (or some -
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other fuel property that correlates well with fuel oxygen)
influences the percentage of fuel nitrogen converted to fuel L
NOx.9 This corresponds to previous observations that greater
levels of NOx are found in fuel-lean combustion environments.
4.2 Factors that Affect NO. Emissions
The formation of thermal, prompt, and fuel NOy in combustion
systems is controlled by the interplay of equivalence ratio
with combustion gas temperature, residence time, and
turbulence (sometimes referred to as the "three Ts"). Of
primary importance are the localized éqnditions within and
immediately following the f£lame zone where most combustion
reactions occur. In utility_boilefs, the equivalence ratio
and the three Ts are determined by factors associated with
burner and boiler design,'fuel characteristics, and boiler
operating conditions. This section discusses how boiler
design, fuel characteristics, and boiler operating
characteristics, can influence baseline (or uncontrolled) NOy
emission rates.
4.2.1. Boiler Design Characteristics
There are a number of different furnace configurations used
in utility boilers. These include tangential, wall, cyclone,
and stoker designs. Background information on each of these
boiler designs is presented in chapter 3. Each configuration
_has design characteristics that partially determine the
uncontrolled NOy emissions of the boiler.
4.2.1.1 Tangentially-Fired. The burners in _
tangentially-fired furnaces are incorporated into stacked
assemblies that include several levels of primary fuel nozzles
interspersed with secondary air supply nozzles and warmup
guns. The burners inject stratified layers of fuel and
secondary air into a relatively low turbulence environment.
The stratification of fuel and air creates fuel-rich regions |
in an overall fuel-lean environment. Before the layers are |
mixed, ignition is initiated in the fuel-rich region. Near
the highly turbulent center fireball, cooler secondary air is
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quickly mixed with the burning fuel-rich region, insuring
complete combustion.

The off-stoichiometric combustion reduces local peak
temperatures and thermal NOy formation. In addition, the
delayed mixing of fuel and air provides the fuel-nitrogen
compounds a greater residence time in the fuel-rich
environment, thus reducing fuel NOy formation.

4.2.1.2 Wall Units. There are several types of dry-bottom
and wet-bottom wall-fired units, including single, opposed,
cell, vertical, arch, and turbo. In general, wet-bottom units
will have higher NOy emissions than corresponding dry-bottom
units because of higher operating temperatures, although other
factors, such as fuel type and furnace operating conditions,
may affect individual unit NOy emission levels.

4.2.1.2.1 Single and opposed. Single-wall units consist of
several rows of circular burners mounted on either the front
or rear wall of the furnace. Opposed-wall units also use
circular burners, but have burners on two opposing furnace
walls and have a greater furnace depth.

Circular burners introduce a fuel-rich mixture of fuel and
primary air into the furnace through a central nozzle.
Secondary air is supplied to the burner through separate
adjustable inlet air vanes. In most circular burners, these
air vanes are positioned tangentially to the burner centerline
and impart rotation and turbulence to the secondary air. The
degree of air swirl, in conjunction with the flow-shaping
contour of the burner throat, establishes a recirculation
pattern extending several burner throat diameters into the
furnace. The high levels of turbulence between the fuel and
secondary air streams creates a nearly stoichiometric
combustion mixture. Under these conditions, combustion gas
temperatures are high and contribute to thermal NOy formation.
In addition, the high level of turbulence causes the amount of
time available for fuel reactions under reducing conditions to
be relatively short, thus increasing the potential for
formation of fuel NO4.

N
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4.2.1.2.2 (Cell. Cell-type units consist of two or three
vertically-aligned, closely-spaced burners, mounted on opposed
walls of the furnace. Cell-type furnaces have highly
turbulent, compact combustion regions. This turbulence
promotes fuel-air mixing and creates a near stoichiometric
combustion mixture. As described above, the mixing
facilitates the formation of both fuel and thermal NOy. In |
addition, the relative compactness of the combustion region
creates a high heat release rate per unit volume. This will
cause local temperatures to increase even further, causing
thermal NOy to increase due to its exponential dependency on
local temperature (equation 4-4).

4.2.1.2.3 Vertical-, arch-, and turbo-fired. Vertical and
arch-fired boilers have burners that are oriented downward.
Typically, these units are used to burn solid fuels that are
difficult to ignite, such as anthracite. Pulverized coal is
introduced through nozzles and pre-heated secondary air is
discharged through secondary ports. The units have long,
looping flames directed into the lower furnace. Delayed
introduction of the tertiary air provides the necessary air to
complete combustion. The long flames allow the heat release
to be spread out over a greater volume of the furnace,
resulting in locally lower temperatures. The lower turbulence
allows the initial stages of combustion to occur in fuel-rich

environments. As a result, fuel NOy and thermal NOy are
reduced.

Turbo-fired units have burners on opposing furnace walls and
have a furnace depth similar to opposed-wall units. The turbo
burners are angled downward and typically are less turbulent
than the circular burners in opposed-wall units. The lower
turbulence delays the mixing of the fuel and air streams, \
allowing the combustion products a greater residence time in 1
reducing conditions, thus potentially reducing fuel Nox.“- |

4.2.1.3 (Cyclone-Firing. Cyclones are wet-bottom furnaces,
in which fuel and air are introduced into a small, highly
turbulent combustion chamber. Because of the design of the

4-12




burner assembly, heat transfer to cooler boiler surfaces is
delayed, resulting in very high burner operating temperatures.
The combination of high temperatures and near stoichiometric
to slightly lean mixtures encourages both thermal and fuel NO,
formation.

4.2.1.4 Stoker-Firing. Stokers are generally low capacity
boilers which burn crushed coal particles in suspension, while
larger particles are burned in a fuel bed on a grate. They
typically have low gas velocities through the boiler in order
to prevent fly ash erosion and are operated with high levels
of excess air to insure complete combustion and to maintain
relatively low grate temperatures. The low NOy, emissions are
believed to be a function of the lower furnace temperatures
[~1,090 ©C (~2,000 ©F), compared to 1,370 to 1,570 ©C (2,500
to 2,800 ©F)] in other boiler types.

4.2.2 Fuel Characteristics

In the combustion of "clean" fuels (fuels not containing
nitrogen compounds, such as natural gas)d, the thermal
mechanism is typically the principal source of nitrogen oxide
emissions. However, as the nitrogen content of the fuel
increases (table 4-1), significant contributions from the fuel |
nitrogen mechanism to total nitrogen oxide occur. ' Thus,
the nitrogen content of the fuel is a partial indicator of NOyx
emission potential.

Obviously, design characteristics may dictate the type of
fuel used in a given boiler. Natural gas is a vapor, oil is a
liquid, and coal a solid. The injection methods of the three
types of fuels are fundamentally different due to their
different physical states. However, some units have multifuel
capability. Boilers originally designed for coal have larger

“The nitrogen present in natural gas exists almost

exclusively as elemental nitrogen and not as organic nltrogen\
compounds
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TABLE 4-1. TYPICAL FUEL NITR{(PGEN CONTENTS
OF FOSSIL FUELS™

Fuel - Nitrogen (wt. %)
Natural gas R 0 - 0.2
Light distillate oils (#1, 2) o 0 - 0.4
Heavy distillate oils (#3 - 5) - 0.3 - 1.4
Residual oils 0.3 -
Subbituminous coals 0.8 - 1.4
Bituminous coals _ 1.1 - 1.7




furnace volumes than boilers originally designed for oil or
gas as shown in figure 4-5." As a result, less thermal NOy
is formed during 0il or gas combustion in multifuel boilers
and these boilers are more amenable for NOy controls due to
the larger furnace volumes.
4.2.3 PBoiler Operating Conditions
Durihg the normal operation of a utility boiler, factors
that affect NOx continuously change as the boiler goes through
its daily operating cycle. During a daily operating cycle,
the following factors may change and affect NOy, formation:
. Operating load,

) Excess oxygen,
. Burner secondary air register settings, and
. Mill operation. '

All these parameters either directly or indirectly infilluence
the NOy emissions from utility boilers. For the most part,
these parameters are within the control of the boiler
operator. Sometimes they are controlled based on individual
operator preference or operating practices, and at other times
are dictated by boiler operating constraints. While operating
load influences NOy emissions, it is obviously not a practical
method of NOx control except in severe instances.

The effect of excess oxygen or burner secondary air register
settings on NOx emissions can vary. Altering the excess
oxygen levels may change flame stoichiometry. Increasing
secondary air flow may increase entrainment of cooler
secondary air into the combustion regime, lowering local
temperatures, and increase fuel and air mixing, altering
equivalence ratio. ‘The net result of both actions may be
either to raise or lower NOy emissions, depending on other
unit-specific parameters. _

A frequently overlooked influence on NOyx emissions for coal
units is the mill pattern usage. Figure 4-6 illustrates the
impact of operating with various mill-out-of-service patterns?
on NOy emissions.” This data is from a 365 megawatt (MW)
single-wall coal-fired unit, operating at 250 MW (68 percent
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load), and firing subbituminous coal. The NOy emission level
varies by as much as 25 percent depending upon which mills are
operational. This is because when operating at a.fixed load

and with the top mill out-of-service, the lower mills operate

at a highér coal-to-air ratio, creating fuel-rich regions. k
The secondary air from the top mill insures complete |
combustion. If the bottom mill is out-of-service, the

advantages of stratified combustion using overfire air to

insure complete combustion are reduced, resulting in increased

NOx formation. Biasing fuel to the lower mills can also be
used to create a similar combustion environment.

4.3 TUNCONTROLLED/BASELINE EMISSION LEVELS |

4.3.1 Conventional Boilers

As discussed in section 4.2, NOy emission rates are a

function of burner and boiler design, operating conditions,
~and fuel type. Because pre-NSPS boilers were not designed to
minimize NOy emissions, their NOy emission rates are |

indicative of uncontrolled emission levels. Boilers covered
by subpart D' (boilers that commenced construction between
August 17, 1971 and September 17, 1978) or subpart Da'’
(boilers that commenced construction on or after September 18,
1978) were required to install NOx control equipment to meet
these NSPS.  To define baseline emissions from these units,
the NSPS limit and emissions data from NURF were examined.
Data for uncontrolled NOyx emissions received through
questionnaires to utilities are presented in chapter 5.

The tables in the following subsections summarize typical,
low, and‘high NO, emission rates on a lb/MMBtu basis for each
of the principal boiler types used to combust coal, oil, and
gas. Emissions data from the National Utility Reference File
(NURF) , *® AP-42", and the EPA" were examined to estimate .
uncontrolled NOy emission rates for pre-NSPS boilers. The
typical uncontrolled levels reflect the mode, or most typical
value, for the NOy emissions data in NURF and the EPA, and are
generally consistent with AP-42 values when assuming a heating
value for coal of 11,000 Btu/lb, for oil of 140,000 Btu/gal,
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for natural gas of 1,000 Btu/scf. Also, data obtained from
numerous utilities and reported in chapter 5 was used for
comparison purposes. The low and high estimates reflect the
upper and lower range of emissions expected on a short-term
basis for most units of a given fuel and boiler type. Based
on unit-specific design and operating conditions; however,
actual NOx emissions from individual boilers may be outside
this range. Averaging time can also influence NOy emission
rates. For example, a boiler that can achieve a particulate
NOx limit on a rolling 30-day basis may not be able to achieve!
‘the same NOy limit on a 24-hour basis.

4.3.1.1 (Coal-Fired Boilers. Table 4-2 shows typical, low,
and high uncontrolled/baseline NOyx emission rates for pre-
NSPS, subpart D, and subpart Da coal-fired utility boilers.
The applicable subpart D and subpart Da standards are also
listed in the table. )

The pre-NSPS units are subdivided into tangential,
dry-bottom wall, wet-bottom wall, cell, and cyclone units.

The emission rates shown are generally consistent with

corresponding AP-42 emission rates. The tangential units
~generally have the lowest emissions (0.7 1lb/MMBtu typical),

J and the cyclone units have the highest (1.5 1b/MMBtu typical).

Pre-NSPS units account for approximately 80 percent of the

total number of coal-fired utility boilers in the United

States.

Following proposal of subpart D, essentially all new
coal-fired utility boilers were tangential-fired or wall-
fired. The subpart D units are subdivided into these two
categories. The tangential units generally have lower NOx
emission rates than the wall units. The typical emission
rates for the tangential units is 0.5 1lb/MMBtu and the typical
emission rates for the wall units is 0.6 1b/MMBtu, both of
which are below the subpart D standard of 0.7 lb/MMBtu.

The subpart Da units are also subdivided into tangential,
wall, and stoker units. As with the subpart D units, the
tangential units generally exhibit lower emission rates than
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TABLE 4-2. UNCONTROLLED/BASELINE NO, EMISSION LEVELS
FOR COAL-FIRED BOILERS®

—n
re—r—

NO, Emission Levels (lb NO./MMBtu)

Boiler Type Typicalb Low High Standard |
Pre-NSPS
Tangential 0.7 0.4 1.0 N/A |
Wwall, dry 0.9 0.6 1.2 N/A 3
Wall, wet 1.2 0.8 2.1 N/A |
Cell 1.0 0.8 1.8 N/a
Cyclone 1.5 0.8 2.0 N/A
Vertical, dry 0.9 0.6 1.2 N/A
Subpart D
Tangential .5 .3 ,7
wWall, dry 0.6 0.3 0.7
-Subpart Da | |
Tangential 0.45 0.35 .6 0.6/0.5C
Wall, dry 0.45 0.35 .6 'O.S/O.Sc
Stoker _ 0.50 0.3 .6 0.6/0.5C

8NOyx emission rates for pre-NSPS units are classified as
"Uncontreolled", because these units were not designed to
minimize NOy emissions. The NOx emission rates listed for
subpart D and Da units are classified as "Baseline",

because many of these units include the use of NOy control
techniques.

bTyp:Lcal level is based on the mode, or most typical, NOy
emission rate of boilers as reported in NURF, the EPA,
AP-42, and utilities.

CNSPS subpart Da standard of 0.6 lb NO,/MMBtu is applicable
to bituminous and anthracite coal-fired boilers, a
standard of 0.5 1b NOy/MMBtu is applicable to
subbituminous coal-fired boilers.

N/A = not applicable.




the wall units and the typicallemission rates of both type
units (approximately 0.45 1b/MMBtu) meet the subpart Da
standard. The stoker units have a typical emission rate of
0.50 lb/MMBtu and also meet the subpart Da standard."

4.3.1.2 Natural Gag-Fired Boilers. Table 4-3 shows
typical, low, and high uncontrolled/baseline NOx emission
rates for pre-NSPS, subpart D, and subpart Da natural gas-
fired utility boilers. The applicable subpart D and
gsubpart Da standards are also listed in the table.

The pre-NSPS units are subdivided into tangential and wall
units. The emission rates shown are generally consistent with
corresponding AP-42 emission rates. The tangential units
generally have the lowest emissions (0.3 1lb/MMBtu), and the
wall units are slightly higher (0.5 1b/MMBtu). _

The subpart D and subpart Da units are not subdivided into
specific unit types. The typical emission rates of the units
meet the applicable NSPS standard of 0.2 1lb/MMBtu. '

4.3.1.3 Qil-Fired Boilers. Table 4-4 shows typical, low,
and high uncontrolled/baseline NOy emission rates for pre-
NSPS, subpart D, and subpart Da oil-fired utility boilers.
The applicable subpart D and subpart Da standards are also
listed in the table.

The pre-NSPS units are subdivided into tangential, vertical,
and wall units. The emission rates shown are generally
consistent with corresponding AP-42 emission rates. The
tangential units generally have the lowest emissions
(0.3 1lb/MMBtu), and the vertical units are the highest
(0.75 1b/MMBtu) . | |

The subpart D and subpart Da units are not subdivided into
specific unit types. The typical emission rates of the
subpart D units are 0.25 lb/MMBtu and the typical emission
rates of the subpart Da units are also 0.25 lb/MMBtu which
meet, or are below, the applicable NSPS standard.

4.3.2 Fluidized Bed Boilers

Fluidized bed combustion boilers are inherently low NOx

emitters due to the relatively low combustion temperatures.
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TABLE 4-3. UNCONTROLLED/BASELINE NO, EMISSION LEVELS
FOR NATURAL GAS BOILERS2

NOx Emission Levels (1b NO,/MMBtu)

Boiler Type Typicalb Low High Standard

| Pre-NSPS '

Tangential 0.3 0.1 0.5 N/A

Wall, single 0.5 0.1 1.0 N/A

Wall) opposed 0.9 0.4 1.8 N/A

Subpart D '

All boiler types _ 0.2 0.1 0.2 0.2

Subpart Da |

All boiler types 0.2 0.1 0.2 0.2

aNOyx emission rates for pre-NSPS units are classified as
"Uncontrolled", because these units were not designed to
minimize NOy emissions. The NOx emission rates listed for
subpart D and Da units are classified as "Baseline",

because many of these units include the use of NOy control
techniques.

"bTypical level is based on the mode, or most typical,'NOx
emigssion rate of boilers are reported in NURF, the EPA,
AP-42, and utilities. '

N/A = not applicable.




TABLE 4-4, UNCONTROLLED/BASELINE NOy EMISSION LEVELS
FOR OIL-FIRED BOILERS? :

NOx Emission Levels
(1b NO./MMBtu)

Boiler Type Typicalb Low High Standard
Pre-NSPS
Tangential 0.3 0.2 0.4 . N/a
wall ' 0.5 0.2 0.8 N/A
Vertical 0.75 0.5 1.0 N/A
S art D
All boiler types 0.25 0.2 0.3 0.3
Subpart Da _ o |
All boiler types 0.25 0.2 0.3 0.3

ANOy emission rates for pre-NSPS units are classified as
"Uncontrolled", because these units were not designed to
minimize NOy emissions. The NOyx emission rates listed for
subpart D and Da units are classified as "Baseline",
because many of these units include the use o0f NOy control
techniques.

brypical level is based on the mode, or -most typical, NOx
emission rate of boilers are reported in NURF, the EPA,
AP-42, and utilities.

N/A = not applicable.
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Table 4-5 shows typical, low, and high NOy emission rates for
fluidized bed combustion (FBC) boilers with and without .
selective noncatalytic reduction (SNCR) for NOy control. The
typical NOy emissions from an FBC ‘without SNCR is

0.19 lb/MMBtu whereas the typical NOy emissions from an FBC 1
with SNCR as original equipment is 0.07 lb/MMBtu. An

influential factor on the NOyx emissions of an FBC boiler is

the quahtity of calcium oxide, used for S0, emissions control, }
present in the bed material. ‘Higher quantities of calcium |
oxide result in higher base emissions of NOyx. Therefore, as
502 removal requirements increase, base NOx production w111
increase. This linkage between SO, removal and base NOy

production is important in understandlng NOy formation in FRC
boilers.
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TABLE 4-5., 'NOy EMISSION LEVELS FOR FLUIDIZED BED
COMBUSTION BOILERS

NOy Emission Levels
(lb NO,/MMBtu)

Classification Typicald Low High
Combustion controls . 0.19 0.1 0.26
only : ‘
With SNCRP 0.07 0.03 0.1

aTypical level is based on the mode, or most typical, NOy
emission rate of FBC boilers reporting data.

brluidized bed combustion boilers with SNCR for NOy control
‘as original equipment.
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5.0 NOyx EMISSION CONTROL TECHNIQUES

This chapter describes the methods of reducing nitrogen
oxide (NOy) emissions from new and existing fossil fuel-fired
utility boilers. All of the methods can be grouped into one

of two fundamentally different techniques--combustion controls .

and post-combustion controls (flue gas treatment).

Combustion controls reduce NOy emissions by suppressing
NOyx formation during the combustion process while post-
combustion controls reduce NOyx emissions after its formation.
Combustion controls are the most widely used method of
controlling NOy formation in utility boilers. Several
combustion controls can be used simultaneously to further
reduce NOy emissions. Flue gas treatment methods can often
achieve greater NOy control than combustion controls, but have
not been applied to many utility boilers in the United States.
Combinations of flue gas treatment controls and combustion
controls can be applied to maximize NOx reduction; however,
there are even fewer U. S. applications of this type. The
types of NOx controls currently available for fossil fuel-
fired utility boilers are presented in table 5-1.

This chapter describes NOy control technologies for
fossil fuel-fired utility boilers, factors affecting the
performance of these controls, and levels of performance for
these controls. Section 5.1 presents controls for coal-fired
boilers. Section 5.2 presents combustion controls for natural
gas- and oil-fired boilers. Section 5.3 presents
post-combustion flue gas treatment controls.



TABLE 5-1. NOy EMISSION CONTROL TECHNOLOGIES
FOR FOSSIL FUEL UTILITY BOILERS

i
% ‘
NOy control options _ Fuel applicability
Combustion Modifications
\
\

‘Operational Modifications Coal, natural gas, oil

- Low excess air
- Burners-out-of-service
- Biased burner firing

Overfire Air Coal, natural gas, oil
Low NOy Burners (except cycloﬁe Coal, natural gas, oil
furnaces)

Low'NOx burners and overfire air Coal, natural gas, oil
Reburn Coai, natufal gas, oil
Flue gas recirculation Natural gas, oil

Postcombustion Flue Gas Treatment
- Controls

Selective noncatalytic reduction Coal, natural gas, oil
Selective_catalytic reduction Coal, natufal gas, oil

%
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5.1 COMBUSTION CONTROLS FOR COAL-FIRED UTILITY BOILERS
There are several combustion control techniques for
reducing NOy emissions from coal-fired boilers:
®¢  Operational Modifications
- Low excess air (LEA);
- Burners-out-of-service (BOOS); and
- Biased burner firing (BF);

U] Overfire air (OFA);
. Low NOy burners (LNB); and
L Reburn.

Operational modifications such as LEA, BOOS, and BF are all
relatively simple and inexpensive techniques to achieve some
NOx reduction because they only require changing certain
boiler operation parameters rather than making hardware
modifications. These controls are discussed in more detail in
section 5.1.1.

Overfire air and LNB are combustion controls that are
gaining more acceptance in the utility industry due to
increased experience with these controls. There are numerous
ongoing LNB demonstrations and retrofit projects on large
coal-fired boilers; however, there are only a couple of
projects in which LNB and OFA are used as a retrofit
combination control. Both QOFA and LNB require hardware
changes which may be as simple as replacing burners or may be
more complex such as modifying boiler pressure parts. These
techniques are applicable to most coal-fired boilers except
for cyclone furnaces. Overfire air and LNB will be discussed
in sections 5.1.2 and 5.1.3, respectively:

Reburn is another combustion hardware modification for _
controlling NOy, emissions. There are four full-scale retrofit
demonstrations on U. S. coal-fired utility boilers. Reburn
will be discussed in section 5.1.5. N '

5.1.1 QOperational Modifications

5.1.1.1 Process Description. Several changes can be
made to the operation of some boilers which can reduce NOy
emissions. These include LEA, BOOS, and BF. While these

5-3
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changes may be rather easily implemented, their applicability
and effectiveness in reducing NOy may-be very unit-specific.
For example, some boilers may already be operating at the
lowest excess air level possible or may not have excess

- pulverizer capacity to bias fuel or take burners out of
service. Also, implementing these changes may reduce the

operating flexibility of the boiler, particularly during load
fluctuations. 1

Operating at LEA involves reducing the amount of
combustion air to the lowest possible level while maintaining
efficient and environmentally compliant-boiler operation.
With less oxygen (O3) available in the combustion zone, both
thermal and fuel NOy formation are inhibited. A range of
optimum O levels exist for each boiler and is inversely
proportional to the unit load. Even at stable loads, there
are small variations in the Oy percentages which depend upon
overall equipment condition, flame stability, and carbon
monoxide (CO) levels. If the 02 level is reduced‘too low,
upsets can occur such as émoking or high CO levels.’

Burners-out-of-service involves withholding fuel flow to
all or part of the top row of burners so that only air is
allowed to pass through. This is accomplished by removihg the
pulverizer (or mill) that provides fuel to the upper row of
burners from service and keeping the air registers open. The
balance of the fuel is redirected to the lower burners,
creating fuel-rich conditions in those burners. The remaining
air required to complete combustion is introduced through the
upper burners. This method simulates air staging, or overfire
air conditions, and limits NOy formation‘by lowering the 0,
level in the burner area. |

Burners-out-of-service can reduce the operating
flexibility of the boiler and can largely reduce the options |
available to a coal-fired utility during load fluctuatioms. |
Also, if BOOS is improperiy impleménted, stack opacity and CO |
levels may increase. The success df BOOS depends on the | |
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initial NOx level; therefore, higher initial NOx levels
promote higher NO, reduction.®

Biased burner firing consists of firing the lower rows of
burners more fuel-rich than the upper row of burners. This
may be accomplished by maintaining normal air distribution in
all the burners and injecting more fuel through the lower
burners than through the upper burners. This can only be
accomplished for units that have excess mill capacity;
otherwise, a unit derate (i.e., reduction in unit load) would
occur. This method provides a form of air staging and limits
fuel and thermal NOy formation by limiting the 03 available in
the firing zone. _

5.1.1.2 Factors Affecting Performance. Implementation
of LEA, BOOS, and BF technologies involve changes to the
normal operation of the boiler. Operation of the bdiler
outside the "normal range" may result in undesirable
conditions in the furnace (i.e., slagging in the upper |
fﬁrnace), reduced boiler efficiency (i.e., high levels of CO
and unburned carbon [UBC]), or reductions in unit load.

The appropriate level of LEA is unit-specific. Usually
at a given load, NOx emissions decrease as excess air is
decreased. Lower than normal excess air levels may be
achievable for short periods of time; however, slagging in the
upper furnace or high CO levels may result with longer periods
of LEA. Therefore, the minimum excess air level is generally
defined by the acceptable upper limit of CO emissions and high
emissions of UBC, which signal a decrease in boiler
efficiency. Flame instability and slag deposits in the upper
furnace may also define the minimum excess air level.’

The applicability and appropriate configuration of BOOS
are unit-specific and load dependent. The mills must have
excess capacity to process more fuel to the lower burners.
Some boilers do not have excess mill capacity; therefore, full
load may not be achievable with a mill out of service. Also,
the upper mill and corresponding burners would be reqﬁired to
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operate at full capacity during maintenance periods for mills
that serve the lower burners. The RBOOS pattern may not be

constant. For example, a BOOS pattern at low load may be very
different than that at hlgh load.’ '

The same factors affecting BOOS also applies to BF, but
to a lesser degree. Because all mills and burners remain in
service for BF, it is hot necessary to have as much excess
mill capacity as with BOOS. Local reducing conditions in the
lower burner region caused by the fuel-rich environment
associated with BOOS and BF may cause increased tube wastage.
Additionally, increased upper'furnace slagging may occur

because of the lower ash fusion temperature associated with
reducing conditions. _ _
5.1.1.3 Performance of Opgrétional Modifications.
Table 5-2 presents data from four utility boilers that use
operational modifications to reduce NOx emissions. Three of
the boilers, (Crist 7, Potomac River 4, and Johnsonville) are
not subject to new source performance standards (NSPS) and do
not have any NOy controls; Mill Creek 3 and Conesville § are
subject to subpart D standards; and Hunter 2 is subject to
subpart Da standards. Mill Creek 3 has dual-register burners
(early LNB), Conesville 5 has OFa ports, and Hunter 2 has OFA
and LNB in order to meet the NSPS NO, limits. The data
presented show only the effect of reducing the excess air
level on three of these units. On one unit (Crist 7), the
fuel was biased in addition to lowering the excess air.

As shown in table 5-2, LEA reduced NOy emissions by as
much as 21 percent from baseliné levels for the subpart D and
subpart Da units. These three units had uncontrolled NOx
levels of 0.63 to 0.69 pound per million British thermal unit
(1b/MMBtu) and were reduced to 0.53 to 0.56 1b/MMBtu with LEA.
For several units at the Johnsonville plant, LEA reduced the
NOx levels to 0.4-0.5 1lb/MMBtu, or 10-15 percent while BOOS
reduced the NOx to 0.3-0.4 1b/MMBtu or 20-35 percent. A
boiler tuning program at Potomac River 4 reduced NCy, by
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approximapely 40 percent and consisted of a combination of
lowering the excess air, improving mill performance,
optimizing burner tilt, and biasing the fuel and air.
A combination of BF and LEA on Crist 7 shows
- approximately 21 percent reduction in NOx emissions. ThlS
unit had high uncontrolled Nox emissions of 1.27 1lb/MMBtu;
therefore, the NOy level was only reduced to 1.0 lb/MMBtu with
BF and LEA. The baseline or uncontrolled NOyx level did not
seem to influence the percent NOy reductibn; however, all
these units are less than 20 years old and may be more
amenable to changing operating conditions than older boilers
that have smaller furnace volumes and outdated control systems
and equipment.
5.1.2 Qverfire Air _
5.1.2.1 Process Desgcription. Overfire air is a
- combustion control technique whereby a percentage of the total
combustion air is diverted from the burners and injected
through ports above the top burner level. The total amount of
combustion air fed to the furnace remains unchanged. In the

typical boiler shown in figure 5-1a, all the air and fuel are

introduced into the furnace through the burners, which form
the main combustion zone. For an OFA system such as in
figuré 5-1b, approximately 5 to 20 percent of the combustion
air is injected above the main combustion zone to form the
~ combustion completion zone.®? Since OFA introduces combustion
air at two different locations in the furnace, this combustlon
hardware modification is also called air staging.

Overfire air limits NOy, emissions by two mechanisms:
(1) suppressing thermal NO, formation by partially delaying
and exténding the combustion process, resulting in less
intense combustion and cooler flame temperatures, and
(2) suppressing fuel NOy formation by lowering the
concentration of air in the burner combustion zone where
volatile fuel nitrogen ig evolved.®
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Overfire air can be applied to tangentially-fired,
wall-fired, turbo, and stoker boilers. However, OFA is ﬁot
used on cyclone boilers and other slag-tapping furnaces
because it can alter the heat release profile of the furnace,
which can greatly change the slagging characteristics of the
boiler. Overfire air was incorporated into boiler designs as
a NOx control to meet the subpart D and subpart Da standards.
The OFA was used in both wall and tangential designs.

Many pre-NSPS boilers were designed with small furnaces
and limited space between the top row of burners and the
convective pass, thus precluding installation of OFA on these
units Overfire air retrofits are often unfeasible for these
boilers because overfire air mixing and carbon burnout must be
completed within this limited space. For units where
retrofitting is feasible, the structural integrity of the
burner wall, interference with other existing equipment, the
level of NOx reduction required, and economics determine the
number and arrangement of OFA ports.

5.1.2.1.1 Wall-fired boilers. There are two types of
OFA for wall-fired boilers which are typically referred to as
conventional OFA and advanced OFA (AOFA). Conventional OFA
systems such as in figure'5-2a direct a percentage of the
total combustion air--less than 20 percent--from the burners
to ports located above the top burners.’ Because air for

conventional OFA systems is taken from the same windbox,
ability to control air flow to the OFA ports may be limited.
Advanced OFA systems have separate windboxes and ducting,
and the OFA ports can be optlmally placed to achieve better
air mixing with the fuel-rich combustion products. The AOFA
~systems as shown in flgure 5-2b usually inject more air at
greater velocities than conventional OFA systems, glVlng

improved penetration of air across the furnace width and
greater NOy reduction.®
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5.1.2.1.2 Tangentially-fired boilers. Overfire air
systems for tangentially-fired boilers are shown in figure 5-3
and are typically referred to as close-coupled OFA (CCOFA) and
separated OFA (SOFA). The CCO?A, analogous to conventional
OFA for wall-fired boilers, directs a portion of the total
combustion air from the burners to ports located above the top
burner in each corner. The SOFa systems are analogous to AOFA
for wall-fired boilers and have a separate windbox and
ducting. In some cases, the close- coupled OFA may be used in
combination with separated OFA as described in section 5.1.4.

- 5.1.2.2 Factors Affecting Performance. Some OF2 systems
cause an increase of incomplete combustion products (UBC, 'Co,
and organic compounds), tube corrosion, and upper furnace ash
deposits (slagging and fouling). The number, size, and
location of the OFA ports as well as the OFA jet velocity must
be adequate to ensure complete combustion.

To have effective NOyx reduction, AQFA and SOFA systems
must have adequate separation between the top burner row and
the OFA ports. However, efficient boiler operatlon requires
maximizing the residence time available for carbon burnout
between the OFA ports and the furnace exit, which means
locating the AOFA or SOFA ports as close to the burners as
practical.'’ These conflicting requirements must be considered

when retrofitting and operating boilers with these types of
OFA systems.

Increasing the amount of OFA, can reduce NOy emissions;
however, this means that less air (02) is avallable in the
primary combustion zone. The resulting reducing atmosphere in
the lower furnace can lead to increased corrosion and change
furnace heat release rates and flue gas exit temperature.




Separated
OFA

| Close-
:’ Coupled OFA
-—

N

Coal
5 and Air
Nozzles

e

Furnace

" Furnace Side
Elevation

Figure 5-3. Tangential boiler windbox/burner

arrangenient with overfire air systems.
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5.1.2.3 Performance of Overfire Air. The performance of

several OFA systems is shown in table 5-3. The table contains
two tangentially-fired boilers (one pre-NSPS with SOFA and one
subpart Da with CCOFA) and two wall-fired boilers (one pre-
NSPS with AOFA and one subpart Da with OFA).. |

Hennepin 1 is a 75 megawatt (MW) pre-NSPS boiler that has
a retrofit natural gas reburn system. The OFA ports are part
of the reburn system and are located higher above the top row
of burners than a typical OFa system retrofit. The gas reburn
Ssystem was not in operation when this data was collected.?
Hunter 2 is a 446 MW subpart Da boiler that has CCOFA ports
that are typical of OFA systems for this vintage boiler.’

Both of the tangential boilers had similar uncontrolled NOx
levels in the range of 0.58 to 0.64 lb/MMBtu. With the SOFA
and CCOFA systems, the NOy was reduced by approximately

20 percent, to 0.46 to 0.50 1b/MMBtu. _

The OFA applications on wall-fired boilers include a
retrofit of AOFA on Hammond 4 and an original installation on
Pleasants 2. Both short-term and long-term data are shown for
Hammond 4. The short-term emission levels for any boiler can
be very different from the corresponding long-term levels;
however, for Hammond 4, the short-term and long-term emissions
are similar.: Normally, the differences in long-term and
short-term data may be the result of the boiler being operated
at a specific test condition with a number of variables (i.e.,
load, boiler 05, mill pattern) held constant. The long-term
data represents the "typical" day-to-day variations in Nox
emissions under normal operating conditions.

