

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference maybe from a previous version of the section and no longer cited. The primary source should always be checked.

AP42 Section:	1.1
Reference:	39
Title:	<p>Field Chemical Emissions Monitoring Project: Site 21 Emissions Monitoring. Radian Corporation, Austin, Texas.</p> <p>August, 1993. (EPRI Report)</p>

EPRI

Rej 16

Preliminary Draft

**FIELD CHEMICAL EMISSIONS
MONITORING PROJECT:
SITE 21 EMISSIONS MONITORING**

EPRI Project RP3177-9

August 1993

Prepared For:

**Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, California 94304**

**Prepared by:
Radian Corporation
P.O. Box 201088
8501 North Mopac Boulevard
Austin, Texas 78759**

Electric Power
Research Institute

Leadership in Science and Technology

May 14, 1993

Mr. William H. Maxwell, P.E. (MD13)
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711

Dear Mr. Maxwell:

In response to the Clean Air Act Amendments of 1990, the Electric Power Research Institute (EPRI) initiated the PISCES (Power Plant Integrated Systems: Chemical Emissions Studies) program to better characterize the source, distribution, and fate of trace elements from utility fossil-fuel-fired power plants. As part of the PISCES program, the Field Chemical Emissions Monitoring (FCEM) program has sampled extensively at a number of utility sites, encompassing a range of fuels, boiler configurations, and particulate, SO₂, and NO_x control technologies. EPRI continues to actively pursue additional FCEM sampling programs and add to the more than 20 sites already completed or currently planned.

This site report presents a preliminary summary of data gathered during a sampling program conducted at one of the FCEM sampling programs - Site 21. Site 21 consists of a pilot-scale electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) system. The flue gas for the pilot unit is provided by an adjacent power plant boiler which burns a bituminous coal. The primary objective in the Site 21 sampling and analytical program was to quantify the various components of variance in the measurement of trace chemical species. In addition to the replicate sample trains typically conducted at previous PISCES FCEM programs, duplicate analyses and duplicate (simultaneous) sample trains were also conducted at Site 21. This enabled the variance due to sampling, analytical, and process conditions to be estimated. The target analytes was a select group of the trace metals, anions, and the polyaromatic hydrocarbons at the FGD outlet. The complete PISCES FCEM sampling protocol was not conducted. The volatile organic compounds, the aldehydes, and some of the trace metals were not measured. A complete material balance was not an objective, thus some solid samples were not taken.

It should be noted that the results presented in this report are considered PRELIMINARY. The results are believed to be essentially correct except as noted. As additional data from other sites are collected and evaluated, however, EPRI may decide to conduct additional verification tests at this site. If

this is done, the new data will be made available to the Environmental Protection Agency (EPA).

The primary objective of this report is to transmit the preliminary results from Site 21 to the EPA for use in evaluating select trace chemical emissions from fossil-fuel-fired steam generating plants. In addition to the raw data in the Appendix, the report discusses the data quality, identifies suspect data, and offers possible explanations for the questionable data. Because some of the discussion focuses upon the suspect data, please keep in mind that most of the data meet the standards of quality established for this study. This report does not compare the results from Site 21 with the results from previous utility sites. Generic conclusions and recommendations were not drawn concerning the effectiveness of an electrostatic precipitator or wet FGD system as potential control technologies for trace elements; however, removal efficiencies were calculated where possible. Nor does this site report attempt to address the environmental and health risk impacts associated with the trace chemical emissions.

EPRI hopes that this site report is of assistance to the EPA in evaluating utility trace chemical emissions as well as the associated health risk impacts.

Sincerely,

Paul Chu
Manager, Toxic Substances Control
Environment Division

LIST OF ILLUSTRATIONS

Figure		Page
2-1	FCEM Site 21 - Pilot ESP and Wet FGD Process Flow Diagram	2-2
3-1	Sample Schedule	3-2
5-1	FCEM Site 21 - Analysis of Variance Experimental Design, Absorber Outlet Gas	5-4
5-2	FCEM Site 21 - Semivolatile Organic Compounds Coefficient of Variation	5-5
5-3	FCEM Site 21 - Semivolatile Organic Compounds Percentages of Variability	5-6
5-4	FCEM Site 21 - Solid-Phase Metals Coefficient of Variation (GFAAS & ICP-AES)	5-8
5-5	FCEM Site 21 - Solid-Phase Metals Percentages of Variability (GFAAS & ICP-AES)	5-10
5-6	FCEM Site 21 - Solid-Phase Metals Coefficient of Variation (ICP-MS) ..	5-11
5-7	FCEM Site 21 - Solid-Phase Metals Percentages of Variability (ICP-MS) ..	5-12
5-8	FCEM Site 21 - Solid-Phase Anions Coefficient of Variation (IC)	5-14
5-9	FCEM Site 21 - Solid-Phase Anions Percentages of Variability (IC)	5-15
5-10	FCEM Site 21 - Vapor-Phase Metals Coefficient of Variation (GFAAS & ICP-AES)	5-16
5-11	FCEM Site 21 - Vapor-Phase Metals Percentages of Variability (GFAAS & ICP-AES)	5-17
5-12	FCEM Site 21 - Vapor-Phase Metals Coefficient of Variation (ICP-MS) ..	5-18

Figure	Page
5-13 FCEM Site 21 - Vapor-Phase Metals Percentages of Variability (ICP-MS)	5-19
5-14 FCEM Site 21 - Vapor-Phase Metals Coefficient of Variation (Concentrated GFAAS & ICP-AES)	5-20
5-15 FCEM Site 21 - Vapor-Phase Metals Percentages of Variability (Concentrated GFAAS & ICP-AES)	5-21
5-16 FCEM Site 21 - Vapor-Phase Anions Coefficient of Variation (IC)	5-23
5-17 FCEM Site 21 - Vapor-Phase Anions Percentages of Variability (IC)	5-24
5-18 Relationship Between 95% CI and Number of Samples	5-25
7-1 Combustion Calculations Spreadsheet	7-2

LIST OF TABLES

Table	Page
1-1 FCEM Substances	1-3
2-1 Process Summary	2-3
2-2 Absorber Slurry Chemical Composition	2-4
2-3 Absorber Liquor Trace Species	2-5
3-1 Coal Composition	3-5
3-2 ESP Inlet Solid-Phase Composition	3-7
3-3 ESP Inlet Vapor-Phase Composition	3-8
3-4 ESP Inlet Combined Composition	3-9
3-5 Stack Gas Solid-Phase Composition	3-10
3-6 Stack Gas Vapor-Phase Composition	3-11
3-7 Stack Gas Combined Composition	3-12
3-8 Stack Semivolatile Organic Compounds	3-14
3-9 Stack Emission Factors	3-15
3-10 Removal Efficiencies for the ESP/FGD System	3-17
4-1 Types of Quality Control Samples	4-4
4-2 Types of Quality Control Data Reported	4-5
4-3 Summary of Precision and Accuracy Estimates	4-7

Table	Page
4-4 Comparison of ICP-MS to Standard Methods for Stack Gas Solid Phase	4-18
4-5 Comparison of ICP-MS and Impinger Solution Concentration to Standard Methods for Stack Gas Vapor Phase	4-20
5-1 ESP Inlet Combined Coefficient of Variation	5-2
5-2 Stack Gas Combined Metals Phase Distribution	5-27
6-1 Mercury Speciation Results	6-3
6-2 Mercury Material Balances	6-5

CONTENTS

Section	Page
1 Introduction	1-1
Test Objectives	1-1
Data Quality	1-2
Variability Components and Alternate Analytical Methods	1-4
Report Organization	1-5
2 Site Description	2-1
Facility Information	2-1
Sampling Locations	2-6
3 Results	3-1
Sampling Schedule	3-1
Data Treatment	3-1
Coal	3-4
Electrostatic Precipitator Inlet Gas	3-6
Stack Gas	3-6
System Control Efficiency Performance	3-13
4 Data Evaluation	4-1
Evaluation of Measurement Data Quality	4-1
Process Operations	4-1
Sampling	4-1
Particulate Loading	4-2
Analytical Quality Control Results	4-3
Analytical QA/QC	4-3
Metals	4-16
PAHs	4-16
Anions	4-17
Comparison of Analytical Methods	4-17
5 Data Precision and Analysis of Variance	5-1
ESP Inlet Data	5-1
Absorber Outlet Gas	5-3
Semivolatile Organic Compounds	5-3
Solid-Phase Metals	5-7

Section	Page
Standard Analytical Procedures	5-7
ICP-MS Results	5-9
Cross-Site Comparison	5-9
Solid-Phase Anions	5-13
Vapor-Phase Metals	5-13
Standard Analytical Procedures	5-13
ICP-MS Results	5-13
Concentrated Impinger Results	5-13
Vapor-Phase Anions	5-22
Overall Assessment of Precision	5-22
ESP Inlet	5-26
Absorber Outlet	5-26
6 Mercury Speciation and Material Balance	6-1
Sampling and Analytical Procedures	6-1
Results of Speciation Measurements	6-2
Material Balance Results	6-2
7 Example Calculations	7-1
Stream Flow Rates	7-1
Unit Energy Calculation	7-1
8 Glossary	8-1
Appendix A: Sampling and Analytical Summary	A-1
Appendix B: Analytical Data - FCEM Substances	B-1
Appendix C: Analytical Data - Other Substances	C-1
Appendix D: Source Sampling Summaries	D-1
Appendix E: Error Propagation and Uncertainty Calculations	E-1
Appendix F: Quality Assurance/Quality Control	F-1
Appendix G: Selected Blank Results	G-1
Appendix H: ANOVA	H-1
Appendix I: Process Data Plots	I-1
Appendix J: Mercury Speciation Results	J-1

Section 1

INTRODUCTION

This report summarizes data gathered during a sampling program sponsored by the Electric Power Research Institute (EPRI). The report is one in a series being produced under the Field Chemical Emissions Monitoring (FCEM) project (RP 3177-1) sponsored by EPRI. The primary objective of this project is to measure selected inorganic and organic substances in the process and discharge streams of power plants, although at this site additional objectives were defined. The data have been prepared in a manner suitable for use by the Environmental Protection Agency to study emissions from fossil-fuel-fired power plants, as mandated by the Clean Air Act Amendments of 1990 (CAAA).

This report summarizes information from the operation of Site 21, a pilot-scale ESP/wet FGD system (4-MW equivalent) treating a portion of the flue gas from a balanced draft, natural circulation, pulverized coal-fired boiler firing medium-sulfur bituminous coal. Sampling was conducted during August of 1992.

Test Objectives

There were five major objectives for the testing at this site:

- Measure emissions from an ESP/wet FGD system;
- Measure emission control efficiency of an ESP/wet FGD system;
- Investigate options for obtaining lower detection limits in the stack gas stream;
- Provide benchmark variance and variance components for FCEM substances typically found in stack gas streams; and
- Perform gas stream mercury speciation measurements using a solid sorbent procedure.

The first two objectives address the relative lack of information available describing the use of an ESP/wet FGD system for control of trace substances. Although a pilot plant was evaluated at this site, the mechanisms for controlling emissions should be similar to larger systems. The third objective was intended to determine if extended sampling and alternate analytical methods could quantify the low concentrations found in most emission streams. At previous sites, the procedures used often do not detect measurable values in the stack gas; therefore, the only result that can be presented is "not detected".

at concentration X." Finally, the Site 21 test was designed to determine the variability of measurements in a more rigorous experimental design than is possible with the standard FCEM protocol (triplicate samples). At prior sites, the variability seen from triplicate measurements was typically on the order of the mean concentration. Without a nested design, it was not possible to determine if the sampling and analytical activities were responsible for this variability or if day-to-day variations (process conditions) were variable. The use of a fully nested experimental design, with duplicate samples for each train collected on each of four days and each sample analyzed in duplicate, has allowed the components of measurement variability to be defined. In addition, the precision of the results has been more accurately expressed by using a larger sample set at this site. Mercury speciation tests were performed by Brooks Rand Ltd. The method employed was under development. Coincident testing permitted a convenient check on the results.

Table 1-1 lists the substances of interest to the FCEM program. The body of the report presents information on the coal and gas stream concentrations of these substances. Unlike FCEM sites tested previously, only coal and gas stream data were generated at this site, except for mercury analysis. Therefore, material balances are not used to assess the results. Because the scope of the Site 21 activities was focused on specific analytical procedures, the coal was not analyzed for all of the FCEM inorganic substances. Previous work at the station (Sites 12 and 14) has revealed that benzene, toluene, and formaldehyde levels were very low; therefore, these substances were not measured in this study. Phosphorus also was not measured in the gas streams. Because of the multiple analysis (duplicates and methods) employed, the outlet gas filter digestate volume was not large enough to provide aliquots for all desired fractions. Of the eight fractions needed (duplicates for ICP-AES, GFAAS, CVAAS, and ICP-MS), it was decided to eliminate the CVAAS analysis for particulate-phase mercury. Therefore, only vapor-phase mercury values are presented. These agree very well with the mercury speciation results. Data on additional substances detected by the analytical methods employed in any of the sampled streams, are presented in the appendices.

Data Quality

The quality of the results reported in this document is generally good and meets the objectives of the FCEM program. The samples on which the reported results are based were collected carefully using accepted and appropriate sampling and analytical methods from a pilot system with extensive instrumentation. All process monitoring information indicates that the system was operating in a normal, stable fashion. The sampling and analytical results were subjected to an extensive quality assurance/quality control (QA/QC) evaluation. The detailed information presented in Section 4 supports the following:

- A significant quantity of phenanthrene was detected in the XAD trip blanks. This increases the uncertainty associated with these results. (Phenanthrene was detected in all process samples.)

Table 1-1
FCEM Substances

Elements	Organic Compounds
Arsenic	Benzene ^a
Barium ^d	Toluene ^a
Beryllium	Formaldehyde ^a
Cadmium	Polycyclic Organic Matter (POM) ^{b,c}
Chlorine (as chloride)	
Chromium	
Cobalt ^d	
Copper ^d	
Fluorine (as fluoride) ^d	
Lead	
Manganese ^d	
Mercury	
Molybdenum ^d	
Nickel	
Phosphorus ^a	
Selenium	
Vanadium ^d	

^aNot measured at Site 21.

^bAlso referred to as semivolatile organic compounds.

^cIncludes polynuclear aromatic hydrocarbons (PAHs).

^dNot measured in coal at Site 21.

- Laboratory check samples (LCS) indicate a bias in the inductively coupled argon plasma-mass spectroscopy (ICP-MS) (an alternate, more sensitive analytical technique) data for most of the seven elements analyzed.
- Laboratory control sample data suggest a possible high bias in the coal mercury results by cold vapor atomic absorption spectroscopy (CVAAS) while spike recovery data indicate a possible low bias in the flue gas selenium results by graphite furnace atomic absorption spectroscopy (GFAAS).
- Concentrating impinger solutions may bias results. Results from analysis without concentration are presented in Section 3. A comparison of methods is presented in Section 4.

Variability Components and Alternate Analytical Methods

In addition to the fuel and gas-phase concentrations typically presented in this series of reports, the additional project objectives have produced the following observations:

- After the removal of particulate matter and SO₂ (by the ESP/wet FGD system), the coefficient of variation (CV) for semivolatile organic compounds is about 100%, regardless of whether a specific substance is consistently detected. With the understanding that none of the error terms that occur ahead of the introduction of spikes are quantified, the analysis of variance (ANOVA) indicates that the combination of day-to-day variability and sampling/recovery errors are the principal components of the CV when a substance is consistently detected. Analytical variance is most important when the substance is not consistently detected.
- For the stack gas particulate phase, a majority of inorganic substances have CVs below 20 percent. The ANOVA indicates roughly equal dependence on daily and sampling/preparation variability. Analytical variability is a minor contributor. The CVs for chloride and fluoride are about 40%, with a predominant dependence on the combination of day-to-day and sampling/recovery variability.
- For the stack gas vapor phase, the CV for most inorganic substances is about 100%, usually dependent on sampling and preparation variability. The mercury CV was low at 15%, all attributable to sampling and preparation variability. The vapor-phase anions had CVs of 50 and 20% for HCl and HF. For HCl, daily variability is dominant, while it represents 40% of the HF CV.
- The stack gas particulate analyses CV using ICP-MS varied from 35 to 160% for seven substances. CVs for the same substances analyzed by ICP-AES or GFAAS varied from 12 to 55 percent.
- The CVs for the stack gas vapor-phase analyses using ICP-MS varied from 50 to 150% for seven substances. Concentrating the impinger solutions before ICP-AES or

GFAAS analysis generated CVs of 60 to 180 percent. Straight analysis using ICP-AES or GFAAS resulted in CVs of 45 to 130% (excluding a probable outlier).

These results show that the best precision that can be obtained with these procedures, when only three samples are obtained, is about \pm 70% at the ESP inlet and \pm 50% in the stack for those substances primarily present in the particulate phase. As expected, these CVs are somewhat lower than seen at full-scale sites previously tested. Vapor-phase substances and semivolatile organic compounds could have much higher CVs.

Report Organization

Section 2 of this report gives a brief description of the plant and sample locations. Section 3 discusses the results of the chemical analyses of the coal and the two gas streams sampled at the site. Section 4 discusses the QA/QC results. Section 5 presents a discussion of process, sampling, and analytical variability based on the nested experimental design. Section 6 presents mercury speciation results and a comparison to the multi-metals results. Section 7 shows example calculations, and a glossary of terms appears in Section 8. The appendices contain information on the sampling and analytical methods used, stream concentrations from each measurement, particulate measurement results, QA/QC information, blank correction data, and other supporting material. In particular, Appendix B contains the detailed analytical results for the substances listed in Table 1-1. Appendix C includes the results for other substances.

Section 2

SITE DESCRIPTION

The test site (Site 21) and the sampling locations are described in this section.

Facility Information

A pilot-scale (4-MW equivalent) wet limestone flue gas desulfurization (FGD) system was tested at Site 21. The pilot unit consists of an electrostatic precipitator (ESP) followed by a spray tower absorber. The pilot system has demonstrated the capability of mimicking full-scale FGD systems.

Figure 2-1 is a process flow diagram of the pilot ESP and FGD system. Flue gas for the pilot unit is isokinetically extracted from the duct of the adjacent power plant. The extraction point is located before the power plant ESP. The flue gas is routed to the pilot system through 450 feet of 36-inch duct followed by 200 feet of 24-inch duct. The normal sulfur content (1.6%) of the coal fired at the adjacent power plant produces a flue gas SO₂ concentration of approximately 1,000 ppmv. The inlet SO₂ concentration to the FGD system is normally controlled by a dilution/SO₂ spiking system to allow testing at concentrations ranging from 1,500 to 4,000 ppmv. However, during FCEM testing, the inlet SO₂ concentration was not controlled and varied from 900 to 1,000 ppm. The inlet flue gas temperature is kept constant by an electrical resistance heater. The pilot ESP was detuned to give performance similar to that normally seen at the adjacent power plant (~98% particulate removal). On leaving the ESP, a portion of the flue gas passes through an induced draft fan. A variable-speed drive on the induced draft fan controls the flue gas flow rate through the pilot system.

In the spray tower absorber, acid gases, specifically SO₂, HCl, and HF, are removed from the flue gas stream by counter-current contact with the alkaline absorber slurry. The absorbed acidic species are neutralized by the addition of solid calcium carbonate (finely ground limestone) to the absorber reaction tank. The FGD system was operated in inhibited oxidation mode for these tests by the addition of sodium thiosulfate. On leaving the absorber, the treated flue gas from the FGD system combines with gas streams from other pilot systems and returns to the adjacent power plant. Table 2-1 gives a summary of the pilot system operating parameters. Tables 2-2 and 2-3 summarize the absorber slurry chemical composition. These data were produced by the routine testing of the pilot system and are provided here only for reference.

The pilot equivalent coal feed rate in Table 2-1 was calculated from the measured coal rate at the adjacent power plant and the measured flue gas flow rate used by the pilot system. The flue gas flow rate for the power plant is first calculated from the measured

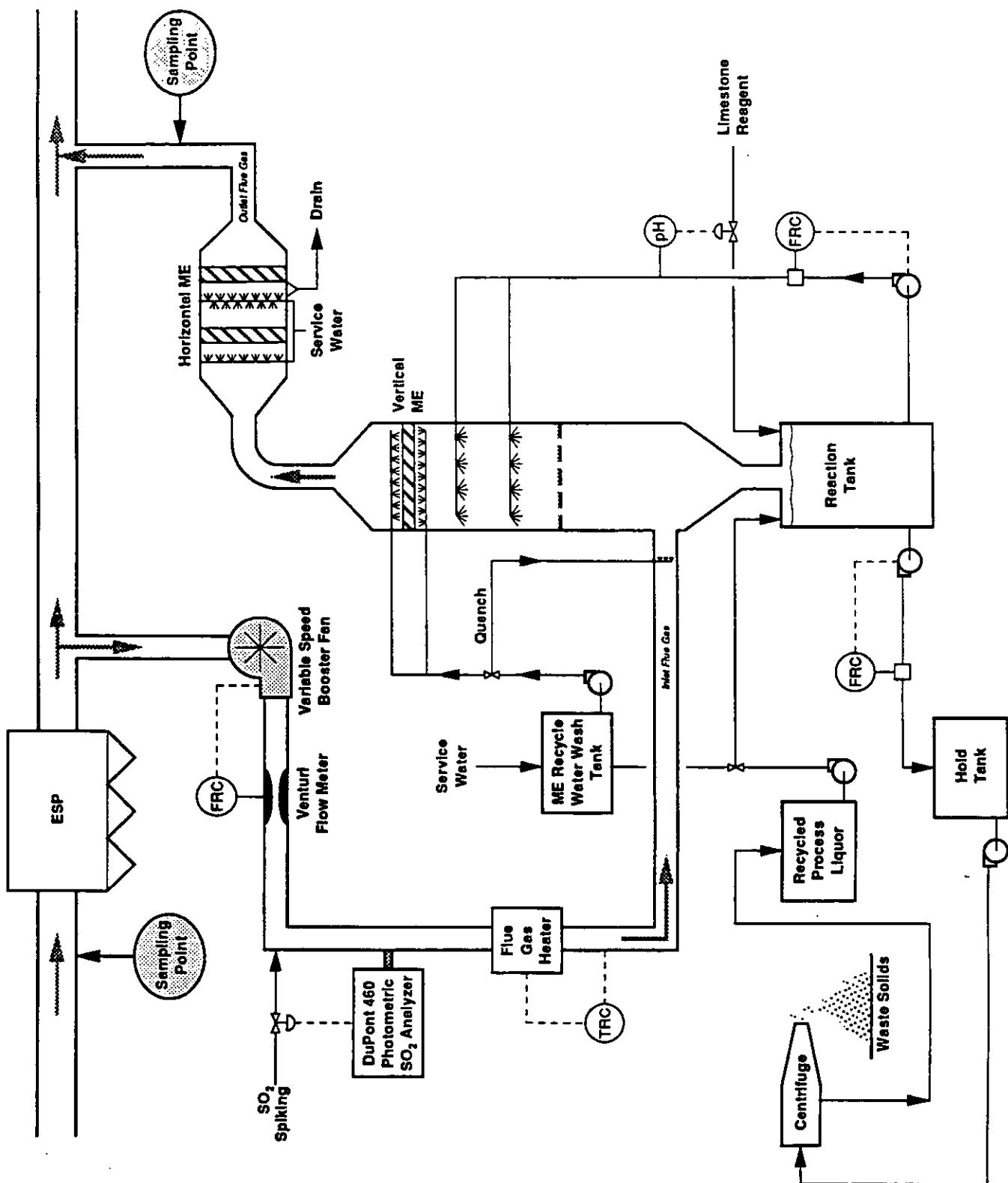


Figure 2-1. FCEM Site 21 Pilot ESP and Wet FGD Process Flow Diagram

Table 2-1
Process Summary

<u>Parameter</u>	<u>Average</u>	<u>Std. Dev.</u>
Station Gross Load, MWe	667	9
Station Coal Feed Rate, klb/hr	452	12
Calculated Station Flue Gas, dscfm @ 6.0% O ₂ wet	1,339,000	
Equivalent Pilot system Coal Feed Rate, klb/hr as-fired	2.73	
ESP Inlet O ₂ , % by Orsat	4.0	0.3
ESP Outlet Opacity, %	0.76	0.11
SO ₂ Removal, %	82.5	1.0
L/G, gal/1000 acf	88	0
Recirculation pH	5.5	0
Absorber pH	4.8	0.1
Flue Gas Flow Rate, dscfm @ 5.7% O ₂	8,109	42
Total Absorber Slurry Flow Rate, gpm	850	0
Absorber Inlet SO ₂ , ppm wet	936	55
Absorber Outlet SO ₂ , ppm wet	154	14
Absorber Outlet O ₂ , % wet CEM	6.0	0.5
Absorber Outlet O ₂ , % dry Orsat	5.7	0.1
Absorber Inlet Temperature, °F	323	1
Absorber Outlet Temperature, °F	129	1
Absorber ΔP, H ₂ O"	1.90	0.02
Spray zone ΔP, H ₂ O"	0.96	0.01

Table 2-2
Absorber Slurry Chemical Composition

Substance	Concentration ^a
Liquor Calcium, mMole/l	208 ± 6
Liquor Magnesium, mMole/l	139 ± 5
Liquor Sodium, mMole/l	24.7 ± 0.8
Liquor Chloride, mMole/l	640 ± 23
Liquor Carbonate, mMole/l	3.2 ± 0.8
Liquor Sulfite, mMole/l	3.2 ± 0.1
Liquor Sulfate, mMole/l	0.10 ± 0.03
Liquor Thiosulfate, ppmw	339 ± 20
CaSO ₃ ·½H ₂ O Relative Saturation	6.6
CaSO ₄ ·2H ₂ O Relative Saturation	0.01
Solid Calcium, mMol/g	7.69 ± 0.50
Solid Magnesium, mMol/g	0.05 ± 0.01
Solid Sulfite, mMol/g	6.77 ± 0.20
Solid Sulfate, mMol/g	0.27 ± 0.02
Solid Carbonate, mMol/g	0.56 ± 0.21
Inerts, %	1.7 ± 0.1
Sulfite Oxidation, %	1.6 ± 0.3
Reagent Utilization, %	92.6 ± 2.7
Reaction Tank wt % Solids	6.1 ± 0.3

^aConfidence intervals are 95% confidence intervals around the mean.

Table 2-3
Absorber Liquor Trace Species^a

Substance	Concentration, ppm
Aluminum	0.27
Barium	0.66
Boron	262
Chromium	1.0
Copper	0.04
Iron	3.2
Lead	0.05
Manganese	3.6
Nickel	0.53
Potassium	44
Silicon	7.5
Zinc	0.1

***The results of one routine sample collected and analyzed by on-site personnel, provided as background information.**

coal flow rate at a reference O₂ concentration. The ratio of the measured pilot system flue gas flow rate and the calculated power plant flue gas flow rate is then applied to the measured power plant coal flow rate to obtain a pilot equivalent coal feed rate. Details of these calculations appear in Section 7. As can be seen in Table 2-1, the station load and coal consumption were relatively constant during the test periods.

The pilot system ran without incident throughout the test periods. The power plant reduced load the mornings of August 20, 21, and 22; however, the station boiler was at full load during the sampling period except between 08:00 and 09:00, August 21. Full load was established on August 21 by 10:00. Full load was established before sampling began on August 20 and 22. The operation of the power plant while samples were being collected was representative of standard operation. A set of operating plots is provided in Appendix I.

Sampling Locations

Samples were collected at six locations at the pilot plant:

- ESP inlet flue gas;
- Absorber outlet flue gas;
- Coal feed to the adjacent power station;
- Collected ESP ash;
- FGD systems liquor; and
- FGD system solids.

The ESP inlet, absorber outlet, and coal samples were submitted for analysis. Samples from the other three streams were archived for possible future analysis for trace substances.

A description of the sampling activities appears in Appendix A.

Section 3

RESULTS

This section discusses the analytical results derived from the sampling of Site 21. The results for FCEM substances and for selected major elements analyzed by standard methods are presented here. Data for additional substances are included in the appendices.

Sampling Schedule

Site 21 was sampled in late August of 1992. The host utility supplying flue gas to the pilot plant operated at full load during the sampling. Three types of sampling trains were used at the ESP inlet and absorber outlet (stack) to obtain samples for the analytes listed in Table 1-1. The multi-metals (metals), Modified Method 5 semivolatile organic (MM5), and anions trains were used to fully traverse the ducts.

Six metals runs were made at the ESP inlet and four sets of duplicate samples were collected at the absorber outlet. An additional set of duplicate metals impinger samples from the absorber outlet were analyzed for mercury. Four MM5 and anions runs were made at the ESP inlet and four sets of duplicates from each train were collected at the absorber outlet. Coal samples were collected each day. Figure 3-1 shows an outline of the sampling activities, which are described in more detail in Appendix A. The initial outlet runs were voided when it was determined that the filters were wet. The first inlet run was voided when the filters became dislodged.

Data Treatment

Several conventions were developed during the FCEM project for treating the test data and developing average concentrations of substances in the various streams. To determine the total gas concentration for each run, both the solid and vapor phase contributions were considered; however, the absence of some detectable (above the MDL) concentrations in either (or both) phase(s) required that conventions be developed for dealing with these data and formulating emission factors. The MDL is that value determined for a specific instrument by the protocol of 40 CFR 136 Appendix B. These conventions are summarized below.

For each substance, there are three possible combinations of vapor- and solid-phase concentrations in the emitted gas stream. These are:

Case 1: The concentrations in both the solid and vapor phases are above the method detection limits.

Results

Train	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
	8/19	8/19	8/20	8/21	8/22	8/23	8/24
Inlet:							
Metals	Void	Completed	Completed	Completed	Completed	Completed	Completed
Anions	Void	Completed	Completed	Completed	Completed	Completed	Completed
MM5	Void	Completed	Completed	Completed	Completed	Completed	Completed
Outlet:							
Metals A	Void	Void	Hg Only	Completed	Completed	Completed	Completed
Metals B	Void	Void	Hg Only	Completed	Completed	Completed	Completed
Anions A			Completed	Completed	Completed	Completed	Completed
Anions B			Completed	Completed	Completed	Completed	Completed
MM5 A	Aborted	Completed	Completed	Completed	Completed	Completed	Completed
MM5 B	Aborted	Completed	Completed	Completed	Completed	Completed	Completed

Figure 3-1. Sample Schedule

Case 2: The concentrations in both the solid and vapor phases are below the method detection limits.

Case 3: The concentration in one phase is above the method detection limit, and the concentration in the other phase is below the method detection limit.

For those constituents of interest other than mercury, HCl, and HF, the stack gas stream data from coal-fired power plants have indicated that most of the material is present in the solid phase and that only a minor fraction is generally found in the vapor phase. Thus, the following conventions were selected for defining total gas stream concentrations:

Case 1: The total concentration is the sum of the concentrations in the vapor and solid phases.

For example, the total cadmium (Cd) concentration in the absorber outlet gas is calculated as follows for Run 4a:

$$\text{Cd in solid phase} = 0.17 \mu\text{g}/\text{Nm}^3$$

$$\text{Cd in vapor phase} = 0.26 \mu\text{g}/\text{Nm}^3$$

$$\text{Total Cd in absorber outlet gas} = 0.43 \mu\text{g}/\text{Nm}^3$$

Case 2: The total concentration is considered to be the method detection limit in the solid phase. This case does not apply to Site 21.

Case 3: The total concentration is considered to be the level measured above the reporting limit, regardless of which phase this represents.

For example, the total arsenic (As) level in the absorber outlet gas is calculated as follows for Run 4a:

$$\text{As in solid phase} = 7.42 \mu\text{g}/\text{Nm}^3$$

$$\text{As in vapor phase} = \text{ND}(0.2 \mu\text{g}/\text{Nm}^3)$$

where ND(0.2) indicates that the analytical result was below the method detection limit of $0.2 \mu\text{g}/\text{Nm}^3$

$$\text{Total As in the absorber outlet gas} = 7.42 \mu\text{g}/\text{Nm}^3$$

The above conventions also agree with guidance provided by EPA (*Technical Implementation Document for EPA's Boiler and Furnace Regulations*, U.S. Environmental Protection Agency, Office of Solid Waste, Washington, D.C., March 1992).

Results

Testing at several previous sites indicated that mercury, HCl, and HF are present primarily in the vapor phase. For Case 2, then, the total concentration in the gas stream is considered to be the reporting limit in the vapor phase. For Cases 1 and 3, the methodologies are unchanged from those described above.

The following criteria were used when averaging the results from different runs:

- When all values for a given variable were above the method detection limit, the mean concentration was calculated as the true arithmetic mean.
- For results that include values both above and below the detection limit, one-half of the detection limit was used to calculate the mean. For example:

<u>Analytical Values</u>	<u>Calculation</u>	<u>Mean Value</u>
10, 12, ND(8)	$(10 + 12 + [8/2]) / 3$	8.7

By convention, the calculated mean was not allowed to be smaller than the largest detection limit value. In the following example, using one-half the detection limit value would yield a calculated value of 2.8. This is less than the highest detection level obtained, so the reported mean is ND(4).

<u>Analytical Values</u>	<u>Calculation</u>	<u>Mean Value</u>
5, ND(4), ND(3)	$(5 + [4/2] + [3/2]) / 3 = 2.8$	ND(4)

- When all analytical results for a given variable are less than the detection limit, the reported mean is ND (the largest detection limit). The bias estimate is one-half of the reporting level, and no confidence interval is reported.
- Questionable analytical data are normally excluded from all summary calculations. These include results that indicate a sampling bias, analytical interference, or the presence of organic compounds known to be laboratory contaminants. None of the results from Site 21 were excluded. Although some outlier results were identified, no systemic problems were discovered. The outlier data are discussed in Section 4.

Concentrations of solid phase metals and anions were corrected for the background concentration of the blank filter media. Four blank filters were digested and analyzed to determine the blank level. Appendix G contains a comparison of the solid phase results with the blank filter results.

Coal

Table 3-1 presents the analytical results for the coal samples. Appendix A discusses the analytical method reported for each combination of substance and stream. For each substance, a mean concentration has been calculated along with a 95% confidence interval about the mean. The mean, plus and minus the confidence interval, represents the range where the probability is 95% that the true mean lies. For example, we are

Table 3-1

Coal Composition (mg/dry kg unless noted)

<u>Substance</u>	<u>Coal Flow Rate (dry klb/hr)</u>	<u>Run 2</u>	<u>Run 3</u>	<u>Run 4</u>	<u>Run 5</u>	<u>Run 6</u>	<u>Run 7</u>	<u>Mean</u>	<u>95% CI</u>
Ash, dry %		6.48	6.53	6.66	7.04	6.61	6.61	6.66	0.23
HHV, Btu/dry lb		14,072	14,054	14,011	13,938	14,037	14,028	14,032	30
Sulfur, dry %		1.65	1.55	1.66	1.69	1.50	1.72	1.63	0.09
Arsenic		1.82	4.00	5.00	5.00	5.00	5.00	4.30	1.3
Beryllium		0.80	0.70	0.80	0.77	0.90	0.80	0.79	0.07
Cadmium		ND(0.1)	0.20	ND(0.1)	ND(0.1)	0.10	0.10	ND(0.1)	--
Chloride		800	900	900	1,000	800	900	860	110
Chromium		11.00	11.00	12.00	11.00	12.00	11.00	11.3	0.60
Lead		2.50	3.00	3.10	2.70	2.50	3.30	2.85	0.35
Mercury		0.15	0.14	0.13	0.15	0.14	0.20	0.15	0.03
Nickel		8.00	8.00	10.00	8.00	8.00	8.00	8.33	0.86
Selenium		1.00	1.00	1.00	1.00	1.00	2.00	1.17	0.43

ND = Not detected. Method detection limit shown in parentheses.

CI = Confidence interval.

Results

95% confident that the mean coal arsenic concentration was between 3.0 mg/kg and 5.6 mg/kg. The calculation of this confidence interval is presented in Appendix E.

Bituminous coal burned at the plant is obtained from three sources. Approximately 25% is obtained from the Bailey mine in Pennsylvania. The balance is equally split between the Blacksville 1 and 2 mines in West Virginia.

Electrostatic Precipitator Inlet Gas

Tables 3-2, 3-3, and 3-4 summarize the results of the metals and anions measurements made on the gas entering the electrostatic precipitator at Site 21. The solid phase results are presented in Table 3-2, the vapor phase results are presented in Table 3-3, and the combined results are presented in Table 3-4. In addition to the species shown in these tables, other substances were also analyzed; however, only the results for FCEM target substances are presented. Appendices B and C present these additional results, as well as the FCEM target results. The results of the analyses for semivolatile organic compounds are not presented because of an analytical interference problem. The ESP inlet MM5 analysis problems are described in detail in Appendix A. In addition, details about the gas sampling runs are also presented in Appendix A (gas compositions, sample times, moisture levels, etc). Run 1 was void because the filter was dislodged during sampling.

For the multi-metals train, the particulate filter and probe and nozzle rinse fractions were combined and analyzed. The laboratory reported the elemental result on a total weight basis, i.e., total milligrams of arsenic. If appropriate, this result was corrected for the blank result (i.e., if the substance was reported in the filter blank). This total weight was divided by the sample gas volume to obtain the solid phase concentration. The multi-metals train impingers were analyzed directly for total elemental mass, which was divided by the sampled gas volume to obtain the vapor phase concentration.

At previously tested FCEM sites, most of the target elements were found primarily in the solid phase. HCl and HF were found primarily in the vapor phase. Similar amounts of cadmium were found in each phase. Previous analyses at this site have indicated that mercury is not present above the method detection limit in the suspended particulate matter; therefore, only the vapor phase was analyzed. As discussed in the introduction, the duplicate and multiple analytical methods examined required eliminating the particulate-phase mercury analysis.

Stack Gas

Tables 3-5, 3-6, and 3-7 present the stack (absorber outlet) gas metal and anion concentrations for the solid phase, vapor phase, and the combined solid and vapor phases, respectively. As was the case at the ESP inlet, additional species were analyzed but only FCEM target substance results are summarized here. Also, the analysis for mercury was only performed on the vapor phase. A comparison of the vapor-phase mercury results with the mercury speciation procedure in Section 6 indicates good agreement between the vapor-phase only results and those obtained by the speciation procedure which also

Table 3-2
ESP Inlet Solid-Phase Composition ($\mu\text{g/dNm}^3$)

<u>Substance</u>	<u>Run 2</u>	<u>Run 3</u>	<u>Run 4</u>	<u>Run 5</u>	<u>Run 6</u>	<u>Run 7</u>	<u>Mean</u>	<u>95% CI</u>
Flow Rate (Nm^3/hr)	11,700	11,400	12,200	11,700	11,500	11,700	11,700	300
Temperature (°C)	143	147	145	147	146	147	146	2
Particulate (g/Nm^3)	3.14	2.41	2.34	1.90	2.06	2.90	2.46	0.50
Arsenic	446	747	514	412	390	545	509	137
Barium	1,560	1,439	1,380	1,106	1,198	1,806	1,415	265
Beryllium	39.3	40.3	40.6	27.2	28.0	38.2	35.6	6.6
Cadmium	@4.45	4.18	3.37	2.37	3.02	4.10	3.58	0.84
Chloride	0.98	@1.01	1.35	1.23			1.14	0.23
Chromium	624	690	704	369	468	665	587	144
Cobalt	128	125	132	87	112	142	121	20
Copper	239	284	247	180	208	269	238	40
Fluoride	0.22	0.42	0.29	@0.30			0.30	0.11
Lead	171	245	193	146	154	209	186	39
Manganese	482	448	397	331	342	523	421	81
Molybdenum	35	69	55	39	69	54	53	15
Nickel	450	478	446	305	352	498	421	80
Selenium	50.9	67.0	49.5	45.9	44.8	39.4	49.6	9.9
Vanadium	826	1,100	921	692	797	956	882	149

② = Concentration shown is less than five times the method detection limit.
 CI = Confidence interval.

Table 3-3

ESP Inlet Vapor-Phase Composition ($\mu\text{g/dNm}^3$)

<u>Substance</u>	<u>Run 2</u>	<u>Run 3</u>	<u>Run 4</u>	<u>Run 5</u>	<u>Run 6</u>	<u>Run 7</u>	<u>Mean</u>	<u>95% CI</u>
Arsenic	@1.56	@0.63	ND(0.22)	ND(0.23)	ND(0.31)	ND(0.31)	0.45	0.56
Barium	8.06	@0.93	@1.50	@0.61	@1.44	@0.65	2.20	2.79
Beryllium	ND(0.06)	ND(0.04)	ND(0.08)	@0.09	ND(0.08)	@0.04	ND(0.08)	--
Cadmium	@2.1	3.7	@1.5	@1.6	3.8	0.8	2.2	1.2
Chloride	155,000	165,000	154,000	98,000		143,000	36,000	
Chromium	@3.0	@1.4	@1.3	3.5	6.5	3.5	3.2	1.8
Cobalt	ND(2)	ND(2)	ND(1)	ND(2)	ND(2)	ND(2)	ND(2)	--
Copper	ND(1)	ND(1)	ND(1)	@1	ND(1)	ND(1)	ND(1)	--
Fluoride	8,200	9,300	8,100	9,000		8,700	700	
Lead	33	3	30	10	34	11	20	13
Manganese	216	@6	62	@8	@12	20	54	79
Mercury	9.9	10.1	9.1	11.8	9.7	11.7	10.4	1.1
Molybdenum	ND(1)	ND(2)	ND(1)	ND(0.5)	ND(2)	ND(3)	ND(3)	--
Nickel	6.7	2.3	2.3	4.8	5.9	@1.9	4.0	2.0
Selenium	@3.1	2.8	8.3	3.6	4.2	@1.1	3.8	2.3
Vanadium	@3	ND(2)	ND(0.08)	ND(2)	@3	ND(3)	ND(3)	--

ND = Not detected. Method detection limit shown in parentheses.

@ = Concentration shown is less than five times the method detection limit.

CI = Confidence interval.

Table 3-4
ESP Inlet Combined Composition ($\mu\text{g/dNm}^3$)

Substance	Mean	95% CI
Flow Rate (Nm^3/hr)	11,700	600
Particulate (g/Nm^3)	2.46	0.5
Arsenic	510	130
Barium	1,420	240
Beryllium	35.6	6.0
Cadmium	5.8	1.4
Chloride	143,000	36,000
Chromium	590	130
Cobalt	121	19
Copper	238	37
Fluoride	8,700	700
Lead	206	30
Manganese	470	130
Mercury	10.4	1.1
Molybdenum	53	14
Nickel	425	72
Selenium	53	10
Vanadium	880	140

CI = Confidence interval.

Table 3-5

Stack Gas Solid-Phase Composition ($\mu\text{g/dNm}^3$)

Method	Substance	Flow Rate (Nm^3/hr)	Run 4a	Run 4b	Run 5a	Run 5b	Run 6a	Run 6b	Run 7a	Run 7b	Mean	95% CI
			13,100*	13,100*	13,000	13,100	13,100	13,100	13,100	13,100	13,100	60
GFAAS	Flow Rate (Nm^3/hr)	0.0066	0.0095	0.0075	0.021	0.017	0.015	0.011	0.018	0.013	0.0043	2
GFAAS	Temperature ($^{\circ}\text{C}$)	52*	52*	52	49	49	49	51	51	51	51	60
GFAAS	Particulate (g/Nm^3)											
ICP-AES	Arsenic	7.42	6.73	6.97	6.00	7.38	8.89	7.42	8.48	7.41	7.77	
ICP-AES	Barium	3.71	3.50	3.12	2.38	4.15	4.14	4.15	4.28	3.68	3.55	
ICP-AES	Beryllium	0.16	0.15	0.14	0.11	0.16	0.16	0.15	0.15	0.14	0.01	
ICP-AES	Cadmium	0.17	0.15	0.18	0.09	0.16	0.16	0.12	0.12	0.15	0.14	0.02
ICP-AES	Chromium	3.73	3.25	2.70	2.80	3.61	3.43	3.11	3.58	3.28	3.32	
ICP-AES	Cobalt	0.33	0.31	@0.24	@0.19	@0.28	@0.28	@0.27	2.45	0.54	0.64	
ICP-AES	Copper	1.38	1.36	1.17	1.00	1.28	1.22	1.18	1.27	1.23	1.10	
GFAAS	Lead	1.51	1.24	1.29	0.89	1.50	1.42	1.43	1.35	1.33	0.17	
ICP-AES	Manganese	1.27	1.15	1.00	0.82	1.20	1.13	1.11	2.28	1.24	0.37	
ICP-AES	Molybdenum	0.87	0.80	0.58	0.53	0.80	0.83	0.76	0.81	0.75	0.10	
GFAAS	Nickel	1.95	1.69	1.42	1.58	1.95	1.54	1.55	1.94	1.70	0.18	
GFAAS	Selenium	2.3	8.0	10.9	20.0	11.5	10.2	3.1	10.4	9.6	4.6	
ICP-AES	Vanadium	7.49	7.06	6.05	4.47	6.85	6.97	6.66	6.76	6.54	0.77	
	Flow Rate (Nm^3/hr)	13,100*	13,100*	12,900	13,100	13,100	13,100	13,100	13,100	13,000	13,000	150
	Temperature	49*	49*	51	52	52	52	52	52	51	51	2
IC	Chloride	235	267	611	451	374	261	222	282	338	112	
ISE	Fluoride	3.5	6.0	5.6	7.5	2.2	2.5	3.1	3.6	4.2	1.6	

CI = Confidence interval.

@ = Concentration shown is less than five times the method detection limit.

*Value is average of morning and afternoon measurements.

Table 3-6

Stack Gas Vapor-Phase Composition ($\mu\text{g/dNm}^3$)

Method	Substance	Run 3a	Run 3b	Run 4a	Run 4b	Run 5a	Run 5b	Run 6a	Run 6b	Run 7a	Run 7b	Mean	95% CI
GFAAS	Arsenic			ND(0.2)	ND(0.2)	@1.21	ND(0.1)	ND(0.2)	ND(0.3)	ND(0.3)	ND(0.2)	ND(0.30)	—
ICP-AES	Barium		@0.16	@0.39	1.02	ND(0.1)	@0.29	@0.18	ND(0.2)	ND(0.1)	ND(0.1)	0.28	0.26
ICP-AES	Beryllium	ND(0.01)	ND(0.01)	0.09	ND(0.0)	@0.02	@0.02	@0.01	ND(0.01)	ND(0.01)	ND(0.01)	0.02	0.03
GFAAS	Cadmium	0.26	0.44	0.22	0.65	0.34	1.52	0.44	0.63	0.63	0.56	0.35	—
ICP-AES	Chromium	ND(0.5)	ND(0.4)	ND(0.5)	ND(0.2)	ND(0.5)	@0.68	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	—
ICP-AES	Cobalt	10.0	9.4	5.6	ND(0.8)	5.5	5.6	ND(0.9)	ND(0.9)	ND(0.8)	ND(0.8)	4.7	3.3
ICP-AES	Copper	@0.48	@0.75	@0.87	@0.81	@0.85	@0.87	@0.89	ND(0.3)	ND(0.3)	ND(0.3)	0.71	0.22
GFAAS	Lead	@0.4	7.2	2.6	2.5	2.3	26.1	1.6	8.7	8.7	6.4	7.1	—
ICP-AES	Manganese	64	33	@2	@1	@3	4	30	@1	17	17	19	—
CVAAS	Mercury	0.79	0.97	1.07	1.00	1.21	0.82	1.12	1.03	1.09	1.14	1.02	0.10
ICP-AES	Molybdenum	ND(0.8)	ND(0.8)	ND(0.9)	ND(0.8)	ND(0.9)	ND(0.9)	ND(0.9)	ND(0.9)	ND(0.9)	ND(0.9)	ND(0.9)	—
GFAAS	Nickel	ND(0.3)	ND(0.3)	@0.60	ND(0.1)	ND(0.40)	@1.60	@0.70	ND(0.3)	ND(0.3)	ND(0.3)	0.46	0.43
GFAAS	Selenium	@0.67	3.89	3.33	2.31	2.36	2.31	2.97	2.86	2.86	2.59	0.79	—
ICP-AES	Vanadium	ND(0.8)	ND(0.7)	@1.57	ND(0.8)	ND(0.8)	ND(0.8)	ND(0.8)	ND(0.8)	ND(0.8)	ND(0.8)	ND(0.8)	—
		Run 2a	Run 2b	Run 3a	Run 3b	Run 4a	Run 4b	Run 5a	Run 5b	Run 6a	Run 6b	Run 7a	Run 7b
IC	Chloride	573	543	3,206	3,432	2,883	3,749	2,646	2,368	2,425	2,425	39.0	1,027
ISE	Fluoride	45.7	50.7	28.9	34.5	33.4	45.3	32.3	41.6	39.0	39.0	6.5	—

ND = Not detected. Method detection limit shown in parentheses.

CI = Confidence interval.

@ = Concentration shown is less than five times the method detection limit.

Table 3-7
Stack Gas Combined Composition ($\mu\text{g/dNm}^3$)

Method	Substance	Mean	95% CI
	Flow Rate (Nm^3/hr)	13,000	650
	Particulate (g/Nm^3)	0.013	0.0043
GFAAS	Arsenic	7.56	0.78
ICP-AES	Barium	3.93	0.55
ICP-AES	Beryllium	0.16	0.03
GFAAS	Cadmium	0.70	0.34
IC	Chloride	2,800	1,100
ICP-AES	Chromium	3.36	0.40
ICP-AES	Cobalt	5.1	3.2
ICP-AES	Copper	1.92	0.24
ISE	Fluoride	43	7
GFAAS	Lead	7.7	7.1
ICP-AES	Manganese	19	19
CVAAS	Mercury	1.02	0.10
ICP-AES	Molybdenum	0.75	0.10
GFAAS	Nickel	2.06	0.40
GFAAS	Selenium	12.2	4.8
ICP-AES	Vanadium	6.74	0.81

CI = Confidence interval.

samples the particulate phase. The results of the additional analyses appear in the appendices. Also shown in these tables is the analytical method for each result (the results obtained by alternate methods are discussed in later sections). Section 4 contains a comparison of the methods and the rationale for those selected. Table 3-8 presents the results for the semivolatile organic species. No interference problem occurred during the analysis of the absorber outlet MM5 samples. High-resolution GCMS was used for this analysis. Table 3-9 presents emission factors for each of the substances on a mass-per-unit-energy basis.

Each absorber outlet result is the average of duplicate analyses; "a" and "b" denote the sampling train. For example, the absorber outlet solid phase-arsenic concentration for Run 4a is the average result of two analyses of the same digested sample. When averaging duplicate analytical results, the conventions for averaging run results presented earlier were used. The Run 4a semivolatile organic data are not presented in Table 3-8 because this sample was spiked and the results were used for QA/QC purposes. Runs 1, 2, and 3 encountered sampling problems such as wet and dislodged filters. Appendix A discusses these issues in detail.

System Control Efficiency Performance

Table 3-10 presents the removal efficiencies calculated for the ESP/wet FGD system for selected substances. The average particulate removal was 99.5 percent. Since all substances were present in the solid phase at the ESP inlet, most of the trace substances were also removed quite effectively. Titanium removal is shown as a tracer, acting as a surrogate for coal ash to illustrate that the measured particulate removal efficiency (99.5) was lower than the removal efficiency of boiler ash (99.8 titanium). This is due to scrubber-generated solids entrained in the gas downstream of the absorber.

When calculating the system removal efficiency, the actual measured ESP inlet flow was not used. Since the gas treated by the ESP is used by more than one pilot system, it was necessary to calculate the ESP inlet flow rate that would be used by the tested pilot. This was done by using the measured flow rate at the absorber outlet adjusted to the O₂ concentration at the ESP inlet.

Also shown in Table 3-10 is an estimated removal efficiency for those substances analyzed in the coal. This calculation was performed using the coal feed rate and composition, assuming an 80/20 fly ash-to-bottom ash ratio (except for volatile substances which were assumed to be 100% in the ESP inlet gas) and calculating the removal efficiency using the measured outlet gas values. The calculated removals are slightly higher for most substances. This is because the inlet particulate loading is believed to be biased low. This topic is addressed in the next section.

