

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at [www.epa.gov/ttn/chief/ap42/](http://www.epa.gov/ttn/chief/ap42/)

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02\_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference maybe from a previous version of the section and no longer cited. The primary source should always be checked.

|                      |                                                                                                                                                                    |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>AP42 Section:</b> | 1.1                                                                                                                                                                |
| <b>Reference:</b>    | 69                                                                                                                                                                 |
| <b>Title:</b>        | <p>Field Chemical Emissions Monitoring<br/>Project: Site 20 Emissions<br/>Monitoring. Radian Corporation,<br/>Austin, Texas.</p> <p>March, 1994. (EPRI Report)</p> |

## **Field Chemical Emissions Monitoring Project: Site 20 Emissions Report**

**DCN 93-213-152-54**  
Preliminary Draft Report, 25 March 1994

Prepared by  
**Radian Corporation**  
8501 North Mopac Boulevard  
P.O. Box 201088  
Austin, Texas 78720-1088

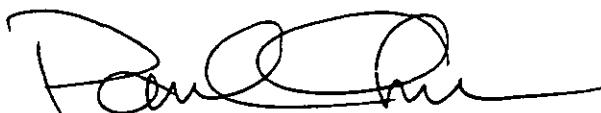
Prepared for  
**Electric Power Research Institute**  
3412 Hillview Avenue  
Palo Alto, California 94304

March 21, 1994

Mr. William H. Maxwell, P.E. (MD13)  
Office of Air Quality Planning and Standards  
U.S. Environmental Protection Agency  
Research Triangle Park, NC 27711

Dear Mr. Maxwell:

In response to the Clean Air Act Amendments of 1990, the Electric Power Research Institute (EPRI) initiated the PISCES (Power Plant Integrated Systems: Chemical Emissions Studies) program to better characterize the source, distribution, and fate of trace elements from utility fossil-fuel-fired power plants. As part of the PISCES program, the Field Chemical Emissions Monitoring (FCEM) program has sampled extensively at a number of utility sites, encompassing a range of fuels, boiler configurations, and particulate, SO<sub>2</sub>, and NO<sub>x</sub> control technologies. EPRI is actively pursuing additional FCEM sampling programs, with 29 sites either completed or planned.


This site report presents a preliminary summary of data gathered during a sampling program conducted at one of the FCEM sampling programs - Site 20. Site 20 consists of a 680 MW pulverized coal-fired boiler burning a lignite coal, with an electrostatic precipitator (ESP) for particulate control and a wet-limestone flue gas desulfurization (FGD) system for SO<sub>2</sub> control. In the Site 20 sampling and analytical program, mercury speciation measurements were conducted using the Nick Bloom/Frontier Geoscience's solid sorbent speciation train. Recently, it was determined that the analytical recovery procedure could lead to the formation of methyl Hg. This recent finding affected the methyl Hg results at Site 20 as well as all previous field sites by EPRI and other organizations. The methyl Hg measurements are considered invalid and are not included in this report. The methyl Hg and the Hg<sup>+2</sup> are summed together to obtain a total oxidized Hg. At this time, EPRI is not able to quantify methyl Hg in flue gas. EPRI is following up with additional studies to evaluate this analytical artifact.

It should be noted that the results presented in this report are considered PRELIMINARY. The results are believed to be essentially correct except as noted. As additional data from other sites are collected and evaluated, however, EPRI may conduct verification tests at this site. If this is done, the new data will be made available to the Environmental Protection Agency (EPA).

The primary objective of this report is to transmit the preliminary results from Site 20 to the EPA for use in evaluating select trace chemical emissions from fossil-fuel-fired steam generating plants. In addition to the raw data in the Appendix, the report provides an assessment of the trace metals material balances, discusses the data quality, identifies suspect data, and offers possible explanations for the questionable data. Because the discussion only focuses upon the suspect or invalidated data, please keep in mind that most of the data meet the standards of quality established for this study. This report does not compare the results from Site 20 with the results from previous utility sites. Generic conclusions and recommendations were not drawn concerning the effectiveness of an ESP or wet FGD system as potential control technologies for trace elements; however, removal efficiencies were calculated where possible. Nor does this site report attempt to address the environmental and health risk impacts associated with the trace chemical emissions.

EPRI hopes that this site report is of assistance to the EPA in evaluating utility trace chemical emissions as well as the associated health risk impacts.

Sincerely,



Paul Chu  
Manager, Toxic Substances Characterization  
Environment Division

# CONTENTS

---

| Section                                                | Page |
|--------------------------------------------------------|------|
| 1 <b>Introduction</b> . . . . .                        | 1-1  |
| Test Objectives . . . . .                              | 1-1  |
| Process Operation . . . . .                            | 1-2  |
| Sampling and Analysis Protocol . . . . .               | 1-2  |
| Quality Assurance/Quality Control (QA/QC) . . . . .    | 1-2  |
| Data Quality . . . . .                                 | 1-4  |
| Report Organization . . . . .                          | 1-4  |
| 2 <b>Site Description</b> . . . . .                    | 2-1  |
| Facility Information . . . . .                         | 2-1  |
| <i>Flue Gas Treatment Facilities</i> . . . . .         | 2-1  |
| <i>Solids Handling Facilities</i> . . . . .            | 2-5  |
| Sampling Locations . . . . .                           | 2-5  |
| 3 <b>Results</b> . . . . .                             | 3-1  |
| Sampling Schedule . . . . .                            | 3-1  |
| Data Treatment . . . . .                               | 3-1  |
| Process Solids Results . . . . .                       | 3-5  |
| <i>Coal</i> . . . . .                                  | 3-5  |
| Gas Stream Results . . . . .                           | 3-7  |
| <i>Electrostatic Precipitator Outlet Gas</i> . . . . . | 3-7  |
| <i>Stack Gas</i> . . . . .                             | 3-7  |
| Emission Factors . . . . .                             | 3-10 |
| FGD System Control Efficiency . . . . .                | 3-10 |
| ESP System Control Efficiency . . . . .                | 3-10 |
| 4 <b>Data Evaluation</b> . . . . .                     | 4-1  |
| Process Operation . . . . .                            | 4-1  |
| Plant Operational Changes . . . . .                    | 4-5  |
| <i>Flue Gas Bypass Around FGD System</i> . . . . .     | 4-5  |
| <i>Bottom Ash Sluicing</i> . . . . .                   | 4-5  |
| <i>Soot Blowing</i> . . . . .                          | 4-6  |
| Plant Operational Problems . . . . .                   | 4-6  |

|                                                                            |            |
|----------------------------------------------------------------------------|------------|
| Sample Collection .....                                                    | 4-7        |
| Analytical Quality Control Results .....                                   | 4-7        |
| Detailed QC Results .....                                                  | 4-14       |
| <i>Metals</i> .....                                                        | 4-15       |
| <i>Anions</i> .....                                                        | 4-16       |
| Material Balances .....                                                    | 4-16       |
| <i>Boiler/Process ESP System</i> .....                                     | 4-17       |
| <i>FGD System</i> .....                                                    | 4-17       |
| <i>Entire Plant</i> .....                                                  | 4-21       |
| <b>5      Additional Data .....</b>                                        | <b>5-1</b> |
| Mercury Speciation Tests .....                                             | 5-1        |
| Dibasic Acid Concentrations .....                                          | 5-3        |
| Particle Size Distribution Tests .....                                     | 5-3        |
| Fly Ash Enrichment Data .....                                              | 5-3        |
| Comparison of Analytical Methods .....                                     | 5-6        |
| <b>6      Sample Calculations .....</b>                                    | <b>6-1</b> |
| Stream Flow Rates .....                                                    | 6-1        |
| Means and Confidence Intervals for Stream Concentrations .....             | 6-1        |
| Unit Energy Emission Factors .....                                         | 6-3        |
| <b>7      Glossary .....</b>                                               | <b>7-1</b> |
| <b>Appendix A:    Sampling and Analytical Summary .....</b>                | <b>A-1</b> |
| <b>Appendix B:    Data Used in Calculations .....</b>                      | <b>B-1</b> |
| <b>Appendix C:    Data Not Used in Calculations .....</b>                  | <b>C-1</b> |
| <b>Appendix D:    Flue Gas Sampling Data Sheets .....</b>                  | <b>D-1</b> |
| <b>Appendix E:    Error Propagation and Uncertainty Calculations .....</b> | <b>E-1</b> |
| <b>Appendix F:    Quality Assessment/Quality Control Results .....</b>     | <b>F-1</b> |

## LIST OF ILLUSTRATIONS

---

| <b>Figure</b> |                                                                     | <b>Page</b> |
|---------------|---------------------------------------------------------------------|-------------|
| 2-1           | Process Flow Diagram for Site 20 .....                              | 2-3         |
| 2-2           | Simplified Process Flow Diagram for Site 20's FGD System .....      | 2-4         |
| 3-1           | Sampling Schedule for Flue Gas Samples .....                        | 3-2         |
| 3-2           | Sampling Schedule for Process Samples .....                         | 3-3         |
| 4-1           | Site 20 Process Data for Days 1-4 .....                             | 4-3         |
| 4-2           | Gas Concentration Data for Days 1-4 .....                           | 4-4         |
| 4-3           | Systems for Material Balance Closure Calculations for Site 20 ..... | 4-19        |
| 5-1           | FCEM Target Species Concentrations in Site 20 Ash Streams .....     | 5-7         |