The short-term data for Hammond 4 show controlled NOy
emissions of 0.9 1b/MMBtu across the load range, representing
a 10 to 25 percent NOx reduction. The long-term data for
Hammond 4 show similar reductions of 11 to 24 percent across
the load range. The controlled NOx emission level for the
pre-NSPS wall-fired‘boilers is nearly twice as high as the NOy
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levels for tangential boilers due to the higher uncontrolled
NOx level and burner/boiler design. |

The OFA system at Pleasants 2 reduced NOy to
approx1mately 0.7 1b/MMBtu (representing 26 percent NOx
reduction) at full load. Pleasants 2 is a subpart Da boiler
with the OFA system as original equipment. The furnace volume
for this boiler is much larger than that in pre-NSPS boilers.
The controlled level is higher than for tangential boilers due |
to the higher uncontrolled NOx level and burner/boiler design. |
The uncontrolled data represents operation when the OFA system
was closed. The OFA system alone did not reduce NOx to the

required NSPS levels and was subsequently closed off when the
LNB were-upgraded.12

5.1.3 Low NO, Burners _
5.1.3.1 Process Description. Low NOy burners have been
developed by many boiler and burner manufacturers for both new
and retrofit applications. Low NOy burners limit NOy
formation by controlling both the stoichiometric and
temperature'profiles‘of the combustion process in each burner
flame envelope. This control is achieved with design'features
that regulate the aerodynamic distribution and mixing of the

fuel and air, yielding one or more of the following
conditions:

1. Reduced O3 in the prlmary combustion zone, which
limits fuel NOy formation;

2. Reduced flame temperature, which limits thermal NO,
formation; and

3. ' Reduced residence time at peak temperature, which
limits thermal NOy formation. _'

While tangential boilers have "coal and air nozzles"
rather than "burners" as in wall-fired boilers, the term "LNB"
is used for both tangential and wall applications in this
document. Low NOx burner designs can be divided into two
genéral categories: "delayed combustion" and "internal
staged." Delayed combustion LNB are designed to decrease
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flame turbulence (thus delaying fuel/air mixing) in the
primary combustion zone, thereby establishing a fuel-rich
condition in the initial stages of combustion. This design

departs from traditional burner designs, which promote rapid
combustion in turbulent, high-intensity flames. The longer,
less intense flames produced with delayed combustion LNB
inhibit thermal NOy generation because of lower flame
temperatures. Furthermore, the decreased availability of Oj
in the primary combustion zone inhibits fuel NO, conversion.
Thus, delayed combustion LNB control both thermal and fuel !
NOy . |

Internally staged LNB are designed to create stratified
fuel-rich and fuel-lean conditions in or near the burner. 1In
the fuel-rich regions, combustion occurs under reducing
conditions, promoting the conversion of fuel nitrogen (Nj) to
N> and inhibiting fuel NOy formation. 1In the fuel-lean i
regions, combustion is completed at lower temperatures, thus %
inhibiting thermal NOy formation. ‘ |

Low NOy burners are widely used in both wall- and-
tangentially fired utility boilers and are custom-designed for
each boiler application. In many cases, the LNB and air
register will have the same dimensions as the existing burner .
system and can be inserted into the existing windbox and
furnace wall openings. However, in other cases, waterwall and
windbox modifications require pressure part changes to obtain
the desired NOyx reductions. ‘

'5.1.3.1.1 Wall-fired boilers. A number of different LNB
designs have been developed by burner manufacturers for use |
with wall-fired boilers. Several of these designs are
discussed below. _

The Controlled Flow/Split Flame™ (CF/SF) burner shown in
figure 5-4 is an internally-staged design which stages the |
secondary air and primary air and fuel flow within the
burner's throat.' The burner name is derived from the

operating functions of the burner: (1) controlled flow is
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achieved by the dual register design, which provides for the
control of the inner and outer air swirl, allowing independent
control of the quantity of secondary air to each burner, and
(2) the split-flame is accomplished in the coal injection
nozzle, which segregates the coal into four concentrated
streams. The result is that volatiles in the coal are
released and burned under more reducing conditions than would
otherwise occur without the split flame nozzle. Combustion
~under these conditions converts the nitrogen species contained
in the volatiles to Ny, thus reducing NOyx formatlon 10 |

The Internal Fuel Staged” (IFS) burner, shown in §
figure 5-5, is similar to the CF/SF burner.!® The two designs;
are nearly identical, except that the split-flame nozzle has :
been feplaced by the IFS-nozzle, which generates a coaxial
flame surrounded by split flames. : _

The Dual Register Burner - Axial Control Flow' (DRB-XCL) |
wall-fired LNB operates on the principle of delayed ‘
combustion.. The burner diverts air from the central core of
the flame and reduces local stoichiometry during coal |
devolatization to minimize initial NOy formation. The DRB—XCL
is designed for use without compartmented windboxes, and the |
flame shape can be tuned to fit the furnace by use of
impellers. -As shown in figure 5-6, the burner is equipped
with fixed spin vanes in the outer air zone that move
secondary air to the periphery of the burner.'® Also,
adjustable spin vanes are located in the outer- and inner-air%
zones of the burner. The inner spin vane adjusts the shape of
the flame, which is typically long. The outer spin vane
imparts swirl to the flame pattern. The flame stabilizing
ring at the exit of the coal nozzle enhances turbulence and
promotes rapid devolatization of the fuel. An air-flow
measuring device located in the air sleeve of each burner
provides a relative indication of air flow through each burner

and is used to detect burner-to-burner flow imbalances within
the windbox."
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The RO-II burner consists of a single air inlet, dual-
zone air register, tangential inlet coal nozzle, and a flame-
stabiliZing nozzle tip. Figure 5-7 shows the key components
of the burner.’® Combustion air is admitted to both zones of
the air register and the tangential inlet produces a swirling
action. The swirling air produces a "forced vortex" air flow
pattern and around the coat jet This pattern creates local
staging of combustion by .controlling the coal/alr mixing, thus
reducing NOy formation.®

The Controlled Combustion Venturi™ (CCV) burner for
wall-fired boilers is shown in figure 5-8." Nitrogen oxide
control is achieved through the venturi coal nozzle and low
swirl coal spreader located in the center of the burner. The
venturi nozzle concentrates the fuel and air in the center of
the coal nozzle, creating a very fuel-rich mixture. As this
mixture passes over the coal spreader, the blades divide the
coal stream into four distinct streams, which then enter the
furnace in a helical pattern. Secondary air is introduced to
the furnace through the air register and burner barrel. The
coal is devolatized at the burner exit in an fuel-rich primary
combustion zone, resulting in lower fuel NO, conversion. Peak

flame temperature is also lowered, thus suppressing the
thermal NOy formation.’

The Low NOy Cell Burner’ (LNCB), developed for wall-fired
boilers equipped with cell burners, is shown in figure 5-9.%
Typically, in the LNCB design, the original two coal nozzles
are replaced with a-single enlarged injection nozzle in the
lower throat and a secondary air injection port in the upper
throat, which essentially acts as OFA. However, in some
cases, it may be reversed with some of the fuel-rich burners
in the upper throat and some of the air ports in the lower
throat to prevent high CO and hydrogen sulfide (HéS) levels.
The exact configuration depends on the boiler. The flame
shape is controlled by an impeller at the exit of the fuel
nozzle and by adjustable spin vanes in the secondary air zone.
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~ Figure 5-9. Low NOy Cell Burner .



During firing, the lower fuel nozzle operates in a fuel-rich
condition; with the additional air entering through the upper
air port. 8liding dampers mounted in the upper and lower
throats balance the secondary air flow.’

The Tertiary Staged Venturi™ (TSV) burner shown in
figure 5-10 was designed for turbo, down-fired, and arch-fired
boilers. Similar to the CCV design, the TSV burner features
a venturi shaped coal nozzle and low swirl coal spreader, but
uses additional tertiary air and an advanced air staging

system. The principles used to reduce NOy are the same used
with the CCV burner."

5.1.3.1.2 Tangentially-fired boilers. A number of
different LNB designs have been developed by burner
manufacturers for use in tangentially-fired boilers. Several
of these designs are discussed in this section. The .
traditional burner arrangement in tangentially-fired boilers
consists of corner-mounted vertical burner assemblies from
which fuel and air are'injected into the furnace as shown in
‘figure 5-11a.'® The fuel and air nozzles are.directed tangent
to an imaginary circle in the center of the furnace,
generating a rotating fireball in the center of the boiler as
shown in figure 5-11b.'® Each corner has its own windbox that
supplies primary air through the air compartments located
above and below each fuel compartment.

~In the early 1980's, the low NOy concentric firing
technique was introduced for tangentially-fired boilers and is
shown in figure 5-12a.'® fThis technique changes the air flow.
through the windbbx; however, the primary air is not affected.
A portion of the secondary air is directed away from the
fireball and toward the furnace wall as shown in
figure 5512b.“ The existing coal nozzles in the burner
compartments are replaced with "flame attachment" nozzle tips
that accelerate the devolitization of the coal. This
configuration suppresses NOy -emissions by providing an 05
richer environment along the furnace walls. This can also
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reduce the slagging and tube corrosion problems often
associated with combustion slagging.

To retrofit existing tangentially-fired boilers with
concentric firing, ail of the air and fuel nozzles must be
replaced. However, structural, windbox, or waterwall changes
may not be required. Several systems are available that use
the concentric firing technique in combination with OFA.
These systems are classified as a family of technologles
called the Low NOy Concentric Firing System™ (LNCFS) and are
discussed in section 5.1.4 (LNB + OFAa)

The Pollution Minimum™ (PM) burner has also been

developed for tangentially—fired boilers. Although a PM
burner system'has been retrofitted in one boiler, this burner
will probably only be used for new applications in the future
because of the extensive modifications required to the fuel
piping. As shown in figure 5- 13, the PM burner system uses a
coal separator that aerodynamlcally divides the primary air
and coal into two streams, one fuel-rich and the other fuel-
lean.® Thus, NOy emissions are reduced through controlllng
the local stoichiometry in the near-burner zone.

The retrofit of a PM burner involves installing new
windboxes and auxiliary firing equipment, upgrading the
existing‘cdntrol system, and modifying the waterwall and coal
piping. The PM burner is used with conventional and advanced
OFA systems.'® fThese systems are discussed in section 5.1.5.1.

5.1.3.1.3 Cyclone-fired boilers. There are curfently no
LNB available for cyclone-fired boilers. As discussed in
chapter 3, cyclones boilers are slag-tapping furnaces, in
which the fuel is fired in cylindrical chambers rather than
with conventional burners. 1In addition, cyclone boilers are
inflexible to modification because of rigid operating
specifications. Proper furnace temperature and high heat
release rates are required to maintain effective slag-tapping
in the furnace. Operating experiences suggest that these
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.

parameters cannot be altered in a cyclone boiler to the degree
required for adequate NOy control.'!

5.1.3.2 Factors Affecting Performance. The
effectiveness of LNB, especially for retrofit cases, depends

on a number of site-specific parameters. Low NOy burners are
generally larger than conventional burners and require more

precise control of fuel/air distribution. Their performance
depends partially on increasing the size of the combustion
zone to accommodate longer flames. Because of this, LNB are
expected to be less effective when retrofit on relatively
small furnaces.

In order to retrofit LNB in wall-fired boilers, the
existing burners must be removed and replaced. In some cases,
some of the waterwall tubes may have to be bent in order to
install the larger LNB. Also, the LNB may have longer flames
that could impinge on the opposite furnace wall and
superheater tubes which can be a problém for boilers with
small furnace depths. Potential solutions to flame
impingement include adjusting velocities of the coal or
primary air, adjusting secondary air, and/or relocating some
superheater tubes. Boilers with very small furnaces may have
to be derated in order to prevent flame impingement at full
load. '

To retrofit a tangentially-fired boiler, the existing
fuel and air nozzles must be removed and réplaced. For some
tangentially-fired LNE systems, the new air and fuel nozzles
and CCOFA can be placed }n the existing windbox opening. To

retrofit SOFA, new openings must be made above the existing
windbox.

The fuel-rich operating conditions of LNB generate
localized reducing conditions in the lower furnace region and
can increase the slagging tendency of the coal. To reduce
this potential for slagging, some combustion‘air can be
diverted from the burner and passed over the furnace wall
surfaces, providing a boundary air layer that maintains an
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- oxidizing atmosphere close to the tube walls. The generally
longer flames of some LNB will tend to increase furnace exit
and superheat/reheat tube temperatures. Some LNB operate with
a higher pressure drop or may require slightly higher excess
air levels in the furnace at full load to ensure good carbon
burnout, thus increasing fan requirements.

Another consideration in retrofitting LNB is modifying
the windbox. Modifications may include the addition of
dampers and baffles for better control of combustion air flow
to burner rows and combustion air distribution to burners
within a row. Also, the windbox must be large enough to
accommodate the LNB. If the existing windbox requires
substantial modifications to structural components, majof
re-piping, and/or windbox replacement, retrofitting LNB may
not be feasible.

5.1.3.3 performance of Low NOx Burners

5.1.3.3.1 Retrofit applications. The performance of
retrofit LNB is presented in table 5-4. There are two
tangentially-fired units.listed that have retrofit LNCFS I
technology which incorporates CCOFA within the original
windbox opening. For this reason, the LNCFS I technology is
included in the LNB section. One tangential unit, Lansing
Smith 2, is .a pre-NSPS unit while the other, Hunter 2, is a
subpart Da unit. Both of these boilers fire bituminous coal.

Short-term controlled data for Lansing Smith 2 ranged
from 0.39 to 0.43 lb/MMBtu across the load range. Long-term
controlled NOy emissions (mean values of hourly averages for 2
to 3 months) for Lansing-Smith 2 were similar to short-term
data and averaged 0.41 lb/MMBtu at near full-load conditions
with LNCFS I as compared to an uncontrolled level of
0.64 lb/MMBtu. At 70 percent load, the controlled NOyx level
decreased slightly to 0.4 1lb/MMBtu.

The long-term data from Lansing Smith 2 shows 36 to ‘
37 percent NOy reduction, whereas the short-term data shows 41
to 48 percent reduction. The long-term data is probably more
representative of actual day-to-day NOyx emission levels durinT
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normal boiler operation than the short-term data taken during
specific test conditions. Lansing Smith 2 is also evaluating
LNCFS II and III as part of a U.S. Department of Energy (DOE)
Innovative Clean Coal Technology project. The results from
the LNCFS II and III demonstrations are presented in

section 5.1.4.3.1.

For Hunter 2, the uncontrolled level of 0.64 lb/MMBtu
represents operation with original burmers but without the
OFA. The LNCFS I system reduced the NOy to 0.35 lb/MMBtu at
full-load during short-term tests (45 percent NOyx reduction).
The long-term data (4 sets of 30-day rolling averages) taken
during normal low NOyx operation indicates an emission level of

.0.41.1b/MMBtu at an average 70 percent load. The average NOy
reduction for these units was 35 to 45 percent with LNCFS I
technology which is similar to the results at Lansing Smith.

There are eight wall-fired boilers noted on table 5-4
that fire bituminous cocal. Of these, two pre-NSPS boilers
have been retrofit with the XCL" burner. Edgewater 4 and
Gaston 2 had uncontrolled NOx emissions in the range of 0.76
to 0.85 1b/MMBtu at full-load and were reduced to 0.4 to
0.52 1b/MMBtu with the XCL™ burner (39 to 47 percent) .

Figure 5-14 shows trends in controlled NOy levels for
Edgewater 4, Gaston 2, Four Corners 3 and 4, Hammond 4, and
Pleasants 2 as a function of boiler 1oad. Typically, at
higher loads the controlled NOyx is higher. The short-term
controlled NOx emissions from both Edgewater and Gaston
reduced as the load decresased. The CCV" burner reduced

uncontrolled NOy emissions of 1.1 1b/MMBtu by 50 percent to
0.55 lb/MMBtu (Duck Creek 1).

For the two units with the IFS™ burner, the NOy emissions
were reduced 48 to 55 percent. One of these boilers
(Johnsonville 8) had an uncontrolled NOy level of 1.0 lb/MMBtu
and was reduced by 55 percent whereas the other (Colbert 3)
had a lower uncontrolled NOy level of 0.77 1lb/MMBtu and was
reduced by only 48 percent.
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For the pre-NSPS boiler retrofit with the CF/SFTM burner

(Hammond 4), the NOy was reduced from uncontrolled levels of
approximately 1.2 1b/MMBtu by 45 to 50 percent to 0.6 1lb/MMBtu
(short-term test data) and 0.7 1lb/MMBtu (long-term test data).
The subpart Da unit (Pleasants 2) had uncontrolled NOx
emissions of 0.95 lb/MMBtu and was reduced to 0.45 1lb/MMBtu
with the CF/SF" burner (53 percent reduction). This unit was
also originally equipped with OFA ports which were closed off
when the new LNB were installed. The uncontrolied NOy level
of 0.95 1b/MMBtu is from a short-term test without OFA. As
figure 5-3 shows, the NOy emissions from Hammond and Pleasants
decreased as the load decreased. |

One boiler, Quindaro 2, was retrofitted with the RO-II |
LNB. Testing was conducted with both a bituminous and a i
subbituminous coal. Uncontrolled NOx levels were not measured
and the controlled NO, levels at full-load while firing
bituminous coal was 0.53 1lb/MMBtu and 0.45 1lb/MMBtu at half-
load.

There are seven boilers on table 5-4 that fire
subbituminous coal, five of which have been retrofitted with
the CF/SF burner, one with the IFS burner, and one with the
RO-II burner. Two of the units, Four Corners 4 and 5, were
originally 3-nozzle cell units and the burner pattern was ‘
changed to a "standard" opposed-wall configuration during the%
retrofit. Therefore, these units are not typical of a direct,
plug-in LNB retrofit.

The NOy emissions af ‘Cherokee 3 were reduced from
0.73 1b/MMBtu with the IFS burner to 0.5 lb/MMBtu, or
31 percent. This boiler also has a natural gas reburn system;
however, this data is without reburn. The NOx emissions at
Four Corners 3 were reduced to approximately 0.6 lb/MMBtu with
the CF/SF" burner. Neither the uncontrolled level nor the
percent reduction were reported.

The San Juan 1 unit was designed to meet an emission
limit of 0.7 1lb/MMBtu but was unable to meet this level with
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OFA alone. The NOx was reduced from 0.95 1b/MMBtu (with OFA)
to a controlled level of 0.4 lb/MMBtu (with LNB), or
58 percent reduction. San Juan 1 had fairly high uncontrolled

NOy levels whlch may be a factor in attaining the high percent
reduction.

The short-term controlled NOy emissions for the subpart D
unit (J.H. Campbell 3) was 0.39 to 0.46 1b/MMBtu at full-load
with the CF/SFnaburner. This unit was originally equipped
with OFA ports which were subsequently closed off when the new
LNB were installed. The uncontrolled NOy emissions are with |
the OFA in service. By installing LNB on this unit and
closing the existing OFA ports, approximately 30-40 percent
NOyx reduction was achieved.

At Four Corners 4 and 5, the NOy was reduced from an
uncontrolled level of 1.15 1b/MMBtu to controlled levels of
0.49 to 0.57 1b/MMBtu (short-term) and 0.5 to 0.65 1lb/MMBtu
(long-term). This corresponds to 50 to 57 percent reduction.
Since these units were originally cell boilers, they had
higher uncontrolled NOyx emissions than the standard wall-fired
boiler configuration, and subsequently higher controlled NOx
emissions. ‘

Quindaro 2 was retrofitted with the RO-II LNB and tested
with both bituminous and subbituminous coal. On subbituminous
coal, the NOx emissions were reduced to 0.35 1b/MMBtu at full-
load and to 0.28 1b/MMBtu at half-load. The one cell-fired
boiler (JM Stuart 4) shown on table 5-4 fires bituminous coal
and had high (short-term) uncontrolled NOy emissions of 0.70
to 1.22 1b/MMBtu across the load range. After retrofitting
the LNCB, the NOx was reduced to 0.37 to 0.55 1b/MMBtu (47 to
55 percent). The LNCB is a direct burner replacement and the
boiler remains in a cell unit configuration. '

To summarize, the tangentially-fired boilers that fire
bituminous coal had uncontrolled NOy emissions in the range of

1 0.62 to 0.64 1b/MMBtu and were reduced by 35 to 45 percent
with the LNCFS I technology to controlled levels of 0.35 to
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0.4 1b/MMBtu (long-term data). The wall-fired boilers that
fire bituminous coal had uncontrolled‘NOx emissions in the
range of 0.75 to 1.2 1b/MMBtu and were reduced by 40 to
50 percent with LNB to controlled levels of 0.4 to
0.7 1lb/MMBtu (long-term data). The wide range of NOy
emissions is due to factors such as boiler age, boiler and
burner design, heat release rates, and furnace volume. And,
the wall-fired boilers that fire subbituminous coal had
uncontrolled NO, emissions of 0.6 to 1.2 lb/MMBtu and were
reduced by 40 to 60 percent to controlled levels of 0.4 to
0.6 1b/MMBtu. The wide range of uncontrolled NOy emissions is
due to the original cell configuration of two boilers (high
uncontrolled Nox'levels), boiler and burner design, heat
release rates, and furnace volume. | ‘
5.1.3.3.2 New units. This section provides information
on NOy emissions from new boilers subject to NSPS subpart Da
standards with LNB as original equipmeht. The performance of
original LNB on 9 new tangentially-fired and 12 new wall-fired
boilers is presented in table 5-5. The‘tangentially-fired
boilers have CCOFA within the main windbox opening and for
this reason, it is included in the LNB section. The wall-
fired boilers have LNB only. ‘
Short-term averages of NOy emissions from the tangential
units firing bituminous coal and operating at near full-load
range from 0.41 to 0.51 1lb/MMBtu at near full-load conditions.
For the subbituminous coal-fired tangential boilers, the NOx
emissions ranged from 0.35 to 0.42 lb/MMBtu.. And, the NOyx
emissions from the lign{Ee-fired boilers ranged from 0.46 to
0.48 1b/MMBtu. As shown in figure 5-15, the NOyx emissions for
three tangential units increased when operated at low loads.
Short-term averages of NOy emissions from the wall-fired
units firing bituminous coal range from 0.28 to 0.52 1b/MMBtu
at near full-load conditions. For the subbituminous
coal-fired wall boilers, the NOy emissions ranged from 0.26 to
0.47 1b/MMBtu whereas the lignite-fired boiler was
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0.39 1b/MMBtu Two wall units reported NO, at lower loads and
as shown in figure 5-16, the NOx decreased as load decreased.

5.1.4 Low NOy Burners and Overfire Air
5.1.4.1 Process Description. Low NOy burners and OFA
are complementary combustion modifications for NOy control

that incorporate both the localized staging process inherent

in LNB designs and the bulk-furnace air staging of OFA. When
OFA is used with LNB, a portion of the air supplied to the
burners is diverted to OFA ports located above the top burner
row. This reduces the amount of air in the burner zone to an
amount below that required for complete combustion. The final 
burn-out of the fuel-rich combustion gases is delayed until

the OFA is injected into the furnace. Using OFA with LNB
decreases the rate of combustion, and a less intense, cooler
flame results, which suppresses the formation of thermal NO. .

In wall-fired boilers, LNB can be coupled with either OF2a
or AOFA. Figure 5-17 shows a schematic of a wall fired boiler
with AQOFA combined with LNB.** Section 5.1.2 describes both
OFA and AOFA systems.

In tangentially-fired boilers, OFA is incorporated into
the LNB design, forming a LNB and OFA system. These systems
use CCOFA and/or SOFA and are classified as a family of
technologies called LNCFS. There are three possible LNCFS
arrangements shown in figure 5-18.°° For LNCFS Level I, CCOFA
is integrated directly into the existing windbox by exchanging
the highest coal nozzle with the air nozzle immediately below
it. This configuration requires no major modifications to the
boiler or windbox geometry. In LNCFS Level II, SOFA is used
above the windbox. The air supply ductwork for the SOFA is T
taken from the secondary air duct and routed to the corner of .
the furnace above the existing windbox. The inlet pressure of
the SOFA system can be increased above the primary windbox
pressure using dampers downstream of the takeoff in the
secondary air duct. The quantity and velocity of the SOFA
injected into the furnace can be higher than those levels
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Advanced OFA Ports -

Flow Measurement
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Dampers | = -
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Pipes Boundary Air Ports

Figure 5-17. Advanced OFA system with LNB.>
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possible with CCOFA, providing better mixing. The LNCFS,
Level III uses both CCOFA and SOFa for maximum control and
flexibility of the staging process. Process descrlptlons of
OFA and LNB are discussed in detail in sections 5. 1.2.1 and
5.1.3.1 of this document ‘

. 5.1.4.2 Factors Affecting Performance. Design and
operational factors affecting the NOy emission control
performance of combined LNB + OFA are the same as those

discussed in sections 5.1.2. 3 and 5.1.3.2, for the individual
controls.

5.1.4.3 pPerformance of Low NOx Burners and Overfire Air.
5.1.4.3.1 Retrofit applications. The results from

several different types of retrofit LNB + OFA systems
presented in table 5-6. The uncontrolled and controlled NOx
emission data presented in this table are averages from short-
term tests (i.e., hours) or from longer periods (i.e., 2 to
4 months) . All the boilers shown but one are pre-NSPS units.
The LNCFS II system incorporates SOFA while the LNCFS III
incorporates both CCOFA and SOFA. The PM system incorporates
SOFA. The dual register LNB (DRB-XCL) and the CF/SF LNB on
the wall-fired boilers also incorporate OFA.

For the three boilers with LNCFS II systems firing
'bituminous coal, the short-term controlled NOx emissions range
from 0.28 1b/MMBtu (Cherokee 4) to 0.4 lb/MMBtu (Lansing
Smith 2) at full-load conditions. Long-term data for Lansing
Smith 2 show 0.41 1lb/MMBtu at full-load. At lower loads, the
short-term controlled NOy emissions range from a low of 0.33

(Cherokee 4) to a high of 0.75 1b/MMBtu (Valmont 5). Long-
term data at reduced load for Lansing Smith 2 shows NOy
emissions of approximately 0.4 1b/MMBtu. The range of NOy
reduction for LNCFS II technology was approxlmately 35 to
50 percent at full-load.

' For the boiler firing bituminous coal with LNCFS III
systems (Lansing Smith 2), the short-term controlled NOy
emissions were 0.36 1b/MMBtu at full- load conditions while the
long-term NOyx emissions for Lansing Smith 2 were
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0.34 1b/MMBtu. At lower loads, the short-term NOy emissions
ranged from 0.32 to 0.45 1b/MMBtu while long-term data ranged
from 0.34 to 0.37 1b/MMBtu. ' The range of NOy reduction for
the LNCPS III technology on bituminous coal was approximately
50 percent at full-load. o |

One boiler with LNCFS ITI technology (Labadie 4) burned a
blend of bituminous and subbituminous coal. The short-term
uncontrolled NOy; emissions were 0.54 to 0.69 1b/MMBtu across
the load range and were reduced to 0.45 1b/MMBtu, or 10 to
35 percent. The LNCFS III system on Labadie 4 is still being
tuned and long-term data are not yet available.

For the one boiler with the pM™ burner system firing
subbituminous coal, the short-term controlled NOy emissions at
near full-load were 0.25 1b/MMBtu (49 percent NOy réduction)
and 0.14 to 0.19 1b/MMBtu (60 to 71 percent NOy reduction) at
lower loads, However, the baseline ang post-retrofit coals
are very different and the 49 percent reduction may not be an
accurate depiction of the capabilities of the retrofit. The
uncontrolled NOyx for Lawrence 5 was relatively consistent at
0.47 to 0.49 1b/MMBtu across the load rangef_ However, the
controlled NOx was much less at the lower loads. This was
due to the operators becoming familiar with the operation of

the PM system and being able to greatly reduce excess air 1
levels at the lower loads.>®

‘Two similar tangentially-fired boilers (Gibson 1 and 3) ‘
have been retrofitted with the Atlas LNB with OFA. For both |
cases, the NOy was reduced‘approximately 40 percent.

Figure 5-19 shows that short-term controlled NOy emissions
across the load range for the tangential units with retrofit
LNB + OFA. Several boilers (Labadie 4, Lansing Smith 2, and
Cherokee 4) had NOy, emissions that increased or decreased
‘slightly over the load range. Howgver, one unit, Valmont 5,
had substantially higher uncontrolled and controlled NOy
emissions at the lower loads. This may be due to the need for
higher excess air levels at lower loads to maintain reheat and
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superheat steam temperatures. To maintain the steam
temperatures, the main coal and air nozzles tilt upward and
this may contribute to the higher NOyx emissions at the lower
loads. As previously mentloned, the NOy decreased for the BM
burner applications.

| The‘wall-fired unit firing bituminous coal, W.H.
Sammis 6, was originally a two-nozzle cell unit. The burner
pattern was changed to a conventional opposed wall pattern
during the installation of the LNB + SOFA system. The
uncontrolled Nox emissions at near full-load ranged from 1.1
to 1.4 1b/MMBtu, which is typical of cell boilers. With the
DRB-XCL + SOFA, the NOyx emissions were reduced to
approximately 0.35 1b/MMBtu, or 60 to 70 percent reduction.
At reduced load, the uncontrolled NOy level of 0.49 1b/MMBtu
was reduced by 37 percent to 0.31 1b/MMBtu.

One roof-fired boiler is shown in table 5-6. Arapahoe 4
has completed an extensive retrofit of an DRB-XCL + OFA
system. The uncontrolled NOy level of 1.1 1b/MMBtu was
reduced to 0.35 lb/MMBtu (68 percent) at full-load. At lower
loads, the NOx reduction was 60-70 percent. This boiler is
also demonstrating SNCR as part of the U.S. DOE Innovative
Clean Coal Technology program. The results of the combined

- control is presented in section 5.3.3.3.

To summarlze, the LNCFS II technology reduced Nox
emissions by 40 to 50 percent and the LNCFS III technology
reduced NOy by 50 percent on bituminous coal- fired boilers.
The LNCFS III technology reduced NOx by 10 to 35 percent on a

~boiler firing a blend of bituminous and subbituminous coal.
The PM™ burner reduced NOx by 50 to 60 percent at full-load on
subbituminous coal. And the combination of DRB-XCL + SOFA
reduced NOy by 65 to 70 percent on a wall-fired boiler flrlng
bituminous coal. The Atlas LNB + OFA reduced NOx by

approxlmately 40 percent on a wall-fired boiler firing
subbituminous coal.
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5.1.4.3.2 ggg_gg;gg. This section provides information
on NOy emissions from relatively new boilers with original
LNB + OFA systems. The performance of original LNB + OFA on
two new wall-fired boilers firing bituminous coal is given in
table 5-7. Short-term averages of NOx emissions for the units
operating at near full-load range from 0.51 lb/MMBtu {
(Endicott Jr. 1) to 0.56 1b/MMBtu (Seminole 1). At lower |
loads, the NOyx ranged from 0.42 to 0.49 1lb/MMBtu for ‘
Seminole 1. .
5.1.5 Reburn and Co-Firing

$.1.5.1 Process Descriptions. Reburn is a combustion
hardware modification in which the NOy produced in the main
combustion zone is reduced downstream in a second combustion
zone. This is accomplished by withholding up to 40 percent of
the heat input at the main combustion zone at full-load and
introducing that heat input above the top row of burners to
create a reburn zone. The reburn fuel (which may be natural
gas, oil, or pulverized coal) is injected with either air or
flue gas to create a fuel-rich zone where the NOy formed in
the main combustion zone is reduced to nitrogen and water
vapor. The fuel-rich combustion gases leaving the reburn zone
are completely combusted by injecting overfire air (called
completion air when referring to reburn) above the reburn
zone. Figure 5-20 presents a simplified diagram of |
conventional firing and gas reburning applied to a wall-fired
boiler.¥ |

In reburning, the main combustion zone operates at normal
stoichiometry (about 1.1 to 1.2) and receives the bulk of the
fuel input (60 to 90 percent heat input). The balance of the
heat input (10 to 40 percent) is injected above the main |
combustion zone through reburning burners or injectors. The
stoichiometry in the reburn zone is in the range of 0.85 to
0.95. To achieve this, the reburn fuel is injected at a
stoichiometry of 0.2 to 0.4. The temperature in the reburn
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zone must be above 980 oc (1,800 OF) to provide an environment
for the decomposition of the reburn fuel.®®

Any unburned fuel leaving the reburn zone is then burned
to completion in the burnout zone, where overfire air (15 to
20 percent of the total combustion air) is introduced. The
overfire air ports are designed for adjustable air velocities
to optimize the mixing and complete burnout of the fuel before
it exits the furnace. _

The kinetics involved in the reburn zone to reduce NOx

are complex and not fully understood. The major chemical
‘reactions are the following:®®

‘heat /0y deficient .
CHq > ®CH3 + *H (hydrocarbon radicals) (5-1)

The reaction process shown in équation 5-1 is initiated
by hydrocarbon formation in the reburn zone. Hydrocarbon
radiéals are released due to the pyrolysis of the fuel in an
07 deficieht, high-temperature environment. The hydrocarbon
radicals then mix with the combustion gases from the main
combustion zone and react with NO to form (CN) radicals and
other stable products (equations 5-2 to 5-4).°%

*CH3 + NO - HCN + Hy0 | - (5-2)
N2 + ®CH3 -» ®NH, + HCN | (5-3)
*H + HCN - *CN + Hp (5-4)

The CN radicals and the other'products can then react
with NO to form N3, thus completing the major NOy reduction
step (equations 5-5 to 5_'-7).58

NO + ®NH; -» N + Hy0 ' (5-5)

NO + ®CN -» N5 + CO : (5-6)
NO + CO - Ny + .... , (5-7)

An Oy deficient environment is important. 1If Oz levels
are high, the NOx reduction mechanism will not occur and other
reactions will predominate (equations 5-8 to 5-9).%

CN + O3 - CO + NO - ' (5-8)

NHy + O3 - Hy0 + NO | (5-9)




IllllllllIlllllllIllllllllllllIIllIIIIlllll!lllIIlllllllllllllllllllllllllll

To complete the combustion process, air must be
introduced above the reburn zone. Conversion of (HCN) and
ammonia compounds in the burnout zone may regenerate some of
the decomposed Ndx by equations 5-10 to 5-11:° '

HON + 5/4 Oy » NO + CO + 1/2 Hy0 (5-10)

NH3 + 5/4 O3 » NO + 3/2 Hy0 ' (5-11)

The NOx may continue to be reduced by the HCN and NHj
compounds in equations 5-12 to 5-13.°%° '

HCN + 3/4 O3 -» 1/2 Ny + CO + 1/2 H0 (5-12)

NH3 + 3/4 Oy - 1/2 Np + 3/2 Hp0 (5-13)

Reburning may be applicablé to many types of boilers
firing coal, oil, or natural gas as primary fuels in the
boiler. However, the application and effectiveness are site-
specific because each unit is designed to achieve specific |
steam conditions and capacity. Also, each unit is designed to
handle a specific coal of range of coals. The type of reburn
fuel can be the same as the primary fuel or a different fuel.
For coal-fired boilers, natural gas is an attractive reburn
fuel because it is nitrogen-free and therefore provides a
greater potential NO, reduction than a reburn fuel with a
higher nitrogen content.® Natural gas must be suppliéd via
pipeline and many plants utilize natural gas as ignition or
startup fuel, space heating, or for firing other units. If
natural gas is not available on-site, a pipeline would need to
be installed; however, oil or pulverized coal may be used as
alternative reburn fuels.®

As shown in figure 5-21, reburning may be applicable to
cyclone furnaces that may not be adaptable to other NOy
reduction techniques such as LNB, LEA, or OFA without creating
other operational problems.69 Cyclone furnaces burn crushed
coal rather than pulverized coal, and pulverizers would be
required if coal is used as the reburn fuel.

Reburning does not require any changes to the existing
burners or any major operational changes. The major
requirement is that the fuel feed rate to the main combustioni
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zone be reduced and an equivalent amount of fuel (on a heat
input basis) be fed to the reburn burners in the reburn zone.
Reburn fuel heat input usually accounts for no more than
20 percent with natural gas or o0il as the reburn fuel and
usually no more than 35 percent with coal as the reburn fuel.

Several reburning systems are available from different
vendors for coal-fired applications. Key components of these
reburn systems include reburn fuel burners for coal or oil
reburn fuel or injectors for natural gas reburn fuel and
associated piping and control valves. The Digital Control
System is also a necessary part of the reburn system. If flue
gas is used as the reburn fuel carrier gas, then fans,
ductwork, controls, dampers, and a windbox are also needed in .
the reburn zone. Key components of the burnout zone include
ductwork, control dampers, a windbox, and injectors or air
nozzles. Injectors for the reburn fuel and overfire air
require waterwall modifications for installation of the portsﬁ

Natural gas co-firing consists of injecting'and |
combusting natural gas near or concurrently with the main
coal, oil, or natural gas fuel. At many sites, natural gas ié
used during boiler start-up, stabilization, or as an auxiliary
fuel. Co-firing may have little impact to the overall boiler
performance‘since the natural gas is combusted at the same
locations as the main fuel. Figure 5-22 shows an example of a
co-firing application on a wall-fired boiler. 7

5.1.5.2 PFactors Affecting Performance. The reburn
system design and operation can determine the effectiveness of
a reburn application. Reburn must be designed as a "system"
so that the size, number, and location of reburn burners and
overfire air ports are optimized. A successful design can be
accomplished through physical and numerical modeling. The
system must be capable of providing good mixing in the reburn
burnout zones, so that maximum NOy reduction and complete fuel
burnout is achieved. Also, penetration of the reburn fuel
into hot flue gas must be accurately directed because over-
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Figure 5-22, @Gas cofiring applied to a wall-fired

boiler.
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penetration or undér-penetration could result in tube wastage
and flame instability.sa

Operational parameters that affect the performance of
reburn include the reburn zone stoichiometry, residence time
in the reburn zone, reburn fuel carrier gas; and the
temperature and O; level in the burnout zone. Decreasing the
reburn zone stoichiometry can reduce NOy emissions. However,
decreasing the stoichiometry requires adding a larger portion
of fuel to the reburn zone, which can adversely affect upper
furnace conditions by increasing the furnace exit gas
temperature. _

As previously described, flue gas may be used to inject
the'rebufn'fuel into the reburn zone. Flue gas recirculation
(FGR) rate to the reburning burners can affect NOy reduction.
Coal reburning'is more sensitive to the FGR rate than natural
gas or oil reburning, possibly because -of coal nitrogen in the
reburning coal portions. When FGR is not used, NOy is formed
through the volatile flame attached to the reburn burner.
However when FGR is used, mixing is improved and the NOy-
formation in the volatile reburning flame is reduced.

A main controlling factor in reducing NOx emissions with
reburn is the residence time in the reburn zone. The reburn
fuel and combustion gases from the main zone must be mixed
thoroughly for reactions to occur. If thorough mixing occurs,
the residence time in this zone can be minimized.*® The _
furnace size and geometry determines the placement of reburn
burners and overfire air ports, which will ultimately
influence the residence time in the reburn zone.

The temperature and O, levels in the burnout zone are
important factors for the'regeneratiQn or destruction of NOx
in this area. Low temperature and O concentrations promote
higher conversion of nitrogen compounds to elemental nitrogen.
However, high carbon losses occur at low concentrations of 02‘
and lower temperatures. The burnout zone also requires:
sufficient residence time for Oy to mix and react with
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combustibles from the furnace before entering the convective
pass to reduce unburned carbon.®

5.1.5.3 Performance of Reburn. Results from two natural
gas and one pulverized coal reburn retrofit installation are
given in table 5-8. All three boilers burn bituminous coal.
For the natural gas reburn application on a tangentially-fired
boiler (Hennepin 1) firing bituminous coal, the short- term
data indicate that NOyx emissions at full-load are
0.22 1lb/MMBtu, corresponding to a 63 percent reduction. The
long-term data collected during 3 to 55 hour periods averaged
© 0.23 1b/MMBtu at loads of 53 to 100 percent.' This unit
averaged 60 percent NOy reduction. ’

There is one application of natural gas reburn on a wall-
fired boiler, Cherokee 3, and this unit also has retrofit LNB
with reburn, the Nox was reduced approxlmately 60 percent to
0.2 1b/MMBtu from the control levels with LNB.