Table 3-8

Stack Semivolatile Organic Compounds (ng/dNm³)

Substance	Run 2a 13,100*	Run 2b 49*	Run 3a 12,900	Run 3b 51	Run 4a ND(1.0)	Run 5a ND(2.3)	Run 5b 13,000	Mean	95% CI
Flow Rate (Nm ³ /hr)	13,100*	49*						13,000	150
Temperature (°C)								51	2
5-Methyl chrysene	1.6	7.8	ND(1.0)	ND(0.3)	1.1	1.5	0.6	1.9	2.5
7H-Dibenzo[c,g]carbazole	ND(3.4)	ND(4.1)	ND(0.8)	ND(2.2)	ND(2.3)	ND(3.0)	ND(1.8)	ND(4.1)	--
Acenaphthene	50	71	17	5	3	6	2	22	25
Acenaphthylene	16.2	22.9	4.0	4.2	3.9	9.0	4.4	9.2	7.1
Anthracene	29	32	7	3	5	6	3	12	12
Benz[a]anthracene	3.1	4.6	1.0	0.5	0.7	0.7	0.6	1.6	1.5
Benzof[a]pyrene	3.1	6.6	1.2	ND(0.8)	ND(0.8)	2.8	0.5	2.1	2.4
Benzof[b,j&k]fluoranthenes	14.6	29.4	4.8	1.2	1.8	3.0	1.6	8.1	9.9
Benzof[g,h,i]perylene	1.9	4.8	1.3	0.4	0.7	ND(0.9)	1.0	1.5	1.5
Chrysene	11	32	6	2	2	5	2	8	10
Dibenz[a,h]acridine	0.7	ND(1.8)	0.2	0.5	ND(0.8)	ND(1.9)	ND(0.4)	ND(1.9)	--
Dibenz[a,h]anthracene	ND(1.1)	ND(3.2)	ND(0.8)	ND(0.8)	ND(1.6)	ND(1.3)	0.6	ND(3.2)	--
Dibenz[a,i]acridine	ND(0.8)	ND(2.0)	0.1	ND(1.1)	ND(0.3)	ND(1.3)	ND(0.4)	ND(2.0)	--
Dibenz[a,e]pyrene	ND(1.0)	ND(1.8)	ND(0.7)	ND(0.6)	ND(1.2)	ND(0.8)	ND(0.7)	ND(1.8)	--
Dibenz[a,h]pyrene	ND(1.3)	ND(1.7)	ND(0.4)	ND(0.3)	ND(1.1)	ND(1.5)	ND(0.6)	ND(1.7)	--
Dibenz[a,i]pyrene	ND(1.4)	ND(3.1)	ND(0.6)	ND(0.8)	ND(1.3)	ND(1.9)	ND(1.1)	ND(3.1)	--
Fluoranthene	149	215	40	14	9	22	7	65	77
Fluorene	162	254	43	24	21	26	23	79	87
Indeno[1,2,3-cd]pyrene	3.6	5.5	1.5	ND(0.6)	ND(1.0)	ND(0.7)	0.8	1.8	1.9
Phenanthrene	678	727	179	56	40	62	46	256	288
Pyrene	68	85	22	11	6	11	5	30	30

*Value is average of morning and afternoon measurements.

ND = Not detected. Method detection limit shown in parentheses.

CI = Confidence interval.

Table 3-9
Stack Emission Factors

<u>Method</u>	<u>Substance</u>	<u>Emission Factor (lb/10¹² Btu)</u>	<u>95% CI</u>
HRGCMS	Acenaphthene	0.018	0.021
HRGCMS	Acenaphthylene	0.0075	0.0057
HRGCMS	Anthracene	0.0099	0.0096
GFAAS	Arsenic	6.17	0.79
ICP-AES	Barium	3.21	0.51
HRGCMS	Benz[a]anthracene	0.0013	0.0012
HRGCMS	Benzo[a]pyrene	0.0018	0.002
HRGCMS	Benzo[b,j,k]fluoranthenes	0.0066	0.0079
HRGCMS	Benzo[g,h,i]perylene	0.0012	0.0012
ICP-AES	Beryllium	0.13	0.03
GFAAS	Cadmium	0.57	0.29
IC	Chloride	1,980	880
ICP-AES	Chromium	2.74	0.39
HRGCMS	Chrysene	0.0069	0.0083
ICP-AES	Cobalt	4.1	2.7
ICP-AES	Copper	1.57	0.23
HRGCMS	Dibenz[a,h]acridine	ND(0.001)	--
HRGCMS	Dibenz[a,h]anthracene	ND(0.003)	--
HRGCMS	Dibenz[a,i]acridine	ND(0.002)	--
HRGCMS	Dibenzo[a,e]pyrene	ND(0.002)	--
HRGCMS	Dibenzo[a,h]pyrene	ND(0.001)	--
HRGCMS	Dibenzo[a,i]pyrene	ND(0.002)	--
HRGCMS	Fluoranthene	0.053	0.063
HRGCMS	Fluorene	0.064	0.070
ISE	Fluoride	31.9	5.9

Table 3-9 (Continued)

<u>Method</u>	<u>Substance</u>	<u>Emission Factor (lb/10¹² Btu)</u>	<u>95% CI</u>
HRGCMS	Indeno[1,2,3-cd]pyrene	0.0015	0.0015
GFAAS	Lead	6.32	6.00
ICP-AES	Manganese	15	16
CVAAS	Mercury	0.84	0.10
ICP-AES	Molybdenum	0.61	0.10
GFAAS	Nickel	1.68	0.36
HRGCMS	Phenanthrene	0.21	0.23
HRGCMS	Pyrene	0.024	0.025
GFAAS	Selenium	9.9	4.1
ICP-AES	Vanadium	5.50	0.79
HRGCMS	5-Methyl chrysene	0.0015	0.0020
HRGCMS	7H-Dibenzo[c,g]carbazole	ND(0.003)	--

ND = Not detected. Emission factor based on method detection limit shown in parentheses.

CI = Confidence interval.

Table 3-10
Removal Efficiencies for the ESP/FGD System

<u>Method</u>	<u>Substance</u>	<u>Measured Removal Efficiency</u>	<u>95% CI</u>	<u>Estimated Removal Efficiency^a</u>
	Particulate	99.46	0.19	99.72
GFAAS	Arsenic	98.34	0.21	98.02
ICP-AES	Barium	99.69	0.05	
ICP-AES	Beryllium	99.50	0.10	99.71
GFAAS	Cadmium	86.6	6.7	
IC ^b	Chloride	98.11	0.88	96.33
ICP-AES	Chromium	99.36	0.09	99.58
ICP-AES	Cobalt	95.3	3.1	
ICP-AES	Copper	99.10	0.13	
ISE ^b	Fluoride	99.50	0.10	
GFAAS	Lead	95.8	1.0	96.19
ICP-AES	Manganese	95.6	4.7	
CVAAS	Mercury	89.0	1.2	92.33
ICP-AES	Molybdenum	98.44	0.25	
GFAAS	Nickel	99.46	0.11	99.65
GFAAS	Selenium	75	11	88.24
ICP-AES	Titanium	99.75	0.04	
ICP-AES	Vanadium	99.15	0.12	
ICP-AES	Zinc	97.2	1.1	

^aAs discussed in Section 4, the ESP inlet particulate loading is believed to be biased low. The values in this column were calculated using the coal composition data and flow rate and an estimated 80/20 fly ash-to-bottom ash ratio for all substances except arsenic, chloride, mercury, and selenium (assumed 100% volatilized) as an inlet mass. The mean outlet mass rates were used to calculate the estimated removal efficiency.

^bRemoval of vapor phase anions only.

CI = Confidence interval.

Section 4

DATA EVALUATION

Several procedures can be used to evaluate the information developed during a field sampling program. In the case of Site 21, two methods were used to evaluate data quality. First, and most important, was evaluation of the traditional QA/QC protocol for the sampling and analytical procedures used at Site 21, i.e., equipment calibration and leak checks, duplicates, blanks, spikes, etc. Site 21 QA/QC data are compared with FCEM project objectives. The second data assessment tool involves a comparison of the precision of the analytical methods used. The implications of the analytical methods used and of process and sampling variability are discussed in Section 5.

Evaluation of Measurement Data Quality

This section presents a discussion of the data obtained during the characterization of Site 21. Topics addressed fall into three major categories: process conditions, sampling, and analytical issues. At other FCEM sites, material balances have often been used to provide an overall quality assessment (if a material balance accounts for the distribution of most mass, it can be presumed that the process, sampling, and analytical components are reasonable). At Site 21, although all major streams were sampled, only the coal and gas streams were analyzed for all substances.

Process Operations

The pilot system at Site 21 was designed with extensive instrumentation and control capabilities that permit extremely stable operation. The pilot system draws about 4% of the flue gas from the host power plant. During all test periods, operation at the host plant was consistent, with a nominal load variation of ± 5 percent (the host plant generates a nominal 700 MW). Gas temperatures, oxygen, and CO₂ concentrations were all consistent on a day-to-day basis, as demonstrated by the process plots in Appendix I.

Sampling

Appendix A presents details about the sampling procedures used at Site 21. Significant observations are as follows:

- A decrease in a number of sampling points per traverse used to collect samples at the absorber outlet from six to two was made to prevent the filters from getting wet by entrained water on the duct wall. Although not meeting the requirements of Method 1, the gas after scrubbing should be well mixed so that vapor phase values should not

be biased. In addition, without a significant amount of larger particles ($< 10 \mu$), particulate values should also not be biased.

- Due to the relatively large gas volume samples (300 scf), larger moisture impingers were used which required the use of Teflon connecting lines rather than fitted glass joints.
- Several gas sampling runs were voided due to wet or dislodged filters. All reported runs were satisfactorily obtained.
- The outlet duct gas velocity profile was performed twice a day (prior and post sampling with six traverse points) since during sampling only two points were monitored on the traverse. In all cases, the daily flow variation was less than three percent.

Particulate Loading

The 2.5 g/Nm³ grain loading measured at the ESP inlet (see Table 3-2) is about one-half of what would be expected, based on the coal ash fraction and an assumed 80/20 fly ash/bottom ash split. Since the measured grain loadings are internally consistent and six-point traverses were made (both horizontally and vertically) to collect each sample, it appears that the problem is systemic and unrelated to sampling. Either the grain loading of the gas extracted from the parent power plant is not representative or there is stratification of the ash in the ESP inlet duct.

One cause for the biased grain loading is stratification in the ESP inlet duct. Since a horizontal run of duct was sampled, the use of both vertical and horizontal traversing, as mandated by the method, may not be appropriate. If there is any vertical stratification (which would be expected in a horizontal duct with a 48 ft/sec gas velocity), the measured particulate loading would be biased low. It would be expected that the particulate loading would be higher in the lower portion of the duct; therefore, three-fourths of the traverse points would have lower than average particulate loadings. Other measurements made at this site using only vertical traverses have agreed well with the coal ash balance. Although no data are available, this anecdotal information is believed the most plausible explanation for the ash balance discrepancy.

The biased particulate loadings would affect the measured ESP/FGD system removals. Assuming that the particulate loading is twice what was measured and that the collected ash composition is representative, a calculated removal of 98% would actually be 99%, 99% would be 99.5%, and 99.8% would be 99.9%, etc. for a substance found in the solid phase only. The biased particulate loadings at the inlet do not affect the variance analysis at the FGD system outlet. Table 3-10 presents both measured and calculated removals. As shown, the relative differential is greatest for particulates.

Analytical Quality Control Results

Evaluation of the quality of the measurement data is based on quality control data obtained experimentally during sampling and analyses. Generally, the type of quality assessment information obtained pertains to measurement precision, accuracy (which includes bias and precision), and blank effects, determined using various types of replicate, spiked, and blank samples. The specific characteristics evaluated depend on the type of quality control checks performed. For example, blanks may be prepared at different stages in the sampling and analysis process to isolate the source of a blank effect. Similarly, replicate samples may be generated at different stages to isolate and measure the sources of variability. The QA/QC measures commonly used as part of the FCEM data assessment protocol, and the characteristic information obtained, are summarized in Table 4-1. The absence of any of these types of quality control checks does not necessarily reflect poorly on the quality of the data, but does limit the ability to measure the various components of measurement error.

As shown in the table, different QC checks provide different types of information, particularly pertaining to the sources of inaccuracy, imprecision, and blank effects. As part of FCEM, measurement precision and accuracy are typically estimated from QC indicators that include as much of the total sampling and analytical process as feasible. Precision and accuracy measurements are based primarily on the actual sample matrix. For purposes of comparability, the actual precision and accuracy estimates obtained experimentally during the test programs are compared with the data quality objectives (DQOs) established for the FCEM project.

These objectives are not intended to be used as validation criteria but rather as empirical estimates of the precision and accuracy that would be expected from existing reference measurement methods and that would be considered acceptable. Although analytical precision and accuracy are relatively easy to control and quantify, sampling precision and accuracy are unique to each site and each sample matrix. Data that do not meet these objectives are by no means unacceptable. Rather, the intent is to document the precision and accuracy actually obtained, and the objectives serve as a benchmark for comparison. The effects of not meeting the objectives should be considered in light of the intended use of the data.

Table 4-2 presents the types of quality control data reported for this site. The results for these analyses are in Appendix F. Table 4-3 presents a summary of the precision and accuracy estimates.

Analytical QA/QC

The QA/QC results from Site 21 indicate that the data are valid and meet the project data quality objectives; however, the following problems were identified in the QA/QC analyses:

Table 4-1
Types of Quality Control Samples

QC Activity	Characteristic Measured
<u>Precision</u>	
Replicate Samples collected over time under the same conditions	Total variability, including process or temporal, sampling, and analytical (but not bias)
Duplicate Field Samples collected simultaneously	Sampling plus analytical variability at the actual sample concentrations
Duplicate Analyses of a single sample	Analytical variability at the actual sample concentrations
Matrix- or media-spiked duplicates	Sampling plus analytical variability at an established concentration
Laboratory control sample duplicates	Analytical variability in the absence of sample matrix effects
Surrogate-spiked sample sets	Analytical variability in the sample matrix but at established concentrations
<u>Bias (Mean Measured Minus True)</u>	
Matrix-Spiked Samples	Average recovery of the spiked analyte in the sample matrix, indicating possible matrix interferences and other effects. In a single sample, includes both random error (imprecision) and systematic error (bias).
Media-Spiked Samples	Same as matrix-spiked samples. Used where a matrix spiked sample is not feasible, such as certain stack sampling methods.
Surrogate-Spiked Samples	Analyte recovery in the sample matrix, to the extent that the surrogate compounds are chemically similar to the compounds of interest. Primarily used as indicator of analytical efficacy.
Laboratory control samples (LCS)	Analyte recovery in the absence of actual sample matrix effects. Used as an indicator of analytical control.
<u>Blank Effects</u>	
Field Blank	Total sampling plus analytical blank effect, including sampling equipment and reagents, sample transport and storage, and analytical reagents and equipment.
Trip Blank	Blank effects arising from sample transport and storage. Typically used only for volatile organic compounds analyses.
Method Blank	Blank effects inherent in the analytical method, including reagents and equipment.
Reagent Blank	Blank effects from reagents used.

Table 4-2

Types of Quality Control Data Reported

Analysis	Replicate Runs	Precision				Accuracy				Blank			
		Duplicate Field Samples	Duplicate Lab Analysis	Matrix or Media Spiked Duplicate	Lab Control Sample Duplicate	Matrix or Media Spike	Surrogate Spike	Lab Control Sample	Field Blank	Trip Blank	Method Blank	Reagent Blank	
METALS													
<u>Coal</u>													
CVAAS	X				X								
GFAAS	X				X								
ICP-AES	X				X								
<u>ESP Inlet Gas, Solid Phase</u>													
CVAAS	X				X								
GFAAS	X				X								
ICP-AES	X				X								
<u>ESP Inlet Gas, Vapor Phase</u>													
GFAAS	X				X								
ICP-AES	X				X								
<u>Absorber Outlet Gas, Solid Phase</u>													
GFAAS	X				X								
ICP-AES	X				X								
ICP-MS	X				X								
<u>Absorber Outlet Gas, Vapor Phase</u>													
CVAAS	X				X								
GFAAS	X				X								
ICP-AES	X				X								
ICP-MS	X				X								

Table 4-2 (Continued)

Analysis	Replicate Runs	Precision			Accuracy			Blank			
		Duplicate Field Samples	Duplicate Lab Analysis	Matrix or Media Spiked Duplicate	Lab Control Sample Duplicate	Matrix or Media Spike	Surrogate Spike	Lab Control Sample	Field Blank	Trip Blank	Method Blank
ANIONS											
Coal	X										
<u>ESP Inlet Gas, Solid Phase</u>									X		
IC	X										
SIE	X								X		
<u>ESP Inlet Gas, Vapor Phase</u>											
IC	X					X	X	X			
SIE	X					X	X	X			
<u>Absorber Outlet Gas, Solid Phase</u>											
IC	X	X	X	X	X			X			
SIE	X	X	X	X	X			X			
<u>Absorber Outlet Gas, Vapor Phase</u>											
IC	X	X	X	X	X	X	X	X	X		
SIE	X	X	X	X	X	X	X	X	X		
PAHs								X	X		
<u>Absorber Outlet Gas</u>										X	
HRGCMS	X	X	X	X	X						

Table 4-3

Summary of Precision and Accuracy Estimates

Measurement Parameter	How Measured	Objectives		Measured	
		Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD) *	Accuracy (% Recovery)
		Precision and Accuracy - Matrix Spike Duplicates			
<u>Metals by CVAAS + GFAAS</u>					
<u>ESP Inlet</u>					
Arsenic	20	75-125	1.8	90	
Cadmium	20	75-125	7.9	87	
Lead	20	75-125	17	75	
Mercury	20	75-125	0.9	108	
Nickel	20	75-125	5.1	92	
Selenium	20	75-125	12	71	
<u>Absorber Outlet</u>					
Arsenic	20	75-125	11	81	
Cadmium	20	75-125	7.0	112	
Lead	20	75-125	16	98	
Mercury	20	75-125	4.6	90	
Nickel	20	75-125	9.0	90	
Selenium	20	75-125	15	67	
Precision and Accuracy - Matrix Spike Duplicates					
<u>Metals by ICP-AES</u>					
<u>ESP Inlet</u>					
Arsenic	20	75-125	2.7	98	
Barium	20	75-125	2.7	84	
Beryllium	20	75-125	1.1	90	
Cadmium	20	75-125	7.0	93	
Chromium	20	75-125	1.0	93	
Cobalt	20	75-125	1.9	96	

Table 4-3 (Continued)

Measurement Parameter	How Measured	Objectives		Measured	
		Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD) *	Accuracy (% Recovery)
Copper		20	75-125	1.3	96
Lead		20	75-125	0.4	93
Manganese		20	75-125	0.9	95
Molybdenum		20	75-125	2.8	104
Nickel		20	75-125	3.9	95
Vanadium		20	75-125	1.7	95
Metals by ICP-AES					
Precision and Accuracy - Matrix Spike Duplicates					
Scrubber Outlet					
Arsenic		20	75-125	4.3	105
Barium		20	75-125	1.7	86
Beryllium		20	75-125	0.3	93
Cadmium		20	75-125	0.7	94
Chromium		20	75-125	9.4	105
Cobalt		20	75-125	0.7	94
Copper		20	75-125	0.9	95
Lead		20	75-125	5.7	90
Manganese		20	75-125	0.8	93
Molybdenum		20	75-125	0.7	97
Nickel		20	75-125	3.0	97
Vanadium		20	75-125	0.9	95
Metals by ICP-MS - Microwave Digestion					
Precision and Accuracy - Laboratory Control Samples					
Liquids					
Arsenic		20	75-125	21	55
Beryllium		20	75-125	22	60
Cadmium		20	75-125	2.2	54
Chromium		20	75-125	23	55

Table 4-3 (Continued)

Measurement Parameter	How Measured	Objectives		Measured	
		Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD) *	Accuracy (% Recovery)
Nickel		20	75-125	16	400
Lead		20	75-125	18	91
Selenium		20	75-125	6.5	128
Metals by ICP-MS - Method 3020					
Precision and Accuracy - Matrix-Spike Duplicate					
Liquids					
Arsenic		20	75-125	12	76
Beryllium		20	75-125	NA ^b	NA
Cadmium		20	75-125	7	96
Chromium		20	75-125	13	69
Mercury		20	75-125	NA	NA
Nickel		20	75-125	11	80
Lead		20	75-125	74	205
Selenium		20	75-125	15	294
Metals by ICP-AES					
Precision and Accuracy - Laboratory Control Samples					
Filters					
Barium		20	75-125	4.1	77
Beryllium		20	75-125	2.0	92
Cobalt		20	75-125	6.8	87
Chromium		20	75-125	1.1	84
Copper		20	75-125	3.3	82
Manganese		20	75-125	1.5	87
Nickel		20	75-125	5.2	91
Lead		20	75-125	NA	122
Vanadium		20	75-125	2.4	88

Table 4-3 (Continued)

Measurement Parameter	How Measured	Objectives				Measured	
		Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)•	Accuracy (% Recovery)		
Metals by ICP-MS - Microwave Digestion							
Filters							
Arsenic	20	75-125	2.7	54	54		
Beryllium	20	75-125	15	65	65		
Cadmium	20	75-125	0.4	68	68		
Chromium	20	75-125	10	20	20		
Mercury	20	75-125	20	1500	1500		
Nickel	20	75-125	11	470	470		
Lead	20	75-125	6.2	97	97		
Selenium	20	75-125	23	111	111		
Metals in Coal							
Precision and Accuracy - Laboratory Control Samples							
CVAAS & GFAAS							
Arsenic	20	85-115	3.4	119	119		
Cadmium	20	85-115	5.3	106	106		
Lead	20	85-115	1.4	92	92		
Mercury	20	85-115	2.8	109	109		
Nickel	20	85-115	6.2	111	111		
Selenium	20	85-115	21.4	91	91		
ICP-AES							
Beryllium	20	90-110	4.1	95	95		
Chromium	20	90-110	9.5	103	103		
Lead	20	90-110	22.2	88	88		
Nickel	20	90-110	10.1	102	102		

Table 4-3 (Continued)

Measurement Parameter	How Measured	Objectives		Measured	
		Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)*	Accuracy (% Recovery)
Metals by CVAAS & GFAAS					
Solids					
Arsenic	20	85-115	3.4	119	
Cadmium	20	85-115	5.3	106	
Mercury	20	85-115	2.8	109	
Nickel	20	85-115	6.2	111	
Lead	20	85-115	1.4	92	
Selenium	20	85-115	21.4	91	
Liquids					
Arsenic	20	85-115	6.1	92	
Cadmium	20	85-115	12	98	
Mercury	20	85-115	3.2	100	
Nickel	20	85-115	6.5	93	
Lead	20	85-115	7.0	97	
Selenium	20	85-115	6.5	96	
Metals by ICP-AES					
Solids					
Barium	20	90-110	4.2	87	
Beryllium	20	90-110	4.1	95	
Cobalt	20	90-110	11	91	
Chromium	20	90-110	10	103	
Copper	20	90-110	3.8	93	
Manganese	20	90-110	1.6	91	
Nickel	20	90-110	10	102	
Lead	20	90-110	22	88	
Vanadium	20	90-110	2.9	93	

Table 4-3 (Continued)

Measurement Parameter	How Measured	Precision and Accuracy - Laboratory Control Samples		Measured	
		Precision (% RPD)	Objectives Accuracy (% Recovery)	Precision (% RPD)*	Accuracy (% Recovery)
Metals by ICP-AES					
<u>Liquids</u>					
Arsenic	20	90-110	0.3	98	
Barium	20	90-110	0.5	102	
Beryllium	20	90-110	0.7	100	
Cadmium	20	90-110	1.8	101	
Cobalt	20	90-110	1.6	100	
Chromium	20	90-110	0.7	99	
Copper	20	90-110	0.3	100	
Manganese	20	90-110	1.2	99	
Nickel	20	90-110	2.4	101	
Lead	20	90-110	0.4	101	
Vanadium	20	90-110	1.6	102	
PAHs in Outlet Gas (Condensate)					
Precision - Data Not Available					
Accuracy - Matrix Spike					
Acenaphthalene	40	50-150	NA	84	
Acenaphthene	40	50-150	NA	82	
Fluorene	40	50-150	NA	118	
Phenanthrene	40	50-150	NA	84	
Anthracene	40	50-150	NA	86	
Fluoranthene	40	50-150	NA	79	
Pyrene	40	50-150	NA	81	
Benzo(a)anthracene	40	50-150	NA	64	
Chrysene	40	50-150	NA	75	
5-methyl chrysene	40	50-150	NA	78	
Benzo(b,j&k)fluoranthenes	40	50-150	NA	71	
Benzo(a)pyrene	40	50-150	NA	66	

Table 4-3 (Continued)

Measurement Parameter	How Measured	Objectives			Measured	
		Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)*	Accuracy (% Recovery)	
Dibenz(a,h)acridine		40	50-150	NA	92	
Benz(a,i)acridine		40	50-150	NA	57	
Indeno(1,2,3-cd)pyrene		40	50-150	NA	48	
Dibenz(a,h)anthracene		40	50-150	NA	88	
7H-dibenzo(c,g)carbazole		40	50-150	NA	74	
Benzo(g,h,i)perylene		40	50-150	NA	75	
Dibenz(a,e)pyrene		40	50-150	NA	50	
Dibenz(a,i)pyrene		40	50-150	NA	35	
Dibenz(a,h)pyrene		40	50-150	NA	18	
PAHs in Outlet Gas (XAD Resin)	Precision and Accuracy - Matrix Spike Duplicates					
Acenaphthalene		40	50-150	16	90	
Acenaphthene		40	50-150	18	89	
Fluorene		40	50-150	19	91	
Phenanthrene		40	50-150	14	101	
Anthracene		40	50-150	12	94	
Fluoranthene		40	50-150	8.1	87	
Pyrene		40	50-150	11	93	
Benzo(a)anthracene		40	50-150	9.3	81	
Chrysene		40	50-150	15	90	
5-methyl chrysene		40	50-150	28	88	
Benzo(b,j&k)fluoranthenes		40	50-150	14	83	
Benzo(a)pyrene		40	50-150	14	78	
Dibenz(a,h)acridine		40	50-150	14	86	
Dibenz(a,i)acridine		40	50-150	18	76	
Indeno(1,2,3-cd)pyrene		40	50-150	8.4	75	
Dibenz(a,h)anthracene		40	50-150	8.1	95	
7H-dibenzo(c,g)carbazole		40	50-150	15	91	

Table 4-3 (Continued)

Measurement Parameter	How Measured	Objectives		Measured	
		Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)*	Accuracy (% Recovery)
Benzo(g,h,i)perylene		40	50-150	8.0	85
Dibenz(a,e)pyrene		40	50-150	26	93
Dibenz(a,i)pyrene		40	50-150	12	88
Dibenz(a,h)pyrene		40	50-150	19	63
Anions in ESP Inlet and Scrubber Outlet	Precision and Accuracy - Matrix Spike Duplicates				
Chloride	20	80-120	5.0	101	
Fluoride	20	80-120	3.1	93	
Sulfate	20	80-120	5.2	98	

*RPD = Relative percent difference.

bNA = Not available.

- A significant quantity of phenanthrene was detected in the XAD trip blanks (see Appendix G for a relative comparison of measured and blank phenanthrene results);
- Laboratory check samples (LCS) and matrix-spike samples (MS) indicate a high and significant bias in the ICP-MS data; and
- Lab control sample data suggest a possible high bias in the coal mercury results (CVAAS) (see Table F-2, page F-16), while spike recovery data indicate a possible low bias in the flue gas selenium results by GFAAS.

Precision estimates shown in Table 4-3 are based on replicate spiked sample analyses. Duplicate analyses were also performed on a number of samples; these are summarized in Appendix F.

Accuracy estimates in this study are based on the recovery of an analyte spiked into a sample or sample medium. These results are summarized in Table 4-3. Surrogate spike recoveries for PAH analyses are summarized in Appendix F.

A discussion of precision and accuracy appears below for each measurement type.

Precision is a measure of the reproducibility of measurements under a given set of conditions. It is expressed in terms of the distribution, or scatter, of the data, calculated as the standard deviation and coefficient of variation (standard deviation divided by the mean). For duplicates, precision is expressed as the relative percent difference (RPD).

Accuracy is a measure of the deviation from a measurement result and the "true" or expected value. In a single measurement, accuracy includes components of both random error, or imprecision, and systematic error, or bias. The average of several recovery values tends toward a limiting mean, which is an estimate of the bias, or persistent positive or negative deviation from the "true" value of the collected sample only, not of the stream sampled, and then only of a single laboratory. No estimate is made of the bias between laboratories in this study. Bias estimates from spike recoveries only include the error in the measurement process from the point where the spike was introduced through the succeeding steps in the analytical procedure. Bias introduced by sampling and by autocorrelation effects of the sampled population cannot be found since the "true" mean value of the sampled population (the flue gas) is not known.

The efficiency of the analytical procedure in the sample matrix is quantified by the analysis of spiked samples containing target or indicator analytes or other quality assurance measures, as necessary. Spiked samples usually provide a measure of accuracy or bias at medium concentration levels, expressed as percent recovery; blank samples also provide a measure of bias, although at low or near-detection levels.

Metals

Precision. Table 4-3 lists the objectives for the reported precision of the metals analytical data. When the analyte levels were sufficiently above the detection limit, duplicate precision was within acceptance criteria. Higher relative variability is typically a consequence of values at or below the detection limit.

Accuracy. Table 4-3 lists the objectives for and the reported accuracy of the metals analytical data. In flue gas samples that were spiked, recoveries of metals by absorption (GFAAS and CVAAS) techniques were generally within the objectives, except for selenium, for which recoveries were slightly low, averaging about 70% recovery. The average recoveries for metals in flue gas samples that were spiked then analyzed by ICP-AES were all within the recovery objective.

Laboratory control sample results show acceptable recoveries for metals in solids representing coal by both absorption and emission (ICP-AES) spectroscopy. Laboratory control sample results were also within the objectives for solids and liquids associated with gas sample analyses by CVAAS, GFAAS, and ICP-AES. Results for metals analyses by ICP-MS, although more sensitive than ICP-AES, showed significantly lower average recoveries for several of the metals, except nickel in the solid phase and both nickel and selenium in the impinger solution samples, which were exceedingly high and effectively not useable.

Appendix F (Table F-2) contains accuracy estimates for mercury in coal, based on analysis of coal standards (SARM 18, 19, and 20) at three different concentrations. The results showed 130% recovery at the lowest concentration (0.04 ppm), 96% at 0.2 ppm, and 87% at 0.25 ppm. These data show acceptable measurements for mercury in coal. The mean sample value was 0.15 ppm.

Blank Effects. Blank results are summarized in Appendix F. Appendix G shows the relationship of blank to sample results and the blank corrections applied.

PAHs

Precision. The precision estimates for PAH analyses summarized in Table 4-3 are based on matrix spike duplicate analyses of XAD resin. The repeatability for all 21 analytes reported was within the precision objective.

Accuracy. Table 4-3 lists the objective for and the reported accuracy of the semi-VOST analyses. The accuracy estimates are based on the recovery of matrix spikes in condensate and XAD resin. All recoveries were within the objective for the XAD resin spikes. Three out of the 21 results in the spiked condensate were below the objective.

Blank Effects. Appendix F summarizes the blank results for PAH analyses. Many below-detection-limit measurement values were reported. The concentrations in the blanks were extremely low, typically not exceeding five times the method detection limit

and, more often, well below. The phenanthrene concentration was relatively high in the blanks, reported at approximately 3-9 ng/sample in the laboratory XAD blank, and from 25-40 ng/sample in XAD trip blanks. Acenaphthene, fluorene, anthracene, fluoranthene, and pyrene were also detected in the XAD trip blanks in the 10 ng/sample range.

Anions

Precision. Table 4-3 lists the objective for and the reported precision of the acid gas (anion) analyses. Precision estimates are based on matrix-spiked duplicate sample analysis. The precision measured was well within the objective.

Accuracy. Table 4-3 lists the objective for and the reported accuracy of the acid gas analyses. The accuracy estimates are based on the recovery from samples spiked with the analyte of interest. The accuracy measured was well within the recovery objectives.

Blank Effects. Blank sample results for anions are summarized in Appendix F. The concentrations detected were on the order of 0.01 mg/L and reveal no contamination concerns.

Comparison of Analytical Methods

Two alternative methods for metals analyses were evaluated at Site 21: ICP-MS and impinger concentration followed by GFAAS or ICP-AES.

Historically, three analytical techniques have been used to analyze for the FCEM target metals. Because of its greater sensitivity, GFAAS is used to analyze for arsenic, cadmium, lead, nickel, and selenium; CVAAS is used for mercury; and ICP-AES is used for the others. ICP-MS, which is sensitive enough for all of the target elements (except mercury), was investigated as an alternative analytical method at Site 21. ICP-MS analyses were done on both the front half (solid phase) and back half (impinger catch) of all eight of the multi-metals trains at the absorber outlet.

The multi-metals method specifies that the impinger solutions be concentrated before analysis to lower the detection limits. In past FCEM efforts, the detection limits were adequate to meet the desired gas phase detection level of 20 $\mu\text{g}/\text{Nm}^3$ without concentration. At Site 21, a portion of the impinger solutions from the eight absorber outlet metals trains was concentrated and then analyzed by the standard GFAAS or ICP-AES methods to compare concentrated and unconcentrated results.

Table 4-4 presents a comparison of GFAAS and ICP-AES to ICP-MS analytical results for the solid phase fraction. These data show that the ICP-MS results are consistently higher than the standard GFAAS or ICP-AES results. This could be caused by an analytical inference in the sample matrix. In addition, QA spike recoveries for a laboratory control sample (LCS) were generally below the data quality objectives, which indicates a method (sample preparation/analysis) bias may exist. The LCS is a blank filter that is prepared in a standardized aqueous solution. Since the entire sample filters

Table 4-4

Comparison of ICP-MS to Standard Methods
for Stack Gas Solid Phase ($\mu\text{g}/\text{Nm}^3$)

<u>Method</u>	<u>Substance</u>	<u>Mean</u>	<u>95% CI</u>
GFAAS	Arsenic	7.41	0.77
ICP-MS	Arsenic	9.83	3.17
ICP-AES	Beryllium	0.14	0.01
ICP-MS	Beryllium	0.41	0.38
GFAAS	Cadmium	0.14	0.02
ICP-MS	Cadmium	0.21	0.08
ICP-AES	Chromium	3.28	0.32
ICP-MS	Chromium	5.17	1.54
GFAAS	Lead	1.33	0.17
ICP-MS	Lead	3.49	0.93
GFAAS	Nickel	1.70	0.18
ICP-MS	Nickel	6.36	1.93
GFAAS	Selenium	9.6	4.6
ICP-MS	Selenium	13.50	12.03

CI = Confidence interval.

were digested, it was not possible to prepare matrix spike/duplicate QA samples for analysis. The matrix spike and matrix spike duplicate (MS/MSD) sample may have been able to indicate if interferences or method biases were responsible for these poor results. Also, the precision of the ICP-MS results is lower, as shown by the larger confidence intervals. For these reasons, the ICP-MS results were not presented in Section 3.

The impingers (vapor phase fraction) were analyzed by:

- ICP-MS (not concentrated);
- GFAAS or ICP-AES (not concentrated); and
- GFAAS or ICP-AES (concentrated).

The results for the vapor-phase fractions appear in Table 4-5. (Barium, cobalt, copper, manganese, molybdenum, and vanadium were not analyzed by ICP-MS. Only concentrated and unconcentrated ICP-AES measurements were made.) These results show that, except for selenium, for analyte concentrations above the detection limit, ICP-MS and the unconcentrated standard methods are within a factor of two and have similar confidence interval-to-mean value ratios. Also, the analytes not detected by standard methods (arsenic and chromium) were detected by ICP-MS at or below the standard method detection limits. Selenium concentrations measured by ICP-MS were higher than those measured by GFAAS. Because of interference from argon in the plasma, the selenium values by ICP-MS are probably biased high.

Of the nine analytes in Table 4-5 detected by unconcentrated standard methods, four (beryllium, cadmium, cobalt, and lead) were measured at significantly lower levels (<20% of the mean value) when the impinger solutions were concentrated before analysis, one was measured at a higher level (selenium was 10 times higher), and four (barium, copper, manganese and nickel) were not significantly different. The significant decrease in the measured concentrations of the four analytes after concentration of the impinger solutions suggests: 1) volatilization and loss of these specific compounds; 2) the formation of an insoluble form of the compounds; or 3) precipitation of the compounds on glassware during the concentration process. The reason for the higher selenium values seen after concentration is not known. An explanation may be that an interfering substance becomes more of a problem as its level increases by concentration, although likely substances have not been identified. The four analytes not detected by the standard methods (arsenic, chromium, molybdenum, and vanadium) were detected when the impingers were concentrated before analysis.

Further study is needed to address the apparent bias problem associated with analysis of the solid-phase fraction of the metals trains by ICP-MS before this method can be used as the primary means of analysis. Since ICP-MS and the standard GFAAS and ICP-AES methods agree relatively well for the analysis of impinger solutions, an interference from one or more of the major substances (aluminum, iron, etc.) digested in the solid-phase fraction may be responsible for the solid-phase bias. Because of an apparent loss of a

Table 4-5

Comparison of ICP-MS and Impinger Solution Concentration^a to Standard Methods for Stack Gas Vapor Phase (µg/Nm³)

<u>Method</u>	<u>Analyte</u>	<u>Mean</u>	<u>95% CI</u>
GFAAS	Arsenic	ND(0.3)	—
ICP-MS	Arsenic	0.27	0.35
Conc/GFAAS	Arsenic	0.27	0.41
ICP-AES	Barium	0.28	0.26
Conc/ICP-AES	Barium	0.16	0.16
ICP-AES	Beryllium	0.02	0.03
ICP-MS	Beryllium	0.01	0.01
Conc/ICP-AES	Beryllium	0.004	0.01
GFAAS	Cadmium	0.56	0.35
ICP-MS	Cadmium	0.43	0.29
Conc/GFAAS	Cadmium	0.06	0.04
ICP-AES	Chromium	ND(0.5)	—
ICP-MS	Chromium	0.36	0.16
Conc/ICP-AES	Chromium	0.35	0.17
ICP-AES	Cobalt	4.67	3.27
Conc/ICP-AES	Cobalt	0.16	0.07
ICP-AES	Copper	0.71	0.22
Conc/ICP-AES	Copper	0.24	0.11
GFAAS	Lead	6.42	7.06
ICP-MS	Lead	6.62	6.16
Conc/GFAAS	Lead	0.08	0.05

Table 4-5 (Continued)

<u>Method</u>	<u>Analyte</u>	<u>Mean</u>	<u>95% CI</u>
ICP-AES	Manganese	17.41	19.32
Conc/ICP-AES	Manganese	8.60	12.28
ICP-AES	Molybdenum	ND(0.9)	--
Conc/ICP-AES	Molybdenum	0.04	0.04
GFAAS	Nickel	0.46	0.43
ICP-MS	Nickel	0.81	0.36
Conc/GFAAS	Nickel	0.55	0.34
GFAAS	Selenium	2.59	0.79
ICP-MS	Selenium	35.60	15.04
Conc/GFAAS	Selenium	24.99	9.04
ICP-AES	Vanadium	ND(0.8)	--
Conc/ICP-AES	Vanadium	0.20	0.33

*Impinger solutions concentrated by a factor of 25.

ND = Not detected. Method detection limit shown in parentheses.

Conc = Concentration of impinger solutions followed by analysis by GFAAS or ICP-AES.

CI = Confidence interval.

large portion of some analytes during concentration of the impinger solutions, this procedure is not recommended as a way to improve detection limits for vapor-phase metals. Therefore, the unconcentrated standard method results were selected for presentation in Section 3 for the vapor-phase results.

Section 5

DATA PRECISION AND ANALYSIS OF VARIANCE

One of the primary objectives of the Site 21 sampling effort was to characterize the precision of the analytical results. At the ESP inlet, only replicate samples were taken; therefore, the overall precision (day-to-day sampling/preparation, and analytical variability) is expressed using the coefficient of variation (CV). The CV is the ratio of the sample population standard deviation divided by the mean. Using the appropriate "t" value for the number of samples allows the calculation of confidence intervals. At the absorber outlet, data were collected to allow a nested experimental analysis of variance (ANOVA) to be conducted for each analyte. This analysis is used in conjunction with the coefficient of variation (CV) to evaluate the precision of the data for each substance. The ANOVA allows the magnitude of the components of variance to be determined. Refer to Appendix H for a discussion of the ANOVA technique.

ESP Inlet Data

Coefficients of variation for the six combined (solid- and vapor-phase) ESP inlet metals and anions runs are shown in Table 5-1. The CVs for substances found mainly in the solid phase are between 15 and 30 percent. For the substances found predominately in the vapor phase (mercury, HCl, and HF), the CVs range from 7 to 21 percent.

With six samples, a 15% CV is equivalent to a 95% confidence interval (CI) of $\pm 15\%$ of the mean value. Assuming the same population variance, the measurement uncertainty can be predicted for fewer numbers of samples. For example, with the three samples normally collected at FCEM sites, the 95% CI will increase from 15% to 36% of the mean. It would be useful if the data from Site 21 could be used to predict variance at other sites as a function of the number of samples collected. If this were possible, by defining a precision objective, the required number of measurements could be made. However, it is also necessary that the interlaboratory precision and bias be established for all of the sampling and analysis steps (probe collection, recovery, preparation and analysis for each sample train). Only in this way can a determination at each site of the representativeness of the sample collected by the probe and its possible time dependency and the variability and bias of the entire sampling/measurement process be separated from the day-to-day variability.

The evaluation of high-dust gas solid phase data from other FCEM sites (11, 12, 14, and 15) indicates that the 15-30% CV range seen at Site 21 is on the low end of what has typically been found. Also, because of the relatively small sample set normally obtained at other sites, the range of CVs is much wider; therefore, it cannot be shown that the variances at the FCEM sites are similar (the CVs cannot be pooled). Although the

Table 5-1
ESP Inlet Combined Coefficient of Variation

Substance	CV %
Arsenic	26
Barium	18
Beryllium	18
Cadmium	25
Chloride	21
Chromium	23
Cobalt	16
Copper	16
Fluoride	7
Lead	15
Manganese	28
Mercury	11
Molybdenum	27
Nickel	18
Selenium	19
Titanium	17
Vanadium	16

15-30% CV is representative of the population at the ESP inlet sampled at Site 21, there is no statistical basis to confirm that these data can be used to predict the variability of high-dust gas results obtained at future sites. As discussed in Section 4, the accuracy of the results measured at the ESP inlet are possibly biased by 50% due to stratification in the duct. These phenomena make the relatively small CVs measured all the more remarkable. It also indicates that using statistical evaluation of only a portion of the error terms included in the overall measurement of the true concentration in the stream sampled can produce "acceptable" results that may not be physically correct and thus are an artifact of the abbreviated measurement process itself.

Absorber Outlet Gas

The evaluation of the absorber outlet gas results is divided into three sections: semi-volatile organic compounds, solid-phase metals and anions, and vapor-phase metals and anions. A CV analysis and an ANOVA was completed for each substance.

Figure 5-1 shows the nested experimental design used to collect data for the ANOVA of the absorber outlet results. The ANOVA provides a breakdown of variance into a day-to-day or process component, a sampling and sample preparation component, and an analytical component. The analytical component represents only instrument variability; variance resulting from sample location, equipment, sample recovery, digestion, extractions, and handling are included in the sampling and preparation component. All other variance is attributed to day-to-day differences (varying fuel and process conditions). A description of the ANOVA analysis and a summary of the calculated variance components for each substance is included in Appendix H. In the following discussion, the results are discussed generally rather than element by element.

In this analysis, a random number between zero and the method detection limit (MDL), with an equal probability for any number in this range, was used for runs in which an analyte was not detected. A constant value such as zero, the MDL, or one-half the MDL was not used, since this would artificially bias the population variance in most cases. A probability distribution for the random number based on detected values or on some other maximum likelihood estimator (MLE) method was not used, since reliable distributions could not be predicted with the available data. This methodology may overestimate the analytical variability component when some of the values are not detected, i.e., if a substance is detected in some of the samples, the probability is high that it is present in all samples. Allowing "zero" or close to zero values using the random equal probability approach may overestimate the variability. Conversely, if a substance is never detected, the random approach will overestimate the variability by having values near the detection limit.

Semivolatile Organic Compounds

CVs for the semivolatile organic compounds are shown in Figure 5-2. The CVs are generally about 100 percent. The results of the ANOVA are presented in Figure 5-3, which shows that for 5-methyl chrysene (as an example), 6.5% of the variance is due to

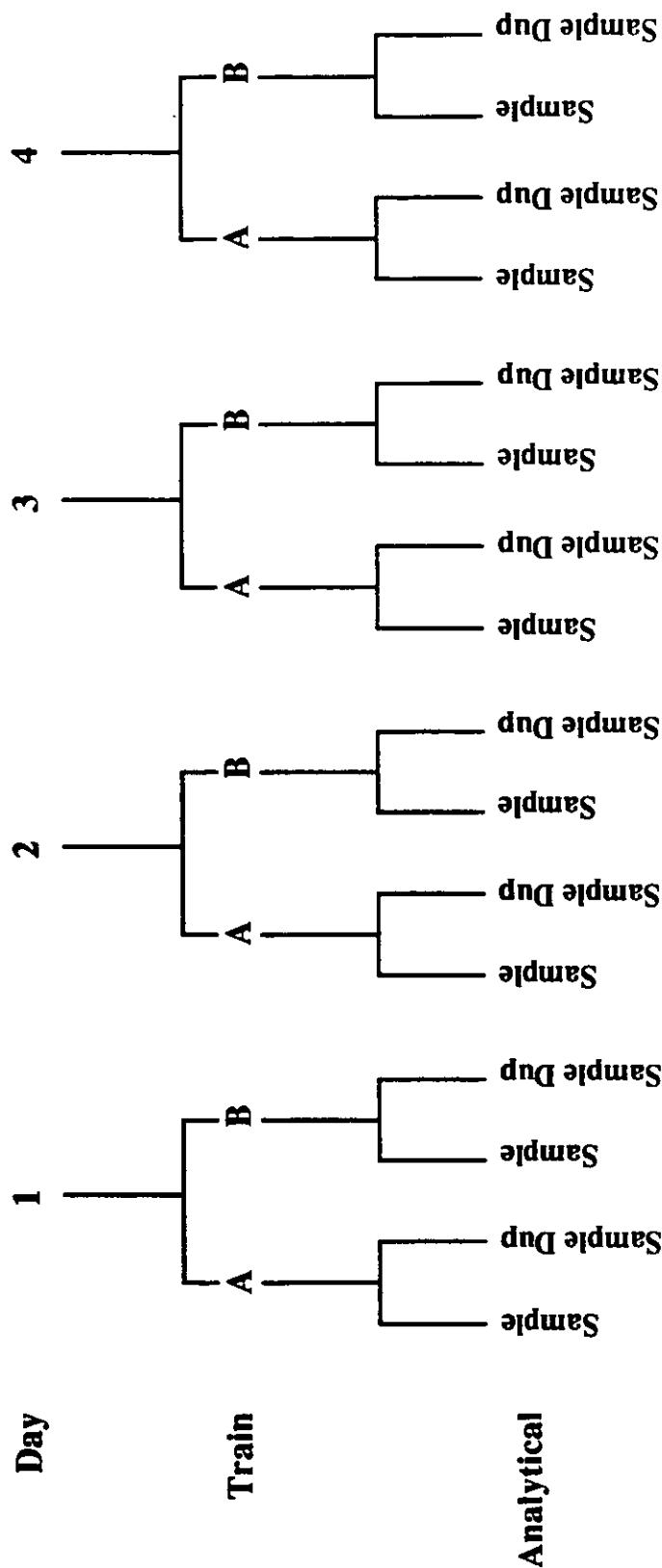
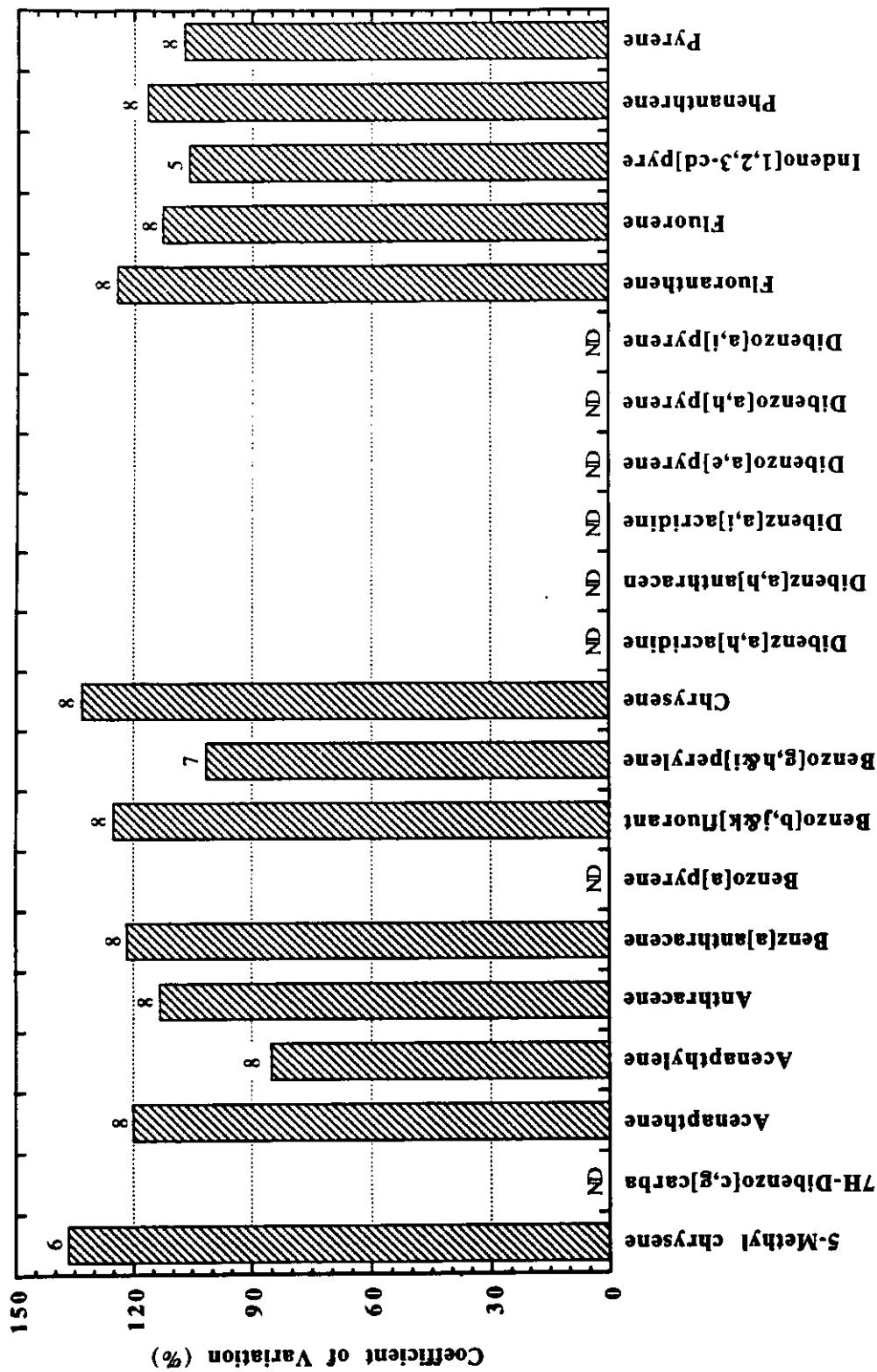
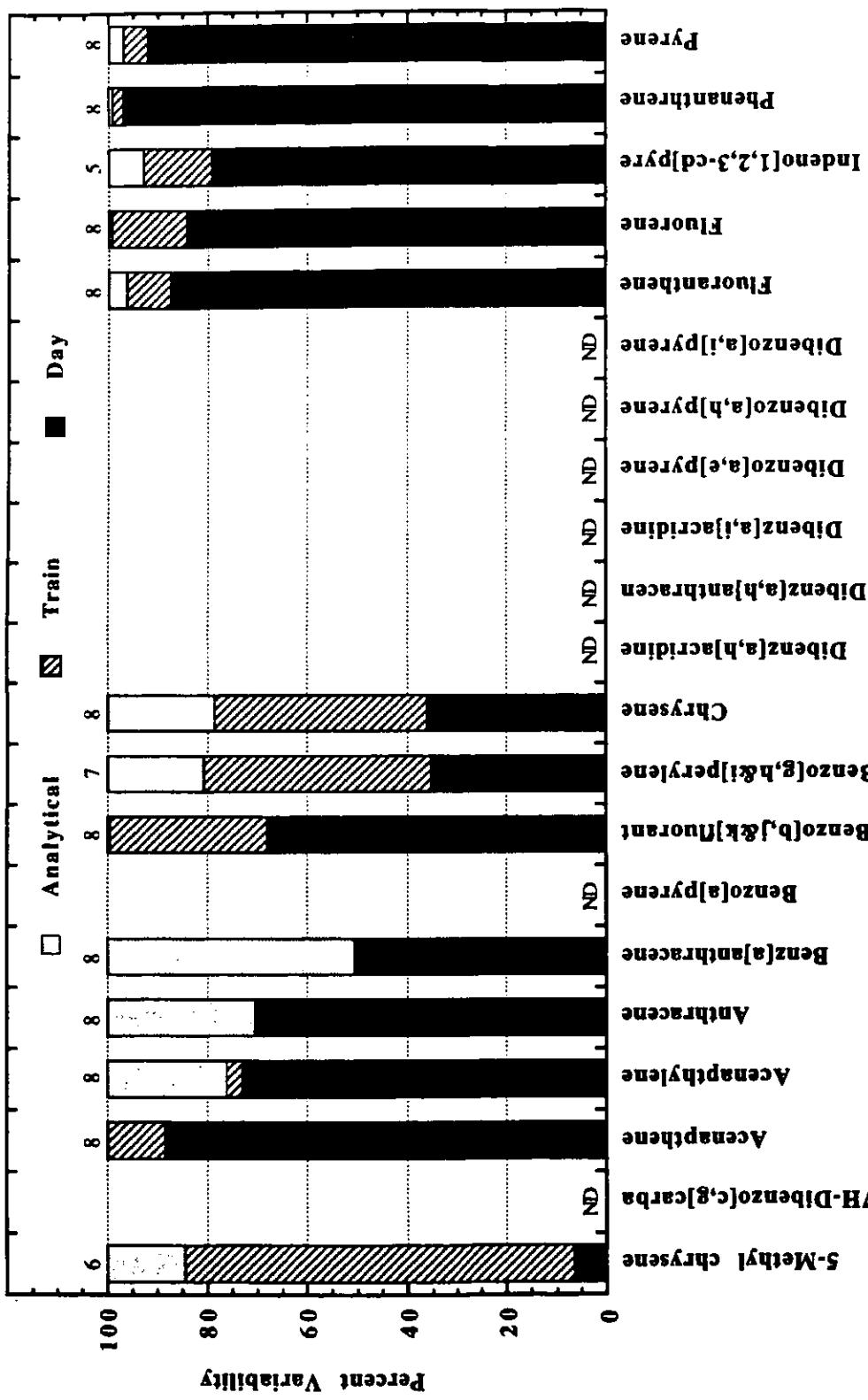




Figure 5-1. FCEM Site 21 Analysis of Variance Experimental Design, Absorber Outlet Gas

ND = Substance was not detected (mean less than detection limit). Number indicates how many of the eight samples had results greater than the detection limit.