## LIST OF TABLES

---

| <b>Table</b> |                                                                  | <b>Page</b> |
|--------------|------------------------------------------------------------------|-------------|
| 1-1          | FCEM Substances of Interest .....                                | 1-3         |
| 2-1          | Site 20 Summary .....                                            | 2-2         |
| 3-1          | Coal Composition .....                                           | 3-6         |
| 3-2          | Site 20 ESP Outlet Gas Composition .....                         | 3-8         |
| 3-3          | Site 20 Stack Gas Composition .....                              | 3-9         |
| 3-4          | Emission Factors .....                                           | 3-11        |
| 3-5          | Removal Efficiencies for ESP and FGD Systems at Site 20 .....    | 3-12        |
| 4-1          | Site 20 Process Stability Summary .....                          | 4-2         |
| 4-2          | Types of Quality Control Samples .....                           | 4-8         |
| 4-3          | Types of Quality Control Data Reported .....                     | 4-10        |
| 4-4          | Summary of Precision and Accuracy Estimates for Site 20 .....    | 4-11        |
| 4-5          | Site 20 Material Balances .....                                  | 4-18        |
| 4-6          | Process Stream Flows at Site 20 .....                            | 4-20        |
| 5-1          | Mercury Speciation Data .....                                    | 5-2         |
| 5-2          | Comparison of Method 29 with the Mercury Speciation Method ..... | 5-4         |
| 5-3          | Dibasic Acid Concentrations at Site 20 .....                     | 5-4         |
| 5-4          | Particle Size Distribution Data for Site 20 .....                | 5-5         |

|     |                                                                                            |     |
|-----|--------------------------------------------------------------------------------------------|-----|
| 5-5 | Comparison of ICP-MS to Standard Methods for ESP Outlet and Stack<br>Gas Solid Phase ..... | 5-8 |
| 5-6 | Comparison of ICP-MS to Standard Methods for ESP Outlet and Stack<br>Gas Vapor Phase ..... | 5-9 |

## INTRODUCTION

---

This report summarizes field data gathered during June 1993, by Radian Corporation at a power plant designated as Site 20. The Electric Power Research Institute (EPRI) sponsored this effort as part of its Field Chemical Emissions Monitoring Project (FCEM, RP-3177). The primary objective of this project is to measure the concentrations of selected inorganic and organic substances in power plant process and discharge streams. The data are being used to determine the fate and control of these substances.

The primary objectives of this report are to summarize fuel and gas concentration data for Site 20 and to evaluate these data according to the criteria outlined below. The concentration data are in a format suitable for use by the U.S. Environmental Protection Agency to study emissions from fossil-fuel-fired power plants, as mandated by the Clean Air Act Amendments of 1990.

Site 20 has an opposed wall-fired boiler and burns medium-sulfur lignite coal. Emissions are controlled by an electrostatic precipitator (ESP) and a wet-limestone flue gas desulfurization (FGD) system.

### Test Objectives

The four major objectives for testing at Site 20 were to:

- Measure the emissions from a lignite-fired power plant equipped with an ESP/wet FGD system.
- Measure the emission control efficiency of a wet FGD system on a lignite-fired power plant.
- Collect size-fractionated fly ash from a lignite-fired power plant. The various size fractions may be analyzed for trace element concentrations in the future.
- Compare two methods for determining mercury concentrations in flue gas. This effort compared the EPA multi-metals method (Draft Method 29) with the mercury speciation method developed by Frontier Geosciences.

The first three objectives address the lack of information available for describing trace element emissions from lignite-fired power plants. These objectives are important because a significant number of plants burn lignite coal. The last objective is important because previous comparisons at different sites have shown fairly good agreement.

between the total flue gas mercury concentrations as determined by EPA Method 29 and by the mercury speciation method. The data from Site 20 augments the comparison between these two methods.

Table 1-1 lists the substances of interest to the FCEM project. A subset of these substances was chosen for study at Site 20 (i.e., no organic substance concentrations were determined).

### **Process Operation**

The unit operated at high, steady load during each test run, although an upset in the ESP operation occurred during the second day of testing. Also, for all tests, the FGD system treated more gas than it does in normal operation because no flue gas was bypassed around the FGD system when FCEM testing was in progress (the normal operation is to bypass some gas around the FGD system while still complying with the SO<sub>2</sub> emission regulations). The impact of these operations is minimal with respect to the measurement results. Both of these topics and the impacts on test data are discussed in Section 4. By all other indicators, process operation during testing was representative of normal operation for this unit.

### **Sampling and Analysis Protocol**

Appendix A describes the sampling and analysis protocol for Site 20. The methods used are comparable to those used at other FCEM sites sampled by Radian, with the following exceptions:

- In addition to ICP-AES analysis (employed at other FCEM sites), flue gas samples were analyzed for chromium and nickel using GFAAS.
- The reported selenium concentrations in the flue gas streams were based on samples analyzed by ICP-MS, instead of GFAAS (as was employed at other FCEM sites).

### **Quality Assurance/Quality Control (QA/QC)**

The completeness of the quality assurance data was reviewed to judge whether the quality of the measurement data could be evaluated with the available information. In general, the results of the QC checks available for Site 20 indicate that the samples are well characterized. An evaluation of the accuracy, precision, and bias of the data, even if only on a qualitative level, is considered to be an important part of the data evaluation. A full discussion of each of these components can be found in Section 4.

Standard QA/QC checks for this type of sampling program involve the use of: 1) replicate tests, duplicate field samples and lab analyses, and matrix spike and lab control duplicates to determine precision; 2) matrix spikes, surrogate spikes, and laboratory control samples to determine accuracy; and 3) field blanks, trip blanks, method blanks, and reagent blanks to determine if any of the samples were

**Table 1-1**  
**FCEM Substances of Interest**

| Elements               | Organic Compounds                              |
|------------------------|------------------------------------------------|
| Arsenic                | Benzene <sup>a</sup>                           |
| Barium                 | Toluene <sup>a</sup>                           |
| Beryllium              | Formaldehyde <sup>a</sup>                      |
| Cadmium                | Polycyclic Organic Matter (POM) <sup>a,b</sup> |
| Chlorine (as chloride) |                                                |
| Chromium               |                                                |
| Cobalt                 |                                                |
| Fluorine (as fluoride) |                                                |
| Lead                   |                                                |
| Manganese              |                                                |
| Mercury                |                                                |
| Molybdenum             |                                                |
| Nickel                 |                                                |
| Phosphorus             |                                                |
| Selenium               |                                                |
| Vanadium               |                                                |

<sup>a</sup>Not measured at Site 20.

<sup>b</sup>Also referred to as semivolatile organic compounds. Includes polynuclear aromatic hydrocarbons (PAHs).

contaminated during collection or analysis. Most of these standard QA/QC checks were used on samples from Site 20, except for surrogate spikes (which do not apply to metals and anions analyses) and the duplicate analysis of samples. The absence of any of these "standard" quality control checks does not necessarily reflect poorly on the quality of the data but does limit the ability to measure the various components of measurement error.

### **Data Quality**

The QA/QC results were compared to the data quality objectives shown in Section 4. QA/QC results outside the data quality objectives are noted and discussed, other quality assurance values are evaluated, and the potential effect on data quality is noted. Based on the detailed information presented in Section 4, the following conclusions can be made:

- Arsenic concentrations in the coal may be biased low. The measured concentration for a certified coal was only 43% of the certified value.
- Cobalt concentrations in the coal may be biased high. The measured concentration for a certified coal was 193% of the certified value.
- Selenium QA/QC data for impinger solutions exhibited poor precision and accuracy for GFAAS analyses. Therefore, the ICP-MS data were used to report selenium concentrations in the gas streams and to calculate the selenium emission factors and material balance closures.
- The validity of the mercury speciation data is suspect. Frontier Geosciences has stated that all reported values for methyl mercury are biased high and may in fact be ionic mercury.

### **Report Organization**

Section 2 of this report describes the plant and the sample locations. Section 3 presents the concentration data for the coal and gas streams. Section 4 discusses the QA/QC and engineering evaluations of the data. Section 5 presents additional data. Section 6 presents example calculations, and a glossary of terms is provided in Section 7. The appendices contain information on sampling and analytical methods, stream concentrations, sampling data, error propagation equations, and detailed QA/QC data.

# 2

## SITE DESCRIPTION

---

The FCEM project has a policy of assigning a site code to each plant sampled. The plant discussed in this report was designated Site 20. This section describes the test site and the sampling locations.

### Facility Information

Site 20 has one lignite-fired boiler with a normal full-load value of 680 MWe. The wall-fired, sub-critical, drum-type boiler was designed by Babcock and Wilcox and began operation in the mid-1980s. The furnace consists of a single chamber with no partition. Table 2-1 summarizes the unit design values.

Figure 2-1 presents a process flow diagram of Site 20. The plant burns lignite coal from a nearby mine. The lignite has typical ash, moisture, and sulfur levels of 11, 33, and 1.3%, respectively. Bottom ash is removed from the boiler by an ash sluicing system, and electrostatic precipitators (ESPs) remove fly ash from the flue gas. The plant has a FGD system that removes approximately 90% of the sulfur dioxide ( $\text{SO}_2$ ) from the flue gas. The flue gas treatment and solids handling facilities are described in greater detail below.

### Flue Gas Treatment Facilities

Site 20 is equipped with two parallel cold-side ESPs that have weighted-wire discharge electrodes. The collection plate spacing is 9 inches and the plate height is 36 feet. The design specific collection area (SCA) is  $544 \text{ ft}^2 / 10^3 \text{ acfm}$ . The ESP outlet gas streams pass through induced draft fans (two fans total) before they are combined, just downstream of the fans. Most of the combined gas enters the FGD system, but a fraction is bypassed around the FGD system. The normal operation of the plant is to bypass as much gas as possible, while still meeting its required  $\text{SO}_2$  emission limits. During FCEM testing, the plant operated with essentially no flue gas bypass, based on energy and material balance calculations using flue gas temperatures and  $\text{SO}_2$  concentrations. The impacts of operating without flue gas bypass are discussed in Section 4.