For the natural gas réburn on a cyclone boiler, Niles 1,
the long-term data indicate NOy emissions are in the range of
0.50 to 0.60 1lb/MMBtu at 75 to 100 percent load. Niles
reported that maximum Nox'reductions (approximately
50 percent) are only achievable at, or near, maximum load
capacity because as the load was reduced, the reburn
performance’ degraded and could not be operated at less than
75 percent load. This is due to the reburn-fuel mixing
limitations and temperatures required to enable the slag to
run in the furnace. This situation may be boiler- or fuel-
specific.

There was a substantial buildup of slag on the back wall
at Niles (even covering the reburn ports) and substantial
changes had to be made to the reburn équipment design. After
all the changes were made in design‘and optimization of the
system was completed, the full-load NOy, reduction at Niles
averaged 47 percent at full load and 36 percent at 75 percent
load. There was no NOy reduction noted at less than
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75 percent load. The reburn system was removed in August
1992, 2 years after installation.

The remaining reburn application is a phlverized coal
reburn system on a cyclone boiler (Nelson Dewey 2). The
short-term NOy emissions at full-load were 0.38 1b/MMBtu
(55 percent NOy reductlon) when burning bituminous coal. ag
noted with the previous application, the NOy emissions were
reduced at mid-load levels and then increased at low loads.

At 73 percent load, the NOy emissions were 0.35 lb/MMBtu

(36 percent reduction) and at half load, the NOx emissions
were 0.49 1b/MMBtu. It was reported that when burning a
western, Powder River Basin Coal, a 50 percent reduction was
achieved over the load range. This further emphasis that the
NOx reduction with reburn is both fuel- and boiler-specific.
The results of the reburn applications are shown in

figure 5-23, _

The one co-firing application on table 5-8 is Lawrence 5.
Lawrence 5 was retrofitted with the PM LNB system in 1987 and
consists of five levels of PM coal nozzles. Full-load na;ural
gas firing is available through natural gas elevations between
the coal elevations. . Separated OFA is also part of the PM LNB
system. By selective co-firing with 10 percent natural gas,
the NOyx was reduced 29 to 30 percent from the controlled
levels with the PM LNB system. With 20 percent co- flrlng, the
NOx was reduced an additional 5 percent.

5.1.6 Low HOE Burners and Reburn

5.1.6.1 Process Description. .Reburn technology can also
be combined with LNB to further reduce NOyx emissions through

additional staging of the combustion process. This staging is
accomplished by reducing the fuel fed to the LNBE to
approximately 70-85 percent of the normal heat input and
introducing the remainder of the fuel in the reburn zone.
Combustion of the unburned fuel leaving the reburn zone is
then completed in the burnout zone, where additional
combustion air is introduced. Detailed desériptions of LNB
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‘and reburn technology are prbvided in sections 5.1.3.1 and
5.1.5.1, respectively.

5.1.6.2 Factors Affecting Performance. Design and
operational factors affecting the NOx emission control
performance of combined LNB and reburn systems are the same as

discussed in sections 5.1.3.2 and 5.1.5.2, for the individual
controls.

5.1.6.3 Performance of Low NOy Burners and Reburn.
There is one application of LNB and natural gas reburn on a

coal-fired boiler at the Public Service Company of Colorado's
Cherokee Station Unit 3. This is a U.S. DOE Innovative Clean

Coal Technology Project on a 150 MW pre-NSPS wall-fired boiler

that was predicting a 75-percent decrease in NOy emiss:i._ons_.76
Short-term test data shows an overall 72 percent reduction
from uncontrolled levels. The NOy was reduced by 31 percent
with LNB to 0.5 1lb/MMBtu and by 60 perceht with reburn to
0.2 1lb/MMBtu.
5.2 COMBUSTION CONTROLS FOR NATURAL GAS- AND OIL-FIRED

UTILITY BOILERS

Most of the same NOx control techniques used in
coal-fired utility boilers are also used in natural gas- and
oil-fired utility boilers. These techniques include
‘operational modifications such as LEA, BOOS/ and BF; OFA; LNB;
and reburn. However, in natural gas- and oil-fired boilers, a
combination of these controls is typically used rather than
singular controls. Refer to section 5.1 for a general
discussion of these NOx controls. Additionally, windbox FGR
is a combustion control that is used on natural gas- and oil-
fired boilers that is not used on coal-fired b01lers Windbox
FGR will be described in section 5.2.2,

5.2.1 QOperational Modifications

5.2.1.1 Process Description. Operational modifications
are more widely implemented to reduce NOy emissions from
natural gas- and oil-fired utility boilers than from coal-
fired boilers. Because the nitrogen content of natural gas
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and oil is low compared to coal, the majority of the NOyx
emitted from natural gas and oil-fired boilers is the result
of thermal NOy generation, which can be minimized by reducing
the available 03 and the peak temperature in the combustion
zone. Since operational modifications promote these
conditions, and natural gas and oil combustion is less
sensitive than coal to variations in operating parameters,
operational modifications are effective, low-cost NOyx control
techniques for natural gas- and oil-fired boilers.

' The process descriptions of LEA, BOOS, and BF are the
same for natural gas- and oil-fired boilers as for coal-fired
boilers as was discussed in section 5.1.1.1.

5.2.1.2 Factors Affecting Performance. As discussed in
section 5.1.1.2, implementation of LEA, BOOS, and BF
techniques involve changes to the normal operations'of the
boiler, which may result in undesirable side-effects. As
mentioned above, natural gas- and oil-fired boilers are less
sensitive to operation outside the "normal range." However,
the factors affecting the performance of operational
modifications in natural gas- and oil-fired boilers are
similar to those discussed for coal-fired units.

The appropriate level of LEA for natural gas- and
oil-fired boilers is unit specific. Usually, however, LEA
levels are lower than can be achieved with coal-fired boilers
because flame instability and furnace slagging do not
determine minimum excess air levels in natural gas- and oil-
fired boilers. The LEA levels in these boilers are typically
defined by the acceptable upper limit of CO and UBC emissions.

Although NOyx reductions can be achieved with BOOS and BF,
these operational modifications often slightly degrade the
performance of the boiler because excess air levels must be
sufficiency high enough to prevent elevated levels of CO,
hydrocarbons, and unburned carbon emissions resulting from
abnormal operating conditions. For this reason, monitoring
flue gas composition, especially O, and CO concentrations, is.
very important when employing operational modifications for
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NOx control. Because flame instability can occur, the BOOS or
BF pattern, including the degree of staging of each of the
burners still in service, must be appropriate for optimal
boiler performance. _ _

Durlng BOOS operation, the air admitted through the upper
burner to complete the fuel burnout is generally at low
preheat levels and low supply pressure (windbox pressure), so
it mixes inefficiently with the combustion products, causing
high CO emissions or high excess air operation. If the boiler
is operated at high excess air levels to maintain reasonable
CO emission levels, the degree of combustion staging and NO,
control is reduced. Operating at high excess O also reduces
boiler efficiency. Therefore, a trade-off between low NO4
emissions and high boiler efficiency must be managed.”’

With BF, the fuel-lean burners provide a combustion zone
with a preheated source of Oz to complete the oxidation of the
unburned fuel from the first combustion zone. The preheating
of this Oy source enhances the penetration and mixing of this
additional O and promotes the complete burnout of fuel at
lower excess air levels. In addition, the combustion .
stoichiometry in the second combustion zone is more uniform,
reducing the O, imbalances experienced with BOOS operation.’”’

5.2.1.3 Performance of Operation Modifications.

Table 5-9 presents data for BOOS, LEA, and combination of BOOS
and LEA for natural gas and oil wall-fired boilers. For the
single oil-fired boiler (Kahe 6), BOOS reduced the NOy
emissions from 0.81 lb/MMBtu to 0.50 1b/MMBtu (38 percent).
For the natural gas-fired boiler (Alamitos 6), BOOS reduced
the NOy from 0.90 1b/MMBtu to 0.15 1b/MMBtu (79 percent) .

For LEA application on two wall-fired boiiers-firing
natural gas (S.R. Berton 2 and Deepwater 9), the NO, was
reduced to levels of 0.24 to 0.28 1b/MMBtu (7 to 40 percent) .
Combining LEA + BOOS on natural gas-fired boilers reduced the
NOx emissions to 0.24 to 0.52 1lb/MMBtu (39 to 67 percent) .
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In general, the higher the baseline NOy emissions, the
higher percent NO, reduction was achieved with this type of
operational modifications. While some boilers may have
achieved higher reductions in Nog emissions, proper
implementation of BOOS + LEA may achieve 30 to 50 percent
reduction with no major increase in €O or particulate
emissions. However, effectiveness of BOOS ig boiler-specific
and not all boilers may be amenable to the distortion in
fuel/air mixing pattern imposed by BOOS due to their design
type or fuel characteristics. Boilers originally designed for
coal and then converted to fuel-oil firing may better
accommodate BOOS (and LEA) than boilers with smaller furnaces.

5.2.2 Flue Gas Recirculation
5.2.2.1 Process Description. Flue gas recirculation is

a flame- quenchlng strategy in which the recirculated flue gas
acts as a thermal diluent to reduce combustion temperatures.

It also reduces excess air requirements, thereby reducing the
concentration of Oy in the combustion zone. As shown in
figure 5-24, FGR involves extracting a portion of the flue gas
from the economizer or air heater ocoutlet and readmitting it to
the furnace through the furnace hopper, the burner windbox, or
both.’ To reduce NOy, the flue gas is injected into the
-windbox. For coal- fired boilers operating at peak boiler
capacity, flue gas is commonly readmitted through the furnace
hopper or above the windbox to control the superheater steam
temperature; however, this method of FGR does not reduce NOy
emissions. Windbox FGR is most effective for reduc1ng thermal
NOx only and is not used for NOy control on coal-fired boilers
in which fuel NOy is a major contributor.

' The degree of FGR is variable (10 to 20 percent of
combustion air) and depends upon the output limitation of the
forced draft (FD) fan (i.e., combustion air source which
directly feeds the boiler). fThis is particularly true for
units in which FGR was originally installed for steam
temperature control rather than for NOx control.® The FGR
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fans are located between the FD fans and the burner windbox.
The FGR is injected into the FD fan ducting and then
distributed within the windbox to the burners. As the fan
flow is increased, the pressure within the furnace increases.
At some level, the fans are unable to provide suff1c1ent
combustion air to the windbox. This results in
overpressurization of the boiler and a possible unit de-rate.®

5.2.2,2 Factors A;fegting Performance. To maximize NO,

reduction, FGR is routed through the windbox to the burners,
‘where temperature suppression can occur within the flame. The
effectiveness of the technique depends on the burner heat
release rate and the type of fuel being burned. When burning
heavier fuel oils, less NOy reduction would be expected than
when burning natural gas because of the higher nitrogen
content of the fuel.

Flue gas recirculation for NOy control is more attractive
for new boilers than as a retrofit. Retrofit hardware
modifications to implement FGR include new ductwork, a
recirculation fan, devices to mix flue gas with combustion
air, and associated controls. In addition, the FGR system
itself requires a substantial maintenance program due to the

‘high temperature environment and potential erosion from
entrained ash.

5.2.2.3 Performance of Flue Gas Recirculation.

Table 5-10 presents data for FGR applied to one tangentially-
fired boiler and three wall-fired boilers. It should be noted
that FGR is usually used in combination with other
modifications or controls (i.e., LEA, BOOS, 0FA, or LNB) and
little data are available for FGR alone. At full-load, the
FGR reduced NOyx emissions to 0.42 1b/MMBtu on the wall-fired
boiler firing fuel oil for a NOy reduction of 48 percént.
Flue gas recirculation applied to a tangentially-fired boiler
firing natural gas reduced NOy by 25 to 50 percent across the
load range with FGR on wall-fired boilers firing natural gas,
the NO# reduced by more than 50 percent.
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5;2.3 Overfire Air

5.2.3.1 Process Description. The same types of OFa
systems are used for natural gas? and oil-firing as was
described for coal-firing in section 5.1.2.1.

5.2.3.2 Factors Affecting Performance. Boilers.
characterized by small furnaces with high heat release rates
typically have insufficient volume above the top burner row to
accommodate OFA ports and_still‘completé combustion within the
furnace. With some units, retrofitting with OFA would make it
necessary to derate and modify the superheater tube bank to
minimize changes in the heat absorption profile of the boiler.
For these small boilers, BOOS can offer similar NO, reduction
at a fraction of the cost. '

The factors that affect OFA performance for natural gas-
and oil-fired boilers are the same as those described for
coal-fired boilers in section 5.1.2.2.

5.2.3.3 Performance of Overfire Air. Data for OFA on
natural gas-fired boilers are presented in table 5-11. These
units were typically operated with LEA; therefore, the-
controlled NOx emissions are for OFA + LEA. For the
tangentially-fired boilers, the NOy was reduced to 0.11 to
0.19 1b/MMBtu at full-load with OFA + LEA (10 to 46 percent
reduction). The wall-fired boiler had a higher uncontrolled
NOx level and was reduced to 0.54 1b/MMBtu with OFA + LEA
(48 percent reduction). The OFA application on a wall-fired
boiler firing fuel oil was approximately 20 percent.

5.2.4 Low NO Bgrngfg : '
5.2.4.1 Process Description. The fundamental NO,

reduction mechanisms in natural gas- and oil-fired LNB are
esgentially the same as those in coal-fired LNB discussed in
section 5.1.3.1. However, many vendors of LNB for oil- and
natural gas-fired boilers incorporate FGR as an integral part
of the LNB. Low NOx burners are appealing options for natural
gas- and oil-fired utility boilers because they can eliminate
many of the boiler operating flexibility restraints associated
with BOOS, BF, and OFA.
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5.2.4.1.1 Wall-fired boilers. As with coal-fired LNB,

there are a number of different natural gas- and oil-fired LNB

available from manufacturers. Several of these are discussed
below,

The wall-fired ROPM" burner for natural gas- or
oil-firing is shown in figure 5-25.% Combustion in a ROPM™
burner is internally staged, and takes place in two different
zones; one under fuel-rich conditions and the other under
fuel-lean conditions. Gaseous fuel burns under pre-mixed
conditions in both the fuel-lean and fuel-rich zones. With
liquified fuels, however, burning occurs under diffused-flame
conditions in the fuel- rlch mixture to maintain a stable
flame. _

The natural gas-fired ROPM™ burner generates a fuel-rich
flame 2one surrounded by a fuel-lean zone. The burner
register is divided into two sections. Natural gas and
combustion air supplied via an internal cylindrical
compartmen; produces the fuel-rich flame. The fuel and air
supplied via the surrounding annular passage produces the
fuel-lean zone.®

The oil-fired ROPM™ burner uses a unique atomizer that
sprays fuel at two different spray angles, creating two
concentric hollow cones. The inner cone creates a fuel-rich
flame zone; the outer cone forms the fuel-lean flame zone.
The inner fuel-rich flame zone has diffusion flame
characteristics that help maintain overall flame stability.
The ROPM™ burner technology generally relies on a combination
of ROPM™ burners and FGR to achieve NOy reductlons.

The Dynaswirl™ burner for wall-fired boilers divides
combustion air into several component streams ahd controls
injection of fuel into the air streams at selected points to
maintain stable flames with low NOyx generation. Figure 5-26
schematicaliy illustrates the internal configuration of the
burner.79 For natural gas-firing, fuel is introduced through

six pipes, or pokers, fed from an external manifold. The
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.

'pokers have skewed, flat tips perforated with numerous holes
and directed inward toward the burner centerline. Primary air
flows down the center of the burner venturi around the center-
fired gas gun, where it mixes with this gas to form a stable
flame. Secondary air flows among the outer walls of the
venturi, where it mixes with gas from the gas pokers and is
ignited by the center flame. 7

The Internal Staged Combustion™ (ISC) wall-fired LNB

incorporates LEA in the primary combustion zone, which 11m1tsw
the O5 available to combine with fuel nitrogen. In the seconq
combustion stage, additional air is added downstream to form a
cooler, Op-rich zone where combustion is completed and thermal
NOy formation is limited. The ISC design, shown in
figure 5-27, can fire natural gas or oil.®

The wall-fired Primary Gas - Dual ﬁegister Burner" (PG-
DRB), shown in figure 5-28, was developed to improve the NOy
reduction capabilities of the standard DRE.*® The PG-DRB can
be used in new or retrofit applications. The system usually
includes FGR to the burner and to the windbox, with OFA ports
installed above the top burner row. "Primary gas" is
recirculated flue gas that is routed directly to each PG-DRB
and introduced in a dedicated zone surrounding the primary air
zone in the center of the burner. The recirculated- gas
inhibits the formation of thermal and fuel NOx by reducing
peak flame temperature and Oy concentration in the core of the
flame. The dual air zones surrounding the PG zone provide
gecondary air to control fuel and air mixing and regulate
flame shape. |

In addition to the DRB XCL-PC" burner for coal-fired
‘boilers, the XCL burner, as shown in figure 5-29, is also
available for wall-fired boilers burning natural gas and oil.”

This design enables the use of an open windbox (compartmental
windbox is unnecessary). Air flow is controlled by a sliding
air damper and swirled by vanes in the dual air zones. |
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COOLER OXYGEN RICH ZONE
REDUCES THERMAL NOx
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Figure 5-27. Internal Staged Combustion™ low No_x- burner.®
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P

The Swirl Tertiary Separationm (STS) burner for natural’
gas- and oil-fired retrofits is shown in figure 5-30.% 1In

this design, the internal staging of primary and secondary air
can be adjusted depending on required NO, control and overall
combustion performance. The ability to control swirl of the
primary and secondary air streams independently provides
flexibility in controlling flame length and shape, and ensures .
flame stability under low-NO, firing conditions. A separate
recirculated flue gas stream forms a distinct separate layer .
between the primary and secondary air. This separating layerj
of inert flue gas delays the combustion process, reducing'peak
flame temperatures and reducing the oxygen concentration in
the primary combustion zone. Therefore, the separation layer
controls both thermal and fuel NOy formation.®

5.2.4.1.2 Tangentially-fired boilers. The

tangentially-fired Pollution Minimum™ (PM) burner is shown in
figure 5-31.% The burners are available for natural gas or |
oil firing. Both designs are internally staged, and
incorporate FGR within the burners. ’

The gas-fired PM burner compartment consists of two fuel
lean nozzles separated by one fuel-rich nozzle. Termed nGM"
(gas mixing), this LNB system incorporates FGD by mixing a
portion of the flue gas with combustion air upstream of the |
burner. When necessary, FGR nozzles are installed between tﬁo
adjacent PM burner compartments, and a portion of the
recirculated gas is injected via these nozzles.®

The oil-fired PM burner consists of one fuel nozzle
surrounded by two separated gas recirculation (SGR) and air
and GM nozzles. Within each fuel compartment a single oil gun
with a unique atomizer sprays fuel at two different spray |
angles. The outer fuel spray passes through the SGR streams‘
produce the fuel-lean zones. The inner concentric spray
produces the fuel-rich zones between adjacent SGR nozzles.

The SGR creates a boundary between the rich and lean flame
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zones, thereby maintaining the NOyx reducing characteristics of
both flames.®

5.2.4.2 Factors Affecting Performance. The factors

affecting the performance of oil- and gas-fired LNB are
essentially the same as those for coal-fired LNB discussed in - ‘
section 5.1.3.2 of this document. However, the overall |
success of NOy reduction with LNB may also be influenced by
fuel grade and boiler design. For example, the most
successful NOy reductions are on natural gas and light fuel
oil firing and on boilers initially designed for specific fuel
use patterns Also, boilers originally designed w1th larger
furnace volumes per unit output would be more conduc1ve to NOy
reduction with LNB than a smaller furnace.
Other factors affecting performance are the burner
atomizer design which is critical for controlling NOy and
minimizing opacity. By improving atomization quality, there
is a greater margin for varlabllltles in the b01ler operation
and fuel properties.

5.2.4.3 Performance of Low NO, Burners. Table 5-12
presents data for LNB on natural gas- and oil-fired boilers.
Three oil-fired boilers (Kahe 6, Port Everglades 3 and 4) had
uncontrolled NOx emissions in the range of 0.74 to
0.81 1b/MMBtu. With LNB, thé NO, was reduced to 0.51 to
0.56 1b/MMBtu which corresponds to a 28 to 35 percent
reduction. The remalnlng oil-fired boiler, Northside 3,
originally had OFA and was retrofit with LNB capable of
burning either o0il or gas. While the LNB were intended to
accommodate the OFA, opacity exceedances occurred and the OFA
ports were closed. Therefore, it is not possible to determine
the percent reduction from this LNB retrofit. '

For two wall-fired boilers firing natural gas (Port
Everglades 3 and 4), the NOy was reduced from uncontrolled
levels of 0.52 to 0.57 1b/MMBtu to approximately 0.4 1b/MMBtu
(23 to 33 percent reduction). For Alamitos 5, the NOx was
reduced 40 to 60 percent across the load range with LNB.
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Alamitos 6 had higher uncontrolled NOx emissions (estimated to
be 0.9 1lb/MMBtu) and was reduced 75 percent to 0.22 1lb/MMBtu.
Again, it is not possible to determine the percent reduction
for Northside 3 with these data. . |

To summarize, LNB retrofit on wall-fired boilers firing
0il resulted in controlled NOy emissions of approximately 0.5
to 0.55 1b/MMBtu. On wall-fired boilers firing natural gas,
LNB typically resulted in controlled NOy emissions of 0.2 to
0.4 1b/MMBtu. The lower controlled NOx for the natural gas
‘boilers is probably a result of the lower uncontrolled
emissions.
5.2.5 Reburn

Although reburn may be applicable to oil-fired boilers,
retrofit applications have been limited to large units in
‘Japan. Reburning is not expected to be used on natural gas
fired units, because other techniques such as FGR, BOOS, and
OFA are effective and do not need the extensive modifications
that reburn systems may require. However, gas reburn on a
dual-fuel boiler (coal/gas) has been evaluated.

5.2.5.1 Process Description. The process description of
reburn for natural gas- or oil-fired boilers is the same as
was described for coal-fired boilers in section 5.1.5.1. ?

5.2.5.2 Pactors Affecting Performance. The factors 3
affecting the performance of reburn for natural gas- or oil-
fired boilers are the same as was described for coal-fired
boilers in section 5.1.5.2. Additionally, natural gas
produces higher flue gas temperatures than when firing coal;

therefore, the heat absorption profile in the furnace may
change.

5.2.5.3 Performance of Reburn. There are no retrofits
of reburn on ocil-fired utility boilérs in the United States;
therefore, performance data are not available. Gas reburn has
been tested on Illinois Power's Hennepin Unit 1 while firing
natural gas as the main fuel. Hennepin Unit 1 is a 71 Mw
tangential boiler capable of firing coal or natural gas. The
uncontrolled NOx emissions when firing natural gas were
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approximately 0.14 1lb/MMBtu at full-load and 0.12 lb/MMBtu at
60 percent load. The NOy emissions were reduced by 37 percent
at full-load to 0.09 1b/MMBtu. At reduced load, the NOy
emissions were reduced by 58 percent to 0.05 1b/MMBtu. *

5.2.6 Combinations of Combustion Controls

5.2.6.1 Process Descriptions. Large NOyx reductions can
be obtained by combining'combustion controls such as FGR,
BOOS, OFA, and LNB. The types of combinations applicable to a
given retrofit are site-specific and depend upon uncontrolled
levels and regquired NOy reduction, boiler type, fuel type,
furnace size, heat release rate, firing configuration, ease of
' retrofit, and cost. The process descriptions for the
individual controls are found in section 5.1.°

5.2.6.2 Factors Affecting Performance. The same basic
factors affecting the performance of individual combustion
controls will apply to these controls when they are used in
combination. Section 5.1 describes the factors affecting the
individual NOy controls.

5.2.6.3 Performance of Combination of Combustion:
Modifications. Short-term data for various combinations of |
NOy controls for natural gas- and cil-fired boilers are given
in table 5-13. Results are given for one tangential boiler |
firing natural gas, several combinations of controls on two
wall-fired boilers firing fuel oil, and several gombinations
on wall boilers firing natural gas. For the tangential boiler
firing natural gas (Pittsburgh 7), the NOy emissions were
reduced from 0.95 lb/MMBtu with FGR + OFA to 0.1 1b/MMBtu at
full-load (89 percent reduction). _

For Kahe 6 (with the original burners), the NOy emissions
- were reduced from 0.81 1lb/MMBtu with FGR + BOOS to
0.28 1b/MMBtu for a 65-percent reduction. As was shown in
sections 5.2.1.3 and 5.2.2.3 (Refer to tables 5-9 and 5-10),
BOOS alone on this unit reduced NOx to 0.50 lb/MMBtu
(38 percent) and FGR alone reduced NOy to 0.42 1lb/MMBtu
(48 percent). The combination of LNB and FGR on Kahe 6
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reduced the NOy emissions to 0.43 1b/MMBtu (47 percent). The
combination of LNB + OFA on Kahe 6 reduced NOy emissions to
0.28 1b/MMBtu (65 percent) and LNB + OFA + FGR reduced NOx
emissions to 0.19 1b/MMBtu (76 percent). These data show that
by combining technologies on this oil-fired boiler, NOy
emissions can be reduced by 47 to 76 percent from uncontrolled
levels. For the other oil-fired wall boiler (Contra Costa 6),
FGR + OFA reduced the NOx emissions from 0.55 to 0.19 1b/MMBtu
at full-load (65 percent reduction). These data also indicate
that combining operational modifications may reduce NOy
emissions as much as or more than combustion hardware changes
(i.e., LNB).

For two natural gas-fired boilers (Pittsburgh 6 and
Contra. Costa 6), FGR + OFA reduced NOx emissions to 0.16 and
0.24 1b/MMBtu. The Pittsburgh unit had hlgher uncontrolled
NOx (0.9 1lb/MMBtu) than the Contra Costa unit (0.55 1b/MMBtu)
and resulted in 82 percent reduction as compared to
57 percent.

For two natural gas-fired boilers (Alamitos 6 and Moss
Landing 7), combining FGR + BOOS (similar to FGR + OFA)
reduced NOx emissions to 0.08 to 0.14 lb/MMBtu (92 percent
reduction) at full-load. The combination of LNB + FGR on the
natural gas boilers reduced NOy to approximately 0.1 lb/MMBtu
on Alamitos 6 and Ormond Beach 2 (89 to 94 percent). And,
combining LNB + FGR + BOOS decreased the NOy emissions to 0.06
to 0.12 1b/MMBtu on Alamitos 6 and Ormond Beach 2
(93 percent).

To summarize, combining combustion controls on natural
gas-boilers is effective in reducing NOx emissions. However,
combining combustion controls on oil-firing is not as
effective and reductions of up to 75 percent were reported.

Whereas, reductions of up to 94 percent on natural gas-fired
boilers were reported.

5.3 ELUE GAS TREATMENT CONTROLS
Two commercially available flue gas treatment
technologies for reducing NOy emissions from existing fossil
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fuel utility boilers are selective noncatalytic reduction
(SNCR) and selective catalytic reduction (SCR). Selective
noncatalytic reduction involves injecting ammonia or urea into
the flue gas to yield nitrogen and water. The ammonia or ureaj
must be injected into specific high-temperature zones in the |
upper furnace or convective pass for this method to be
effectiv_e.92 The other flue gas treatment method, SCR,
involves injecting ammonia into the flue gas in the presence
of a catalyst. Selective catalytic reduction promotes the
reactions by which NOy is converted to nitrogen and water at
lower temperatures than required for SNCR.
'5.3.1 Selective Noncatalytic Reduction

5.3.1.1 Process Description. The SNCR process involves
injecting ammonia or urea into boiler flue gas at specific
temperatures. The ammonia or urea reacts with NOy in the flue
gas to produce N, and water.

As shown in figure 5-32, for the ammonia-based SNCR
process, ammonia is injected into the flue gas where the
temperature is 950 x 30 ©C (1,750 z 90 ©F).® Even though
there are large quantities of Oy present, NO is a more
effective oxidizing agent, so most of the NH3 reacts with NO
by the following mechanism:*"

4NH3 + 6NO - 5Ny + 6Hp0 (5-14)
Competing reactions that use some of the NH; are:

4NH3 + 505 - 4NO + 6H0 (5-15)

4NH3 + 303 - 2N + 6H30 (5-16)
For equation 5-14 to predominate, NH3 must be injected into
the optimum temperature zone, and the ammonia must be
effectively mixed with the flue gas. When the temperature

exceeds the optimum range, equation 5-15 becomes significant,
NH3 is oxidized to NOyx, and the net NOy reduction decreases.”

If the temperature of the coﬁbustion products falls below the
SNCR operating range, the NH3 does not react and is emitted to
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the acmosphere. Ammonia emissions must be minimized because
NH3 is a pollutant and can also react with sulfur oxides in
the flue gas to form ammonium salts, which can deposit on
downstream equipment such as air heaters. A small amount of
hydrogen (not enough to appreciably raise the temperature) can
be injected with the NH; to lower the temperature range in
which SNCR is effective.

As shown in figure 5-33, in the urea-based SNCR process,
an aqueous solution of urea (CO(NH3)3) is injected into the ;
flue gas at one or more locations in the upper furnace or
convective pass.92 The urea reacts with NOx in the flue gas to
form nitrogen, water, and carbon dioxide (COz). Agqueous urea
has a maximum NOy reduction activity at approximately 930 to
1,040 ©C (1,700 to 1,900 ©F). Proprietary chemical enhancers
may be used to broaden the temperature range in which the
reaction can occur. Using enhancers and adjusting the
concentrations can expand the effectiveness of urea to
820-1,150 ©C (1,500-2,100 ©F).%

The exact reaction mechanism is not well understood
because of the complexity of urea pyrolysis and the subsequent

free radical reactions. However, the overall reaction.
. H 94 . )
mechanism 1is:

CO(NHp) o + 2NO + 1/205 » 2Np + COp + 2H0 (5-17)

Based on the above chemical reaction, one mole of urea
reacts with two moles of NO. However, results from previous |
research indicate that more than stoichiometric quantities of
urea must be injected to achieve the desired level of NOx
removal .® Excess urea degrades to nitrogen, carbon dioxide,
and unreacted NHj. _

' Another version of the urea-based SNCR process uses high
energy to inject either aqueous NH3 or urea solution as shown
in figure 5-34.% The solution is injected into the flue gas

using steam or air as a diluent at one or more specific
temperature zones in the convective pass. Additionally,
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methanol can be added further in the process to reduce NH3
slip. This system is based on the same concept as the earlier
' SNCR systems except that the pressurized urea-water mixtures
are injected into the cross-flowing flue gas with.high-
velocity, air-driven nozzles. High-energy urea injection is
especially applicable to units with narrow reagent injection
windows because this system provides intense flue gasmixing.95

Hardware requirements for SNCR processes include reagent
storage ‘tanks, air compressors, reagent injection grids, and
an ammonia vaporizer (NHj;-based SNCR). Injection equipment
such as a grid system or injection nozzles is needed at one or
more location5=in'the upper furnace or convective pass. A
carrier gas, such as steam or compressed air, is used to
prdvide sufficient velocity through the injectipn nozzles to
ensure thorough mixing of the reagent and flue gas. For units
that vary loads frequently, multi-level injection is used. A
control system consisting of a NOy monitor and a controller/
processor (to receive NOy and boiler data and to control the
amount of reagent injected) is also required. :

Most SNCR experience has been on boilers less than 200 MW
in size. In larger boilers, the physical distance over which
reagent must be dispersed increases and the surface
area/volume ratio of the convective pass decreases. Both of
these factors are likely to make it more difficult to achieve
good mixing of reagent and flue gas, delivery of reagent in
the proper temperature window, and sufficient residence time
of the reagent and flue gas in that temperature window. For _
larger boilers, more complex'reagent:iﬁjection, mixing, and

- control systems may be necessary. Potential requirements for
such a system could include high momentum injection lances and
more engineering and physical/mathematical modeling of the
process as part of system design.

5.3.1.2 Fégtors Affecting Performance

5.3.1.2.1 Coal-fired boilers. Six factors influence the
performance of urea- or ammonia-based SNCR systems:
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temperature, mixing, residence time, reagent-to-NOx ratio, and
fuel sulfur content. The NOy reduction kinetic reactions are
directly affected by concentrations of NOyx. Reduced
concentrations of NOyx lower the reaction kinetics and thus the
potential for NOy reductions. ‘ ‘
As shown in figure 5-35, the gas temperatﬁre can greatly
affect NOy removal anleH3 slip.96 At temperatures below the
desired operating range of 930 to 1,080 ©C (1,700 to
2,000 ©F), the NOy reduction reactions begin to diminish, and
unreacted NH3 emissions (slip) increase. Above the desired
temperature range, NH; is oxidized to NOy, resulting in low
NOyx reduction efficiency and low reactant utilization.®
The temperature in the upper fufnace and convective pass,‘
where temperatures are optimum for SNCR, depends on boiler
load, fuel, method of firing (e.g., off-stoichiometric
firing), and extent of heat transfer surface fouling or
slagging. The flue gas temperature exiting the furnace and
entering the convective pass typically may be 1,200 ©C x 110
OC (2,200 OF &+ 200 ©F) at full load and 1,040 ©C + 70 ©C
(1,900 OF # 150 ©OF) at half load. At a given load,
temperatures can increase by as much as 30 to 60 ©C (50 to
100 OF) depending on boiler conditions (e.g., extent of
slagging on heat transfer surfaces). Due to these variations |
in the temperatures, it is often necessary to inject the
reagent at different locations or levels in the convective
pass for different boiler loads.™

The second factor affecting SNCR performance is mixing of
the reagent with the flue gas. The zone surrounding each
reagent injection nozzle will probably be well mixed by the

' turbulence of the injection. However, it is not possible to
mix the reagent thoroughly with the entire flue gas stream
because of the short residence time typically available.
Stratification of the reagent and flue gas will probably be a
greater problem at low boiler loads.” Retrofit of furnaces

'_ with two or more division walls will be difficult because the
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central core(s) of the furnace cannot be treated by injection
lances or wall-mounted injectors on the side walls. This may
reduce the effectiveness of SNCR. ' _

The third factor affecting SNCR performance is the
residence time of the injected reagent within the required
temperature window. If residence times are too short, there
will be insufficient time for completion of the desired
reactions between NOy and NH3. _

The fourth factor in SNCR performance is the ratio of
reagent to NOx. Figure 5-36 shows that at an ammonia-to-NOyx
ratio of 1.0, NOy reductions of less than 40 percent are
achieved.” By increasing the NH3:NOy ratio to 2.0:1, NOx
reductions of approximately 60 percent can be obtained.
Increasing the ratio beyond 3.0:1 has little effect on NOy
reduction. Since NH3:NOx ratios higher than the theoretical
ratio are required to achieve the desired NOy reduction, a
trade-off exists between NOyx control and the presence of
excess NH3 in the flue gas. Excess NH3 can react with sulfur
compounds in the flue gas, forming ammonium sulfate salt |
compounds that deposit on downstream equipmeht. The higher
NH; feed rates can result in additional annual costs.

The fifth factor in SNCR performance is the sulfur
content of the fuel. Sulfur compounds in the fuel can react
with NH3 and form liquid or solid particles that can deposit
on downstream equipment. In particular, compounds such as _
ammonium bisulfate (NHyHSO4) and ammonium sulfate [(NH4)2SO4];
can plug and corrode air heaters when temperatures in the air
heater fall below 260 ©C (500 OF). As shown in figure 5-37,
given sufficient concentrations of NH3 and SO3 in the flue
gas, ammonium bisulfate or sulfate can form at temperatures
below 260 ©C (500 ©F).*

$§.3.1.2.2 Natural Gas- and 0Oil-Fired Boilerg. The
factors affecting the performance of SNCR on coal-fired
boilers are applicable to natural gas and oil firing. These
factors are: temperature, mixing, residence time, reagent—tor
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NOx ratio, and fuel sulfur content. BRecause natural gas and
oil do not contain as much sulfur as coal, the fuel sulfur
content may not be as much a factor for natural gas- and
oil-fired boilers.

5.3.1.3 erf ance of SNCR on Utilitv B ilers. The
results of SNCR applied‘to fossil fuel utility boilers are
shown in table 5-14. There are 2 coal¥fired, 2 oil-fired, and
10 natural gas-fired SNCR applications represented on the
table. One application is ammonia-based SNCR with the
remainder being urea-based. Available data on NH3 slip and
N20O emissions during these tests are presented in chapter 7.

For Valley 4, the NOx emissions during testing at full
load decreased as the molar ratio increased. At a molar ratio
of 0.7, the NOy emissions were 0.76 l1b/MMBtu whereas a molar
ration of 1.7 resulted in NOx emissions of 0.50 lb/MMBtu. At
reduced loads, the molar ratio has the same effect on NOyx
emissions. At 36 percent load, the NOy was reduced to 0.14
and 0.32 1b/MMBtu with molar ratios of 2.0 and 1.0,
respectively. At 34 percent load, the NOx was reduced to 0.35
and 0.54 1lb/MMBtu with molar ratios of 2.0 and 1.0,
respectively. The higher NO, emissions at the 34 percent load
are attributed to a different burner pattern being used.

For Arapahoe 4, the NOy was reduced approximately
30 percent at full-load prior to the retrofit of LNB + OFA.
After retrofitting LNB + OFA, SNCR reduced NOyx by 30-

40 percent with NH3 slip less than 20 ppm. At. lower loads,
SNCR reduced NOy by 40~50 percent; however, the NH3 slip
increased to as high as 100 ppm. This was attributed to
cooled flue gas temperatures at low loads; however, the system
is still being optimized and tested.