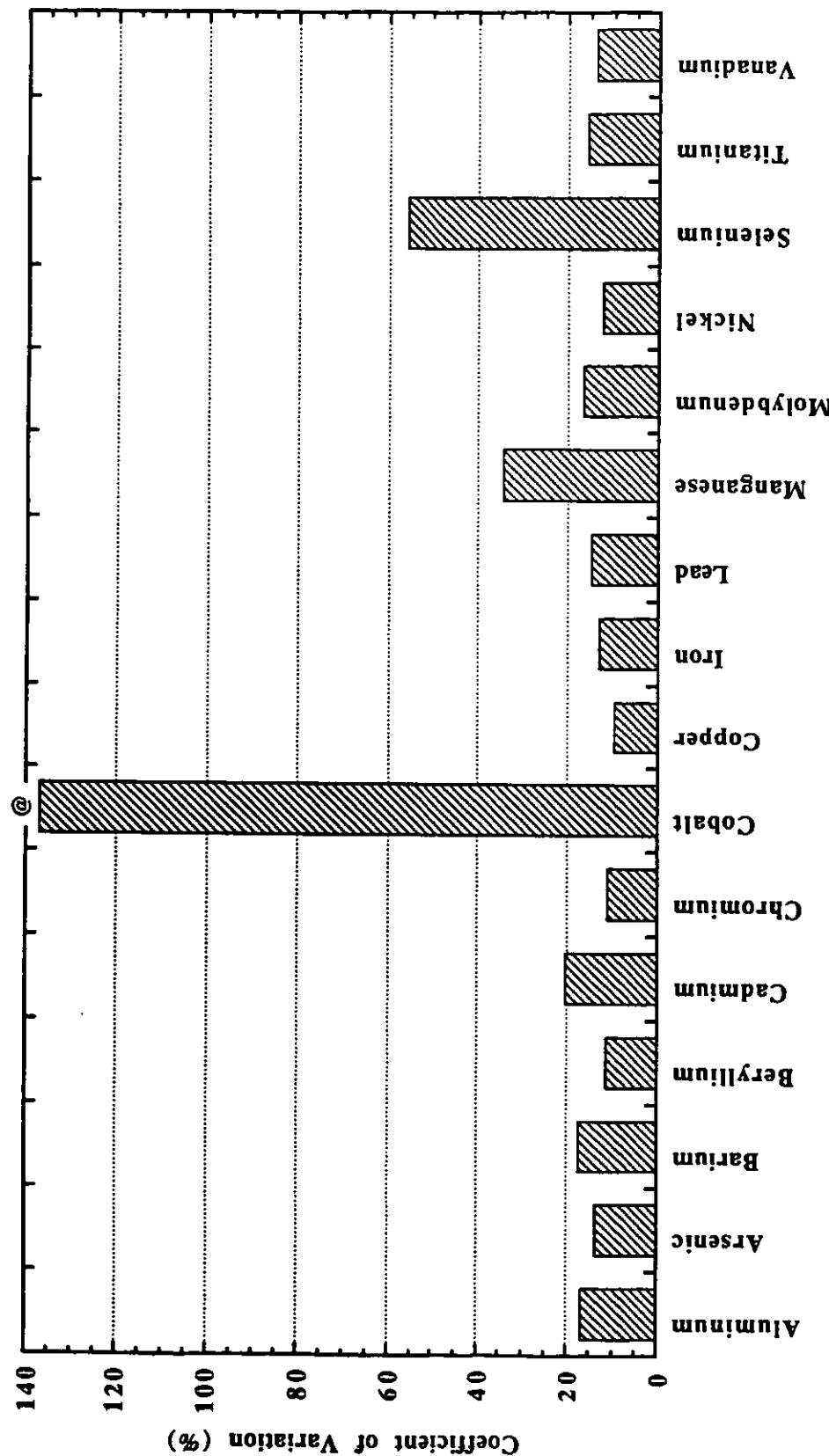
Figure 5-2. FCEM Site 21 - Semivolatile Organic Compounds Coefficient of Variation

ND = Substance was not detected (mean less than detection limit). Number indicates how many of the eight samples had results greater than the detection limit.

Figure 5-3. FCEM Site 21 - Semivolatile Organic Compounds Percentages of Variability

day-to-day fluctuations, 78% is due to sampling (including sample preparation), and 15.5% is due to analytical variation. For the analytes detected in all eight samples, such as acenaphthene, fluorene, and phenanthrene, the major source of variance was the sample date.

In other words, there was more variability between sampling days than between duplicate trains or duplicate analyses. This might be expected, since the emissions of organic compounds from a coal-fired boiler are not related to any type of mass balance constraint, as are the emitted metals and anions. Organic emissions are related to boiler operation or fuel quality. Discrete events of low excess air, or flow distribution problems associated with small load or fuel changes could result in higher organic emissions for that period. Although there is no indication that the power plant boiler was operating atypically while the Run 2 samples were being collected, Table 3-8 clearly shows that the emissions for that day (August 19, 1992) were much higher than for the other three.


For the MMS analytes with values near the method detection limit or the method blank value (the average run values are compared with the blank values in Appendix G), analytical variance contributes more to the overall variability. This is expected, since near the detection limit, or sampling media background (blank), instrument noise is significant. Random errors in sample recovery and background ambient contamination contribute a portion of this instrument noise. Also, with significant values in the "not detected" range, the variability contribution from the random equal probability numbers is significant.

Solid-Phase Metals

Standard Analytical Procedures

Figure 5-4 shows the CVs for solid phase metals. As shown in the figure, most of the CVs are less than 20 percent. Selenium, cobalt, and manganese have CVs greater than 20 percent. Aluminum, iron, and titanium are included to represent the major constituents of the boiler ash fraction of the collected solids. The higher CV for cobalt is related to the low measured values and one apparent outlier (Run 7b). Cobalt was less than five times the MDL in five of the eight runs and a factor of 10 higher than the average in Run 7b. A Dixon's¹ ratio test for outliers indicates, that with a confidence of more than 99%, this point is an outlier. Eliminating this point decreases the cobalt CV to 17%, and most of the variance is attributed to the day of testing. The higher manganese CV can also be explained since the Run 7b value is considered to be an outlier, with a confidence greater than 99 percent. Without this point, the manganese CV is 13 percent. The reason for the higher CV for selenium is not apparent. However, since the analytical duplicates agreed well, and sampling variance for the other metals is low, a

¹Crow, E.L., F.A. Davis, and M.W. Maxfield. "Statistics Manual," Research Department, U.S. Naval Ordnance Test Station, Dover Publications, New York, 1960.

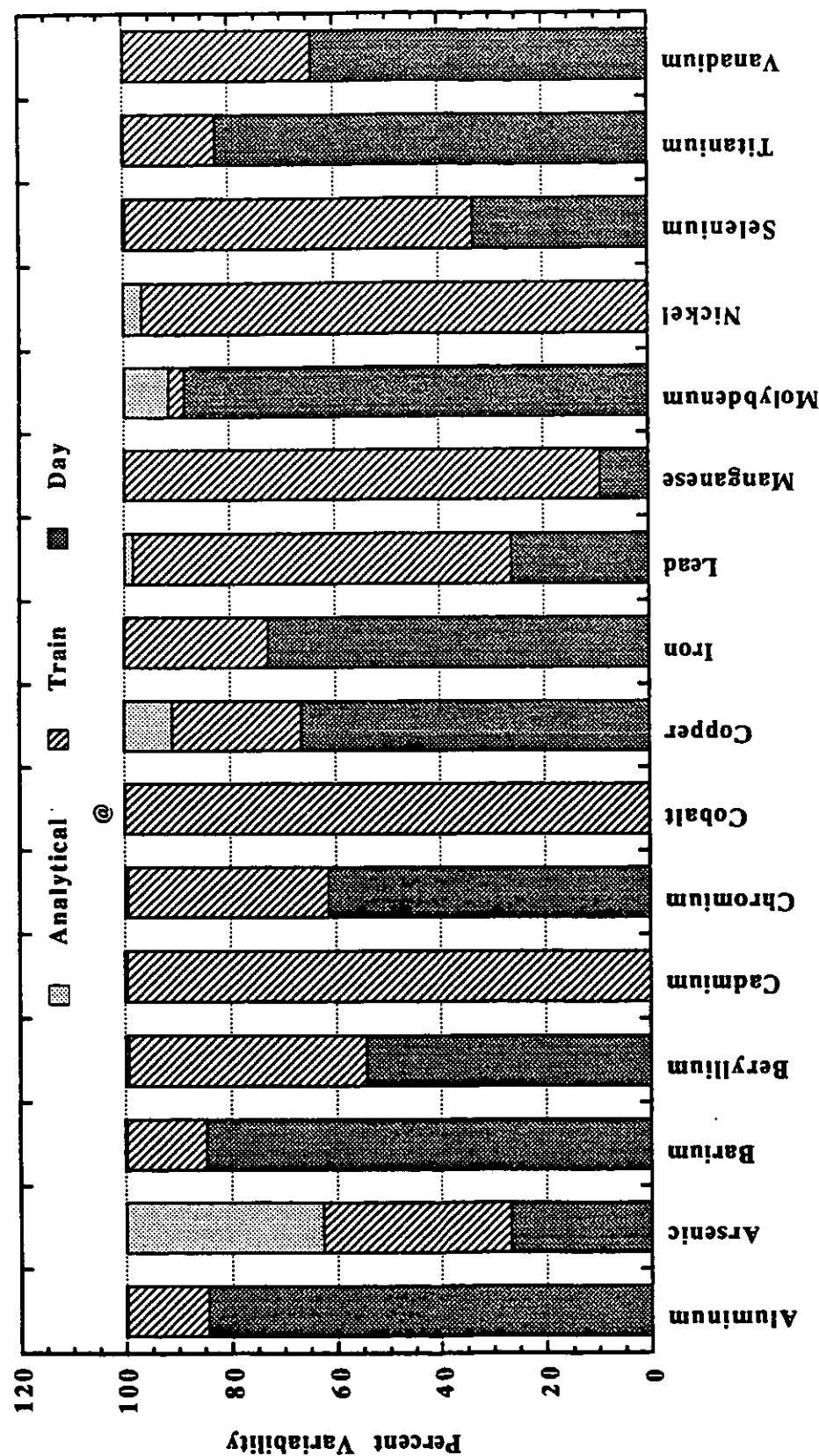
@ = Mean value less than five times detection limit. All substances were detected in all eight samples.

Figure 5-4. FCEM Site 21 - Solid-Phase Metals Coefficient of Variation (GFAAS & ICP-AES)

random contamination during sample preparation is probably responsible for the higher selenium variability. Considering the four sampling pairs, the relative difference between same-day samples for three of the pairs is about 100 percent.

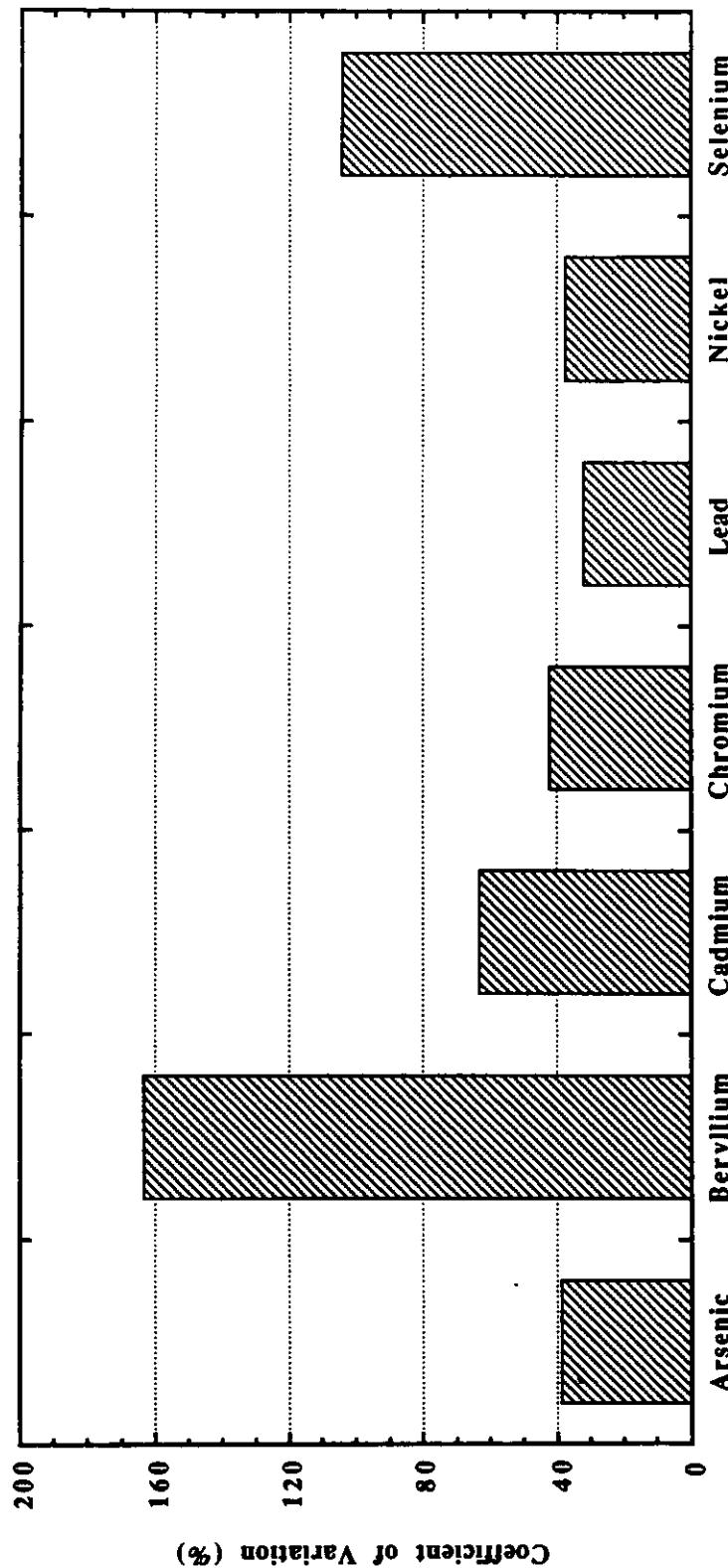
The ANOVA results presented in Figure 5-5 indicate that a major source of variability for 10 of the 16 substances in the solid-phase analysis is from the day-to-day variance in the process. The sampling and preparation component dominates for 6 of the 16 substances. This indicates that a 10-20% CV is the lowest that could be achieved at this site for solid-phase metals.

An additional observation from the ANOVA analysis of the solid-phase metals data is that, although the metals analyzed by GFAAS (arsenic, cadmium, lead, and nickel) had CVs similar to those analyzed by ICP-AES, the contribution of sampling and sample preparation to the overall variance was larger.


ICP-MS Results

The CVs and ANOVA results for the solid-phase ICP-MS results are presented in Figures 5-6 and 5-7, respectively. As discussed in the section on the comparison of analytical methods, the ICP-MS results are less precise than those obtained by GFAAS or ICP-AES. Except for beryllium and selenium, the ICP-MS CVs ranged from 30 to 60 percent. The beryllium measurements are near the MDL and there is a strong interference from boron. Also, the Run 5b value can be eliminated as an outlier (>99% confidence), reducing the CV from 165 to 35 percent. The selenium values are also strongly influenced by the Run 5b value, which can be considered an outlier (>99% certainty). Without this value, the CV is 48 percent.

Interestingly, although the ICP-MS CVs are larger than those for ICP-AES or GFAAS, the ANOVA indicates that the variance is primarily due to day-to-day variation in the sampled gas (as was seen with GFAAS and ICP-AES above). This suggests that there is some substance that: 1) positively interferes with all of the analytes (recall that all of the ICP-MS data results were higher for the stack gas solid phase than those obtained by GFAAS or ICP-AES), and 2) the concentration of this substance varied from day to day. This substance could have been in the sampled gas stream or encountered in the site lab where the trains were recovered each day. Hydrofluoric, hydrochloric, nitric, and boric acid used in microwave digestion could possibly cause interferences due to ion pairs whose mass cannot be resolved by the quadrupole mass spectrometer.


Cross-Site Comparison

As was done with the ESP inlet results, the absorber outlet GFAAS and ICP-AES results from Site 21 were compared with those for other FCEM sites. With eight samples, a 20% CV equates to a 95% CI of 17 percent. With the standard three FCEM samples, the 95% CI would be 50% of the mean. The Site 21 CVs are generally lower than at any other site. Also, the CVs at the other sites vary over a wide range (more than 100% for some analytes at some sites). Therefore, the Site 21 results cannot be used to predict

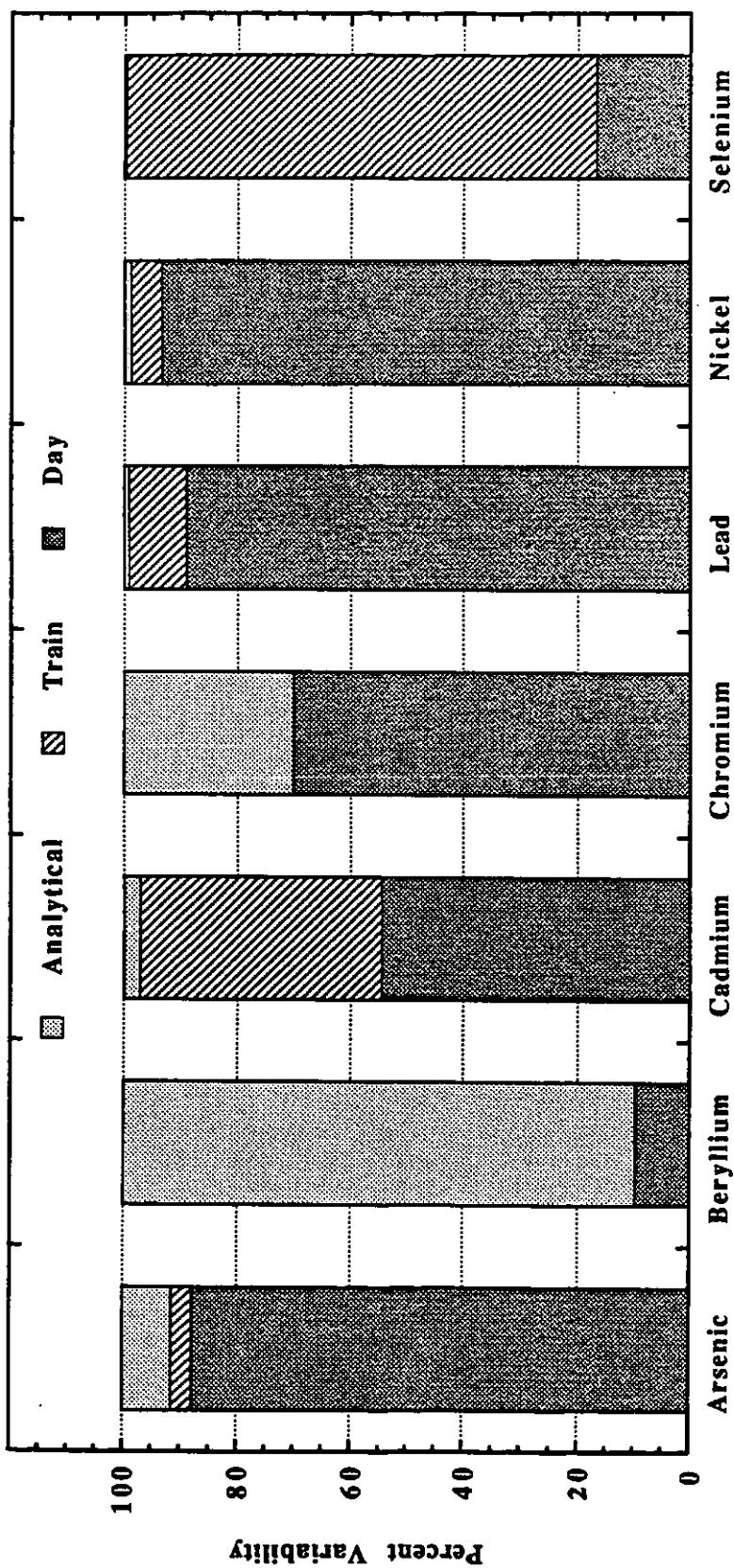

② = Mean value less than five times detection limit. All substances were detected in all eight samples.

Figure 5-5. FCEM Site 21 - Solid-Phase Metals Percentages of Variability (GFAAS & ICP-AES)

All substances were detected in all eight samples.

Figure 5-6. FCEM Site 21 - Solid-Phase Metals Coefficient of Variation (ICP-MS)

All substances were detected in all eight samples.

Figure 5-7. FCEM Site 21 - Solid-Phase Metals Percentages of Variability (ICP-MS)

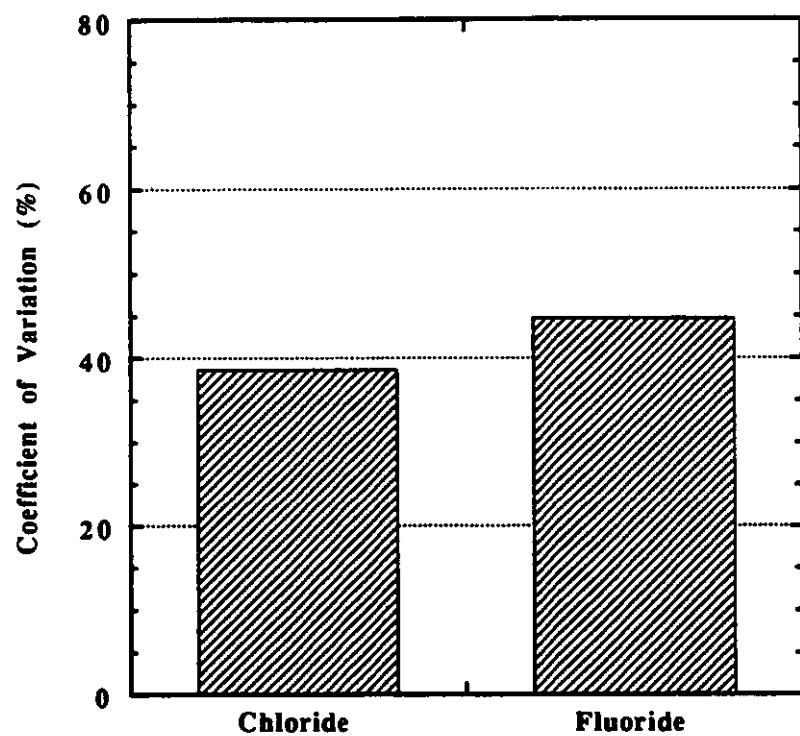
the precision of solid-phase metals and anions results at other sites. However, since operation of the pilot-scale ESP and absorber was probably much more steady than would be observed at a full-scale facility, the CVs measured at Site 21 could be considered minimum variations.

Solid-Phase Anions

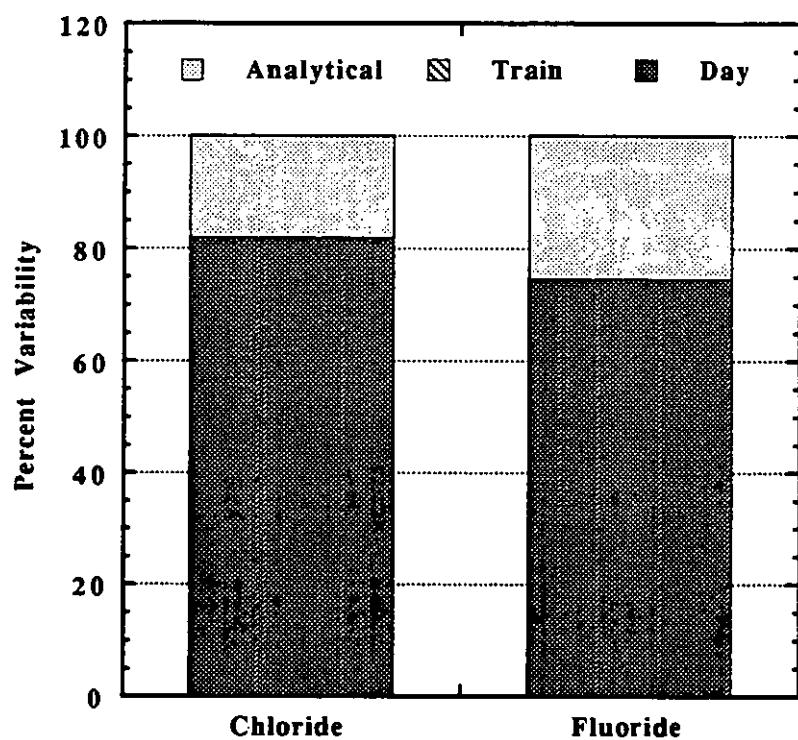
The solid-phase chloride and fluoride CVs and ANOVA analysis results are shown in Figures 5-8 and 5-9, respectively. The variance in the results for these substances was primarily daily fluctuations. Since the source of solid-phase chloride and fluoride is carry-over from the FGD system, this result is expected. As seen in Table 3-5, both substances were detected in all eight samples.

Vapor-Phase Metals

Standard Analytical Procedures


The CVs and ANOVA results for the vapor-phase metals are presented in Figures 5-10 and 5-11. The CVs vary considerably--from 13% for mercury to 200% for beryllium. The ANOVA indicates that the primary variance component is either analytical or sampling and sample preparation. Since the solid-phase analysis indicated that the samples collected by the duplicate trains were similar, the preparation portion of the sampling and sample preparation variance component is probably responsible for the higher variance in the gas phase results. The relative precision of the results decreases as the method detection limit is approached. At these very low levels, small contaminations and instrument noise can have a large effect on the precision of results. It is also at these low levels that day-to-day sample collection error within laboratory as well as random bias between laboratories (sample teams) adds greatly to the already higher analytical error. Four of the 15 target metals were not detected and four were detected at concentrations less than five times the method detection limit.

ICP-MS Results


An analysis of variance was also made on the vapor-phase results obtained by ICP-MS. CV and ANOVA results are presented in Figure 5-12 and 5-13. As discussed earlier, the CVs for measurement by ICP-MS are comparable to those for measurement by ICP-AES and GFAAS. The ANOVA indicates that nearly all of the variance results from sampling and sample preparation. Again, since the solid-phase results show that the duplicate trains agreed well, most of the variability in the vapor-phase results is probably the result of sampling handling and preparation.

Concentrated Impinger Results

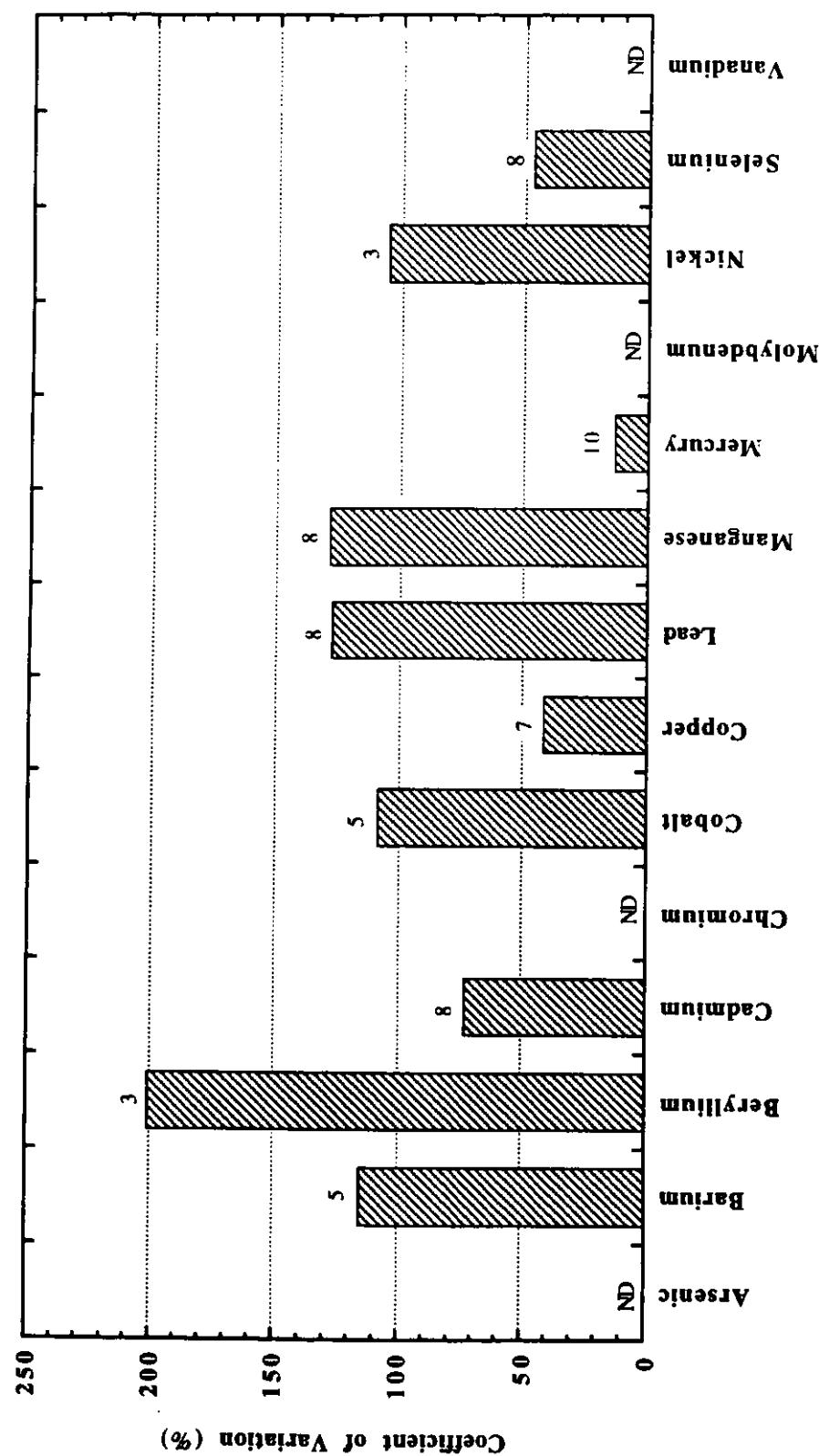

Duplicate analyses were not conducted for the samples concentrated before analysis; therefore, the variance has only two components: 1) process and 2) sampling/analytical. Figures 5-14 and 5-15 present the CVs and ANOVA results. The CVs are of the same

Figure 5-8. FCEM Site 21 - Solid-Phase Anions Coefficient of Variation (IC)

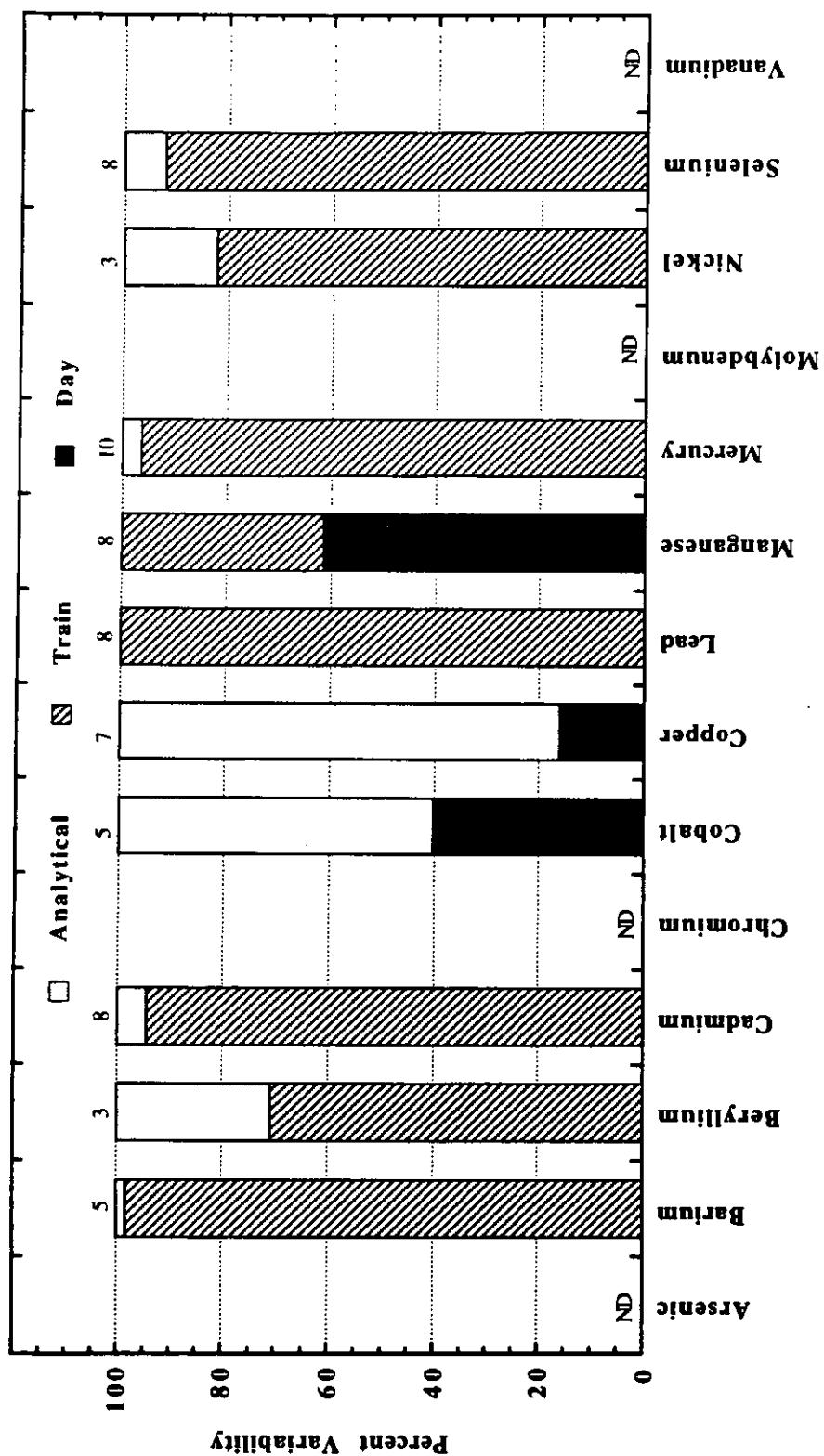


Figure 5-9. FCEM Site 21 - Solid-Phase Anions Percentages of Variability (IC)

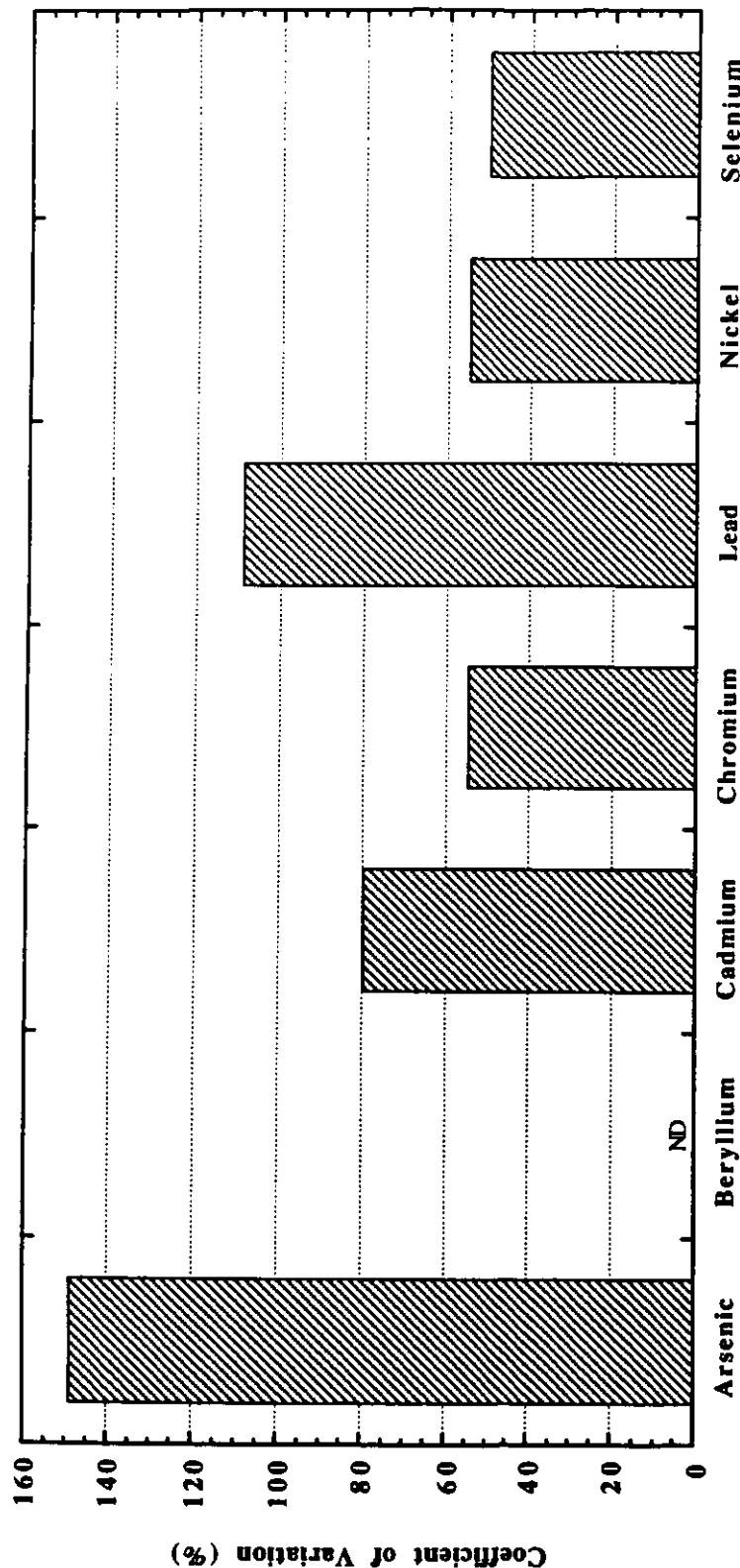

ND = Substance was not detected (mean less than detection limit). Number indicates how many of the eight samples (ten for mercury) had results greater than the detection limit.

Figure 5-10. FCEM Site 21 - Vapor-Phase Metals Coefficient of Variation (GFAAS & ICP-AES)

ND = Substance not detected in any sample. Number indicates how many of the eight samples (ten for mercury) had results greater than the detection limit.

Figure 5-11. FCEM Site 21 - Vapor-Phase Metals Percentages of Variability (GFAAS & ICP-AES)

ND = Substance was not detected (mean less than the detection limit). Other substances detected in all eight samples.

Figure 5-12. FCEM Site 21 - Vapor-Phase Metals Coefficient of Variation (ICP-MS)

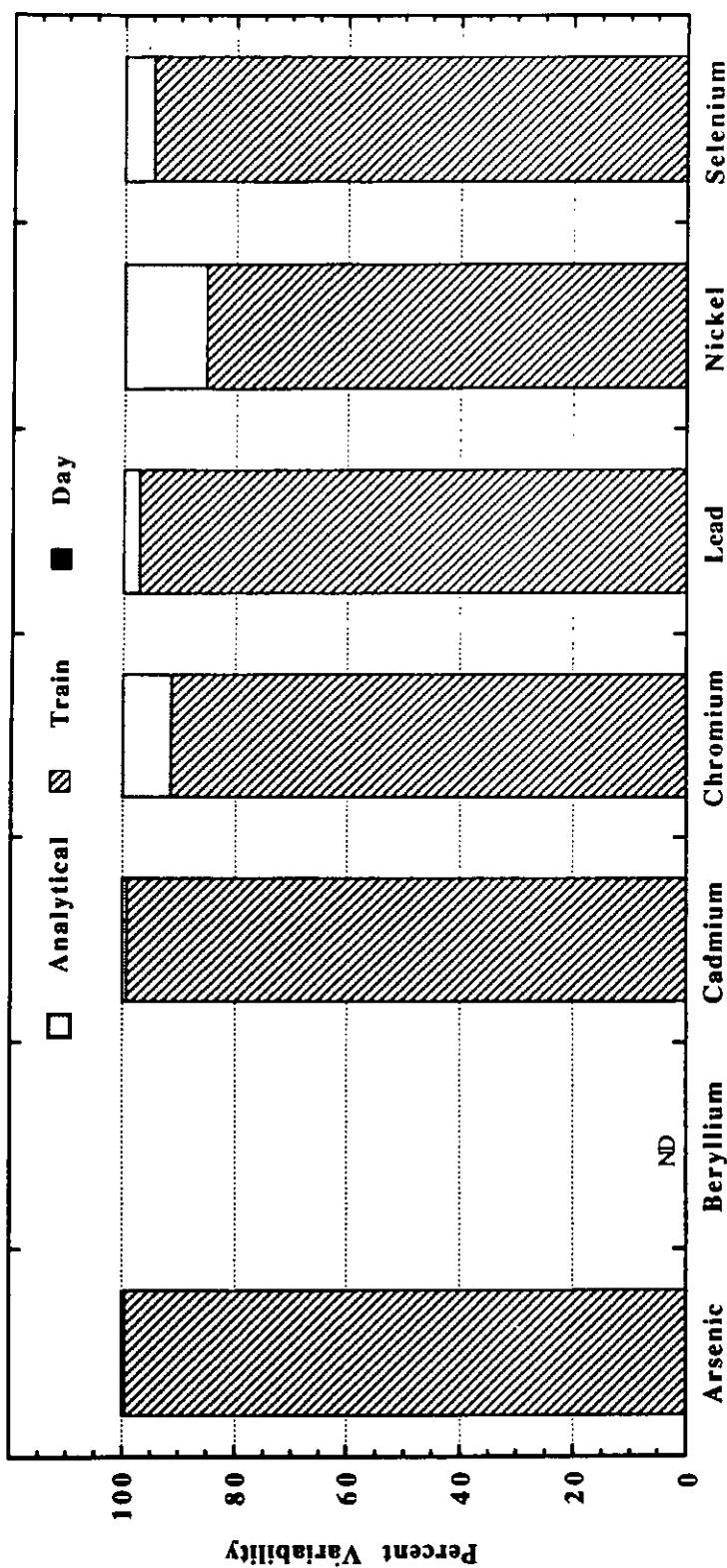
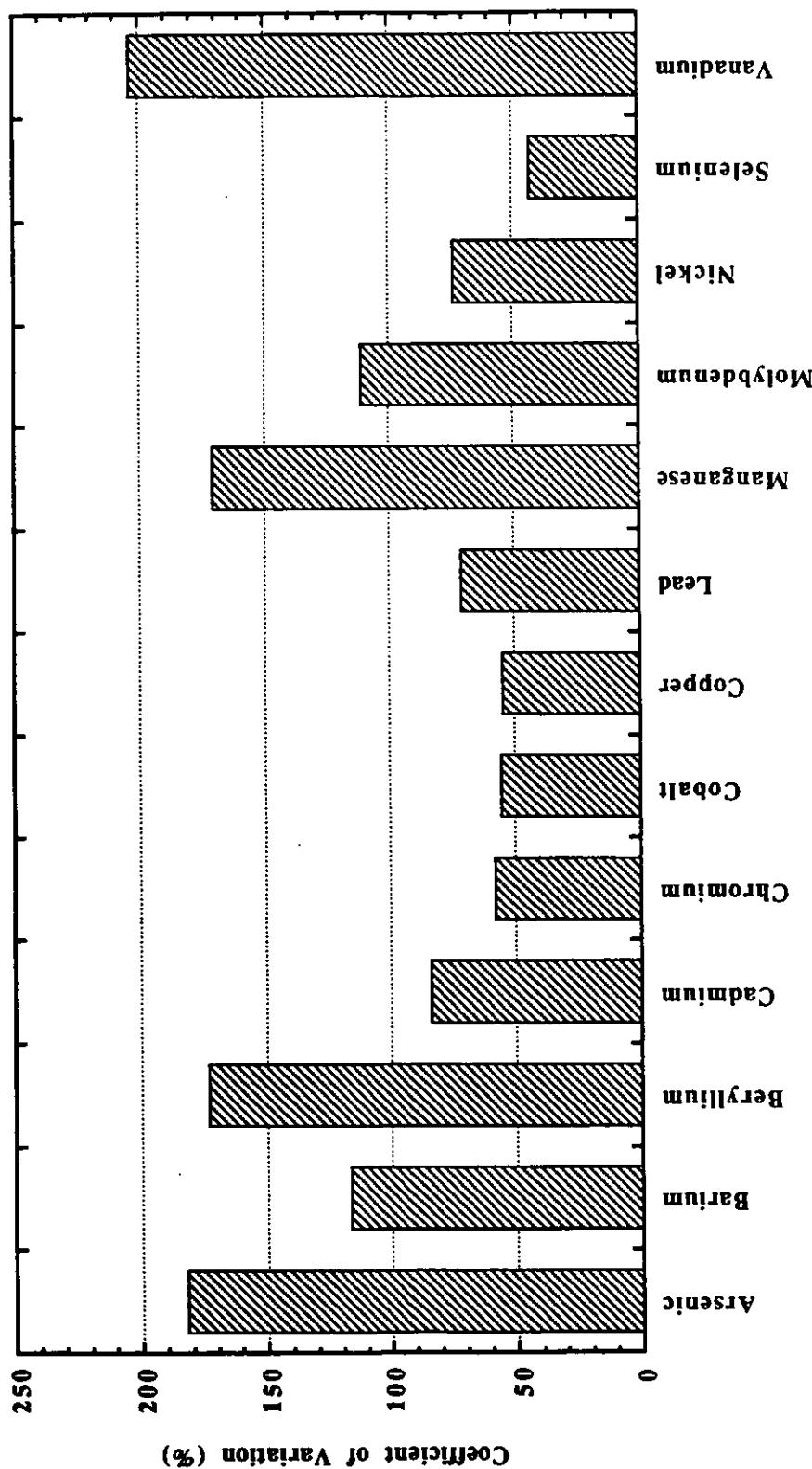
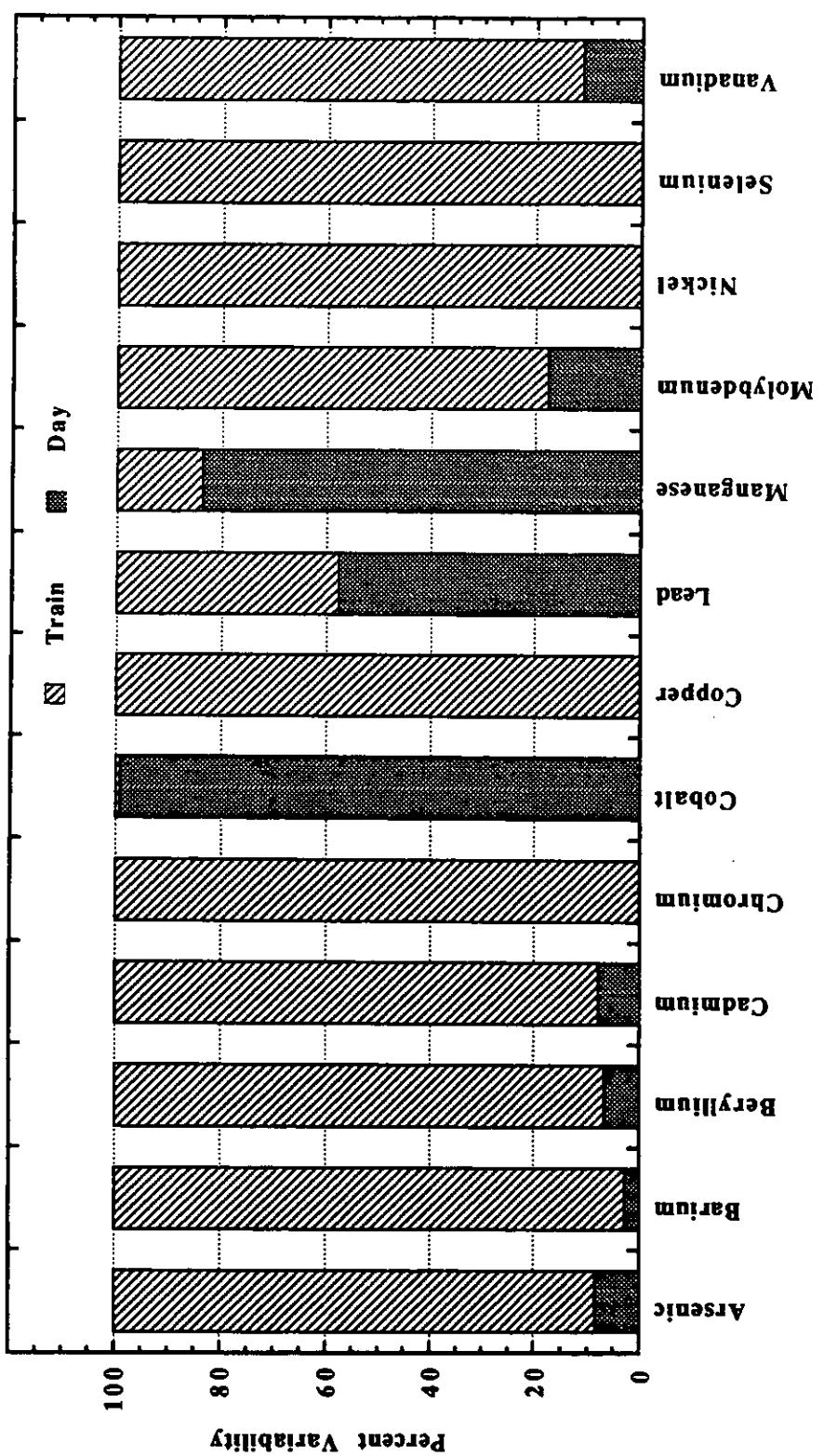




Figure 5-13. FCEM Site 21 - Vapor-Phase Metals Percentages of Variability (ICP-MS)

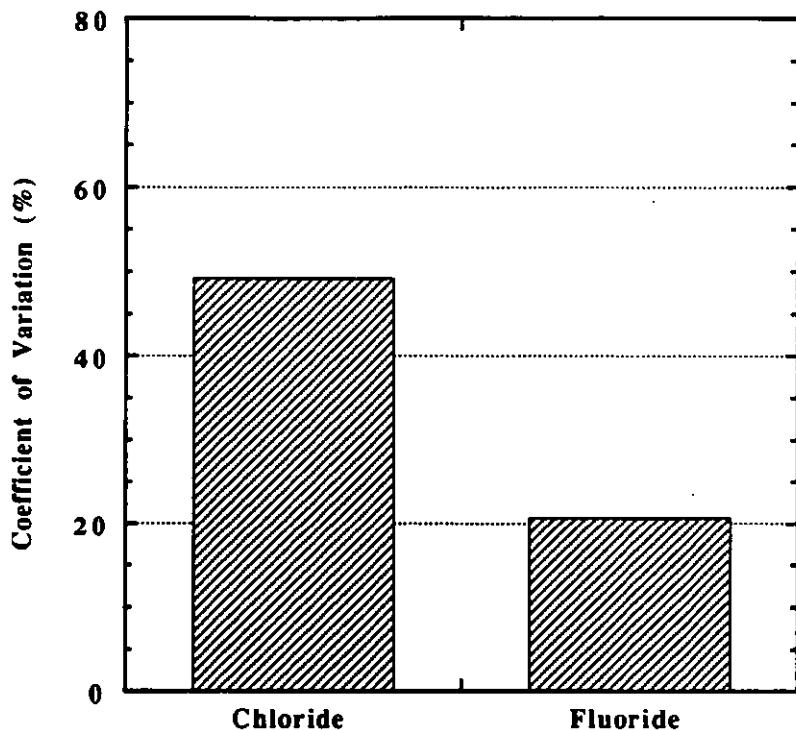
Substances detected in all eight samples.