The FGD system (Figure 2-2) is a dual-loop system that uses limestone slurry for reagent. Emulsified sulfur and ethylene-diamine-tetra-acetic acid (EDTA) are added to the system to control the sulfite oxidation to about 15 percent. The emulsified sulfur is added to the limestone slurry storage tank once every one to three days at a rate required to maintain a dissolved thiosulfate ( $\text{S}_2\text{O}_3^-$ ) concentration of about 2,000 ppm in the FGD liquor. The EDTA is normally added once a month, at a rate calculated to

**Table 2-1**  
**Site 20 Summary**

|                                                          |                                                                                                                                                            |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum gross electrical output (MW)                     | 720 (normal full load = 680)                                                                                                                               |
| Boiler type                                              | Opposed wall-fired, subcritical                                                                                                                            |
| Boiler additives                                         | None                                                                                                                                                       |
| Fuel type                                                | Lignite                                                                                                                                                    |
| Fuel sulfur content (avg. % S, as received)              | 1.3                                                                                                                                                        |
| Fuel ash content (avg. %, as received)                   | 11                                                                                                                                                         |
| Fuel heating value (avg. Btu/lb, as received)            | 6,760                                                                                                                                                      |
| Particulate controls                                     | Cold-side ESPs                                                                                                                                             |
| ESP design efficiency (%)                                | 99.75                                                                                                                                                      |
| ESP design SCA (ft <sup>2</sup> /kacf m)                 | 544                                                                                                                                                        |
| SO <sub>3</sub> flue gas conditioning                    | None                                                                                                                                                       |
| SO <sub>2</sub> emission limits (lb/10 <sup>6</sup> Btu) | 1.2                                                                                                                                                        |
| SO <sub>2</sub> controls <sup>b</sup>                    | Wet limestone FGD<br>Dual-loop, UOP designed<br>Inhibited oxidation<br>Sulfur addition to form S <sub>2</sub> O <sub>3</sub><br>EDTA addition <sup>a</sup> |
| Number of FGD modules                                    | 4 <sup>b</sup>                                                                                                                                             |
| Gas/module (acf m)                                       | 660,000                                                                                                                                                    |
| Module design efficiency (%)                             | 90                                                                                                                                                         |
| Fly ash disposal                                         | Landfill                                                                                                                                                   |
| Bottom ash disposal                                      | Pond                                                                                                                                                       |
| Bottom ash sluice water source                           | Bottom ash pond                                                                                                                                            |
| Cooling water system                                     | Once through                                                                                                                                               |
| Cooling water source                                     | Lake                                                                                                                                                       |

<sup>a</sup>No EDTA was added to the system during FCEM testing.

<sup>b</sup>Dibasic acid (DBA) was present in all FGD system modules during FCEM testing.

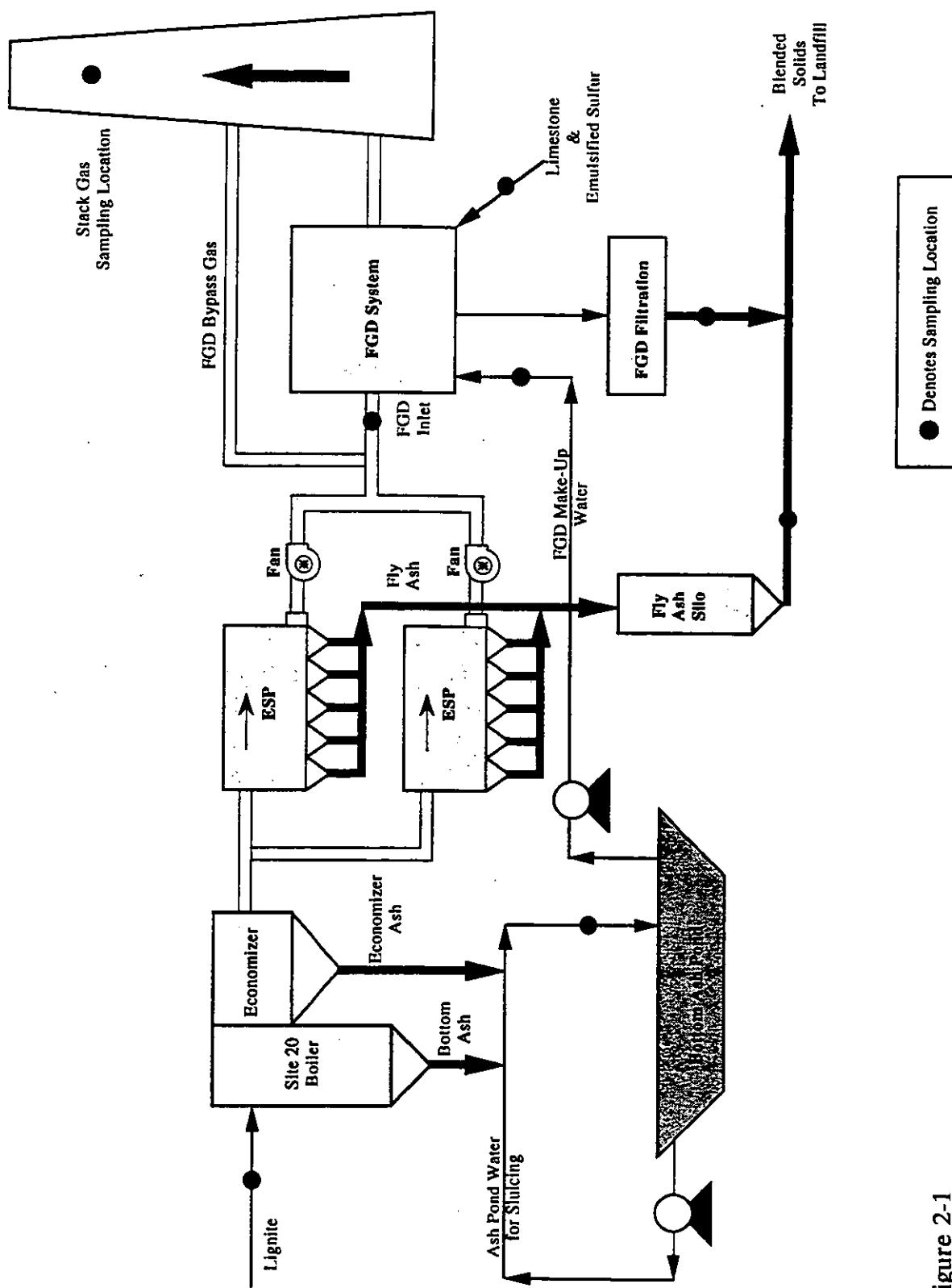



Figure 2-1  
Process Flow Diagram for Site 20

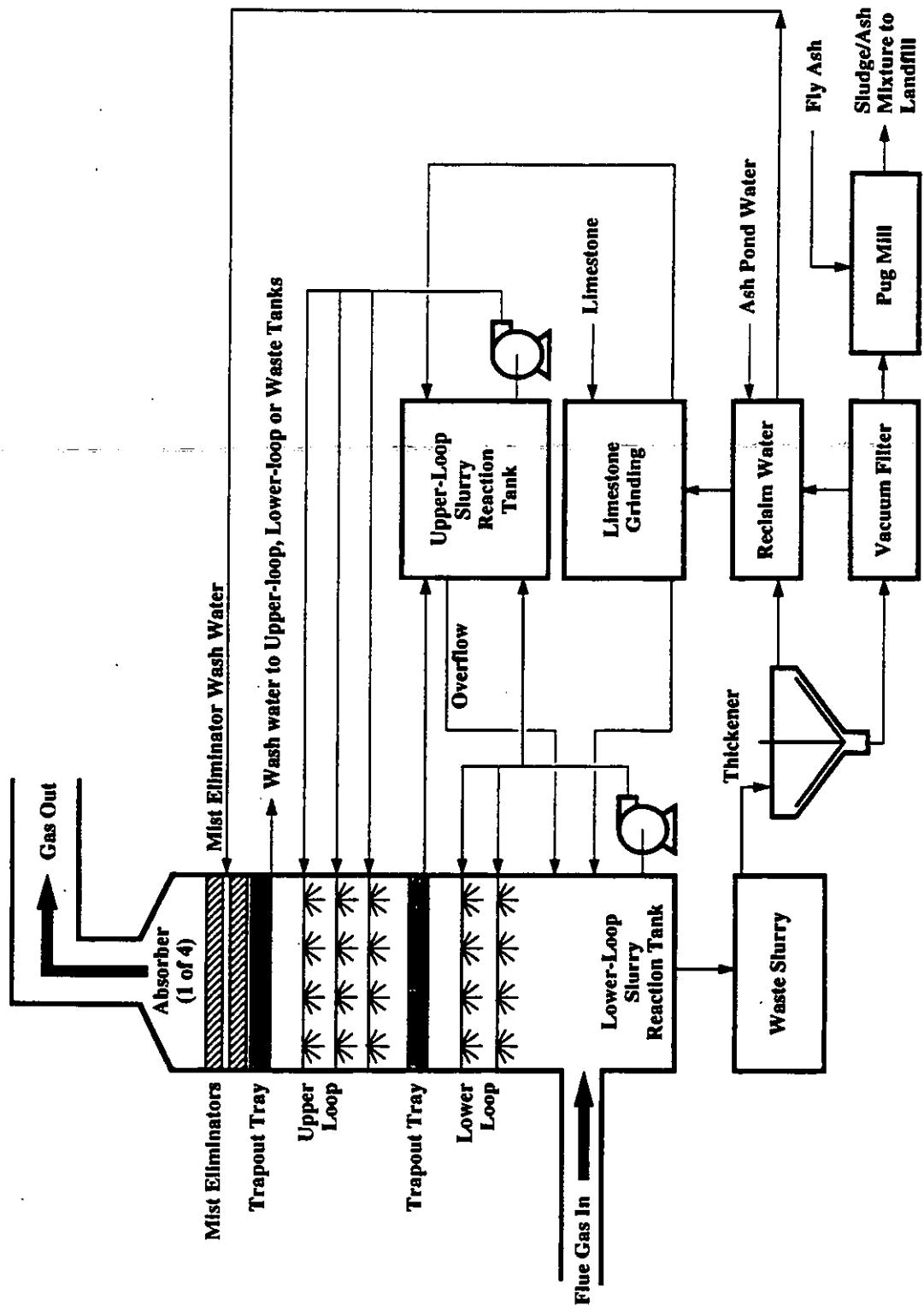



Figure 2-2  
Simplified Process Flow Diagram for Site 20's FGD System

maintain 20 ppm in the FGD liquor. No EDTA was added to the system during FCEM sampling activities. Dibasic acid (DBA), an additive for improving SO<sub>2</sub> removal, was present at significant concentrations during FCEM testing. The presence of DBA in the FGD system was not typical for Site 20, but it is doubtful that the DBA affected the test data because the removal of trace metals by the FGD system should not be affected by the increased liquid-phase alkalinity caused by the presence of DBA (i.e., the removal of trace metals does not depend on the liquid-phase alkalinity). Radian sampled the FGD system to document the DBA levels during the field testing effort. The DBA concentration during the test period was nominally 400 ppm (Section 5).