Long-term data from one subpart Da stoker boiler shows
controlled NOy emissions of approximately 0.3 1b/MMBtu with
NH3 slip of less than 25 ppm. Baseline NOy levels from this
facility was not repofted; however, data from another
subpart Da stoker facility shows baseline levels of
0.4-0.6 1lb/MMBtu.
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For the Port Jefferson oil-fired boiler, the NOy
emissions were 0.14 to 0.17 1lb/MMBtu at full-load and 0.15 to
0.21 1b/MMBtu at minimum load depending on the molar ratio.
Higher molar ratios of 1.5 and 2.0 resulted in NOx removals of
up to 56 percent at full and reduced load. The NHj3 slip at an §
NSR of 1.0 was 20 to 40 parts per million (ppm). Further |
experimentation to reduce the NH3 slip at this site is '
planned.

For the tangentially-fired natural gas boilers with
urea-baged SNCR, the NO, emissions at full-load range from
0.06 to 0.08 1b/MMBtu. At lower loads, the NOx emissions
range from 0.03 1lb/MMBtu to 0.05 1lb/MMBtu. The NOyx reductionsj
for these boilers ranged from 0 to 42 percent. While the |
results varied from station-to-station for the same boiler
type, sister units at the same station generally achieved a
similar reduction. Ammonia slip for these boilers was 6 to
17 ppm.

The results were similar for the wall-fired boilers
firing natural gas. The NOyx was reduced on El Segundo 1 and 2
to less than 0.1 1lb/MMBtu across the load range with an NH3
slip of less than 75 ppm. At Morro Bay 3, both a urea-based
and an NH3-based SNCR system were tested. Both of these
systems reduced the NOx by 30 to 40 percent across the load
range, depending on the molar ratio. However, the ammonia
slip was 10 to 20 ppm lower for the ammonia-based SNCR system i
than the urea-based SNCR. The relatively high NH3 slip levels
are thought to be due to_ the relatively short residence times
in the convection section cavities. The NH3 slip is reported .
in chapter 7.

The effect of increasing the molar N to NO ratio on
percent NOyx reduction is shown in figures 5-38 and 5-39 for
coal-fired and for natural gas- or oil-fired boilers,
respectively. As shown in these figures, percent NOx
reduction increases with increasing molar N/NO ratio.

However, as molar ratio is increased the amount of slip will
also increase. Further, above a molar ratio ofvapproximately
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1.0 to 1.5, only slight increases in NOx reduction are
generally Seen. Thus, applications of SNCR must be optlmlzed
for effective reagent use.

5.3.1.4 Performance of SNCR on Fluidized Bed Boilers.
Short-term results of SNCR on seven fluldlzed bed boilers are
given in table 5-15. Two of the boilers are bubbling bed and
five are c1rculat1ng bed. All of these boilers utilize
ammonia-based SNCR systems. The NOy emissions from the
Stockton A and B bubbling fluidized bed boilers were
0.03 1b/MMBtu at full-load. The NOx emissions from the
circulating fluidized bed boilers ranged from 0.03 to
0.1 1b/MMBtu at full-load conditions. The average NOy -
emissions from these five boilers were 0.08 1b/MMBtu.

5.3.2 Selective Catalytic Reduction
'~ 5.3.2.1 Process Description. Selective catalytic
‘reduction involves injecting ammonia into boiler flue gases in

the presence of a catalyst to reduce NOyx to Ny and water. The
catalyst lowers the activation energy required to drive the
NOx reduction to completion, and therefore decreases the

temperature at which the reaction occurs. The overall SCR
reactions are;! '

4NH3 + 4NO + Oz = 4N + 6H30 (5-18)
8NH3y + 6N02 - 7N2 + 12H20 : (5-19)

There are also unde51rab1e reactlons that can occur in an SCR
system, including the oxidation of NH3 and SO, and the

formation of sulfate salts. Potential oxidation reactionms

114
are:

4NH3 + 503 - 4NO + 6H,0 | (5-20)
- 4NH3 + 3035 - 2Nz + 6H50 (5-21)
2NH3 + 202 - N30 + 3H»0 | - (5-22)

2802 + 0 -» 2803 (5-23)
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The reaction rates of both desired and undesired reactions
increase with increasing temperature. The optimal temperature
range depends upon the type of catalyst and an example of this
effect is shown in figure 5-40.'"

Figure 5-41 shows several SCR configurations that have
been applied to power plants in Europe or JapanQ“ﬁ The most
common configurations are diagrams 1a and 1b, also referred to
~as "high dust" and "low dust" configurations, respectively.
Diagrams 1c and 1d represent applications of spray drying with
SCR. Diagrams la through 14 are called "hot-side" SCR because
the reactor is located before the air heater. Diagram le is
called "cold-side" SCR because the reactor is located

downstream of the air heafers, particulate control, and flue
gas desulfurization equipment.117

A new type of SCR system involves replacing conventional
elements in a Ljungstrom air heater with elements coated with
catalyst material. As shown in figure 5-42, the flue gas
passes through the air heater where it is cooled, as in a
standard Ljungstrom air heater.!’® The catalyst-coated air
heater elements serve as the heat transfer surface as well as
the NOx catalyst. The NH3 required for the SCR process is
injected in the duct upstream of the air heater. Because this
type of SCR has a limited amount of space in which catalyst
can be‘installed, the NOx removal is also limited. However,
replacing the air heater elements with catalyst material would
require no major modifications to the existing boiler and may
be applicable to boilers with little available space for add-
on controls. While thig technigque has been used in Germany,
there is only one installation in the United States on a
natural gas- and oil-fired boiler in Califor_nia.119

The hardware for a hot-side or cold-side SCR system
includes the catalyst material; the ammonia system--including
a vaporizer, storage tank, blower or compressor, and various
valves, indicators, and controls; the ammonia injection grid;
the SCR reactor housing (containing layers of catalyst);
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Figure 5-40. Relative effect of temperature
on NOy reduction. '
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_

transition ductwork; and a continuous emission monitoring
system. Ahhydrous or dilute aqueous ammonia can be used; _
however, aqueous ammonia is safer to store and handle. The |
control system can be either feed-forward control (the inlet
NOy concentration and a preset NH3/NOy ratio are used), feed-
back control (the outlet NOx concentration is used to tune the
ammonia feed rate), or a combination of the two.

The catalyst must reduce NOx emissions without producing
other pollutants or adversely affecting equipment downstream
of the reactor. To accomplish this, the catalyst must have
high NOy removal activity per catalyst unit size, tolerance to
variations in temperature due to boiler load swings, minimal
tendency to oxidize NH3 to NO and S0z to SO3, durability to

prevent poisoning and deactivation, and resist erosion by fly
ash.

The SCR catalyst is typically composed of the active
material, catalyst support material, and the substrate. The
active'compound promotes the NH3/NOy, reaction and may be
composed of a precious metal (e.g., Pt, Pd), a base metal
oxide, or a zeolite. The entire catalyst cannot be made of
these materials because they are expensive and structurally
weak. The catalyst support (usually a metal oxide) provides a
large surface area for the active material, thus énhancing the
contact of the flue gas with the active material. The
mechanical form that holds the active compound and catalyst
support material is called the substrate. The individual
catalyst honeycombs or plates are combined into modules, and

the modules are applied in layers. Figure 5-43 shows a
typical configuration for a catalyst reactor.'? Figure 5-44
‘shows exampies-of relative optimum temperature ranges for

- precious metal, base metal, and zeolite catalysts.115

Some manufacturers offer homogeneous extruded monolithic
catalysts that consist of either base metal oxide or zeolite
formulations. The specific formulations contain ingredients
_that have mechanical strength and are stable. These catalysts
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Figure 5-43.
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are comparable in price to composite catalyst and have been
installed in Europe and Japan.121 _

The precious metal catalysts are typically platinum (Pt)
or palladium (Pd) based. They are primarily used in clean
fuel applications and at lower temperatures than the base
metal oxides or zeolite catalysts. The NOx reduction ‘
efficiency of prec1ous metal catalysts is reduced above 400 oc
(750 OF) because the NH3 oxidation reaction is favored.’

. The most common commercially available base metal oxide
catalysts are vanadium/titanium based, with vanadium pentoxide
(Vo05) used as the active material and titanium dioxide (TiO3)
or a titanium oxide-silicon dioxide (8102) as the support
material.'® vVanadium oxides are among the best catalysts for
SCR of nitric oxide with ammonia because of their high
activity at low temperatures (<400 ©C [<750 ©F]) and because
of their high resistance to poisoning by sulfur oxides.'®

The zeolite catalysts are crystalline aluminosilicate
compounds. These catalysts are characterized by
interconnected systems of pores 2 to 10 times the size of NO,
NH3, SOz, and Oy molecules. They absorb only the compounds §
with molecular sizes comparable to their pore size. The |
zeolite catalyst is reported to be stable over a wider
temperature window than other types of catalyst. :

The SCR catalyst is usually offered in extruded honeycomb

or plate configurations as shown in figure 5- 45 1% Honeycomb.

catalysts are manufactured by extruding the catalyst-
containing material through a die of specific channel and wall
thickness. The pitch, or number of open channels, for coal-j
fired applications is larger than the pitch for o0il or natural
gas applications due to the increased amount of particulate ‘
matter with coal-firing. Plate catalysts are manufactured by
pressing a catalyst paste onto a perforated plate or by
dipping the plate into a slurry of catalyst resulting in a
thin layer of catalyst material being applied to a metal

. screen or plate. ‘ '
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honeycomb

Figure 5-45.

plate

Configuration of parallel flow catalyst.'?
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5.3.2.2 Factors Affecting Performance

5.3.2.2.1 Coal-fired boilers. The performance of an SCR
system is influenced by six factors: flue gas temperature,
fuel sulfur content, NH3/NOy, ratio, NOx concentration at the
SCR inlet, space velocity, and catalyst condition.

Temperature greatly affects the performance of SCR
systems, and, as discussed earlier, each type of SCR catalyst
has an optimum operatihg temperature range. Below this range,

NOy reduction does not occur, Or Occurs too slowly, which
results in NH3 slip. Above the optimum temperature, the NHj3
is oxidized to NOy, which decreases the NOyx reduction
efficiency. The optimum temperature will depend on the type
of catalyst material being used. '

The second factor affecting the performance of SCR is the
sulfur content of the fuel. Approximately 1 to 4 percent of
the sulfur in the fuel is converted to $03. The SO3 can then
react with ammonia to form ammonium sulfate salts, which
deposit and foul downstream equipment. As can be seen in

figure 5-46, the conversion of SOz to SO3 is temperature
dependent, with higher conversion rates at the higher

temperatures. 125 The temperature-sensitive nature of 803 to

SO3 conversion is especially important for boilers operating
at temperatures greater than 370 ©C (700 ©F) at the economlzer

outlet. Potential reaction equations for ammonium sulfate
126

salts are:
NH3 (gas) + SO3 (gas) + Hy0 (gas) - NH4qHSO4 (liquid) (5-24)
NH4HSO4 (liquid) + NH3 (gas) - (NHg)p SO4 (solid) | (5-25)

2 NH3 (gas) + SO3 (gas) + HpO (gas) - (NHg)p SOs (solid) (5-26)

With the use of medium- to high-sulfur coals, the
concentration of SO3 will likely be hlgher than experienced 1n
most SCR applications to date. This increase in SO3
concentration has the potential to affect ammonium sulfate
salt formation. However, there is insufficient_SCR
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Figure 5-46. Effect of temperature on conversion
of SO, to S0s. |
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application experience with medium- to high-sulfur coals to
know the nature of the effects. Applications of 8CR with
medium- to high-sulfur coals may need to incorporate ways to
minimize the impacts of ammonium sulfate salt formation and
deposition.

The third factor affecting SCR performance is the ratio
of NH3 to NOx. For NOx reduction efficiencies up to
approximately 80 percent, the NH3-NOyx reaction follows
approximately 1:1 stoichiometry. To achieve greater NOy
removal, it is necessary to inject excess NH3, which results
in higher levels of NH3 slip.

The fourth factor affecting SCR performance is the
concentration of NOyx at the SCR inlet. The NOy reduction is
relatively unchanged with SCR for inlet NOx concentratipns of
150 to 600 ppm.127 However, at inlet concentrations below _
150 ppm, the reduction efficiencies decrease with decreasing
NOx concentrations.'®

The fifth factor affecting SCR performance is the gas
flow rate and pressure drop across the catalyst. Gas flow
through the reactor is expressed in terms of space velocity
and area velocity. Space velocity (hr-1) is defined as the
inverse of residence time. It is determined by the ratio of
the amount of gas treated per hour to the catalyst bulk
volume. As sSpace velocity increases, the contact time between
the gas and the catalyst decreases. As the contact time
decreases, so does NOyx reduction. Area velocity (ft/hr) is
related to the catalyst pitch and is defined as the ratio of
the volume of gas treated per hour to the apparent surface
area of the catalyst. At lower area velocities, the NOx in
the flue gas has more time to react with NH3 on the active
sites on the catalyst; at higher area velocities, the flue gas
has less time to react.'®

The sixth factor affecting SCR performance is the
condition of the catalyst material. As the catalyst degrades
over time or is damaged, NOy removal decreases. Catalyst can
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be deactivated from wear resulting from attrition, cracking,
or breaking over time, or from fouling by solid particle
deposition in the catalyst pores and on the surface.

Similarly, catalyst can be deactlvated or "poisoned" when
certain compounds (such as arsenic, lead, and alkali oxides) .
react with the active sites on the catalyst. Poisoning
typically occurs over the long term, whereas fouling can be
sudden. When the maximum temperature for the catalyst
material is_exceeded,'catalysts can be thermally stressed or
sintered, and subsequently deactivated. As the catalyst
degrades by these processes, the NH3/NOy ratio must be
increased to maintain the desired level of NOx reduction.

This can result iﬁ‘inCreased levels of NH3 slip. However, the
greatest impact of degradation is on catalyst life. Because
the catalyst is a major component in the cost of SCR, reducing
the life of the catalyst has a serious impact on the cost.

The top layer of catalyst is typically a "dummy" layer of
catalyst used to straighten the gas flow and reduce erosion of
subsequent catalyst layers. A metal grid can also be used as
a straightening layer. The dummy layer is made of inert
material that is less expensive than active catalyst
material.™ Active catalyst material can be replaced as
_degradatlon occurs in several different ways in order to
maintain Nox removal eff1C1ency FlrSt all the catalyst may
be replaced at one time. Second, extra catalyst may be added
to the reactor, provided extra space has been designed into
the reactor hou31ng for this purpose. Third, part of the _
catalyst may be periodically replaced, which would extend the
useful life of the remaining catalyst.

5.3.2.2.2 0il and natural gas-fired boilers. The
factors affecting the performance of SCR on coal-fired boilers
are generally applicable to natural gas- and oil-firing.
However, the effect may not be as severe on the natural
gas- and oil-fired applications.
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The six factors affecting SCR performance on coal-fired
boilers were: flue gas temperature, fuel sulfur content,
NH3/NOx ratio, NOx concentration at the SCR inlet, space
velocity, and catalyst condition. Of these, the fuel sulfur
content will not be as much a factor in natural gas and oil
firing applications because these fuels do not contain as much :

" sulfur as coal. Therefore, there will not be as much SO3 in
the flue gas to react with excess ammonia and deposit in
downstream eguipment.

Another parameter which will not have as much impact in
natural gas- or oil-fired boilers is the condition of the
catalyst material. The SCR catalyst material can still be
damaged by sintering or poisoned by certain compounds.

However, Since natural gas- and oil-fired boilers do not have
as much fly ash as coal-fired boilers, the pores in the
catalyst will not plug as easily and the surface of the
catalyst would not be scoured or eroded due to the fly ash
particles. :

5.3.2.3 Performance of Selective Catalytic Reduction.
Table 5-16 presents the results from pilot-scale SCR
instailations at two coal-fired boilers and one oil-fired :
boiler. The SCR pilot plants are equal to approximately 1 to |
2 MW and process a slip-stream of flue gas from the boiler.
Each pilot plant contained two different catalysts that were
evaluated simultaneously. As of 1993, these pilot plants had
been operating 2-3 years.

For the coal-fired SCR demonstration projects, the
results indicate that 75-80 percent NOy reduction has been
achieved with ammonia slip of less than 20.ppm. The lower Noxf
reduction and higher NH3 slip for the oil-fired demonstration
at the'Oswego site were measured at higher-than-design space
velocities. Note that these results are pilot facilities in
which operating and process parameters can be carefully
controlled.

To date, there are no full-scale SCR applications on oil-
or coal-firing. However, as shown in table 5-16, Southern
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California Edison has a commercial size installation of SCR on
their gas-fired Huntington-Beach Unit 2 boiler. The NOx
reduction reported was approximately 90 percent with the
highest level of NHj slip at 40 ppm.

The effect of catalyst exposure time and space velocity
on catalyst performance was also examined for each of the
pilot-scale demonstrations. Figures 5-47a and 5-47b show NOy
removal and NH3 slip as a function of NH3/NOy ratio for two
catalysts in a cold-side, post-FGD SCR demonstration at the
Kintigh site.’™ fThe results show no change in the activity of
either the extruded catalyst after 7,800 hours of operation or

' the replacement composite catalyst after 2,400 hours of
operation. Each catalyst controlled NOx emissions by
80 percent at an NH3/NOx ratio of 0.8 with a corresponding NH3
slip of <« 1 ppm.131

Figures 5-48a and 5-48b show performance results for two
catalysts in the high-dust SCR demonstration at the Shawnee
site.™ The figures show a decrease in catalyst activity and
an increase in residual NH3 with increasing hours of operation
for both catalysts. This deterioration in catalyst activity
is more pronounced for the zeolite catalyst as shown in
figure 5-48b .

Figures 5-49a and 5-49b show the performance results for
the two catalysts evaluated in the SCR application on the oil-
fired boiler at the Oswego plant.133 In each figure, the
curves show the effect of space velocity on NOy reduction as a
function of NH3/NOy ratio. The effect of space velocity on
NH; slip is also shown in the figures. The results show the
expected decrease in NOy reduction and increase in NH3 slip at
the higher space velocity for both catalysts. The effect is .
more pronounced on the V/Ti catalyst.133

5.3.3 Selective Noncatalytic Reduction and Combustion -
Controls
5.3.3.1 Process Description. Combustion controls such
as LNBs and OFA may be used in combination with SNCR to reduce
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NOyx emissions on fossil fuel-fired utility boilers to achieve

high levels of NOy reduction. It may also be possible to 1

employ operational modifications such as LEA, BOOS, and FGR to
- provide additional reductions in NOyx prior to the SNCR systemo

The process descriptions for combustion controls for ' j
coal-fired boilers are presented in section 5.1 and combustion
control descriptions for natural gas- and oil-fired boilers
are presented in sections 5.2. Selective noncatalytic
reduction is described in section 5.3.1.

5.3.3.2 Factors Affecting Performance. The same basic
factors affecting the performance of individual combustion
controls or SNCR w1ll apply to these controls used in
combination. However, since SNCR requires specific operatlng
conditions such as gas temperature and residence time, the ‘
range of operating conditions for the combustion controlsAmay3
be severely reduced if the combustion controls and SNCR system
are designed incorrectly. When. combining LNB + OFA + SNCR, |
some systems may be designed to achieve more NO, reduction
with the LNB + OFA and use SNCR to "trim" NOy to desired
levels. There are a very limited number of boilers employlng
a combinatlon of these controls; therefore, all the factors
affectlng performance have not yet been identified.

The factors affecting the individual combustion controls
for coal-, natural gas- and oil-fired applications are given |
in sections 5.1 and 5.2. The factors affecting SNCR are |
presented in section 5.3.2.

5.3.3.3 pPerformance of Combustion Controls and Selectlvg
Nonge lytic R ion. There is one application of LNB + OEA
+ SNCR on a coal-fired boiler at Public Service Company of
Colorado's Arapahoe Station Unit 4. This is a 100 MW roof-
fired boiler. Short-term data from this unit is given in |
Table 5-17. The predicted NOy reduction for LNB + OFA + SNCR
was 70 percent; however, reported reductions have been ‘
70-85 percent.

As was discussed in section 5.1.4.3.1, the LNB + OFA
educed NOy emissions across the load range by 60-70 percent.
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The addition of SNCR reduced NOyx an additional 30-40 percent'
across the load range making a total reduction of
approximately 70-85 percent.

The NH3 slip was lowest (5-20 ppm) at 110 MW where the
flue gas temperature are the highest. As the load and thus
flue'gas temperature are lowered, the NH3 slip increases to as
high as 100 ppm. _ _
5.3.4 e ive Catalvtic Reduction and Combustion Controlsg

5.3.4.1 Process Description. Combustion controls such
as OFA + LNB can be used in combination with SCR to reduce NOx
emissions on fossil fuel-fired utility boilers to achieve the
highest level of NOx reduction. It may also be possible to
use operational modifications such as LEA and BOOS, and FGR to
reduce NOy prior to the SCR reactor.

The process descriptions for combustion controls for
coai-fired boilers are given in section 5.1 and the process
descriptions for combustion controls for natural gas- and oil-
fired boilers are presented in section 5.2. Selective
catalytic reduction is descrlbed in section . 5.3.2.

5.3.4.2 Factors Affectlng Performance of Combggtlon
Controls and Selective Catalytic Reduction. The same basic
factors affecting the performance of individual combustion
controls or SCR will apply to these controls used in
combination. However, since SCR requires very rigid operating
conditions such as flue gas temperature and gas flow rate, the
range of operating conditions for the combustion controls may
be severely reduced. There are very few boilers employing a
combination of these controls; therefore, all the factors
affecting performance have not yet been identified.

The factors affecting the individual combustion controls
for coal-fired applications and natural gas- and oil-fired
applications are given in sections 5.1 and 5.2. The factors
affecting SCR are presented in section 5.3.2. '

5.3.4.3 Performance of Combustion Controls and Selective
Catalytic Reduction. There are no known retrofits of SCR on
utility boilers that also have combustion controls.
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6.0 NOy TECHNOLOGY CONTROL COSTS

This chapter presents the estimated cost and cost
effectiveness of nitrogen oxide (NOy) control technologies on
fossil fuel-fired utility boilers. The section includes
estimated total capital cost, annualized busbar cost _
(hereafter referred to as busbar cost), and cost effectiveness
for 30 generic model plants, as well as information on the
sensitivity of busbar cost and cost effectiveness to
variations in key technical and economic assumptions.

Sections 6.1 and 6.2 discuss costing methodology and the model
plants, respectively. Sections 6.3 and 6.4 present the cost
results for combustion modifications applied to coal-fired
boilers and to natural gas- and oil-fired boilers, .
respectively. Section 6.5 presents the cost results for flue
gas treatment and combination controls. |

6.1 COSTING METHODOLOGY

~This section describes the procedures used to estimate
the capital and operating costs for new and retrofit NOx
control technologies, and how these costs were converted to
busbar.and cost effectiveness estimates. Cost procedures
follow the general methodology contained in the Electric Power
Research Institute (EPRI) Technical Assessment Guide (TAG)®
and the Office of Air Quality (OAQPS) Costing Manual.? The
general framework for handling capital and annual costs is
shown in table 6-1. All costs are presented on 1991 dollars.
However, cost indices for 1992 dollars are only 0.85 peréent
lower than 1991 dollars; therefore the values in this chapter
are indicative of the 1991-1992 timeframe. The costing
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: . | . | :

procedures used to estimate the annualized cost of each NOy °

control technology are presented in sections 6.3 through 6.5

immediately prior to the presentation of cost results for each

technology..

6.1.1 Total Capital Cost

Total capital cost includes direct and indirect costs.

Direct costs are divided into two categories: basic system

- cost and retrofit cost. This section describes the procedures

for estimating basic system cost, retrofit cost, and indirect
cost.

6.1.1.1 Basic System Cost. Basic system cost includes
purchase and installation of system hardware directly
associated with the control technology. This cost reflects
the cost of the basic system components for a new application,h
but does not include any site-specific upgrades or ”
modifications to existing equipment required to implement the
control technology at an existing plant (e.g., new ignitors,
new burner management system, and waterwall or windbox ‘
modifications). 1In addition, any initial chemical or catalyst,
costs and start-up/optimization tests are included in basic
system cost. Costs associated with purchase and installation
of continuous emission monitoring (CEM) equipment required for
determining compliance with State and Federal emission limits
are not included in the analysis.

The data used to estimate basic system cost for each
technology were obtained from utility questionnaires, vendor
information, published literature, and other sources. These
coét data were then compiled in a data base, examined for |
general trends in capital cost versus boiler size (i.e.,
megawatt [MW]), and statistically analyzed using linear
regression to fit a functional form of: | :

BSC = a * MWP - (6-1)

where:
BSC

a

Basic system cost ($/kW) _ _ ‘
Constant derived from regression analysis
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MW

b Constant derived from regression analysis
The basic system cost for the model plants and sensitivity
analyses were then derived for each Noxlcontrol technology
using equation 6-1 and the calculated values of "a" and "b. "
6.1.1.2 Retrofit Cost. 1Installation of NOx controls on
an existing boiler is generally more costly than installation

on a new unit. This increased_cost is referred to as the
retrofit cost. '

'quler'size (MW)

Retrofit costs are partially due to upgrades and
modifications to the boiler that are required for the NOy
control system"to operate as designed. These modifications
and upgrades are referred to as scope adders. Table 6-2 lists
possible scope adders for the retrofit of combustion control
systems (e.g., low NOy burner [LNB], LNB + advanced overfire
‘air [AOFA], reburn). A possible scope adder for selective
noncatalytic reduction (SNCR) includes boiler control
modifications. A possibie scope .adder for selective catalytic
reduction (SCR) retrofit is the air heater replacement :
Another factor that contributes to the retrofit cost is the
restricted access and work space congestion caused by existing
equipment and facilities. A boiler with relatively few
obstructions is less costly to retrofit than a boiler with
substantial access limitations and congestion in the work
area. : o

For combustion control systems, scope adders contribute
more to the retrofit cost than do access and congestion
factors. Typically, burners and overfire air ports can be
installed from inside the boiler, so exitiﬁg equipment does
not interfere. For SCR, site access and congestion can
contribute significantly to the retrofit cost. The retrofit
cost is-generally low for SNCR since few scope adders are
necessary when adding an SNCR system, and site access and
congestion are less critical than in SCR applications.

To estimate the total direct cost (basic system cost +
retrofit cost), the basic system cost is multiplied by a
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TABLE 6-2. POSSIBLE SCOPE ADDERS FOR RETROFIT
OF COMBUSTION CONTROLS

et i P e ——
e e e P —— et

Scope adders

Ignitors (Modify)
Ignitors (Replace) |
Wéterwall Modifications
Flame Scanners
Pulverizer Modifications
Boiler Control Modifications
Burner Management
Coal Piping Modifications
Windbox Modifications
Structural Modifications
Asbestos Removal
Insulation
Electrical System Modifications
Fan Modifications

Demolition




retrofit factor. The retrofit factor accounts for the
retrofit cost as a percentage of the basic system cost. For
example, a retrofit factor of 1.3 1nd1cates that the retrofit
cost is 30 percent of the basic system cost. Retrofit factors
were developed for each NOx control technology based on cost
data for planned or actual installations of individual NOy -
control technologies to existing utility boilers. The cost
data were also used to estimate low, medium, and hlgh retrofit
factors for the model boiler analysis. A low retroflt_factor
of 1.0 could indicate @ new unit or an existing unit requiring
minimal, if any, upgrade or modification, and the work area is
easily accessible. A medium retrofit factor reflects moderate
equipment upgrades or modifications and/or some congestion in
the work area. A high retrofit factor indicates that
extensive scope adders are required and/or substantlal access
limitations and congestion of the work area. ‘

~ 6.1.1.3 Indirect Costs. Indirect costs include general
facilities, engineering expenses, royalty fees, and
contihgencies. General facilities include offices, _
'laboratories,.storage areas, or other facilities required for
installation or operation of the control system. Examples of
general facilities are expansion of the boiler control room to
house new computer cabinets for the boiler control system, or
expansion of an analytical laboratory. Engineering expenses
include the utility's internél engineering efforts and those
of the utility's architect/engineering (A&E) contractor.
Engineering costs incurred by the technology vendor are
included in the equipment cost and are considered direct
costs.

There are two contingency costs: project CQntingenéy and
brocess contingency. Project contingency is assigned based on
the level of detail in the cost estimate. It is intended to
cover miscellaneous equipment and materials not included in
the direct cost estimate. Project contingencieg range from 5
to 50 percent of the direct costs, depending on the level of
detail included in the direct cost estimate. Generally, the
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more detailed the cost estimate, the less the project
contingency required. Process contingency is based on the
maturity of the technology and the number of previous
installations. Process contingency covers unforeseen expenses
incurred because of inexperience with newer technologies.
Process contingencies range from 0 to 40+ percent of the
direct costs. Generally, the older and more mature the
technology, the less process contingency required.

To estimate the total capital cost (total direct cost +
indirect costs), the total direct cost is multiplied by a
indirect cost factor. The indirect cost factor accounts for -
the indirect costs as a percentage of the total direct cost.

'For example, an indirect cost factor of 1.3 indicates that the
indirect costs are 30 percent of the total direct cost.
Indirect cost factors were developed for each NOy technology.‘
These indirect cost factors are based on cost data from
planned and actual installations of individual NOyx control
technologies to different boilers.

6.1.2 Operating and Maintenance gggg

Operating and maintenance (O&M) costs 1nc1ude fixed and
variable O&M components. Fixed O&M costs include operating,
maintenance, and supervisory labor, and maintenance materials.
Fixed O&M are assumed to be independent of capacity factor.
Variable O&M costs include any energy penalty resulting from
efficiency losses associated with a given technology, and
chemical, electrical, water, and waste disposal costs.
Variable O&M costs are dependent on capacity factor.

Cost rates for labor and materials included in the cost
estimates are shown in table 6-3. The prices listed for coal,
residual oil, distillate oil, and natural gas are the
estimated national average prices for the year 2000, using the
reference case analysis of the Department of Energy's (DOE's)
1992 Annual Energy Outlook.’ The prices listed for ammonia

“and urea are average values obtained from vendors. Prices fér
labor, solid waste, electricity, water, and high pressure |
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steam, are listed in 1989 dollars. These quantities do not
have a major influence on total O&M cbsts, and therefore, more
recent values were not used.
6.1.3 Calculation of Busbar Cost and Cost Effectiveness
_ Busbar cost is the sum of annualized capital costs and
totai O&M costs divided by the annual electrical output of the
boiler. ‘Busbar cost is commonly expressed in mills/kWh
(1 mill = $0.001) and is a direct indicator of the cost of the
control technology to the utility and its customers. To
convert total'capital cost to an annualized capital charge,
the total capital cost is multiplied by an annual capital
recovery factor (CRF). The CRF is based on the economic life
over which the capital investment is amortized and the cost of
capital (i.e., interest rate), and is_éalculated using the
following eguation:
a CRF = i(1+1i)B/[(1+i)P-1] (6-2)

where: _
interest rate [assumed to be 0.10 (i.e.,
10 percent) throughout this study]
the economic life of the. equipment

Cost-effectiveness values indicate the total cost of a
control technology per unit of NOy removed and are calculated |
by dividing the total annualized capital charge and O&M
expense by the annual reduction in tons of NOy emitted from
the boiler. | |
| Example calculations of these values are provided in
appendix A.1l.
6.2 MODEL PLANT DEVELOPMENT

To estimate the capital cost, busbar cost, and cost
effectiveness of NOyx control technologies, a series of model
plants were developed. These model plants reflect the
projected range of size, duty cycle, retrofit difficulty,
economic life, uncontrolled NOy emissions, and controlled NOy
emissions for each major boiler type and NOyx control
technology. 1In addition, cost estimates were developed to
illustrate the sensitivity of busbar costs and cost

i

n
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effectiveness to variations in each of the above parameters
Key des1gn and operating specifications for the model plant
boilers are presented in section 6.2.1. The NOy control
technologies applied to each model plant type are presented in
section 6.2.2. The procedures used to estimate the
sensitivity of busbar cost and cost effectivenéSs to key

design and operating assumptions are described in
section 6.2.3.

6€.2.1 Model Boiler Design and Operating Specifications

Thirty model plants were selected to represent the _
population of existing and projected utility boilers. These
model plants represent six groups of boilers: coal-fired
wall, tangential, cyclone, and fluidized bed combustion (FBC)
boilers; and natural gas- and oil-fired wall and tangential
boilers. Within each of these groups, five model boilers were
selected to estimate the range of total capital costs ($/kW),
busbar cost (mills/kWh), and cost effectiveness ($/ton of NOx
removed) for individual NOy, control technologies. These five
model boilers represent the typical range of plant size and
duty cycle that exist for a given boiler type. For every
group except the FBC boilers, the models include a large
(600 MW) baseload unit, medium-size (300 MW) cycling and
baseload units, and small (100 MW) peaking and baseload units.
Because of the limitations on the size of FBC boilers, the FRC
model plants are smaller than the other categories model
plants and also have different duty cycles. The FBC model
plants include a large (200 MW) baseload boiler, medium-size
(100 MW) cycling and baseload units, and small (50 MW) cycling
and baseload units. _

For defining the model plants, the economic life of the
control technolbgy was assumed to be 20 years. Key design and
operating characteristics for each of the 30 model'plants are
listed in table 6-4. _

6.2.2 NOy Control Alternatives

Eight NOy control alternatives were selected for
analysis:
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¢ four combustioﬁ control alternatives (operational
modifications, LNB, LNB + AOFA, and reburn);

. two flue gas treatment alternatives (SNCR and SCR) ;
and

o two combinations of combustion and flue gas

treatment (LNB + SNCR and LNB + AOFA + SCR).

Operational modifications (described in section 5.1)
include low excess air (LEA), burners-out-of-service (BOOS),
and biased burner firing (BF). To estimate the costs of
operational modifications, LEA + BOOS was selebted as an
example of this option.

Tangentially-fired boilers with either close-coupled
‘overfire air (CCOFA) or no overfire air (OFA) ports were
clagsified in the LNB category (e.g., low NOy concentric
firing system [LNCFS] I, discussed in section 5.1.4).
Tangentially-fired boilers with séparated OFA systems were
classified in the LNB + AOFA category (e.g., LNCFS III,
discussed in section 5.1.4). As defined in section £.1, wall-
fired units may have OFA or AOFA systems. However, because
retrofit data were available only for the LNB + AOFA systems

and because of its higher NOyx reduction potential, analysis is
.limited to LNB + AOFA.

The matrix of control alternatives applied to each of the.
four groups of model boilers is shown in table 6-5. |
Performance levels used for each model boiler and control
alternative are discussed in conjunction with the cost results
in sections 6.3 through 6.5. |
6.2.3 Sengitivity Analysis o

In addition to the model plant analysis, a sensitivity
analysis is conducted for each NO, control technology to
examine the effect of varying selected plant design and
operating'charactéristics on the techhology's busbar cost and -
cost effectiveness. For each NOy control technology, a ‘
reference boiler is selected to illustrate the results of the
sensitivity analysis. These results are presented in two ‘
graphs for each technology/reference boiler combination.
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As an example, the results of the sensitivity analysis
for a coal-fired tangential boiler retrofit with LNB are shown
in figures 6-1 and 6-2. The two figures show the effects of
seven independent parameters (retrofit factor, boiler size,
capacity factor, economic life, uncontrolled NOyx levels, NOx
reduction efficiency, and average annual heat rate) on cost
effectiveness and busbar cost. Key performance and cost
parameters for this reference boiler are a 1.3 retrofit
factor, a 40-percent capacity factor, a 20-year economic life,
a 0.7 lb/MMBtu controlled NOy emission rate, a 45-percent
reduction in NOy due to the LNB retrofit, and an
11,000 Btu/kWh average annual heat rate.

Figure 6-1 examines the effect of varying four of the
seven parémeters (retrofit factor, boiler size, capacity
factor, and economic life). The central point on the graph
reflects the cost effectlveness ($238 per ton) and busbar cost
(0.41 mills/kWh) for LNB applied to the reference boiler.

Each of the four curves emanating from the central point
illustrates the effect of changes in the individual parameter
on cost effectiveness and busbar cost, while holding the otheri
six parameters constant (this number includes the other three
parameters shown on figure 6-1 and the three parameters
illustrated in figure 6-2). Thus, each curve isolates the
effect of the selected independent parameter on cost
effectiveness and busbar cost. For example,'a'smaller boiler
gize, such as 200 MW, results in an estimated increase in the
cost effectiveness value from $238 to $314 per ton and an
increase in busbar cost from 0.41 mills/kWh to 0.54 mills/kWh.

Figure 6-2 illustrates the sensitivity of cost |
effectiveness to the remaining three parameters (uncontrolled
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NOx levels, NOyx reduction efficiency, and heat rate).® As
with'figuré 6-1, the central point on the graph reflects the
cost effectiveness and busbar cost for LNB applied to the
reference boiler. Each of the three curves emanating from the
central point illustrates the effect of changes in the
individual parameter on cost effectiveness, while holding the
other six'parameters constant. Use of the curves to estimate
the sensitivity of cost effectiveness to changes in an
independent parameter is the same as with figure 6-1.

The independent plant design and operating parameters
used in the sensitivity analyses for other control
teéhnologies will vary from those listed in the example above.
6.3 COMBUSTION MODIFICATIONS FOR COAL-FIRED BOILERS

This section presents the total capital cost, busbar
cost, and cost effectiveness estimates for LNB, LNB + AQOF3,
and reburn applied to coal-fired boilers. Cost estimates for
AOFA by itself are included with the discussion of LNB + AOFA.
6.3.1 Low NOx Burners

Cost estimates for LNB technology are presented in thlS
section for coal-fired wall and tangential boilers.