Figure 5-14. FCEM Site 21 - Vapor Phase-Metals Coefficient of Variation (Concentrated GFAAS & ICP-AES)

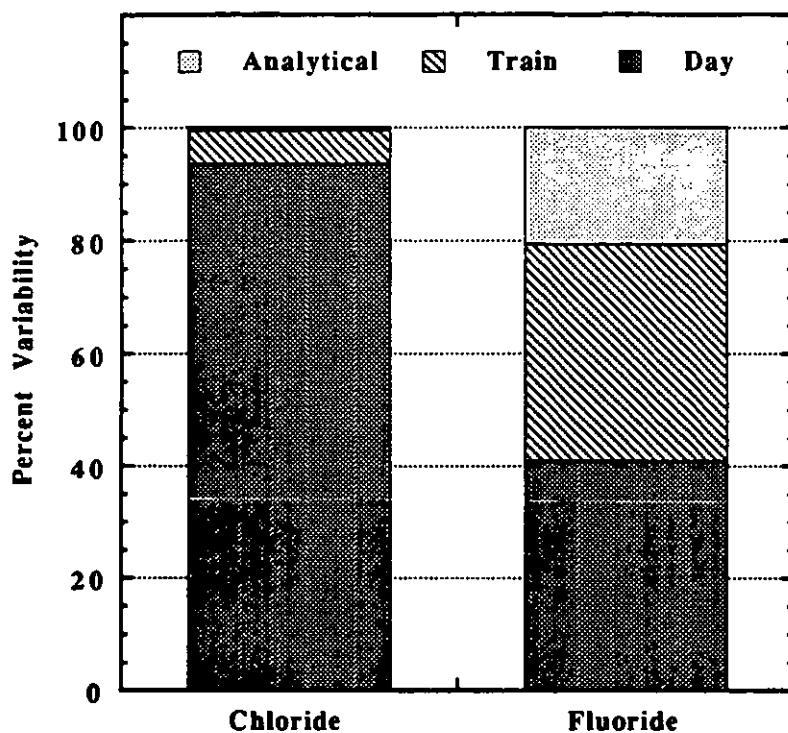
Substances detected in all eight samples.

Figure 5-15. FCEM Site 21 - Vapor-Phase Metals Percentages of Variability (Concentrated GFAAS & ICP-AES)

magnitude as the results for the samples not concentrated. As expected, the ANOVA indicates that much of the variance for most of the analytes is from sampling and analysis. The high process contribution for cobalt and manganese was caused by low cobalt and high manganese values during Run 4 (a and b trains). It is not known why the concentrations of these analytes are different in the Run 4 samples.


Vapor-Phase Anions

Figures 5-16 and 5-17 present the CV and ANOVA results for the vapor-phase anions. The 50% CV for chloride is caused primarily by day-to-day variation in the process. The 20% CV for fluoride is lower and the ANOVA shows significant contributions from both daily or sampling and preparation components. The absorber outlet anions concentration will depend on the inlet concentration and on removal in the absorber. Since the ESP inlet chloride CV was 20%, the increase in CV to 50% must be caused by variability in the operation of the pilot absorber. As the pilot absorber operation is better controlled than a full-scale absorber, the level of variability observed at Site 21 may be typical of the minimum that would be seen at a well-controlled, full-scale FGD system. However, the high removal efficiency (98+%) allows minor fluctuations in the outlet concentration to have a significant effect on the CV. At most commercial systems, the removal is not so high, so daily variations would have less of an impact on the CV.


Overall Assessment of Precision

One of the objectives of this project was to determine the variance components at a well-controlled pilot system. The variability at this site is presumably lower than would be expected for a full-scale system. It must be noted that variability noted at Site 21 itself is a random variable. The single CV obtained for eight sample runs would itself be different for the next eight sample runs and the eight after that, etc. The range of expected CVs for the same true population mean is described by the Chi distribution. For repeated eight samples, the 95% confidence interval within which the true CV lies is between 19% and 58 percent.

To evaluate the confidence interval (which can be considered the precision of a data set) several parameters must be specified. For any set of data, there are a given number of results. In addition, a mean and sample standard deviation ($N-1$) can be calculated for the data set. For any desired confidence interval (i.e., 80%, 90%, 95%, etc.), the "t" statistic may be found from a table in a statistics reference book. The sample standard deviation divided by the mean is the coefficient of variation. The CV, when multiplied by the "t" statistic and divided by the square root of the number of samples, produces the confidence interval for the mean expressed as a percentage of the mean. Figure 5-18 shows the relationship between the number of samples and the confidence interval as a percent of the mean value for four CVs (20, 30, 50, and 100% of the mean). This relationship is used below to discuss intersite comparisons.

Figure 5-16. FCEM Site 21 - Vapor-Phase Anions Coefficient of Variation (IC)
Substances detected in all eight samples.

Figure 5-17. FCEM Site 21 - Vapor-Phase Anions Percentages of Variability (IC) Substances detected in all eight samples.

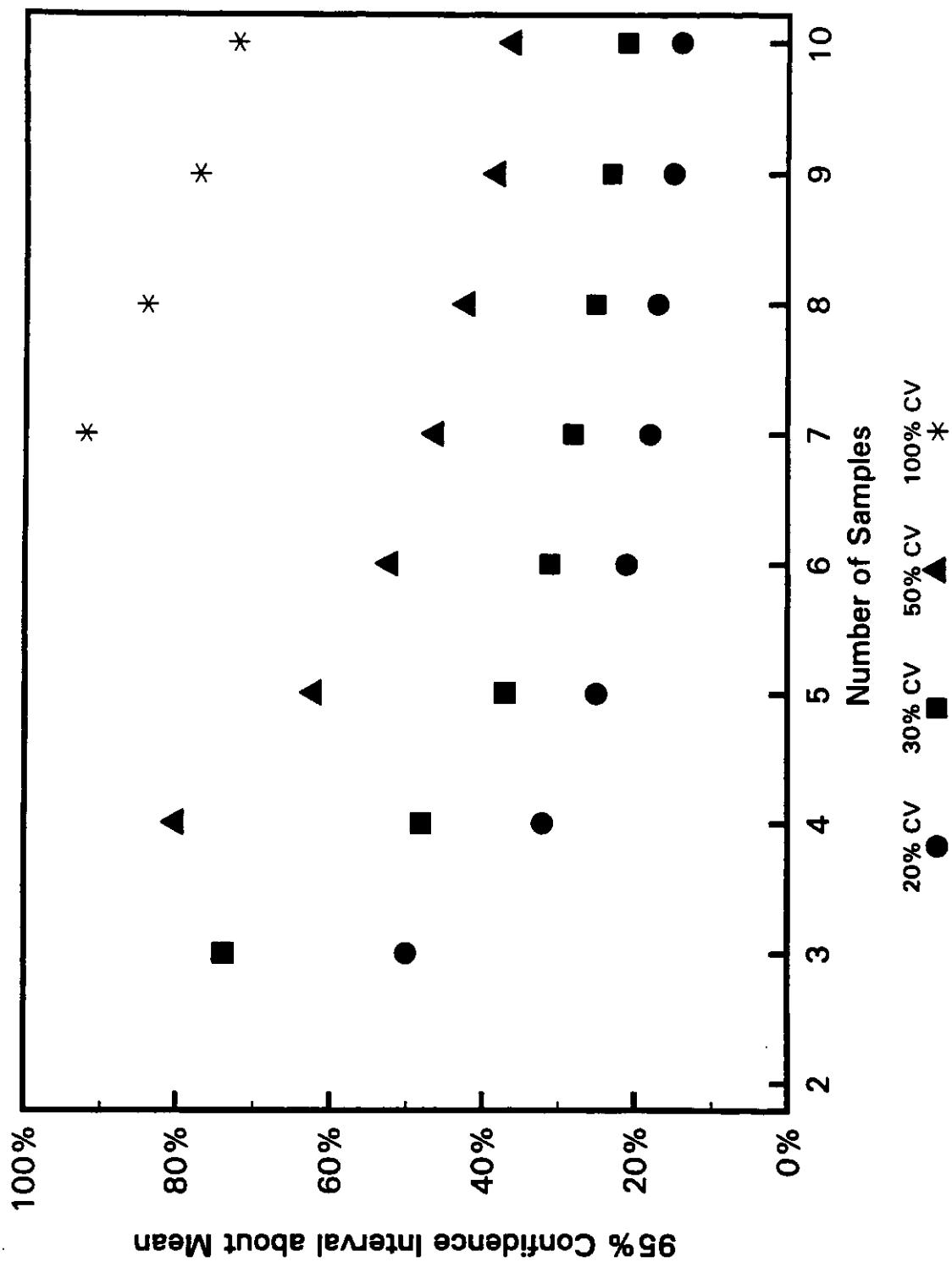


Figure 5-18. Relationship Between 95% CI and Number of Samples

ESP Inlet

The Site 21 ESP inlet results indicate that CVs of <30% can be achieved for the metals and anions target substances. For three samples, this corresponds to a 95% CI of <70 percent. At the ESP inlet, the solid phase accounts for most of the substance distribution except for mercury, chloride, and fluoride. Since it was shown at the absorber outlet that, in general, solid phase duplicate sampling and preparation and analysis agreed well, and, therefore, that day-to-day variability is the cause of most of the <20% CV seen there, most of the <30% CV observed at the ESP inlet is probably also caused by process variation. The ESP inlet variability is caused by variability in the boiler flue gas from the adjacent power plant. The pilot-scale ESP and absorber, which are controlled very well, would be expected to damp out some of the variability in the inlet gas. A reduction in the solid-phase CVs across the ESP/FGD system from <30% to <20% is, therefore, reasonable. If the variability in the flue gas from the adjacent power plant is considered typical of boilers of that design, a 95% CI of 70% of the mean is the best that could be expected with the collection of three samples, when sampling high-dust gas at future sites. However, analysis of CVs from other FCEM sites indicates that there may be no "typical" daily variability associated with coal-fired boilers and that variance measured at Site 21 can not be applied to other sites with any high degree of confidence.

Absorber Outlet

Absorber outlet CVs for the solid-phase metals fraction were generally <20%, and vapor-phase metals CVs were much higher--up to 200 percent. As discussed above, the operation of the pilot-scale ESP is expected to be more consistent than would be seen in a full-scale unit. Therefore, for metals emitted mainly in the solid phase, the 20% CV at Site 21 could be used as an estimate of the lowest achievable variability. As seen in Table 5-2, most of the substances are emitted primarily in the solid phase. With the standard three samples collected by FCEM, this corresponds to a 95% CI of 50% of the mean for these elements. CVs for the elements emitted in the vapor phase could be much larger (although not necessarily larger as shown by the 13% CV for vapor-phase mercury). The minimum attainable CV at other sites will, of course, depend on the contribution of the solid-phase fraction to total emissions. For example, if the ESP performance had been improved at Site 21, the vapor-phase emissions would dominate for more substances and the CVs for the emission factors of these substances would increase as the absolute value of the total emissions decreased.

All of the foregoing reaffirms that comparability of data between sites requires more than knowledge of the variability and the measured mean at each site; it requires knowledge of the expected precision and bias of the entire sampling and analysis protocol in order that the true concentrations in each of the streams being sampled can be better estimated and meaningful comparisons made.

Table 5-2
Stack Gas Combined Metals Phase Distribution

<u>Methods</u>	<u>Substance</u>	<u>% Solid Phase</u>	<u>% Vapor Phase</u>
GFAAS	Arsenic	98	2
ICP-AES	Barium	94	6
ICP-AES	Beryllium	90	10
GFAAS	Cadmium	20	80
ICP-AES	Chromium	97	3
ICP-AES	Cobalt	11	89
ICP-AES	Copper	64	36
GFAAS	Lead	17	83
ICP-AES	Manganese	7	93
ICP-AES	Molybdenum	100	0
GFAAS	Nickel	82	18
GFAAS	Selenium	79	21
ICP-AES	Vanadium	97	3

Section 6

MERCURY SPECIATION AND MATERIAL BALANCE

During the testing at Site 21, Brooks Rand Ltd. conducted mercury speciation measurements using a solid sorbent method. This section presents a brief discussion of the sampling and analytical procedures used in the speciation method, presents the results of the measurements, compares the results to the data in Section 3 by the multi-metals train, and presents a mercury material balance for the pilot system. Additional details of this testing are presented in Appendix J.

Sampling and Analytical Procedures

The sampling procedure for the speciation method involves extracting gas using a heated probe ($212 \pm 9^\circ\text{F}$) and passing it through two solid sorbents. The first sorbent consists of two soda-lime traps. Two iodated carbon traps, located immediately after the soda-lime traps, are used to capture elemental mercury. Mercury was collected on both soda-lime traps and on the first of the two iodated carbon traps.

An integrating mass flowmeter was used to measure the gas volume sampled. Sampling flow rates started at 0.5 liter/minute (lpm). Flow rates slowed to 0.2 lpm over several hours as the traps began swelling due to fly ash and moisture.

For methyl and ionic mercury analysis, the soda-lime traps were dissolved in acetic acid. Methylmercury analysis was performed by aqueous phase ethylation, GC separation, and cold vapor atomic fluorescence spectroscopy (CVAFS). Five percent HCl was then added to the acetic acid/soda-lime trap solution to solubilize Hg(II). SnCl_2 was used to reduce Hg(II). A gold amalgamation step was employed to concentrate mercury which was then analyzed by CVAFS.

Gas-phase elemental mercury (Hg^0) was determined by analysis of the iodated carbon traps. The carbon was digested with hot acid (7:3 mixture of HNO_3 and H_2SO_4) followed by reduction, gold amalgamation, and CVAFS.

Probe rinses were treated with BrCl in HCl and analyzed for total mercury by CVAFS. It was assumed that the mercury in the probe was present in the ash in an ionic state. (No methylmercury was detected, and low levels of vaporous elemental mercury should not condense in a heated probe.)

Two methods were used to verify the various speciation measurements. Total mercury measurements were occasionally performed on samples obtained with the iodated carbon traps. Second, some of the soda-lime traps were dissolved in BrCl and analyzed for total

oxidized mercury (this should equal the ionic and methylmercury values). These QC results are presented in Appendix J.

Ash samples and scrubber solids were analyzed for total mercury after digestion in aqua regia and sulfuric acid. Coal samples were digested using a mixture of perchloric, nitric, and sulfuric acids in Teflon microwave bombs. Scrubber liquids were oxidized with BrCl and analyzed for total mercury. All total mercury analyses were by gold amalgamation and CVAFS.

Results of Speciation Measurements

Table 6-1 presents the results of the gas phase speciation measurements at the ESP inlet and the absorber outlet. Each daily value is typically the average of four runs at the inlet (two sets of simultaneous runs) and two or three sequential runs at the outlet. Also shown in this table are the results presented in Section 3 (these are based on the multi-metals train method for collection of vapor phase mercury samples and coal mercury values from CVAAS). As can be seen, even though the sampling dates do not coincide, the two mean results for the methods agree closely.

At the ESP inlet, the majority of the mercury is present in the ionic state, presumably as HgCl_2 . After particulate and SO_2 removal, the total mercury concentration is reduced and the predominant phase is elemental mercury, according to the speciation results. Also presented in Table 6-1 are the concentrations obtained from the nitric acid/ peroxide and the potassium peroxide impingers from the multi-metals trains. It has been hypothesized that the nitric impingers remove oxidized mercury while the permanganate captures elemental mercury. The two impinger fractions indicate that the distribution of mercury in the multi-metals train differs from the sorbent speciation distribution.

Material Balance Results

Partial mercury material balances were a secondary objective of both the Brooks Rand and Radian testing at Site 21. Table 6-2 presents the results of two material balances, using mean flow rates and concentrations measured during this test program and at earlier programs at this plant. As stated earlier, Radian did not analyze particulate catch fractions for mercury because of the insufficient filter digestate sample volume. In Table 6-2, for the Radian material balance, the collected fly ash mercury value presented is from the Site 12 report. (The host plant where the pilot system is located.) The mean coal mercury values during the Site 12 and Site 21 testing were identical (0.15 mg/kg). Similarly, a bottom ash analysis was not performed at Site 21, the Site 12 value is used here for both balances. Brooks Rand did analyze fly ash obtained during Site 21 testing using CVAFS and detected a small quantity of mercury.

The results show good closure (ratio of outlet to inlet stream mass flow) across all systems measured. The pilot system outlet streams include collected fly ash, FGD solids, and outlet gas. This is compared to the ESP inlet gas in the first balance, with a closure of about 110 percent. The overall balance which uses the coal analysis and bottom ash

Table 6-1

Mercury Speciation Results

Stream/Species	8/18	8/19	8/20	8/21	8/22	8/23	8/24	Mean	95% CI
Coal (mg/kg)									
Hg by CVAFS (Brooks Rand)	0.09	0.13	0.11	0.17				0.13	0.05
Hg by CVAAS (Radian)*									
0.15	0.14	0.13	0.15	0.14	0.20		0.15	0.03	
ESP Inlet (µg/Nm³)									
Sorbent Speciation									
Methylmercury	1.1	0.9	1.3	2.1	1.5			1.4	0.6
Ionic Mercury	6.6	6.8	4.8	4.8	5.6			5.7	1.1
Elemental Mercury	3.2	1.7	3.5	2.8	3.9			3.0	1.0
Sum of Species	10.9	9.3	9.6	9.7	10.9			10.1	0.9
Multi-Metals Trains									
Nitric Acid Impingers	8.9	9.2	8.3	11.0	9.0	10.6	9.5	9.5	1.1
Permanganate Impingers	1.0	0.9	0.8	0.8	0.7	1.1	0.9	0.9	0.1
Total Vapor-Phase Mercury ^b	9.9	10.1	9.1	11.8	9.7	11.7	10.4	10.4	1.2

Table 6-1 (Continued)

Stream/Species Absorber Outlet ($\mu\text{g/Nm}^3$)	Date					Mean	95% CI
	<u>8/18</u>	<u>8/19</u>	<u>8/20</u>	<u>8/21</u>	<u>8/22</u>		
Sorbent Speciation							
Methylmercury	0.017	0.011	0.011	0.02	0.01	0.01	0.01
Ionic Mercury	0.09	0.04	0.07	0.13	0.11	0.09	0.04
Elemental Mercury	0.74	0.60	0.70	0.71	0.87	0.72	0.12
Sum of Species	0.85	0.65	0.78	0.86	0.99	0.83	0.15
Multi-Metals Trains							
Nitric Acid Impingers - Run A	0.63	0.61	0.88	0.80	0.86	<u>Runs A & B</u>	
Nitric Acid Impingers - Run B	0.55	0.68	0.62	0.80	0.81	0.73	0.09
Permangate Impingers - Run A	0.16	0.46	0.33	0.32	0.23		
Permangate Impingers - Run B	0.42	0.32	0.20	0.23	0.33	0.30	0.07
Total Vapor-Phase Mercury- Run A ^c	0.79	1.07	1.21	1.12	1.09		
Total Vapor-Phase Mercury- Run B ^c	0.97	1.00	0.82	1.03	1.14	1.02	0.10

^aFrom Table 3-1.^bFrom Table 3-3.^cFrom Table 3-6.

Table 6-2**Mercury Material Balances**

Stream	Radian Measurements		Brooks Rand Measurements		
	Pilot System Flow Rates	Concentration	Mass (mg/hr)	Concentration	Mass (mg/hr)
Coal	1138 kg/hr	0.15 mg/kg	171	0.13 mg/kg	148
Bottom Ash	15 kg/hr	<0.045 mg/kg *	<1	<0.045 mg/kg *	<1
ESP Inlet Gas	11,700 Nm ³ /hr	10.4 μ g/Nm ³	122	10.1 μ g/Nm ³	118
Collected Ash	61 kg/hr	<0.045 mg/kg *	<3	0.065 mg/kg	4
FGD Solids	68 kg/hr	1.76 mg/kg	120	1.67 mg/kg	114
Absorber Outlet Gas	13,000 Nm ³ /hr	1.02 μ g/Nm ³	13	0.83 μ g/Nm ³	11
Pilot System Mass Closure (ESP Inlet - Ash, Solids, Outlet Gas)			110%		109%
Overall Closure (Coal - Ashes, Solids, Outlet Gas)			79%		87%
Gas Phase Reduction			89%		91%

*Value obtained from Site 12 Report.

streams also, had closures of 79 and 87 percent. These values are not statistically different, based on the variabilities of the inputs to the calculations (i.e., the relative confidence interval for the coal mercury values are $\pm 38\%$ and $\pm 20\%$ for the Brooks Rand and Radian values, respectively).

The overall vapor phase removal across the ESP/wet limestone FGD system is about 90 percent, with the mercury almost exclusively accumulating in the FGD solid phase.

Section 7

EXAMPLE CALCULATIONS

This section presents selected sample calculations used to develop the results discussed in Sections 3 and 4. Specifically, the calculation of stream flow rates and unit-energy basis results are discussed.

Stream Flow Rates

The pilot system at Site 21 is extensively instrumented. Much of the information presented in Table 2-1 was collected by the data acquisition system. The absorber outlet flue gas flow rate shown in Table 2-1 was measured during sampling; Appendix A includes the details of these measurements. The two values in Table 2-1 that were calculated are the power plant flue gas flow rate, and the pilot equivalent coal flow rate.

The power plant flue gas flow rate was estimated using a simplified combustion calculation. This calculation involves calculating the air required to oxidize the carbon, hydrogen, and sulfur in the coal and adding enough excess air to match the measured flue gas O₂ concentration. The CEM O₂ value of 6.0% wet was used rather than the Orsat values obtained during sampling since there is more precision in the CEM values. However, use of the Orsat O₂ values would result in less than a 5% change in the calculated flue gas flow. Figure 7-1 shows the values in the spreadsheet used to do this calculation.

The pilot equivalent coal flow rate was calculated by simply taking the ratio of the measured absorber outlet flue gas flow rate to the calculated power plant flue gas flow rate, and multiplying by the measured power plant coal flow rate.

$$\begin{aligned}\text{Pilot Coal Flow Rate} &= 8109/1,339,000 * 452,000 \\ &= 2.73 \text{ klb/hr as-fired}\end{aligned}$$

Unit Energy Calculation

A unit-energy basis emission factor was developed for each substance. These values were determined by using the mass flow rate of a substance and dividing by the pilot equivalent fuel energy input to the boiler during testing. The heat input was obtained from the coal flow rate and the higher heating value (HHV) of the fuel for the sampling period. The calculations are illustrated below, using barium concentrations in the stack gas as an example.

Example Calculations

Coal Composition					
C	0.73	Carbon in oxidized/mole	27202		
O	0.07	O needed	54404		
H	0.05	Sulfur in oxidized/moles	215		
S	0.02	O needed	431		
N	0.01	Hydrogen in oxidized/mole	22233		
Moisture	0.07	O needed	11116		
Ash	0.06				
		Total O needed	65951		
Coal Flow Rate	452000	O in with coal/moles	1904		
Coal Flow Dry	419546	O in with air	64047		
FG O2	6.0%	Flue gas CO2	27202		
FG CO	0.00	Flue gas N2	120645		
		Flue gas SO2	215		
Combustion Efficiency	99	Flue gas H2O	12919		
		Moles Combustion gas	160982		
FG O2 Dry	6.3%	Moles Excess air	63943	28.43%	
					% wet
		Total Flue gas moles	224925	CO2	27201.91 12.09%
				O2	13428 5.97%
				N2	171160 76.10%
				SO2	215.3559 0.0957%
				H2O	12919.45 5.74%
				MW	29.63388
		SCFM	1420676		
		Nm3/hr	2285343		
		dsfcfm	1339074		
		dNm3/hr	2154075		

Figure 7-1. Combustion Calculations Spreadsheet

$$E = \frac{g * c}{HHV * \text{coal}} * 2202.6 \quad (7-1)$$

where:

E = Mean stack emission factor, $\text{lb}/10^{12} \text{ Btu}$

g = Mean flue gas flow rate, Nm^3/hr

c = Mean total flue gas concentration, $\mu\text{g}/\text{Nm}^3$

HHV = Mean coal higher heating value, Btu/lb

coal = Mean coal feed rate, lb/hr

2202.6 = Unit conversion factor, $\text{lb}/10^{12} \mu\text{g}$

Barium will be used for this example. The following mean values were taken from Tables 3-1, 3-5, and 3-7.

g = 13,000 Nm^3/hr

c = $3.9 \mu\text{g}/\text{Nm}^3$

HHV = 14,032 Btu/lb

coal = 2,540 lb/hr

The emission factor for barium is calculated from Equation 7-1:

$$E = \frac{13,000 * 3.9 * 2202.6}{14,032 * 2,540} = 3.2 \text{ lb}/10^{12} \text{ Btu}$$

Section 8

GLOSSARY

ANOVA	Analysis of Variance
Btu	British Thermal Unit
CAAA	Clean Air Act Amendments
CI	Confidence Interval
CV	Coefficient of Variance
CVAAS	Cold Vapor Atomic Absorption Spectrophotometry
DGA	Double Gold Amalgamation
dNm ³	Dry Normal Cubic Meter (1 atm, 0° C)
DQO	Data Quality Objectives
dscfh	Dry Standard Cubic Feet per Hour (1 atm, 68° F)
ESP	Electrostatic Precipitator
FCEM	Field Chemical Emissions Monitoring
FGD	Flue Gas Desulfurization
GFAAS	Graphite Furnace Atomic Adsorption Spectroscopy
HGAAS	Hydride Generation Atomic Absorption Spectroscopy
HRGCMS	High Resolution Gas Chromatography/Mass Spectroscopy
HHV	Higher Heating Value
IC	Ion Chromatography
ICP (ICAP, ICAPES, ICP-AES)	Inductively Coupled Argon Plasma Emissions Spectroscopy
ICP-MS	Inductively Coupled Argon Plasma Mass Spectroscopy
ID	Induced Draft
MDL	Method Detection Limit
MS/MSD	Matrix Spike/Matrix Spike Duplicate
MW	Megawatt
INAA	Neutron Activation Analysis
NBS	National Bureau of Standards
NC	Not Calculated
ND	Not Detected
NR	Not Reported
PAH	Polynuclear Aromatic Hydrocarbons
POM	Polycyclic Organic Matter
PSD	Particle Size Distribution
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
SIE	Selective Ion Electrode
VOC	Volatile Organic Compound
VOST	Volatile Organic Sampling Train

Appendix A
Sampling and Analytical Summary

Details of the sampling activities at Site 21, and descriptions of the analytical method used are presented in this section.

Sampling Summary

Sampling was performed from August 18 to August 24, 1992. Samples from several process streams were collected during each day of sampling. These streams included:

- ESP inlet flue gas;
- Absorber outlet flue gas;
- Coal fed to the power plant boiler;
- ESP collected fly ash;
- Absorber liquor; and
- Absorber solids.

The ESP inlet, absorber outlet flue gas samples, and power plant coal samples were submitted for analysis. Samples from the other three process streams were archived for possible future analysis.

Flue Gas Sampling

Flue gas samples were collected at the ESP Inlet and the absorber outlet to determine the concentration of the following groups of substances:

- Trace metals;
- Semivolatile organics; and
- Anions.

Table A-1 provides a summary of the specific dates and times during which the flue gas samples were collected. Comments pertaining to problems encountered during testing are also included in Table A-1. Table A-2 provides a summary of the sampling methods that were used to collect each type of sample. Information pertaining to the number of samples collected and the number of samples submitted for analysis is also included in Table A-2. The flue gas sampling data sheets and the sample log book entries are included in Appendix D.

Sampling was performed based upon the technical approach in the project specific sampling and analytical test plan with the exception of two deviations. These include:

- A decrease in the number of sampling points per traverse used to collect flue gas samples at the absorber outlet from six to two; and
- A decrease in the volume of gas sampled during the collection of metals samples at the absorber outlet from 500 to 300 standard cubic feet (scf).

The sampling trains traversed both horizontally and vertically, one train being at the inner point while the other sampled the outer point. At port charge, the probe filter box was rotated 90 degrees. The number of sampling points used per traverse to collect flue gas samples at the absorber outlet was reduced from six to two after the first day of testing to minimize problems encountered with the filters becoming wet while sampling close to the duct walls. The two sampling points were located at 14.6% and 85.4% across the diagonal. The use of two sampling points per traverse does not meet the requirements specified in the Code of Federal Regulations (CFR Part 40). However, the flue gas exiting the wet absorber should be well mixed and therefore sampling only two points per diagonal should not significantly affect the vapor phase results. There should also be minimal effect on the mass of particulate collected if the outlet particles are relatively small (< 10 microns). Large particles could potentially be stratified along the bottom of the duct and not picked up by the sampling train depending upon the degree of particulate stratification. Velocity profiles were performed using six points per diagonal at the absorber outlet as specified in the test plan. The absorber outlet velocity

Table A-1

FCEM Site 21 - Variability Tests Flue Gas Samples Collection Time Periods

Parameter	ESP	Scrubber Outlet				Comments
		Inlet	Train "A"		Train "B"	
		Start-Stop	Start - Stop	Start - Stop	Start - Stop	
RUN 1 8/18/92	Velocity	0945-1005	0841	--	1000	1)
	Metals	1400-1730	1201 - 2241	1147 - 2239	2)	Inlet anions and semivolatiles filters became dislodged allowing solids to bypass filter. Samples discarded.
	Anions	1823-1911	N/A	N/A	3)	Outlet metals filters become wet. Run aborted. Outlet anions train not started because of time factor. One train used for field blank.
	Semivolatiles	1423-1815	1748 - 1836	1720 - 1832	4)	Outlet semivolatiles sampling aborted due to problems in collecting metals samples.
RUN 2 8/19/92	Velocity	0845-0900	0815	--	0856	1)
	Metals	1500-1520	0951 - 0138	0956 - 0150	2)	Outlet samples collected using 4 sampling points instead of 12 to minimize chances of filters becoming wet.
	Anions	1715-1846	1935 - 2238	1855 - 2229		Outlet metals filters become dislodged sometime during testing - solids noted in the first impingers. Samples discarded.
	Semivolatiles	1132-1531	1340 - 1633	1317 - 1640		
RUN 3 8/20/92	Velocity	0945-1010	0752	--	0827	1)
	Metals	1600-1630	0245	--	0300	Inlet nozzle lost during port change on semivolatiles train, nozzle replaced, and run completed.
	Anions	1040-1419	0908 - 2250	0901 - 2258	2)	Outlet metals "A" encounters high vaccum. Unable to pull rate for about 30 minutes.
	Semivolatiles	1534-1706	1533 - 1839	1540 - 1832		Impingers analyzed for mercury only.

Table A-1 (Continued)

Parameter	ESP	Inlet	Scrubber Outlet		Comments
			Train "A" Start - Stop	Train "B" Start - Stop	
RUN 4 8/21/92	Velocity	0900-0915	0750	--	0825 1) Outlet anions nozzle cracked during port change. Nozzle was replaced and the run was completed.
	Metals	1630-1655	2150	--	2210
	Anions	1009-1306	0850 - 1749	0845 - 1814	2) Outlet metals sample volume reduced from 500 to 300 scf.
	Semivolatiles	1412-1610	1605 - 1937	1620 - 1942	
		1022-1425	1130 - 1442	1124 - 1459	
RUN 5 8/22/92	Velocity	0830-0840	0730	--	0800 1) Inlet anions nozzle chipped during port change. Nozzle was replaced and the run completed.
	Metals	1625-1640	1750	--	1815
	Anions	1005-1244	0843 - 1702	0829 - 1714	
	Semivolatiles	1409-1556	1428 - 1833	1435 - 1828	
		0952-1350	1018 - 1319	1026 - 1316	
RUN 6 8/23/92	Velocity	0900-0915	0800	--	0815
	Metals	1230-1240	1745	--	1758
		1038-1209	0912 - 1734	0908 - 1729	
RUN 7 8/24/92	Velocity	0815-0835	0735	--	0755
	Metals	1028-1045	1645	--	1705
		0847-1015	0810 - 1626	0812 - 1622	

Table A-2

FCM Site 21 – Variability Tests Sampling Methods Summary

<u>Process Stream</u>	<u>Parameters of Interest</u>	<u>Sampling Method</u>	<u>Samples Collected</u>	<u>Samples Analyzed</u>
ESP Inlet Flue Gas	Trace Metals	Specified in Section 3.1 of 40 CFR Part 266, Appendix IX	7	6
Scrubber Outlet Flue Gas	Semivolatile Organics	Method 0010 of SW 846	5	4
		Modified EPA Method 5	5	4
		Specified in Section 3.1 of 40 CFR Part 266, Appendix IX	7 Pair	4 Pair
		Method 0010 of SW 846	5 Pair	4 Pair
		Modified EPA Method 5	4 Pair	4 Pair
		Auto Sampler - 24-hour composite	7	6
		Sample Thief - 24-hour composite	7	0
		Grab Sample	7	0
		Grab Sample	7	0
ESP Collected Fly Ash	Not Applicable			
Scrubber Solids	Not Applicable			
Scrubber Liquor	Not Applicable			

profile was reasonably flat across each traverse during the on-site test effort. The relative standard deviation was less than 10% for the six velocity sampling points across each diagonal. The flat velocity profile does not indicate a bias in the distribution of the outlet flue gas. The targeted trace metals sample gas volume was reduced from 500 to 300 scf at the absorber outlet to eliminate the need for using more than one filter per train. Using multiple filters at the absorber outlet would have defeated the benefits of sampling longer because of the background concentrations of trace metals present in the quartz filters.

Multi-Metals Collection

A modification of the sampling methodology specified in Section 3.1 of the 40 CFR Part 266, Appendix IX was used to determine the particulate mass loading and simultaneously collect solid and vapor phase samples of the ESP Inlet and absorber outlet flue gas for trace metals analysis. Modifications to the specified procedure included the use of a Teflon® sample line to transfer flue gas from the filter holder to the impinger train. After sample collection, the Teflon® sample line was allowed to soak for 15 minutes with nitric acid solution to recover any trace metals that might have been adsorbed. The resulting Teflon® sample line rinse was added to the first nitric acid impinger sample. A second modification included the use of two empty impingers to help collect the large volume of moisture present at the absorber outlet. A third modification included not monitoring the flue gas flow rate during actual sampling. A velocity profile was performed just prior to testing and the flow rate data from the velocity profile was used to determine the sampling rate needed to collect the sample at isokinetic conditions. This approach of using velocity profile data to calculate isokinetic sampling rates was also used during the collection of semivolatile organics and anions samples at the absorber outlet.

A summary of the ESP inlet and absorber outlet trace metals source sampling data is presented in Table A-3. A total of seven sets of ESP inlet and absorber outlet trace

Table A-3
FCEM Site 21 - Variability Test
Trace Metals Source Sampling Data

<u>ESP INLET</u>					
<u>Run No.</u>	<u>Flue Gas Composition</u>				
	<u>Sample Gas Volume (dscf)</u>	<u>Moisture (%)</u>	<u>O₂ (%)</u>	<u>CO₂ (%)</u>	<u>% Isokinetic</u>
2	29.62	9.4	4.1	12.8	98
3	42.42	9.1	3.8	12.5	94
4	43.41	9.4	4.6	12.2	95
5	42.22	9.2	3.9	12.5	96
6	36.53	8.9	3.8	12.7	94
7	34.98	9.6	3.8	12.7	93

<u>SCRUBBER OUTLET</u>					
<u>Run No.</u>	<u>Flue Gas Composition</u>				
	<u>Sample Gas Volume (dscf)</u>	<u>Moisture (%)</u>	<u>O₂ (%)</u>	<u>CO₂ (%)</u>	<u>% Isokinetic</u>
3A	458.676	12.2	5.8	12.4	97
3B	458.539	12.2			93
4A	313.087	12.3	5.7	12.2	98
4B	311.823	12.2			97
5A	306.666	12.9	5.7	12.1	98
5B	312.678	12.8			97
6A	302.029	12.3	5.9	12.6	93
6B	302.214	11			92
7A	326.368	13.2	5.6	12.6	96
7B	324.73	13.3			96

*The ESP Inlet O₂ and CO₂ data was obtained during collection of the anions sample on August 19 through August 22 and during the collection of the metals sample on August 23 and 24.

metal samples were collected over the period of August 18 to August 24. All of the metals samples collected on August 18 were discarded because of problems encountered during sampling at both locations. The remaining six sets of ESP inlet metals samples were submitted for analysis. The absorber outlet trace metals samples collected on August 19 were discarded because the filters became dislodged from the filter holder during testing, allowing solids to enter the impingers. The impingers from the metals samples collected at the absorber outlet on August 20 were analyzed for mercury only. A complete metals analysis was not performed on this sample set because two filters were used in the collection of each of the two outlet trains. The four pair of trace metals samples collected at the absorber outlet from August 21 to August 24 were submitted for analysis.

Semivolatile Organics Collection

A modification of the sampling methodology specified in Method 0010 of SW-846 was used to collect samples of the ESP inlet and absorber outlet flue gas for semivolatile organic analysis. The modification included the use of a Teflon® sample line to transfer the flue gas from the XAD resin cartridge to the impinger train. The sample line was allowed to soak with methylene chloride for 15 minutes after sample collection to recover any organics of interest that may have adsorbed onto the tubing. The methylene chloride rinse was added to the condensate sample that was collected in the first impinger.

A summary of the ESP inlet and absorber outlet semivolatile organics source sampling data is presented in Table A-4. A total of five sets of semivolatile organics samples were collected at both the ESP inlet and absorber outlet from the period of August 18 to August 22. The set of semivolatile samples collected on August 18 were discarded because of problems encountered in collecting these samples. The four sets of semivolatile organic samples collected from August 19 to August 22 were submitted to the labs for analysis. The August 22 ESP inlet semivolatile organic sample was collected at 87%

Table A-4
FCEM Site 21 - Variability Test
Semivolatiles Source Sampling Data

<u>Run No.</u>	<u>Sample Gas Volume (dscf)</u>	<u>ESP INLET</u>			
		<u>Moisture^a (%)</u>	<u>O₂^b (%)</u>	<u>CO₂^b (%)</u>	<u>% Isokinetic</u>
2	91.728	9.2	4.1	12.8	91
3	86.428	8.9	3.8	12.5	87
4	89.915	9.3	4.6	12.2	92
5	92.419	9.4	3.9	12.5	92

<u>Run No.</u>	<u>Sample Gas Volume (dscf)</u>	<u>SCRUBBER OUTLET</u>			
		<u>Moisture^c (%)</u>	<u>O₂^d (%)</u>	<u>CO₂^d (%)</u>	<u>% Isokinetic</u>
2A	101.43	12.4	5.9	12.6	98
2B	103.37				103
3A	103.49	12.2	5.8	12.4	100
3B	102.02				101
4A	108.53	12.3	5.7	12.2	105
4B	100.81				101
5A	102.36	12.9	5.7	12.1	99
5B	100.58				100

^aThe ESP inlet moisture data represent the average of the anions and trace metals moisture for the day.

^bThe ESP inlet O₂ and CO₂ data represent the analysis of a bag sample collected during anions sampling that day.

^cThe scrubber outlet moisture data for Runs 2 and 3 represent the average of the two anions trains collected that day. The scrubber outlet moisture data for Runs 4 and 5 represent the average of the two trace metals samples collected that day.

^dThe scrubber outlet O₂ and CO₂ data represent the analysis of a bag sample collected during trace metals sampling that day.

of the isokinetic rate. The sub-isokinetic rate is not expected to have a significant effect on the semivolatile organics results.

Anions Collection

An adaptation of the procedures specified in EPA Method 5 were used to collect solid and vapor phase samples of the ESP inlet and absorber outlet flue gas for anions analysis. This sampling train was used to collect anions samples only and not to determine the particulate mass loading. A Teflon® sample line was used to transfer the flue gas from the filter holder to the impingers. After sample collection the Teflon® sample line was soaked for 15 minutes with a carbonate/bicarbonate solution to recover any anions that may have adsorbed onto the walls of the tubing during testing. The resulting rinse solution was added to the first impinger sample for analysis. Two impingers containing 6% hydrogen peroxide were used to collect the vapor phase anions. The two impinger samples were recovered into separate sample containers. Upon completion of sampling the probe and sampling nozzle (P&N) were rinsed with a carbonate/bicarbonate solution. The P&N rinse was combined with the filter to generate the solid phase anions sample.

A summary of the ESP inlet and absorber outlet source sampling data is presented in Table A-5. A total of five sets of ESP inlet anions samples were collected over the period of August 18 to August 22 while four sets were collected at the absorber outlet. The anions sample collected at the ESP inlet on August 18 was discarded because the filter became dislodged from the support plate during sampling allowing solids to enter the first impinger. The remaining anion sample sets were submitted to the lab for analysis.

Flue Gas Flow Rate

The flow rate of flue gas entering the ESP and exiting the wet absorber was determined using the procedures specified in EPA Methods 1, 2, 3, and 4. EPA Method 1 was used

Table A-5
FCEM Site 21 - Variability Test
Anions Source Sampling Data

<u>Run No.</u>	<u>Flue Gas Composition</u>				
	<u>Sample Gas Volume (dscf)</u>	<u>Moisture (%)</u>	<u>O₂ (%)</u>	<u>CO₂ (%)</u>	<u>% Isokinetic</u>
2	37.685	9.0	4.1	12.8	96
3	37.715	8.7	3.8	12.5	95
4	43.259	9.2	4.6	12.2	94
5	42.009	9.5	3.9	12.5	94

<u>Run No.</u>	<u>Flue Gas Composition</u>				
	<u>Sample Gas Volume (dscf)</u>	<u>Moisture (%)</u>	<u>O₂ *</u>	<u>CO₂ *</u>	<u>% Isokinetic</u>
2A	106.482	12.5	5.9	12.6	100
2B	108.675	12.2	5.9	12.6	101
3A	106.654	12.3	5.8	12.4	99
3B	106.827	12.1	5.8	12.4	99
4A	129.521	12.5	5.7	12.2	101
4B	106.571	12.5	5.7	12.2	99
5A	131.873	12.8	5.7	12.1	102
5B	120.779	13.6	5.7	12.1	94

*The scrubber outlet O₂ and CO₂ sample was collected during multi-metals sampling.

to determine the number of sampling points required to perform a velocity profile. EPA Method 2 was used to determine the velocity and volumetric flow rate of the flue gas. EPA Methods 3 and 4 were used to determine the molecular weight and moisture content of the flue gas, respectively.

A velocity probe was used to measure the average velocity head pressure and temperature at the ESP inlet and absorber outlet. An integrated bag sample was collected each day at the inlet and outlet sampling locations during one of the sampling episodes for use in determining the flue gas molecular weight. An Orsat apparatus was used to analyze the bag samples for oxygen and carbon dioxide. The moisture content of the flue gas was determined simultaneously during the collection of metals and anions samples. This was accomplished by weighing the impingers before and after sampling to determine the mass of water condensed during sampling. The mass of condensed water was then related to the volume of flue gas sampled to determine the fraction of water vapor present in the original flue gas.

A summary of the flue gas flow rate data obtained at the ESP inlet and absorber outlet during the period of August 18 to August 24 is presented in Table A-6. Two velocity profiles were performed each day at the ESP inlet and absorber outlet, except on August 18 and 19. One velocity profile was performed in the morning prior to collecting any flue gas samples and a second velocity profile was performed after sampling was completed. On each day, the morning velocity profile agreed with the evening one within \pm 3% at both the ESP inlet and absorber outlet. This indicates a constant flow rate of flue gas during the course of a day and supports the validity of using the morning velocity data to set the isokinetic sampling rate.

Particulate Mass Loading Data

The particulate mass loading was determined simultaneously during the collection of multi-metals samples at the ESP inlet and absorber outlet. A summary of the ESP inlet and absorber outlet particulate mass loading data is presented in Table A-7. The

Table A-6

FCEM Site 21 – Variability Tests
Flue Gas Flow Rate Data

ESP Inlet

Run No.	Time	Flue Gas Composition			Average Flue Gas			Average of Morning & Evening
		Moisture (%) ^a	O ₂ (%) ^b	CO ₂ (%)	ΔP (inches H ₂ O)	Temperature (°F)	Velocity (ft/sec)	
2	Morning	9.2	4.1	12.8	1.35	291	79.14	8,960
	Evening				1.38	286	79.49	9,060
3	Morning	8.9	3.8	12.5	1.36	297	80.16	9,020
	Evening				1.40	296	80.87	9,112
4	Morning	9.3	4.6	12.2	1.39	292	80.71	9,109
	Evening				1.36	294	79.72	9,003
5	Morning	9.4	3.9	12.5	1.31	296	78.36	8,834
	Evening				1.29	298	78.05	8,776
6	Morning	8.4	3.8	12.7	1.31	293	78.14	8,897
	Evening				1.35	296	79.26	8,988
7	Morning	7.6	3.8	12.7	1.20	297	76.88	8,609
	Evening				1.34	297	79.09	8,856

Table A-6 (Continued)

Run No.	Time	Flue Gas Composition				Average Flue Gas			
		Moisture [%]*	O ₂ [%]⁹	CO ₂ [%]	ΔP (inches H ₂ O)	Temperature (°F)	Velocity (ft/sec)	Flow Rate (dscfm)	Average of Morning & Evening
2	Morning	12.4	5.9	12.6	0.82	120	47.70	8,135	8,135
	Evening								
3	Morning	12.2	5.8	12.4	0.80	126	51.97	8,042	8,034
	Evening				0.80	122	51.49	8,026	
4	Morning	12.3	5.7	12.2	0.80	126	51.92	8,052	8,115
	Evening				0.82	123	52.4	8,178	
5	Morning	12.9	5.7	12.1	0.80	123	51.72	8,017	8,099
	Evening				0.83	122	52.65	8,180	
6	Morning	11.7	5.9	12.6	0.81	119	51.52	8,151	8,146
	Evening				0.81	123	51.81	8,141	
7	Morning	13.3	5.6	12.6	0.85	123	53.27	8,219	8,142
	Evening				0.82	125	52.54	8,064	

*The ESP inlet moisture data for Runs 2 to 5 represents the average of anions and trace metals moisture data for those days. The moisture for Runs 6 and 7 were obtained from the metals runs performed that day.

⁹The ESP inlet O₂ and CO₂ data for Runs 2 to 5 represents the analysis of a bag sample collected during anions sampling that day. The O₂ and CO₂ data for Runs 6 and 7 were obtained during the collection of the trace metals sample that day.

⁹The scrubber outlet moisture data represents the average of trace metals trains "A" and "B" collected that day.

⁹The scrubber outlet O₂ and CO₂ data represents the analysis of a bag sample collected during trace metals sampling that day.

Table A-7

FCEM Site 21 - Variability Tests
Particulate Mass Loading Results

Run No.	Filter	P&N Rinse	Total	Sample Gas Volume (dscf)	Mass Loading (gr/dscf)		
					ESP INLET	Filter	P&N Rinse
2	2.4626	0.1680	2.6306	31.4	1.208	0.082	1.291
3	2.7854	0.2343	3.0197	47.2	0.910	0.077	0.986
4	2.8056	0.0797	2.8853	46.6	0.929	0.026	0.955
5	1.9036	0.3674	2.2710	44.8	0.656	0.127	0.782
6	1.9560	0.1949	2.1509	39.2	0.770	0.077	0.847
7	2.7660	0.1392	2.9052	37.6	1.135	0.057	1.192
Average						1.0	
SCRUBBER OUTLET							
4A	0.04648	0.0058	0.05228	302.9	0.0024	0.0003	0.0027
4B	0.05931	0.0180	0.07731	305.5	0.0030	0.0009	0.0039
5A	0.05236	0.0074	0.05976	296.8	0.0027	0.0004	0.0031
5B	0.15752	0.0188	0.17632	307.8	0.0079	0.0009	0.0088
6A	0.10895	0.0199	0.12885	282.6	0.0059	0.0011	0.0070
6B	0.1068	0.0101	0.1169	286.8	0.0057	0.0005	0.0063
7A	0.08489	0.0110	0.09589	315.4	0.0042	0.0005	0.0047
7B	0.10009	0.0526	0.15269	318.0	0.0049	0.0026	0.0074
Average						0.0055	

individual filter and P&N mass gains and related mass loadings are included in Table A-7 for comparative purposes.

Process Stream Sampling

One sample each of the coal, collected ESP fly ash, wet absorber solids, and absorber liquor were collected during each day of flue gas sampling. The coal sample was collected using an auto-sampler on the power plant coal preparation circuit just upstream of the final pulverizers. The auto-sampler collected a coal sample each 24-hour period (1200 to 1200). A riffler was then used to obtain a subset of the power plant 24-hour coal sample for use by Radian.

A composite sample of the ESP fly ash was collected from each of the five hoppers servicing the ESP. The fly ash is transferred out of the hoppers once per shift. During the ash transfer step, a fraction of the solids that were present in each hopper was diverted to a 55-gallon drum. The fly ash was allowed to accumulate in the 55-gallon drum over a 24-hour period. A tube thief sampler was then used to retrieve a sample of the fly ash from the 55-gallon drum.

A portion of the absorber solids and absorber liquor that is normally collected each day by personnel from the Site 21 laboratory was provided to Radian for use on this project. The coal samples were submitted for analysis, but the ESP fly ash, absorber solids, and absorber liquor samples were archived.

Analytical Methods

Semivolatile Organic Compounds

Sample Collection. Polycyclic aromatic hydrocarbons (PAH) were collected using a Modified Method 0010 train containing a pre-cleaned filter, XAD resin cartridge and two water condensate impingers separated from the cartridge by a moisture knockout

impinger. The cleaning, preparation and analysis were performed by Twin City Testing Corporation, St. Paul, MN. The XAD resin and filters were cleaned by methylene chloride Soxhlet extraction and dried by a purified nitrogen gas stream. The resin was packed in a cleaned glass cartridge and labeled with surrogate spikes.

Sample Preparation and Analysis. The recovered cartridges were combined with the filter and the filtered PNR, then Soxhlet extracted with methylene chloride for eighteen hours. The extract was concentrated to 10 mL split into 5 mL aliquots, one of which was archived. The remaining split was further concentrated to 1 mL, spiked with internal standards and analyzed. The analysis was performed by modified SW-846 Method 8290, capillary gas chromatography coupled with high resolution mass spectrometer (GC/HRMS). The method modifications were as follows: target analytes were PAHs (instead of dioxin and furans) and isotopic spikes contained deuterium, not carbon 13. Two types of analytical spikes were performed. Surrogate spikes were added to the resin before sampling and extraction. Internal or recovery spikes were performed after extraction and before analysis. Additional SW-846 Method 8270 analysis was performed on the inlet XAD cartridges for semivolatile compounds. The 8270 was performed to investigate the poor spike recoveries caused by high unknown organic concentrations in the GC/HRMS analysis for these samples (see the 8270 Semivolatile results).

Anions

Sample Collection. Anions were collected by a Modified Method 5 train with filter, two impingers containing 6% hydrogen peroxide (separated by a knockout impinger) and a silica gel impinger. The filters were combined with the PNR and shaken for 20 minutes. The impingers were collected and analyzed separately with no sample preparation.

Sample Preparation and Analysis. The fluoride was analyzed by ion selective electrode using EPRI FGD Handbook Method P1 (CS 3612). Analysis of chloride and sulfate was performed by ion chromatography using EPRI FGD Handbook Method 13. This method uses a modified eluent to separate chloride and sulfate with conductivity detection.

Chromatograms from the second impinger of the outlet trains presented a peak tentatively identified as sulfite. The addition of 2 mL 30% hydrogen peroxide eliminated this peak and increased the sulfate peak. Review of the first outlet impinger and both inlet impingers did not show the same sulfite peak. The loss of peroxide in the second impinger is not easily explained. Calculations based on CEM sulfur dioxide concentrations at both the inlet and outlet indicated the 5% peroxide to be sufficient for complete sulfur dioxide oxidation. The peroxide loss due to sulfur dioxide reaction is the best explanation but the loss does not occur in the first impinger where the concentration of sulfur dioxide is greater nor in either inlet impinger where the sulfur dioxide concentration was greater than 1000 ppm. Subsequent anion analysis for other FCEM locations need be closely monitored for this phenomenon. An increase in hydrogen peroxide concentration to 10% would easily provide the excess necessary to react with the available sulfur dioxide.

Gas Phase Metals

Sample Collection. The vapor and particulate phase metals were collected and analyzed by BIF multiple metals method. The train consisted of two 5% nitric acid/10% hydrogen peroxide impingers, two 4% potassium permanganate/10% sulfuric acid impingers, two moisture knockout impingers before and after the second nitric impingers and one silica gel impinger. Upon recovery, the nitric impingers and their three rinses were combined in the same sample bottle. The permanganate impingers were all combined in the same sample bottle with the nitric and hydrochloric acid rinses. Particulate loading was calculated from the metals trains; this required the use of an acetone PNR in addition to the nitric acid PNR.