The FGD system consists of four absorber modules, each of which treats 660,000 acfm of flue gas. All four modules are required when the boiler operates at full-load conditions. The design L/G's are 17 and 35 gal/kacf m for the upper and lower loops, respectively. The system has 4 reaction tanks: two for the upper loops and two for the lower loops. Each reaction tank is shared by two absorber modules.

### ***Solids Handling Facilities***

Lignite coal is excavated from a nearby mine and trucked to the plant site. The plant has seven coal bunkers, which feed the coal pulverizers. The residence time downstream of the bunkers is insignificant (seconds) compared to the residence time in the coal bunkers (12 hours).

FGD solids are dewatered only at night. That is, the FGD system's thickener underflow is stored during the day shift and dewatered at night using rotary vacuum filters.

Dry fly ash collected by the ESPs is pneumatically conveyed to an ash silo on a continual basis. At night, the ash is removed from the silo and blended with the FGD filter cake solids. The blended material is sent to an on-site landfill for disposal.

Bottom ash is removed from the boiler and intermittently sluiced to a bottom ash disposal pond. The sluicing water supply comes from the bottom ash pond. The ash pond water is made up with rainwater or with water from a nearby lake when necessary.

### ***Sampling Locations***

Samples were collected at several locations in the plant. These locations are identified on the process flow diagram, Figure 2-1. Brief descriptions of each sampling location are given below:

- Coal composite samples were collected from four of the seven coal bunkers at a location near the coal mills. The coal obtained at this location was considered to be more representative than the daily composite coal sample obtained by the plant because of the long residence time in the coal bunkers. Individual coal samples were collected every two hours during each test. These samples were combined to form the composite coal sample for the test.

---

*Site Description*

- Flue gas exiting the ESPs was sampled from a horizontal duct located just downstream of the induced draft fans and FGD bypass takeoff ductwork.
- Flue gas was also sampled at the stack at a location well downstream of where the FGD outlet gas combines with the FGD bypass gas.
- Bottom ash that had accumulated in the boiler during testing was sampled from the discharge of the sluice pipe during the evening sluicing event.
- Fly ash samples were collected from the outlet of the screw conveyor that empties the fly ash silo.
- FGD solids were collected as the FGD filter cake fell off the rotary drum vacuum filters onto a conveyor belt, during the FGD solids dewatering procedure.
- FGD makeup water samples were collected from a tap at a location near the entrance to the FGD system.
- FGD liquor samples were collected from each of the two lower loop-reaction tanks.

All of the above sampling locations should have allowed for representative sampling of the Site 20 process streams. Appendix A presents the procedures for collecting, pretreating, and analyzing the samples.

# 3

## RESULTS

---

This section presents the trace substance concentration data for the process streams sampled at Site 20. Additional data for mercury speciation and particle size distribution appears in Section 5. Sampling, preparation, and analytical methods are summarized in Appendix A and detailed analytical data can be found in Appendices B and C.

Before the concentration data are discussed, the sampling schedule and the data treatment conventions are described.

### **Sampling Schedule**

Site 20 was sampled in June 1993. Four types of flue gas sampling trains were used to collect samples from the ESP outlet and stack gas streams. The gas streams were traversed with the multi-metals and anions sampling trains; single-point sampling was used for the mercury speciation and particle size distribution (PSD) sampling trains. All trains were operated within acceptable limits for isokinetic conditions.

Figures 3-1 and 3-2 present the collection time periods for the flue gas and process samples, respectively. Bad weather interrupted gas and process sampling for about three hours on 6/10/93 (Run 3) and interfered with bottom ash sampling on 6/11/93 (Run 4). Test data were not adversely affected by these two weather episodes.

### **Data Treatment**

Several conventions were developed for treating FCEM test data and developing average concentrations of the target species in the various streams. To determine the total gas concentration for each run, both the solid and vapor phase contributions were considered. However, the absence of some detectable (above the method detection limit) concentrations in either (or both) phase(s) required conventions for dealing with these data. These conventions are summarized below.

For each substance, there are three possible combinations of vapor and solid phase concentrations in the gas stream. These are:

Case 1: The concentrations in both the solid and vapor phases are above the detection limits.

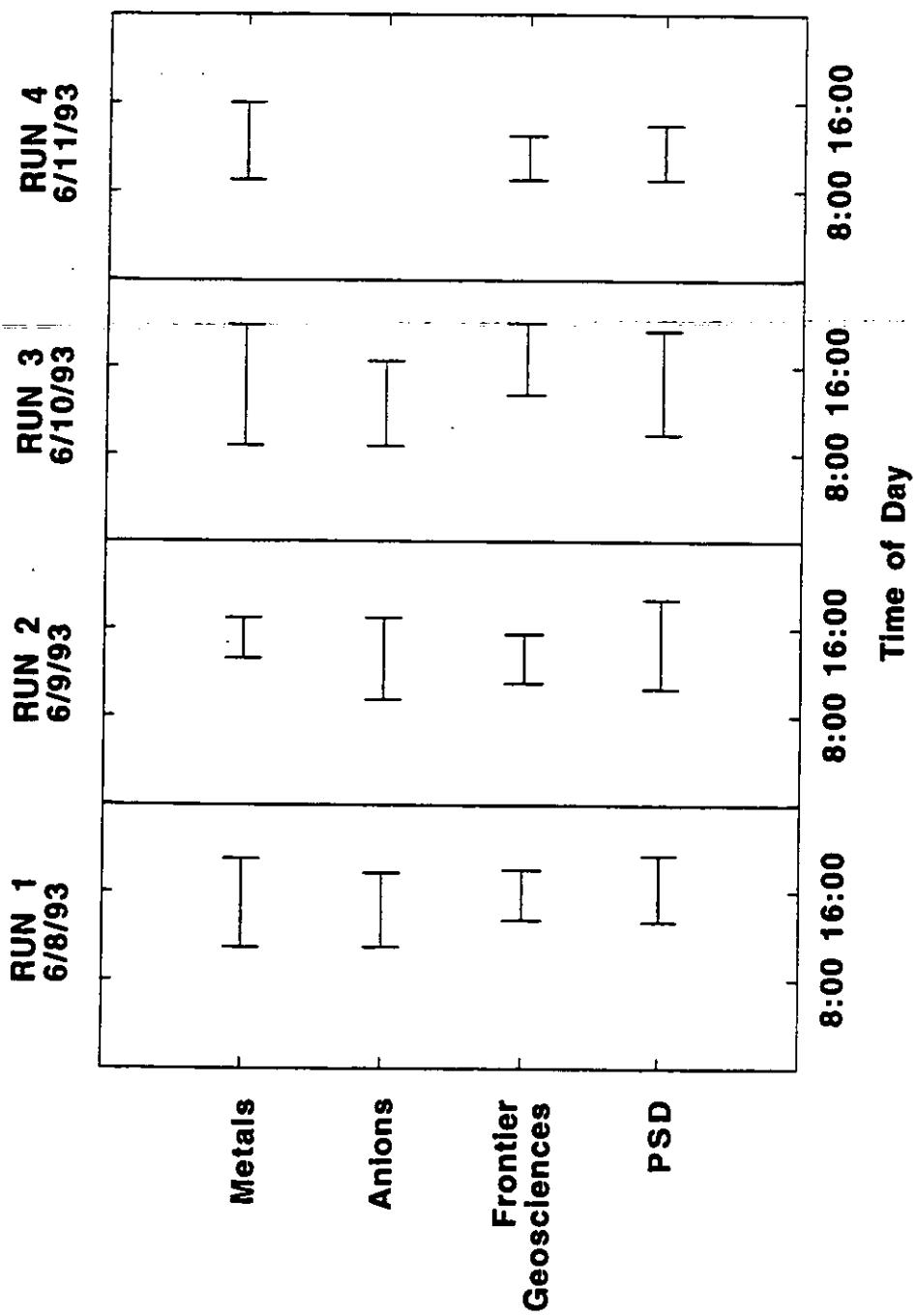



Figure 3-1  
Sampling Schedule for Flue Gas Samples  
All gas samples were collected simultaneously at the ESP outlet and stack locations.