€.3.1.1 Costing Procedures. Costing procedures for LNB
applied to wall-fired boilers were based on data obtained from
10 units, ranging in size from 130 to 800 MW. These data
included seven cost estimates and three actual installatiOn
costs. These data are summarized in appendix A-2.

No cost data were available for LNB applied to
tangentially-fired units (LNCFS I). Therefore, vendor
information on the relative cost of LNB and close-coupled OFA
(LNCFS I) and LNB + close-coupled and separated OFA
(LNCFS III) was used to develop the LNCFS I cost algorithm for

*Because of the inter-relationships between cost effectiveness
and busbar cost, it is not possible to simultaneously graph the
'effect on both values of changes to uncontrolled NOyx levels,
NOyx reduction efficiency, and heat rate. If busbar cost

estimates are needed, refer to the cost procedures provided in
-appendlx A.
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tangentially-fired units. This information indicates that LNB
costs for tangential units are approximately 55 percent of the
cost of LNB + AOFA.'” Based on this information, the LNCFS III
cost algorithm for tangentially-fired boilers (refer to
section 6.3.2) was adjusted for LNCFS I so that LNCFS I costs
are about 40 percent lower than LNCFS III. A scaling factor
of 0.60 (b=-0.40) was assumed for LNCFS I. Details on these
calcuiations are provided in appendix A.3.

The basic system cost coefficients used in equation 6-1
for wall-fired LNB systems were calculated to be a=220 and
b=-0.44, based on the available cost data discussed above.

For tangentially-fired LNB systems, the cost coefficients were
calculated to be a=80 and b=-0.40, based on adjustments of the
LNCFS III cost algorithm.

Retrofit costs for wall-fired LNB systems averaged
15 percent of the basic system cost'(retrofit factor of 1.15)
based on the available installation data. For tangentially-
fired LNB systems, a retrofit factor of 1.15 was also assumed.
For the model plant analysis, low, medium, and high retrofit |
factors of 1.0, 1.3, and 1.6 were used. ' |

For both wall-fired and tangentially-fired LNB systems,
indirect costs were estimated at 30 percent of basic system
and retrofit costs. Fixed and variable O&M costs were assumed
to be negligible. , |

€.3.1.2 Model Plants Results. The capital cost, busbar
cost, and cost effectiveness for the ten wall- and |
tangentially-fired model boilers are presented in table 6-6.
An economic life of 20 years and a NOyx reduction efficiency of
45 percent were assumed for all of the model boilers. For the
600 MW baseload wall-fired boiler, the estimated cost ‘
effectiveness ranges from $175 to $279 per ton of NOy removed.
"For the 100 MW peaking wall-fired boiler, the estimated cost
effectiveness ranges from $2,000 to $3,200 per ton. '

Cost per ton of NOy removed with LNB on tangential
boilers is lower than LNB on wall-fired boilers because of
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X

lower capital cost associated with LNCFS I. The cost
effectiveness for the 600 MW tangentially-fired_boiler ranges
from $105 to $169 per ton. For the 100 MW peaking:
tangentially-fired boiler, cost effectiveness ranges from
$1,120 to $1,800 per ton.
6.3.1.3 Sensitivity Analysis. The effect of plant

characteristics (retrofit factor, boiler size, capacity
factor, and economic life) on cost effectiveness and busbar
cost for wall-fired boilers is shown in figure 6-3. L
Figure 6-4 presents the sensitivity of cost effectiveness to ﬂ
NOyx emission characteristics (uncontrolled NOy level and NOx

- reduction efficiency) and heat rate. As shown in figure 6-4,
because equal percent changes in uncontrolled NOy and

.Nox reductions result in equivalent changes in cost
effectiveness, these two curves overlap. As shown in the
figures, the reference boiler's cost effectiveness and busbar
cost are approximately $400 per ton of NOy removed and
0.90 mills/kwh. |

Of the plant characteristics, the variation of capacity

factor from 10 to 70 percent has the greatest impact on cost
effectiveness and busbar cost. The cost effectiveness value
and busbar cost are ihversely related to capacity factor, and
thus, as capacity factor decreases, the cost effectiveness
value and busbar cost increase. This is especially noticeable,
at low capacity factors where a decrease of 75 percent in the |
reference plant's capacity factor (from 40 percent to
10 percent) results in'qn_iﬁcrease in the cost effectiveness
value and busbar cost of nearly 300 percent.

" Variations in economic life and boiler size follow a
trend similar to capacity factor, but do not cause as great a
change in cost effectiveness and busbar cost. For example, a
decrease of 75 percent in economic life (from 20 to 5 years)
results in an increase in the plant's cost effectiveness value
and busbar cost of nearly 125 percent. Similarly, a decrease‘
of 75 percent in boiler size (from 400 to 100 MW) results in
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an increase in the plant's cost effectiveness value and busbar |
cost of nearly 80 percent. ] i

Variation in the retrofit factor from 1.0 to 1.6 causes |
the smallest relative percent change in cost effectiveness and |
busbar cost. Increases of 0.1 in the retrofit factor cause a ;
linear increase of approximately 8 percent in the cost
effectiveness value and busbar cost. ‘

Uncontrolled NOyx, NOyx reduction, and heat rate all
exhibit an inverse relationship with the cost effectiveness
value. As mentioned above, equal percentage changes in
uncontrolled NOy and NOyx reduction result in equivalent
changes in cost effectiveness. A decrease of 30 percent in
either of the parameters results in a 50 percent increase in
the cost effectiveness value. Heat rate also exhibits an
inverse relationship with the cost effectiveness value, _
however, since the potential relative change in heat rate is
less than the potential variation in the NOy characteristics,
the impact on cost effectiveness is not as great. _

The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) on cost
effectiveness and busbar cost for tangentially-fired boilers
is shown in figure 6-5. Figure 6-6 presents the sensitivity
of cost effectiveness to NOy emission characteristics
(uncontrolled NOy level and NO, reductlon efficiency) and heat
rate. As shown in the flgures, the reference boiler's cost
effectiveness and busbar cost are approximately $240 per ton
of NOy removed and 0.41 mills/kWh. The cost effectiveness
value and busbar cost for LNB applied to tangentlally fired
boilers are lower than for LNB on wall-fired boilers because
of lower capital cosgts associated with tangentially- flred
boilers. The sensitivity curves follow the same general
trends as with LNB applled to wall-fired boilers.  1In contrast
to the curves for LNB applied to wall- fired boilers,
uncontrolled NOx and NOx reduction do not overlap for
tangentially-fired boilers due to the difference in relative
percent changes in the two parameters. : : : |
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6.3.2 Low NOy Burners with Advanced Overfire Air

Cost estimates for LNB + AOFA technology are presented
for coal-fired wall and tangential boilers. Estimated NOx
reductions and capital costs for AOFA by itself are 40 to
50 percent of the levels expected from LNB + AOFA. As a
result, busbar costs for AOFA by itself are estimated at 40 to
50 percent of the cost estimates in this section for LNB +
AOFA and cost effectiveness values are estimated to
approximately equal those for LNB + AOFA.

6.3.2.1 Costing Procedures. There were limited cost
data available on LNB + AOFA applied to wall-fired boilers.
Therefore, as explained in appendix A.4, the basic'system cost‘
algorithm for LNB + AOFA was developed based on a relative
price differential between LNB and LNB + AOFA. Based on the
data available, the LNB basic system cost algorithm was
adjusted so that LNB + AOFA costs are approximately 75 percent
higher than LNB alone. The scaling factor was derived from
the LNB + AOFA cost estimates. "

Costing procedures for LNB + AOFA applied to
tangentially-fired boilers (LNCFS III) were based on cost
estimates obtained from 14 units, ranging in size from 124 to
905 MW. These data are summarized in appendix A.5. |

The basic system cost coefficients used in equation 6-1
for wall-fired LNB + AQFA systeme were calculated to be a=552,
b=-0.50, based on the adjustments of the LNB cost algorithm.
For tangentially-fired LNB + AOFA systems, the cost
coefficients were calculated to be a=247 and b=-0.49, based on
the available cost data discussed above. .

Retrofit costs for tangentially-fired LNB + AOFA systems
ranged from 14 to 65 percent of the basic system cost, with a
mean of 30 percent. This corresponds to a mean retrofit
factor of 1.30. This retrofit factor was assumed to apply to
wall-fired LNB + AOFA systems as well. For the model plant
analysis, low, medium, and high retrofit factors of 1.0, 1.3,
and 1.6 were used.




Indirect costs ranged from 20 to 45 percent of total
direct costs for tangentially-fired LNB + AOFA systems. Based
on this, an indirect cost factor of 1.30 was assumed for the
cost procedures for both tangentially-fired and wall-fired
systems. Fixed and variable O&M costs were assumed to be
negligible. |

6.3.2.2 Model Plants Results. The capital cost, busbar

cost, and cost effectiveness for the ten wall- and

tangentially-fired model boilers are presented in table 6-7.
An economic life of 20 years and a NOy reduction efficiency of
50 percent were assumed for all of these boilers. For the
600 MW baseload wall-fired boiler, the estimated cost
effectiveness ranged from $269 to $430 per ton of NOy removed.
For the 100 MW peaking wall-fired boiler, the estimated cost -
effectiveness ranges from $3,420 to $5,470 per ton. |

- Cost per ton of NOy removed with LNB + AOFA is lower for
the tangentially-fired units due to the lower capital cost of
LNCFS III. Cost effectiveness for the tangentially-fired
units ranged from $165 to $264 per ton for the 600 MW baseload

~unit and $2,060 to $3,300 per ton for the 100 MW peaking unit.

6.3.2.3 Senglt1v1tx Analysis. The effect of plant
characterlstlcs (retrofit factor, boiler size, capacity

factor, and economic life) on cost effectlveness and busbar

cost for wall-fired b01lers is shown in flgure 6-7.

Flgure 6-8 presents the sensitivity of cost effectiveness to

NOx emission characteristics (uncontrolled NOx level and NOy

reduction efficiency) and heat rate. As shown in the figures,
the reference boiler's cost effectiveness and busbar cost are

approximately $630 per ton of NOy removed and 1.6 mills/kWh.

The sensitivity curves follow the same general trends as with
LNB applied to coal-fired wall boilers (refer to

- section 6.3.1.3),

The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) on cost




_ -sxaTTOq pPexT3-ATTeriusbue) 103 pesn aiam jusdiad QS
30 uot3onpex X¥ON V4OY + G@NT Ue pue NagWW/dT 0L°0 3O ST248T *ON PITT0Z3UOdUNg
-z030e3 A31oedeo jusoaad o¢ = BuTTdADp
-1030e3 A3toedeo juedasd g9 = peOTased;
- 10303 A3toedeo jusdxad 01 = bBuryesadq
_ -SI9TTOQ PaITI-TTem I0F posn axam jusdaad 0§
Jo uoT3onpax ¥ON WIOY + €N Ue pue NIGWW/QT 06 0 JO ST2AdT ¥ON POTT0I3U0dUfle

XY vic 59T 950 |LE O |62 0 |zc |8t |#l peotesed 'MW 009
0LE TO€ TET G9°0 |€s'0 |ov'0 |TE 92 0z peoTased MW 00€
62L 26§ 9G¥ ovy'T [$#T°T |[88°0 |TE 9z 0z buTTdAD ‘MW 00€
¥€9 STS 96€ T1°T |06°0 |69°0 |¥S | ¥¥ vE - peorased ‘MW 00T o
00€E’€ 089°'c |090'c |1Z'L |98°'S [TV |[¥S 27 vE butyeagd ‘MW 00T a
. 5SASTTOq paarj-AlTeTiusbuel et
0ty . | 6¥E 69¢ t6°0 [6L°0 [09°0 |L¥ 8¢ 62 [ peoresed 'MW 009
809 v6vy |08t [LE€'T |TT'T [S8°0 [99 ¥S TP . ‘Peolased ‘MW 00€
00Z°'1 €L6 8¥L 96°z |T¥'C [s8°T [99 ¥S ¥ pPUTIDAD "MW 00€
0S0°'T 558 859 LE'Z |26'T |8V T |STII £6 zL obeotased ‘MW 00T
0L%'S osv’'vy [oZv’e |[®¥°ST [S"CT |Z9°6 |STIT £6 ZL gbutiead ‘MW 00T
eSISTTOQ PIITI-TIEM
9°tT | €T 0T | 9T €T 0T 9°T €1 0°'T s1030e3 3TIOIISY
uol/$ _ yMy{/STTIW . M/ S UCTIEDTITIUSPT
‘ggsusaaTiDaIIe 1AS0)D ‘9800 Ieqsng ‘3800 Teatdeo Te30L jueTd
- — e

SYITIIOY QIYTI-TYOD OL dIITdd¥Y W40¥ + €NT ¥0d SISOD "L-3 gIgvL




(umy/87TT®) 280> 1vqeng

*SIBTTOq [TeM paaTJ-TeOD I0J 3ISOD Jdeqsng pue
SSOUIATIODJJ@ 3S0D VIOV + ENT U0 sorjstiajoeaeys juerd jo joedur

*L-9 3anbryg

8111 DJEOu007T ¢ 1030vd A3jouded |

eZTS 187Y08 |1 103904 ITJ0138Y |.|_

St og A 14 14 1§ o1 S (24) e3yT oymouocoy
oL 09 0s oy o€ (1 }4 ot {3) 1030w4 L37oude) .
00L 009 00S oor 00E 007 001 {M®) ez15 381TOT
9°1 I Lol £°1 FA | L5 ¢ 0°T . 3030vg 3ITFOIYOY
00°0 : ~0
T :
_-_N._Tﬂ - E— 00S
o
»
/ "
. ™
8-z 0001 _..." o
8 v
3 i o
<4
s
/ :
IL° ¢ 00ST =
»,
>
~
o
0
-]
S6° Y 000z §
YMX/NI8 000TT = 8394 JIwa ™
0S5 = UOTIDINPSY XON m
NIGHH/QT 6°0 = XON POTIOIJuOSUN ~
8103euNlIvg IeT}od eouIIejeu
61°9 0052
000¢€

L3




- ~sI9TTOq Tlem poxTj-feoo 103 mmwcw»wvowmmw.pmou

vJiOV + GNT uo @3ex jeay pue. soT3sTIajoeseyd UOTSSTUD XoN jJo 3oedui -g8-9 3anb14

o304 198R * Uo7100pay XON D} XON PeIT0oIIU0ouN ..ln_

00011 00%01 00e6 ooz6 (ymyi/nag) eljvy 90N

008zl 00ZZ1. 00911
59 09 11 . 0% Sr : ov ¢¢ (%) uoyionped XoH
z°1 1°1 [ R § 6°0 80 L0 9-0 {(nigHH/q1} XOR perToIIUCIUN
oSy :
00%.
= 0sS

009

0%9
/.// ~00L
/ s Oﬂh
008
sJA 0Z = @J71 dOfwouod]
30y = 103093 Ajpouded . .
ose

(XOR 3O UOl/¢) SEIUBATIONIIT IECD

E— MH 00 = OZIE JOTTOQ@
. €°1 = 380D 37jJOII3Y
91930WRIVd JIS[T0@ 2DULILISY :

31



effectiveness and busbar cost for tangentially-fired boilers
~is shown in figure 6-9. Figure 6-10 Presents the sensitivity
of cost effectiveness to NOx emission characteristics
(uncontrolled NOy level and NOx reduction efficiency) and heat
rate. As shown in the figures, the reference boiler's
cost-effectiveness and busbar cost are approximately $390 per .-
ton of NOx removed and 0.74 mills/kWh. The cost effectiveness
values and busbar costs for LNB +. AOFA applied to
tangentially-fired boilers are lower than for LNB + AOFA on
wall-fired boilers because of lower capital costs associated
with tangentially-fired boilers. The sensitivity curves
follow the same general trends as with LNB applied to coal-"
fired wall boilers (refer to section 6.3.1.3).
6.3.3 Natural Gas Reburn _
Cost estimates for natural gas reburn (NGR) are presented
for coal-fired wall, tangential, and cyclone boilers in this
section. | _
' €.3.3.1 (Costing Procedures. Limited cost data on NGR
for coal-fired boilers were obtained from vendor and utility
questionnaire responses. Cost data on reburn were submltted
for one 75 MW plant in response to the questionnaire, and a
vendor provided installation costs for a 33 MW and 172 MW
unit. These data are summarized in appendix A.6. A
regression on the data showed a high degree of scatter and no
ocbvious costing trend. Therefore, the reburn costs were based
upon the 172 MW unit, whose size is more representative of
most utility boilers. )
The economy of scale was assumed to be 0.6 for the reburn
basic cost algorithm. Using this asSumptiQh, the cost
~coefficients in equation 6-1 for reburn are a=229 and b=-0.40.
The cost of installing a natural gas pipeline was not included
in the analysis because it is highly dependent on site
specific parameters such as the unit's proximity to a gas line
and the difficulty of installation.
The vendor questionnaire indicated that the retrofit of
~natural gas reburn would cost 10 to 20 percent more than a
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' .

reburn system applied to a new boiler. From this, the
retrofit factor was assumed to be 1.15. However, for the
sensitivity analysis, the retrofit factor_Was varied from 1.0
to 1.6 to account for different retrofit difficulties on
specific boilers.

The indirect costs were estimated to be 40 percent of the
total direct cost, corresponding to an indirect cost factor of
1.40.

Annual O&M costs were the total of the additional fuel
costs caused by the higher price of natural gas versus coal
and utility savings on sulfur dioxide (803) credits, caused by
lower SO> emission levels when using natural gas reburn on a
coal-fired boiler. The analysis was conducted assuming
18 percent of the total heat input was from natural gas. The
S0, credit was assumed to be $200 per ton of 802, equal to
$0.24/MMBtu based on a coal-sulfur content of 1.5 percent.
| Refer to appendix A.6 for a summary of the costing data
and procedures. ' | '

6.3.3.2 Model Plants Results. The capital cost, busbar
cost, and cost effectiveness for the 15 wall-, tangentially-,
and cyclone-fired model boilers are presented in table 6-8.
An economic life of 20 years and a NOy reduction efficiency of
55 percent were assumed for all of these boilers. The fuel
price differential was varied from $0.50 to $2.50/MMBtu. For
the 600 MW baseload wall-fired boiler, the estimated cost
effectiveness ranges from $480 to $2,080 per ton of NOy
removed. For the 100 MW peaking wall-fired boiler, the-
estimated cost effectiveness ranges from $3,010 to
$4,600 per ton. |

Cost per ton of NOx removed with reburn is higher for the
tangentially-fired units due to the lower baseline NOx
emissions. Cost effectiveness for the tangentially-fired
units ranges from $615 per ton to $2,680 pér ton for the
600 MW baseload unit and $3,870 per ton to $5,930 per ton for
the 100 MW peaking unit. |
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Cost per ton of NOy removed is lower for cyclone-fired
boilers than for wall-fired boilers because of higher baseline
NOx for cyclone-fired boilers. For the 600 MW baseload
cyclone boiler, cost effectiveness ranges from $290 to
$1,250 per ton and for the 100 MW peaking boiler, cost
effectiveness ranges from $1,810 to $2,720 per ton.

6.3.3.3 Sensitivity Analysis. The effect of plant
chéracteristics (retfofit factor, boiler size, capacity
factor, and economic life) and fuel price differential on cost:
effectiveness and busbar cost for wall-fired boilers is shown
in figure 6-11. Figure 6-12 presents the sensitivity of cost
effectiveness to NOyx emission characteristics (uncontrolled
NOyx level and NOyx reduction efficiency) and heat rate. As
shown, the reference boiler's cost effectiveness and busbar
cost are approximately $1,400 per ton of NOyx removed and
3.8 mills/kWwh.

0f the parameters shown in figure 6-11, the variation of
capacity factor from 10 to 70 percent and variation of fuel
price differential from $0,50 to $2.50/MMBtu have the greatest
impact on cost effectiveness and busbar cost. The cost
effectiveness value and busbar cost are inversely related to
capacity factor, and thus, as capacity factor decreases, the
cost effectiveness value and busbar cost increase. This is
especially noticeable at low capacity factors where a decrease
of 75 percent in the reference plant's capacity factor (from
40 percent to 10 percent) results in an increase in the cost
effectiveness value and busbar cost of approximately
100 percent. '

The cost effectiveness value and busbar cost are linearly
related to fuel price differential. An increase or decrease
of $1.00/MMBtu in the fuel price differential compared to the.
reference plant cause a corresponding change in cost
effectiveness and busbar cost of approximately 50 percent.

Variations in economic life and boiler size follow a
trend similar to capacityvfactor, but do not cause as great a
change in cost effectiveness and busbar cost. For example, a‘
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decrease of 75 percent in economic life (from 20 to & years)
results in an increase in the plant's cost effectiveness value
and busbar cost of nearly 45 percent.' Similarly, a decrease
of 75 percent in the boiler size (from 400 to 100 MW) results

in an increase in thé plant's cost effectiveness value and
busbar cost of nearly 25 percent.

‘Variation in the retrofit factor from 1.0 to 1.6 causes
the smallest relative percent'change in cost effectiveness and
busbar cost. Increases of 0.1 in the retrofit factor cause a
linear increase of approximately 6 percent in'the cost
- effectiveness value and busbar cost. _ ‘

- Of the parémeters shown in figure 6-12, the variation of
uncontrolled NOy from 0.6 to 1.2 1b/MMBtu has the greatest

impact on cost effectiveness. Uncontrolled NOx levels exhibit
" an inverse relationship with the cost effectiveness value. A
30-percent decrease in the reference plant's uncontrolled NO,
level (0.9 to 0.6 1b/MMBtu) results in an increase in the cost
effectiveness value of 50 percent. Variations in the NOy
reduction from 45 to 65 percent and heat rate from 9,200 to
12,800 Btu/kWh have less than a 6-percent change in cost
effectiveness. _

The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) and fuel
price differential on cost effectiveness and busbar cost for

tangentially-fired boilers is shown in figure 6-13.

Figure 6-14 presents the sehsitivity of cost effectiveness to
NOy, emission characteristics (uncontrolled NOy level and NOy
reduction efficiency) and heat rate. As shown, the reference
boiler's cost effectiveness and busbar cost are approximately
$1,800 per ton of NOy removed and 3.8 mills/kWh. The cost
effectiveness value for natural gas reburn applied to
tangentially-fired boilers is generally higher than for
natural gas reburn on wall-fired boilers,'becauSE of the lower
uncontrolled NOy levels of tangentially-fired boilers. The
‘sensitivity curves follow the same general trends as with
natural as reburn applied to wall-fired boilers.
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The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) and fuel
price differential on cost effectiveness and busbar cost for
cyclone-fired boilers is shown in figure 6-15. Figure 6-16
presents the sensitivity of cost effectiveness to NOx emission
characteristics (uncontrolled NOy level and NOy reduction
efficiency) and heat rate. As shown, the reference boiler's
cost effectiveness and busbar cost are approximately $840 per
ton of NOy removed and 3.8 mills/kWh. The cost effectiveness
value for natural gas reburn applied to cyclone-fired boilers
is lower than for natural gas reburn on wall-fired boilers
because of higher uncontrolled NO, levels of cyclone-fired
boilers. The sénsitivity curves follow the same general
trends as with natural gas reburn applied to wall-fired

boilers. _
6.4 COMBUSTION MODIFICATIONS FOR NATURAL GAS- AND OIL-FIRED
BOILERS ' '

- This section presents the capital cost, busbar cost, and
cost effectiveness estimates for operational modifications
(with LEA + BOOS used as an example), LNB, LNB + AOFA, and
reburn applied to natural gas- and oil-fired boilers. Cost
estimates for AOFA by itself are included with the discussion
of LNB + AOFA.

6.4.1 Operatiomal Modifications _

6.4.1.1 Costing Procedures. Cost estimates for LEA +
BOOS as an example of operational modifications were prepared
for natural gas- and oil-fired wall and tangential boilers.

The only capital costs required for implementing LEA +
BOOS are costs for emissions and boiler efficiency testing to
determine the optimal fuel and air settings. The cost of a
4-week testing and tuning period was estimated at $75,000.

 There are no retrofit costs associated with LEA + BOOS.

Indirect costs were estimated at 25 percent of the direct
costs.

Burners-out-of-service alone can decrease boiler
- efficiency by up to 1 percent, which ultimately increases
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annual fuel costs. An average efficiency loss of 0.3 percent
has been reported.*’ |

For the model plant analysis, LEA + BOOS was assumed to
cause a 0.1, 0.3, and 0.5 percent loss in boiler eff1c1ency
Other O&M costs were assumed to be negligible. ‘ :

€.4.1.2 Model Plagts Regults. The capital cost, busbar
cost, and cost effectiveness for the ten wall- and
tangentially-fired model boilers are presented in table 6-9,
For all of these boilers, an economic life of 20 yvears and a
NOx reduction efficiency of 40 percent were assumed. For the
600 MW baseload wall-fired boiler, the estimated cost
effectiveness fanges from $43 to $202 per ton of Nox removed.
For the 100 MW peaking wall-fired boiler, the estimated cost
effectiveness ranges from $140 to $299 per ton.

Cost per ton of NOyx removed for tangential units is
higher than for wall-fired units due to lower uncontrolled NOy
levels and, therefore, fewer tons of NOx removed. The cost
effectiveness values for the tangentiaily-fired units ranges
from $71 to $336 per ton for the 600 MW boiler and $234 to’
$498 for the 100 MW peaking boiler.

6.4.1.3 Sensitivity Analygis. The effect of plant
characteristics (boiler size, capacity factor, and economic
life) and boiler efficiency on cost effectiveness and busbar
cost for wall-fired boilers is shown in figure 6-17.

Figure 6-18 presents the sensitivity of cost effectiveness to
NOy emission characteristics (uncontrolled NOx level and NOy
reduction efficiency) and heat rate. As shown in figure 6-18,
because equal percent changes in boiler size and capacity
factor result in equivalent changes in cost effectiveness,
these two curves overlap. As shown in both figures, the
reference boiler's cost effectiveness and busbar cost are
approximately $130 per ton of NOy removed and 0.14 mills/kWh.

Of the parameters shown in figure 6-17, the variation of
efficiency loss from 0.0 to 0.6 percent has the greatest
impact on cost effectiveness and busbar cost. The cost

6-46




3O uoT3IoNpalt XoN sood + ¥dT ue pue nidl
- 1070e3 A31oedeo jusdiad 0€

*SI9TTOq paat3-Afferiusabuel 103 pasSn si3m quasxad ov

W/QT 0€°0 3O ST®AdT *ON PSTT0XIU0dUNg

= ButToADp

- 1070e3 A3toedeo jusdiad 59 = prOIasSeEds
- 1070e3 A3toedeo juedxad 01 = butesdq
: -SISTTIOQ PaiT3-TTes I0F poOsSnN 3134 quadxad o¥

Jo uoT3onpa1 ¥ON SOOH + VAT Ue pue NigWW/qr 05°0 30 STSA3T XOoN pe1TOI3UcOUfNe

.‘“n““

9€EE coz | tL [0z 0 Ject'o [¥0°0 |9T°0 |9T°0 |9T°0 peotased 'MW 009
Zhe 602 LL 0z 0 |ttt o |so'0 |[TE'0O |TE'O |TEO peoTesed MW 00E
ZS€ 612 L8 €20 |vTt'0 |90°C |TE'OC T€°0 |10 ButToAD ‘MW 00€E
€9¢€ 0€Z 86 Zz'0 |vi 0 1900 |[¥6'C [¥6°0C |¥6°0 peorosed 'MW 00T
867V 99¢ vET 7¢'0 lLz0 {8t1°C |[¥6'0 |[¥6°0C |[¥6°0 butyead ‘MW 00T
sI9TT0q paati-ATTeTiusbuel
z0Z zet €V 0z’ 0 lezt o [v0o 0 f[9T°0 |j9T°0 |9T°0 peorased 'MW 009
S0¢ 33 9% 0z'0 |et'o |soro |TEc0 {TETO |TETO peoTased ‘MW 00€
112 ZET zZs €2°0 |[vL'0 |90°0 |te 0 |TE0 [TEO pPUTTOAD ‘MW 00€
8IC 8ET 65 Zc'0 |vT°0 [90°0 |60 |[¥6°0 |¥6°0 opeoTased ‘MW 00T
66¢ 61C ovT 7¢°0 |Lz0 (8T°'0 |¥6°0 [¥6°0 |¥6°0 nmnﬂxmmm "MW 00T
. eSISTTOq P3XTI-TTeM
3 (%)
S 0 £°0 1°0 S0 €0 T°0 S0 £°0 T°0 ssoT AdueTOTI3d

uol/s UMy /STTTW M3/ 5 UOTJeDTITIUSPT

‘qs00 Teatrded TeI0L juetd

‘SSouaATIDDII® ISOD

‘380D xeqsng

E

e ——

S¥FETIIOd QAYIA-T1I0 GNY -SYD THRINLYN OL ddITdd¥ s00d + YHT ¥04 SLSOD

*6-9 HTHEVL

47




*sIa{toq [Tem pPeiTj-TTO pue -seb [einjeu I0] 3500 Jeqsng pue
SS9UBAT1093J@ 3500 S00d + VAT uo sorjsTasjoeaeyo juefd jo joedur

(qmx/eTTTE) 1005 Ieqseng

LT~

©]11 OTWOU0DT ¢~ 103004 huaunncu.l¢l|

ez}5 leltod -*. 807 AoueydT13Ia 3

00°0

90°0

9 3anbrg

S {14} e3¥y1 Oorwmoucoz

(s} 203094 A3yowdes

001 (MH) ezys 1e71TOM

SE o¢ st (14 ST )
oL ' 09 0s oy ot (114 1]
00L 009 00¢ 00y . 00¢ 002
9°0 c*0 o £€°0 0 10
| I

YnX/n3d 000TT = 3wy 3wen|
S0P = UOTIONPeY XON
NIAHH/QT 50 = XON p@1Toajuodup

1Jajemurvg 1eijod eduagejey

~051

002

ez7e I

vTI8A0 uoou
J0qQ I0] ®0A)

3 huaulﬁ-o PYw
no huﬂbaaﬁlﬂum

190N

082

A ]

.0*0 (v} sso1 Loueyorjia

(xOR 30 wol/¢) sseusaTIoNIE INGD

6-48




.muu~wonﬁa~m3 paarj-fIo pue -seb [eanjeu I0J SSIUSATIOSIIS 3500

Sood + V37T uo @3ed jeay pue soTjsTIejoeIeyd UOTSSTUd

ojoy Iveg WL  UOTIONNEH XOR i XOR POTTOIIU0OUM 1.._

oogzl 00ZZ1 "~ 00911 00011
0°0% L*9Y ' 1 ] 0° 0y
08°0 oL o 09°0 05°0

oovYo1l

L°9¢
or-o

0006
€ £t
0t 0

8IA 07 = 8J¥1 OTwWOU0D3
a0} = 3J030va A3yomded
AN 007 = 9275 JOoTT04
A£'0 = ssoT ASUeIdTJIa

819030WRIRd I0Tj0ogd eDUSINIY

XoN jJo 3joedur

-0§

00l

ost

00z

0se

00t

*gT-9 2anb1d

(yny/nig) e19y 1ved
{y) uorionped XOR
{n3dKH/qT) XOm pelToI3ucoun

(x0m Jo uol/$§) SEBUGATIDSIT 100D

6-49




effectiveness value and busbar cost are linearly related to
fuel price differential. A 0.1 percent boiler efficiency loss
results in an increase in the cost effectiveness value and
busbar cost of 30 percent.

Variations in boiler size, capacity factor, and economic
life follow similar trends, and have less impact on cost
effectiveness and busbar cost than fuel price differential.
For example, a decrease of 75 percent in boiler size and
capacity factor result in an increase in the plant's cost
effectiveness value and busbar cost of approximately
© 20 percent. A decrease of 75 percent in economic life result
in an increase'of the plant's cost effectiveness value and
busbar cost of less than 10 percent. _

Of the parameters shown in figure 6-18, the variation of
uncontrolled NOy from 0.2 to 0.8 1b/MMBtu has the greatest_'
impact on cost effectiveness. Uncontrolled NOy roughly
exhibits a inverse relationship with the cost effectiveness_
value. A 60 percent decrease in the reference plant's
uncontrolled NOx level (0.5 to 0.2 1lb/MMBtu) results in an
increase in the cdst value effectiveness of 60 percent.

Variations in the NOy reduction follow a trend similar to
uncontrolled NOy, but do not cause as great a change in cost
effectiveness. For example, a decrease of 25 percent in NOy
reduction (from 40 to 30 percent) results in an increase in
the plant's cost effectiveness value and busbar cost of nearly
30 percent. Variation in heat rate has very little effect
upon cost effectiveness. _

The effect of plant characteristics (boiler size,
capacity factor, and economic life) and boiler efficiency loss
on cost effectiveness and busbar cost for tangentially-fired

boilers is shown in figure 6-19. Figure 6-20 presents the
sensitivity of cost effectiveness to NOy emission
characteristics (uncontrolled NOy level and NOy reduction _
efficiency) and heat rate. As shown in figure 6-20, because
-equal percent_changes in boiler size and capacity factor
result in equivalent changes in cost effectiveness, these two
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curves overlap. As shown in both figures, the reference
boiler's cost effectiveness and busbar cost are approximately
$200 per ton of NOy removed and 0.14 mills/kWh. The cost
effectiveness values for LEA + BOOS applied to tangentialiy-
fired boilers is higher for LEA + BOOS than on wall-fired
boilers because of the low uncontrolled NOy levels of |
tangentially-fired boilers. The sensitivity curves follow the
same general trends as with LEA + BOOS applied to wall-fired
boilers. |
6.4.2 Low NOy Burnerg

Cost estimates for LNB technology are presented for
natural gas- and 01l-f1red wall and tangential boilers in this
section. Estimated NOy reductions and capital costs for AOFA
by itself are 40 to 50 percent of the levels expected from LNB
+ AOFA. As a result, busbar cost for AOFA by itself are |
estimated at 40 to 50 percent of the cost estimates in this
section for LNB + AOFA and cost effectiveness values are
estimated to approximately equal those for LNB + AOFA.

6.4.2.1 Costing Procedures. Cost data from the utility -
questionnaire for LNB applied to natural gas- and oil-fired
wall boilers were limited to an installed cost for one oil-
fired wall unit. The data from this unit were combined with
literature estimates of installed costs for two natural gas-
and oil-fired boilers.’ These three data points were then

compared to installed costs for coal-fired wall LNB systems
assuming a retrofit factor of 1.15. As discussed in
appendix A.8, these data suggest thet installed costs for
natural gas- and oil-fired boilers are equal to the costs for
coal-fired boilers. As a result, the LNB basic system cost
algorithm for coal-fired wall boilers was used to estimate the
costs for natural gas- and oil-fired LNB systems. Thus, the
basic system cost coefficients in equation 6-1 were a=220 and
=-0.44 for wall-fired LNB systems. |

For LNB applied to natural gas- and oil- flred tangentlal

boilers, no cost data were available. Because of_31m11ar1t1es
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between LNB technology applied tqfall fossil fuels, the costs
for LNB on natural gas- and oil-fired tangential boilers were
assumed to be equal to costs associated with LNB applied to
coal-fired tangential boilers. Thus, the basic system cost
coefficients in equatidn 6-1 were a=80 and b=-0.40 for
tangentially-fired LNB systemsg. Because specific data on
scope adders for gas- and oil-fired units were not available,
the retrofit factors for coal-fired boilers of 1.0, 1{3, and
1.6 were used for the model plant analysis. Indirect costs
were estimated at 30 percent of basic system and retrofit -
éosts Fixed and .variable O&M costs were assumed to be
negligible.

| 6.4.2.2 Model Plants Results. The capital cost, buébar_
cost, and cost effectiveness for the ten wallF and
tangentially-fired model boilers are presented in table 6-10.
An economic life of 20 years and a NOyx reduction efficiency of
45 percent were assumed for all of these boilers. For the
600 MW baseload wall-fired boiler, the estimated cost
effectiveness ranges'from $314 to $503 per ton of NOyx removed.
For the 100-MW peaking wall-fired boiler, the estlmated cost
effectiveness ranges from $3,600 to $5,750 per ton.