Sample Preparation and Analysis. Filters and PNRs were returned to Radian for desiccation and weighing to determine particulate loading. The residual PNR and filters from the outlet were combined and microwave digested using CEM methods (40 CFR 136.5). The inlet filters, which contained between 1.9 and 2.5 grams of solid material, were not completely digested. Instead, approximately 0.15 g of the filtered ash was

digested and analyzed separate from the PNR. Vapor phase metals were determined from the digested nitric impingers.

Table A-8 lists the methods used for the eight target elements (As, Be, Cd, Cr, Hg, Ni, Pb and Se). Additional elements were analyzed by inductively coupled plasma emission spectroscopy (ICP-AES) SW-846 Method 6010. For the nitric impingers a 100 mL aliquot was digested by SW-846 Method 3020 in nitric acid, reduced in volume and diluted to a final volume of 100 mL. This "3020" fraction which contained no hydrochloric acid was used for analysis by graphite furnace atomic spectroscopy (GFAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Another 100 mL aliquot was digested, volume reduced and diluted to a final volume of 100 mL with hydrochloric acid. This fraction "6010" was used for analysis by ICP-AES. Both these fraction were digested per the BIF method but were not concentrated. The remaining nitric impinger samples (~ 1.5 liters) from the outlet location were concentrated by low temperature heating with the addition of extra nitric acid and diluted to a final volume of 50 mL. This was approximately a 25 fold concentration for each impinger.

Mercury analysis was performed by a modified EPA Method 245.1A using cold vapor atomic spectroscopy (CVAAS). A 10 mL aliquot was taken from both the nitric and permanganate impingers, prior to any other metals analysis. The samples were diluted to 50 mL, acidified, digested and analyzed by CVAAS. Additional potassium permanganate (2.3 g) was added to the nitric aliquots to consume the residual peroxide present indicated by a persistent pink or brown color. The one modification was the use of an oven instead of a hot bath during the sample digestion. This modification allowed more samples to be digested and analyzed together than could be digested using the hot bath. Though no comparison study between the water bath and oven was performed QC data met laboratory and project requirements. No mercury analysis was performed on the particulate phase. Previous particulate mercury analysis performed at the same site indicated mercury at or below the method detection limit.

Table A-8
Methods for the Target Metals for Site 21

<u>Element</u>	<u>Method</u>	<u>Instrument</u>	<u>MDL $\mu\text{g/L}$</u>
Arsenic	SW-846, 7060	GFAAS	1.5
Beryllium	SW-846, 6010	ICP-AES	0.054
Cadmium	SW-846, 7131	GFAAS	0.24
Chromium	SW-846, 6010	ICP-AES	2.96
Lead	SW-846, 7421	GFAAS	1.4
Mercury	EPA 245.1	CVAAS	0.1
Nickel	EPA 249.2	GFAAS	2.2
Selenium	SW-846, 7740	GFAAS	2.5

Mercury in FGD Solids

Mercury analysis of the FGD solids used the same Modified Method EPA 245.1 used for the vapor phase mercury. The solids were collected by filtering the FGD slurry and rinsing twice with 50% acetone and drying. The solids were acidified, digested and analyzed by CVAAS.

Coal Composition

Coal samples were obtained from the daily composite sample used by the power plant. The daily composite was mixed and three splits made. One split was archived, one sent for bulk analysis and a third provided to Brooks-Rand Ltd. for additional mercury analysis. Bulk coal analysis was performed by CT&E for ultimate and short proximate, total chlorine, higher heating value, and the target metals listed in Table A-8. The methods are listed in Table A-9. Analytical methods used to determine the target metals followed ASTM D3683 (Trace metals in Coal). ICP-AES was used for Be, Cr, Pb and Ni; GFAAS for As, Cd and Se. Mercury was analyzed using Double Gold Amalgamation CVAAS.

ESP Inlet Semivolatile Organic Analysis

During analysis of the ESP inlet MMS extracts by HRGCMS, large amounts of an interfering compound or compounds were encountered. Table A-10 presents the results from the two runs where partial data was obtained. This data is not believed to be reliable because of the interference problem with the other two runs.

Semivolatile Organic Compounds by Method 8270

The four inlet, front half composites were analyzed following SW-846 Method 8270 (GC/Low Resolution Mass Spectrometry) for semivolatile compounds. This attempt was made to investigate the recovery and analysis difficulties encountered during the

Appendix A

GC/High Resolution Mass Spectrometry analysis of the same samples. Although a number of high concentration organics were detected none were expected to cause problems with the initial HRMS analysis. However, the sample from Run 2 (HG220-223) did contain material which caused chromatographic difficulties and is not reported

Table A-9
Coal Methods for Site 21

<u>Parameter</u>	<u>Method</u>
Percent Moisture	ASTM D3172-89
Percent Ash	ASTM D3172-89
Percent Carbon	ASTM D3176-89
Percent Hydrogen	ASTM D3176-89
Percent Nitrogen	ASTM D3176-89
Percent Sulfur	ASTM D3176-89
Percent Oxygen	ASTM D3176-89
Heating Value	ASTM D3286-85
Percent Chlorine	ASTM D4208-88

Table A-10
Invalid ESP Inlet Semivolatiles by HRGCMS (ng/dNm³)

<u>Substance</u>	<u>Run 3</u>	<u>Run 5</u>
5-Methyl chrysene	NRS	NRS
7H-Dibenzo[c,g]carbazole	NRS	NRS
Acenaphthene	6.54	16.41
Acenaphthylene	12.32	37.58
Anthracene	15.03	53.56
Benz[a]anthracene	NRS	NRS
Benzo[a]pyrene	NRS	NRS
Benzo[b,j&k]fluoranthenes	NRS	NRS
Benzo[g,h,i]perylene	NRS	NRS
Chrysene	NRS	NRS
Dibenz[a,h]acridine	NRS	NRS
Dibenz[a,h]anthracene	NRS	NRS
Dibenz[a,i]acridine	NRS	NRS
Dibenzo[a,e]pyrene	NRS	NRS
Dibenzo[a,h]pyrene	NRS	NRS
Dibenzo[a,i]pyrene	NRS	NRS
Fluoranthene	45.12	286.36
Fluorene	2.26	54.85
Indeno[1,2,3-cd]pyrene	NRS	NRS
Phenanthrene	84.14	359.35
Pyrene	39.38	235.39

NRS = No resolvable signal.

here. The high concentration organics were not members of the 8270 list and many were not identifiable using the NIST/Mass Spectral Database.

Table A-11 lists the 8270 target compounds identified and Tables A-12a and A-12b, the ancillary compounds detected. All mass values are semiquantitative, either below the cutout limit for the 8270 compounds or no calibration was performed.

Raw Analytical Data

The 408 pages of raw analytical data are on file at Radian Corporation as an extension of Appendix A.

Table A-11
ESP Inlet Method 8270 Target Compounds (ng)

<u>Sample Code</u>	<u>Compound</u>	<u>Result</u>	<u>POL^a</u>
Method Blank	Benzyl Alcohol	21,000	10,000
	Naphthalene	1,200	10,000
Run 3	Benzoic Acid	21,000	10,000
	Di-n-butylphthalate	1,600	10,000
	bis(2-Ethylhexyl) phthalate	5,100	10,000
Run 4	Benzoic Acid	27,000	10,000
	Di-n-butylphthalate	1,500	10,000
	bis(2-Ethylhexyl) phthalate	4,900	10,000
Run 5	Phenol	7,700	10,000
	2-Nitrophenol	3,900	10,000
	Benzoic Acid	30,000	10,000
	Di-n-butylphthalate	3,200	10,000
	Butylbenzylphthalate	1,300	10,000
	bis(2-Ethylhexyl) phthalate	6,800	10,000

^aPractical quantitation limit.

Table A-12a

ESP Inlet Semivolatile Organics Detected (not part of 8270 list) (ng)

<u>Sample Code</u>	<u>Compound</u>	<u>Result</u>
Method Blank	Toluene	6,600,000
	Unknown	22,000
	Cyclopentane, ethyl, methyl isomer	8,500
	Cyclopentane, propyl-	13,000
	Unknown, mw = 112	16,000
	Unknown C ₈ H ₁₀ aromatic	18,000
	Unknown C ₈ H ₁₀ aromatic	10,000
	Unknown C ₁₀ H ₁₈	11000
	Unknown	11,0000
	Unknown	43,000
Run 3	Toluene	1,000,000
	Unknown	80,000
	Unknown C ₆ H ₁₀ O	100,000
	Unknown C ₆ H ₁₀ O	360,000
	2-Pentanone, 4-hydroxyl-4-methyl	650,000
	Unknown mw = 118	60,000
	Unknown	20,000
	Unknown	24,000
	Unknown C ₂₄ H ₅₀	25,000
	Unknown C ₂₅ H ₅₂	24,000

Table A-12b

ESP Inlet Semivolatile Organics Detected (not part of 8270 list) (ng)

<u>Sample Code</u>	<u>Compound</u>	<u>Result</u>
Run 4	Unknown	55,000
	Toluene	1,400,000
	3-Penten-2-one, 4-methyl	22,0000
	Unknown	48,000
	2-Pentanone, 4-hydroxy-4-methyl	1,100,000
	Unknown	25,000
	Unknown C ₂₃ H ₄₈	14,000
	Unknown C ₂₄ H ₅₀	26,000
	Unknown C ₂₅ H ₅₂	27,000
	Unknown C ₂₇ H ₅₆	15,000
Run 5	3-Pente-2-one isomer	46,000
	Unknown	160,000
	Toluene	1,000,000
	3-Pente-2-one, 4-methyl	1,100,000
	Unknown	110,000
	2-Pentanone, 4-hydroxy-4-methyl	1,000,000
	Unknown	33,000
	Unknown, mw = 112	28,000
	Unknown	15,000
	Unknown C ₂₅ H ₅₂	15,000

Appendix B
Analytical Data - FCEM Substances

B-1

Appendix B

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> High dust gas, vapor phase								
Chloride	ICPES	ug/lbm3	154690.94897	164916.92799	154174.36224	97813.45045		
Chromium	ICPES	ug/lbm3	3.03694 @	1.39969 @	1.21077 @	3.51765	6.50602	3.53874
Cobalt	ICPES	ug/lbm3	<	1.82445	<	.80731	<	2.02449
Copper	ICPES	ug/lbm3	<	1.10831	<	.89225	<	1.06374
Fluoride	ISE	ug/lbm3	8193.250660	9344.95221	8143.46179	8995.35232		
Lead	GFAA	ug/lbm3	33.28619	2.76255	29.80070	9.71097	10.58900	
Manganese	ICPES	ug/lbm3	215.61671	5.57114 @	61.79409	8.36797 @	12.23239	19.75113
Mercury	CVAA	ug/lbm3	9.92463	10.08579	9.05782	11.83396	9.69521	11.6803
Molybdenum	ICPES	ug/lbm3	<	1.19533	<	2.45349	<	1.38040
Nickel	GFAA	ug/lbm3	6.69155	2.34817	2.34220	4.75218	5.91456	1.86338
Selenium	GFAA	ug/lbm3	3.13988 @	2.70557	8.27244	3.55897	4.23429	1.0637
Vanadium	ICPES	ug/lbm3	3.21423 @	<	2.21695	<	2.48715	2.64162
>>>>> stack gas, A								
5-Methyl chrysene	HRGCMS	ng/lbm3	2.17208	<	1.02433			2.55188
7H-01benzo[c,g]carbazole	HRGCMS	ng/lbm3	<	3.42379	<	.72136		3.02580
Acenaphthene	HRGCMS	ng/lbm3	49.22153		17.44606			6.05139
Acenaphthene	HRGCMS	ng/lbm3	21.02131		3.61401			14.18114
Anthracene	HRGCMS	ng/lbm3	26.46892		8.16217			7.61918
Benz[al]anthracene	HRGCMS	ng/lbm3	1.73030		1.02072			.61974
Benz[e]pyrene	HRGCMS	ng/lbm3	3.49142		1.38501			19.28125
Benz[b,j,k]fluoranthene	HRGCMS	ng/lbm3	13.73196		4.44718			2.73415
Benzo[ghi]perylene	HRGCMS	ng/lbm3	.68948		1.14335			.94784
Chrysene	HRGCMS	ng/lbm3	14.35781		5.83940			4.77566
Dibenz[a,h]acridine	HRGCMS	ng/lbm3	<	.40496		.24887		1.89568
Dibenz[a,h]anthracene	HRGCMS	ng/lbm3	<	1.06763		-.45806		1.31239
Dibenz[a,i]acridine	HRGCMS	ng/lbm3	<	.77311		.11181		.98430
Dibenz[a,e]pyrene	HRGCMS	ng/lbm3	<	.47859		.69611		.83847
Dibenz[a,h]pyrene	HRGCMS	ng/lbm3	<	1.32534		.36789		1.49467
Dibenz[a,i]pyrene	HRGCMS	ng/lbm3	<	1.32534		.53741		1.85932
Fluoranthene	HRGCMS	ng/lbm3	141.44286		40.87940			25.15421
Fluorene	HRGCMS	ng/lbm3	170.74752		46.30401			28.83621
Indeno[1,2,3-cd]pyrene	HRGCMS	ng/lbm3	3.89245		1.30205			.65620
Phenanthrene	HRGCMS	ng/lbm3	659.61863		170.12884			55.12054
Pyrene	HRGCMS	ng/lbm3	64.79423		20.90137			12.32192

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Page 3
>>>>> stack gas, A									
5-Methyl chrysene	HRGCMS	ng/Hm3	1.10445	<	.97383	.55034	.43746		
7H-Dibenzo[c,g]carbazole	HRGCMS	ng/Hm3	3.05564	<	.73743	<	2.27016	<	1.84829
Acenaphthene	HRGCMS	ng/Hm3	51.20953	16.1597		3.50842			5.97868
Acenaphthylene	HRGCMS	ng/Hm3	11.44944	4.41472		3.02688			3.90073
Anthracene	HRGCMS	ng/Hm3	30.74044	5.12886		4.26514			4.48401
Benz[a]anthracene	HRGCMS	ng/Hm3	4.38097	1.01351		1.03189			.69265
Benz[a]pyrene	HRGCMS	ng/Hm3	2.79793	1.10368		.34396			2.84352
Benz[b,j,k]fluoranthene	HRGCMS	ng/Hm3	15.53589	5.08558		1.68542			3.35390
Benzo[ghi]perylene	HRGCMS	ng/Hm3	3.16608	1.36697		.85991			.36455
Chrysene	HRGCMS	ng/Hm3	8.46743	6.58240		.82551			4.59338
Dibenz[a,h]acridine	HRGCMS	ng/Hm3	1.25171	1.4427		.24077			.45569
Dibenz[a,h]anthracene	HRGCMS	ng/Hm3	1.14126	<	.75743				.32810
Dibenz[a,i]acridine	HRGCMS	ng/Hm3	.69948	<	.06492				1.31239
Dibenzo[a,e]pyrene	HRGCMS	ng/Hm3	<	1.03082	<	.28854			.47757
Dibenzo[a,h]pyrene	HRGCMS	ng/Hm3	<	.51541	<	.38953			1.14470
Dibenzo[a,i]pyrene	HRGCMS	ng/Hm3	<	1.36215	<	.57709			.71453
Fluoranthene	HRGCMS	ng/Hm3	157.34690	38.62154		5.67339			17.89959
Fluorene	HRGCMS	ng/Hm3	152.48733	39.53406		16.71159			23.14917
Indeno[1,2,3-cd]pyrene	HRGCMS	ng/Hm3	4.19690	1.61584		.65353			
Phenanthrene	HRGCMS	ng/Hm3	698.25828	187.88148		31.52337			
Pyrene	HRGCMS	ng/Hm3	70.75924	23.15922		5.77858			
>>>>> stack gas, B									
5-Methyl chrysene	HRGCMS	ng/Hm3	9.35063	.26351					.47498
7H-Dibenzo[c,g]carbazole	HRGCMS	ng/Hm3	4.07962	<	2.22518	<	1.30706	<	1.81828
Acenaphthene	HRGCMS	ng/Hm3	69.02859	5.35434		3.19886			1.90815
Acenaphthylene	HRGCMS	ng/Hm3	25.66910	4.57479		4.74669			2.63836
Anthracene	HRGCMS	ng/Hm3	48.26947	3.46586		5.91616			2.56414
Benz[a]anthracene	HRGCMS	ng/Hm3	2.02176	.51970		.34396			.75700
Benz[a]pyrene	HRGCMS	ng/Hm3	2.85212	<	.72465	<	.79112		.81266
Benz[b,j,k]fluoranthene	HRGCMS	ng/Hm3	29.96534	1.14919		1.96059			2.17451
Benz[ghi]perylene	HRGCMS	ng/Hm3	4.51285	.64047		.55034			1.31732
Chrysene	HRGCMS	ng/Hm3	42.02368	1.72744		2.64852			1.71066

Substance	Method	Units	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> stack gas, B									
0-Benz[a,h]acridine	HRGCMS	ng/Hm3	<	1.22750	<	.83444	<	.79112	.19667
0-Benz[b,h]anthracene	HRGCMS	ng/Hm3	<	1.84124	<	.60387	<	1.58223	.91656
0-Benz[a,i]acridine	HRGCMS	ng/Hm3	<	1.98565	<	1.06501	<	.30937	<
Dibenzo[a,e]pyrene	HRGCMS	ng/Hm3	<	1.69883	<	.29645	<	1.16947	<
Dibenzo[a,h]pyrene	HRGCMS	ng/Hm3	<	1.19139	<	.31475	<	1.06229	<
Dibenzo[a,i]pyrene	HRGCMS	ng/Hm3	<	2.77992	<	.82246	<	1.27266	<
Fluoranthene	HRGCMS	ng/Hm3	245.60146	11.61631	11.35078	8.59785			
Fluorene	HRGCMS	ng/Hm3	264.38093	24.95275	22.73596	21.92692			
Indeno[1,2,3-cd]pyrene	HRGCMS	ng/Hm3	4.72947	<	.61119	.96310	1.11323		
Phenanthrene	HRGCMS	ng/Hm3	777.32974	56.99460	43.33935	50.43303			
Pyrene	HRGCMS	ng/Hm3	96.05959	11.86518	7.18883	5.08004			
>>>>> stack gas, B, DUP									
5-Methyl chrysene	HRGCMS	ng/Hm3	6.24579	<	.26351				
7H-Dibenzo[c,g]carbazole	HRGCMS	ng/Hm3	<	2.27448	<	.79784	<		
Acenaphthene	HRGCMS	ng/Hm3	73.46923		4.60773				
Acenaphthylene	HRGCMS	ng/Hm3	20.14537		3.82087				
Anthracene	HRGCMS	ng/Hm3	16.42678		3.04864				
Benz[a]anthracene	HRGCMS	ng/Hm3	7.14836		41.122				
Benzo[a]pyrene	HRGCMS	ng/Hm3	10.26930	<	.77223				
Benzo[b,j,k]fluoranthene	HRGCMS	ng/Hm3	28.73784		1.22970				
Benzo[ghi]perylene	HRGCMS	ng/Hm3	5.05439		.24887				
Chrysene	HRGCMS	ng/Hm3	22.16713		1.29924				
Diben[a,h]acridine	HRGCMS	ng/Hm3	<	1.80514	<	.38794	<		
Diben[a,h]anthracene	HRGCMS	ng/Hm3	<	3.21315	<	.79784			
Diben[a,i]acridine	HRGCMS	ng/Hm3	<	1.29970	<	.52336			
Dibenzo[a,e]pyrene	HRGCMS	ng/Hm3	<	1.84124	<	.59389	<		
Dibenzo[a,h]pyrene	HRGCMS	ng/Hm3	<	1.69883	<	.30743			
Dibenzo[a,i]pyrene	HRGCMS	ng/Hm3	<	3.10484	<	.62217			
fluoranthene	HRGCMS	ng/Hm3	183.43841		15.62217				
fluorene	HRGCMS	ng/Hm3	243.83842		22.97278				
Indeno[1,2,3-cd]pyrene	HRGCMS	ng/Hm3	6.28189	<	.59306				
Phenanthrene	HRGCMS	ng/Hm3	676.31406		55.94057				
Pyrene	HRGCMS	ng/Hm3	73.75805		9.34722				

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
<<<<<<<<<<								
>>>>>>>	stack gas, solid phase A	ug/Nm ³	8.18382	8.18382	6.89400	7.39684	7.23275	
Arsenic	GFAA	ug/Nm ³	6.55293	14.50955	6.37026	10.07033		
Arsenic	ICPMS	ug/Nm ³	3.72556	3.17040	4.12209	4.11131		
Barium	ICPES	ug/Nm ³	1.5793	1.4053	1.5508	1.4578		
Beryllium	ICPES	ug/Nm ³	1.8323 @	1.71442 @	1.5895	1.2930		
Beryllium	ICPMS	ug/Nm ³	1.6969	1.7688	1.5615	1.1817		
Cadmium	GFAA	ug/Nm ³	1.6807	1.39780	1.2393	1.5734		
Cadmium	ICPMS	ug/Nm ³	3.69396	2.72429	3.56251	3.13171		
Chromium	ICPES	ug/Nm ³	3.61719	6.30283	3.18851	4.30156		
Chromium	ICPMS	ug/Nm ³	2.9783	2.2371 @	2.9642	2.8117		
Cobalt	ICPES	ug/Nm ³	1.35280	1.19602	1.27891	1.18336		
Copper	ICPES	ug/Nm ³	1.49333	1.28106	1.48641	1.4439		
Lead	GFAA	ug/Nm ³	2.78142	5.10825	2.47708	3.49901		
Lead	ICPMS	ug/Nm ³	1.26763	1.01170	1.18691	1.10161		
Manganese	ICPES	ug/Nm ³	.02528 @	.04188 @	.02096	.01918		
Mercury	ICPMS	ug/Nm ³	.83877	.55198	.77071	.79315		
Molybdenum	ICPES	ug/Nm ³	2.00989	1.38239	1.93543	1.52769		
Nickel	GFAA	ug/Nm ³	5.12692	9.63419	4.43032	6.10461		
Nickel	ICPMS	ug/Nm ³	2.25317	11.29980	11.54496	3.12207		
Selenium	GFAA	ug/Nm ³	2.23233	11.17073	9.09637	8.15090		
Selenium	ICPMS	ug/Nm ³	7.45720	6.07919	6.81658	6.65011		
Vanadium	ICPES	ug/Nm ³						
<<<<<<<<<<								
>>>>>>>	stack gas, solid phase A DUP	ug/Nm ³	6.65770	7.04006	7.37212	7.59873		
Arsenic	GFAA	ug/Nm ³	8.38032	17.04052	5.24161	12.05641		
Arsenic	ICPMS	ug/Nm ³	3.68981	3.06985	4.17154	4.17993		
Barium	ICPES	ug/Nm ³	1.5793	1.3586	1.5632	1.4692		
Beryllium	ICPES	ug/Nm ³	.24231 @	.38081 @	.19554	.26755		
Beryllium	ICPMS	ug/Nm ³	.16254	.17688	.15491	.12046		
Cadmium	GFAA	ug/Nm ³	.19147	.42974	.14745	.18868		
Cadmium	ICPMS	ug/Nm ³	3.76550	2.67560	3.64432	3.09740		
Chromium	ICPES	ug/Nm ³	5.17918	8.26893	4.29407	5.97111		
Chromium	ICPMS	ug/Nm ³	.37056	.24806 @	.25933	.25253		
Cobalt	ICPES	ug/Nm ³	1.41241	1.14388	1.27891	1.17187		
Copper	ICPES	ug/Nm ³	1.52990	1.30540	1.52350	1.40961		
Lead								

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> stack gas, solid phase A DUP <<<<<<<<								
Lead	ICPMS	ug/Nm3	2.93715	5.27430	2.58947	3.65920		
Manganese	ICPES	ug/Nm3	1.26163	.98127	1.20668	1.10847		
Mercury	ICPMS	ug/Nm3	.01914 0	.03389 0	.02162	.02194		
Molybdenum	ICPES	ug/Nm3	.89838	.60067	.83252	.72453		
Nickel	GFAA	ug/Nm3	1.89066	1.45542	1.96015	1.57344		
Nickel	ICPMS	ug/Nm3	5.23752	9.16409	4.25064	6.12360		
Selenium	GFAA	ug/Nm3	2.37240	10.62557	11.47079	3.15638		
Selenium	ICPMS	ug/Nm3	2.44043	11.31075	9.46642	8.50558		
Vanadium	ICPES	ug/Nm3	7.51682	6.03051	6.89074	6.67298		
>>>>> stack gas, solid phase B <<<<<<<<								
Arsenic	GFAA	ug/Nm3	7.52353	5.81861	8.35547	8.74221		
Arsenic	ICPMS	ug/Nm3	6.34891	12.01489	5.44563	11.86777		
Barium	ICPES	ug/Nm3	3.51363	2.39328	4.13172	4.27080		
Beryllium	ICPES	ug/Nm3	.15021	.10644	.15621	.15114		
Beryllium	ICPMS	ug/Nm3	.17697 0	<	.32542	.30704		
Cadmium	GFAA	ug/Nm3	.14406	.08834	.12146	.15373		
Cadmium	ICPMS	ug/Nm3	.16128	.22798	.09853	.2554		
Chromium	ICPES	ug/Nm3	3.26638	2.79140	3.43191	3.58499		
Chromium	ICPMS	ug/Nm3	3.19702	7.17174	2.65235	4.30323		
Cobalt	ICPES	ug/Nm3	.31584	.16838 0	.28387	.246240		
Copper	ICPES	ug/Nm3	1.43027	.99400	1.21136	1.26998		
Lead	GFAA	ug/Nm3	1.24814	.90073	1.42367	1.39399		
Lead	ICPMS	ug/Nm3	2.59192	4.49409	2.11056	4.27110		
Manganese	ICPES	ug/Nm3	1.15678	.82277	1.12806	2.28006		
Mercury	ICPMS	ug/Nm3	.01268 0	.04369 0	.01001	.01747		
Molybdenum	ICPES	ug/Nm3	.79438	.52945	.83196	.76282		
Nickel	GFAA	ug/Nm3	1.67106	1.55881	1.55121	1.91509		
Nickel	ICPMS	ug/Nm3	4.86910	9.85897	3.97805	7.96785		
Selenium	GFAA	ug/Nm3	7.55442	20.03183	10.63556	10.19749		
Selenium	ICPMS	ug/Nm3	6.30850	46.29827	6.66042	15.26341		
Vanadium	ICPES	ug/Nm3	7.10517	4.47029	6.97265	6.71942		
>>>>> stack gas, solid phase B DUP <<<<<<<<								
Arsenic	GFAA	ug/Nm3	5.94316	6.18869	9.41781	8.21336		

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> stack gas, solid phase B DUP								
Arsenic	ICPMS	ug/Nm ³						
Barium	ICPES	ug/Nm ³	7.41661	14.01804	6.44309	13.55437		
Beryllium	ICPES	ug/Nm ³	3.48969	2.36941	4.14407	4.28229		
Beryllium	ICPMS	ug/Nm ³	.14781	.10429	.15621	.15114		
Cadmium	ICPAA	ug/Nm ³	.22451 @	2.87218	.18740	.38906		
Cadmium	ICPMS	ug/Nm ³	.14765	.08646	.12393	.15098		
Chromium	ICPES	ug/Nm ³	.16400	.26173	.10798	.26936		
Chromium	ICPMS	ug/Nm ³	3.24244	2.81527	3.41956	3.57349		
Cobalt	ICPES	ug/Nm ³	4.26147	9.41715	3.32041	7.16319		
Copper	ICPES	ug/Nm ³	.30745	.19196 @	.27893	2.42791		
Lead	GFAA	ug/Nm ³	1.29958	1.01549	1.22865	1.26998		
Lead	ICPMS	ug/Nm ³	1.22419	.88640	1.42367	1.31352		
Manganese	ICPES	ug/Nm ³	2.69403	4.67247	2.19790	4.49804		
Mercury	ICPMS	ug/Nm ³	1.13763	.80964	1.13053	2.28906		
Molybdenum	ICPES	ug/Nm ³	.01198 @	.04550 @	.01037	.02236		
Nickel	GFAA	ug/Nm ³	.80535	.52945	.83196	.86629		
Nickel	ICPMS	ug/Nm ³	1.70898	1.60856	1.52650	1.96108		
Selenium	GFAA	ug/Nm ³	4.66555	9.63901	3.44019	7.30893		
Selenium	ICPMS	ug/Nm ³	8.42841	20.03183	9.80192	10.65316		
Vanadium	ICPES	ug/Nm ³	6.60905	49.50669	7.12473	15.77927		
			7.02137	4.47029	6.97265	6.79990		
<<<<<<<<<<								
>>>>> stack gas, vapor phase A								
Arsenic	GFAA	ug/Nm ³						
Arsenic	ICPMS	ug/Nm ³						
Barium	ICPES	ug/Nm ³						
Beryllium	ICPES	ug/Nm ³						
Beryllium	ICPMS	ug/Nm ³						
Cadmium	GFAA	ug/Nm ³						
Cadmium	ICPMS	ug/Nm ³						
Chloride	IC	ug/Nm ³						
Chromium	ICPES	ug/Nm ³						
Chromium	ICPMS	ug/Nm ³						
Cobalt	ICPES	ug/Nm ³						
Copper	ICPES	ug/Nm ³						
Fluoride	ISE	ug/Nm ³						
			3108.29129	2866.15943	2564.15952			
				.47022	.50558			
				.21605	.44238			
				10.01707	10.76016			
					.86587 @			
					.84574			
					34.88006			
					33.11332			

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> stack gas, vapor phase A								
Lead	GFAA	ug/Hm3			30183 @	2.49374	2.30064	1.62577
Lead	ICPMS	ug/Hm3			.56713	3.21795	2.52737	2.20790
Manganese	ICPES	ug/Hm3			64.35258	2.15060 @	2.83412	30.06866
Mercury	CVA	ug/Hm3			.78046	1.06257	1.21709	1.11465
Mercury	ICPMS	ug/Hm3				.50994	.80961	.78317
Molybdenum	ICPES	ug/Hm3				.84675	.90957	.93159
Nickel	GFAA	ug/Hm3				.34949	.66614 @	.36877
Nickel	ICPMS	ug/Hm3				.48770	1.26053	.62184
Selenium	GFAA	ug/Hm3				.50200 @	3.29652	2.11126
Selenium	ICPMS	ug/Hm3				12.45935	58.74637	2.76207
Vanadium	ICPES	ug/Hm3				.76508	22.08783	.36.01874
							.80272	.84173
>>>>> stack gas, vapor phase A DUP								
Arsenic	GFAA	ug/Hm3				.23829	1.21271 @	.27571
Arsenic	ICPMS	ug/Hm3				.05401	1.33056	.10003
Berium	ICPES	ug/Hm3				.15254 @	1.04458	.26841
Beryllium	ICPES	ug/Hm3				.00858	.05637	.01334
Beryllium	ICPMS	ug/Hm3				.00477 @	.02733	.00400
Cadmium	GFAA	ug/Hm3				.04766 @	.18788 @	.35010
Cadmium	ICPMS	ug/Hm3				.04289	.22375	.29008
Chloride	IC	ug/Hm3						.50871
Chromium	ICPES	ug/Hm3				574.85178	3304.39800	2899.65723
Chromium	ICPMS	ug/Hm3					.47022	.571561 @
Cobalt	ICPES	ug/Hm3					.25100	.51070
Copper	ICPES	ug/Hm3					10.01707	.86587
Fluoride	ISE	ug/Hm3					.30794	.86587 @
Lead	GFAA	ug/Hm3						.84562
Lead	ICPMS	ug/Hm3						
Manganese	ICPES	ug/Hm3						
Mercury	CVA	ug/Hm3						
Mercury	ICPMS	ug/Hm3						
Molybdenum	ICPES	ug/Hm3						
Nickel	GFAA	ug/Hm3						
Nickel	ICPMS	ug/Hm3						
Selenium	ICPES	ug/Hm3						

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> stack gas, vapor phase A DUP								
Selenium	ICPMS	ug/Nm3			15.66672	70.51819	27.23761	44.65631
Vanadium	ICPES	ug/Nm3			.76508	1.86044 @	.80272	.84173
>>>>> stack gas, vapor phase A, conc								
Arsenic	conc/GFAA	ug/Nm3			.02385 @	1.48494	.07684	.05890
Barium	conc/ICPES	ug/Nm3			.06462	.61467	.10025	.07800
Beryllium	conc/ICPES	ug/Nm3			.00391	.02313	.00882	.00076
Cadmium	conc/GFAA	ug/Nm3			.01931	.06780	.01582	.16126
Chromium	conc/ICPES	ug/Nm3			.21223	.44061	.11965	.55241
Cobalt	conc/ICPES	ug/Nm3			.03024	.22396	.20396	.18528
Copper	conc/ICPES	ug/Nm3			.08239	.36150	.17923	.43918
Lead	conc/GFAA	ug/Nm3			.04459	.21787	.08195	.04884
Manganese	conc/ICPES	ug/Nm3			40.05064	1.26585	1.81707	1.30382
Holmium	conc/ICPES	ug/Nm3			.03177	.14728 @	.03362	.03047
Nickel	conc/GFAA	ug/Nm3			.16930	.43331	.34116	1.16657
Selenium	conc/GFAA	ug/Nm3			10.86168	27.50783	22.99152	32.02355
Vanadium	conc/ICPES	ug/Nm3			.02870	1.16604	.02916	.02753
>>>>> stack gas, vapor phase B								
Arsenic	GFAA	ug/Nm3			.22296	@	.25763	.24068
Arsenic	ICPMS	ug/Nm3			.32701	@	.10305	.09306
Barium	ICPES	ug/Nm3			.33444 @	@	.18378	.14810
Beryllium	ICPES	ug/Nm3			.00803	@	.00927	.00866
Beryllium	ICPMS	ug/Nm3			.01189 @	@	.00515	.00802
Cadmium	GFAA	ug/Nm3			.44592	@	1.51144	.62576
Cadmium	ICPMS	ug/Nm3			.45781	@	1.15247	.53590
Chloride	IC	ug/Nm3						
Chromium	ICPES	ug/Nm3						
Chromium	ICPMS	ug/Nm3						
Cobalt	ICPES	ug/Nm3						
Copper	ICPES	ug/Nm3						
Fluoride	ISE	ug/Nm3						
Lead	GFAA	ug/Nm3						
Lead	ICPMS	ug/Nm3						
Manganese	ICPES	ug/Nm3						

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
<<<<<<<<<								
Mercury	stack gas, vapor phase B CWA	ug/Nm ³	.98458	.98454	.82206	1.03896	1.10013	
Mercury	ICPMS	ug/Nm ³	.52172	.20681	.61316	.64020		
Holymbdenum	ICPES	ug/Nm ³		.79210	.85439	<	.91528	.85504
Nickel	GFAA	ug/Nm ³		.32701	.13957	1.52261	<	.35299
Nickel	ICPMS	ug/Nm ³		.72238	.28167	1.50912		.80386
Selenium	GFAA	ug/Nm ³		3.29978	2.37329	1.95680	3.11273	
Selenium	ICPMS	ug/Nm ³		52.02210	14.83108	27.85507	33.11853	
Vanadium	ICPES	ug/Nm ³		.71570	.77198	<	.82700	.77257
>>>>>>>>>								
stack gas, vapor phase B DUP								
Arsenic	GFAA	ug/Nm ³		.222296	.09516	<	.25763	<
Arsenic	ICPMS	ug/Nm ³		.36862	.08881		.13053	.12836
Barium	ICPES	ug/Nm ³		.44592	0	.15392	0	.14810
Beryllium	ICPES	ug/Nm ³		.00803	<	.00343		.00866
Beryllium	ICPMS	ug/Nm ³		.00743	0	.00381	0	.00963
Cadmium	GFAA	ug/Nm ³		.43105	.65779	1.52261		.64180
Cadmium	ICPMS	ug/Nm ³		.45929	.23790	1.23835		.54874
Chloride	IC	ug/Nm ³		3480.89403	3828.63325	2244.14510		
Chromium	ICPES	ug/Nm ³		.43997	<	.18778	.74541	<
Chromium	ICPMS	ug/Nm ³		.35673	.13639		.74026	.35941
Cobalt	ICPES	ug/Nm ³		9.37041	<	.81334	10.82772	<
Copper	ICPES	ug/Nm ³		.75405	0	.81334	0	.81396
Fluoride	ISE	ug/Nm ³		51.82820	42.02750		.87131	<
Lead	GFAA	ug/Nm ³		7.16439	2.53326	25.76310		8.72849
Lead	ICPMS	ug/Nm ³		10.52363	1.17298	19.47004		10.45494
Manganese	ICPES	ug/Nm ³		33.14646	1.04053	4.49996	1.26274	
Mercury	CWA	ug/Nm ³		.95551	1.00835	1.02904	1.18595	
Mercury	ICPMS	ug/Nm ³			.48456	.18841	.61831	.63057
Holymbdenum	ICPES	ug/Nm ³			.79210	.85439	<	.91528
Nickel	GFAA	ug/Nm ³			.32701	.13957	1.66601	.43322
Nickel	ICPMS	ug/Nm ³			.53510	.24678	1.41010	.69154
Selenium	GFAA	ug/Nm ³		4.47403	2.24436	2.66219		2.61534
Selenium	ICPMS	ug/Nm ³		61.49931	18.48354	34.63947	39.75956	
Vanadium	ICPES	ug/Nm ³		<	.71570	<	.82700	.77257

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> stack gas, vapor phase B, conc <<<<<<<<								
Arsenic	conc/GFAA	ug/Hm3			.25142	.15519	.06856	.05461
Barium	conc/ICPES	ug/Hm3	.16163	.10314		.09018		.06445
Beryllium	conc/ICPES	ug/Hm3		.00195	<	.00033	<	.00031
Cadmium	conc/GFAA	ug/Hm3	.02706	.10505		.05065		.03357
Chromium	conc/ICPES	ug/Hm3	.26818	.23160		.73129		.27018
Cobalt	conc/ICPES	ug/Hm3		.03037		.21727		.17935
Copper	conc/ICPES	ug/Hm3	.17240	.20772		.38170		.11842
Lead	conc/GFAA	ug/Hm3	.06226	.10756		.06794		.03403
Manganese	conc/ICPES	ug/Hm3		.22.26888		.24973		.78868
Molybdenum	conc/ICPES	ug/Hm3		.03190		.03259	<	.03053
Nickel	conc/GFAA	ug/Hm3	.49925	.25309		.1.23528		.34031
Selenium	conc/GFAA	ug/Hm3	36.15701	34.62037		28.90567		6.84063
Vanadium	conc/ICPES	ug/Hm3	.22628	.11675	<	.02974		.03782

Appendix C
Analytical Data - Other Substances

C-1

Substance	Method	Units	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>>> coal									
Ash	Proximate	wt. %	6.48000	6.53000	6.66000	7.04000	6.61000	6.61000	
Carbon	Ultimate	wt. %	77.92000	77.95000	77.16000	77.56000	77.91000	77.80000	
Chlorine	1SE	wt. %	.08000	.09000	.09000	.10000	.08000	.09000	
HNW	Calorimetry	Btu/lb	14072.00000	14051.00000	14011.00000	13938.00000	14037.00000	14028.00000	
Hydrogen	Ultimate	wt. %	5.21000	5.21000	5.31000	5.19000	5.26000	5.20000	
Moisture	Proximate	wt. %	4.98600	7.00000	4.76000	6.51000	5.07000	6.34000	
Nitrogen	Ultimate	wt. %	1.55000	1.56000	1.51000	1.56000	1.60000	1.59000	
Oxygen	Ultimate	wt. %	7.19000	7.20000	7.68000	6.82000	7.12100	7.00000	
Sulfur	Ultimate	wt. %	1.65000	1.556000	1.66000	1.72000	1.50000	1.72000	
>>>>> high dust gas, solid phase									
Aluminum	ICPES	ug/lNm3	311121.76852	216942.75011	251018.77342	211484.65412	244342.37569	352580.42387	
Antimony	ICPES	ug/lNm3	24.82351	95.89943	44.90566	32.40024	61.02224	< .8.387	
Calcium	ICPES	ug/lNm3	54783.73302	41897.81134	39647.71201	37372.16961	35461.85503	58853.33965	
Iron	ICPES	ug/lNm3	303463.80356	204008.77579	213543.37406	158053.77689	18030.07618	277467.66952	
Magnesium	ICPES	ug/lNm3	13346.31358	8978.67333	9757.66154	10846.62621	9906.62487	13248.14150	
Phosphorus	ICPES	ug/lNm3	6.45792	9.26993	6.39984	5.69418	5.79194	8.72112	
Potassium	ICPES	ug/lNm3	36033.79773	33699.53811	34564.45593	26011.01180	30398.91226	43285.54943	
Silver	ICPES	ug/lNm3	.79198	12.80710	12.20103	45.78659	2.95133	2.86688	
Sodium	ICPES	ug/lNm3	11932.19674	11953.04824	11354.49906	8794.65339	10588.89176	13132.25318	
Strontium	ICPES	ug/lNm3	2759.36234	2537.04898	2403.66759	1937.92236	2040.21551	2958.60568	
Sulfate	IC	ug/lNm3	77.87241	104.59417	95.32001	87.41922			
Sulfur	ICPES	ug/lNm3	17723.93999	31450.76960	19967.16794	21651.16378	20909.98075	19923.40536	
Thallium	ICPES	ug/lNm3	484.92648	106.69450	32.56035	64.65192	49.76653	58.58708	
Titanium	ICPES	ug/lNm3	17327.49736	17113.73168	16209.18311	11698.28556	13247.81555	19151.96347	
Zinc	ICPES	ug/lNm3	416.93764	687.65253	515.19659	395.71387	450.16289	567.62095	
>>>>> high dust gas, vapor phase									
Aluminum	ICPES	ug/lNm3	1183.89015	82.41604	52.32564	61.98494	53.90315	75.16402	
Antimony	ICPES	ug/lNm3	26.57005	< 21.38995	< 23.15136	23.99695	31.22417	< 25.48770	
Boron	ICPES	ug/lNm3	2796.72600	5617.18238	< 3667.71200	4349.27670	4019.21257	4125.7136	
Calcium	ICPES	ug/lNm3	606.24326	320.91608	203.32250	223.66233	174.74637	268.83481	
Iron	ICPES	ug/lNm3	789.26010	148.25679	75.24926	65.08419	72.56779	58.70474	
Magnesium	ICPES	ug/lNm3	76.63830	< 16.29904	< 6.62791	< 11.77714	< 3.75037	< 1.20153	

5/19/93 10:33 am

FC21 Data

Page 2

Substance	Method	Units	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> high dust gas, vapor phase									
Phosphorus	ICPES	ug/Nm3	40.03493	23.02124	124.58086	56.81953	26.88437	10.97071	
Potassium	ICPES	ug/Nm3	491.25581	10.35556	<	162.95700	<	1.45146	<
Silicon	ICPES	ug/Nm3	3740.49655	2371.18764	2073.09215	2339.93152	2076.81720	2386.59474	
Silver	ICPES	ug/Nm3	<	18.52063	<	14.94973	<	16.18077	16.77261
Sodium	ICPES	ug/Nm3	926.52272	593.94797	667.77688	671.50353	1478.64008	652.88454	
Strontium	ICPES	ug/Nm3	15.49924	1.62070	1.97342	1.47731	1.92223	1.14666	
Sulfate	IC	ug/Nm3	53399.18.87723	5275321.54514	4955302.96861	5046306.70891			
Sulfur	ICPES	ug/Nm3	175059.47607	1908158.60968	1519935.35296	1787232.46891	1471918.98621	1637952.26830	
Thallium	ICPES	ug/Nm3	<	10.16031	<	2.36858	<	6.92992	11.20894
Titanium	ICPES	ug/Nm3	66.91553	2.4506	0	1.33057	0	1.76657	<
Zinc	ICPES	ug/Nm3	25.90551	0	282.24039	20.26242	0	10.53744	24.33035
>>>>> stack gas, solid phase A									
Aluminum	ICPES	ug/Nm3	422.3461	292.40151	385.95155	385.66868			
Calcium	ICPES	ug/Nm3	262.35245	266.610988	271.99321	247.08744			
Iron	ICPES	ug/Nm3	360.54274	285.29938	328.05866	296.67248			
Magnesium	ICPES	ug/Nm3	62.79236	53.75581	65.84196	49.82607			
Phosphorus	ICPES	ug/Nm3	55.25612	55.96591	63.63933	63.57133			
Potassium	ICPES	ug/Nm3	77.43864	60.55373	74.22299	70.39663			
Silver	ICPES	ug/Nm3	<	.04915	<	.02829	<	.05095	<
Sodium	ICPES	ug/Nm3	74.98254	49.52262	49.52262	54.25256	48.13926		
Strontium	ICPES	ug/Nm3	6.34436	4.95520	6.02131	5.63981			
Sulfur	ICPES	ug/Nm3	719.25234	1154.18156	2692.55075	1759.30348			
Thallium	ICPES	ug/Nm3	.52123	<	.02058	.12258	.47240		
Titanium	ICPES	ug/Nm3	39.25427	29.36238	36.61792	33.53744			
Zinc	ICPES	ug/Nm3	7.52550	9.16247	17.36953	9.02990			
>>>>> stack gas, solid phase A DWP									
Aluminum	ICPES	ug/Nm3	421.15233	285.09854	390.89596	358.24348			
Calcium	ICPES	ug/Nm3	263.54473	266.60988	271.46741	249.37183			
Iron	ICPES	ug/Nm3	360.54274	281.64789	330.53087	298.95587			
Magnesium	ICPES	ug/Nm3	63.38850	52.53965	66.58362	49.82607			
Phosphorus	ICPES	ug/Nm3	59.11805	55.72648	64.25758	64.02881			
Potassium	ICPES	ug/Nm3	85.78460	59.33657	73.98077	69.93115			
Silver	ICPES	ug/Nm3	.04915	<	.05017	<	.04714	<	

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
<<<<<<<<<<								
Sodium	stack gas, solid phase A DUP	ICPES	74.38640	47.21366	54.87051	48.11826		
Strontium		ICPES	6.30860	4.80924	6.10783	5.73130		
Sulfur		ICPES	719.25234	1116.44959	279.63384	1770.73946		
Thallium		ICPES	63927	11462	17326	.75389		
Titanium		ICPES	39.13504	28.75380	37.11236	33.99492		
Zinc		ICPES	7.50165	8.87535	17.49315	9.07164		
<<<<<<<<<<								
Aluminum	stack gas, solid phase B	ICPES	370.60994	235.45733	377.04912	364.71784		
Calcium		ICPES	232.31774	176.73402	228.58022	286.32074		
Iron		ICPES	336.90367	226.10386	326.60626	307.42323		
Magnesium		ICPES	51.91972	44.36869	49.86320	58.59482		
Phosphorus		ICPES	54.33608	40.92844	64.46211	66.08856		
Potassium		ICPES	75.00783	45.06617	71.46124	72.83262		
Silver		ICPES	< .04935	< .04921	< .05092	< .01276		
Sodium		ICPES	60.80842	44.51702	67.79318	61.03684		
Strontium		ICPES	5.86797	3.91712	5.94320	5.80730		
Sulfur		ICPES	1434.61599	4128.48840	2443.71179	2584.79022		
Thallium		ICPES	.48749	.26642	.23738	.81877		
Titanium		ICPES	37.26288	22.71058	36.71721	34.40294		
Zinc		ICPES	6.88641	6.95016	16.36981	18.22465		
<<<<<<<<<<								
Aluminum	stack gas, solid phase B DUP	ICPES	376.21544	233.06972	377.04912	364.71784		
Calcium		ICPES	229.92324	175.54021	229.81551	287.47042		
Iron		ICPES	334.50917	223.71625	327.84155	308.57291		
Magnesium		ICPES	50.84220	43.89117	49.61615	58.70959		
Phosphorus		ICPES	55.41360	41.16720	64.46211	66.68157		
Potassium		ICPES	71.05690	51.75149	67.75538	75.47630		
Silver		ICPES	< .04935	< .01242	< .05092	< .04739		
Sodium		ICPES	60.44925	43.92012	47.66965	60.80691		
Strontium		ICPES	5.84403	3.85743	5.95556	5.84179		
Sulfur		ICPES	1422.64347	4104.61228	2431.35894	2584.79022		
Thallium		ICPES	.30670	.37864	.27321	.32901		
Titanium		ICPES	36.90370	22.47182	36.71721	34.51781		

5/19/93 10:33 am

FC21 Data

Page 4

Substance	Method	Units	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> stack gas, solid phase B DIP									
Zinc	ICPES	ug/Nm3				6.81458	6.91435	16.24628	18.22465
>>>>> stack gas, vapor phase A									
Aluminum	ICPES	ug/Nm3	9.66083 0			54.78906	8.78579	10.20915	
Calcium	ICPES	ug/Nm3	39.24713 0			86.36530	39.67775	38.98359	
Iron	ICPES	ug/Nm3	9.0036 0			61.95772	9.38555	7.90161	
Magnesium	ICPES	ug/Nm3	<	6.73982	10.10440 0	<	7.06514	<	7.40845
Phosphorus	ICPES	ug/Nm3	<	30.19010	.90957	13.33706	20.97771		
Potassium	ICPES	ug/Nm3	<	166.84003 0	<	102.76993	<	105.25778	
Silver	ICPES	ug/Nm3	<	.65497	<	.70355	<	.68719	<
Sodium	ICPES	ug/Nm3	<	262.17719	216.76687	223.39571	206.28086		.72058
Strontium	ICPES	ug/Nm3	<	.19226 0	1.35351	.36677			.15209
Sulfate	IC	ug/Nm3	653094.68939	756394.77147	772467.07137	661145.01699	196721.59846	223762.28352	
Sulfur	ICPES	ug/Nm3			3.82938 0	2.61144 0	<	2.20028	<
Thallium	ICPES	ug/Nm3			.42266 0	5.88854	<	.52681	<
Titanium	ICPES	ug/Nm3			<	5.15949	<	5.41334	<
Zinc	ICPES	ug/Nm3						5.67339	
>>>>> stack gas, vapor phase A DIP									
Aluminum	ICPES	ug/Nm3	8.88225 0			55.47179	8.38567	12.02722	
Calcium	ICPES	ug/Nm3	38.29376 0			67.04603	39.84446	39.15640	
Iron	ICPES	ug/Nm3	8.46912 0			62.29908	8.96917	8.30368	
Magnesium	ICPES	ug/Nm3	95.67275	16.57326 0	<	7.06514	<	7.40845	
Phosphorus	ICPES	ug/Nm3	4.76686	6.82730	<	6.66853	10.48886		
Potassium	ICPES	ug/Nm3	149.52044 0	<	102.76993	<	100.38003	<	105.25778
Silver	ICPES	ug/Nm3	<	.65497	<	.70355 0	<	.68719	<
Sodium	ICPES	ug/Nm3	266.94404	216.76687	230.06424	202.78457			.72058
Strontium	ICPES	ug/Nm3	<	.19226 0	1.35351	.36677			.17307
Sulfate	IC	ug/Nm3	705953.96631	736107.53273	760914.85312	693223.14422	196721.59846	223762.28352	
Sulfur	ICPES	ug/Nm3			228809.18015	225310.76870			
Thallium	ICPES	ug/Nm3			<	16.64256	<	2.20028	<
Titanium	ICPES	ug/Nm3			<	5.93975	<	.54849	<
Zinc	ICPES	ug/Nm3			<	5.54223	<	5.41334	<

Substance	Method	Units	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> stack gas, vapor phase A, cond								
Aluminum	conc/ICPES	ug/Hm3	3.71992	36.02795	3.74539	6.37040		
Calcium	conc/ICPES	ug/Hm3	12.87663	45.15665	9.59105	15.89741		
Iron	conc/ICPES	ug/Hm3	4.04163	38.70570	4.26456	5.44400		
Magnesium	conc/ICPES	ug/Hm3	.91090 0	6.93761	.84549	1.26951		
Potassium	conc/ICPES	ug/Hm3	116.96275	15.82309 0	3.74539	9.03522		
Silver	conc/ICPES	ug/Hm3	<	.02457	<	.02548	<	.02357
Sodium	conc/ICPES	ug/Hm3	101.82078	120.37717	113.47426	97.09999		
Strontium	conc/ICPES	ug/Hm3	.05639	.80819	.07825	.06039		
Sulfur	conc/ICPES	ug/Hm3	174072.59875	178922.59221	158221.19105	182991.72679		
Thallium	conc/ICPES	ug/Hm3	<	.43636	<	.45240	<	.41858
Titanium	conc/ICPES	ug/Hm3	<	.21461	3.77320	.24969	.11894	
Zinc	conc/ICPES	ug/Hm3	1.38305	2.09352	1.02967	1.41819		
>>>>> stack gas, vapor phase B								
Aluminum	ICPES	ug/Hm3	84.87276	12.76212 0	<	7.67191	<	7.16699
Calcium	ICPES	ug/Hm3	37.75426 0	51.82586	43.45377	31.4824		
Iron	ICPES	ug/Hm3	58.11778	12.61782 0	12.52087	7.38071		
Magnesium	ICPES	ug/Hm3	9.31965 0	96.53545	103.41435	6.79972		
Phosphorus	ICPES	ug/Hm3	5.94555	8.01641	<	.00344	14.44052	
Potassium	ICPES	ug/Hm3	<	69.49721	96.53550	103.41516	<	96.60900
Silver	ICPES	ug/Hm3	<	.61269	<	.66087	<	.66138
Sodium	ICPES	ug/Hm3	101.33935	202.01346	194.08205	174.69073		
Strontium	ICPES	ug/Hm3	.45781	.31745	.18893	.17650		
Sulfate	IC	ug/Hm3	683166.84404	753208.95691	835693.31961	753256.47975		
Sulfur	ICPES	ug/Hm3	228903.77590	214639.70758	195799.58782	221421.29240		
Thallium	ICPES	ug/Hm3	4.65239 0	5.16257 0	16.74676	15.64486		
Titanium	ICPES	ug/Hm3	5.00913	.81126 0	.30400	.50702		
Zinc	ICPES	ug/Hm3	4.99426 0	12.31320 0	10.47700	<	5.20998	
>>>>> stack gas, vapor phase B DUP								
Aluminum	ICPES	ug/Hm3	87.10235	11.25504 0	<	7.67191	<	7.16699
Calcium	ICPES	ug/Hm3	37.90290 0	52.42730	44.14078	31.4824		
Iron	ICPES	ug/Hm3	57.96914	12.44146 0	11.83385	7.58930		
Magnesium	ICPES	ug/Hm3	12.69375 0	<	6.79455	7.27876	<	6.79972
Phosphorus	ICPES	ug/Hm3	<	4.80984	<	.00344	<	8.02251

5/19/93 10:33 am

FC21 Data

Page 6

Substance	Method	Units	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
>>>>> stack gas, vapor phase B DUP <<<<<<<									
Potassium	ICPES	ug/Nm3				137.34227 0	<	96.53550	<
Silver	ICPES	ug/Nm3				.61269	<	103.41516	<
Sodium	ICPES	ug/Nm3				173.90741	<	.66087	.70797
Strontium	ICPES	ug/Nm3				.47416	<	203.51674	.66138
Sulfate	IC	ug/Nm3				.33509	<	200.95221	208.58528
Sulfur	ICPES	ug/Nm3				693160.23947	<	.16832	.14120
Thorium	ICPES	ug/Nm3				227417.38774	<	214839.70758	194082.04757
Titanium	ICPES	ug/Nm3				2.12554 0	<	2.11601	<
Zinc	ICPES	ug/Nm3				5.14390	<	.68941 0	16.74704
						4.89022 0	<	12.50559 0	<
							<	10.39112	5.20998
>>>>> stack gas, vapor phase B, conc <<<<<<<									
Aluminum	conc/ICPES	ug/Nm3				12.21197	<	6.67338	3.81703
Calcium	conc/ICPES	ug/Nm3				18.31795	<	22.44355	19.76456
Iron	conc/ICPES	ug/Nm3				10.93077	<	7.47323	15.06089
Magnesium	conc/ICPES	ug/Nm3				2.26281	<	1.87428	7.76594
Potassium	conc/ICPES	ug/Nm3				69.08143	<	1.43293	4.94365
Silver	conc/ICPES	ug/Nm3				.02468	<	7.71199 0	1.09220
Sodium	conc/ICPES	ug/Nm3				.02460	<	.8.72111	4.59874
Strontium	conc/ICPES	ug/Nm3				120.92244	<	.02566	<
Sulfur	conc/ICPES	ug/Nm3				122.98201	<	125.99907	.02370
Thorium	conc/ICPES	ug/Nm3				.25621	<	.13490	107.72560
Titanium	conc/ICPES	ug/Nm3				163179.53100	<	174295.68968	.09178
Zinc	conc/ICPES	ug/Nm3				.49566 0	<	.43692	.07025
						.95301	<	.48469	158116.47616
						2.53817	<	.6.07013	.42077
							<	.11698	.21269
							<	6.89289	2.90871

Appendix D
Source Sampling Summaries
(On file at Radian Corporation)

Appendix E
Error Propagation and Uncertainty Calculations

E-1

An error propagation analysis was performed on calculated results to determine the contribution of process, sampling, and analytical variability, and measurement bias, to the overall uncertainty in the result. This uncertainty was determined by propagating the bias and precision error of individual parameters into the calculation of the results. This uncertainty does not represent the total uncertainty in the result since many important bias errors are unknown and have been assigned a value of zero for this analysis. Also, this uncertainty is only the uncertainty in the result for the period of time that the measurements were taken.