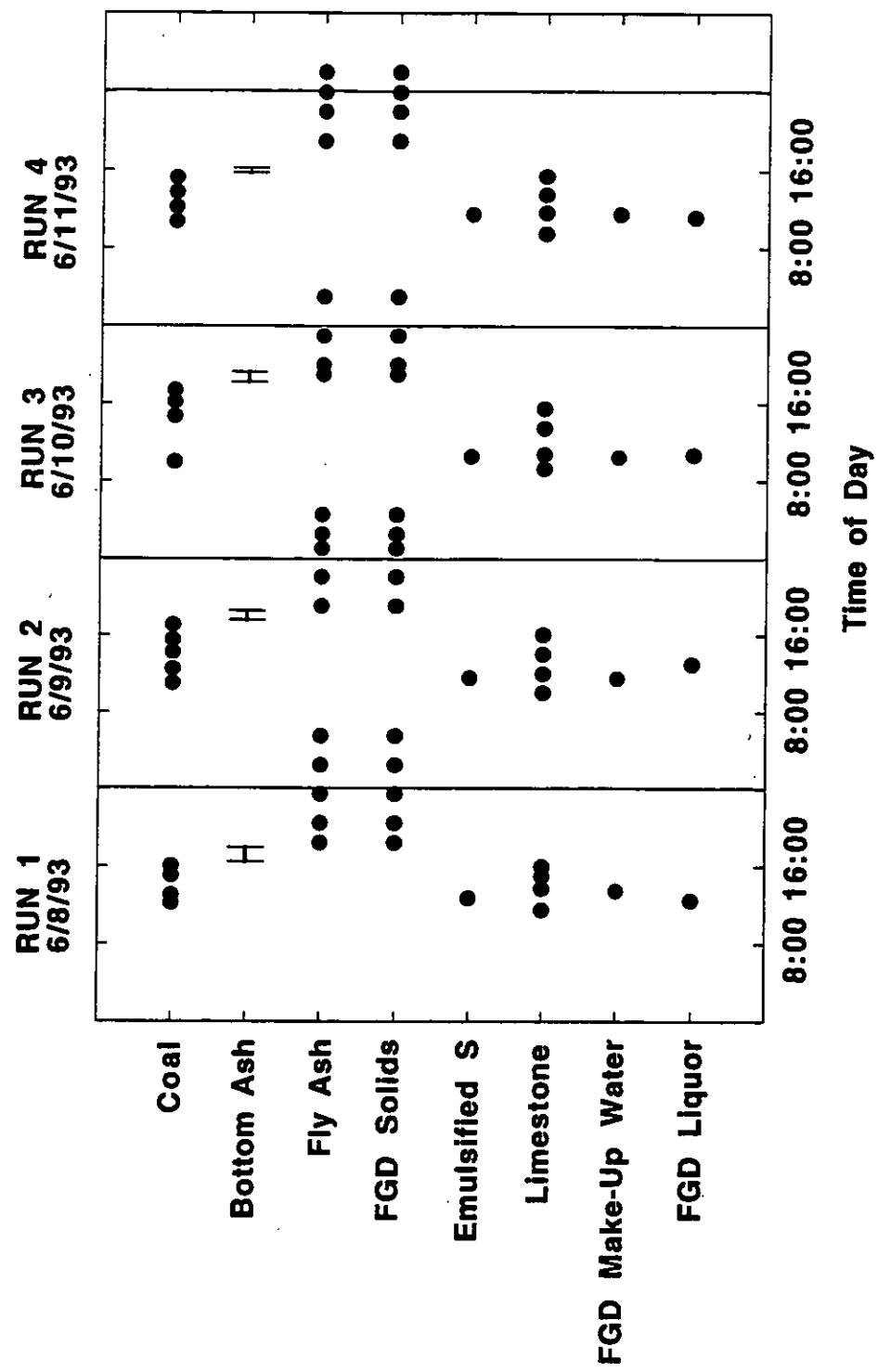



Figure 3-2  
Sampling Schedule for Process Samples

---

## Results

Case 2: The concentrations in both the solid and vapor phases are below the detection limits.

Case 3: The concentration in one phase is above the detection limit, and the concentration in the other phase is below the detection limit.

For constituents of interest other than HCl, HF, and mercury, the flue gas stream data from previous studies of coal-fired power plants have indicated that most of the material is present in the solid phase and that only a small fraction is generally found in the vapor phase. Thus, the following conventions were selected for defining the total gas stream concentrations for analytes other than HCl, HF, and mercury:

For Case 1, the total concentration is the sum of the concentrations in the vapor and solid phases.

For example, the total selenium concentration in the ESP outlet gas for Run 3 is calculated as follows:

$$\text{Se in solid phase} = 77 \mu\text{g}/\text{Nm}^3$$

$$\text{Se in vapor phase} = 723 \mu\text{g}/\text{Nm}^3$$

$$\text{Total Se in the ESP outlet gas} = 800 \mu\text{g}/\text{Nm}^3$$

For Case 2, the total concentration is considered to be the detection limit in the solid phase. (This case is not represented by the data for the FCEM target species at Site 20).

For Case 3, the total concentration is considered to be the one above the detection limit, regardless of which phase this represents.

For example, the arsenic concentration in the stack gas is calculated as follows for Run 2:

$$\text{As in solid phase} = 0.86 \mu\text{g}/\text{Nm}^3$$

$$\text{As in vapor phase} = \text{ND} (0.13 \mu\text{g}/\text{Nm}^3)$$

where ND(0.13)  $\mu\text{g}/\text{Nm}^3$  indicates that the analytical result was below the detection limit of  $0.13 \mu\text{g}/\text{Nm}^3$ <sup>1</sup>.

$$\text{Total As in the stack gas} = 0.86 \mu\text{g}/\text{Nm}^3$$

---

<sup>1</sup> Detection limit is defined as: Method detection limit (per 40 CFR Part 136, Appendix B) multiplied by sample specific dilution and digestion factors.

The above conventions agree with guidance provided by EPA (*Technical Implementation Document for EPA's Boiler and Industrial Furnace Regulations*, U.S. Environmental Protection Agency, Office of Solid Waste, Washington, D.C., March 1992).

Testing at several previous sites has indicated that HCl, HF, and mercury are present primarily in the vapor phase. For Case 2, then, the total concentration is considered to be the detection limit in the vapor phase. For Cases 1 and 3, the methodologies are unchanged from those described above.

The following criteria were used when averaging the results of different runs:

- When all values for a given variable were above the detection limit, the mean concentration was calculated as the true arithmetic mean.
- For results that include values both above and below the detection limit, one half the detection limit was used to calculate the mean. For example:

| <u>Analytical Values</u> | <u>Calculation</u> | <u>Mean Value</u> |
|--------------------------|--------------------|-------------------|
| 10, 12, ND(8)            | $[10+12+(8/2)]/3$  | 8.7               |

By convention, the calculated mean is not allowed to be smaller than the largest detection limit value. In the following example, using one-half the detection limit would yield a calculated mean of 2.8. This is less than the highest detection level obtained, so the reported mean is ND(4).

| <u>Analytical Values</u> | <u>Calculation</u>        | <u>Mean Value</u> |
|--------------------------|---------------------------|-------------------|
| 5, ND(4), ND(3)          | $[5+(4/2)+(3/2)]/3 = 2.8$ | ND(4)             |

- When all the analytical results for a given variable are below the detection limit, the mean is reported as ND(x), where x is the largest detection limit. The bias estimate (used to calculate confidence intervals about the mean) is one-half of the detection limit, and no confidence interval is reported.

None of the data in this report have been corrected for the blank results. Blank values were very low compared with the concentrations found in actual samples; therefore, correction for the blank results was not warranted. Detailed information on blank samples can be found in Appendix F.

## Process Solids Results

### *Coal*

Table 3-1 shows the analytical results for the coal samples. For each substance, a mean concentration has been calculated, along with the 95% confidence interval about the mean. The mean, plus and minus the confidence interval, represents the range where the probability is 95% that the true mean lies. For example, there is 95% confidence

**Results**

**Table 3-1**  
**Coal Composition (mg/kg dry basis, unless noted)**

| Measurement                      | Run 1   | Run 2   | Run 3                | Run 4   | Mean    | 95% CI |
|----------------------------------|---------|---------|----------------------|---------|---------|--------|
| Gross Load (MWe)                 | 652     | 655     | 657                  | 656     | 655     | 3      |
| Coal Rate (lb/hr, dry)           | 630,000 | 614,000 | 619,000              | 618,000 | 620,250 | 10,900 |
| HHV (Btu/lb, dry) <sup>b</sup>   | 9,996   | 10,142  | 10,067               | 9,861   | 10,017  | 190    |
| Ash (%, dry)                     | 21.1    | 20.0    | 20.1                 | 22.6    | 21.0    | 1.9    |
| Moisture (%)                     | 33.5    | 34.2    | 33.6                 | 34.4    | 33.9    | 0.7    |
| Sulfur (%, dry)                  | 2.15    | 2.03    | 2.32                 | 2.47    | 2.24    | 0.31   |
| <b>FCEM Substances</b>           |         |         |                      |         |         |        |
| Arsenic                          | 4       | 3       | 3                    | 1       | 2.8     | 2.0    |
| Barium                           | 210     | 180     | 160                  | 210     | 190     | 39     |
| Beryllium                        | 5.1     | 6.4     | 10.0                 | 4.6     | 6.5     | 3.9    |
| Cadmium                          | 0.3     | 0.2     | ND(0.1) <sup>c</sup> | ND(0.1) | 0.14    | 0.15   |
| Chloride                         | 90      | 165     | 180                  | 77      | 128     | 83     |
| Chromium                         | 16      | 14      | 17                   | 17      | 16      | 2.3    |
| Cobalt                           | 6       | 6       | 9                    | 4       | 6.3     | 3.3    |
| Fluoride                         | 50      | 57      | 79                   | 56      | 61      | 20     |
| Lead                             | 21      | 11      | 9                    | 7       | 12      | 9.9    |
| Manganese                        | 54      | 68      | 98                   | 69      | 72      | 29     |
| Mercury (DGA/CVAAS) <sup>d</sup> | 0.28    | 0.22    | 0.27                 | 0.26    | 0.26    | 0.04   |
| Mercury (CVAFS) <sup>e</sup>     | 0.27    | 0.24    | 0.28                 | 0.29    | 0.27    | 0.03   |
| Molybdenum                       | ND(4)   | ND(4)   | ND(3)                | ND(4)   | ND(4)   |        |
| Nickel                           | 15      | 11      | 18                   | 13      | 14.3    | 4.8    |
| Phosphorus                       | 95      | 60      | 35                   | 50      | 60      | 41     |
| Selenium                         | 6       | 5       | 4                    | 3       | 4.5     | 2.1    |
| Vanadium                         | 28      | 32      | 37                   | 36      | 33      | 6.5    |

<sup>a</sup>CI = Confidence interval.<sup>b</sup>HHV = Higher heating value.<sup>c</sup>ND = Concentration was less than the method detection limit. Detection limit shown in parentheses.<sup>d</sup>DGA/CVAAS = Double gold amalgamation followed by cold vapor atomic absorption spectroscopy.<sup>e</sup>CVAFS = Cold vapor atomic fluorescence spectroscopy.

that the mean coal beryllium concentration was between 2.6 mg/kg and 10.4 mg/kg. The calculation of this confidence interval is presented in Appendix E.

As will be discussed in Section 4, the quality of the coal analytical data is good, except for arsenic and cobalt. The analytical result for arsenic in a standard reference material was less than 45% of the certified concentration. The analytical result for cobalt in a standard reference material was about 95% higher than the certified concentration. This suggests that the coal analytical results may be biased low for arsenic and high for cobalt.