Cost per ton of NOy removed with LNB on _ :
tangentially-fired boilers is lower than LNB on wall-fired
boilers because of the lower capital cost with LNCFS I. For
the 600 MW baseload tangentially-fired boiler, the cost-
effectiveness ranges from $246 to $394 per ton. For the 100
MW peaking_tangentiallygfired boiler, cost effectiveness
ranges from $2,620 to $4,190 per ton.
| 6.4.2.3 Sensitivity Analysis. The effect of plant
characteristics (retrofit factor, boiler size, capacity
.factor) and economic life) on cost effectiveness and busbar \
cost for wall-fired boilers is shown in figure 6-21.
Figure 6-22 presents the sensitivity of cost effectiveness to : |

NOyx emission characteristics (uncontrolled NOy level and NOy
reduction efficiency) and heat rate. As shown in these
figures, the reference boiler's cost effectiveness and busbar
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cost are approximately $720 per ton of NOyx removed and
0.89 mills/kWh. The sensitivity curves follow the same
general trends as with LNB applied to coal-fired wall boilers
(refer to section 6.3.1.3). |

The effect of plaﬁt characteristics (retrofit'factor,
boiler size, capacity factor, and economic life) on cost o
effectiveness and busbar coSt_for tangentially-fired boilers
~ is shown in figure 6-23. Figure 6-24 presents the sensitivity
of cost effectiveness to NOy emission characteristics
(uncontrolled NOyx levei and NOyx reduction efficiency) and heat
rate. As shown in the figures, the reference boiler's cost
effectiveness and busbar cost are approximately $560 per ton

- of NOx removed and 0.41 mills/kWh. The cost effectiveness

- values and busbar costs for LNB applied to tangentially-fired
boilers are lower than for LNB on wall-fired boilers because
of lower capital costs associated with tangentially-fired
boilers. The sensitivity curveé follow the same general
trends as with LNB épplied to coal-fired wall boilérs (refer
to section 6.3.1.3).
6.4.3 Low NOE Eurgers'with Advanced Overfire Air

Cost estimates for LNB + AOFA technology were prepared
for naturalhgas- and oil-fired wall and tangential boilers.
6.4.3.1 Costing Procedures. No cost data were available
~on LNB + AOFA technology applied to natural gas- and oil-fired
wall and tangential units. However, because of the similarity
between LNB technology applied to all fossil fuels, costs for
LNB + AOFA on natural gas- and oil-fired boilers were assumed
to be equal to the costs for LNB + AOFA technology on coal-
fired boilers. Thus, the basic system cost coefficients in
equation 6-1 were a=552 and b=-0.40 for wall-fired LNB + AOFA
systems and a=247 and b=-0.49 for tangentially-fired '
LNB + AOFA systems. Due to the lack of actual cost data, the
specific scope adders for natural gas- and oil-fired boilers
could not be estimated. As a result, the same scope adder
costs for coal-fired units were assumed to be applicable to
natural gas- and oil-fired boilers. Therefore, the retrofit:
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factors are 1. 0, 1.3, and 1.6. Indirect costs were estimated
at 30 percent of basic system and retrofit costs. Fixed and
variable O&M costs were assumed to be negligible.

6.4.3.2 Model Plants Results. The capital cost, busbar
cost, and cost effectiveness for the ten wall- and
tangentially-fired model boilers are presented in table 6-11.
An economic life of 20 years and a NOy reduction efficiency of
50 percent were assumed for all of these boilers. For the
600 MW. baseload wall-fired boiler, the estimated cost-
effectiveness ranges from $483 to $774 per ton of NOyx removed.
For the 100-MW peaking wall-fired boiler, the estimated cost
effectiveness ranges'from $6,160 t6 $9,850 per ton.

Cost per ton of NOy removed with LNB + AOFA is lower for
tangentially-fired units due to the lower capital cost of
LNCFS III. For the 600-MW baseload tangentially-fired boiler,
the cost effectiveness ranges from $384 to $615 per ton. For
the 100 MW peaking tangentially-fired boiler, cost
effectiveness ranges from $4,810 to $7,690 per ton.

6.4.3.3 Sensitivity Analysis. The effect of plant
characteristics (retrofit factor, boiler size, capacity
factor, and economic life) on cost effectiveness and busbar
cost for wall-fired boilers is shown in figure 6-25.

Figure 6-26 presents the sensitivity of cost effectiveness to
NOyx emission characteristics (uncontrolled NOy, level and NOy
reduction efficiency) and heat rate. As shown in the figures,
the reference boiler's cost effectiveness and busbar cost are
approximately $1,200 per ton of NOy removed and 1.6 mills/kWh.
The sensitivity curves follow the same general trends as with
LNB applied to coal-fired wall boilers (refer to

section 6.3.1.3). _

The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) on cost
effectiveness and busbar cost for tangentially-fired boilers
is shown in figure €-27. Figure 6-28 presents the sensxt1v1ty
of cost effectiveness to NO, emission characteristics
(uncontrolled NOx level and NOy reduction efficiency) and heat
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rate. As shown in the figures, the reference boiler's cost
effectiveness and busbar cost are approximately $900 pet ton
of NOyx removed and 0.74 mills/kWh. The cost effectiveness
value and busbar cost for LNB + AOFA applied to tangentially-
fired boilers are lower than for LNB + AOFA on wall-fired
boilers because of lower capital costs associated with
tangentially-fired boilers. The sensitivity curves follow the
same general trends as with LNB applied to coal-fired wall
 boilers (refer to section 6.3.1.3).
6.4.4 Natural Gas Reburn

Cost estimates for NGR were prepared for wall and
tangential oil-fired boilers.

6.4.4.1 Costing Procgdures. No actual cost data were
received from utilities or vendors for reburn applied to oil-
fired boilers. Because of the general similarity between the
application of reburn to both oil- and coal-fired boilers, the
capital cost procedures that were used for coal-fired boilers
were also used for oil-fired boilers. Therefore, the ‘
coefficients in equation 6-1 are a=243 and b=-0.40. The |
retrofit factor and indirect cost factor were estimated to be
1.15 and 1.40, respectively. |

Although the national average price of fuel o0il is higher
per million Btu than natural gas, there are regioﬂs of the |
~country (e.g., New England) where fuel o0il is the less
expensive fuel. As a result, fuel oil is the primary boiler
fuel in these areas. 1In these situations, natural gas reburn
can be used as an economic option to reduce NO, emissions.
For the economic analysis of natural gas reburn on oil-fired
boilers, a price differential between these two fuels of $0.50
to $2.50/MMBtu was assumed. To account for the lower sulfur
content of natural gas compared to fuel oil, a credit for
reduced SO, emissions of $200 per ton was used. Based on a
fuel oil sulfur content of 1.0 percent, this credit equates to
approximately $0.16/MMBtu of natural gas fired.

[+)]
|
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6.4.4.2 Model Plants Results. The capital cost, busbar
cost, and cost effectiveness for the ten wall- and
tangentially-fired model boilers are presented in table 6-12.

An economic life of 20 years and a NOy reduction efficiency of .

55 percent were assumed for all of these boilers. For the 1
600 MW baseload wall-fired bdiler,-the estimated cost
effectiveness ranges from $950 to $3,560 per ton of NOy
removed. For the 100 MW peaking wall-fired boiler, the
estimated cost effectiveness ranges from $5,080 to $7,690 pef
ton. | _ '

Cost per ton of NOy removed with natural gas reburn on
tangentially-fired boilers is higher than that of wall-fired
boilers because of lower baseline NOy emissions for
tangentially-fired boilers. For'the 600 MW baseload
tangentially-fired boiler, the cost effectiveness ranges from
$1,580 to $5,940 per ton. For the 100 MW peaking
tangentially-fired boiler, cost effectiveness ranges from
$8,460 to $12,800 per ton. _ _

6.4.4.3 Sensitivity Analysis. The effect of plant
characteristics (retrofit factor, boiler size, capacity
factor, and economic life) and fuel price differential on cost
effectiveness and busbar cost for wall-fired boilers is shown
in figure 6-29. Figure 6-30 presents the sensitivity of cost
effectiveness to NOy emission characteristics (uncontrolled
NOy level and NOx reduction efficiency) and heat rate. As
shown, the reference boilers cost effectiveness and busbar

cost are approximately $2,700 per ton of NOy removed and
4.0 mills/kWh. The Sensitivity curves follow the same general
trends as for natural gas reburn applied to coal-fired wall
boilers (refer to section 6.3.3.3).

The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) and fuel |
price differential on cost effectiveness and busbar cost for j
tangentially-£fired boilers is shown in figure 6-31.
Figure 6-32 presents the sensitivity of cost effectiveness to
NOy emission characteristics (uncontrolled NOx level and NOy ;
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~ reduction efficiency) and heat rate. 'As shown, the reference
boiler's cost effeetiveness and busbar cost are approximately
$4,450 per ton of NOy removed and 4.0 mills/kWh. The cost -
effectiveness values for natural gas reburn applied to
tangentially-fired boilers is generally higher than for
natural gas reburn on wall-fired boilers because of the lower
uncontrolled NOy levels of tangentially-fired boilers The
_ sensitivity curves follow the same general trends as for
natural gas reburn applied to coal-fired wall boilers (refer
to section 6.3.3.3). _ ‘
6.5 FLUE GAS TREATMENT CONTROLS

. This section presents the capital cost, busbar cost, and
cost-effectiveness estimates for flue gas treatment controls
on fossil fuel boilers. Costs for SNCR are given in ‘
section 6.5.1 and costs for SCR are in section 6.5.2. Costs
 for combining LNB + SNCR are presented in section 6.5.3 and
the cost of LNB + OFA +‘SCR are given in section 6.5.4.
6.5.1 Selective Noncatalytic Reduction | '

Cost estimates for SNCR technology are presented in thlS
section for coal-fired wall, tangential, cyclone, and FBC
boilers, and for natural gas— and oil-fired wall and
tangential boilers. Because the cost estimates for a low-
energy, urea-based SNCR system were found to be comparable in
cost to a high-energy NH;3-based SNCR system, results are only
presented for the low-energy, urea-based SNCR system.

6.5.1.1 Cog;igg Procedgres. Vendor cost estimates were
used to develop the capital cost algorithms.* Each boiler was
- assumed to have two levels of wall injectors.and one level of
lance injectors. Since FBC units are typlcally smaller and
'have different operating characterlstlcs than wall—
tangential-, or cyclone-fired boilers, these units have a
greater likelihood of needing less than three levels of
injectors. If two levels of injectors were eliminated on the
FBC units, cursory enalysis indicates that levelized
technology costs could decrease 40 pereent.
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The injected.urea solution was assumed to be 10 percent
urea by weight, 90 percent dilution water. The normalized
stoichiometric ratio (NSR) was assumed to be 1.0. Simplified
algorithms in the form of equation 6-1 were developed from the
capital cost estimates. The capital cost coefficients for the
three coal-fired boilers were nearly identical, therefore, |
a=32 and b=-0.24 was used to characterize the costs for all
three. Similarly, the cost coefficients for both natural gas-
and oil-fired boilers were nearly identical, and coefficients
of a=31 and b=-0.25 were used to characterize costs for both.

Vendor cost estimates were also used to estimate fixed
OsM costs. The costs for an SNCR system include operating,
maintenance, supervisory labor, and maintenance materials.
Fixed O&M costs were found to be independent of fuel type.
Simplified algorithms in the form of equation A.5 _

(appendix A.1) were developed from the vendor estimates.” The

boilers had fixed O&M cost coefficients of a=85,700 and
b=-0.21. _

_ Variable O&M costs include the urea solution (chemical
costs), energy losses due to mixing air, energy losses due to
the vaporization of the urea solution, dilution water, and
electricity costs necessary to operate the air compressor and
other miscellaneous equipment. The chemical costs were
estimated by determining the amount of urea that had to be
injected as a function of the baseline NOy emission levels and
the assumed NSR of 1.0. The amount of urea injected was |
multiplied by solution price to determine the chemical cost.
The amount of urea injected was also used to determine the
energy loss to the injected solution. This energy loss was
multiplied by the fuel cost to determine the costs.
Electricity costs were determined as a function of unit size
and reagent injection rate. Appendix A.10 presents the
equation for calculating urea cost.

A retrofit factor of 1.0 was assumed for the analysis
based upon the assumption that the retrofit of SNCR hés few
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scope adders and work area congestlon is not a significant
factor for retrofitting the technology (refer to

section 6.1.1.2). The indirect cost factor was assumed to be
1.3. However, due to the limited SNCR appllcatlons on boilers
with generating capabilities of over 200 MW, the indirect

costs on these units may be a greater percentage of total
direct costs then on smaller units.

6.5.1.2 Model Plants Results. _
6.5.1.2.1 (Coal-fired model plants. The capital cost,

busbar cost, and cost effectiveness for the 20 coal-fired
wall, tangential, cyclone, and FBC boilers are presented in
table 6-13. An economic life of 20 years and a NOy reduction
efficiency of 45 percent were assumed for all of these
boilers. The urea price for each boiler was varied from 5140
to $260 per ton for a 50-percent urea solution. For the
GOO_MW_baseload wall-fired boiler, the estimated'cost
effectiveness ranges from $560 to $870 per ton of NOx removed.
For the 100 MW peaking wall-fired boiler, the estimated cost
effectiveness ranges from $2,160 to $2,470 per ton.

. Cost per ton of NOx removed with SNCR on tangential
coal-fired boilers is higher than wall-fired boilers because
of lower uncontrolled Nox for tangentially-fired boilers.

Cost effectiveness for the 600 MW baseload tangentially-fired
"boiler ranges from $610 to $910 per ton. For the 100 MW
peaking tangentially-fired boiler, cost effectlveness ranges
from $2,660 to $2,960 per ton. _ o

Cost per ton of NOx removed with SNCR on cyclone boilers
is lower than wall- and tangentially-fired boilers because of
~ higher uncontrolled NOyx for cyclone boilers. Cost
effectlveness for the 600 MW baseload cyclone boiler ranges
from $510 to $820 per ton and for the 100 MW peaking cyclone
boiler, cost effectiveness ranges from $1,460 to $1 780 per
ton.

Cost per ton of NOyx removed with SNCR on an FBC boiler is
higher than wall—,‘tangentiallyF and cyclone-fired boilers due
to the lower uncontrolled NOy levels on FBC boilers as
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compared to the other three types of boilers. Cost
effectiveness for the 200 MW baseload FBC boiler ranges from
-$1,520 to $1,820 per ton. For the 50 MW cycling FBC boiler,
cost effectiveness ranges from $5,100 to §$5,410 per ton.
6.5.1.2.2 Natural gas- and oil-fired model plants. The

capital cost, busbar cost, and cost effectiveness for the
10 natural gas- and oil-fired wall and tangential model
boilers are presented in table 6-14. An economic life of

| 20 years and a NOy reduction efficiency of 35 percent were
assumed for all of these boilers. For the 600 MW baseload
wall-fired boiler, the estimated cost effectiveness ranges
from $859 to $1,240 per ton of NOy removed. For the 100 MW
peaking wall-fired boiler, the estimated cost effectiveness
ranges from $4,470 to $4,850 per ton. .

Cost per ton of NOy removed with SNCR on tangential
boilers is higher than wall-fired boilers because of lower
baseline NOy for the tangentially-fired boilers. Cost
effectiveness for the 600 MW baseload tangentially-fired
boiler ranges from $1,070 to $1,430 per ton. For the 100 MW

- peaking tangentially-fired boiler, cost effectiveness ranges
from $7,090 to $7,450 per ton. ' '
6.5.1.3 Sensitivity Analysis |

6.5.1.3.1 Coal-fired boiler sensitivity analysis. The

effect of plant characteristics (boiler size, capacity factor,
and economic life) and urea solution on cost effectiveness and
busbar cost for wall-fired boilers is shown in figure 6-33.
Figure 6-34 presents the sensitivity of cost effectiveness to
NOx emission characteristics (uncontrolled NOy, level and NO
reduction efficiency) and heat rate. As shown in the figures,
the reference boiler's cost effectiveness and busbar cost are .
approximately $820 per ton of NOy removed and 1.8 mills/kWh.
Of the parameters shown in figure 6-33, the variation of
capacity factor from 10 to 70 percent has the greatest impact
on cost effectiveness and busbar cost. The cost effectiveness
value and busbar cost are inversély related to capacity
factor, and thus, as capacity factor decreases, the cost
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effectiveness value and pusbar cost increase. This is
especially noticeable at low capacity factors where a decrease
of 75 percent in the reference plant's capacity factor (from
40 percent to 10 percent) results in an increase in the cost
effectiveness value and busbar cost of nearly 90 percent.

Variations in economic life and boiler size follow a

. trend similar to capacity factor, but do not cause as great a

_ change in cost effectiveness and busbar cost. For example, a.
decrease of 75 percent in economic life (from 20 to § years)
results in an increase in the plant's cost effectiveness value
and busbar cost of approximately 30 percent. Similarly, a
decrease of 75.perceht in the boiler size (from 400 to 100 MW)
results in an increase in the plant's cost effectiveness value
and busbar cost of nearly 25 percent. 3

Cost effectiveness shown in figure 6-34, the variation of
NOyx reduction from 30 to 60 percent has the greatest impact on
cost effectiveness. Variation in NOx reduction is inversely
related to cost effectiveness and busbar cost. A 50-percent
decrease in the reference plant's NOyx reduction (45 to |
30 percent) results in an increase in the cost effectiveness
value of approximately 50 percent. Variations in the
uncontrolled NOy level and heat rate have less than a
5-percent change in cost effectiveness.

The effect of plant characteristics (boiler size,
capacity factor, and economic life) and urea solution price on
cost effectiveness and busbar cost for tangentially- fired
boilers is shown in figure 6-35. Flgure 6-36 presents the
sensitivity of cost effectiveness to NOx emission
characteristics (uncontrolled NOy level and NOy reduction
efficiency) and heat rate. As shown in the figures, the
reference boiler's cost effectiveness and busbar cost are
approximately $900 per ton of NOy removed and 1.6 mills/kwWh.
The cost effectiveness values of SNCR applied to tangéntially-3
fired boilers are slightly higher than for SNCR on wall-fired
boilers because of lower uncontrolled NOx levels of
tangentially—fired boilers, although the busbar cost is less
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because of the smaller amount of urea that must be injected to
achieve an equivalent percent NOx reduction. The sensitivity
curves follow the same general trends as with SNCR applied to
wall-fired boilers. |

The effect of plant characterlstlcs (boiler 51ze,
capacity factor, and economic life) and urea solution price'on
cost effectiveness and busbar cost for cyclone boilers is
shdwn in figure 6-37. Figure 6-38 presents the sensitivity of
cost effectiveness to NOy emission characteristics
(uncontrolled NOy level and NOx reduction efficiency) and heat
rate. As shown in the figures, the reference boiler's cost
effectiveness and busbar cost are approximately $730 per ton
of NOy removed and 2.7 mills/kWh. The cost effectiveness
values and busbar cost for SNCR applied to cyclone-fired
boilers are lower than for SNCR on wall-fired boilers because
of higher uncontrolled NOx levels of cyclone-fired boilers.
The sensitivity curves fdllow the same general trends as with
SNCR applied to wall-fired boilers. |

‘The effect of plant characteristics (boiler size,
capacity factor, and economic life) and urea solution price on
cost effectiveness and busbar cost for FBC boilers is shown in
figure 6-39. Figure 6-40 presents the sensitivity of cost

effectiveness to NOy emission characteristics (uncontrdlled
| NOy level and NOy reduction efficiéncy) and heat rate. As
shown in the figures, the‘reference boilerfs cost

effectiveness and busbar cost are approximately $1,700 per ton

of NOx removed and 0.81 mills/kWh. The cost effectiveness
values for SNCR applied to FBC boilers is higher than SNCR on
wall-fired boilers because of lower uncontrolled NOy levels of
FBC boilers, although the busbar cost is less because of the
smaller amount of urea that must be injected to achieve
equivalent percent NOy reductions. The sensitiVity curves
follow the same general trends as with SNCR applied to
wall-fired boilers.

€.5.1.3.2 Natural gas- and ocil-fired boiler sensitivity
analysis. The effect of plant characteristics (boiler size,
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capacity factor, and economic life) and urea solution price on
cost effectiveness and busbar cost for wall-fired boilers is

- shown in figure 6-41. Figure 6-42 presents the sensitivity of
cost effectiveness to NOy emission characteristics
(uncontrolled NOy level and NOyx reduction efficiency) and heat
rate.- As shown in the figures, the reference boiler's cost
effectiveness and busbar cost are approximately $1,300 per ton
of NOy removed and 1.2 mills/kWh. The cost effectiveness |

~ values for SNCR applied to natural gas- and oil-fired wall
boilers is higher than for SNCR on coal-fired wall boilers
because of lower uncontrolled NOx levels of natural gas- and
oil-fired boilers, although the busbar cost is less because of
the smaller amount of urea that must be injected to control ‘
NOx.  The sensitivity curves follow the same general trends as
with SNCR applied to coal-fired wall boilers.

The effect of plant characteristics (boiler size, o
capacity factor, and economic life) and urea solution price on
cost effectiveness and busbar cost for tangentially-fired
boilers is shown in figure 6-43. Figure 6-44 presents the
sensitivity of cost effectiveness to NOy emission
characteristics (uncontrolled NOyx level and NOy reduction
‘efficiency) and heat rate. As shown in the figures, the
reference boiler's cost effectiveness and busbar cost are
approximately $1,600 per ton of NOy removed and
0.95 mills/kWh. The cost effectiveness values for SNCR
applied to tangentially-fired boilers are higher than SNCR on
wall fired boilers because of lower uncontrolled NOy levels of
tangentially-fired boilers, although the busbar cost is less ‘
because of smaller amount of urea that must be injected to
control NOy. The sensitivity curves follow the same general
trends as with SNCR applied to coal-fired wall boilers.

6.5.2 SCR |

Cost estimates for SCR technology are presented in this

section for coal-fired and natural gas- and oil-fired wall and
. tangential boilers. 1In addition, estimates are presented for -
SCR applied to cyclone-fired coal boilers.
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6.5.2.1. Costing Procedures. Based on outputs from
Integrated Air Pollution Control System (IAPCS)'®, simplified
algorithms in the form of equation 6-1 were developed td
estimate capital costs. The SCR basic system cost
coefficients for each of the five boiler types are: , i

Fuel Boiler type a b
Coal ' - Wall 174 -0.30
Tangential 165 -0.30
_ Cyclone 196 ' -0.31
0il/Gas. Wall 165 -0.324
|| _ Tangential 156 -0.329

Catalyst price, which has a siQnificant impact on capital
costs, was estimated to be $400/ft3 for coal-, natural gas-,
and oil-fired boilers. Catalyst life was assumed to be 3
years for coal-fired boilers and 6 years for natural gas- and

oil-fired boilers. Catalyst volumes for coal-fired boilers
were assumed to be double the volume of oil-fired boilers and

;‘
approximately six times larger than the volume of natural gas- \
fired boilers.

Fixed operating and maintenance costs for an SCR system
include operating, maintenance, supervisory labor and |
maintenance materials and overhead. Variable 0O&M costs are
ammonia, catalyst replacement, electricity, water, steam, and
catalyst disposal. The IAPCS model was used to estimate fixed
and variable 0&M_costs, and details on these calculations are
provided in appendix A.11.

The following factors affect the retrofit difficulty and
costs of an SCR system: | '

. Congeétion in the constrﬁction area from existing '3
buildings and equipment. .

o Underground electrical cables and pipes.

. The length of ductwork required to connect the SCR

reactor vessels to the existing ductwork. |
Due to the lack of actual installation cost data, an EPA
analysis of SCR costs were used to estimate retrofit factors.'
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This reference estimates retrofit factors of 1.02 (low), 1.34
(moderate), and 1.52 (high), based on data obtained from hot-
side SCR retrofits on German utility boilers. For the model
plant analysis, a moderate retrofit factor of 1.34 was used.
Indirect costs were assumed to be 45 percent of the process
capital. For the application of SCR to boilers burning
medium- to high-sulfur coals, indirect costs may be greater
than 45 percent of the process capital, due to factors
discussed in chapter 5. ‘

6.5.2.2 Model Plants Results

6.5.2.2.1 Coal-fired model plants. The capital cost,
busbar cost, and cost effectiveness for the 15 coal-fired
wall, tangential, -and cyclbne boilers are presented in
table 6-15. An economic life of 20 years and a NOyx reduction
efficiency of 80 percent and a space velocity of 2,500/hr were
assumed for all of these boilers. For the 600 MW baseload
wall-fired boiler, the estimated cost effectiveness ranges
from $1,270 to $1,670 per ton of NOyx removed. For the 100 MW
peaking wall-fired boiler, the estimated cost effectiveness

- ranges from $7,540 to $9,650 per ton.

Cost per ton of NOy removed with SCR on
tangentially-fired boilers is higher than wall-fired boilers
because of lower uncontrolled NOy levels for tangentially-
fired boilers. Cost effectiveness for the 600 MW baseload
tangentially-fired‘bbiler ranges from $1,580 to $2,100 per
ton. For the 100 MW peaking tangentially-fired boiler, cost
effectiveness ranges from $9,470 to $12,200 per ton.

Cost pér ton of NOy removed with SCR on cyclone-fired
boilers is lower than wall-fired boilers because of higher
uncontrolled NOx levels for cyclone-fired boilers. Cost
effectiveness for the 600 MW baseload cyclone-fired boiler
ranges from $810 to $1,050 per ton and for the 100 MW cyclone |

boiler, cost effectiveness ranges from $4,670 to $5,940 per
ton.

6.5.2.2.2 Natural gas and ojil-fired model plants. The
capital cost, busbar cost, and cost effectiveness for the
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10 natural gas- and oil-fired wall and tangential model
boilers are presented in tables 6-16 and 6-17, respectively.
An economic life of 20 years and a NO, reduction efficiency of
85 percent were assumed for all of these boilers. Space
velocities of '14,000/hr and 5,000/hr were assumed for natural
gas~fired boilers and oil-fired boilers, respectively. Cost
per ton of NOy removed with SCR on natural gad-fired boilers
is lower than oil-fired boilers because of smaller catalyst
volumes for natural gas-fired boilers.

For the 600 MW baseload wall-fired boilers, the estimated
cost effectiveness ranges from $970 to $1,070 per ton of NOyx
removed for the natural gas-fired boilers and $1,130 to $1,410
per ton of NOx removed for the oil-fired boilers. For the
100 MW peaking natural gas- and oil-fired wall boilers, the ‘
estimated cost effectiveness ranges from $6,700 to $7,200 per .
ton and $7,550 to $8,990 per ton, respectively.

Cost per ton of NOy removed with SCR on tangentially-
fired boilers is higher than wall-fired boilers because of
lower uncontrolled NOy levels for tangentially-fired boilers.
Cost effectiveness for the 600 MW baseload tangentially-fired ;
boiler ranges from $1,530 to $1,690 per ton for the natural
gas-fired boilers and $1,800 to $2,260 per ton of NOy removed
for the oil-fired boilers. For the 100 MW peaking natural
gas- and oil-fired tangential boilers, cost effectiveness
ranges from $10,800 to $11,700 per ton and $12,200 to %14,600
per ton, respectively. |

6.5.2.3 Sensitivity Analysis

6.5.2.3.1 Coal-fired boiler sensitivity analysis. The
effect of plant characteristics (retrofit factor, boiler size,

capacity factor, and economic life) and catalyst life on cost
effectiveness and busbar cost for wall-fired boilers is shown
in figure 6-45. FPigure 6-46 presents the sensitivity of cost
effectiveness to NOy emission characteristics (uncontrolled
NOyx level and NOy reduction efficiency) and heat rate. . As
shown in the figures, the reference boiler's cost
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effectiveness and busbar cost are approximately $2,000 per ton
Of NOx removed and 8.1 mills/kWh. _

Of the parameters shown in figure 6-45, the variation of
capac1ty factor from 10 to 70 percent has the greatest impact
on cost effectiveness and busbar cost. The cost effectiveness
value and busbar cost exhibit a nearly inverse relationship
with capacity factor, and thus, as capacity factor decreases,
‘the cost effectiveness value and busbar cost increase. This : L

is especxally noticeable at low capacity factors where a |
decrease of 75 percent in the réference plant's capacity
factor (from 40 to 10 percent) results in an increase in the
cost effectlveness value and busbar cost of over 250 percent.

Variations in catalyst life, economic life, and boiler
size follow a trend similar to capacity factor, but do not
cause as great a change in cost effectiveness and busbar cost.,

For example, a decrease of 33 percent of the catalyét life

(from 3 yéars to 2 years) increases the cost effectiveness
approximately 25 percent. Slmllarly, a decrease of 75 percent

in economlc life (from 20 to 5 years) results in an increase

in the plant's cost effectlveness value and busbar cost of
approximately 50 percent, and a decrease of 75 percent in the :
boiler size (from 400 to 100 MW) results in an increase in the | o

plant's cost effectiveness value and busbar cost of nearly
25 percent.

The cost effectiveness value and busbar cost are 11nearly
related to retrofit factor. An increase or decrease of 0.3
from the reference plant's retrofit factor of 1.3 causes a
.corresponding change in the cost effectiveness value and
busbar cost of less than 5 percent. .

Of the parameters shown in flgure 6-46, the varlatlon of
uncontrolled NOx from 0.6 to 1.2 1lb/MMBtu has the greatest
impact on cost effectlveness Variation in NO, reduction
exhibits an inverse relatlonshlp to cost effectiveness. A ?
33 percent decrease in the reference plants uncontrolled NO,,

(from 0.9 to 0.6 1b/MMBtu) results in an increase 'in the cost
effectiveness'value of approximately 50 percent.
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Variation in the heat rate from 9,200 to 12,800 Btu/kWh
foilows a trend similar to the variation in uncontrolled NOx.
A 16-percent decrease in heat rate (11,000 to 9,200 Btu/kwh)
results in an increase of cost effectiveness of approximately
20 percent. Potential variations in the NOy reduction
efficiency of the system result in less than a 5-percent
change in cost effectiveness.

The effect of plant characteristics (retrofit factor,

" boiler size, capacity factor, and economic life) and catalyst
1ife on cost effectiveness and busbar cost for tangentially-
fired boilers is shown in figure 6-47. Figure 6-48 presents
the sensitivity of cost effectiveness to NOx emission
characteristics (uncontrolled NOy level and NOx reduction_
efficiency) and heat rate. As shown in the figures, the
reference boiler's cost effectiveness and busbar cost are
approximately $2,600 per ton of NOy removed and 7.9 mills/kWh.
The cost effectiveness values and busbar cost for SCR applied f
to tangentially-fired boilers are higher than for SCR on wall-
fired boilers because of lower uncontrolled NOyx levels. for
tangentially-fired boilers, although the busbar cost is
slightly lower for tangentially-fired boilers because of the
lower capital and O&M costs. The sensitivity curves follow

' the same general trends as with SCR applied to wall-fired
boilers. _

The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) and catalyst
1ife on cost effectiveness and busbar cost for cyclone-fired
boilers is shown in figure 6-49. Figure 6-50 presents the
sensitivity of cost effectiveness to NOy emission
characteristics (uncontrolled NO; level and NOy reduction
efficiency) and heat rate. As shown in the figures, the
reference boiler's cost effectiveness and busbar cost are
approximately $1,300 per ton of NOyx removed and 8.5 mills/kwh.
The cost effectiveness values and busbar cost for SCR applied‘
to cyclone-fired boilers are lower than for wall-fired boilers .
because of higher uncontrolled NOy levels for cyclone-firéd
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boilers, although the busbar cost is Sllghtly hlgher for

cyclone-fired boilers of the hlgher capital and O&M costs.

The sensitivity curves follow the same general trends as with

SCR applied to wall-fired boilers. . _ :

6.5.2.3.2 Natural gas- and oil-fired boiler sensitivity

analysis. The effect of plant characteristics (retrofit

factor, boiler size, capacity factor, and economic life) and

catalyst life on cost effectiveness and busbar cost for wall-
. fired boilers is shown in figures‘6~51 and 6-52., Figures 6-53

and 6-54 present the sensitivity of cost effectiveness to NOy

emission characteristics (uncohtrolled NOy level and NO4

reduction efficiency) and heat rate. As shown in the figqures,

the natural gas-fired reference boiler's cost effectiveness

and busbar cost are approximately $1,450 per ton of NOy

removed and 3.4 mills/kWh and the oil-fired reference boilers

cost effectiveness and busbar cost are approximately ,

$1,750 per ton on NOy removed and 4.1 mills/kWh. The cost

effectiveness value and busbar cost for SCR applied to natural

gas-fired boilers are lower than for oil-fired boilers because

of the smaller catalysts volumes on natural gas-boilers. o 3

Slmllarly, cost effectiveness and busbar cost for SCR applled |

to natural gas- and oil-fired wall boilers are lower than for

the coal-fired wall boilers because of the smaller catalyst

volumes and expected longer catalyst life on natural gas- and

oil-fired boilers. The sensitivity curves follow the same

general trends as with SCR applled to coal-fired wall boilers.

The effect of pPlant characteristics (retrofit factor,

boiler size, capacity factor, and economic life) and catalyst

life on cost effectiveness and busbar cost for natural gas-

and oil-fired tangential boilers is shown in flgures 6-55 and

6-56. Figures 6-57 and 6-58 present the sen81t1v1ty of cost

effectiveness to NOx emission characteristics (uncontrolled

NOx level and NOy reduction efficiency) and heat rate. As

shown in the figures, the natural gas-fired reference boiler's

cost efféctiveness and busbar cost are approximately _

$2,300 per ton of NOx removed and 3.2 mills/kWh and the oil-
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fired reference boiler's cost effectiveness and busbar cost
are approximately $2,800 per ton of‘NOx removed and
4.0 mills/kWh. The cost effectiveness value and busbar cost
for SCR applied to natural-gas fired boilers are lower than
for oil-fired boilers because of the smaller catalyst volumes
on natural-gas boilers. Similarly, cost effectiveness and
busbar cost for SCR applied to natural gas- and oil-fired
tangential boilers are lower than for the coal-fired
tangential boilers because of the smaller catalyst volumes and
expected longer catalyst life on natural gas- and oil-fired
boilers. The sensitivity curves follow the same general
trends as with‘SCR applied to coal-fired wall boilers.
6.5.3 Low NO, Burners with Selective Non-Catalytic Reduction

Cost estimates for the combination control of LNB + SNCR
are pfesented in this section for coal-fired and natural '
gas- and oil-fired wall and tangential boilers.

6.5.3.1 Costing Procedures. To develop the cost
algorithms for the combination control LNB + SNCR, the
individual capital, variable O&M, and fixed O&M cost
algorithms for LNB and SNCR were combined. Refer to
sections 6.3.1, 6.4.2, and 6.5.1 for these costing procedures.‘

6.5.3.2 Model Plant Results. '

6.5.3.2.1 Coal-fired model plants. The capital cost,
busbar cost, and cost effectiveness for the temn wall- and
tangentially-fired boilers are presented in table 6-18. An
economic life of 20 years and a NOx reduction efficiency of
45 percent for LNB and 45 percent for SNCR were assumed for
all boilers. The urea price of each boiler was varied from
$140 to $260 per ton for a 50-percent urea solution. For the
600 MW baseload boiler, the estimated cost effectiveness
ranged from $370 to $478 per ton of NOy removed. For the
100 MW peaking wall-fired boiler, the estimated cost
effectiveness ranges from $2,750 to $2,860 per ton.

Cost per ton of NOy removed with LNB + SNCR on
tangentially-fired boilers is slightly lower than for wall-
fired boilers because of lower capital cost associated with
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LNB applied to tangentially-fired boilers. Cost effectiveness
for the 600 MW baseload tangentially-fired boiler ranges from |
$344 to $452 per ton. For the 100 MW peaking tangentially-
fired boiler, the estlmated cost effectiveness ranges from
$2,420 to $2,530 per ton. _
€.5.3.2.2 Natural gas- and oil-fired model plants. The

capital Cost, busbar cost, and cost effectiveness for the ten
wall- and tangentially-fired boilers are presented in

“table 6-19. An economic life of 20 years and a NOy reduction
efficiency of 45 percent for LNBR and 35 percent for SNCR were
assumed for all boilers. The urea price of each boiler was
varied from $140 to $260 per ton for a 50-percent urea
solution. For the 600 MW baseload boiler, the estimated cost
effectiveness ranged from $585 to $697 pef ton of NOyx removed. !
For the 100 MW peaking wall-fired boiler, the estimated cost
effectiveness ranges from $5,200 to $5,300 per ton.

Cost per ton of NOy removed with LNB + SNCR is higher on
tangentially-fired boilers because of lower uncontrolled Nog
levels of these boilers. Cost effectiveness for the 600 MW
baseload tangéntially-fired boiler ranges from $641 to

. $750 per ton. For the 100 MW peaking tangentially-fired
boiler, the estimated cost effectiveness ranges from $5,830 to’
$5,940 per ton. '

€.5.3.3 Sensgitivity Analysis. _

6.5.3.3.1 cal-fired boiler sensgitivity analysig. The
effect of plant characteristics (retrofit factor, boiler size,
capacity factor, and economic life) and urea solution price on
cost effectiveness and busbar cost for wall-fired boilers is
shown in figure 6-59. Figure 6-60 presents the sensitivity of
cost effectiveness to NOy emission characteristics
(uncontrolled NOy level and the NOy reduction efficiency of
the LNB and SNCR systems) and heat rate. As shown in the
figures, the reference boiler's cost effectiveness and busbar

cost are approximately $620 per ton of NOx removed and
2.1 mills/kwWh.
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Of the parameters shown in figure 6-59, the variation of
capacity factor from 10 to 70 percent has the greatest impact
on cost effectiveness and busbar cost. The cost effectiveness.
value and busbar cost are inversely related to capacity
factor, and thus, as capacity factor decreases, the cost
effectiveness value and busbar cost increase. This is
especially noticeable at low capacity factors where a decrease
of 75 percent in the reference plant's capacity factor (from
40 to 10 percent) results'in an increase in the cost
effectiveness value and busbar cost of nearly 200 percent.
Variations in economic life and boiler size follow a
trend similar to capacity factor, but do not cause as great a
change in cost effectiveness and busbar cost. For example, a
decrease of 75 percent in economic life (from 20 to 5 years)
results in an increase in the plant's cost effectiveness value
and busbar cost of approximately 75 percent. Similarly, a
decrease of 75 percent in boiler size (from 400 to 100 MW)
results in an increase in the plant's cost effectiveness value
and busbar cost of nearly 75 percent. ‘
The cost effectiveness value and busbar cost are linearly
related to both retrofit factor and urea cost. An increase or
decrease of 0.3 in retrofit factor or $60 per ton in urea cost
compared to the reference plant causes a corresponding change
in cost effectiveness and busbar cost of less than § percent.
Of the parameters shown in figure 6-60, the variation of -
uncontrolled NOy from 0.6_to'1.2 lb/MMBtu has the greatest
impact on cost effectiveness. Variation in NOyx reduction
exhibits an inverse relationship to cost effectiveness. A
.33-percent decrease in the reference plants uncontrolled NOx
(from 0.9 to 0.6 lb/MMBtu) results in an increase in the cost
effectiveness value of approximately 35 percent. ‘
Variation in the NOyx reduction of LNB from 30 to
60 percent follow a trend similar to the variation in
uncontrolled NOyx. A 33-percent decrease of the NOy reduction
of the LNB results in an increase of cost effectiveness of
25 percent. Variation in the NOy reduction of the SNCR system
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from 30 to 60 percent follows a trend Similar to Nox reduction
of the LNB, but do not cause as great a change in cost
effectiveness. A 33-percent decrease in the NO, reduction of
the SNCR system results in an increase in the cost
effectiveness value of approximately 15 percent. Variation in
heat rate from 9,200 to 12,800 Btu/kWh has nearly an identical
effect on cost effectiveness as the potential variation in NO4
reduction by the SNCR system. A 16- -percent decrease in heat -
~rate (11,000 to 9,200 Btu/kWh) results in an equlvalent
increase of cost effectiveness value.
_ The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) and urea
solution price on cost effectiveness and busbar cost for
tangentially-fired boilers is shown in figure 6-61.
Figure 6-62 presents the sensitivity of cost effectiveness to
. NOx emission characteristics (uncontrolled NOy level and the
NOx« reductlon efficiency of the LNB and SNCR systems) and heat
rate. As shown in the flgures, the reference boiler' s cost
effectiveness and busbar cost are approximately $560 per ton
of NOyx removed and 1.5 milis/kWh. The cost effeéctiveness
values and busbar cost for LNB + SNCR applied to tangentially-
fired boilers are slightly lower than for LNB + SNCR on wall-
fired boilers because of lower capital cost associated with
LNB applied to tangentially-fired boilers. The sensitivity
curves follow the same general trends as w1th LNB + SNCR
applied to wall-fired boilers.