The procedure described below is based on ANSI/ASME PTC 19.1-1985, "Measurement Uncertainty."

Nomenclature

r = Calculated result;
 S_{pi} = Sample standard deviation of parameter i ;
 θ_i = Sensitivity of the result to parameter i ;
 β_{pi} = Bias error estimate for parameter i ;
 v_i = Degrees of freedom in parameter i ;
 v_r = Degrees of freedom in result;
 S_r = Precision component of result uncertainty;
 B_r = Bias component of result uncertainty;
 t = Student "t" factor (two-tailed distribution at 95%);
 U_r = Uncertainty in r ; and
 N_i = Number of measurements of parameter i .

For a result, r , the uncertainty in r is calculated as:

$$U_r = \sqrt{\beta_r^2 + (S_r * t)^2} \quad (1)$$

The components are calculated by combining the errors in the parameters used in the result calculation.

$$\beta_r = \sqrt{\sum_{i=1}^j \theta_i * \beta_{p_i}} \quad (2)$$

$$S_r = \sqrt{\sum_{i=1}^j \theta_i S_{p_i}} \quad (3)$$

The sensitivity of the result to each parameter is found from a Taylor series estimation method:

$$\theta_i = \frac{\partial r}{\partial p_i} \quad (4)$$

Or using a perturbation method (useful in computer applications):

$$\theta_i = \frac{r(P_i + \Delta P_i) - r(P_i)}{\Delta P_i} \quad (5)$$

The standard deviation of the average for each parameter is calculated as:

$$S_{p_i} = \frac{S_p}{\sqrt{N}} \quad (6)$$

The degrees of freedom for each parameter is found from

$$v_i = N_i - 1 \quad (7)$$

and the degrees of freedom for the result is found by weighing the sensitivity and precision error in each parameter.

$$v_r = \frac{s_r^4}{\sum_{i=1}^j \left[\frac{(s_{p_i} \times \theta_i)^4}{v_i} \right]} \quad (8)$$

The student "t" in Equation 1 is associated with the degrees of freedom in the result.

The precision error terms are easily generated using collected data. When calculating the s_p , care is taken in assigning degrees of freedom to each parameter. For example, running duplicate analyses does not increase the degrees of freedom in analytical results.

The bias error terms are more difficult to quantify. The following conventions were used for this report:

- 5% bias on coal flow rates;
- 20% bias in limestone and FGD flow rates;
- 5% bias in gas flow rate; and
- No bias in analytical results unless the result is less than reporting limit. Then one-half the reporting limit is used for both the parameter value and its bias in calculations.

The flow rate bias values are assigned using engineering judgment. No bias is assigned to the analytical results (above the reporting limit) or gas flow rate since a good estimate for magnitude of these terms is unknown. These bias terms may be very large (relative

to the mean values of the parameters) and may represent a large amount of unaccounted uncertainty in each result. Analytical bias near the instrument reporting limit may be especially large. Therefore, the uncertainty values calculated for this report should be used with care.

In addition to the assumptions about bias errors referred to above, the calculations also assume that the population distribution of each measurement is normally distributed and that the samples collected reflect the true population.

Also, the uncertainty calculated is only for the average value over the sampling period. The uncertainty does not represent long-term process variations. In other words, the calculated uncertainty does not include a bias term to reflect the fact that the sampled system was probably not operating (and emitting) at conditions equivalent to the average conditions for that system over a longer period (in other words, autocorrelation may be important). An example of the confidence interval calculation is provided below.

Confidence Interval Calculations

Confidence intervals (CIs) were calculated for the mean particulate phase concentrations, the mean vapor phase concentrations, and the total concentrations in all gas streams. In addition, confidence intervals were determined for the stack gas emission factors presented in Table 3-8.

The following example shows an example calculation for the 95% confidence interval around the emission factor. This procedure utilizes the same method outlined earlier in this appendix and used in the computer program. This is a generic example and values used in the calculation are not from Site 21.

$$E = \frac{(g * s) + (g * v)}{HHV * Coal} * 2204.6 \quad (5-3)$$

where:

g = Gas flow rate, Nm^3/hr

s = Solid phase conc., mg/Nm^3

v = Vapor phase conc., mg/Nm^3

HHV = Coal higher heating value, Btu/lb

Coal = Coal feed rate, klb/hr

The values used to calculate the emission factor and the confidence interval are as follows:

	Parameter				
	<u>g</u> <u>Nm^3/hr</u>	<u>s</u> <u>mg/Nm^3</u>	<u>v</u> <u>mg/Nm^3</u>	<u>HHV</u> <u>Btu/lb</u>	<u>Coal</u> <u>Klb/hr</u>
Mean	2,607,500	0.00073	0	11,890	573.75
S_p	34,100	0.00039	0	75.6	8.76
$S_{\bar{p}}$	24,116	0.00027	0	43.6	1.26
N	3	2	2	3	48
β_p	0	0	0	0	28.7
θ	2.4×10^{-7}	843	—	-5.2×10^{-5}	-1.0×10^{-3}
v_p	1	1	1	2	47

The calculation for the solid phase values is included for reference.

Solid phase analytical: $0.000452 \text{ mg}/\text{Nm}^3$

$0.00100 \text{ mg}/\text{Nm}^3$

$N=2$

$$\text{Mean} = 0.00073$$

$$S_p = 0.00039$$

$$S_{\bar{p}} = \frac{0.00039}{\sqrt{2}} = 0.00027$$

As explained in Appendix E, the β for analytical results is assigned as zero.

$$\beta_p = 0$$

Next, calculate the sensitivity using perturbation method and a 0.0001 mg/Nm³ perturbation:

$$\begin{aligned}\theta_i &= \frac{r(0.00083) - r(0.00073)}{0.0001} \\ &= \frac{0.7 - 0.61}{0.0001} \\ &= 843\end{aligned}$$

Similar calculations can be done for each parameter.

The precision component is then found by root-sum-squaring the product of the parameter $S_{\bar{p}}$ s and their sensitivities.

$$S_r = \sqrt{(\theta_x S_x)^2 + (\theta_s S_s)^2 + (\theta_v S_v)^2 + (\theta_{HHV} S_{HHV})^2 + (\theta_{coal} S_{coal})^2}$$

$$S_r = 0.236$$

The bias component is found using the same equation substituting β_p for the $S_{\bar{p}}$ term.

$$\beta_r = \sqrt{(\theta_s \beta_s)^2 + (\theta_s \beta_s)^2 + (\theta_v \beta_v)^2 + (\theta_{HHV} \beta_{HHV})^2 + (\theta_{coal} \beta_{coal})^2}$$

$$\beta_r = 0.03$$

The uncertainty in the result is then

$$U_r = \sqrt{\beta_r^2 + (t \times S_r)^2}$$

The degrees of freedom is found to be 1.0 for a "t" of 12.7 (i.e., one degree of freedom for N=2).

$$v_r = \frac{S_r^4}{\sum_{i=1}^j \frac{(S_{pi} \theta_i)^4}{v_{pi}}}$$

$$= \frac{6.4 \times 10^4}{6.4 \times 10^4} = 1$$

$$U_r = \sqrt{(0.03)^2 + (12.7 \times 0.236)^2}$$

$$= 3.0$$

The emission rate is calculated as $0.59 \text{ lb}/10^{12} \text{ Btu}$.

The value is reported as $0.59 \pm 3.0 \text{ lb}/10^{12} \text{ Btu}$.

Improvements in bias estimates can be made as more data is collected and the QA/QC database is expanded. Spike and standard recoveries can be used to begin to estimate

Appendix E

analytical bias. Also, as the analytical methods improve accuracy will improve, resulting in the true bias of the analytical results being closer to the zero bias now assigned.

Accounting for long-term system variability will require repeated sampling trips to the same location.

Appendix F
Quality Assurance/Quality Control

F-1

The objective of quality assurance and quality control (QA/QC) efforts associated with the Site 21 study was to ensure that all data collected are of known and sufficient quality to qualitatively and quantitatively characterize the various process streams. This section summarizes the results of QA/QC activities associated with chemical analyses of samples from the program.

Summary of Data Quality and QA/QC Approach

Quality assurance and quality control procedures used for this program are consistent with those described in the Site 21 sampling and analytical plan and the Laboratory Quality Assurance Program Plan for Radian's Austin Laboratories. The following key types of QA/QC provide the primary basis for quantitatively evaluating data quality:

- Laboratory and field blank samples;
- Laboratory control samples;
- Matrix spiked samples;
- Surrogate spiked samples; and
- Duplicate samples and analyses.

Quality assurance/quality control data associated with the sampling and analytical procedures for this study indicate that data quality was acceptable for the types of samples and analyses encountered. There were QC indicators that were outside nominal laboratory objectives, but these are not intended as validation criteria; rather, they are meant to indicate where potential problems might exist, and thereby prompt further scrutiny by the data users. Reanalyses and alternate approaches were followed as necessary to obtain acceptable data. Ultimately, the data may be considered valid and usable for project needs. Quality control data are summarized in Tables F-1 through F-5. These include results for metals that are not specifically of interest to the program,

but are included because the effect of concentrations of other metals may be considered in evaluating the quality of the primary elements of interest.

Blank sample results are summarized in Table F-1. Table F-2 presents a summary of laboratory control sample results. Matrix spiked sample results are summarized in Table F-3. Surrogate recovery data for PAH analyses are presented in Table F-4. Duplicate analysis results are summarized in Table F-5.

Table F-1
Summary of Blank Sample Results

<u>Analyte</u>	<u>Number of Blank Samples Analyzed</u>	<u>Number of Detects</u>	<u>Range of Concentrations Detected</u>	<u>Detection Limits</u>
Polynuclear Aromatic Hydrocarbons				
<u>Lab Blanks (XAD & Condensate)</u>				
Acenaphthalene	2	2	0.22-0.47 ng	NS
Acenaphthene	2	2	0.11-1.74 ng	NS
Fluorene	2	2	0.90-1.26 ng	NS
Phenanthrene	2	2	3.32-8.71 ng	NS
Anthracene	2	2	0.15-0.63 ng	NS
Fluoranthene	2	2	0.99-1.26 ng	NS
Pyrene	2	2	0.46-0.93 ng	NS
Benzo(a)anthracene	2	1	ND-0.13 ng	0.32 ng
Chrysene	2	2	0.24-0.32 ng	NS
5-methyl chrysene	2	0	ND	0.15-0.18 ng
Benzo(b,j&k)fluoranthenes	2	2	0.91-2.35 ng	NS
Benzo(a)pyrene	2	1	ND-0.32 ng	0.27 ng
Dibenz(a,h)acridine	2	1	ND-0.93 ng	0.29 ng
Dibenz(a,i)acridine	2	2	0.18-0.23 ng	NS
Indeno(1,2,3-cd)pyrene	2	1	ND-0.73 ng	0.25 ng
Dibenz(a,h)anthracene	2	1	ND-0.86 ng	0.14 ng
7H-dibenzo(c,g)carbazole	2	0	ND	1.02-1.34 ng
Benzo(g,h,i)perylene	2	2	0.24-1.08 ng	NS
Dibenzo(a,e)pyrene	2	0	ND	0.28-0.55 ng
Dibenzo(a,i)pyrene	2	0	ND	0.32-1.28 ng
Dibenzo(a,h)pyrene	2	0	ND	0.34-1.18 ng

Table F-1 (Continued)

<u>Analyte</u>	<u>Number of Blank Samples Analyzed</u>	<u>Number of Detects</u>	<u>Range of Concentrations Detected</u>	<u>Detection Limits</u>
<u>Trip Blanks</u>				
Acenaphthalene	4	3	ND-4.23 ng	5.56 ng
Acenaphthene	4	4	4.0-8.0 ng	NS
Fluorene	4	4	8.4-10.7 ng	NS
Phenanthrene	4	4	25.3-41.4 ng	NS
Anthracene	4	4	2.8-8.7 ng	NS
Fluoranthene	4	4	5.0-13.8 ng	NS
Pyrene	4	4	4.4-18.0 ng	NS
Benzo(a)anthracene	4	2	ND-0.96 ng	0.95-1.15 ng
Chrysene	4	4	0.67-1.14 ng	NS
5-methyl chrysene	4	1	ND-0.96 ng	0.45-1.0 ng
Benzo(b,j&k)fluoranthenes	4	3	ND-2.71 ng	3.18 ng
Benzo(a)pyrene	4	1	ND-1.26 ng	1.15-2.33 ng
Dibenz(a,h)acridine	4	0	ND	0.6-2.1 ng
Dibenz(a,i)acridine	4	0	ND	0.7-2.3 ng
Indeno(1,2,3-cd)pyrene	4	2	ND-1.04 ng	1.45-1.62 ng
Dibenz(a,h)anthracene	4	0	ND	1.5-2.8 ng
7H-dibenzo(c,g)carbazole	4	0	ND	4.0-8.5 ng
Benzo(g,h,i)perylene	4	2	ND-1.09 ng	0.97-2.1 ng
Dibenzo(a,e)pyrene	4	0	ND	1.0-2.4 ng
Dibenzo(a,i)pyrene	4	0	ND	0.3-2.7 ng
Dibenzo(a,h)pyrene	4	0	ND	1.2-2.4 ng
<u>Lab Blanks</u>				
Chloride	3	1	ND-0.01 mg/L	0.012 mg/L
<u>Lab Blanks</u>				
Sulfate	3	3	0.01-0.01 mg/L	0.022 mg/L
<u>Lab Blanks</u>				
Fluoride	3	0	ND	0.03 mg/L

Table F-1 (Continued)

<u>Analyte</u>	<u>Number of Blank Samples Analyzed</u>	<u>Number of Detects</u>	<u>Range of Concentrations Detected</u>	<u>Detection Limits</u>
Metals (GFAAS, CVAAS) - Impinger Solutions				
<u>Lab Blanks</u>				
Arsenic	3	1	ND-0.0016 mg/L	0.004 mg/L
Cadmium	3	3	0.0001-0.0002 mg/L	0.001 mg/L
Selenium	4	0	ND	0.005 mg/L
Lead	4	4	ND-0.0016	0.003 mg/L
Mercury	4	3	0.00015-0.0004 mg/L	0.00018 mg/L
Nickel	3	2	0.0022-0.0025 mg/L	0.003 mg/L
Metals (ICP-AES) - Probe & Nozzle Rinse + Filter				
<u>Lab Blanks</u>				
Aluminum	7	7	2.34-18.1 μ g	0.5-1 μ g
Barium	7	4	ND-0.12 μ g	0.5-1 μ g
Beryllium	7	1	ND-0.004 μ g	0.1-0.2 μ g
Calcium	7	7	1.33-4.59 μ g	50-100 μ g
Chromium	7	4	ND-0.46 μ g	0.5-1 μ g
Cobalt	7	5	ND-0.39 μ g	0.5-1 μ g
Iron	7	7	0.15-4.07 μ g	2.5-5 μ g
Magnesium	7	5	ND-1.79 μ g	50-100 μ g
Manganese	7	3	ND-0.25 μ g	0.5-1 μ g
Molybdenum	7	1	ND-0.33 μ g	2.5-5 μ g
Nickel	7	4	ND-0.72 μ g	1-2 μ g
Potassium	7	3	ND-19.7 μ g	150-300 μ g
Sodium	8	7	ND-12.2 μ g	50-100 μ g
Silicon	8	3	ND-363 μ g	50-100 μ g
Strontium	7	5	ND-0.095 μ g	0.15-0.3 μ g
Vanadium	7	3	ND-0.3 μ g	1-2 μ g
Zinc	7	2	ND-0.43 μ g	1-2 μ g

Table F-1 (Continued)

<u>Analyte</u>	<u>Number of Blank Samples Analyzed</u>	<u>Number of Detects</u>	<u>Range of Concentrations Detected</u>	<u>Detection Limits</u>
Metals (ICP) Impinger Solutions				
<u>Lab Blanks</u>				
Aluminum	1	1	0.02 mg/L	0.2 mg/L
Barium	1	1	0.0004 mg/L	0.01 mg/L
Beryllium	1	1	0.0006 mg/L	0.002 mg/L
Calcium	1	1	0.04 mg/L	1 mg/L
Chromium	1	0	ND	0.01 mg/L
Cobalt	1	1	0.002 mg/L	0.01 mg/L
Copper	1	0	ND	0.02 mg/L
Iron	1	1	0.01 mg/L	0.05 mg/L
Lead	1	0	ND	0.05 mg/L
Manganese	1	1	0.001 mg/L	0.01 mg/L
Molybdenum	1	1	0.001 mg/L	0.05 mg/L
Nickel	1	1	0.001 mg/L	0.02 mg/L
Sodium	2	2	0.02-0.11 mg/L	1 mg/L
Silicon	2	2	0.007-0.07 mg/L	1 mg/L
Strontium	1	1	0.0007 mg/L	0.003 mg/L
Titanium	1	0	ND	0.05 mg/L
Vanadium	1	1	0.0003	0.2 mg/L
Zinc	1	1	0.003 mg/L	0.02 mg/L
Metals (GFAAS, CVAAS) - Probe & Nozzle Rinse + Filter				
<u>Lab Blanks</u>				
Arsenic	5	3	ND-0.15 μ g	0.40 μ g
Cadmium	5	4	ND-0.052 μ g	0.10 μ g
Lead	6	2	ND-0.353 μ g	0.30 μ g
Nickel	5	0	ND	0.30 μ g
Selenium	5	0	ND	0.50 μ g

Table F-1 (Continued)

<u>Analyte</u>	<u>Number of Blank Samples Analyzed</u>	<u>Number of Detects</u>	<u>Range of Concentrations Detected</u>	<u>Detection Limits</u>
Metals (GFAAS, CVAAS) - FGD Solids				
<u>Lab Blanks</u>				
Mercury	1	1	0.09 ng/kg	0.045 ng/kg
Metals (ICP-MS) Microwave Digestion - Reagents				
Arsenic	2	2	2.3-3.4 μ g/L	0.014 μ g/L
Beryllium	2	2	0.5-0.8 μ g/L	0.47 μ g/L
Cadmium	2	2	0.02-0.02 μ g/L	0.011 μ g/L
Chromium	2	2	8.8-24.7 μ g/L	0.25 μ g/L
Lead	2	2	0.25-0.28 μ g/L	0.018 μ g/L
Mercury	2	2	0.4-0.5 μ g/L	0.037 μ g/L
Nickel	2	2	1.9-2.4 μ g/L	0.054 μ g/L
Selenium	2	2	3.0-4.1 μ g/L	0.036 μ g/L
Metals (ICP-MS) Method 3020 - Digestion - Reagents				
Arsenic	2	2	0.02-0.04 μ g/L	0.026 μ g/L
Beryllium	2	1	0.01-0.03 μ g/L	0.024 μ g/L
Cadmium	2	2	0.06-0.06 μ g/L	0.041 μ g/L
Chromium	2	2	0.17-0.25 μ g/L	0.107 μ g/L
Lead	2	2	1.2-1.7 μ g/L	0.096 μ g/L
Mercury	2	2	0.16-0.18 μ g/L	0.044 μ g/L
Nickel	2	2	1.3-1.3 μ g/L	0.081 μ g/L
Selenium	2	2	1.2-1.3 μ g/L	0.51 μ g/L

Table F-1 (Continued)

<u>Analyte</u>	<u>Number of Blank Samples Analyzed</u>	<u>Number of Detects</u>	<u>Range of Concentrations Detected</u>	<u>Detection Limits</u>
Metals (ICP-MS) Microwave Digestion - Filters				
Arsenic	4	4	0.9-1.6 $\mu\text{g/L}$	0.14 $\mu\text{g/L}$
Beryllium	4	2	0.02-0.25 $\mu\text{g/L}$	0.97 $\mu\text{g/L}$
Cadmium	4	4	0.02-0.06 $\mu\text{g/L}$	0.011 $\mu\text{g/L}$
Chromium	4	4	2.6-4.8 $\mu\text{g/L}$	0.25 $\mu\text{g/L}$
Lead	4	4	1.3-1.7 $\mu\text{g/L}$	0.018 $\mu\text{g/L}$
Mercury	4	4	0.2-0.4 $\mu\text{g/L}$	0.037 $\mu\text{g/L}$
Nickel	4	4	2.2-3.2 $\mu\text{g/L}$	0.054 $\mu\text{g/L}$
Selenium	4	4	0.9-1.9 $\mu\text{g/L}$	0.36 $\mu\text{g/L}$

ND = Not detected.

NS = Not specified.

Table F-2

Summary of Laboratory Control Sample Results

Analyte	No. of LCS/LCSD * Pairs	Mean % Recovery	Mean RPD	No. Below Limits		No. Above Limits	Limits
				No.	Above Limits		
Metals by AAS							
Solids							
As	4	119	3.4	0	3	85-115	
Cd	5	106	5.3	0	0	85-115	
Hg	1	109	2.8	0	0	80-120	
Ni	4	111	6.2	0	0	85-115	
Pb	4	92	1.4	0	0	85-115	
Se	4	91	21.4	1	0	85-115	
Liquids							
As	4	92	6.1	1	0	85-115	
Cd	4	98	12.1	0	0	85-115	
Hg	6	100	3.2	0	0	80-120	
Ni	4	93	6.5	0	0	85-115	
Pb	5	97	7.0	0	0	85-115	
Se	5	96	6.5	0	0	85-115	
Metals by ICP-MS							
Liquids (Microwave Digestion)							
As	1	55	20.8	2	0	85-115	
Be	1	60	22.2	2	0	85-115	
Cd	1	54	2.2	2	0	85-115	
Cr	1	55	23.2	2	0	85-115	
Hg	1	2,073	11.7	0	2	80-120	
Ni	1	399	16.2	0	2	85-115	
Pb	1	91	17.9	1	0	85-115	
Se	1	128	6.5	0	2	85-115	

Table F-2 (Continued)

Analyte	Metals by ICP-MS	No. of LCS/LCSD* Pairs	Mean % Recovery	Mean RPD	No. Below Limits	No. Above Limits	Limits
Liquids w/Filter (Microwave Digestion)							
As	1	54	2.7	2	0	0	75-125
Be	1	65	15.4	2	0	0	75-125
Cd	1	68	0.4	2	0	0	75-125
Cr	1	20	10.0	2	0	0	75-125
Hg	1	1,522	20.0	0	2	2	75-125
Ni	1	468	10.6	0	2	2	75-125
Pb	1	97	6.2	0	0	0	75-125
Se	1	111	22.7	0	0	0	75-125
Liquids (Method 13020 Digestion)							
As	1	63	12.4	2	0	0	85-115
Be	1	—	—	—	0	0	85-115
Cd	1	89	0.0	2	0	0	85-115
Cr	1	53	14.2	2	—	—	85-115
Hg	1	—	—	—	2	2	85-115
Ni	1	63	5.0	0	0	0	85-115
Pb	1	179	36.9	2	0	0	85-115
Se	1	66	8.2	2	0	0	85-115

Table F-2 (Continued)

Filters	Metals by ICP-AES	Analyte	No. of LCS/LCSD* Pairs	Mean % Recovery	Mean RPD	No. Below Limits	No. Above Limits	Limits
								75-125
Al	25	34.1	2	77	4.1	1	0	75-125
Ba	2		1	92	2.0	0	0	75-125
Be			2	86	1.4	0	0	75-125
Ca	2		2	87	6.8	0	0	75-125
Co	2		2	84	1.1	0	0	75-125
Cr	2		2	82	3.3	0	0	75-125
Cu	2		2	89	1.2	0	0	75-125
Fe	2		2	81	1.1	1	0	75-125
K	2		2	48	9.9	2	0	75-125
Mg	2		2	87	1.5	0	0	75-125
Mn	2		2	107	2.8	0	0	75-125
Na	2		2	91	5.2	0	0	75-125
Ni	2		1	122	NC	0	0	75-125
Pb			2	82	1.2	0	0	75-125
Sr			2	76	3.7	1	1	75-125
Ti			2	88	2.4	0	0	75-125
V			2	80	0.9	0	0	75-125
Zn								

Table F-2 (Continued)

Analyte Metals by ICP-AES	No. of LCS/LCSD ^a Pairs	Mean % Recovery	Mean RPD	No. Below Limits		No. Above Limits		Limits
				No.	Above Limits	No.	Above Limits	
Ag	2	96	0.8	0	0	0	0	90-110
Al	2	103	1.0	0	0	0	0	90-110
As	2	98	0.3	0	0	0	0	90-110
B	2	105	3.4	0	0	0	0	90-110
Ba	2	102	0.5	0	0	0	0	90-110
Be	2	100	0.7	0	0	0	0	90-110
Ca	2	100	1.4	0	0	0	0	90-110
Cd	2	101	1.8	0	0	0	0	90-110
Co	2	100	1.6	0	0	0	0	90-110
Cr	2	99	0.7	0	0	0	0	90-110
Cu	2	100	0.3	0	0	0	0	90-110
Fe	2	102	0.5	0	0	0	0	90-110
K	2	107	1.4	0	0	0	0	90-110
Mg	2	97	0.6	0	0	0	0	90-110
Mn	2	99	1.2	0	0	0	0	90-110
Mo	2	98	1.3	0	0	0	0	90-110
Na	2	107	3.7	0	0	0	0	90-110
Ni	2	101	2.4	0	0	0	0	90-110
Pb	2	101	0.4	0	0	0	0	90-110
Sb	2	97	3.6	0	0	0	0	90-110
Se	2	99	0.6	0	0	0	0	90-110
Si	2	101	2.3	0	0	0	0	90-110
Sr	2	102	0.5	0	0	0	0	90-110
Ti	2	97	0.9	0	0	0	0	90-110
Tl	2	102	1.6	0	0	0	0	90-110
V	2	98	0.3	0	0	0	0	90-110
Zn	2	100	1.5	0	0	0	0	90-110

Table F-2 (Continued)

Analyte Metals by ICP-AES	No. of LCS/LCSD-Pairs	Mean % Recovery	Mean RPD	No. Below Limits		No. Above Limits	Limits
				No.	Above Limits		
Al	4	96	12.6	1	2	0	90-110
Ba	4	87	4.2	0	0	0	90-110
Be	4	95	4.1	2	2	0	90-110
Ca	4	96	6.9	1	1	0	90-110
Co	4	91	11.3	2	1	0	90-110
Cr	4	103	9.5	1	1	0	90-110
Cu	4	93	3.8	1	1	0	90-110
Fe	4	92	2.5	2	0	0	90-110
K	4	92	6.8	1	0	0	90-110
Mg	4	90	11.5	2	0	0	90-110
Mn	4	91	1.6	2	0	0	90-110
Na	4	102	3.8	1	1	1	90-110
Ni	4	102	10.1	2	2	0	90-110
Pb	2	88	22.2	1	0	0	90-110
Si	2	40	6.0	2	0	0	90-110
Sr	4	95	5.8	1	1	0	90-110
Ti	4	90	2.7	2	2	0	90-110
V	4	93	2.9	2	3	0	90-110
Zn			3.2				

Table F-2 (Continued)

<u>Analyte</u>	<u>No. of LCS Analyses</u>	<u>Mean % Recovery</u>	<u>Std. Dev. (% Recovery)</u>	<u>No. Below Limits</u>	<u>No. Above Limits</u>	<u>Limits</u>
<u>Mercury in Coal</u>						
Hg (0.04 ppm)	5	130	20.9	--	--	NS
Hg (0.20 ppm)	6	96	17.4	--	--	NS
Hg (0.25 ppm)	6	87	8.2	--	--	NS
<u>Anions</u>						
Chloride	13	99	4.8	0	0	90-110
Sulfate	13	100	2.1	0	0	90-110
Fluoride	7	102	3.2	0	0	90-110

*LCS/LCSD - Laboratory Control Sample/Laboratory Control Sample Duplicate

NS = Not specified.

Table F-3
Summary of Spiked Sample Results

<u>Analyte</u>	<u>No. of Spikes</u>	<u>% Recovery</u>	<u>Std. Dev.</u>	<u>No. Below Limits</u>	<u>No. Above Limits</u>	<u>Limits</u>
<u>Polynuclear Aromatic Hydrocarbons</u>						
Spiked Sample Results (Condensate)						
Acenaphthalene	1	84	NA	0	0	50-150
Acenaphthene	1	82	NA	0	0	50-150
Fluorene	1	118	NA	0	0	50-150
Phenanthrene	1	84	NA	0	0	50-150
Anthracene	1	86	NA	0	0	50-150
Fluoranthene	1	79	NA	0	0	50-150
Pyrene	1	81	NA	0	0	50-150
Benzo(a)anthracene	1	64	NA	0	0	50-150
Chrysene	1	75	NA	0	0	50-150
5-methyl chrysene	1	78	NA	0	0	50-150
Benzo(b,j&k)fluoranthenes	1	71	NA	0	0	50-150
Benzo(a)pyrene	1	66	NA	0	0	50-150
Dibenz(a,h)acridine	1	92	NA	0	0	50-150
Benz(a,i)acridine	1	57	NA	0	0	50-150
Indeno(1,2,3-cd)pyrene	1	48	NA	1	0	50-150
Dibenz(a,h)anthracene	1	88	NA	0	0	50-150
7H-dibenzo(c,g)carbazole	1	74	NA	0	0	50-150
Benzo(g,h,i)perylene	1	75	NA	0	0	50-150
Dibenzo(a,e)pyrene	1	50	NA	0	0	50-150
Dibenzo(a,i)pyrene	1	35	NA	1	0	50-150
Dibenzo(a,h)pyrene	1	18	NA	1	0	50-150
Spiked Sample Results XAD Resin						
Acenaphthalene	3	90	15.5	0	0	50-150
Acenaphthene	3	89	17.6	0	0	50-150
Fluorene	3	91	18.5	0	0	50-150
Phenanthrene	3	101	14.2	0	0	50-150
Anthracene	3	94	12.2	0	0	50-150
Fluoranthene	3	87	8.1	0	0	50-150
Pyrene	3	93	11.4	0	0	50-150
Benzo(a)anthracene	3	81	9.3	0	0	50-150

Table F-3 (Continued)

<u>Analyte</u>	<u>No. of Spikes</u>	<u>% Recovery</u>	<u>Std. Dev.</u>	<u>No. Below Limits</u>	<u>No. Above Limits</u>	<u>Limits</u>
Chrysene	3	90	15.0	0	0	50-150
5-methyl chrysene	3	88	27.5	0	0	50-150
Benzo(b,j&k)fluoranthenes	3	83	13.5	0	0	50-150
Benzo(a)pyrene	3	78	14.2	0	0	50-150
Dibenz(a,h)acridine	3	86	14.1	0	0	50-150
Dibenz(a,i)acridine	3	76	17.9	0	0	50-150
Indeno(1,2,3-cd)pyrene	3	75	8.4	0	0	50-150
Dibenz(a,h)anthracene	3	95	8.1	0	0	50-150
7H-dibenzo(c,g)carbazole	3	91	15.4	0	0	50-150
Benzo(g,h,i)perylene	3	85	8.0	0	0	50-150
Dibenzo(a,e)pyrene	3	93	25.7	0	0	50-150
Dibenzo(a,i)pyrene	3	88	11.5	0	0	50-150
Dibenzo(a,h)pyrene	3	63	19.4	1	0	50-150
<u>Analyte</u>	<u>No. of MSD Pairs</u>	<u>Mean % Recovery</u>	<u>Mean RPD</u>	<u>No. Below Limits</u>	<u>No. Above Limits</u>	<u>Limits</u>
Metals by AAS in ESP Inlet						
Arsenic	5	90	1.8	1	0	75-125
Cadmium	4	87	7.9	1	0	75-125
Lead	5	75	17.0	2	0	75-125
Mercury	2	108	0.9	0	0	75-125
Nickel	5	92	5.1	0	0	75-125
Selenium	5	71	12.1	1	0	75-125
Metals by AAS in Scrubber Outlet						
Arsenic	4	81	10.6	1	0	75-125
Cadmium	4	112	7.0	0	1	75-125
Lead	5	98	15.9	1	1	75-125
Mercury	3	90	4.6	1	0	75-125
Nickel	4	90	9.0	0	0	75-125
Selenium	5	67	14.9	2	0	75-125

Table F-3 (Continued)

<u>Analyte</u>	<u>No. of MSD Pairs</u>	<u>Mean % Recovery</u>	<u>Mean RPD</u>	<u>No. Below Limits</u>	<u>No. Above Limits</u>	<u>Limits</u>
Metals by ICP-AES in Scrubber Outlet						
Aluminum	6	107	2.4	0	0	75-125
Antimony	3	88	10.8	0	0	75-125
Arsenic	6	105	4.3	0	0	75-125
Barium	6	86	1.7	1	0	75-125
Beryllium	6	93	0.3	0	0	75-125
Boron	2	111	3.1	0	0	75-125
Cadmium	4	94	0.7	0	0	75-125
Calcium	6	101	2.4	0	0	75-125
Chromium	6	105	9.4	0	1	75-125
Cobalt	6	94	0.7	0	0	75-125
Copper	6	95	0.9	0	0	75-125
Iron	6	106	4.0	0	0	75-125
Lead	6	90	5.7	0	0	75-125
Magnesium	6	90	0.9	0	0	75-125
Manganese	6	93	0.8	0	0	75-125
Molybdenum	6	97	0.7	0	0	75-125
Nickel	6	97	3.0	0	0	75-125
Potassium	6	109	1.9	0	0	75-125
Selenium	6	118	5.4	0	0	75-125
Silicon	2	124	24.7	0	2	75-125
Silver	6	87	0.5	1	0	75-125
Sodium	6	104	0.8	0	0	75-125
Strontium	6	97	0.7	0	0	75-125
Sulfur	6	93	3.7	0	0	75-125
Thallium	6	99	4.0	0	0	75-125
Titanium	6	102	2.4	0	0	75-125
Vanadium	6	95	0.9	0	0	75-125
Zinc	6	96	0.7	0	0	75-125

Table F-3 (Continued)

<u>Analyte</u>	<u>No. of MSD Pairs</u>	<u>Mean % Recovery</u>	<u>Mean RPD</u>	<u>No. Below Limits</u>	<u>No. Above Limits</u>	<u>Limits</u>
Metals by ICP-AES in ESP Inlet						
Aluminum	5	72	0.9	2	0	75-125
Antimony	6	99	7.1	0	0	75-125
Arsenic	3	98	2.7	0	0	75-125
Barium	5	84	2.7	1	0	75-125
Beryllium	7	90	1.1	0	0	75-125
Boron	1	120	0.8	0	0	75-125
Cadmium	3	93	7.0	0	0	75-125
Calcium	7	95	1.7	0	0	75-125
Chromium	7	93	1.0	0	0	75-125
Cobalt	5	96	1.9	0	0	75-125
Copper	5	96	1.3	0	0	75-125
Iron	5	106	2.1	0	1	75-125
Lead	5	93	0.4	0	0	75-125
Magnesium	5	86	6.7	1	0	75-125
Manganese	5	95	0.9	0	0	75-125
Molybdenum	5	104	2.8	0	0	75-125
Nickel	7	95	3.9	0	0	75-125
Potassium	5	96	2.6	0	0	75-125
Selenium	2	103	4.7	0	0	75-125
Silicon	1	108	11.1	0	0	75-125
Silver	3	35	8.7	2	0	75-125
Sodium	5	105	4.5	0	1	75-125
Strontium	5	97	1.4	0	0	75-125
Sulfur	5	100	0.3	0	0	75-125
Thallium	7	102	8.4	0	0	75-125
Titanium	7	78	10.4	3	0	75-125
Vanadium	5	95	1.7	0	0	75-125
Zinc	5	95	1.2	0	0	75-125
Anions						
Chloride	3	101	5.0	0	0	80-120
Fluoride	3	93	3.1	0	0	80-120
Sulfate	3	98	5.2	0	0	80-120

NA = Not applicable.

Table F-3 (Continued)

<u>Analyte</u>	<u>No. of MSD Pairs</u>	<u>Mean % Recovery</u>	<u>Mean RPD</u>	<u>No. Below Limits</u>	<u>No. Above Limits</u>	<u>Limits</u>
Metals by ICP-MS in Scrubber Outlet Impingers						
Arsenic	2	76	12	1	0	75-125
Cadmium	2	96	7	0	0	75-125
Chromium	2	69	13	1	0	75-125
Lead	2	205	74	0	2	75-125
Nickel	2	80	11	0	0	75-125
Selenium	2	294	15	0	2	75-125

NA = Not applicable.

Table F-4
Summary of Surrogate Recoveries for Semivolatile Organic Analyses

<u>Surrogate Compound</u>	<u>No. of Analyses</u>	<u>Mean % Rec.</u>	<u>Std. Dev. (1% Rec.)</u>	<u>No. Below Limits</u>	<u>No. Above Limits</u>	<u>QC Limits %</u>
PAH Analyses by HRGCMS (XAD)						
Biphenyl-d10	23	136*	93.5*	0	7	50-150
Hexachlorobenzene	23	73	40.0	8	1	50-150
Perylene-d12	23	99	33.0	1	1	50-150

*Excludes one outlier reported as 1669% recovery.

Table F-5
Duplicate Analysis Results

	<u>No. of Pairs</u>	<u>Range</u>	<u>Mean RPD</u>
ESP Inlet - PRN & Filter			
Metals by ICP-AES (µg/sample)			
Aluminum	8	2,020 - 3,580	0.6%
Arsenic	8	27.55 - 58.05	27.0%
Barium	8	21.4 - 41.2	0.5%
Beryllium	8	0.888 - 1.385	3.9%
Cadmium	4	0.453 - 0.798	21.0%
Calcium	8	1,505 - 2,845	0.9%
Chromium	8	23.7 - 31.9	2.1%
Cobalt	8	1.125 - 22.5	54.4%
Copper	8	7.305 - 11.55	5.2%
Iron	8	1,890 - 3,085	0.7%
Lead	6	6.695 - 12.85	58.7%
Magnesium	8	375 - 566.5	1.3%
Manganese	8	7.005 - 21.4	2.3%
Molybdenum	8	14.5 - 18.55	6.1%
Nickel	8	10.205 - 261.95	69.4%
Potassium	8	386 - 797	9.8%
Selenium	8	50.1 - 158	11.8%
Silver	1	0.3055 - 0.3055	127.3%
Sodium	8	404.5 - 630	1.1%
Strontium	8	32.85 - 54.3	0.7%
Sulfur	8	11,950 - 36,450	1.4%
Thallium	5	2.415 - 5.34	45.5%
Titanium	8	190 - 342	0.7%
Vanadium	8	41.2 - 66.65	1.5%
Zinc	8	57.7 - 162.5	0.8%

Table F-5 (Continued)

	<u>No. of Pairs</u>	<u>Range</u>	<u>Mean RPD</u>
Metals by AAS (µg/sample)			
Arsenic	4	50.45 - 73.9	13.8%
Cadmium	4	0.7705 - 1.37	1.7%
Lead	4	7.66 - 11.95	3.2%
Nickel	4	12.7 - 17.1	2.3%
Selenium	4	66.95 - 168	7.1%
ESP Inlet Impingers			
Metals by ICP-AES (µg/samples)			
Aluminum	10	74.55 - 4,050	1.8%
Arsenic	9	2.3365 - 60.85	42.0%
Barium	10	1.76 - 42.3	2.2%
Beryllium	8	1.14 - 1.47	2.7%
Cadmium	5	0.07005 - 0.9565	39.6%
Calcium	10	95.1 - 2675	5.4%
Chromium	10	1.0875 - 33.95	44.5%
Cobalt	9	0.2655 - 2.985	84.7%
Copper	9	1.285 - 11.75	5.2%
Iron	10	38.4 - 3270	7.1%
Lead	6	10.93 - 20.4	66.1%
Magnesium	10	9.21 - 632.5	29.0%
Manganese	10	1.23 - 11.3	3.5%
Molybdenum	10	9.73 - 19	5.6%
Nickel	10	1.955 - 16.2	37.2%
Potassium	9	29.4 - 755	19.1%
Selenium	8	19.05 - 84.9	12.0%
Sodium	10	208.5 - 816	4.9%
Strontium	10	0.8335 - 57.4	6.2%
Sulfur	10	49.75 - 23,800	7.0%
Thallium	4	1.545 - 7.035	57.2%
Titanium	10	2.635 - 360	3.9%
Vanadium	9	0.2875 - 68.85	23.5%
Zinc	10	7.84 - 151.5	2.6%

Table F-5 (Continued)

	<u>No. of Pairs</u>	<u>Range</u>	<u>Mean RPD</u>
Metals by AAS ($\mu\text{g}/\text{sample}$)			
Arsenic	5	0.43 - 65	9.5%
Cadmium	5	0.366 - 1.5	2.4%
Lead	5	0.47 - 12.85	4.3%
Nickel	5	2.16 - 16.6	4.0%
Selenium	5	0.36 - 93.3	3.4%
Scrubber Outlet Impinger			
Metals by ICP-AES (mg/L)			
Aluminum	9	0.0344 - 0.5785	11.0%
Barium	9	0.00064 - 0.006	18.7%
Beryllium	3	0.000025 - 0.0006	68.1%
Boron	9	0.01655 - 0.9765	3.9%
Cadmium	3	0.0005 - 0.0045	29.7%
Calcium	9	0.143 - 163.66	66.5%
Chromium	5	0.001295 - 0.004	97.9%
Cobalt	2	0.001835 - 0.0043	66.8%
Iron	9	0.0419 - 0.3905	54.9%
Lead	6	0.01169 - 0.0457	49.5%
Magnesium	3	0.00346 - 0.0782	99.1%
Manganese	9	0.00657 - 0.4045	3.8%
Molybdenum	2	0.0011 - 0.0029	57.1%
Nickel	6	0.001015 - 0.0091	125.4%
Potassium	4	0.028175 - 0.9955	88.1%
Selenium	8	0.1102 - 0.469	17.9%
Silicon	9	0.134 - 2.84	21.2%
Sodium	9	0.6645 - 1.665	3.5%
Strontium	9	0.00077 - 0.0079	13.5%
Sulfur	9	2.275 - 1,535	0.5%
Thallium	5	0.00189 - 0.059	128.2%
Titanium	9	0.001015 - 0.0347	26.4%
Vanadium	2	0.000995 - 0.0092	31.1%
Zinc	9	0.0166 - 0.0774	5.6%

Table F-5 (Continued)

	<u>No. of Pairs</u>	<u>Range</u>	<u>Mean RPD</u>
Metals by AAS (mg/L)			
Arsenic	2	0.0003 - 0.0071	94.3%
Cadmium	9	0.0003 - 0.0089	10.5%
Lead	9	0.00235 - 0.152	14.2%
Mercury	22	0.00059 - 0.0076	3.6%
Nickel	7	0.00055 - 0.0093	53.2%
Selenium	9	0.00424 - 0.0222	22.3%

Appendix G

Selected Blank Results

- **Comparison of Stack MM5 Results to Blanks**
(Blank corrections were not applied to results)
- **Comparison of Stack Solid Phase Results to Blank Filters**
(Results are blank corrected)

Table G-1
Semivolatile Organics Stack Comparison of Value and Blank

<u>Substance</u>	<u>Mean Emission Factor (lb/10¹² Btu)^a</u>	<u>Emission Factor from Blank (lb/10¹² Btu)</u>
5-Methyl chrysene	0.001549	0.000558
7H-Dibenzo[c,g]carbazole	ND(0.003328)	ND(0.005346)
Acenaphthene	0.018001	0.002937
Acenaphthylene	0.00754	0.001544
Anthracene	0.009885	0.005052
Benz[a]anthracene	0.001286	0.00052
Benzo[a]pyrene	ND(0.01573)	ND(0.001224)
Benzo[b,j&k]fluoranthenes	0.006574	0.001923
Benzo[g,h,i]perylene	0.001234	0.000894
Chrysene	0.006931	0.001455
Dibenz[a,h]acridine	ND(0.001547)	ND(0.001455)
Dibenz[a,h]anthracene	ND(0.002621)	ND(0.002316)
Dibenz[a,i]acridine	ND(0.00162)	ND(0.001158)
Dibenzo[a,e]pyrene	ND(0.001502)	ND(0.001693)
Dibenzo[a,h]pyrene	ND(0.001384)	ND(0.001515)
Dibenzo[a,i]pyrene	ND(0.002533)	ND(0.001633)
Fluoranthene	0.052897	0.009912
Fluorene	0.064318	0.009754
Indeno[1,2,3-cd]pyrene	0.001456	0.000337
Phenanthrene	0.208551	0.035287
Pyrene	0.024204	0.035287

ND = Emission factor based on method detection limit.

^a Not blank corrected.