## Gas Stream Results

### *Electrostatic Precipitator Outlet Gas*

Table 3-2 presents concentration data for the flue gas exiting the ESP at Site 20. The data are presented as solid and vapor compositions, along with the mean concentrations and confidence intervals of the combined phases. The particulate concentration data presented in Table 3-2 are averages of the values obtained from the metals and anions sampling trains at the ESP outlet.

Concentrations in both vapor phase and solid phase blank samples were insignificant when compared with the measured concentrations; therefore, no blank corrections were applied.

Arsenic, beryllium, cadmium, chromium, lead, and nickel concentrations were determined using GFAAS (a glossary of terms is presented in Section 7). The reported value for selenium was determined using ICP-MS instead of GFAAS. Additional discussion on this topic is presented in Section 4. Chloride was determined using ion chromatography; fluoride was determined using an ion-specific electrode. Mercury concentrations were determined using CVAAS.

As at the FCEM sites tested previously, most of the target elements were found primarily in the solid phase. The exceptions were chloride, fluoride, mercury, and selenium. Because of their high volatility at ESP outlet temperatures ( $\approx 300^{\circ}\text{F}$ ), these substances are primarily found in the vapor phase.

### *Stack Gas*

Table 3-3 presents the metal and anion concentrations in the stack gas. The data are presented as solid and vapor compositions, along with the mean concentrations and confidence intervals of the combined phases. The analytical methods chosen for each analyte are identical to those mentioned for the ESP outlet gas.

The particulate concentration data presented in Table 3-3 do not include the measurements obtained with the anions trains. The anions results were excluded because the probe and nozzle rinses (PNR) for Runs 1 and 3 contained a large amount of solids that appeared to be stack wall deposits. The solids are not believed to be representative of

Table 3-2  
Site 20 ESP Outlet Gas Composition ( $\mu\text{g}/\text{Nm}^3$ )

| Measurement                                       | Solid Phase |                 |           | Vapor Phase |          |          | Mean     | 95% CI    |
|---------------------------------------------------|-------------|-----------------|-----------|-------------|----------|----------|----------|-----------|
|                                                   | Run 1       | Run 2           | Run 3     | Run 4       | Run 1    | Run 2    | Run 3    | Run 4     |
| Gross Load (MWe)                                  | 652         | 655             | 657       | 656         |          |          |          | 655       |
| Gas Flow (dscfm) <sup>a,b</sup>                   | 1,960,000   | 1,980,000       | 1,960,000 | 1,920,000   |          |          |          | 1,960,000 |
| Gas Flow ( $\text{Nm}^3/\text{hr}$ ) <sup>c</sup> | 3,100,000   | 3,140,000       | 3,100,000 | 3,040,000   |          |          |          | 3,100,000 |
| Particulate (lb/hr)                               | 227         | 449             | 350       | 231         |          |          |          | 315       |
| Particulate ( $\text{mg}/\text{Nm}^3$ )           | 33          | 65 <sup>d</sup> | 51        | 35          |          |          |          | 46        |
| FCEM Substances                                   |             |                 |           |             |          |          |          |           |
| Antimony                                          | ND(0.99)    |                 | ND(1.18)  | ND(1.43)    | ND(4.31) | ND(4.90) | ND(5.20) | ND(5.20)  |
| Arsenic                                           | 2.9         |                 | 4.3       | 2.2         | ND(0.12) | ND(0.13) | ND(0.14) | 3.1       |
| Barium                                            | 129         |                 | 202       | 135         | 2.2      | 0.6      | 0.6      | 2.7       |
| Beryllium                                         | 1.4         |                 | 3.3       | 1.3         | ND(0.10) | ND(0.11) | ND(0.12) | 101       |
| Cadmium                                           | 0.2         |                 | 0.3       | 0.4         | 0.21     | 0.12     | 0.20     | 2.8       |
| Chloride                                          | 32.4        | 65.1            | 23.2      | 23.2        | 2,500    | 8,800    | 2,400    | 0.22      |
| Chromium                                          | 4.6         |                 | 6.8       | 4.5         | ND(0.44) | ND(0.51) | ND(0.54) | 4,600     |
| Cobalt                                            | 2.0         |                 | 3.7       | 1.8         | ND(0.61) | ND(0.69) | ND(0.73) | 9,000     |
| Fluoride                                          | 9           | 14              | 19        | 19          | 4,400    | 4,200    | 4,100    | 2.5       |
| Lead                                              | 5.3         |                 | 3.0       | 2.6         | 3.3      | 1.7      | 2.1      | 2.5       |
| Manganese                                         | 16.6        |                 | 33.8      | 16.5        | 4.3      | 1.1      | 0.7      | 4.2       |
| Mercury                                           | 0.01        |                 | 0.01      | 0.01        | 13.1     | 10.9     | 16.1     | 24.3      |
| Nickel                                            | 3.6         |                 | 7.5       | 4.0         | ND(1.76) | ND(2.00) | ND(2.13) | 25.2      |
| Phosphorus                                        | 23.7        |                 | 21.4      | 15.3        | ND(10.9) | 15.9     | ND(13.2) | 5.3       |
| Selenium <sup>e</sup>                             | 42          |                 | 77        | 76          | 573      | 723      | 637      | 17.8      |
| Vanadium                                          | 10.5        |                 | 13.5      | 9.6         | ND(0.42) | ND(0.48) | ND(0.51) | 11.2      |

<sup>a</sup>1 atm, 68°F (dry).

<sup>b</sup>Gas flow rate measured at stack. FGD inlet gas flow considered biased due to sample location that did not meet EPA Method 2 requirements.

<sup>c</sup>1 atm, 0°C (dry).

<sup>d</sup>Mass loading for Run 2 could be high because of ESP problems (see Section 4, Process Operations).

<sup>e</sup>ICP-MS data.

ND = Concentration was less than the method detection limit. Detection limit in parentheses.

Table 3-3  
Site 20 Stack Gas Composition ( $\mu\text{g}/\text{Nm}^3$ )

| Measurement                             | Solid Phase |           |           |           | Vapor Phase |          | Mean      | 95% CI   |
|-----------------------------------------|-------------|-----------|-----------|-----------|-------------|----------|-----------|----------|
|                                         | Run 1       | Run 2     | Run 3     | Run 4     |             |          |           |          |
| Gross Load (MWe)                        | 652         | 655       | 657       | 656       |             |          | 655       | 3        |
| Gas Flow (dscfm)                        | 1,960,000   | 1,980,000 | 1,960,000 | 1,920,000 |             |          | 1,960,000 | 40,000   |
| Gas Flow ( $\text{Nm}^3/\text{hr}$ )    | 3,100,000   | 3,140,000 | 3,100,000 | 3,040,000 |             |          | 3,100,000 | 66,000   |
| Particulate (lb/hr)                     | 59          | 175       | 95        | 123       |             |          | 113       | 78       |
| Particulate ( $\text{mg}/\text{Nm}^3$ ) | 9           | 25*       | 14        | 18        |             |          | 17        | 11       |
| FCFM Substances                         |             |           |           |           |             |          |           |          |
| Antimony                                | ND(1.31)    | ND(1.07)  | ND(1.13)  | ND(1.29)  | ND(4.65)    | ND(4.73) | ND(5.09)  | ND(5.09) |
| Arsenic                                 | 0.46        | 0.86      | 0.50      | 0.49      | ND(0.13)    | ND(0.13) | ND(0.14)  | ND(0.14) |
| Barium                                  | 27.3        | 65.6      | 27.8      | 29.1      | 3.9         | 0.4      | 0.3       | 0.3      |
| Beryllium                               | 0.26        | 0.46      | 0.29      | 0.28      | ND(0.11)    | ND(0.11) | ND(0.12)  | ND(0.12) |
| Cadmium                                 | 0.90        | 0.07      | 0.64      | 0.26      | 0.31        | 0.08     | 0.20      | 0.08     |
| Chloride                                | 127         | 133       | 500       | 52.1      | 68.6        | 174      |           |          |
| Chromium                                | 2.8         | 3.7       | 1.3       | 2.2       | ND(0.48)    | ND(0.49) | ND(0.53)  | ND(0.52) |
| Cobalt                                  | 0.50        | 0.89      | 0.46      | 0.66      | ND(0.66)    | ND(0.67) | ND(0.72)  | ND(0.72) |
| Fluoride                                | 153         | 149       | 637       | 91.9      | 69.4        | 71.5     |           |          |
| Lead                                    | 0.65        | 1.15      | 0.38      | 0.60      | 3.6         | 0.5      | 2.0       | 1.8      |
| Manganese                               | 3.9         | 6.5       | 3.9       | 4.9       | 0.2         | 6.1      | 2.6       | 92.5°    |
| Mercury                                 | 0.04        | 0.07      | 0.01      | 0.05      | 12.7        | 10.4     | 9.7       | 9.7      |
| Nickel                                  | 3.5         | 4.7       | 2.7       | 4.7       | ND(1.90)    | ND(1.93) | ND(2.08)  | ND(2.08) |
| Phosphorus                              | 6.1         | 7.8       | 3.2       | 5.6       | 12.2        | 9.1      | 15.4      | 18.9     |
| Selenium <sup>b</sup>                   | 15.0        | 24.0      | 16.5      | 16.1      | 91          | 123      | 178       | 122      |
| Vanadium                                | 2.5         | 3.7       | 2.3       | 2.8       | ND(0.46)    | ND(0.50) | ND(0.50)  | ND(0.50) |

\*Mass loading for Run 2 could be high because of ESP problems (see Section 4, Process Operations).

<sup>b</sup>ICP-MS data.

<sup>c</sup>Value is suspect; not used in the calculation of the mean or the 95% CI.

ND = Concentration was less than the method detection limit. Detection limit in parentheses.

CI = Confidence interval.

the particulate matter present in the gas stream. The filter weight gains for all of the anions runs were similar to those for the multi-metals runs, indicating that both trains collected a similar number of small particles and that the difference in PNR weights was due to material scraped off the sampling port walls when the anions probes were removed from the stack.

### **Emission Factors**

Table 3-4 presents mean emission factors for both the ESP outlet and stack gas streams. Emission factors are presented for each of the substances on a mass-per-unit-energy basis.