6.5.3.3.2 Natural gas- _and oil-fired sensitivity
'g alysis. The effect of plant characteristics (retrofit
factor, b011er size, capacity factor, and economic life) and
urea solution price on cost effectiveness and busbar cost for
wail—fired boilers is shown in figure 6-63. Figure 6-64
presents the sensitivity of cost effectiveness to NOy, emission
characteristics (uncontrolled NO, level and the NOx reduction
~efficiency of the LNB and SNCR systems) and heat rate. As
shown in the flgures, the reference boiler's cost
effectiveness and busbar cost are approximately $1,000 per ton
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of NOy removed and 1.8 mills/kWh. Cost effectiveness for
LNB + SNCR applied natural gas- and oil-fired wall boilers are
higher than for LNB + SNCR applied to coal-fired wall boilers
because of lower uncontrolled NOx levels of natural gas- and
oil-fired boilers, although the busbar cost is less because of
the smaller amount of urea that must be injected to achieve an
equivalent percent NOx reduction. The sensitivity curves ‘
follow the same general trends as with LNB + SNCR applied to
 coal-fired wall boilers. |

The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) and urea
solution price on cost effectiveness and busbar cost for
tangentially-fired boilers is shown in figure 6-65. _
Figure 6-66 presents the éensitivity of cost effectiveness to
NOyx emission characteristics (uncontrolled'NOx level and the
NOy reduction efficiency of the LNB and SNCR systemsg) and heat
rate. As shown in the figures, the reference boiler's cost
effectiveness and busbar cost are approximately $1,100 per ton
of NOy removed and 1.2 milis/kWh. The cost effectiveness
values of LNB + SNCR applied natural gas- and oil-fired
tangential boilers are higher than for LNB + SNCR applied to
natural gas- and oil-fired wall boilers because of lower
uncontrolled NOy levels of tangentially-fired boilers,
although the busbar cost is less because of the smaller amount
of urea that must be injected to achieve an equivalent percent
NOx reduction. The sensitivity curves follow the same general
trends as with LNB + SNCR applied to coal-fired wall boilers.
€.5.4 Low NOy Burners with Advanced Overfire Air and

Selective Catalxtlc Reduction

Cost estimates for the combination control of LNB +
AQOFA + SCR are presented in this section for wall and
tangential -coal-fired and natural gas- and oil-fired boilers.

6.5.4.1 Costing Procedures. The cost algorithms for LNB
+ AOFA + SCR were developed by combining the individual
capital, variable O&M, and fixed O&M cost algorithms for each .
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of the three technologies. Refer to sections 6.3.2, 6.4:.3,
and 6.5.2 for these costing procedures.

6.5.4.2 Model Plant Results.

- 6.5.4.2.1 0al-fired model Jlants. The capital cost, |
busbar cost, and cost effectlveness for the ten wall- and |
tangentially-fired boilers are presented in table 6-20. An
economic life of 20 years and a NO, reduction efficiency of
50 percent for LNB + AOFA and 80 percent for SCR were assumed
for all boilers. The catalyst price was estimated to be
$400/£t3 for each boiler, and an average retrofit factor of
1.34 was used. For the 600 MW baseload boiler, the estimated
cost effectiveness ranged from $1,300 to $1,660 per ton of NOy
removed. For the 100 MW peaking Wall-fired boiler, the

estimated cost effectiveness ranges from $9,250 to $11,100 per
ton. - ‘

Cost per ton of NOx removed with LNB + AOFA + SCR on
tangentially-fired boilers is hlgher than for wall-fired
boilers due to the lower baseline NOx levels associated with
'tangentlally fired boilers. Cost effectiveness for the 600 MW
baseload tangentially-fired boiler ranges from $1,500 to
$1,970 per ton. For the 100 MW peaking tangentially-fired

boiler, the estimated cost effectlveness ranges from %9, 990 to
$12,400 per ton.

- 6.5.4.2.2 Natural gas- and oil-fired model plants The
capital cost, busbar cost, and cost effectlveness for the 10
wall- and tangentially-fired boilers are presented in
table 6-21 and 6-22, respectively. Aan economic life of 20
years and a NOx reduction efficiency of 50 percent for LNB +
AOFA and 85 percent for SCR were assumed for all boilers. The
catalyst price was estimated to be $400/ft3 for each boiler,
and an average retrofit factor of 1.34 was used. Space
~ velocities of 14,000/hr and 5,000/hr were assumed for natural ;
gas- and oil-fired boilers,-respectively. -Cost per ton of NOy

|

removed with SCR on oil-fired boilers is higher than natﬁfal

gas-fired boilers because of greater catalyst volume for*oil-
fired boilers.
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For the 600 MW baseload boller, the estimated cost
effectiveness ranged from $1,200 to $1,290 per ton of NOy
removed for the natural gas-fired boilers and $1,350 to $1,610
per ton of NO, removed for oil-fired boilers. For the 100 MW
pPeaking natural gas- and oil-fired wall b01lers, the estimated
cost effectiveness ranges from $10,500 to $11,000 per ton and
$11,300 to $12 700 per ton, respectlvely

. Cost per ton of NOy removed with LNB + AQFA + SCR on
tangentially-fired boilers is higher than for wall-fired
boilers due to the lower baseline NOx levels associated with
tangentially-fired boilers. Cost effectiveness for the 600 MW
baseload tangentlally fired boilers range from $1,650 to
$1,800 per ton for the natural gas-fired boiler and $1,900 to
$2,330 per ton of Nox removed for oil-fired boilers. For the
100 MW peaking natural gas- and 011 flred tangentlal boilers,
the estimated cost effectiveness range from $13,400 to

$13,200 per ton and $14 700 to $16,900 per ton of NOx removed
for oil-fired boilers.

6.5.4.3 Sensitivity Analysis _
€.5.4.3.1 Coal-fired boilers sensitivity an§1151§ The

effect of plant characteristics - (retrofit factor, boiler size,
capacity factor, and economic life) and catalyst life on cost
effectiveness and busbar cost for wall-fired boilers is shown
in figure 6-67. Figure 6-68 preéents the sensitivity of cost
effectiveness to NOy emission characteristics (uncontrolled
NOx level and NO, reduction efficiency for both LNB + AOFA and
SCR) -and heat rate. As shown in the figures, the reference
boller S cost effectlveness and busbar cost are approxlmately
$2,120 per ton of NOy removed and 9.5 mills/kWh.

| Of the parameters shown in figure 6-67, the variation of
capac1ty factor from 10 to 70 percent has the greatest impact
on cost effectiveness and busbar cost. The cost effectiveness
value and busbar cost exhibit an inverse relationship with
capacity factor, and thus, as capacity factor decreases, the
cost effectiveness value and busbar cost increase. This is
especially noticeable at low capacity factors where a decrease
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1

of 75 percent in the reference plant's capacity factor (from
40 to 10 percent) results in an increase in the cost
effectiveness value and busbar cost of nearly 300 percent.

Variations in catalyst 1ife, economic life, ‘and boiler
size follow a trend simiiar to capacity factor, but do not
cause as great a change in cost effectiveness and busbar cost .
For example, a decrease of 33 percent of the catalyst life
(from 3 years to 2 years) increases the cost effectiveness

~ value approximately 20 percent. Similarly, a decrease of
75 percent in economic life (from 20 to 5 years) results in an
increase in the plant's cost effectiveness value and busbar
cost of approximateiy 60 percent, and a decrease Of 75 percent
in the boiler size (from 400 to 100 MW) results in an increase
in the plant's cost effectiveness value and busbar cost of '
nearly 35 percent.

The cost effectiveness value and busbar cost are linearly
felated to retrofit factor. An increase or decrease of 0.3
from the reference plant's retrofit factor of 1.3 causes a

~ corresponding change in the cost effectiveness valu and busbar
cost of less than 10 percent. - _ |

Of the parameters shown in figure 6-68, the variation of
uncontrolled NOx from 0.6 to 1.2 1lb/MMBtu has the greatest
impact on cost effectiveness. Variation in NOx reduction
exhibits an inverse relationship to the cost effectiveness
value. A 33-percent decrease in the reference plants

‘uncontrolled NOy (from 0.9 to 0.6 lb/MMBtﬁ) results in an
increase in the cost effectiveness value of approximately
50 percent.

Variation in the heat rate from 9,200 to 12,800 Btu/kWh
follows a trend similar to the variation in uncontrolled NOx.
A 16-percent decrease in heat rate (11,000 to 9,200 Btu/kWh)
results in an increase of the cost effectiveness value of

| approximately 20 percent. Potential variations in the NOy
reduction efficiency of LNB + AOFA or SCR result in less than
a 5 percent change in cost effectiveness. |
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- The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economlc life) and catalyst
life on cost effectiveness and busbar cost for tangentially-
fired boilers is shown in flgure 6-62. Figure 6-70 presents
the sen51t1v1ty of cost effectiveness to NOy emission
characteristics (uncontrolled NOy level and NOy reduction
efficiency for both LNB + AOFA and SCR) and heat rate. As
shown in the figures, the reference boiler’s cost
effectiveness and busbar cost are approximately $2,450 per ton
of NOyx removed and 8.5 mills/kWh. The cost effectiveness
values for LNB + AOFA + SCR applied to tangentially-fired
boilers are slightly hlgher than on wall- flred boilers because
of lower uncontrolled NOx levels of tangentially-fired
boilers, although the busbar cost is lower because of the
highef capital and O&M costs associated with -LNB + AOFA + SCR
applied‘to wall-fired boilers. The sensitivity curves follow
the same general tfends as with LNB + AOFA + SCR applied to
wall-fired boilers. _ | |

6.5.4.3.2 atural gas- and oil-fired boiler sen itivit
analysis. The effect of plant characteristics (retrofit
factor, boiler size, capacity factor, and economic life) and
catalyst life on cost effectiveness and busbar cost for
natural gas- and oil-fired wall boilers is shown in
figure 6-71 and 6-72, respectively. Figures 6-73 and 6-74
presents the_sensitivity of cost effectiveness to NOyx emission
characteristics (uncontrolled NOx level and NOx reduction
efficiency for both LNB + AOFA and SCR) and heat rate. As
shown in figures 6-71 and 6-72, the natural gas-fired
reference boiler’s cost effectiveness and busbar cost are
approximately $1,900 per ton of NOx removed and 4.8 mills/kwh
~and the oil-fired reference boilers cost effectiveness and
‘busbar cost are approxlmately $2,200 per ton of NOx removed
and 5.6 mills/kWh. The cost effectiveness values and busbar
costs for LNB + AOFA + SCR applied to natural gas-fired .
boilers are lower than for oil-fired boilers because of the
smaller catalyst volumes on natural gas boilers. Similarly,
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cost effectiveness values for LNB + AOFA + SCR applied to
natural gas- and oil-fired wall boilers are slightly higher
than on coal-fired wall boilers because of lower uncontrolled
NOy levels of natural gas- and oil-fired boilers, although the
busbar cost is lower because of the smaller catalyst volumes
and longer catalyst life associated with SCR applied to
natural gas- and oil-fired boilers. The sensitivity-curves
follow the same general trends as with LNB + AOFA + SCR
épplied to coal-fired wall boilers.

The effect of plant characteristics (retrofit factor,
boiler size, capacity factor, and economic life) and catalyst
life on cost effectiveness and busbar cost for tangentially-
fired beoilers is shown in figures 6-75 and 6-76. Figures 6-77
and 6-78 present the sensitivity of cost effectiveness to NOx |
emission characteristics (uncontrolled NOx level and NOy |
reduction efficiency for both LNB + AOFA and SCR) and heat
rate. As shown in figures 6-76 and 6-78, the natural gas-
fired reference boiler's cost effectiveness and busbar cost
are approximately $2,600 per ton of NOy removed and
3.9 mills/kWh and the oil-fired reference boilers cost |
effectiveness and busbar cost are approximately $3,000 per tomn

- of NOy removed and 4.6 mills/kWh. The cost effectiveness
value and busbar costs for LNB + AOFA + SCR applied to natural
gas-fired boilers are lower than for oil-fired boilers because
of the smaller catalyst volumes on natural gas boilers.
Similarly, cost effectiveness values for LNB + AOFA + SCR
applied to natural gas- and oil-fired tangential boilers are
slightiy higher than on coal-fired wall boilers because of
lower uncontrolled NOy levels of natural gas- and oil-fired
boilers, although the busbar cost is lower because of the
smaller catalyst volumes and longer catalyst life associated
with SCR applied to natural gas- and oil-fired boilers. The
éensitivity curves follow the same general trends as with'LNBj
+ AOFA + SCR applied to coal-fired wall boilers.
Tangentially-fired boilers are slightly higher than on wall-
fired boilers'because of lower uncontrolled NOy levels of
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tangentially-fired boilers, although the busbar cost is lower
'because of the hlgher capital and O&M costs associated Wlth
LNB + AOFA + SCR applied to wall-fired boilers. The
‘sensitivity curves follow the same general trends as with

LNB + AQFA + SCR applled to wall-fired boilers.
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7.0 ENVIRONMENTAL AND ENERGY IMPACTS OF NOy CONTROLS

‘This chapter presents the reported effects of combustion
modifications and flue gas treatment controls on boiler
performance and secondary emissions from new and retrofit
fossil fuel-fired utility boilers. Since most of these
effects are not routinely measured by utilities, there are
limited data available to correlate boiler performance and
secondary emissions with nitrogen oxides . (NOy) emissions or
NOy reduction. These effects are combustion-related and
depend upon unit-épecific factors such as furnace type and
design, fuel type, and operating practices and restraints. As
a result, the data in this chapter should be viewed as general
information on the potential effects of NOy controls, rather
than a prediction of effects for specific boiler types. ‘

The effects of combustion controls on coal-fired boilers,f
both new and retrofit applications, are given in section 7.1. |
The effects of combustion controls on natural gas- and oil-
fired boilers are presented in section 7.2. The effects of
flue gas treatment controls on conventional and fluidized bed
combustion (FBC) boilers are given in section 7.3. '

7.1 EBFFECTS FROM COMBUSTION CONTROLS ON COAL~FIRED UTILITY

BOILERS

Combustion NOy controls suppress both thermal and fuel
NOyx formation by reducing the peak flame temperature and by
delaying mixing of fuel with the combustion air. This can
result in a decrease of boiler efficiency and must be
considered during the design of a NOx control system for any
new or retrofit application.



In coal-fired boilers, an increase in unburned carbon
(UBC) indicates incomplete combustion and results in a
-reduction of boiler efficiency. The UBC can also change the
properties of the fly ash and may affect the performance of
the electrostatic precipitator.: Highér UBC levels may make
the flyash unsalable, thus increasing ash disposal costs for
plants that currently sell the flyash to cement producers.

~ Other combustion efficiency indicators are carbon
monoxide (CO) and total hydrocarbon (THC) emissions. An
increase in CO emissions also signals incomplete combustion
and can reduce boiler efficiency. Emissions of THC from coal-
fired boilers arewusually low and are rarely measured.
7.1.1 Retrofit Applicationsg

7.1.1.1 Carbon Monoxide Emissions. The results from
combustion modifications on coal-fired boilers are presented
in table 7-1. Carbon monoxide emissions are presented for
burners-out-of-service (BOOS), advanced overfire air (AOF2),
low NOx burners (LNB), LNB + AOFA, and reburn. For several of
these applications, the data show increased CO emissions with
retrofit combustion controls. For other units, however, the
CO levels after application of controls were equal to or less
than the initial levels.

For the only reported BOOS application, the CO emissions
increased from 357 parts per million (ppm) to 392-608 ppm.
The corresponding NOy reduction was 30 to 33 percent.

While there were four units mentioned in section 5.1.2.3
that have NOx emission data from retrofit AOFA, only one unit

(Hammond 4) had'corresponding CO emissions data. This unit is

an opposed-wall unit firing bituminous coal. Data are
-presented for different loads prior to and after the retrofit
of an AOFA system. The CO levelg prior to the retrofit of
AOFA range from 20 to 100 ppm over the load rénge. With the
AOFA system, the CO 1evels‘decréased to an average of 15 ppm
across the load range. The NOyx reduction was 10 to 25 percent
across the load range. These data‘indicate.a large decrease
in CO; however, the CO levels were not routinely monitored

7-2
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prior to the retrofit and the decrease may be attributable to

plant opefating personnel taking action to reduce CO emissions
after the retrofit.?

For the one tangential boiler with retrofit LNB (Lansing
Smith 2), the uncontrolled CO emissions were 12 to 15 ppm
while the CO emissions were 10 to 20 ppm with the Low NOy
Concentric Firing System (LNCFS) Level I which incorporates
close-doupled OFA (CCOFA). The corresponding NOy reduction
was 34 to 42 percent across the load range.

For all but two of the wall-fired boilers firing
bituminous coal with LNB, the reported uncontrolled CO
emissions were 100 ppm or less and the controlled CO emissions
were 60 ppm or less. However, for Edgewater 4, the €O
' increased from 16 ppm up to 100 to 170 ppm following retrofit
of LNB. At reduced load, Quindaro 2 reported a CO level of
95 ppm with LNB. The CO level without LNB was not reported.
The largest decrease in CO emissions was at the Hammond 4

unit. However, as previously discussed, the CO level was. not
| routinely measured prior to the retrofit ahd the decrease may
be attributable to plant operating personnel takihg action to
reduce the CO emissions after the retrofit. For the one cell-
fired unit, J.M. Stuart 4, the CO emissions with LNB were
slightly higher than uncontrolled levels at full-load and
intermediate load. The CO emissions were less with LNB at low
load. The corresponding NOy reductions ranged from 47 to
55 percent. '

The Four Corners 4 unit, which'converted from cell firing
to an opposed-wall circular firing configuration, showed a
small increase in CO emissions with LNB when firing
subbituminous coal. The corresponding NOy reduction for Four
Corners 4 ranged from 6 to 57 percent across the load range.
Quindaro 2 was also tested on subbituminous coal and the CO
ranged from 50-70 ppm across the load range.




llllllllllllllllIll-lllllllll.lllllIIIIIIlllIlllllllllllll.lllllll!!llllll

There are four applications of LNB and AOFA on tangential
boilers shown in table 7-1. The LNB represented are the LNCFS
Levels II and III which incorporates separated OFA (SOFA) and
a combination of SOFA and CCOFA, respectively. Three of these
units (Valmont 5, Lansing Smith 2, and Cherokee 4) have the
LNCFS II technology. For these units, the CO emissions for
both uncontrolled and controlled conditions were less than
30 ppm. For the one unit employing LNCFS III technology
(Lansing Smith 2), the CO emissions increased from
uncontrolled levels of 12 to 15 ppm up to contrelled levels of
22 to 45 ppm.

One wall-fired boiler, Sammis 6, was originally a cell-
fired boiler and was retrofitted with LNB + OFA. At full-
load, the CO increased to more than 225 ppm from baseline
levels of 17-25 ppm. At reduced load, the CO also increased
almost two-fold to 55 ppm. The reason for the large in CO at
full-load was not reported. The NOx reduction was
approximately 65 percent. The one roof-fired boiler, |
Arapahoe 4, reported decreases in CO and ranged from 12-38 ppm
with LNB + OFA. The NOyx reduction ranged from 63-71 percent ‘
across the load range.

For the tangentially-fired unit (Hennepin 1) with
retrofit reburn, the CO emissions for both uncontrolled and
controlled conditions were 2 ppm. - Carbon monoxide data from
two cyclone units with reburn are also given in table 7-1.

One unit (Nelson DeWey 2), uses pulverized coal as the reburn
fuel while the other unit (Niles 1), uses natural gas as the
reburn fuel. The CO emissions for the cyclone boilers
increased with the reburn system. For Nelson Dewey 2, the CO
emissions were 60 to 94 ppm without reburn and 80 to 110 ppm

. with reburn. The corresponding NOyx reduction was 36 to
53 percent across the load range. For Niles 1, the CO
emissions increased greatly from 25 to 50 to 312 ppm at_full
load. At lower loads, the CO emissions were still at elevated
levels of 50 to 214 ppm. The corre5pondihg NOy reduction was
36 to 47 percent.
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To summarize, the CO emissions may ihcrease with retrofit
combustion modifications. However, as shown in table 7-1,
with few exceptions, the CO emissions were usually less than
100 ppm with retrofit combustion controls.

7.1.1.2 Unburned Carbon Emissions and Bolle; Efficiency.
Table 7-2 presents UBC and boiler eff1c1ency data from 18 ,
applications of retrofit combustion NOx contreols on coal-fired
boilers._'For Hammond 4, the AQFA resulted in an increase of
UBC two or three times the uncontrolled level. Uncontrolled
levels of UBC at Hammond 4 ranged from 2.3 percent at low load
to 5.2 percent at full load. With the AOFA, the UBC levels
increased to 7.1 percent at low load and 9.6 percent at full
load. The boiler efficiency at low load decreased by
0.7 percentage points and by 0.4 percentage points at full
load. The corresponding NOy reduction with AOFA was
10 percent at low load and 25 percent at full load.

For the tangential unit with LNCFS I technology, Lansing
Smith 2, the UBC levels range from 4.0 to 5.0 perceﬂt without
LNB and 4.0 to 5.3 percent with LNB. The b01ler efficiency }
with LNB decreased sllghtly to 89.6 percent. ‘

The UBC from all of the wall-fired boilers increased w1th
the retrofit of LNB and LNB with OFA. For Edgewater 4, the
unconitrolled UBC levels increased from 2.7 to 3.2 percent to
6.6 to 9.0 percent with the LNB. The corresponding NOx
reduction was 39 to 43 percent across the load range. The

boiler efficiency decreased by 1.3 percentages points at full
load with the LNB.

For Gaston 2, the UBC increased from 5.3 to 6.3 percent
at low load and 7.4 to 10.3 percent at full load. The
corresponding NOy, reduction at Gaston 2 ranged from 43 to
50 percent across the load range. Boiler efficiency data were
not available for this unit. For Hammond 4, the UBRC increased
from 2.3 to 5.8 percent at low load and 5.2 to 8.0 percent at
full load with LNB. Increased UBC levels such as these could
limit the sale of fly ash to cement producers that typically
require UBC levels of 5 percent or less. The corresponding
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NOx reductions were 50 and 45 percent, respectively. The
boiler efficiency at Hammond 4 decreased from 89.5 to

88.1 percent at full load and from 90 to 88.8 percent at low
load. : ' |

At Pleasants 2, the UBC increased from approximately
2.5 to 4.5 percent with a Nox reduction of 53 percent. Boiler
.efficiency data were not available. The UBC level at Four
Corners 4 increased from 0.04 to 0.1 percent due to the LNB
across the load range. The NOy reduction achieved at this
plant ranged from 6 percent at low load to 57 percent at full
load. o o |
The effects on UBC for the tangential units with LNB and
OFA were relatively small. For Valmont 5 with LNCFS II
technology, the UBC at full load decreased from 1.9 to
1.4 percent. At low load, the UBC increased slightly from
0.4 to 1.0 percent. The corresponding NOy reduction was 27 to
52 percent across the load range. The boiler efficiency at
‘high load decreased from 86.6 to 86.4 percent. For
Cherokee 4, the UBC increased from 2.2 to 2.5 percent at full
load and 0.3 to 0.6 percent at low loads. 'The NOx reduction
across the load range was 35 to 46 percent. :
Lansing'Smith 2 reported data for both a LNCFS II and a
LNCFS III retrofit. The UBC level decreased with the LNCFS II
and increased with the LNCFS IIi; however, the increase in UBC
with LNCFS IIT cannot be solely attributed to the LNB
retrofit, but rather may have been caused by different mill
performance levels during the t:¢=_~sting."'5'10 With LNCFS II, the
UBC decreased at full-load from 5.0 to 4.4 percent. At low
load, the UBC decreased from 4.0 to 3.9 percent. The
corresponding NOy reduction was 30 to 39 percent across the
load range. The boiler efficiency decreased by 0.6 to
0.9 percentage points with the LNCFS II technology. With
LNCFS III technology, the UBC increased from 5.0 to
6.0 percent at full-load and from 4.0 to 6.8 percent at low
load. The NOx reduction across the load range was 39 to.
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48 percent. The boiler efficiency decreased by 0.3 to

0.6 percentage points. For the remaining tangential boiler,
Lawrence 5, the UBC decreased from 0.4 to 0.3 percent at
full-load with LNE and OFA. The NOy reduction was 49 percent.

For Sammis 6, originally a cell-fired boiler, the UBC
increased from uncontrolled levels of 1.6-2.6 percent to
8-9.7 percent at full load with LNB + OFA. At reduced load,
the UBC increased only slightly.

There are UBC data for two of the three boilers ‘with
reburn as a retrofit NOyx control technique. For the
tangential boiler with natural gas reburn, Hennepin 1, the UBC
decreased from 2.5 to 1.5 percent at full-load with a NOy
reduction of €3 per&ent. The boiler efficiency decreased from
88.3 to 86.7 percent, primarily due to the increased flue gas
moisture content resulting from the higher hydrogen content of
the natural gas as compared to coal . ¥

For Nelson Dewey 2, the UBC increased at all load ranges
with the pulverized coal reburn system. At full load, the UBC
ranged from 4 to 16 percent without reburn and 15 to -

21 percent with reburn. At low load, the UBC ranged from 11
to 23 percent without reburn and 21 to 28 percent with the
reburn system. The NOy reduction across the load range was 36
to 53 percent. The boiler efficiency at full-load was ‘
relatively unchanged; however, at low load the boiler
efficiency decreased from 88.5 to 87.0 percent. Niles 1 did

. not report UBC levels, but did report a decrease in boiler
efficiency at full-load from 90.7 to 90.1 percent with reburn.
‘ ~7.1.1.3 Summary of Particulate Matter and Total
Hydrocarbon Emigsions. Table 7-3 summarizes the PM and THC
emissions from seven applications of combustion NOy controls
on coal-fired boilers. The PM emissions at Hammond 4
increased from 1.58 gr/scf prior to retrofit, to 1.68 gr/scf
with AOFA and 1.96 gr/scf with LNB. The corresponding NOy
reduction with AOFA was 25 percent and was 45 percent with
LNB. The THC emissions for Hammond 4 were not reported.
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For J.M. Stuart 4, the THC emissions at £full load were
2 ppm without LNB and 1 ppm with LNB. The PM emissions
decreased from 0.067 to 0.031 gr/scf with LNB at full-load and
decreased from 0.04 to 0.023 gr/scf at 75 percent load. The
corresponding NOx reduction was 54 to 55 percent. ‘Lansing
Smith 2 reported THC emissions of less than 10 ppm with the
LNCFS II technology. .

There are no THC data reported for reburn technology;
however, the PM emissions for Nelson Dewey 2'decreased from
0.017 to 0.015 gr/scf at high load and from 0.017 to
0.01 gr/scf at low load. The corresponding NOyx reduction was
36 to 53 perceht'across the load range.

7.1.2 New Applications

Table 7-4 presents a summary of CO, UBC, and PM emissions
from nine new units subject to the subpart Da standards.

These boilers have either LNB or LNB and OFA as original
equipment. The CO emissions for one wall-fired boiler with
LNB were reported to be less than 50 ppm. Three applications
of LNB and OFA on tangential boilers had CO emissions of 39 to
59 ppm. _ _ |

The UBC for new units with LNB was in the range of 1.1 to
6.1 percent on boilers firing bituminous coal which is similar
to the UBC from retrofit applications. The UBC was in the
range of approximately 0.01 to 1 percent for boilers with LNB?
and OFA firing either subbituminous or lignite coal. :

The PM emissions from the new boilers with LNB were less'
than 0.02 1b/MMBtu. The low PM emissions are expected since
these units are subject to the subpart Da standards and would
be equipped with high efficiency particulate control devices. .
The corresponding NOy emissions from the boilers with LNB
range from 0.33 to 0.52 1b/MMBtu with LNB and 0.35 to
0.48 1b/MMBtu with LNB and OFA at full load.
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7.2 EFFECTS FROM COMBUSTION CONTROLS ON NATURAL GAS- AND
OIL-FIRED BOILERS

Carbon monoxide emissions from three natural gas-fired
boilers with operational controls are given in table 7-5.
Data from the two Broadway units show decreases in CO
‘emissions with bias firing. The uncontrolled CO emissions
ranged from 40 to 150 ppm across the load range while
controlled CO emissions ranged from 15 to 50 ppm. The
corresponding NOy emissions were 14 to 30 percent across the
load range. The reduction was attributed to the CO formed in @‘
the fuel-rich lower burners being'completely burned out as it
passed through.thé fuel-lean upper zone.

For the South Bay Unit 1, BOOS increased the CO emissions:
from 200 to 4,000 ppm at full load while bias firing reduced
the CO to less than 50 ppm at full load. Similar increases in
CO were also seen at lower loads with BOOS. The extreme level
of CO with BOOS may be the result of poor air/fuel |
distribution which is exaggerated with B00OS .’

For the flue gas recirculation (FGR) test results, on a
natural gas-fired boiler, the CO increased across the load
range. At full-load, the CO increased from 97 ppm up to
163 ppm with NO4 reductions of approximately 30 percent. At
half-load, the CO increased from 82 ppm up to 112 ppm with NOx
reductions of 35 percent.

For two oil-fired boilers (Port Everglades 3 and 4), the,
CO emissions decreased to less than 3 ppm with LNB. The NOx
reduction for these two boilers was 29 to 35 percent. The
same large decrease in CO emissions were seen at the same
units when firing natural gas.

With the natural gas-firing at the Alamitos 6 unit, the
range of uncontrolled CO emissions were 117 to 156 ppm while
the range of CO emissions were 151 to 220 ppm with retrofit
LNB. The NOy reduction was 42 to 65 percent. The CO

emissions at the oil-fired'unit, Salem Harbor 4, were 73 ppm
with LNB. -

~!
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Five natural gas-fired units reported CO emissions with
retrofit combination controls. For the combination of OFA and
flue gas recirculatipn (FGR) on four boilers, the CO emissions
ranged from 8 to 833 ppm. The CO emissions for these boilers
were higher at full-load conditions than at the low load:
conditions. These boilers did not report the uncontrolled CO
levels. For one application with BOOS, FGR, and OFA, the €O
emissions at full-load decreased from 100 to 90 ppm. At
intermediate load, the CO emissions decreased greatly from
750 to 60 ppm and at low load, CO emissions were reported‘td
be zero. ' |
7.3 EFFECTS FROM FLUE GAS TREATMENT CONTROLS

| This section discusses the possible energy and
environmental impacts from selective noncatalytic.reduCtion
(SNCR) and selective catalytic reduction (SCR) systems on
fossil fuel utility boilers. The SNCR process involves
injecting ammonia (NH3) or urea into high-temperature zones of
the boiler with flue gas temperatures of approximately 930 to
1,040 ©C (1,700 to 1,900 OF). Under these conditions, the
injected reagents can feact with the NOy to produce nitrogen
(N2) and water. However, since the possible chemical paths
leading to the reduction of NOyx involve reaction between
- nitrogen oxide (NO) and nitrogen species, a possible byproduct
of the process is nitrous oxide (N30), a greenhouse gas.“'
| Recent chemical kinetic calculations and pilot-scale
~tests show that N30 can be a product of the SNCR process.
‘These tests indicate that NH; injection yielded lower N30
levels (as a fraction of the NOx reduced) than did the urea
injection. 1Injection of NH3 yielded N0 levels equal to

4 percent of the NO, reduced, while urea injection yielded N30
levels of 7 to 25 percent df the NO4 reduced. ‘?

Unreacted SNCR reagents can be emitted in the form of NH3
siip, The NH3 slip can be emitted to the atmosphere or can be
absorbed onto the fly ash, which could present disposal
problems or prevent the sale of the f£ly ash to cement
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producers that may have upper limits of NHiz-in-ash that they
would accept. In addition, as mentioned in section 5.3.1, the
SO3 generated when firing fuel oil or coal can react with NH3
to form ammonium bisulfate or ammonium sulfate compounds as.
shown in figure 5-35, which can plug and corrode the air
heater. Ammonium bisulfate has also been identified as a
problem in baghouses after a spray dry scrubber. It has been
reported that when the recycled scrubber residue is collected
in the baghouse and returned to thevscrubber absorber vessel
for reinjection, the NH3 slip from the SNCR is being collected
by the ash and concentrated during the recycle process. As a
result, the low temperatures in the baghouse causes. ammonium
bisulfate to form on the bags and increased the pressure drop
which eventually blinds the bags. “

Another potentlal impact is the reaction of NH3 and HC1l
to form solid ammonium chloride: _ 3

NH3 + HCl --> NH4Cl(s) (7-1)

Ammonium chloride forms at temperatures below 110 ©C (250 ©OF),
which with ESP-equipped boilers can occur after the flue gases
leave the stack. The resulting fine particulate may be
observable as a detached plume above the stack. |

There are several energy demands associated with

operation of a SNCR system. Injection of an agueous reagent
into the furnace will result in a loss of energy equal to the
energy required to vaporize the liquid. High energy injection
systems (i.e., systems that use of a separate transport gas to
provide the energy to mix the reagent with the flue gas)
require the use of compressors or blowers to provide transport:
gas. Additional minor energy losses are associated with
pumps, heaters, and control systems, that are part of the SNCR
system. ' |
Selective catalytic reduction involves injecting NH3 into
the boiler flue gases in the presence of a catalyst to reduce
NOy to Ny and water. The catalyst lowers the activation }




TABLE 7-6. SUMMARY OF POTENTIAL IMPACTS DUE TO |
SCR SYSTEMS" ‘ S

Component Potential impact

Air Heater

Ammonium bisulfate fouling

Higher exit gas temperature

Higher leakage’

Higher steam sootblow rate

Higher water wash rate

Additional dampers for on-line wash

Higher mass flow
Provide dilution air
Higher horsepower consumption

Forced Draft Fan

Electrostatic

: Higher inlet gas volume
Precipitator

Higher gas temperature
803 /NH3 conditioning
Higher pressure drop
‘Resistivity affected

Induced Draft
Fan

Flue Gas
Desulfurization

Higher mass and volumetric flow
Higher pressure drop

Volume increase

Higher inlet temperature

Increase in H20 evaporation

S0, concentration dilution

FGD wastewater treatment for NHj
Mist eliminator operation critical

Stack * Increase opacity
Increased temperature
Increased volume

Plant Net plate heat rate increase

Reduced kW
Natural gas may be required (cold- side)
Additional plant complexity

Water Treatment  ® Treat water wash for nitrogen compounds

Fly Ash ¢ Marketability impact
® Odor problems
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or without SNCR. However, it should be noted that for every
mole of urea (NH,CONH3) injected there is a potential to emit
one mole of CO if the CO bound in urea is not fully oxidized
to COp. Typically, most of the CO in urea is oxidized to COs5.
In NH3 based SNCR systems, there is no bound CO; therefore,
there is no potential to emit CO from the NH3 SNCR reagent.