Table G-2
Stack Gas Solid Phase Filter Blank Correction

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> <u>µg/Nm³</u>	<u>Blank</u> <u>µg/Nm³</u>	<u>Blank %</u> <u>of Value</u>
4	stack gas, solid phase A	GFAA	Arsenic	8.18	0.02	0.2
4P	stack gas, solid phase A DUP	GFAA	Arsenic	6.66	0.02	0.3
4	stack gas, solid phase B	GFAA	Arsenic	7.52	0.02	0.3
4P	stack gas, solid phase B DUP	GFAA	Arsenic	5.94	0.02	0.3
5	stack gas, solid phase A	GFAA	Arsenic	6.89	0.02	0.3
5P	stack gas, solid phase A DUP	GFAA	Arsenic	7.04	0.02	0.3
5	stack gas, solid phase B	GFAA	Arsenic	5.82	0.02	0.3
5P	stack gas, solid phase B DUP	GFAA	Arsenic	6.19	0.02	0.3
6	stack gas, solid phase A	GFAA	Arsenic	7.40	0.02	0.3
6P	stack gas, solid phase A DUP	GFAA	Arsenic	7.37	0.02	0.3
6	stack gas, solid phase B	GFAA	Arsenic	8.36	0.02	0.2
6P	stack gas, solid phase B DUP	GFAA	Arsenic	9.42	0.02	0.2
7	stack gas, solid phase A	GFAA	Arsenic	7.23	0.02	0.3
7P	stack gas, solid phase A DUP	GFAA	Arsenic	7.60	0.02	0.2
7	stack gas, solid phase B	GFAA	Arsenic	8.74	0.02	0.2
7P	stack gas, solid phase B DUP	GFAA	Arsenic	8.21	0.02	0.2
4	stack gas, solid phase A	GFAA	Cadmium	0.17	0.01	3.3
4P	stack gas, solid phase A DUP	GFAA	Cadmium	0.16	0.01	3.4
4	stack gas, solid phase B	GFAA	Cadmium	0.14	0.01	3.9
4P	stack gas, solid phase B DUP	GFAA	Cadmium	0.15	0.01	3.8
5	stack gas, solid phase A	GFAA	Cadmium	0.18	0.01	3.2
5P	stack gas, solid phase A DUP	GFAA	Cadmium	0.18	0.01	3.2
5	stack gas, solid phase B	GFAA	Cadmium	0.09	0.01	6.5
5P	stack gas, solid phase B DUP	GFAA	Cadmium	0.09	0.01	6.5
6	stack gas, solid phase A	GFAA	Cadmium	0.16	0.01	3.7
6P	stack gas, solid phase A DUP	GFAA	Cadmium	0.15	0.01	3.7
6	stack gas, solid phase B	GFAA	Cadmium	0.12	0.01	4.8
6P	stack gas, solid phase B DUP	GFAA	Cadmium	0.12	0.01	4.7
7	stack gas, solid phase A	GFAA	Cadmium	0.12	0.01	4.5
7P	stack gas, solid phase A DUP	GFAA	Cadmium	0.12	0.01	4.4
7	stack gas, solid phase B	GFAA	Cadmium	0.15	0.01	3.5
7P	stack gas, solid phase B DUP	GFAA	Cadmium	0.15	0.01	3.6
4	stack gas, solid phase A	GFAA	Lead	1.49	0.02	1.4

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $(\mu\text{g}/\text{Nm}^3)$	<u>Blank %</u> <u>of Value</u>
4P	stack gas, solid phase A DUP	GFAA	Lead	1.53	0.02	1.4
4	stack gas, solid phase B	GFAA	Lead	1.25	0.02	1.7
4P	stack gas, solid phase B DUP	GFAA	Lead	1.22	0.02	1.7
5	stack gas, solid phase A	GFAA	Lead	1.28	0.02	1.7
5P	stack gas, solid phase A DUP	GFAA	Lead	1.31	0.02	1.6
5	stack gas, solid phase B	GFAA	Lead	0.90	0.02	2.3
5P	stack gas, solid phase B DUP	GFAA	Lead	0.89	0.02	2.4
6	stack gas, solid phase A	GFAA	Lead	1.49	0.02	1.5
6P	stack gas, solid phase A DUP	GFAA	Lead	1.52	0.02	1.4
6	stack gas, solid phase B	GFAA	Lead	1.42	0.02	1.5
6P	stack gas, solid phase B DUP	GFAA	Lead	1.42	0.02	1.5
7	stack gas, solid phase A	GFAA	Lead	1.44	0.02	1.4
7P	stack gas, solid phase A DUP	GFAA	Lead	1.41	0.02	1.4
7	stack gas, solid phase B	GFAA	Lead	1.39	0.02	1.4
7P	stack gas, solid phase B DUP	GFAA	Lead	1.31	0.02	1.5
4	stack gas, solid phase A	GFAA	Nickel	2.01	0.03	1.4
4P	stack gas, solid phase A DUP	GFAA	Nickel	1.89	0.03	1.5
4	stack gas, solid phase B	GFAA	Nickel	1.67	0.03	1.7
4P	stack gas, solid phase B DUP	GFAA	Nickel	1.71	0.03	1.7
5	stack gas, solid phase A	GFAA	Nickel	1.38	0.03	2.1
5P	stack gas, solid phase A DUP	GFAA	Nickel	1.46	0.03	2.0
5	stack gas, solid phase B	GFAA	Nickel	1.56	0.03	1.9
5P	stack gas, solid phase B DUP	GFAA	Nickel	1.61	0.03	1.8
6	stack gas, solid phase A	GFAA	Nickel	1.94	0.03	1.5
6P	stack gas, solid phase A DUP	GFAA	Nickel	1.96	0.03	1.5
6	stack gas, solid phase B	GFAA	Nickel	1.55	0.03	1.9
6P	stack gas, solid phase B DUP	GFAA	Nickel	1.53	0.03	2.0
7	stack gas, solid phase A	GFAA	Nickel	1.53	0.03	1.8
7P	stack gas, solid phase A DUP	GFAA	Nickel	1.57	0.03	1.8
7	stack gas, solid phase B	GFAA	Nickel	1.92	0.03	1.5
7P	stack gas, solid phase B DUP	GFAA	Nickel	1.96	0.03	1.4
4	stack gas, solid phase A	GFAA	Selenium	2.25	0.02	1.1
4P	stack gas, solid phase A DUP	GFAA	Selenium	2.37	0.02	1.0
4	stack gas, solid phase B	GFAA	Selenium	7.55	0.02	0.3
4P	stack gas, solid phase B DUP	GFAA	Selenium	8.43	0.02	0.3

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result µg/Nm³</u>	<u>Blank µg/Nm³</u>	<u>Blank % of Value</u>
5	stack gas, solid phase A	GFAA	Selenium	11.21	0.02	0.2
5P	stack gas, solid phase A DUP	GFAA	Selenium	10.63	0.02	0.2
5	stack gas, solid phase B	GFAA	Selenium	20.03	0.02	0.1
5P	stack gas, solid phase B DUP	GFAA	Selenium	20.03	0.02	0.1
6	stack gas, solid phase A	GFAA	Selenium	11.54	0.02	0.2
6P	stack gas, solid phase A DUP	GFAA	Selenium	11.47	0.02	0.2
6	stack gas, solid phase B	GFAA	Selenium	10.64	0.02	0.2
6P	stack gas, solid phase B DUP	GFAA	Selenium	9.81	0.02	0.3
7	stack gas, solid phase A	GFAA	Selenium	3.12	0.02	0.7
7P	stack gas, solid phase A DUP	GFAA	Selenium	3.16	0.02	0.7
7	stack gas, solid phase B	GFAA	Selenium	10.20	0.02	0.2
7P	stack gas, solid phase B DUP	GFAA	Selenium	10.66	0.02	0.2
4	stack gas, solid phase A	ICP-AES	Aluminum	422.34	6.88	1.6
4P	stack gas, solid phase A DUP	ICP-AES	Aluminum	421.15	6.88	1.6
4	stack gas, solid phase B	ICP-AES	Aluminum	378.61	6.91	1.8
4P	stack gas, solid phase B DUP	ICP-AES	Aluminum	376.22	6.91	1.8
5	stack gas, solid phase A	ICP-AES	Aluminum	292.40	7.02	2.4
5P	stack gas, solid phase A DUP	ICP-AES	Aluminum	285.10	7.02	2.5
5	stack gas, solid phase B	ICP-AES	Aluminum	235.46	6.89	2.9
5P	stack gas, solid phase B DUP	ICP-AES	Aluminum	233.07	6.89	3.0
6	stack gas, solid phase A	ICP-AES	Aluminum	385.95	7.13	1.8
6P	stack gas, solid phase A DUP	ICP-AES	Aluminum	390.90	7.13	1.8
6	stack gas, solid phase B	ICP-AES	Aluminum	377.05	7.12	1.9
6P	stack gas, solid phase B DUP	ICP-AES	Aluminum	377.05	7.12	1.9
7	stack gas, solid phase A	ICP-AES	Aluminum	353.67	6.60	1.9
7P	stack gas, solid phase A DUP	ICP-AES	Aluminum	358.24	6.60	1.8
7	stack gas, solid phase B	ICP-AES	Aluminum	364.72	6.63	1.8
7P	stack gas, solid phase B DUP	ICP-AES	Aluminum	364.72	6.63	1.8
4	stack gas, solid phase A	ICP-AES	Barium	3.73	0.17	4.6
4P	stack gas, solid phase A DUP	ICP-AES	Barium	3.69	0.17	4.7
4	stack gas, solid phase B	ICP-AES	Barium	3.51	0.17	4.9
4P	stack gas, solid phase B DUP	ICP-AES	Barium	3.49	0.17	5.0
5	stack gas, solid phase A	ICP-AES	Barium	3.17	0.18	5.6
5P	stack gas, solid phase A DUP	ICP-AES	Barium	3.06	0.18	5.8
5	stack gas, solid phase B	ICP-AES	Barium	2.39	0.17	7.2

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $(\mu\text{g}/\text{Nm}^3)$	<u>Blank %</u> <u>of Value</u>
5P	stack gas, solid phase B DUP	ICP-AES	Barium	2.37	0.17	7.3
6	stack gas, solid phase A	ICP-AES	Barium	4.12	0.18	4.4
6P	stack gas, solid phase A DUP	ICP-AES	Barium	4.17	0.18	4.3
6	stack gas, solid phase B	ICP-AES	Barium	4.13	0.18	4.3
6P	stack gas, solid phase B DUP	ICP-AES	Barium	4.14	0.18	4.3
7	stack gas, solid phase A	ICP-AES	Barium	4.11	0.17	4.0
7P	stack gas, solid phase A DUP	ICP-AES	Barium	4.18	0.17	4.0
7	stack gas, solid phase B	ICP-AES	Barium	4.27	0.17	3.9
7P	stack gas, solid phase B DUP	ICP-AES	Barium	4.28	0.17	3.9
4	stack gas, solid phase A	ICP-AES	Beryllium	0.16	0.00	0.4
4P	stack gas, solid phase A DUP	ICP-AES	Beryllium	0.16	0.00	0.4
4	stack gas, solid phase B	ICP-AES	Beryllium	0.15	0.00	0.4
4P	stack gas, solid phase B DUP	ICP-AES	Beryllium	0.15	0.00	0.4
5	stack gas, solid phase A	ICP-AES	Beryllium	0.14	0.00	0.5
5P	stack gas, solid phase A DUP	ICP-AES	Beryllium	0.14	0.00	0.5
5	stack gas, solid phase B	ICP-AES	Beryllium	0.11	0.00	0.6
5P	stack gas, solid phase B DUP	ICP-AES	Beryllium	0.10	0.00	0.6
6	stack gas, solid phase A	ICP-AES	Beryllium	0.16	0.00	0.4
6P	stack gas, solid phase A DUP	ICP-AES	Beryllium	0.16	0.00	0.4
6	stack gas, solid phase B	ICP-AES	Beryllium	0.16	0.00	0.4
6P	stack gas, solid phase B DUP	ICP-AES	Beryllium	0.16	0.00	0.4
7	stack gas, solid phase A	ICP-AES	Beryllium	0.15	0.00	0.4
7P	stack gas, solid phase A DUP	ICP-AES	Beryllium	0.15	0.00	0.4
7	stack gas, solid phase B	ICP-AES	Beryllium	0.15	0.00	0.4
7P	stack gas, solid phase B DUP	ICP-AES	Beryllium	0.15	0.00	0.4
4	stack gas, solid phase A	ICP-AES	Calcium	262.35	3.53	1.3
4P	stack gas, solid phase A DUP	ICP-AES	Calcium	263.54	3.53	1.3
4	stack gas, solid phase B	ICP-AES	Calcium	232.32	3.54	1.5
4P	stack gas, solid phase B DUP	ICP-AES	Calcium	229.92	3.54	1.5
5	stack gas, solid phase A	ICP-AES	Calcium	266.61	3.60	1.4
5P	stack gas, solid phase A DUP	ICP-AES	Calcium	266.61	3.60	1.4
5	stack gas, solid phase B	ICP-AES	Calcium	176.73	3.53	2.0
5P	stack gas, solid phase B DUP	ICP-AES	Calcium	175.54	3.53	2.0
6	stack gas, solid phase A	ICP-AES	Calcium	272.00	3.66	1.3
6P	stack gas, solid phase A DUP	ICP-AES	Calcium	274.47	3.66	1.3

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> <u>µg/Nm³</u>	<u>Blank</u> <u>(µg/Nm³)</u>	<u>Blank %</u> <u>of Value</u>
6	stack gas, solid phase B	ICP-AES	Calcium	228.58	3.65	1.6
6P	stack gas, solid phase B DUP	ICP-AES	Calcium	229.82	3.65	1.6
7	stack gas, solid phase A	ICP-AES	Calcium	247.09	3.38	1.4
7P	stack gas, solid phase A DUP	ICP-AES	Calcium	249.37	3.38	1.4
7	stack gas, solid phase B	ICP-AES	Calcium	286.32	3.40	1.2
7P	stack gas, solid phase B DUP	ICP-AES	Calcium	287.47	3.40	1.2
4	stack gas, solid phase A	ICP-AES	Chromium	3.69	0.03	0.7
4P	stack gas, solid phase A DUP	ICP-AES	Chromium	3.77	0.03	0.7
4	stack gas, solid phase B	ICP-AES	Chromium	3.27	0.03	0.8
4P	stack gas, solid phase B DUP	ICP-AES	Chromium	3.24	0.03	0.8
5	stack gas, solid phase A	ICP-AES	Chromium	2.72	0.03	1.0
5P	stack gas, solid phase A DUP	ICP-AES	Chromium	2.68	0.03	1.0
5	stack gas, solid phase B	ICP-AES	Chromium	2.79	0.03	0.9
5P	stack gas, solid phase B DUP	ICP-AES	Chromium	2.82	0.03	0.9
6	stack gas, solid phase A	ICP-AES	Chromium	3.58	0.03	0.8
6P	stack gas, solid phase A DUP	ICP-AES	Chromium	3.64	0.03	0.7
6	stack gas, solid phase B	ICP-AES	Chromium	3.43	0.03	0.8
6P	stack gas, solid phase B DUP	ICP-AES	Chromium	3.42	0.03	0.8
7	stack gas, solid phase A	ICP-AES	Chromium	3.13	0.02	0.8
7P	stack gas, solid phase A DUP	ICP-AES	Chromium	3.10	0.02	0.8
7	stack gas, solid phase B	ICP-AES	Chromium	3.58	0.03	0.7
7P	stack gas, solid phase B DUP	ICP-AES	Chromium	3.57	0.03	0.7
4	stack gas, solid phase A	ICP-AES	Cobalt	0.30	0.02	7.3
4P	stack gas, solid phase A DUP	ICP-AES	Cobalt	0.37	0.02	5.9
4	stack gas, solid phase B	ICP-AES	Cobalt	0.32	0.02	6.9
4P	stack gas, solid phase B DUP	ICP-AES	Cobalt	0.31	0.02	7.1
5	stack gas, solid phase A	ICP-AES	Cobalt	0.22	0.02	9.9
5P	stack gas, solid phase A DUP	ICP-AES	Cobalt	0.25	0.02	8.9
5	stack gas, solid phase B	ICP-AES	Cobalt	0.19	0.02	11.5
5P	stack gas, solid phase B DUP	ICP-AES	Cobalt	0.19	0.02	11.3
6	stack gas, solid phase A	ICP-AES	Cobalt	0.30	0.02	7.6
6P	stack gas, solid phase A DUP	ICP-AES	Cobalt	0.26	0.02	8.7
6	stack gas, solid phase B	ICP-AES	Cobalt	0.28	0.02	7.9
6P	stack gas, solid phase B DUP	ICP-AES	Cobalt	0.28	0.02	8.1
7	stack gas, solid phase A	ICP-AES	Cobalt	0.28	0.02	7.4

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $(\mu\text{g}/\text{Nm}^3)$	<u>Blank %</u> <u>of Value</u>
7P	stack gas, solid phase A DUP	ICP-AES	Cobalt	0.25	0.02	8.2
7	stack gas, solid phase B	ICP-AES	Cobalt	2.46	0.02	0.8
7P	stack gas, solid phase B DUP	ICP-AES	Cobalt	2.43	0.02	0.9
4	stack gas, solid phase A	ICP-AES	Copper	1.35	0.02	1.4
4P	stack gas, solid phase A DUP	ICP-AES	Copper	1.41	0.02	1.3
4	stack gas, solid phase B	ICP-AES	Copper	1.43	0.02	1.3
4P	stack gas, solid phase B DUP	ICP-AES	Copper	1.30	0.02	1.4
5	stack gas, solid phase A	ICP-AES	Copper	1.20	0.02	1.6
5P	stack gas, solid phase A DUP	ICP-AES	Copper	1.14	0.02	1.6
5	stack gas, solid phase B	ICP-AES	Copper	0.99	0.02	1.8
5P	stack gas, solid phase B DUP	ICP-AES	Copper	1.02	0.02	1.8
6	stack gas, solid phase A	ICP-AES	Copper	1.28	0.02	1.5
6P	stack gas, solid phase A DUP	ICP-AES	Copper	1.28	0.02	1.5
6	stack gas, solid phase B	ICP-AES	Copper	1.21	0.02	1.6
6P	stack gas, solid phase B DUP	ICP-AES	Copper	1.23	0.02	1.5
7	stack gas, solid phase A	ICP-AES	Copper	1.18	0.02	1.5
7P	stack gas, solid phase A DUP	ICP-AES	Copper	1.17	0.02	1.5
7	stack gas, solid phase B	ICP-AES	Copper	1.27	0.02	1.4
7P	stack gas, solid phase B DUP	ICP-AES	Copper	1.27	0.02	1.4
4	stack gas, solid phase A	ICP-AES	Iron	360.54	0.72	0.2
4P	stack gas, solid phase A DUP	ICP-AES	Iron	360.54	0.72	0.2
4	stack gas, solid phase B	ICP-AES	Iron	336.90	0.72	0.2
4P	stack gas, solid phase B DUP	ICP-AES	Iron	334.51	0.72	0.2
5	stack gas, solid phase A	ICP-AES	Iron	285.30	0.73	0.3
5P	stack gas, solid phase A DUP	ICP-AES	Iron	281.65	0.73	0.3
5	stack gas, solid phase B	ICP-AES	Iron	226.10	0.72	0.3
5P	stack gas, solid phase B DUP	ICP-AES	Iron	223.72	0.72	0.3
6	stack gas, solid phase A	ICP-AES	Iron	328.06	0.74	0.2
6P	stack gas, solid phase A DUP	ICP-AES	Iron	330.53	0.74	0.2
6	stack gas, solid phase B	ICP-AES	Iron	326.61	0.74	0.2
6P	stack gas, solid phase B DUP	ICP-AES	Iron	327.84	0.74	0.2
7	stack gas, solid phase A	ICP-AES	Iron	296.67	0.69	0.2
7P	stack gas, solid phase A DUP	ICP-AES	Iron	298.96	0.69	0.2
7	stack gas, solid phase B	ICP-AES	Iron	307.42	0.69	0.2
7P	stack gas, solid phase B DUP	ICP-AES	Iron	308.57	0.69	0.2

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> <u>µg/Nm³</u>	<u>Blank</u> <u>(µg/Nm³)</u>	<u>Blank %</u> <u>of Value</u>
4	stack gas, solid phase A	ICP-AES	Magnesium	62.79	0.64	1.0
4P	stack gas, solid phase A DUP	ICP-AES	Magnesium	63.39	0.64	1.0
4	stack gas, solid phase B	ICP-AES	Magnesium	51.92	0.64	1.2
4P	stack gas, solid phase B DUP	ICP-AES	Magnesium	50.84	0.64	1.3
5	stack gas, solid phase A	ICP-AES	Magnesium	53.76	0.65	1.2
5P	stack gas, solid phase A DUP	ICP-AES	Magnesium	52.54	0.65	1.2
5	stack gas, solid phase B	ICP-AES	Magnesium	44.37	0.64	1.4
5P	stack gas, solid phase B DUP	ICP-AES	Magnesium	43.89	0.64	1.5
6	stack gas, solid phase A	ICP-AES	Magnesium	65.84	0.66	1.0
6P	stack gas, solid phase A DUP	ICP-AES	Magnesium	66.58	0.66	1.0
6	stack gas, solid phase B	ICP-AES	Magnesium	49.86	0.66	1.3
6P	stack gas, solid phase B DUP	ICP-AES	Magnesium	49.62	0.66	1.3
7	stack gas, solid phase A	ICP-AES	Magnesium	49.83	0.61	1.2
7P	stack gas, solid phase A DUP	ICP-AES	Magnesium	49.83	0.61	1.2
7	stack gas, solid phase B	ICP-AES	Magnesium	58.59	0.61	1.0
7P	stack gas, solid phase B DUP	ICP-AES	Magnesium	58.71	0.61	1.0
4	stack gas, solid phase A	ICP-AES	Manganese	1.27	0.02	1.6
4P	stack gas, solid phase A DUP	ICP-AES	Manganese	1.27	0.02	1.6
4	stack gas, solid phase B	ICP-AES	Manganese	1.16	0.02	1.7
4P	stack gas, solid phase B DUP	ICP-AES	Manganese	1.14	0.02	1.8
5	stack gas, solid phase A	ICP-AES	Manganese	1.01	0.02	2.0
5P	stack gas, solid phase A DUP	ICP-AES	Manganese	0.98	0.02	2.1
5	stack gas, solid phase B	ICP-AES	Manganese	0.82	0.02	2.4
5P	stack gas, solid phase B DUP	ICP-AES	Manganese	0.81	0.02	2.5
6	stack gas, solid phase A	ICP-AES	Manganese	1.19	0.02	1.7
6P	stack gas, solid phase A DUP	ICP-AES	Manganese	1.21	0.02	1.7
6	stack gas, solid phase B	ICP-AES	Manganese	1.13	0.02	1.8
6P	stack gas, solid phase B DUP	ICP-AES	Manganese	1.13	0.02	1.8
7	stack gas, solid phase A	ICP-AES	Manganese	1.10	0.02	1.7
7P	stack gas, solid phase A DUP	ICP-AES	Manganese	1.11	0.02	1.7
7	stack gas, solid phase B	ICP-AES	Manganese	2.28	0.02	0.8
7P	stack gas, solid phase B DUP	ICP-AES	Manganese	2.28	0.02	0.8
4	stack gas, solid phase A	ICP-AES	Molybdenum	0.84	1.20	143.1
4P	stack gas, solid phase A DUP	ICP-AES	Molybdenum	0.90	1.20	133.6

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> <u>µg/Nm³</u>	<u>Blank</u> <u>(µg/Nm³)</u>	<u>Blank %</u> <u>of Value</u>
4	stack gas, solid phase B	ICP-AES	Molybdenum	0.79	1.21	151.7
4P	stack gas, solid phase B DUP	ICP-AES	Molybdenum	0.81	1.21	149.4
5	stack gas, solid phase A	ICP-AES	Molybdenum	0.55	1.23	221.9
5P	stack gas, solid phase A DUP	ICP-AES	Molybdenum	0.60	1.23	204.0
5	stack gas, solid phase B	ICP-AES	Molybdenum	0.53	1.20	226.9
5P	stack gas, solid phase B DUP	ICP-AES	Molybdenum	0.53	1.20	226.9
6	stack gas, solid phase A	ICP-AES	Molybdenum	0.77	1.24	161.4
6P	stack gas, solid phase A DUP	ICP-AES	Molybdenum	0.83	1.24	149.4
6	stack gas, solid phase B	ICP-AES	Molybdenum	0.83	1.24	149.4
6P	stack gas, solid phase B DUP	ICP-AES	Molybdenum	0.83	1.24	149.4
7	stack gas, solid phase A	ICP-AES	Molybdenum	0.79	1.15	145.1
7P	stack gas, solid phase A DUP	ICP-AES	Molybdenum	0.72	1.15	158.9
7	stack gas, solid phase B	ICP-AES	Molybdenum	0.76	1.16	151.7
7P	stack gas, solid phase B DUP	ICP-AES	Molybdenum	0.87	1.16	133.6
4	stack gas, solid phase A	ICP-AES	Potassium	77.44	3.76	4.8
4P	stack gas, solid phase A DUP	ICP-AES	Potassium	85.78	3.76	4.4
4	stack gas, solid phase B	ICP-AES	Potassium	75.01	3.77	5.0
4P	stack gas, solid phase B DUP	ICP-AES	Potassium	71.06	3.77	5.3
5	stack gas, solid phase A	ICP-AES	Potassium	60.55	3.83	6.3
5P	stack gas, solid phase A DUP	ICP-AES	Potassium	59.34	3.83	6.5
5	stack gas, solid phase B	ICP-AES	Potassium	45.07	3.76	8.3
5P	stack gas, solid phase B DUP	ICP-AES	Potassium	51.75	3.76	7.3
6	stack gas, solid phase A	ICP-AES	Potassium	74.23	3.89	5.2
6P	stack gas, solid phase A DUP	ICP-AES	Potassium	73.98	3.89	5.3
6	stack gas, solid phase B	ICP-AES	Potassium	71.46	3.89	5.4
6P	stack gas, solid phase B DUP	ICP-AES	Potassium	67.76	3.89	5.7
7	stack gas, solid phase A	ICP-AES	Potassium	70.39	3.60	5.1
7P	stack gas, solid phase A DUP	ICP-AES	Potassium	69.94	3.60	5.2
7	stack gas, solid phase B	ICP-AES	Potassium	72.83	3.62	5.0
7P	stack gas, solid phase B DUP	ICP-AES	Potassium	75.48	3.62	4.8
4	stack gas, solid phase A	ICP-AES	Silver	0.05	0.00	0.0
4P	stack gas, solid phase A DUP	ICP-AES	Silver	0.05	0.00	0.0
4	stack gas, solid phase B	ICP-AES	Silver	0.05	0.00	0.0
4P	stack gas, solid phase B DUP	ICP-AES	Silver	0.05	0.00	0.0
5	stack gas, solid phase A	ICP-AES	Silver	0.03	0.00	0.0

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $(\mu\text{g}/\text{Nm}^3)$	<u>Blank %</u> <u>of Value</u>
SP	stack gas, solid phase A DUP	ICP-AES	Silver	0.05	0.00	0.0
5	stack gas, solid phase B	ICP-AES	Silver	0.05	0.00	0.0
SP	stack gas, solid phase B DUP	ICP-AES	Silver	0.01	0.00	0.0
6	stack gas, solid phase A	ICP-AES	Silver	0.05	0.00	0.0
6P	stack gas, solid phase A DUP	ICP-AES	Silver	0.05	0.00	0.0
6	stack gas, solid phase B	ICP-AES	Silver	0.05	0.00	0.0
6P	stack gas, solid phase B DUP	ICP-AES	Silver	0.05	0.00	0.0
7	stack gas, solid phase A	ICP-AES	Silver	0.05	0.00	0.0
7P	stack gas, solid phase A DUP	ICP-AES	Silver	0.05	0.00	0.0
7	stack gas, solid phase B	ICP-AES	Silver	0.01	0.00	0.0
7P	stack gas, solid phase B DUP	ICP-AES	Silver	0.05	0.00	0.0
4	stack gas, solid phase A	ICP-AES	Sodium	74.98	4.07	5.4
4P	stack gas, solid phase A DUP	ICP-AES	Sodium	74.39	4.07	5.5
4	stack gas, solid phase B	ICP-AES	Sodium	60.81	4.08	6.7
4P	stack gas, solid phase B DUP	ICP-AES	Sodium	60.45	4.08	6.8
5	stack gas, solid phase A	ICP-AES	Sodium	49.53	4.15	8.4
SP	stack gas, solid phase A DUP	ICP-AES	Sodium	47.21	4.15	8.8
5	stack gas, solid phase B	ICP-AES	Sodium	44.52	4.07	9.1
SP	stack gas, solid phase B DUP	ICP-AES	Sodium	43.92	4.07	9.3
6	stack gas, solid phase A	ICP-AES	Sodium	54.25	4.22	7.8
6P	stack gas, solid phase A DUP	ICP-AES	Sodium	54.87	4.22	7.7
6	stack gas, solid phase B	ICP-AES	Sodium	47.79	4.21	8.8
6P	stack gas, solid phase B DUP	ICP-AES	Sodium	47.67	4.21	8.8
7	stack gas, solid phase A	ICP-AES	Sodium	48.14	3.90	8.1
7P	stack gas, solid phase A DUP	ICP-AES	Sodium	48.14	3.90	8.1
7	stack gas, solid phase B	ICP-AES	Sodium	61.04	3.92	6.4
7P	stack gas, solid phase B DUP	ICP-AES	Sodium	60.81	3.92	6.4
4	stack gas, solid phase A	ICP-AES	Strontium	6.34	0.03	0.5
4P	stack gas, solid phase A DUP	ICP-AES	Strontium	6.31	0.03	0.5
4	stack gas, solid phase B	ICP-AES	Strontium	5.87	0.03	0.6
4P	stack gas, solid phase B DUP	ICP-AES	Strontium	5.84	0.03	0.6
5	stack gas, solid phase A	ICP-AES	Strontium	4.96	0.04	0.7
SP	stack gas, solid phase A DUP	ICP-AES	Strontium	4.81	0.04	0.7
5	stack gas, solid phase B	ICP-AES	Strontium	3.92	0.03	0.9
SP	stack gas, solid phase B DUP	ICP-AES	Strontium	3.86	0.03	0.9

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> <u>µg/Nm³</u>	<u>Blank</u> <u>(µg/Nm³)</u>	<u>Blank %</u> <u>of Value</u>
6	stack gas, solid phase A	ICP-AES	Strontium	6.02	0.04	0.6
6P	stack gas, solid phase A DUP	ICP-AES	Strontium	6.11	0.04	0.6
6	stack gas, solid phase B	ICP-AES	Strontium	5.94	0.04	0.6
6P	stack gas, solid phase B DUP	ICP-AES	Strontium	5.96	0.04	0.6
7	stack gas, solid phase A	ICP-AES	Strontium	5.64	0.03	0.6
7P	stack gas, solid phase A DUP	ICP-AES	Strontium	5.73	0.03	0.6
7	stack gas, solid phase B	ICP-AES	Strontium	5.81	0.03	0.6
7P	stack gas, solid phase B DUP	ICP-AES	Strontium	5.84	0.03	0.6
4	stack gas, solid phase A	ICP-AES	Sulfur	719.25	2.08	0.3
4P	stack gas, solid phase A DUP	ICP-AES	Sulfur	719.25	2.08	0.3
4	stack gas, solid phase B	ICP-AES	Sulfur	1434.62	2.09	0.1
4P	stack gas, solid phase B DUP	ICP-AES	Sulfur	1422.64	2.09	0.1
5	stack gas, solid phase A	ICP-AES	Sulfur	1154.18	2.12	0.2
5P	stack gas, solid phase A DUP	ICP-AES	Sulfur	1116.45	2.12	0.2
5	stack gas, solid phase B	ICP-AES	Sulfur	4128.49	2.08	0.1
5P	stack gas, solid phase B DUP	ICP-AES	Sulfur	4104.61	2.08	0.1
6	stack gas, solid phase A	ICP-AES	Sulfur	2692.55	2.15	0.1
6P	stack gas, solid phase A DUP	ICP-AES	Sulfur	2729.63	2.15	0.1
6	stack gas, solid phase B	ICP-AES	Sulfur	2443.71	2.15	0.1
6P	stack gas, solid phase B DUP	ICP-AES	Sulfur	2431.36	2.15	0.1
7	stack gas, solid phase A	ICP-AES	Sulfur	1759.30	1.99	0.1
7P	stack gas, solid phase A DUP	ICP-AES	Sulfur	1770.74	1.99	0.1
7	stack gas, solid phase B	ICP-AES	Sulfur	2584.79	2.00	0.1
7P	stack gas, solid phase B DUP	ICP-AES	Sulfur	2584.79	2.00	0.1
4	stack gas, solid phase A	ICP-AES	Thallium	0.52	0.04	8.0
4P	stack gas, solid phase A DUP	ICP-AES	Thallium	0.64	0.04	6.5
4	stack gas, solid phase B	ICP-AES	Thallium	0.49	0.04	8.6
4P	stack gas, solid phase B DUP	ICP-AES	Thallium	0.31	0.04	13.6
5	stack gas, solid phase A	ICP-AES	Thallium	0.02	0.00	0.0
5P	stack gas, solid phase A DUP	ICP-AES	Thallium	0.11	0.04	37.0
5	stack gas, solid phase B	ICP-AES	Thallium	0.27	0.04	15.6
5P	stack gas, solid phase B DUP	ICP-AES	Thallium	0.38	0.04	11.0
6	stack gas, solid phase A	ICP-AES	Thallium	0.12	0.04	35.1
6P	stack gas, solid phase A DUP	ICP-AES	Thallium	0.17	0.04	24.8
6	stack gas, solid phase B	ICP-AES	Thallium	0.24	0.04	18.1

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $(\mu\text{g}/\text{Nm}^3)$	<u>Blank %</u> <u>of Value</u>
6P	stack gas, solid phase B DUP	ICP-AES	Thallium	0.27	0.04	15.7
7	stack gas, solid phase A	ICP-AES	Thallium	0.48	0.04	8.3
7P	stack gas, solid phase A DUP	ICP-AES	Thallium	0.75	0.04	5.3
7	stack gas, solid phase B	ICP-AES	Thallium	0.82	0.04	4.9
7P	stack gas, solid phase B DUP	ICP-AES	Thallium	0.33	0.04	12.2
4	stack gas, solid phase A	ICP-AES	Titanium	39.25	0.09	0.2
4P	stack gas, solid phase A DUP	ICP-AES	Titanium	39.14	0.09	0.2
4	stack gas, solid phase B	ICP-AES	Titanium	37.26	0.09	0.2
4P	stack gas, solid phase B DUP	ICP-AES	Titanium	36.90	0.09	0.2
5	stack gas, solid phase A	ICP-AES	Titanium	29.36	0.09	0.3
5P	stack gas, solid phase A DUP	ICP-AES	Titanium	28.75	0.09	0.3
5	stack gas, solid phase B	ICP-AES	Titanium	22.71	0.09	0.4
5P	stack gas, solid phase B DUP	ICP-AES	Titanium	22.47	0.09	0.4
6	stack gas, solid phase A	ICP-AES	Titanium	36.62	0.09	0.3
6P	stack gas, solid phase A DUP	ICP-AES	Titanium	37.11	0.09	0.3
6	stack gas, solid phase B	ICP-AES	Titanium	36.72	0.09	0.3
6P	stack gas, solid phase B DUP	ICP-AES	Titanium	36.72	0.09	0.3
7	stack gas, solid phase A	ICP-AES	Titanium	33.54	0.09	0.3
7P	stack gas, solid phase A DUP	ICP-AES	Titanium	33.99	0.09	0.3
7	stack gas, solid phase B	ICP-AES	Titanium	34.40	0.09	0.3
7P	stack gas, solid phase B DUP	ICP-AES	Titanium	34.52	0.09	0.3
4	stack gas, solid phase A	ICP-AES	Vanadium	7.46	0.45	6.0
4P	stack gas, solid phase A DUP	ICP-AES	Vanadium	7.52	0.45	6.0
4	stack gas, solid phase B	ICP-AES	Vanadium	7.11	0.45	6.3
4P	stack gas, solid phase B DUP	ICP-AES	Vanadium	7.02	0.45	6.4
5	stack gas, solid phase A	ICP-AES	Vanadium	6.08	0.46	7.5
5P	stack gas, solid phase A DUP	ICP-AES	Vanadium	6.03	0.46	7.6
5	stack gas, solid phase B	ICP-AES	Vanadium	4.47	0.45	10.0
5P	stack gas, solid phase B DUP	ICP-AES	Vanadium	4.47	0.45	10.0
6	stack gas, solid phase A	ICP-AES	Vanadium	6.82	0.46	6.8
6P	stack gas, solid phase A DUP	ICP-AES	Vanadium	6.89	0.46	6.7
6	stack gas, solid phase B	ICP-AES	Vanadium	6.97	0.46	6.7
6P	stack gas, solid phase B DUP	ICP-AES	Vanadium	6.97	0.46	6.7
7	stack gas, solid phase A	ICP-AES	Vanadium	6.65	0.43	6.5
7P	stack gas, solid phase A DUP	ICP-AES	Vanadium	6.67	0.43	6.4

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $(\mu\text{g}/\text{Nm}^3)$	<u>Blank %</u> <u>of Value</u>
7	stack gas, solid phase B	ICP-AES	Vanadium	6.72	0.43	6.4
7P	stack gas, solid phase B DUP	ICP-AES	Vanadium	6.80	0.43	6.3
4	stack gas, solid phase A	ICP-AES	Zinc	7.53	0.06	0.8
4P	stack gas, solid phase A DUP	ICP-AES	Zinc	7.50	0.06	0.8
4	stack gas, solid phase B	ICP-AES	Zinc	6.89	0.06	0.8
4P	stack gas, solid phase B DUP	ICP-AES	Zinc	6.81	0.06	0.8
5	stack gas, solid phase A	ICP-AES	Zinc	9.17	0.06	0.6
5P	stack gas, solid phase A DUP	ICP-AES	Zinc	8.88	0.06	0.7
5	stack gas, solid phase B	ICP-AES	Zinc	6.95	0.06	0.8
5P	stack gas, solid phase B DUP	ICP-AES	Zinc	6.91	0.06	0.8
6	stack gas, solid phase A	ICP-AES	Zinc	17.37	0.06	0.3
6P	stack gas, solid phase A DUP	ICP-AES	Zinc	17.49	0.06	0.3
6	stack gas, solid phase B	ICP-AES	Zinc	16.37	0.06	0.4
6P	stack gas, solid phase B DUP	ICP-AES	Zinc	16.25	0.06	0.4
7	stack gas, solid phase A	ICP-AES	Zinc	9.03	0.06	0.6
7P	stack gas, solid phase A DUP	ICP-AES	Zinc	9.07	0.06	0.6
7	stack gas, solid phase B	ICP-AES	Zinc	18.22	0.06	0.3
7P	stack gas, solid phase B DUP	ICP-AES	Zinc	18.22	0.06	0.3
4	stack gas, solid phase A	ICP-MS	Arsenic	6.55	0.01	0.2
4P	stack gas, solid phase A DUP	ICP-MS	Arsenic	8.38	0.01	0.2
4	stack gas, solid phase B	ICP-MS	Arsenic	6.35	0.01	0.2
4P	stack gas, solid phase B DUP	ICP-MS	Arsenic	7.42	0.01	0.2
5	stack gas, solid phase A	ICP-MS	Arsenic	14.51	0.01	0.1
5P	stack gas, solid phase A DUP	ICP-MS	Arsenic	17.04	0.01	0.1
5	stack gas, solid phase B	ICP-MS	Arsenic	12.01	0.01	0.1
5P	stack gas, solid phase B DUP	ICP-MS	Arsenic	14.02	0.01	0.1
6	stack gas, solid phase A	ICP-MS	Arsenic	6.37	0.01	0.2
6P	stack gas, solid phase A DUP	ICP-MS	Arsenic	5.24	0.01	0.3
6	stack gas, solid phase B	ICP-MS	Arsenic	5.45	0.01	0.3
6P	stack gas, solid phase B DUP	ICP-MS	Arsenic	6.44	0.01	0.2
7	stack gas, solid phase A	ICP-MS	Arsenic	10.07	0.01	0.1
7P	stack gas, solid phase A DUP	ICP-MS	Arsenic	12.06	0.01	0.1
7	stack gas, solid phase B	ICP-MS	Arsenic	11.87	0.01	0.1
7P	stack gas, solid phase B DUP	ICP-MS	Arsenic	13.55	0.01	0.1

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $(\mu\text{g}/\text{Nm}^3)$	<u>Blank %</u> <u>of Value</u>
4	stack gas, solid phase A	ICP-MS	Beryllium	0.18	0.00	1.6
4P	stack gas, solid phase A DUP	ICP-MS	Beryllium	0.24	0.00	1.2
4	stack gas, solid phase B	ICP-MS	Beryllium	0.18	0.00	1.7
4P	stack gas, solid phase B DUP	ICP-MS	Beryllium	0.22	0.00	1.3
5	stack gas, solid phase A	ICP-MS	Beryllium	0.37	0.00	0.8
5P	stack gas, solid phase A DUP	ICP-MS	Beryllium	0.38	0.00	0.8
5	stack gas, solid phase B	ICP-MS	Beryllium	0.33	0.00	0.0
5P	stack gas, solid phase B DUP	ICP-MS	Beryllium	2.87	0.00	0.1
6	stack gas, solid phase A	ICP-MS	Beryllium	0.16	0.00	1.9
6P	stack gas, solid phase A DUP	ICP-MS	Beryllium	0.20	0.00	1.6
6	stack gas, solid phase B	ICP-MS	Beryllium	0.14	0.00	2.2
6P	stack gas, solid phase B DUP	ICP-MS	Beryllium	0.19	0.00	1.6
7	stack gas, solid phase A	ICP-MS	Beryllium	0.23	0.00	1.2
7P	stack gas, solid phase A DUP	ICP-MS	Beryllium	0.27	0.00	1.1
7	stack gas, solid phase B	ICP-MS	Beryllium	0.31	0.00	0.9
7P	stack gas, solid phase B DUP	ICP-MS	Beryllium	0.39	0.00	0.7
4	stack gas, solid phase A	ICP-MS	Cadmium	0.17	0.00	0.2
4P	stack gas, solid phase A DUP	ICP-MS	Cadmium	0.19	0.00	0.2
4	stack gas, solid phase B	ICP-MS	Cadmium	0.14	0.00	0.3
4P	stack gas, solid phase B DUP	ICP-MS	Cadmium	0.16	0.00	0.3
5	stack gas, solid phase A	ICP-MS	Cadmium	0.40	0.00	0.1
5P	stack gas, solid phase A DUP	ICP-MS	Cadmium	0.43	0.00	0.1
5	stack gas, solid phase B	ICP-MS	Cadmium	0.23	0.00	0.2
5P	stack gas, solid phase B DUP	ICP-MS	Cadmium	0.26	0.00	0.2
6	stack gas, solid phase A	ICP-MS	Cadmium	0.12	0.00	0.3
6P	stack gas, solid phase A DUP	ICP-MS	Cadmium	0.15	0.00	0.3
6	stack gas, solid phase B	ICP-MS	Cadmium	0.10	0.00	0.4
6P	stack gas, solid phase B DUP	ICP-MS	Cadmium	0.11	0.00	0.4
7	stack gas, solid phase A	ICP-MS	Cadmium	0.16	0.00	0.3
7P	stack gas, solid phase A DUP	ICP-MS	Cadmium	0.19	0.00	0.2
7	stack gas, solid phase B	ICP-MS	Cadmium	0.26	0.00	0.2
7P	stack gas, solid phase B DUP	ICP-MS	Cadmium	0.27	0.00	0.1
4	stack gas, solid phase A	ICP-MS	Chromium	3.68	0.04	1.2
4P	stack gas, solid phase A DUP	ICP-MS	Chromium	5.18	0.04	0.8
4	stack gas, solid phase B	ICP-MS	Chromium	3.20	0.04	1.3

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $(\mu\text{g}/\text{Nm}^3)$	<u>Blank %</u> <u>of Value</u>
4P	stack gas, solid phase B DUP	ICP-MS	Chromium	4.26	0.04	1.0
5	stack gas, solid phase A	ICP-MS	Chromium	6.30	0.04	0.7
5P	stack gas, solid phase A DUP	ICP-MS	Chromium	8.27	0.04	0.5
5	stack gas, solid phase B	ICP-MS	Chromium	7.17	0.04	0.6
5P	stack gas, solid phase B DUP	ICP-MS	Chromium	9.42	0.04	0.5
6	stack gas, solid phase A	ICP-MS	Chromium	3.19	0.04	1.4
6P	stack gas, solid phase A DUP	ICP-MS	Chromium	4.29	0.04	1.0
6	stack gas, solid phase B	ICP-MS	Chromium	2.65	0.04	1.7
6P	stack gas, solid phase B DUP	ICP-MS	Chromium	3.32	0.04	1.3
7	stack gas, solid phase A	ICP-MS	Chromium	4.30	0.04	0.9
7P	stack gas, solid phase A DUP	ICP-MS	Chromium	5.97	0.04	0.7
7	stack gas, solid phase B	ICP-MS	Chromium	4.30	0.04	0.9
7P	stack gas, solid phase B DUP	ICP-MS	Chromium	7.16	0.04	0.6
4	stack gas, solid phase A	ICP-MS	Lead	2.78	0.02	0.6
4P	stack gas, solid phase A DUP	ICP-MS	Lead	2.94	0.02	0.6
4	stack gas, solid phase B	ICP-MS	Lead	2.59	0.02	0.7
4P	stack gas, solid phase B DUP	ICP-MS	Lead	2.69	0.02	0.6
5	stack gas, solid phase A	ICP-MS	Lead	5.11	0.02	0.3
5P	stack gas, solid phase A DUP	ICP-MS	Lead	5.27	0.02	0.3
5	stack gas, solid phase B	ICP-MS	Lead	4.49	0.02	0.4
5P	stack gas, solid phase B DUP	ICP-MS	Lead	4.67	0.02	0.4
6	stack gas, solid phase A	ICP-MS	Lead	2.48	0.02	0.7
6P	stack gas, solid phase A DUP	ICP-MS	Lead	2.59	0.02	0.7
6	stack gas, solid phase B	ICP-MS	Lead	2.11	0.02	0.8
6P	stack gas, solid phase B DUP	ICP-MS	Lead	2.20	0.02	0.8
7	stack gas, solid phase A	ICP-MS	Lead	3.50	0.02	0.5
7P	stack gas, solid phase A DUP	ICP-MS	Lead	3.66	0.02	0.5
7	stack gas, solid phase B	ICP-MS	Lead	4.27	0.02	0.4
7P	stack gas, solid phase B DUP	ICP-MS	Lead	4.50	0.02	0.4
4	stack gas, solid phase A	ICP-MS	Mercury	0.03	0.00	13.1
4P	stack gas, solid phase A DUP	ICP-MS	Mercury	0.02	0.00	17.3
4	stack gas, solid phase B	ICP-MS	Mercury	0.01	0.00	26.2
4P	stack gas, solid phase B DUP	ICP-MS	Mercury	0.01	0.00	27.7
5	stack gas, solid phase A	ICP-MS	Mercury	0.04	0.00	8.1
5P	stack gas, solid phase A DUP	ICP-MS	Mercury	0.03	0.00	10.0

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank %</u> <u>of Value</u>
5	stack gas, solid phase B	ICP-MS	Mercury	0.04	0.00	7.6
5P	stack gas, solid phase B DUP	ICP-MS	Mercury	0.05	0.00	7.3
6	stack gas, solid phase A	ICP-MS	Mercury	0.02	0.00	16.4
6P	stack gas, solid phase A DUP	ICP-MS	Mercury	0.02	0.00	15.9
6	stack gas, solid phase B	ICP-MS	Mercury	0.01	0.00	34.2
6P	stack gas, solid phase B DUP	ICP-MS	Mercury	0.01	0.00	33.0
7	stack gas, solid phase A	ICP-MS	Mercury	0.02	0.00	16.5
7P	stack gas, solid phase A DUP	ICP-MS	Mercury	0.02	0.00	14.5
7	stack gas, solid phase B	ICP-MS	Mercury	0.02	0.00	18.3
7P	stack gas, solid phase B DUP	ICP-MS	Mercury	0.02	0.00	14.3
4	stack gas, solid phase A	ICP-MS	Nickel	5.13	0.03	0.6
4P	stack gas, solid phase A DUP	ICP-MS	Nickel	5.24	0.03	0.6
4	stack gas, solid phase B	ICP-MS	Nickel	4.87	0.03	0.6
4P	stack gas, solid phase B DUP	ICP-MS	Nickel	4.66	0.03	0.6
5	stack gas, solid phase A	ICP-MS	Nickel	9.63	0.03	0.3
5P	stack gas, solid phase A DUP	ICP-MS	Nickel	9.16	0.03	0.3
5	stack gas, solid phase B	ICP-MS	Nickel	9.86	0.03	0.3
5P	stack gas, solid phase B DUP	ICP-MS	Nickel	9.64	0.03	0.3
6	stack gas, solid phase A	ICP-MS	Nickel	4.43	0.03	0.7
6P	stack gas, solid phase A DUP	ICP-MS	Nickel	4.25	0.03	0.7
6	stack gas, solid phase B	ICP-MS	Nickel	3.98	0.03	0.8
6P	stack gas, solid phase B DUP	ICP-MS	Nickel	3.44	0.03	0.9
7	stack gas, solid phase A	ICP-MS	Nickel	6.10	0.03	0.5
7P	stack gas, solid phase A DUP	ICP-MS	Nickel	6.12	0.03	0.5
7	stack gas, solid phase B	ICP-MS	Nickel	7.97	0.03	0.4
7P	stack gas, solid phase B DUP	ICP-MS	Nickel	7.30	0.03	0.4
4	stack gas, solid phase A	ICP-MS	Selenium	2.25	0.02	0.7
4P	stack gas, solid phase A DUP	ICP-MS	Selenium	2.44	0.02	0.7
4	stack gas, solid phase B	ICP-MS	Selenium	6.31	0.02	0.3
4P	stack gas, solid phase B DUP	ICP-MS	Selenium	6.61	0.02	0.3
5	stack gas, solid phase A	ICP-MS	Selenium	11.17	0.02	0.2
5P	stack gas, solid phase A DUP	ICP-MS	Selenium	11.31	0.02	0.1
5	stack gas, solid phase B	ICP-MS	Selenium	46.30	0.02	0.0
5P	stack gas, solid phase B DUP	ICP-MS	Selenium	49.51	0.02	0.0
6	stack gas, solid phase A	ICP-MS	Selenium	9.10	0.02	0.2

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	<u>Result</u> $\mu\text{g}/\text{Nm}^3$	<u>Blank</u> $(\mu\text{g}/\text{Nm}^3)$	<u>Blank %</u> <u>of Value</u>
6P	stack gas, solid phase A DUP	ICP-MS	Selenium	9.47	0.02	0.2
6	stack gas, solid phase B	ICP-MS	Selenium	6.66	0.02	0.3
6P	stack gas, solid phase B DUP	ICP-MS	Selenium	7.12	0.02	0.2
7	stack gas, solid phase A	ICP-MS	Selenium	8.15	0.02	0.2
7P	stack gas, solid phase A DUP	ICP-MS	Selenium	8.51	0.02	0.2
7	stack gas, solid phase B	ICP-MS	Selenium	15.26	0.02	0.1
7P	stack gas, solid phase B DUP	ICP-MS	Selenium	15.78	0.02	0.1
2	stack gas, vapor phase A	IC	Chloride	239.76	5.26	2.2
2P	stack gas, vapor phase A DUP	IC	Chloride	230.29	5.26	2.3
2	stack gas, vapor phase B	IC	Chloride	273.02	5.15	1.9
2P	stack gas, vapor phase B DUP	IC	Chloride	260.66	5.15	2.0
3	stack gas, vapor phase A	IC	Chloride	618.09	5.25	0.8
3P	stack gas, vapor phase A DUP	IC	Chloride	604.08	5.25	0.9
3	stack gas, vapor phase B	IC	Chloride	436.57	5.24	1.2
3P	stack gas, vapor phase B DUP	IC	Chloride	465.23	5.24	1.1
4	stack gas, vapor phase A	IC	Chloride	364.66	4.32	1.2
4P	stack gas, vapor phase A DUP	IC	Chloride	383.97	4.32	1.1
4	stack gas, vapor phase B	IC	Chloride	257.04	5.25	2.0
4P	stack gas, vapor phase B DUP	IC	Chloride	264.74	5.25	2.0
5	stack gas, vapor phase A	IC	Chloride	229.53	4.25	1.8
5P	stack gas, vapor phase A DUP	IC	Chloride	214.25	4.25	2.0
5	stack gas, vapor phase B	IC	Chloride	286.78	4.64	1.6
5P	stack gas, vapor phase B DUP	IC	Chloride	278.12	4.64	1.7
2	stack gas, vapor phase A	IC	Fluoride	3.33	0.88	26.3
2P	stack gas, vapor phase A DUP	IC	Fluoride	3.68	0.88	23.8
2	stack gas, vapor phase B	IC	Fluoride	6.01	0.86	14.3
2P	stack gas, vapor phase B DUP	IC	Fluoride	6.01	0.86	14.3
3	stack gas, vapor phase A	IC	Fluoride	4.73	0.88	18.5
3P	stack gas, vapor phase A DUP	IC	Fluoride	6.48	0.88	13.5
3	stack gas, vapor phase B	IC	Fluoride	8.21	0.87	10.6
3P	stack gas, vapor phase B DUP	IC	Fluoride	6.82	0.87	12.8
4	stack gas, vapor phase A	IC	Fluoride	2.16	0.72	33.3
4P	stack gas, vapor phase A DUP	IC	Fluoride	2.16	0.72	33.3
4	stack gas, vapor phase B	IC	Fluoride	2.28	0.88	38.5
4P	stack gas, vapor phase B DUP	IC	Fluoride	2.63	0.88	33.3

Table G-2 (Continued)

<u>Run</u>	<u>Cited Name</u>	<u>Method</u>	<u>Substance</u>	Result μg/Nm ³	Blank (μg/Nm ³)	Blank % of Value
5	stack gas, vapor phase A	IC	Fluoride	2.97	0.71	23.8
5P	stack gas, vapor phase A DUP	IC	Fluoride	3.25	0.71	21.7
5	stack gas, vapor phase B	IC	Fluoride	3.55	0.77	21.7
5P	stack gas, vapor phase B DUP	IC	Fluoride	3.55	0.77	21.7
2	stack gas, vapor phase A	IC	Sulfate	14649.78	33.12	0.2
2P	stack gas, vapor phase A DUP	IC	Sulfate	14246.68	33.12	0.2
2	stack gas, vapor phase B	IC	Sulfate	17335.59	32.45	0.2
2P	stack gas, vapor phase B DUP	IC	Sulfate	16192.67	32.45	0.2
3	stack gas, vapor phase A	IC	Sulfate	22168.99	33.09	0.1
3P	stack gas, vapor phase A DUP	IC	Sulfate	22291.55	33.09	0.1
3	stack gas, vapor phase B	IC	Sulfate	23123.65	33.03	0.1
3P	stack gas, vapor phase B DUP	IC	Sulfate	24512.70	33.03	0.1
4	stack gas, vapor phase A	IC	Sulfate	19427.76	27.24	0.1
4P	stack gas, vapor phase A DUP	IC	Sulfate	19551.72	27.24	0.1
4	stack gas, vapor phase B	IC	Sulfate	26794.30	33.09	0.1
4P	stack gas, vapor phase B DUP	IC	Sulfate	27628.81	33.09	0.1
5	stack gas, vapor phase A	IC	Sulfate	23626.63	26.75	0.1
5P	stack gas, vapor phase A DUP	IC	Sulfate	22421.25	26.75	0.1
5	stack gas, vapor phase B	IC	Sulfate	29476.58	29.20	0.1
5P	stack gas, vapor phase B DUP	IC	Sulfate	30478.13	29.20	0.1

Appendix H
ANOVA

H-1

PRELIMINARY

DO NOT CITE OR QUOTE

An Analysis of Variance (ANOVA) is a statistical method for determining the total variability of a process and the variability that each different component of the process contributes to the total variability. The design of an experiment helps to identify the components of variability in the process. The sampling design at Site 21 consisted of collecting one sample (analyzed in duplicate) from each of two trains once a day over a period of four days. The components of variability for Site 21, therefore, are a "day" component (describing variability in the process from day to day), a "train" component (describing variability between sampling trains within each day), and an analytical component (describing the variability between duplicate analyses of one sample from one train). This type of model is known as a hierarchical, or "nested", model; analytical variability is "nested" within each train, and train variability is "nested" within each day. The statistical software package SAS®, specifically the SAS® procedure NESTED, can be used to perform an analysis of variance on data with a nested structure. This software was used for the FCEM Site 21 analysis of variance.

The model for data from a completely nested design with three factors (two of which are nested) is given as:

$$y_{ijr} = \mu + \alpha_i + \beta_{ij} + \epsilon_{ijr}$$

where:

y_{ijr} = the value of the dependent variable observed at the r^{th} replication with the first factor at its i^{th} level and the second factor at its j^{th} level;

μ = the overall mean of the sampling population; and

$\alpha_i, \beta_{ij}, \epsilon_{ijr}$ = mutually uncorrelated random effects with means 0 and respective variances σ_1^2, σ_2^2 , and σ_3^2 (the variance components day, train, and analytical) (1).