For both gas streams, chloride, fluoride, and selenium had the highest emission factors of all the target species. All three of these species showed much lower concentrations at the stack compared to the ESP outlet, indicating that these species were effectively removed by the FGD system, as discussed below.

### **FGD System Control Efficiency**

Table 3-5 presents the removal efficiencies for the FGD system, listed by species. The average particulate removal was calculated to be 63 percent. The calculated particulate removal is lower than the fly ash removal levels due to re-entrainment of scrubber solids and acid mist formation. Based on the removal of other species that were primarily present in the particulate phase at the ESP outlet (e.g., arsenic, beryllium, aluminum, barium, iron, and vanadium), the average fly ash removal was about 75 percent.

The removal efficiencies for chloride and fluoride were based on vapor phase concentrations only because both of these species should be present in the vapor phase at both locations. The calculated removal efficiency would have been lower if the solid phase results had been included, due to the relatively high concentrations of chloride and fluoride in the stack gas particulate. Most of this particulate is probably scrubber generated material, which contains significant levels of chloride and fluoride.

When calculating the FGD system removal efficiency, the actual measured ESP outlet gas flow was not used. Rather, it was assumed that the gas flow measured at the stack was the same as the FGD inlet gas flow (i.e., it was assumed that no flue gas bypassed the FGD system). This assumption was based on SO<sub>2</sub> and energy balances around the FGD system. (Section 4 provides additional discussion.) Also, the ESP outlet sampling location did not meet the requirements of EPA Method 2, due to the close proximity of this sampling location to the induced draft fans and FGD system bypass ductwork.

### **ESP System Control Efficiency**

Estimates of the ESP system control efficiency are also shown in Table 3-5. The ESP inlet ash loading was estimated using coal flow rates and analyses and using the

**Table 3-4**  
**Emission Factors (lb/10<sup>12</sup> Btu)**

| Substance                            | ESP Outlet    |                   | Stack         |                   |
|--------------------------------------|---------------|-------------------|---------------|-------------------|
|                                      | Combined Mean | 95% CI About Mean | Combined Mean | 95% CI About Mean |
| Gas Flow (dscfm)                     | 1,960,000     | 40,000            | 1,960,000     | 40,000            |
| Gas Flow (Nm <sup>3</sup> /hr)       | 3,100,000     | 66,000            | 3,100,000     | 66,000            |
| Coal Flow (lb/hr, dry)               | 620,000       | 11,000            |               |                   |
| Heating Value (Btu/lb, dry)          | 10,000        | 190               |               |                   |
| Particulate (lb/10 <sup>6</sup> Btu) | 0.051         | 0.026             | 0.019         | 0.012             |
| <b>FCEM Substances</b>               |               |                   |               |                   |
| Antimony                             | ND            | —                 | ND            | —                 |
| Arsenic                              | 3.4           | 2.9               | 0.63          | 0.34              |
| Barium                               | 170           | 110               | 42            | 33                |
| Beryllium                            | 2.2           | 3.1               | 0.35          | 0.18              |
| Cadmium                              | 0.52          | 0.18              | 0.70          | 0.68              |
| Chloride                             | 5,000         | 9,900             | 390           | 610               |
| Chromium                             | 5.8           | 3.6               | 2.8           | 1.8               |
| Cobalt                               | 2.7           | 2.8               | 0.69          | 0.54              |
| Fluoride                             | 4,600         | 620               | 430           | 770               |
| Lead                                 | 7.7           | 3.5               | 3.8           | 2.9               |
| Manganese                            | 27            | 28                | 8.5           | 8.6               |
| Mercury                              | 15            | 7.2               | 12            | 2.6               |
| Nickel                               | 5.5           | 6.0               | 4.3           | 2.1               |
| Phosphorus                           | 22            | 10                | 21            | 7.2               |
| Selenium                             | 780           | 220               | 160           | 65                |
| Vanadium                             | 12            | 5.7               | 3.08          | 1.15              |

CI = Confidence interval.

**Table 3-5**  
**Removal Efficiencies for ESP<sup>a</sup> and FGD Systems at Site 20**

|                       | FGD Systems |        | ESP Performance |        |
|-----------------------|-------------|--------|-----------------|--------|
|                       | % Reduction | 95% CI | % Reduction     | 95% CI |
| Particulate           | 63          | 25     | 99.7            | 0.1    |
| <b>Target Species</b> |             |        |                 |        |
| Antimony              | ND          | ND     | --              | --     |
| Arsenic               | 82          | 13     | 99.5            | 0.4    |
| Barium                | 75          | 20     | 99.6            | 0.2    |
| Beryllium             | 84          | 24     | 99.6            | 0.6    |
| Cadmium               | -36         | 140    | 94.6            | 7.0    |
| Chloride <sup>b</sup> | 98          | 4      | -0.54           | 200    |
| Chromium              | 53          | 32     | 99.6            | 0.3    |
| Cobalt                | 75          | 27     | 99.6            | 0.5    |
| Fluoride <sup>b</sup> | 98          | 1      | 2.2             | 9.2    |
| Lead                  | 55          | 36     | 98.7            | 0.8    |
| Manganese             | 68          | 28     | 99.6            | 0.4    |
| Mercury               | 20          | 33     | 1.3             | --     |
| Molybdenum            | 3           | 44     | 98.7            | 0.9    |
| Nickel                | 22          | 72     | 99.7            | 0.4    |
| Phosphorous           | 47          | 32     | 99.3            | 0.5    |
| Selenium              | 79          | 8      | 18.2            | 19.5   |
| Vanadium              | 75          | 11     | 99.6            | 0.2    |
| <b>Other Elements</b> |             |        |                 |        |
| Aluminum              | 83          | 9      | 99.7            | 0.2    |
| Calcium               | 62          | 22     | 99.7            | 0.1    |
| Copper                | 63          | 39     | 99.5            | 0.3    |
| Iron                  | 84          | 14     | 99.8            | 0.3    |
| Magnesium             | 0           | 47     | 99.7            | 0.1    |
| Potassium             | 66          | 46     | 99.8            | 0.1    |
| Sodium                | 32          | 17     | 99.4            | 0.2    |
| Sulfur                | 95          | 2      | 2.8             | 17.2   |

<sup>a</sup>ESP removal efficiencies estimated using an assumed fly ash collection rate.

<sup>b</sup>Removal of vapor phase anions only for FGD system.

CI = Confidence interval.

ND = Concentration was below method detection limit. Removal calculation not performed.

assumption that 80% of the coal ash is transformed into fly ash. The ESP outlet ash loading used was the average value shown in Table 3-2.

# 4

## DATA EVALUATION

---

Several procedures can be used to evaluate the information developed during a field sampling program. In the case of Site 20, three methods were used to evaluate data quality. First, the process data were examined to determine if the unit operated at normal, steady-state conditions during the sampling periods. Second, the quality assurance/quality control (QA/QC) protocol for sampling and analytical procedures used at Site 20 (i.e., equipment calibration and leak checks, duplicates, blanks, spikes, standards, etc.) were evaluated. Site 20 QA/QC data were compared with FCEM project objectives. Third, material balances were calculated around the entire plant, the boiler/ESP combination, and the FGD system. Material balances involve the summation and comparison of mass flow rates in several streams, often sampled and analyzed by different methods. Closure within an acceptable range can be used as an indicator of accurate results for streams that contribute significantly to the overall inlet or outlet mass rates, such as the coal and ash streams.

### Process Operation

A major objective of this project was to estimate the emission rates of FCEM species from the Site 20 power plant. Therefore, it was important that the plant operate under representative and stable conditions throughout each test day. To ensure that the desired conditions were met and maintained, the plant's control room operators set up special logs to record relevant data from the plant's data acquisition system.

The logged data show that the boiler and FGD system operations were relatively consistent and stable during sample collection periods. Table 4-1 and Figures 4-1 and 4-2 demonstrate this conclusion. An upset in the ESP operation occurred on the second test day. The upset and its impacts on test results are described below. Note that the large variability in the ESP outlet opacity data is commonly observed for ESPs and results from ESP rasper cycling.

The logged data also showed that the boiler and ESP operations were representative of "typical" plant operation except for the problems caused by the ESP opacity monitor malfunction. However, the FGD system treated more gas than it usually does under "typical" plant operation. The impacts of the higher gas flow to the FGD system are discussed below.

**Table 4-1**  
**Site 20 Process Stability Summary <sup>a</sup>**

| Date    | Sampling Period | Period Averaged | Unit Load (MW) | Econ. Out Avg. O <sub>2</sub> (%) | Stack CO <sub>2</sub> (%) | SO <sub>2</sub> Removal (%) | ESP "B" Opacity (%) | ESP "A" <sup>b</sup> Opacity (%) |
|---------|-----------------|-----------------|----------------|-----------------------------------|---------------------------|-----------------------------|---------------------|----------------------------------|
| 6/8/93  | 1100-1907       | 1035-1935       | Average        | 652                               | 2.9                       | 10.0                        | 99.5                | 10.9                             |
|         |                 |                 | Std. Deviation | 2                                 | 0.1                       | 0.2                         | 3.8                 | 9.8                              |
|         |                 |                 | Maximum        | 656                               | 3.1                       | 10.4                        | 100.3               | 2.5                              |
|         |                 |                 | Minimum        | 648                               | 2.7                       | 9.7                         | 99.3                | 23.7                             |
| 6/9/93  | 0915-1803       | 0900-1835       | Average        | 654                               | 3.0                       | 9.9                         | 99.5                | 0.2                              |
|         |                 |                 | Std. Deviation | 1                                 | 0.1                       | 0.1                         | 100.4               | 0.1                              |
|         |                 |                 | Maximum        | 658                               | 3.2                       | 10.1                        | 98.1                | 2.9                              |
|         |                 |                 | Minimum        | 650                               | 2.9                       | 9.7                         | 99.7                | 27.7                             |
| 6/10/93 | 0842-1944       | 0820-2004       | Average        | 657                               | 3.0                       | 10.1                        | 99.0                | 0.1                              |
|         |                 |                 | Std. Deviation | 2                                 | 0.1                       | 0.1                         | 99.7                | 0.1                              |
|         |                 |                 | Maximum        | 663                               | 3.2                       | 10.5                        | 97.2                | 27.8                             |
|         |                 |                 | Minimum        | 652                               | 2.7                       | 9.9                         | 99.4                | 0.1                              |
| 6/11/93 | 0855-1555       | 0840-1610       | Average        | 656                               | 2.9                       | 10.3                        | 98.6                | 0.0                              |
|         |                 |                 | Std. Deviation | 1                                 | 0.1                       | 0.2                         | 99.4                | 8.4                              |
|         |                 |                 | Maximum        | 659                               | 3.1                       | 10.8                        | 96.9                | 2.3                              |
|         |                 |                 | Minimum        | 652                               | 2.6                       | 9.9                         | 96.9                | 15.8                             |

<sup>a</sup>Data from plant's data acquisition system.