Other impacts from SNCR include the NH3 slip and N0
emissions. The data indicates that the NH; slip for the oil-
~fired units ranged from 5 to 75 ppm. The data from Encina 2
showed an increase of NH3 emissions as the NSR was increased.
The data from this unit also showed an increased-NOx removal
with increasing normalizéd stoichiometric ratio (NSR) up to a
point. At a certain point, any further increase in NSR
results in a very small or no increase in NOy removal.'®

The NH3 slip from five urea-based SNCR applications on
natural gas firing ranged from 6 to 110 ppm across the load
range with NOy reductions of 7 to 50 percent. However, a test
installation of both NH3-vand urea-based SNCR at the Morro
Bay 3 unit resulted in NH3 slip levels of 50 to 110 ppm at NOy
reduction of 30 percent. The N0 emissions ranged from 2 to
14 ppm for two natural gas applications. ) _

7.3.1.2 Fluidized Bed Units. Table 7-8 summarizes CO,
NH3 slip, and THC emissions from eight'FBC boilers with NH3-
based SNCR as original eguipment. The CO emissions ranged
from 8.4 to 110 ppm. Only three FBC units reported NH3 slip
emissions and were 28 ppm or less. All units reported THC
data, five of which were less than 3.7 ppm.
7.3.2 Results for SCR

High NH3 emissions indicate a loss of catalyst activity
-or poor ammonia distribution upstream of the catalyst. A
summary of NH3 data from three pilot and one full-scale SCR
system are given in table 7-9. Two of the pilot units are
coal-fired applications and one is an oil-fired application.
At an NH3-to-NOy ratio of 0.8, the NH3 slip for the three
pilot SCR systems ranged from less than 5 to 20 ppm.
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The NH; emissions from the full-scale SCR system at
Huntington Beach 2 ranged from 10 to 40 ppm. The design
specifications of 10 ppm maximum were only marginally met
during thé initial period (2,000 to 7,000 houré of operation)
‘and then increased with catalyst use. After 17,000 hours of
operation, the NH3 had increased to 40 ppm. While operating
the SCR on oil at Huntington Beach 2, the air preheater had to:
be cleaned more frequently to eliminate the ammonium bisulfate
deposits. After 1,400 hours of operation on oil, there were
heavy deposits of ammonium-iron sulfate in the intermediate
zone of the air preheater. ' This resulted in a 50-percent
increase in pressure drop_.58

This demonstration of SCR at Huntington Beach 2 did not
fully establish catalyst performance and life. However, it ‘
did provide a rough estimate of how often the catalyst must bei
replaced to control deposits in the air preheater at this
facility. The catalyst life on o0il was estimated to be 15,000
hours or 2 years and 30,000 hours or 4 years on natural gas.58

The power requirement for the SCR system at Huntington
Beach 2 was approximately 725 kW. This represents an
auxiliary power consumption of approximately 0.7 percént of
full load generator output and 7 percent of minimum load
generator‘output. The booster fan used to overcome the

pressure drop across the catalyst bed consumed the majority of
this energy.”
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APPENDIX A

- COSTING PROCEDURES

Methodolegy
LNB Applied to Coal-Fired Wall Boilers

- LNB Applied to Coal-Fired Tangential Boilers
LNB + AOFA Applied to Coal-Fired Wall Boilers
LNB + AOFA Applied to Coal-Fired Tangential Boilers
Natural Gas Reburn Applied to Coal-Fired Boilers
Operational Modifications (LEA + BOOS) on Natural Gas-
and Oil-Fired Boilers
LNB Applied to Natural Gas- and Oil-Fired Wall Boilers
LNB (Tangentially-Fired), LNB + AOFA, and Natural Gas

Reburn Applied to Natural Gas- and Oil-Fired Boilers
SNCR

SCR

Combination Controls - LNB + SNCR and LNE + AOFA + SCR
Appendix References
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A.1 METHODOLOGY

The basic methodologies used to determine NOy control cost
and cost effectiveness are provided in this section. The
application of this methodology to individual NOy control
technologies is provided in sections A.2-A.11.
A.l.1 Basi tem Cost

The equation to calculate basic system cost is:

BSC = a * MW" (A.1)
where:
BSC = Basic system cost ($/kW)
a = Constant derived from regression analysis
MW = Boiler size (MW) '
b =

Constant derived from regression analysis

For a 100 MW wall coal-fired boiler retrofitting LNB, "a" and "b"
were determined to be 220 and -0.44 (refer to section 24.2),
respectively, the calculation is:

BSC = 220 * 100"
= $29/kW
A.1.2 Retrofit and Indirect Cost Factors

The equation to calculate a retrofit factor is:

RF = 1 + (RC/BSC) (A.2)
where:
RF = Retrofit factor
RC = Retrofit cost ($/kW)



The equation to calculate an indirect cost factor is:

ICF =1 + [IC/(BSC + RC)]. (A.3)
where:
ICF
IC

Indirect cost factor
Indirect cost ($/kW)

For a 100 MW wall coal-fired boiler retrofitting LNB with a basic
System cost of $29/kW, retrofit costs of $5/kW, and indirect

costs of $9/kw, calculatlons of retrofit and indirect cost
factors are:

RF

1 +($5/kW)/($29/kW)
=1+0.17
1.17

. ICF

1+ ($9/kW) / ($29/kW + $5/kwW)
1+0.26
1.26

I

]

A.1.3 Total Capital Cost ,
The equation to calculate total capital cost is:

TCC ($/KW) = BSC * RF * ICF | (2.4)
where:
TCC = Total capital cost ($/kW)

For a 100 MW wall coal-fired boiler retrofitting LNB with a basic
system cost of $29/kW, an indirect cost factor of 1.3, and a
vretroflt factor of 1.3, the total capital cost is:

TCC ($/kW) = $29/kW % 1.3 * 1.3
= $49/kW

A.1.4 Operating and Maintenance Costs

Operating and maintenance (O&M) costs include fixed and




variable components. Fixed O&M costs are independent of capacity
factor and are estimated by either:

FO&M ($/yr) = a * MW" (A.5)
where:
FO&M = Fixed operation & maintenance costs ($/yx)
a = Constant derived from regression analysis
b = Constant derived from regression analysis
or
FO&M ($/yr) =c +d * MW - (pr.6)
where:
FO&M = Fixed operation & maintenance costs ($/yr)
¢ = Constant derived from regression analysis
d = Constant derived from regression analysis

_ Variable O&M (VO&M) cost equations are specific for each
technology. For more information on these equations, refer to
each technology's section in this appendix.

A.1.5 Busbar Costs _
The equation for calculating busbar costs is:

Busbar |mills| (ACC + FO&M + VO&M) * 1000 mills/$ (p. 7)

Cost kWh AEO




Supporting equations include:

"~ ACC ($/yr) = TCC * MW * CRF * 1000 (A.8)
where: |
ACC

CRF
1000

Annualized capital costs ($/yr)
Capital Recovery Factor
Factor to convert MW to KW

CRF =1 (1 +1)"/[(1 + i) -1] (A.9)

where:

Interest rate (decimal fraction)
Economic life of the equipment (years)

5o
1

Assuming an interest rate of 0.10 and a economic life of
20 years:

CRF

0.10 (1 +0.10)% / [ (1 + 0.20)* - 1]
0.673/5.73 ‘
0.12

With a total capital requirement of $49/kW, a capital
recovery factor of 0.12, annualized capital costs would be:

ACC ($/yr) = $49/KW * 100 MW * 0.12 * 1000 kW/MW
o o= - $588,000/yr

AEO = MW * CF * 8,760, 000 : (A.10)

where:

AEO = Annual electrical output (kWh/yr)

CF = Average Annual Capacity Factor (decimal fraction)
8,780,000 = Factor to convert MW-yr to kWh
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For a 100 MW wall coal-fired boiler retrofitting LNB with
annualized capital costs of $588,000 per year, negligible
O&M costs, and a capacity factor of 0.10, the busbar cost
is: .

mills
kWh

Busbar Cost

- (($588,000/yr + 0) * 1000 mills/$) /(100 MW =

0.10 * 8,760,000)

6.7 mills/kWh

A.1.6 Cost Effectiveness
The equation for calculating cost effectiveness is:

CE ($/ton) =(ACC + FO&M + VO&M) / (Tons NO,) (A.11)

where:

CE
Tons NO:c

Cost effectiveness ($/ton)
Tons NO, removed (tons/yr)

[

Tons NO, = UncNO, +NO, Reduction*HR*MW*CF*0.00438 (A.12)

Uncontrolled NO_ emission rate (1b/MBtu)
NO_ Reduction = NO_ control performance (decimal fraction)

HR = Boiler net heat rate (Btu/kWh)
0.00438 = factor to convert 1lb NOx/kWh to tons Nox/MW-yr

UncNOx

For a 100 MW wall éoal-fired boiler retrofitting LNB with a
baseline NOy level of 0.9 1b/MBtu, a heat rate of 12,500 Btu/kWh,
‘and a NOy reduction of 40 percent, the tons of NOy removed per ‘
-year are:

Tons NO_ = 0.90 1b/MBtu * 0.40 * 12,500 Btu/kWh *

100 MW * 0.40 * 0.00438
788 tons NO_/yr

o



With annualized capital costs of $588 000 per year and negl:.g:.ble
O&M costs, the cost effectiveness is:

CE

it

($588, 000/yr + O) /788 tons NO_ /yr
$745/tons of NO removed




A.2 LNB APPLIED TO COAL-FIRED WALL BOILERS

A.2.1 Data Summary

' The data used to develop cost equations for applying LNB to
wall-fired boilers are shown in Table A-1. Presented in the
table are utility and plant name, boiler size, basic system cost,
retrofit system cost, indirect system cost, total capital cost,
fixed O&M, and variable O&M. Fixed O&M costs were provided for
only one unit, and variable O&M costs were not provided for any
units.

The data for three of the units were obtained from
questionnaire responses and are actual installation costs for
existing retrofit projects.Laﬂ The data for the other seven
units were obtained from the EPA's "Analysis of Low NO, Burner
Technology Costs" report and represent cost estimates for
retrofitting LNB, rather than actual installations.?

A.2.2 Basic System Cost | _

Based on linear regression analysis of the natural
logarithms of basic system cost ($/kW) and boiler size (MW) data;
the cost coefficients for equation A.1 were calculated to be
'a = 220 and b = -0.44. Therefore, the basic system cost
algorithm for LNB is:

BSC ($/kW) = 220 * Mw "*

Figure A-1 presents the plot of the data and the curve calculated
from this equation. ‘

A.2.3 Retrofit Cost

Based on the data in Table A-1, retrofit factors for LNB
range from 1.1 to 1.6. Based on the post construction
installation cost data provided by Plants D and G, a retrofit
factor of 1.15 was used for estimating retrofit costs.’’

Specific cost elements associated with these retrofit factors are
summarized in Section 6.3.1.
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A.2.4 Indirect Cost

Indirect cost factors based on Table A-1 range from 1.20 to
1.35. Based on the completed installation cost data provided by
Plants D and G, an ICF of 1.30 was assumed to be typical.l“
"A.2.5 Fixed O&M Cost

Fixed 0&M costs include operating, maintenance, and
supervisory labor; maintenance materials, and overhead. Because
of the limited number of moving parts and the expected low
operating labor and maintenance requirements associated with LNB,
fixed O&M costs were not included in the cost procedures.

A.2.6 Variable O&M Cost

The major variable O&M expense associated with LNB is any
increase in fuel expenses resulting from a decrease in beoiler
efficiency. The magnitude of this 0O&M expense will vary
dependlng on the extent of the efficiency loss and the price of
fuel. As discussed relative to boiler operatlonal modifications,
such as LEA + BOOS, this expense is estimated at less than
0.2 mills/kWh for most boilers. In most instances, this expense
equates to a cost impact of less than 20 percent cbmpared to the
annualized capital expense associated with LNB. Because of their
small impact for most boilers, variable 0&M costs associated with
LNB were not included in the cost procedures. To include the
impact of efficiency losses on boiler operating expenses, convert
the efficiency loss to an equivalent Btu/kWh and multiply this
value by the fuel price in mills/E;u.




A.3 LNB APPLIED TO COAL-FIRED TANGENTIAL BOILERS

A.3.1 Data Summary
There were no available cost data for‘retrofit;ing LNB alone

on tangentially-fired boilers. As a result, the basic system
cost algorithm was developed based on the relative price
differentials between LNCFS I (LNB with close-coupled overfire
air) and LNCFS III (LNB plus close-coupled and sepérated overfire
air) (see appendix A.5 on LNCFS III). Based on information
pfesented by ABB-Combustion Engineering, the ratio of LNCFS III
basic system cost to LNCFS I basic system cost is 9 to 5.° This
difference corresponds generally to the price differential
between LNB and LNB + AQFA (see appendix A.4 on LNB + AQFA).

. The economy of scale was assumed to be 0.60 for LNCFS I

(corresponding to b = -0.40). This economy of scale is similar
to that for LNB (b = -0.44), and is lower than for LNCFS III

(b = -0.49), which is believed to reflect the lower economy of
scale associated with LNB versus AQOFA. ‘
A.3.2 Basic System Cost .

Using the relative price differential for LNCFS III to
LNCFS I of 1.8, the basic system cost algorithm for LNCFS III
(see appendix A.5) was modified to develop the algorithm for
LNCFS I. _

Dividing the LNCFS III algorithm applied to the 400 MW
reference plant by 1.8 yields the basic system cost for the
400 MW LNCFS I system:

=0.49

BSC ($/kW) = 247 * 400 /1.8
: = §7.3/kW
Then, using b = -0.40, the coefficient "a" was determined:
$7.3/kW = a = 400"
a= 80



From this, the basic system cost algorithm for LNCFS I is:’

BSC ($/kW) = 80 % Mw ™"

A.3.3 Retrofit Cost ,

The retrofit and factor for LNCFS I was assumed to be 1. 3
the same as for LNCFS III (see appendix A.5) .
A.3.4 - Indirect Cost :

The indirect cost factor for LNCFS I was assumed to be 1.3,
the same as for LNCFS III.
a.3.5 Fixed O&M Cost

Fixed O&M costs include operating, malntenance, and

superv1sory labor; maintenance materials, and overhead. Because
of the limited number of moving parts and the expected low
operating labor and maintenance requlrements associated with LNB,
fixed O&M costs were not included in the cost procedures.
A.3.6 Variable 0&M Cost

The major variable OsM expense associated with LNB is any
increase in fuel expenses resulting from a decrease in boiler
efficiency. The magnitude of this O&M expense will vary
depending on the extent of the efficiency loss and the price of
fuel. As discussed relative to boiler operational modifications,
such as LEA + BOOS, this expense is estimated at less than
0.2 mills/kWh for most boilers. In most instances, this expense
equates to a cost impact of less than 20 percent compared to the
annualized capital expense associated with LNB. Because of their
small impact for most boilers, variable O&M costs associated w1th
LNB were not included in the cost pbrocedures. To include the
impact of efficiency losses on boiler operating expenses, convert
‘the efficiency loss to an equivalent Btu/kWh and multiply thlS
value by the fuel price in mills/Btu.




A.4 LNB + AOFA APPLIED TO COAL-FIRED WALL BOILERS

- A.4.1 Data Summary _ -

There are limited detailed data available on LNB + AOFA for
wall-fired boilers. Therefore, the basic system cost algorithm |
for LNB + AOFA was based on relative price differentials between
LNB and LNB + AQFA.

Information from Southern Company Services on installed cost
estimates for a 100 MW boiler and a 500 MW boiler indicates
ratios of LNB + AOFA to LNB of 2.0 for both boiler sizes.®
Information in the EPA's "Ahalysis of Low NOyx Burner Technology
Costs" report presents ratios of total installed costs ranging
from 1.6 to 1.88.> Based on review of these data, a ratio of
1.75 for LNB + AOFA to LNB was assumed. |

Because of the expected economies of scale for windbox and
air haﬁdling systems compared to LNB systems, the scaling factor
for the addition of AOFA is expected to be higher than for LNB
(corresponding to a more negative "b" coefficient in the basic
system cost egquation). For LNCFS III, b = -0.49, and Eor LNB,

b = -0.44. Based on review of LNCFS III and LNB + AOFA data in

the EPA cost report, "b" was assumed to equal -0.5 for
LNB + AOFA.’

A.4.2 Bagic System Cost :

Using the 400 MW reference plant and the LNB cost algorithm
for basic¢ system cost multiplied by 1.75, the reference plant
cost for LNB + AOFA was determined:

BSC ($/KW) = 220 = MW " %= 1,75
= 220 400" % 1.75
= $27.6/kW
Then, using b = -0.5, the coefficient "a" was determined:
$27.6/kW = a * 400"
a = 552

A-13



From this, the basic system cost algorithm for LNB + AOFA is:

BSC ($/kW) = 552 * MWw™°'5

A.4.3 BetrofitICost :

The retrofit factor for LNB + AOFA was assumed to be 1.3,
‘the same as for LNCFS III.
A.4.4 Indirect Cost

The indirect cost factor for LNB + AOFA was assumed to be
1.3, the same as for LNB only and fof_LNCFS III.
A.4.5 Fixed O&M -

Fixed O&M costs include operating, maintenance, and
supervisory labor; maintenance materials, and overhead. Because
of the limited number of moving parts and the expected low
operating labor and maintenance requirements associated with LNB
+ AOFA, fixed O&M costs were not included in the cost procedures.
A.4.6 Variable O&M Cost p

The major variable O&M expense associated with LNB + AOFA is
any increase in fuel expenses resulting from a decrease in boiler
efficiency. The magnitude of this O&M expense will vary
depending on the extent of the efficiency loss and the price of
fuel. As discussed relative to boiler operational modifications,
such as LEA + BOOS, this expense is estimated at less than
0.2 mills/kWh for most boilers. In most instances, this expense
eQuates.to a cost impact of less than 20 percent compared to the
annualized capital expense associated with LNB + AOFA. Because
of their small impact for most boilers, variable 0&M costs
associated with LNB + AOFA were not included in the cost
‘procedures. To include the impact of efficiency losses on boiler
operating eéxpenses, convert the efficiency loss to an equivalent
Btu/kWh and multiply this value by the fuel price in mills/Btu.

A-14




15

A.5 INB + AOFA APPLIED TO COAL-FIRED TANGENTIAL BOILERS

A.5.1 Data Summary

The cost data for tangentially-fired boilers retrofitting
LNCFS III are shown in Table A-2. Presented in the table are
utility and plant name, boiler.size, basic systém cost, retrofit
cost, indirect system cost, total capital cost, fixed O&M, and
variable O&M. Fixed and variable O&M'costs were not provided for
any of the units. These cost data are from the EPA's "Analysis
of Low NOy Burner Technology Costs."’

A.5.2 Basic System Cost

A linear regression analysis of the natural logarithms of
the basic system cost ($/kW) and boiler size (MW) data was
performed, and the cost coefficients were calculated to be
a = 247 and b = -0.49. Therefore, the basic system cost
algorithm for LNCFS III is:

BSC ($/kW) = 247 * MW"

' Figure A-2 presents the plot of the data and the curve calculated
from this egquation. '
A.5.3 Retrofit Cost

The retroflt factors for LNCFS III ranged from 1.14 to 1 65,
with a mean of approximately 1.30.
A.5.4 Indirect Cost

Indirect cost factors ranged from 1.20 to 1.45. For the

cost procedures, an indirect cost factor of 1.30 was assumed.
A.5.5 Fixed O&M Cost

Fixed O&M costs include operating, maintenance, and
supervisory labor; maintenance materials, and overhead. Because
of the limited number of moving parts and the expected low
operatlng labor and maintenance requlrements associated with LNB
+ AOFA, fixed O&M costs were not included in the cost procedures.
A.5.6 Variable O&M Cost ‘

The major variable O&M expense associated with LNB + AQFA is
any increase in fuel expenses resulting from a decrease in boiler
efficiency.” The magnitude of this O&M expense will vary |

A-15
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depending on the extent of the efficiency loss and the price of
fuel. As discussed relative to beiler operational modifications,
such as LEA + BOOS, this expense is estimated at_less‘than

0.2 mills/kWh for most boilers. In most instances, this expense
equates to.a cost impact of less than 20 percent compared to the
annualized capital expense associated with LNB + AOFA. Because.
of their small impact for most boilers, varlable 0&M costs
associated with LNB + AQFA were not 1ncluded in the cost
procedures. To include the impact of efficiency losses on b011er
operating expenses, convert the efficiency loss to an equivalent
Btu/kWh and multiply this value by the fuel price in mills/Btu.

[




A.6 NATURAL GAS REBURN APPLIED TO COAL-FIRED BOILERS

A.6.1  Data Summary

Limited cost data on natural gas reburn for coal-fired
boilers were obtained from vendor and utility questionnaire
responses. These data are presented in Table A-3. As shown, the
total capital cost follow no obvious trend. Therefore, the
reburn costs were based upon the 172 MW unit (Cherokee 3), whose
size is more representative of most utility boilers.’

A.6.2 - Basic System Cost
The economy of scale was assumed to be 0.6 for the reburn
basic system cost algorithm (corresponding to b = -0.4). Using

‘the estimated basic system cost of the 172 MW unit to solve for
"a", the reburn basic system cost algorithm is:

BSC ($/KW) = 229 * Mw ™"

A.6.3 Retrofit Cost
The vendor questionnaires indicated that retrofit of natural
gas reburn would cost 10 to 20 percent more than a reburn system
applied to a new boiler. From this, the retrofit factor was
7
assumed to be 1.15.

A.6.4 Indirect Cost

' An indirect cost factor of 1.40 was used for the cost
analysis.

A.6.5 MM

Fixed O&M costs include operating, maintenance, and

supervisory labor; maintenance materials, and overhead. Because
" of the limited number of moving parts and the expected low :

operating‘labor and maintenance requirements associated with NGR,
fixed O&M costs were not included in the cost procedures.
A.6.6 Varisble OsM Cost

Variable O&M costs were the total of the additional fuel
costs, due to the higher price of natural gas versus coal, and
utility savings on SO credits, due to lower SO, emission levelé
when using natural gas reburn on a coal-fired boiler. The
additional fuel costs were calculated using the fuel prices

A-19
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listed in Table 6-3. The S0; emissions are calculated using
typical sulfur and calorific content of coal from Chapter 3
(Table 3-2) and an average AP-42 emission factor for bituminous

and subbituminous coal.’ The SO, credit was assumed to be

$500/ton of SOZ.10 The equation to determine savings from SO5

credits is:

EF * Sulfur * MW * HR * CF * Credit * Reburn * 2.19

where:

EF =  AP- 42 S0 Emission Factor (1b SOz/ton coal *
sulfur % of coal)

Sulfur = Sulfur % of coal

Credit = S0> credit ($/ton)

Reburn = Heat input of reburn fuel fired divided by
total boiler heat input (decimal £fraction)

2.19 = Conversion factor




A.7 OPERATIONAL MODIFICATIONS (LEA + BOOS) ON NATURAL GAS- AND
OIL-FIRED BOILERS ' '

A.7.1 Qverview

Cost estimates for LEA + BOOS were prepared for wall- and
tangentially-fired boilers. The LEA + BOOS cost analysis was
used as an example of operational modifications. |
A.7.2 Eagic'Systgm Cost

The direct capital costs required for LEA + BOOS are the _
cost for conducting a 4-week emissions and boiler efficiency test
to determine optimum fuel-air settings. The cost for the 4-week
~ testing period was estimated at $75,000. Testing costs were not
assumed to be dependent upon boiler size. |
A.7.3 Retrofit Cost

A retrofit factor of 1.0 was used in the cost analysis.
A.7.4 Indirect Cost _

Indirect costs were estimated at 25 percent of the direct
costs. Therefore, the indirect cost factor was assumed to be
1.25. - '

A.7.5 Fixed O&M Cost

Fixed O&M costs include operating, maintenance, and
superviser lébor; maintenance materials, and overhead. . Because
of the limited number of moving parts and the expected low
operating labor and maintenance requirements associated with LEA
+ BOOS, fixed O&M costs were not included in the cost procedures.
A.7.6 Variable O&M Cost
‘ The only variable O&M cost impact examined for BOOS was
reduced boiler efficiency. The variable O&M cost caused from the
efficiency loss was calculated using the following equation:

VOSM ($/yr) + MW + HR * CF % . rfl08S ', niel Cost * 8.76

1-Effloss

where:
'Mw, HR, and CR are as previously defined

Effloss = efficiency loss of boiler (decimal fraction)

A-22




Fuel Cost

fuel cbst ($/MMBtu)

8.76 = conversion factor _
A 0.3 percent average decrease in boiler efficiency was used for
the cost analysis.11 Other variable O&M costs were assumed to be

negligible.
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A.8 LNE APPLIED TO NATURAL GAS- AND OIL-FIRED WALL BOiLERS

A.8.1 Data Summary ‘ _
Capital cost data for LNB applied to natural gas and oil
wall-fired boilers were limited to the three points shown in
Table A-4. All three points reflect total capital cost. 'Two of
the data points are pre-construction estimates.!’ The third data

point is from a questlonnalre response and reflects actual
installed costs.

A.8.2 Basic System Cost

To estimate the basic system cost for natural gas- and oil-
fired LNB, the total capital cost data in Table A-4 were compared
to the estimated total capital costs for coal-fired wall boilers
(described in Section A.2). This comparison, shown in
Figure A-3, suggests that the total capltal costs for natural
gas- and oil-fired boilers are comparable to the total capital
costs for coal-fired boilers.

Analysis of this conclusion (i.e., that costs for natural
gas- and 011 fired LNB are comparable to those for coal-fired
LNB) suggests that (1) the major costs associated with LNB
technology are associated with development, testing, engineering,
and marketing activities, and (2) differences in the cost of
natural gas- and oil-fired LNB compared to coal-fired LNBE caused
by differences in physical design or fabrication requirements are.
small. Based on this conclusion and thevlimited cost data for
LNB designed for natural gas and oil flrlng, the cost procedures
developed for coal-fired LNB were used to estimate basic system
costs for LNB applied to natural gas- and oil-fired boilers.
A.8.3 = Retrofit Cost _

There were no specific data on retrofit costs associated
with installing LNB on natural gas- and oil-fired boilers.
Therefore, the retrofit factors were assumed to be the same as
those used for coal-fired boilers.

A.8.4 Inglrect Cost
- Indirect costs were estimated at 25 percent of direct costs.
Therefore, an indirect cost factor of 1.25 was assumed.

A-24
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A.8.5 Fixed O&M

Fixed O&M costs_include operating, maintenance, and
supervisor labor; maintenance materials, and overhead. Because
of the'limitéd-number of moving parts and the expected low
operating labor and maintenance requirements associated with LNB,
fixed O&M costs were not included in the cost procedures.
A.8.6  Variable 0&M |

The major variable O&M expense associated with LNB is any
increase in fuel expenses resulting from a decrease in boiler
efficiency. The magnitude of this O&M expense will vary
depending on the extent of the efficiency loss and the price of
fuel. As discussed relative to boiler operational modifications,
such as LEA + BOOS, this expense is éstimated at less than
0.2 mills/kwWwh for most boilers. In most instances, this expense
equates to a cost impact of less than 20 percent compared to the
annualized capital expense associated with LNB. Because of their
small impact for most boilers, variable O&M costs associated with
LNB were not included in the cost procedures. To include the
impact of efficienéy losses on boiler operating expenses, convert
the efficiency los to an egquivalent Btu/kWh and multlply this
value by the fuel price in mills/Btu. '
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A.9 LNB (TANGENTIALLY*FIRED), LNB + AOFA, AND NATURAL GAS REBURN _
APPLIED TO NATURAL GAS- AND OIL-FIRED BOILERS |

There were no cost data available for applying LNB to
natural gas- and oil-fired tangential boilers or LNB + AOFA and
natural gas reburn to natural gas- and oil-fired wall and
tangential b’oilez_‘s.1 Based on the apparent similarity in cost

- for wall-fired LNB firing natural gas, oil, and coal (see Section
A.8), the cost of applying tangentially-fired LNB, LNB + AOFA, '
and natural gas reburn to natural gas- and oil-fired boilers were
used to estimate the cost for coal-fired boilers. Refer to the
appropriate appehdix section for coal-fired boilers for specific
cost procedures and information.

'For the application of natural gas reburn to oil-fired _
boilers, the SO; emissions are calculated using a typical sulfur

and calorific content of oil from Chapter 3 (Table 3-4) and an
AP-42 emission factor.
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A.10 SNCR

A.10.1 Data Summary

To estimate the cost of urea-based SNCR systéms, a.detailed‘
engineering model was used. The detailed model was developed by
Radian based upon information on basic system and 1nd1rect

13,14
costs and on system operating parameters

A total of 15 case studies were evaluated: 100 MW, 300 MW,
and 600 MW for five boiler types (wall, tangential, and cyclone
coal-fired boilers, plus wall and tangential natural gas- and
"o0il-fired boilers). . The results for these case studies were used
"to develop simplified costing algorithms for use in this studyﬂ

For the case studies, the SNCR system operated at an N/NO
ratio of 1.0, and contained two levels of wall injectors and one
convective pass level of injectors. No enhancer was assumed to
be injected with the urea solution. Cost and material rates were
equal to those listed in Table 6-2. |
A.10.2 Basic System Cost

Basic system cost categories included the urea storage
system, the reagent injection system, air compressors, and
installation costs. The algorithm coefficients were derived by
linear regression of cost data from the 15 case studies using the
methodology described in section A.l1. The coefficients were
nearly identical for the three ¢oa1-fired boiler types. |
Therefore, the following algorithm was used to characterize the
costs for all three:

BSC ($/kW) = 32 % Mw 2

Similarly, the cost coefficients were nearly identical for both

gas- and oil-fired boiler types and the following algorithm was
used to characterize costs for both:

BSC ($/kW) = 31 » MW 25




2.10.3 Retrofit Cost

There were no retrofit cost data available for the analysis.
A retrofit factor of 1.0 was assumed based upon the assumption
‘that the retrofit difficulty of SNCR is small,
‘A.10.4 Indirect Cost

The SNCR model calculated two categories of indirect costs:
a contingency factor and engineering support costs. The
engineering cost is determined as a function of the unit size,
whereas the contingency is calculated as a percentage of direct
capital costs. The indirect costs typically ranged between 20 to
30 percent of the total direct costs. An ovérall indirect cost
factor of 1.3 was assumed for the calculation of total capital
cost. | _ ' '
A.10.5 = Fixed O&M Cost

Fixed O&M costs for SNCR include operating labor,
superVision, maintenance labor, maintenance materials, and
overhead. Fixed O&M costs were estimated for each of the five
boiler types using the SNCR model, and found to be independent of
. fuel and bqiler firing type. Therefore, the following equation,
determined by the methods described in section A.1, estimated
fixed O&M costs for all five types of boilers: |

FOSM ($/yr) = 86,000 * MW *%

A.10.6 Varigble O&M Cost _

Variable O&M costs for SNCR include urea, energy penalty
_ assogiated with vaporization of the urea solution and mixing air,
'~dilution water, and electricity. The urea cost was determined
from the following equation: '

-

Urea Cost ($/yr) = UncNO_x HR * Cost * NSR * 6.52 x 10 * MW * 8760 * CF
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where:
Unc NO, = Uncontrolled NO_level of the boiler (1b/MBtu)
HR = Heat rate of the boiler (Btu/kW-hr)
Cost = Purchase price of the urea solution (§/ton)
NSR = Normalized Stoichiometric Ratio (N/NO)

Based upon the 15 case studies, the other variable O&M costs were
estimated to be 11 percent of the yearly urea cost.

>
1
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A.11 SCR

A.11.1 Data Summary
"The SCR cost estimates are based upon‘the SCR module in

Version 4.0 of EPA's IAPCS™, publised SCR cost information”'18

N
19,20

and utility questionnaire responses ' The existing IAPCS

algorithms were used to estimate ammonia hahdling and storage,
flue gas handling, air heater modifications, and catalyst costs.
" However, the following changes were made to the algorithms:

. IAPCS reactor housing costs were reduced by 71 percent
[based on the ratio of reagtor housing cost estimates.

from published information ($3.56 million) and from
IAPCS ($12.5 million)].™ |

Process control equipment costs were reduced to
$350,000 (versus $1,840,000 in IAPCS).

. Fan costs were excluded for new boilers. For
retrofits, fan costs are boiler specific and depend on

whether fan modifications are possible or a new fan is
needed. '

b ‘A catalyst cost of $400/ft3 was used for all fuel
types. : _ :

. A space velocity of 14,000/hr was used for gas-fired
boilers.

A flue gas flow rate of approximately 100 Nft3/kWh was
used for oil and gas, and 126 Nft3/kWh for coal.

. A 45 percent indirect cost factor was applied to
process capital (10 percent for engineering overhead,
10 percent for general facilities, 15 percent project
contingency, and 10 percent process contingency).

A 15-25 percent indirect cost factor was applied to the
catalyst cost (15 percent for gas, 20 percent for oil,
and 25 percent for coal. This factor includes

10 percent for project contingency and the balance for
- process contingency).

. A cost of $160/£t3 of catalyst was added to cover
‘installation and disposal of replacement catalyst.
A total of 15 case studies were developed using the modified
IAPCS output. These case studies were for boilers of 100 MW, 300
MW, and 600 MW, for each of five boiler types (wall, tangential,
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and cyclone coal-fired boilers, plus wall and tangential natural
gas- and oil-fired boilers). The results from these case studles
were then used to devélop simplified costing algorithms for use
in this study. ' _

- The IAPCS algorithms are based on hot-side SCR tedhnology
(i.e., the catalyst is located between the boiler economizer and
air preheater) . For the case studies, catalyst life was assumed
to be three years for coal-fired boilers and six years for
natural gas- and oil-fired boilers. A NO, reduction of
85 percent was assumed for all case studies. At this NO,
reduction, .catalyst space velocities were assumed to be 2,500/hr
for coal-fired boilers and 5,000/hr for oil-fired boilers, and
14,000/hr for natural gaé~fired boilers.

A.l11.2 Basic stem Cost ' _
Basic system cost for SCR includes both process capital and
the initial catalyst charge:
BSC ($/kW) = process capital + initial catalyst charge.
Process capital includes NH; handling, storage, and

injection; catalyst reactor houéing; flue gas handling; air
preheater modifications; and process control. The cost
coefficients for process capital were derived by linear
regressioﬁ of cost data from the 15 case studies. The
coefficients for each of the five boiler types are:

Fuel Boiler Type a b “
Coal Wall 174 -0.30

' Tangential 165 -0.30 “

Cyclone : 196 -0.31 “

0il/Gas Wall 165 -0.324 |
Tangential 156 © -0.329

The equatlon for estimating the cost of the initial catalysn
charge is based on IAPCS documentatlon

Catalyst ($/kW) = Flow * Cat$ / {SV: * [1n(0.20) / ln(1- NO'Red)]}
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where:

Flow = fuel-specific flue gas flowrate (ft°®/kwh)

| (126 £t’/kWh for coal, 100 ft®/kWh for gas and oil)
Cat$ = catalyst cost ($/ft°)

SV, = fuel-specific space velocity

(2,500/hr for coal, 5,000/hr for oil, and 14, OOO/hr for gas)

IK%Redf target NO, reduction (1n decimal fractlon form)

H

Total capital cost is calculated by multiplying the process _
capital by the retrofit and process capital indirect cost factor,
multiplying the initial catalyst charge by the catalyst indirect
cost factor, and addlng these two products together.

A.11.3 Retrgflt Cost

Retrofit cost factors for SCR were obtained Erom an EPA
analysis of SCR costs.? This reference estimates retrofit
factors of 1.02 (low), 1‘34 (moderate), and 1.52 (hlgh) based on
data obtained from hot- side SCR retrofits on German utility
boilers. For cost estimating purposes, the retroflt factor was
assumed to be 1.34. '
A.11.4 Indirect Costs

~ Separate indirect cost factors were used for the process
capital and the catalyst cost. Indirect costs for the process
capital were estimated at 45 percent. Indirect costs for
catalysts costs were estimated at 25 percent for coal-fired
bollers, 20 percent for 011 fired bo;lers, and 15 percent for
gas- -fired boilers.
A.11.5. Fixed O&M Cost _

Fixed O&M costs for SCR include operating labor,
supervision, maintenance labor, maintenance materials, and
overhead. Fixed O&M costs in $/yr were estimated for each of the
five boiler types using IAPCS.'® The resulting data were then
used to develop a cost algorithm as discussed in section A.1l.

The results of this analysis are:
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Fuel ' Boiler Type c 4
Coal wall 284,600 5,141
Tangential 276,400 5,103
; ‘ Cyeclone 305,100 5,243
~ 0il/Gas : Wall 264,800 . 3,260
Tangential 256,600 3,219
‘A.11.6 Variable O&M Cost

Variable OsM costs for . SCR include catalyst feplacement,
ammonia, electricity, steam, and catalyst disposal. Cost for
these elements were derived from IAPCS.' The equation used in |
the ACT study for estimating catalyst replacement cost in $/kw-yr:
was based on the case studies and the IAPCS documentation: ‘
'~ Flow * (Cat$ + 160) / {SV¢ * [1n(0.20) / 1n(1-NOsRed)]} / CL
where: '

Flow, Cat$, SV, and NO.Red are as préviously defined

160 = cost to cover installation disposal of replacement
catalyst ($/ft°)
‘CL = catalyst life (years).

'The equation for estimating costs for the other four variable O&M

components in $/kW-yr was also based on the case study data and
the IAPCS documentation:

[1.88 + (4.3 * UncNOy * NORed)] * CF
where:
NO,Red is as previously defined
UncNO, = uncontrolled NO, (1lb/MBtu)

CF = capacity factor (in decimal fraction form).
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A.12 COMBINATION CONTROLS - LNB + SNCR AND LNB + AOFA + SCR

~ The costs of the combined control technologies LNB + SNCR
and LNB + AOFA + SCR applied to coal-fired and natural gas- and
oil-fired wall and tangential boilers were determined by
combining individual cost algorithmé for each technology. For
example, the individual capital, variable P&M, and fixed O&M cost
algorithms for LNB were combined with those for SNCR. Similarly,
the LNB + AOFA cost algorithms were combined with the SCR cost

algorithms. Refer to each individual section for the specific
cost information. '
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