This model is the basis of an analysis of variance for a nested design. Using this model, the NESTED procedure produces an estimate of the variability of each specified

component, and the percentage of the total variability that each component contributes. The variability estimates and percentages of variability for the FCEM Site 21 data are presented in tabular form in Table H-1. Figure H-1 depicts a bar graph of the percentage of total variability for each analyte, sub-sectioned into the percentage of variability from each of the three components. This type of data presentation is very useful for illustrating the how the components of variability relate to one another within an analyte, and how they relate between analytes.

The actual computation of the variance components using the NESTED procedure involves complex mathematical derivations, and will, therefore, not be given here. However, the equations and statistical methods used in NESTED can be found in the SAS/STAT User's Guide¹.

¹SAS/STAT User's Guide, Version 6, Volume 2, 4th Edition, SAS Institute, Inc., Cary, NC.

Table H1. Site 21 Components and Percentages of Variability

1

Method	Species	Stream/stack gas						Analytical Percentage of Variability
		Day Variability Component	Train Variability Component	Day Analytical Variability Component	Day Percentage of Variability	Train Percentage of Variability	Train Percentage of Variability	
HRGCMS	5-Methyl chrysene	0.49428	5.91066	1.17580	6.50	78.0	78.0	15.5
HRGCMS	7H-Dibenzol[c,g]carbazole	0.63210	0.00000	0.77838	44.8	0.00	0.00	55.2
HRGCMS	Acenaphthene	767.75134	98.91668	1.86499	88.4	11.4	0.20	0.20
HRGCMS	Acenaphthylene	53.37340	2.26469	17.46749	73.0	3.10	23.9	23.9
HRGCMS	Anthracene	180.11258	0.00000	75.31280	70.5	0.00	0.00	29.5
HRGCMS	Benz [a]anthracene	2.48817	0.00000	2.42493	50.6	0.00	0.00	49.4
HRGCMS	Benzotropolypyrene	1.37974	2.31260	4.82539	16.2	27.2	27.2	56.7
HRGCMS	Benzo[b, j&k]fluorenthene	83.39550	38.33278	0.49639	68.2	31.4	0.40	0.40
HRGCMS	Benzo[ghi]perylene	0.95384	1.22871	0.52265	35.3	45.4	45.4	19.3
HRGCMS	Chrysene	51.75905	60.87852	30.93674	36.1	42.4	42.4	21.5
HRGCMS	Dibenz[a, h]acridine	0.08869	0.03138	0.16719	30.9	10.9	10.9	58.2
HRGCMS	Dibenz[a, h]anthracene	0.02556	0.00282	0.07911	23.8	2.60	2.60	73.6
HRGCMS	Dibenz[a, l]acridine	0.11913	0.06710	0.04294	52.0	29.3	29.3	18.7
HRGCMS	Dibenz[a, e]pyrene	0.01231	0.00000	0.13728	8.20	0.00	0.00	91.8
HRGCMS	Dibenz[a, h]pyrene	0.00317	0.00000	0.01101	22.4	0.00	0.00	77.6
HRGCMS	Dibenzol[a, l]pyrene	0.04204	0.00000	0.43675	8.80	0.00	0.00	91.2
HRGCMS	Fluorenthene	7020.44745	706.68523	302.90393	87.4	8.80	8.80	3.80
HRGCMS	Fluorene	8222.47494	1457.13206	61.08839	84.4	15.0	15.0	0.60
HRGCMS	Indeno[1,2,3-cd]pyrene	3.63789	0.63640	0.32577	79.1	13.8	13.8	7.10
HRGCMS	Phenanthrene	108179.0000	2694.94179	887.58436	97.0	2.20	2.20	0.80
HRGCMS	Pyrene	1159.18271	58.45334	39.43471	92.2	4.70	4.70	3.10

Table H1. Site 21 Components and Percentages of Variability

Streamstack gas, solid phase								
Method	Species	Day Variability Component	Train Variability Component	Analytical Variability Component	Day Percentage of Variability	Percentage of Variability	Train Percentage of Variability	Analytical Percentage of Variability
ICPES	Aluminum	3499.87450	639.08753	6.97291	84.4	15.4	0.20	
GFAA	Arsenic	0.29440	0.39414	0.40798	26.8	35.9	37.2	
ICPMS	Arsenic	15.26658	0.58510	1.49772	88.0	3.40	8.60	
ICPES	Barium	0.41896	0.07417	0.00137	84.7	15.0	0.30	
ICPES	Beryllium	0.00018	0.00015	0.00000	54.3	45.0	0.70	
ICPMS	Beryllium	0.05086	0.00000	0.47065	9.80	0.00	90.2	
GFAA	Cadmium	0.00000	0.00134	0.00001	0.00	99.6	0.40	
ICPMS	Cadmium	0.00585	0.00458	0.00032	54.4	42.6	2.90	
ICPES	Calcium	0.00000	1578.31876	1.42324	0.00	99.9	0.10	
IC	Chloride	16616.00000	0.00000	3683.60130	81.9	0.00	18.1	
ICPES	Chromium	0.09818	0.08054	0.00087	61.5	37.9	0.50	
ICPMS	Chromium	3.65629	0.00000	1.55824	70.1	0.00	29.9	
ICPES	Cobalt	0.00000	0.59317	0.00059	0.00	99.9	0.10	
ICPES	Copper	0.01130	0.00418	0.00153	66.4	23.6	9.00	
IC	fluoride	3.13342	0.00000	1.07355	74.5	0.00	25.5	
ICPES	Iron	1387.38611	516.09345	2.43595	72.7	27.2	0.10	
GFAA	Lead	0.01106	0.03055	0.00073	26.1	72.2	1.70	
ICPMS	Lead	1.27914	0.14479	0.01196	89.1	10.1	0.80	
ICPES	Magnesium	0.00000	70.84266	0.24664	0.00	99.7	0.30	
ICPES	Manganese	0.01818	0.17897	0.00012	9.20	90.7	0.10	
ICPMS	Mercury	0.00013	0.00003	0.00001	76.6	18.1	5.30	
ICPES	Molybdenum	0.01658	0.00057	0.00158	88.5	3.00	8.40	
GFAA	Nickel	0.00000	0.05067	0.00178	0.00	96.6	3.40	
ICPMS	Nickel	5.81889	0.34203	0.06798	93.4	5.50	1.10	
ICPES	Potassium	87.17896	25.58838	9.52724	71.3	20.9	7.80	
GFAA	Selenium	10.64495	21.19761	0.12641	33.3	66.3	0.40	
ICPMS	Selenium	35.61659	176.97507	0.69898	16.7	83.0	0.30	
ICPES	Silver	0.00011	0.00000	0.00024	30.4	0.00	69.6	
ICPES	Sodium	57.11791	52.90090	0.41493	51.7	47.9	0.40	
ICPES	Strontium	0.55599	0.15412	0.00275	78.0	21.6	0.40	

Table H1. Site 21 Components and Percentages of Variability

..... Stream-stack gas, solid phase

(continued)

Method	Species	Day	Train	Day	Day	Train	Analytical
		Variability	Variability	Percentage of	Percentage of	Variability	Percentage of
	Component	Component	Component	Variability	Variability	Variability	Variability
IC	Sulfate	18835016.00	0.00000	9927314.000	65.5	0.00	34.5
ICPES	Sulfur	0.00000	1267110.000	237.22940	0.00	100	0.00
ICPES	Thallium	0.03437	0.00208	0.02429	56.6	3.40	40.0
ICPES	Titanium	27.55967	5.81536	0.06485	82.4	17.4	0.20
ICPES	Vanadium	0.61057	0.33848	0.00159	64.2	35.6	0.20
ICPES	Zinc	15.83479	11.27895	0.00781	58.4	41.6	0.00

Table H1. Site 21 Components and Percentages of Variability

Stream=stack gas, vapor phase							
Method	Species	Day	Train	Analytical	Day	Train	Analytical
		Variability Component	Variability Component	Variability Component	Percentage of Variability	Percentage of Variability	Percentage of Variability
ICPES	Aluminum	0.00000	974.53150	2.25172	0.00	99.8	0.20
conc/ICPES	Aluminum	6.00922	117.44190	0.00000	4.90	95.1	0.00
GFAA	Arsenic	0.00000	0.16207	0.00359	0.00	97.8	2.20
ICPMS	Arsenic	0.00000	0.18877	0.00100	0.00	99.5	0.50
conc/GFAA	Arsenic	0.02109	0.22751	0.00000	8.50	91.5	0.00
ICPES	Barium	0.00000	0.11267	0.00193	0.00	98.3	1.70
conc/ICPES	Barium	0.00100	0.03392	0.00000	2.90	97.1	0.00
ICPES	Beryllium	0.00000	0.00089	0.00037	0.00	70.7	29.3
ICPMS	Beryllium	0.00000	0.00004	0.00002	0.00	73.7	26.3
conc/ICPES	Beryllium	0.00000	0.00006	0.00000	6.70	93.3	0.00
GFAA	Cadmium	0.00000	0.19917	0.01187	0.00	96.4	5.60
ICPMS	Cadmium	0.00000	0.12628	0.00092	0.00	99.3	0.70
conc/GFAA	Cadmium	0.00021	0.00237	0.00000	7.90	92.1	0.00
ICPES	Calcium	166.23872	159.66961	0.16063	51.0	49.0	0.90
conc/ICPES	Calcium	45.52794	80.95854	0.00000	36.0	64.0	0.00

Table H1. Site 21 Components and Percentages of Variability

Stream/stack gas, vapor phase (continued)						
Method	Species	Day Variability Component	Train Variability Component	Analytical Variability Component	Day Percentage of Variability	Train Percentage of Variability
IC	Chloride	1.64060	0.10464	0.01025	93.5	6.00
ICPES	Chromium	0.00000	0.05220	0.02559	0.00	67.1
ICPMS	Chromium	0.00000	0.05630	0.00511	0.00	91.4
conc/ICPES	Chromium	0.00000	0.06257	0.00000	0.00	100
ICPES	Cobalt	13.83206	0.00000	20.55133	40.2	0.00
conc/ICPES	Cobalt	0.00872	0.00007	0.00000	99.2	0.80
ICPES	Copper	0.00000	0.08364	0.01598	0.00	84.0
conc/ICPES	Copper	0.00000	0.02195	0.00000	0.00	100
IC	Fluoride	0.00003	0.00003	0.00001	41.0	38.4
ICPES	Iron	0.00000	612.49941	0.08203	0.00	100
conc/ICPES	Iron	7.11139	129.53667	0.00000	5.20	94.8
GFAA	Lead	0.00000	83.08358	0.03331	0.00	100
ICPMS	Lead	0.00000	67.25592	1.91986	0.00	97.2
conc/GFAA	Lead	0.00220	0.00161	0.00000	57.7	42.3
ICPES	Magnesium	0.00000	0.00000	1658.37685	0.00	0.00
conc/ICPES	Magnesium	0.70885	3.48045	0.00000	16.9	83.1
ICPES	Manganese	360.73125	227.02570	0.01111	61.4	38.6
conc/ICPES	Manganese	206.39309	39.79891	0.00000	83.8	16.2
CVAA	Mercury	0.00000	0.01967	0.00075	0.00	96.3
ICPMS	Mercury	0.00000	0.04622	0.00052	0.00	99.0
ICPES	Molybdenum	0.00361	0.00000	0.08252	4.20	0.00
conc/ICPES	Molybdenum	0.00036	0.00167	0.00000	17.8	82.2
GFAA	Nickel	0.00000	0.28333	0.06196	0.00	82.1
ICPMS	Nickel	0.00000	0.20676	0.03531	0.00	85.4
conc/GFAA	Nickel	0.00000	0.20294	0.00000	0.00	100
ICPES	Potassium	846.89249	98.64107	1166.15075	40.1	4.70
conc/ICPES	Potassium	1651.60460	300.35576	0.00000	84.6	15.4
GFAA	Selenium	0.00000	1.93975	0.16606	0.00	92.1
ICPMS	Selenium	0.00000	509.04223	27.75338	0.00	94.8

Table H1. Site 21 Components and Percentages of Variability

Stream/stack gas, vapor phase
(continued)

Method	Species	Day Variability Component	Train Variability Component	Analytical Variability Component	Day Percentage of Variability	Train Percentage of Variability	Analytical Percentage of Variability
conc/GFAA	Selenium	0.00000	169.94980	0.00000	0.00	100	0.00
ICPES	Silver	0.00000	0.03157	0.04515	0.00	41.2	58.8
conc/ICPES	Silver	0.00003	0.00002	0.00000	62.1	37.9	0.00
ICPES	Sodium	0.00000	1054.98545	82.48412	0.00	92.7	7.30
conc/ICPES	Sodium	37.49728	80.16582	0.00000	31.9	68.1	0.00
ICPES	Strontium	0.01782	0.14561	0.00017	10.9	89.0	0.10
conc/ICPES	Strontium	0.00478	0.06169	0.00000	7.20	92.8	0.00
IC	Sulfate	3006.46429	751.54289	527.18261	70.2	17.5	12.3
ICPES	Sulfur	202258037.0	17012813.00	662332.0000	92.0	7.70	0.30
conc/ICPES	Sulfur	102568890.0	14700165.00	0.00000	87.5	12.5	0.00
ICPES	Thallium	0.00000	27.45254	29.40861	0.00	48.3	51.7
conc/ICPES	Thallium	0.00116	0.02607	0.00000	4.20	95.8	0.00
ICPES	Titanium	1.24794	3.72788	1.00469	20.9	62.3	16.8
conc/ICPES	Titanium	0.15188	1.42324	0.00000	9.60	90.4	0.00
ICPES	Vanadium	0.02967	0.15668	0.05978	12.1	63.7	24.3
conc/ICPES	Vanadium	0.01858	0.14376	0.00000	11.4	88.6	0.00
ICPES	Zinc	0.00000	15.35544	2.01101	0.00	88.4	11.6
conc/ICPES	Zinc	0.00000	9.20665	0.00000	0.00	100	0.00

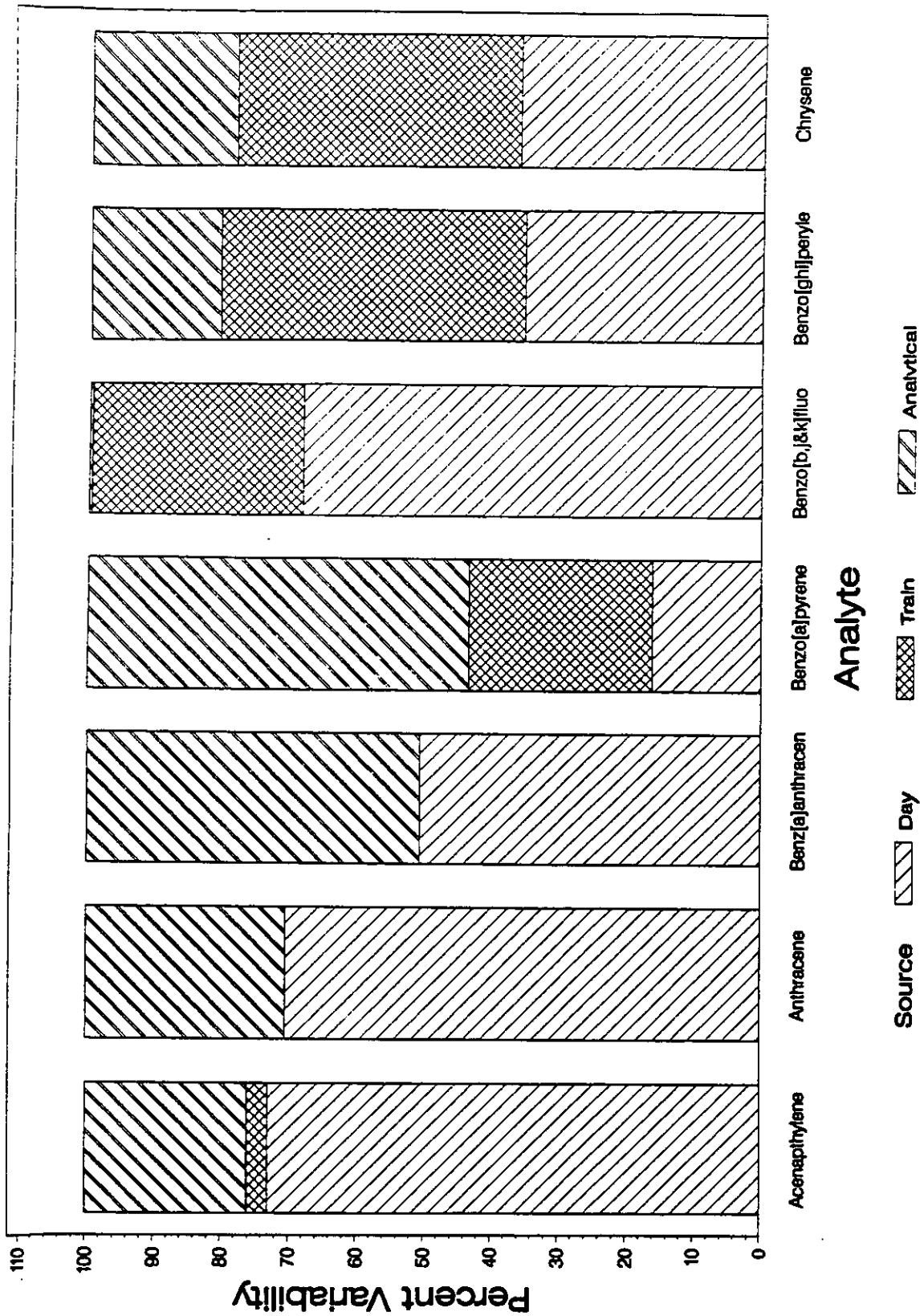
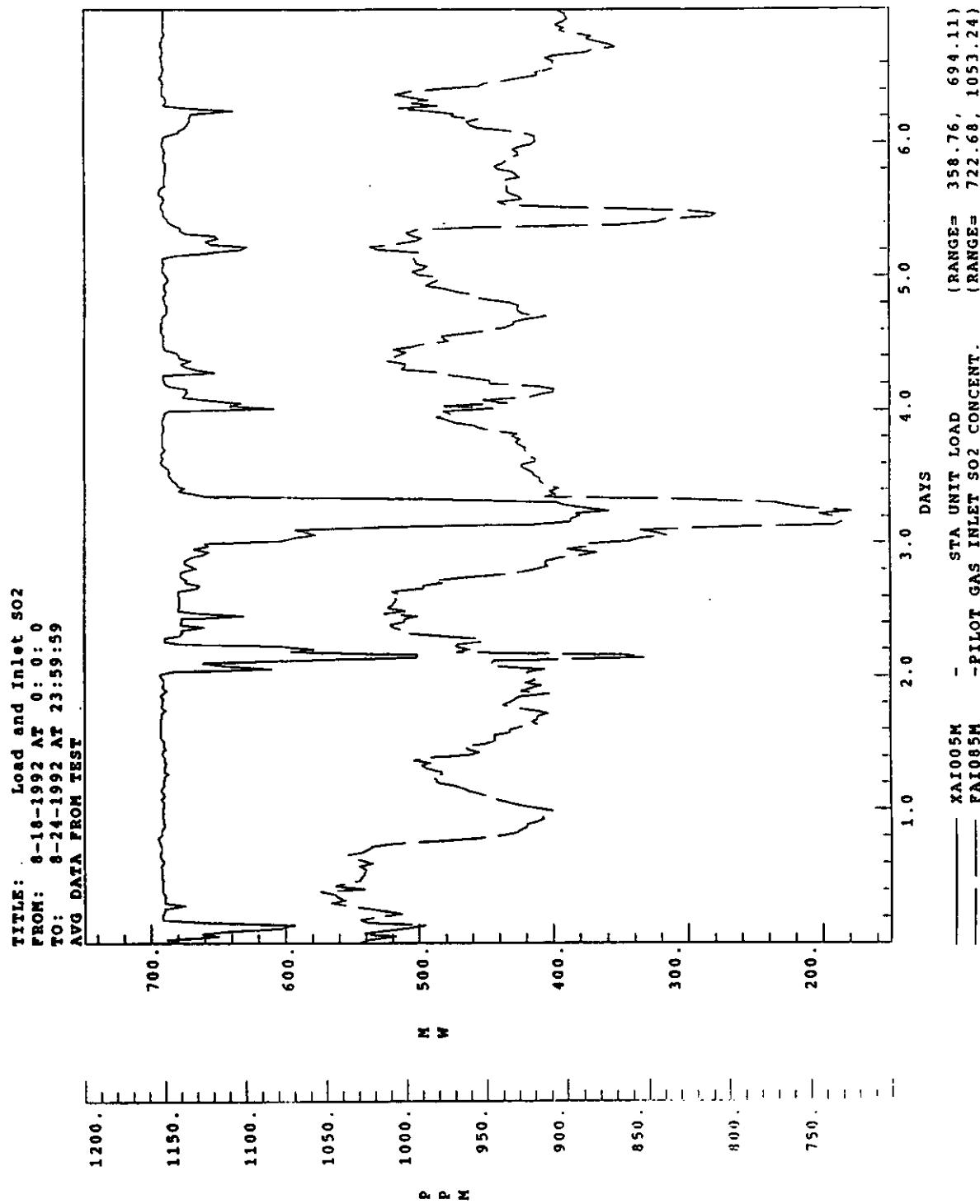
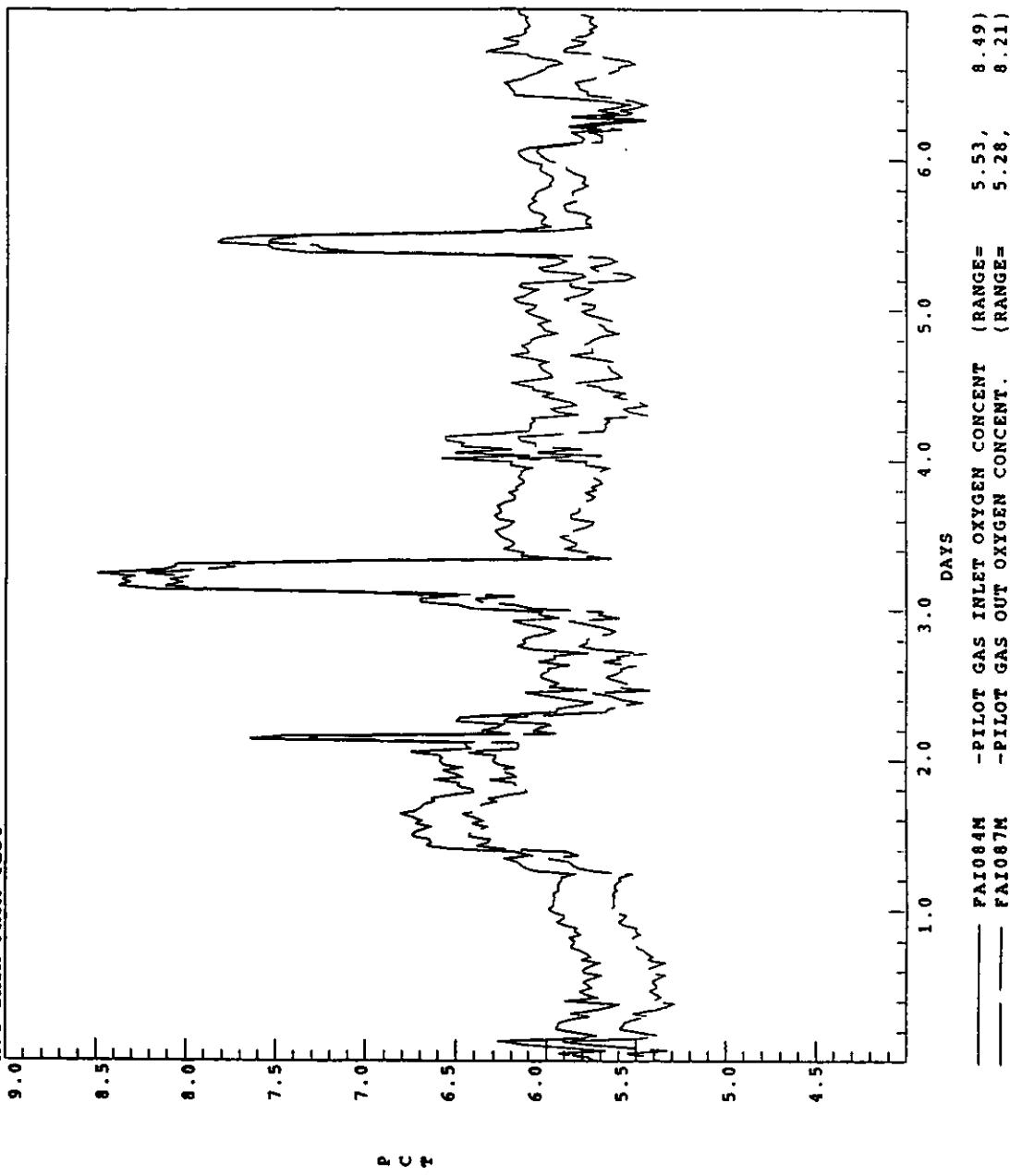


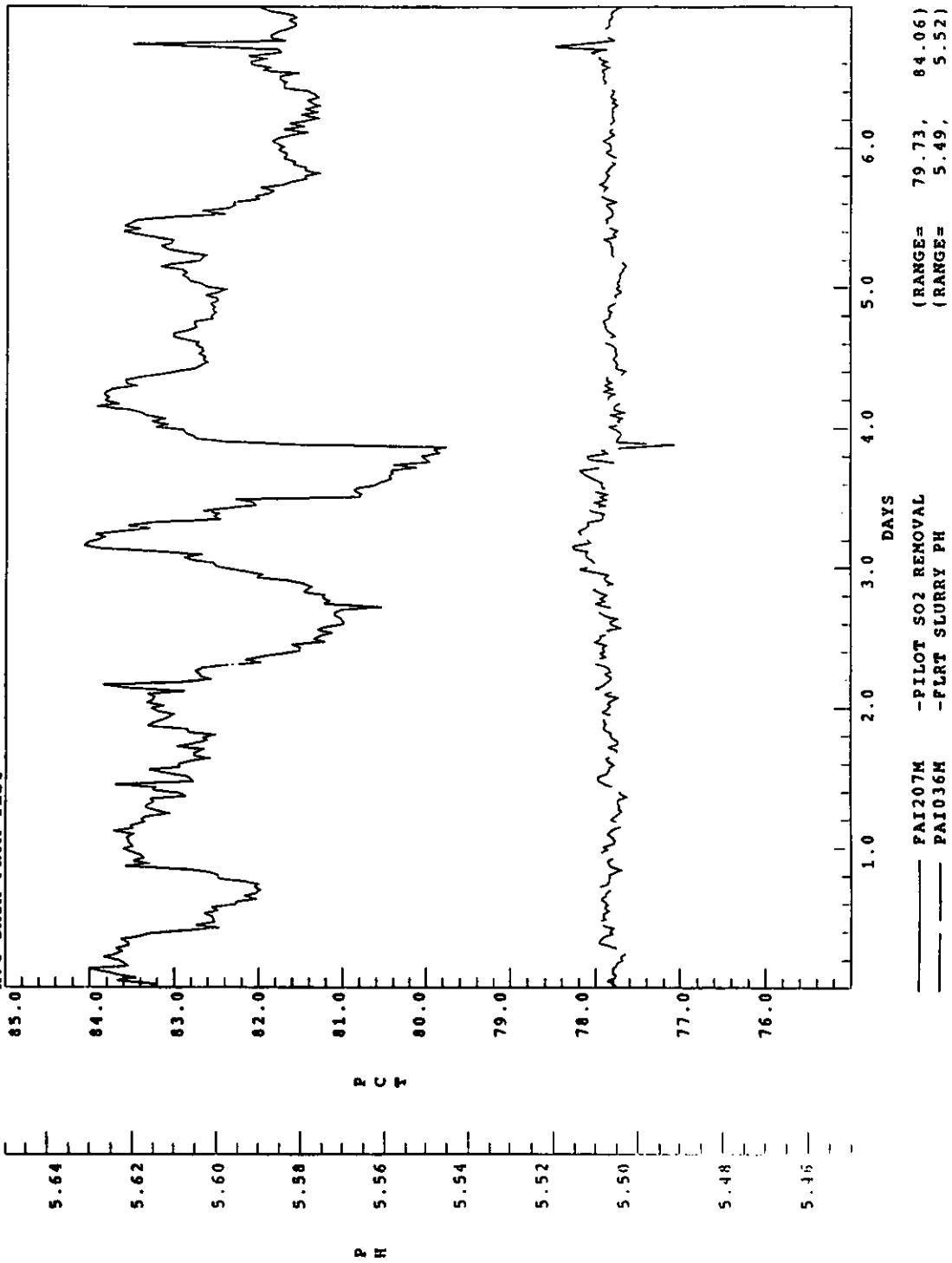
Figure H-1. Percentages of Variability

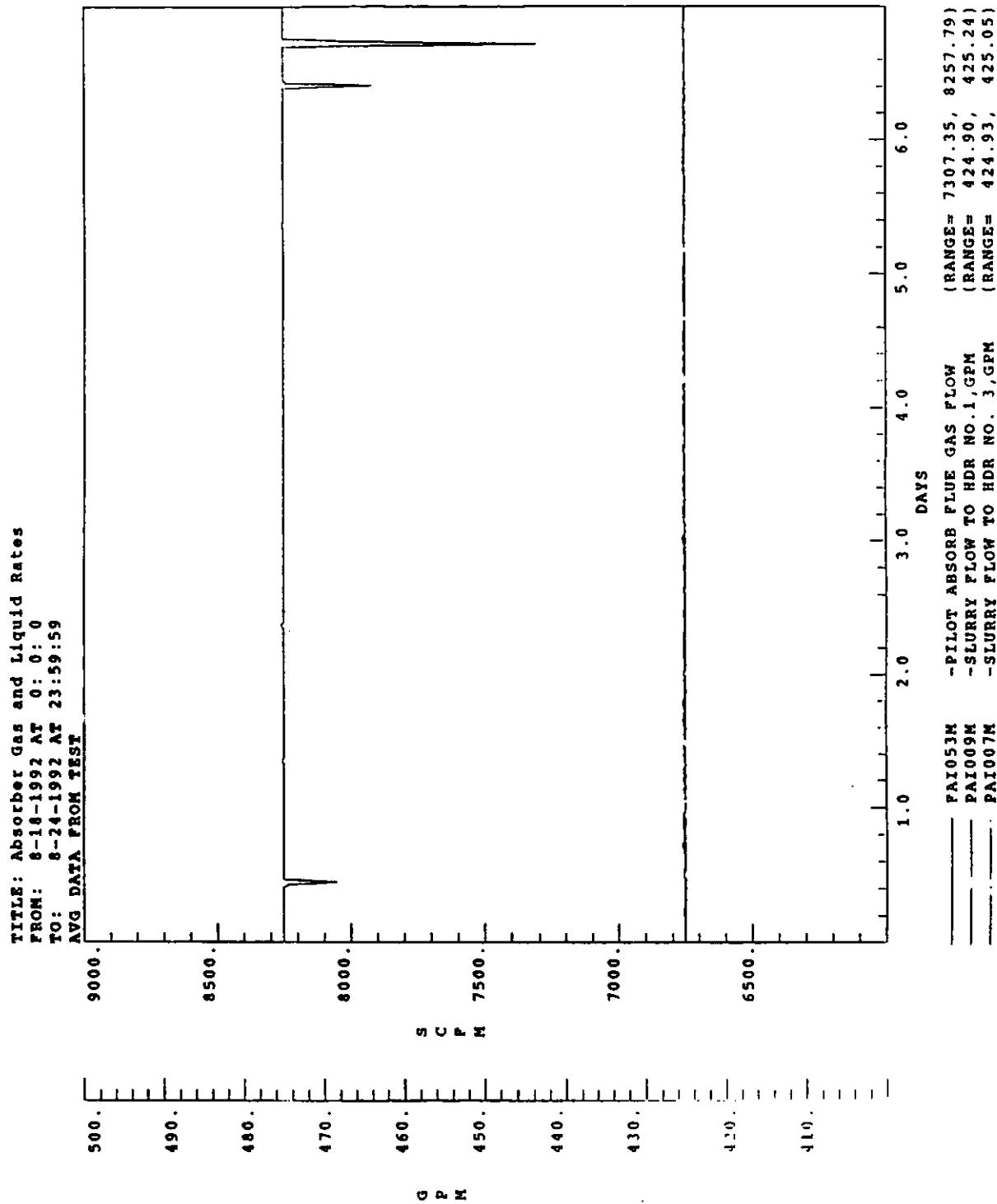

MATL = stack gas
 METHOD = HRGCMS

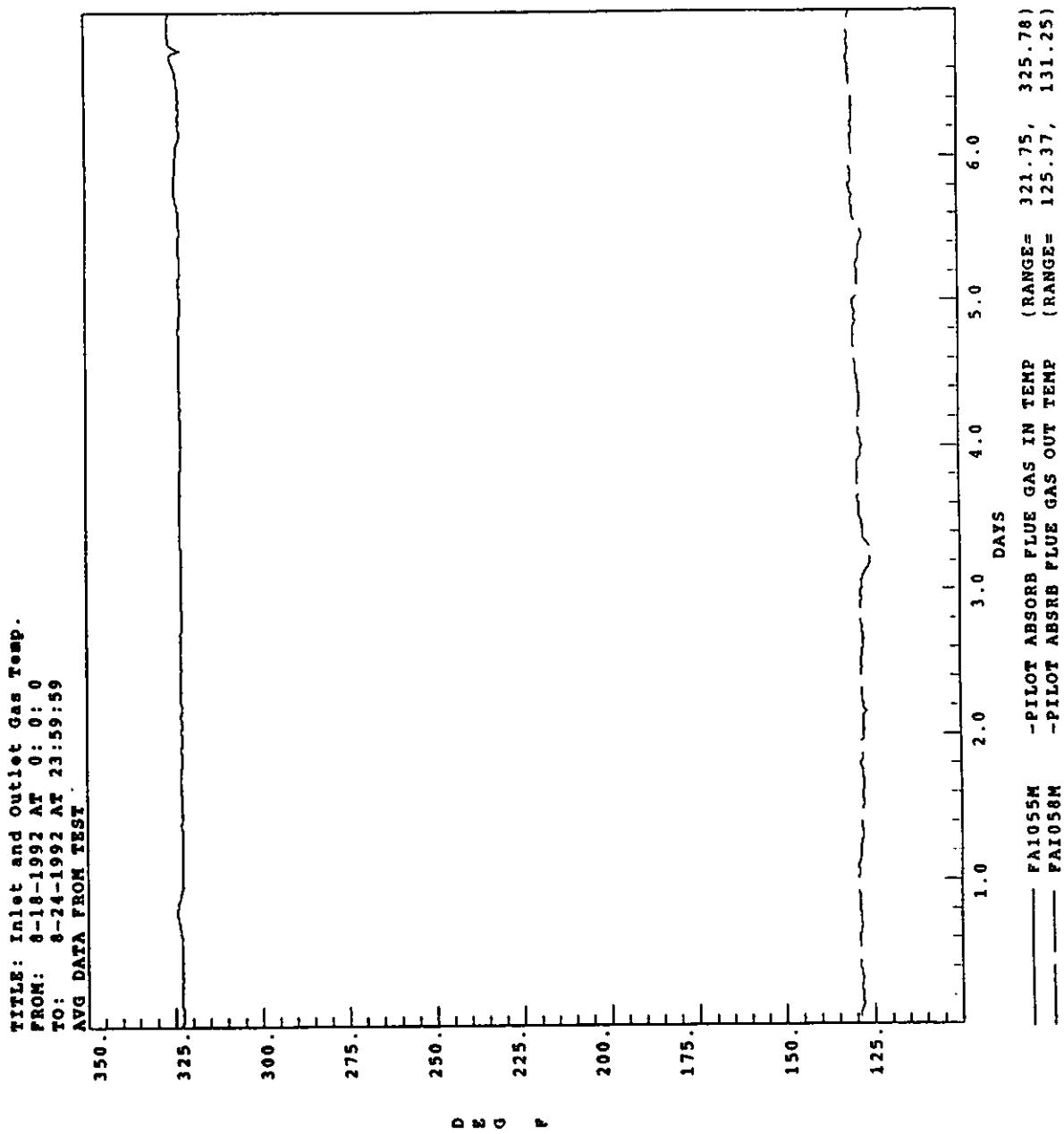
Appendix I
Process Plots


I-1

PRELIMINARY


DO NOT CITE OR QUOTE




TITLE: Inlet and Outlet O2 Conc.
FROM: 8-18-1992 AT 0: 0: 0
TO: 8-24-1992 AT 23:59:59
AVG DATA FROM TEST

TITLE: SO₂ Removal and Reaction Tank pH
 FROM: 8-16-1992 AT 0 : 0
 TO: 8-24-1992 AT 23:59:59
 AVG DATA FROM TEST

Appendix J
Mercury Speciation Results

J-1

PRELIMINARY

DO NOT CITE OR QUOTE

Overall Mean Results ($\mu\text{g}/\text{Nm}^3$)						
(corrected from dry STP (21.1°C) to normal (0°C), and Hg found on probe walls added to Hg(II) value)						
date	location	total	Hg(0)	MMHg	Hg(II)	
8/18	outlet	0.86	0.74	0.017	0.09	
8/19		0.65	0.60	0.011	0.04	
8/20		0.79	0.70	0.011	0.07	
8/21		0.85	0.71	0.02	0.13	
8/22		0.98	0.87	0.01	0.11	
mean		0.83	0.72	0.01	0.09	
SD		0.12	0.10	0.005	0.03	
8/18	inlet	10.75	3.24	1.11	6.55	
8/19		9.73	1.68	0.88	6.78	
8/20		9.88	3.50	1.31	4.82	
8/21		9.81	2.79	2.05	4.84	
8/22		10.93	3.85	1.51	5.57	
mean		10.22	2.99	1.37	5.71	
SD		0.57	0.84	0.44	0.92	

Ancillary Mercury Data				
result	coal	flyash	scrubber solids	scrubber liquid
	$\mu\text{g/g}$ (dry)	$\mu\text{g/g}$ (dry)	$\mu\text{g/g}$ (dry)	$\mu\text{g/L}$
Bloom	0.128	0.065	1.67	1.98
SD	0.030	0.017	0.13	0.50
N	4	4	4	6
Radian	0.15	--	1.76	--
SD	0.03	--	0.15	--
N	6	--	8	--
NBS	0.120	0.158	--	--
SD	0.007	0.004	--	--
N	8	3	--	--
certified	0.13	0.16	--	--
SD	0.02	0.01	--	--

Individual Run Results

date	location	concentration, ug/m ³ @ 70°F, 1 atm, dry, amb. O ₂				
		total Hg	Hg(0)	MMHg	Hg(II)	probe
8/18	outlet	0.78	0.70	0.010	<0.04	0.007
		0.81	0.67	0.022	0.11	0.008
		mean	0.80	0.69	0.016	0.07
8/18	inlet					
		9.81	2.75	6.72 (total ox'd Hg)	0.34	
		8.86	0.78	0.981	5.49	1.60
		10.14	2.46	1.016	5.80	0.86
		10.00	3.82	1.086	4.09	1.01
		mean	9.98	3.01	1.028	5.13
8/19	outlet	SD	0.17	0.72	0.053	0.91
						0.51
		0.64	0.62	0.009	<0.04	0.014
		0.56	0.49	0.010	0.049	0.013
		mean	0.60	0.56	0.010	0.03
8/19	inlet	SD	0.96	0.85		2.01
		9.60	1.07	0.540	3.51	4.48
		8.23	2.55	5.42 (total ox'd Hg)	0.27	
		10.09	1.07	1.093	4.71	3.22
8/20	outlet	SD	0.96	0.85		2.01
		0.66	0.62	0.020	<0.04	0.013
		0.79	0.67	<0.002	0.10	0.012
		mean	0.73	0.65	0.010	0.06
8/20	inlet	SD	0.57	0.35	0.38	0.350
		9.39				0.068
		9.79	2.89	1.571	4.47	0.862
		8.45	3.28	1.265	3.43	0.473
		9.06	3.59	0.820	3.91	0.732
		mean	9.17	3.25	1.22	3.94
		SD	0.57	0.35	0.38	0.350

date	location	concentration, ug/m ³ @ 70°F, 1 atm, dry, amb. O ₂				
		total Hg	Hg(0)	MMHg	Hg(II)	probe
8/21	outlet	0.80	0.67	0.13 (total ox'd Hg)	0.006	
		0.78	0.64	0.13 (total ox'd Hg)	0.006	
		0.78				0.012
	mean	0.79	0.66	0.02 (est)	0.11 (est)	0.008
	SD					
8/21	inlet	9.49	2.48	2.42	4.59	0.009
		8.58	1.55	6.90 (total ox'd Hg)	0.124	
		8.83	2.81	1.58	4.44	<0.002
		9.52	3.50	1.69	4.33	0.007
	mean	9.11	2.59	1.90	4.45	0.04
	SD	0.47	0.81	0.46	0.13	0.06
8/22	outlet	0.96	0.85	0.11 (total ox'd Hg)	0.008	
		1.01				0.010
		0.84				0.010
	mean	0.91	0.81	0.01 (est)	0.09 (est)	0.009
	SD	0.09				
	SD					
8/22	inlet	9.89	3.41	1.30	4.85	0.344
		9.35	2.97	2.83	3.42	0.130
		10.22	3.94	1.554	4.69	0.040
		10.34	3.37	1.356	5.43	0.182
	mean	10.15	3.57	1.403	4.99	0.174
	SD	0.23	0.32	0.130	0.39	0.128

Field Data Records

date	start time	stop time	elapsed time	Port location	volume L (corr.)	flow (L/min)	traps
------	------------	-----------	--------------	---------------	------------------	--------------	-------

RUN: OUTLET 1			note: mist in gas stream results in moisture condensation. Radian scrapped this run.				
8/18	12:20	16:40	260	outlet	103.4	0.398	S261
							C231
8/18	17:00	19:55	170	outlet	85.3	0.502	S275 + S267
							C-NM

RUN: INLET 1A			note: possibly compromised by air inlet from open ports upstream. Estimated dilution:				
8/18	14:00	15:50	110	inlet	51.3	0.466	S291
							C206
8/18	16:30	18:35	125	inlet	30.8	0.246	S262
							C244

RUN: INLET 1B			note: possibly compromised by air inlet from open ports upstream. Estimated dilution:				
8/18	14:00	15:50	110	inlet	31.9	0.290	S287
							C237
8/18	16:30	18:35	125	inlet	49.0	0.392	S252
							C225

RUN: OUTLET 1.5			note: total Hg and field blanks run				
8/19	7:45	9:50	125	outlet	59.0	0.472	S274 (bl)
							C302 (bl)
							C301 (tot)

RUN: OUTLET 2							
8/19	10:15	14:35	260	outlet	100.6	0.387	S285
							C228
	14:40	19:05	265	outlet	103.4	0.390	S278
							C234

date	start time	stop time	elapsed time	Port location	volume L (corr.)	flow (L/min)	traps
RUN: INLET 2A			note: 11:35 sample possibly compromised by air inlet from open ports upstream. Estimated dilution:				
8/19	11:35	13:15	100	inlet	38.5	0.385	S271
							C220
	16:25	19:15	165	inlet	51.9	0.314	S290
							C236
RUN: INLET 2B			note: second sample is total Hg with a soda-lime field blank back-up				
8/19	11:35	13:15	100	inlet	38.7	0.387	S282
							C219
	16:25	19:15	165	inlet	51.2	0.310	S281 (bl)
							C223 (t)
RUN: OUTLET 3							
8/20	8:00	11:55	235	outlet	95.2	0.405	S277
							C203
	12:10	16:10	240	outlet	103.1	0.430	S289
							C235
RUN: INLET 3A			note: total Hg and carbon field blank				
8/20	8:25	10:15	110	inlet	35.4	0.322	C204 (t)
							C202 (b)
	10:40	13:20	160	inlet	68.7	0.423	S250
							C-211
RUN: INLET 3B							
8/20	8:25	10:15	110	inlet	45.7	0.415	S266
							C232
	10:40	13:20	160	inlet	67.8	0.424	S284
							C208

date	start time	stop time	elapsed time	Port location	volume L (corr.)	flow (L/min)	traps
------	------------	-----------	--------------	---------------	------------------	--------------	-------

RUN: OUTLET 4							
8/21	10:10	14:08	238	outlet	106.4	0.447	S251
							C227
	14:44	18:13	209	outlet	99.4	0.476	S265
							C349
	16:07	18:13	126	outlet	58.6	0.465	S350 (b)
							C350 (t)

RUN: INLET 4A							
8/21	8:55	10:20	85	inlet	45.9	0.540	S259
							C226
	10:37	13:01	144	inlet	54.8	0.381	S286
							C205

RUN: INLET 4B							
8/21	8:55	10:20	85	inlet	43.5	0.512	S-NM
							C222
	10:37	13:01	144	inlet	74.6	0.518	S268
							C242

RUN: OUTLET 5							
8/22	9:05	12:27	202	outlet	98.0	0.485	S352
							C356
	9:05	12:04	179	outlet	80.2	0.448	S354 (b)
							C358 (t)
	12:25	15:47	202	outlet	77.6	0.384	S264 (b)
							C355 (t)
	12:43	16:03	200	outlet	101.5	0.507	S359
							C354

Laboratory Results

Hg-0 sample	Hg-0 B/U	MMHg sample	MMHg B/U	Hg(II) sample	Hg(II) B/U	probe + liner	traps
----------------	-------------	----------------	-------------	------------------	---------------	------------------	-------

RUN: OUTLET 1 (8/18)			note: mist in gas stream results in moisture condensation. Radian scrapped this run.				
		1.2	<0.2	3.6	1.9	0.7	S261
73.7 76.2	1.5						C231
		1.8	0.3	14.6	2.4	0.7	S275 + S267
59.7	1.8 1.9						C-NM

RUN: INLET 1A (8/18)			note: possibly compromised by air inlet from open ports upstream. Estimated dilution:				
			371 308	124	17.4		S291
146.2 143.5	0.8						C206
		24.4 26.6	4.9	159.4 159.6	16.8	49.3	S262
26.3 26.7	2.0 2.4						C244

RUN: INLET 1B (8/18)			note: possibly compromised by air inlet from open ports upstream. Estimated dilution:				
		28.9	3.7	180.6 182.3	10.7	27.5	S287
82.2 78.4	2.1 3.5						C237
		45.0 43.6	9.1	178.3 181.8	20.2	49.3	S252
189.6 189.9	2.0						C225

RUN: OUTLET 1.5 (8/18)			note: total Hg and field blanks run				
		<0.2	0.2	1.2	0.8	0.0	S274 (bl)
4.8 6.2	4.0 5.9						C302 (bl)
52.3 52.6	2.8 2.3						C301 (tot)

RUN: OUTLET 2 (8/19)							
		1.1	<0.2	2.8	2.9	1.4	S285
58.9 59.4	7.9 7.6						C228
		1.2	<0.2	10.5	1.8	1.4	S278
54.9 54.0	1.4						C234

Hg-0 sample	Hg-0 B/U	MMHg sample	MMHg B/U	Hg(II) sample	Hg(II) B/U	probe + liner	traps
RUN: INLET 2A (8/19)			note: 11:35 sample possibly compromised by air inlet from open ports upstream. Estimated dilution:				
		18.8	2.5 1.9	131.3 129.2	12.2	172.3	S271
41.7 43.0	3.1 3.5						C220
				258 252	33.4	13.8	S290
132.4 130.9	5.4 5.4						C236
RUN: INLET 2B (8/19)			note: second sample is total Hg with a soda-lime field blank back-up				
		40.3 38.1 37.6	3.8	171.8 174.9	16.4	124.5	S282
45.0 45.0	1.0						C219
		<0.2	<0.2	2.4	2.0	37.3	S281 (bl)
384.8	2.9						C223 (t)
RUN: OUTLET 3 (8/20)							
		1.7	0.2	1.3	2.7	1.2	S277
60.1 63.5	2.5 1.6						C203
		<0.2	<0.2	7.7	10.1	1.2	S289
73.9 68.1	2.8						C235
RUN: INLET 3A (8/20)			note: total Hg and carbon field blank				
333.5	1.1					2.4	C204 (t)
2.6 2.7	1.8						C202 (b)
		100.4 102.0 100.0	7.1 7.4	284.4	29.7	58.7	S250
204.1 198.7	1.5						C211 (271)
RUN: INLET 3B (8/20)							
		50.6 49.8	7.7 7.9	143.7 137.5	22.4	21.6	S266
153.0 152.6	2.0 1.5						C232
		40.9 40.8	14.9	236.5 233.8	37.0 37.9	49.6	S284
248.7 242.2 245.2	2.4						C208

Hg-0 sample	Hg-0 B/U	MMHg sample	MMHg B/U	Hg (II) sample	Hg (II) B/U	probe + liner	traps
-------------	----------	-------------	----------	----------------	-------------	---------------	-------

RUN: OUTLET 4 (8/21)							
				18.3 17.4	3.1	0.6	S251
73.2 76.4	1.0						C227
				16.4 16.7	3.3	0.6	S265
67.7 66.9	1.2						C349
		<0.2	nd	nd	7.0	0.6	S350 (b)
49.1 50.0	1.6						C350 (t)

RUN: INLET 4A (8/21)							
		107.8	3.4	203.8	14.0	0.4	S259
115.9 115.6	2.6						C226
				347 322	50.8	6.8	S286
88.3 86.7	2.2						C205

RUN: INLET 4B (8/21)							
		66.9	2.0	186	14.2	0.0	S-XXX
120.7 125.5	3.7						C222
		114.1	12.3	263	67.2	0.5	S268
263.9	1.4						C242

RUN: OUTLET 5 (8/22)							
			107 153	4.9	0.8	S352	
87.6 81.9	4.0 1.8						C356
84.5 85.8							
		<0.2	<0.2	3.6	1.9	0.8	S354 (b)
83.0 83.6	1.7						C358 (t)
		0.5	0.5	9.9	3.9	0.8	S264 (b)
70.9 65.8	0.8						C355 (t)
		1.4	<0.2	7.4	5.6	0.8	S359
83.2 74.3	2.6						C354

Hg-0 sample	Hg-0 B/U	MMHg sample	MMHg B/U	Hg(II) sample	Hg(II) B/U	probe + liner	traps
RUN: INLET 5A (8/22)							
		44.8	5.8	173.2 180.1	19.0	13.4	S256
134.4 132.4	3.7						C229
		13.2/138		179.9	11.2	7.0	S360
160.9 159.6	3.8						C352
RUN: INLET 5B (8/22)							
		69.1	6.3	208.2	26.1	1.9	S351
191.3 196.1	1.4						C359
		73.4 64.5	13.1	307.1	nd	11.0	S357
201.4 207.0	2.1 2.8						C351
202.6 210.8	1.5						
211.0 204.5							
							scrubber liquor
		0.37 ug/L					DW3 XXI
1.53 ug/L							DW2XXd
2.64 ug/L							DWXXd
2.61 ug/L							DW4XXd
1.83 ug/L							DW4XXd
1.65 ug/L							DW2XXc
1.64 ug/L							DW1XXa
							coal
0.090 ppm							CO2
0.123 ppm	0.120 ± 0.029 ppm						CO3a
0.109 ppm	wet (= 5% H ₂ O)						CO3b
0.157 ppm							CO4
0.033 ppm	± 0.005						blanks
0.114 ppm							NBS
0.010 ppm							FP oil 1400
0.006 ppm							FP oil 0100

Method References

1. N.S. Bloom. *Mercury Speciation in Flue Gases: Overcoming the Analytical Difficulties*. First Conference on Managing Hazardous Air Pollutants, State of Art, Washington, D.C., November 4-6, 1991. Lewis Publishers, 1992.
2. N. S. Bloom and W. F. Fitzgerald. "Determination of Volatile Mercury Species at the Picogram Level by Low-Temperature Gas Chromatography with Cold-Vapor Atomic Fluorescence Detection." *Anal. Chim. Acta*, 208, 151, 1988.
3. N.S. Bloom and E. A. Crecelius. "Determination of Mercury in Seawater at Sub-nanogram per Liter Levels." *Mar. Chem.* 144, 49, 1983.
4. N. S. Bloom. "Determination of Picogram Levels of Methylmercury by Aqueous Phase Ethylation, Followed by Cryogenic Gas Chromatography with Coal-Vapor Atomic Fluorescence Detection." *Can. J. Fish. Aq. Sci.* 46, 1131, 1989.
5. M. Metzger and H. Braun. "In-Situ Mercury Speciation in Flue Gas by Liquid and Solid Sorption Systems." *Chemosphere*, 16, 821, 1987.
6. A. E. Moffitt and R. E. Kupel. "A Rapid Method Employing Impregnated Charcoal and Atomic Absorption Spectrometry for the Determination of Mercury." *Am. Ind. Hyg. Assn. J.* 32, 614, 1971.