<sup>b</sup>The opacity monitor for the "A" side ESP malfunctioned on 6/9/93 and gave faulty signals on 6/10 and 6/11.

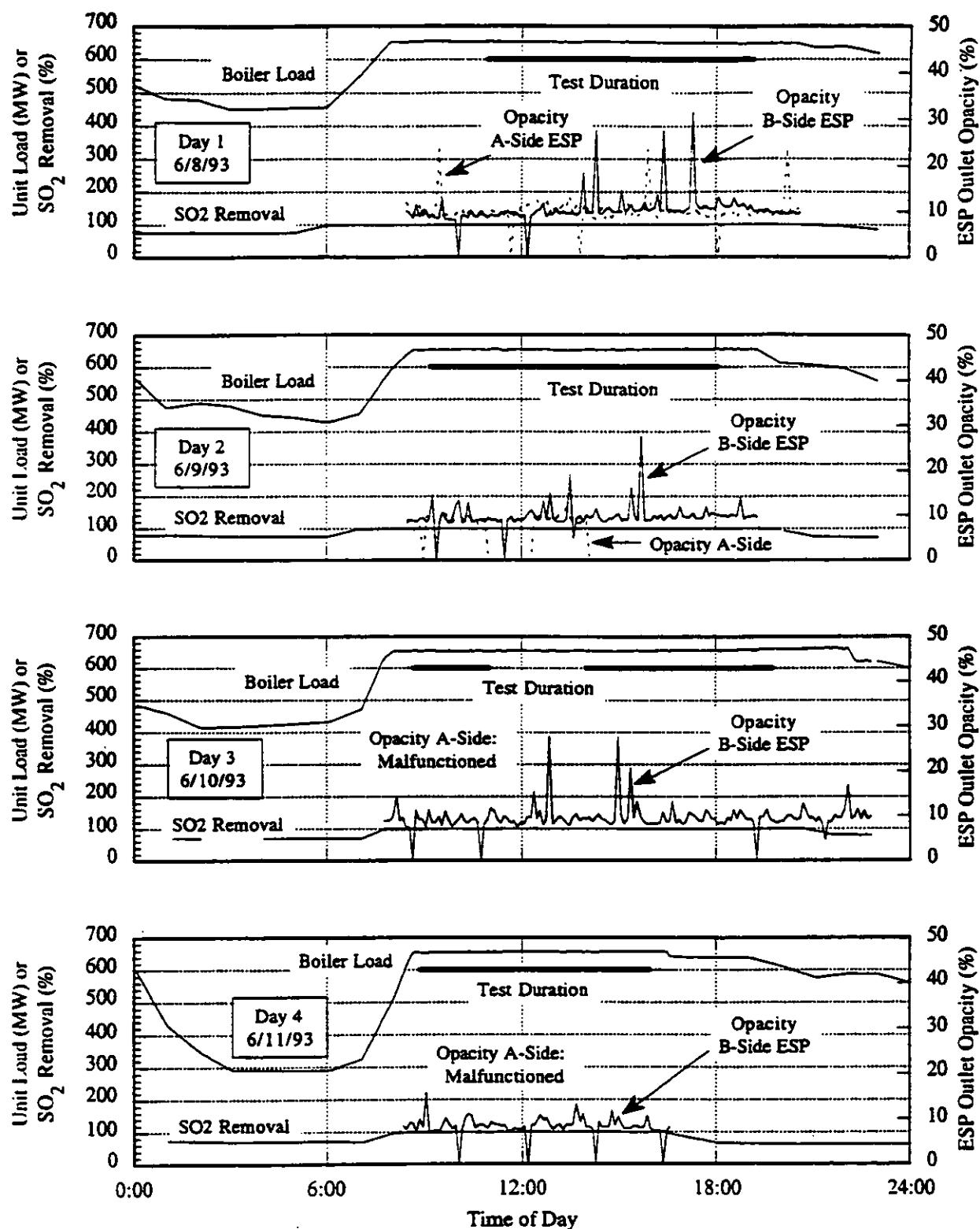



Figure 4-1  
Site 20 Process Data for Days 1-4

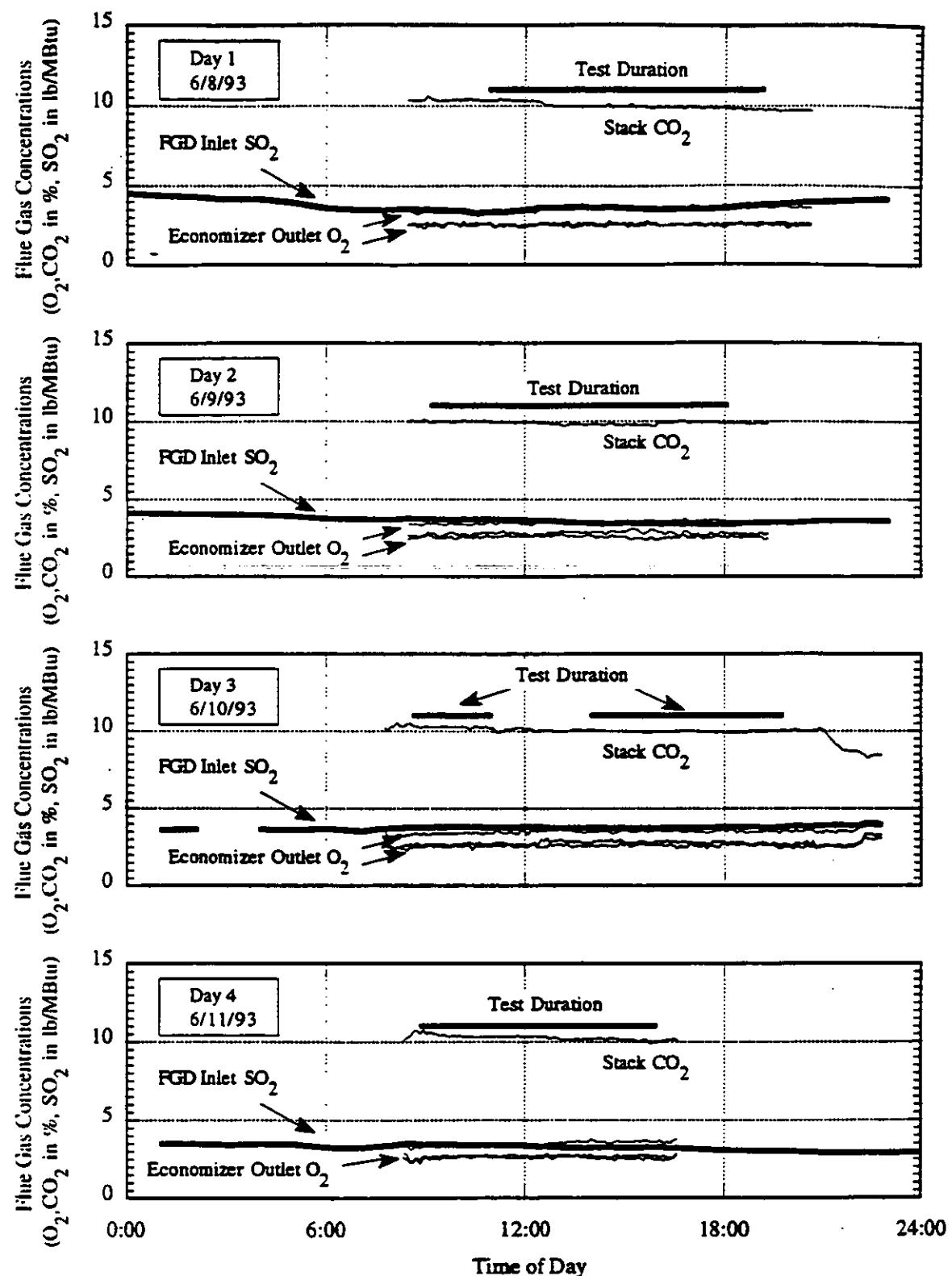



Figure 4-2  
Gas Concentration Data for Days 1-4

## Plant Operational Changes

Three changes were made to the "typical" plant operating procedures. These changes have the potential to affect the test data, so they are described and discussed below.

### **Flue Gas Bypass Around FGD System**

The plant can bypass flue gas around its FGD system. Typical plant operation is to bypass as much gas as possible, while still meeting the required SO<sub>2</sub> emission limit (1.2 lb/MMBtu). The amount of bypass depends on the sulfur level in the coal, which is highly variable. To ensure that the plant's emissions were in compliance and that the amount of bypass was constant during testing, the plant operated its bypass dampers at an abnormally low value of only 10% open. This appeared to cause all of the flue gas to enter the FGD system, based on gas temperature and SO<sub>2</sub> concentration measurements at the scrubber inlet, scrubber outlet, and stack locations. The gas velocity measurements from the sampling trains suggest that approximately 15% of the flue gas bypassed the scrubbers, but the scrubber inlet velocity measurements were questionable because of the close proximity of the sampling ports to the induced draft fans and flue gas bypass ductwork.

The lower-than-typical amount of bypass might affect the estimated trace element emission rates for "typical" plant operation. For example, the measured stack gas concentrations might be lower than typical for species that are effectively removed by the FGD system. Species that are not effectively removed by the FGD system are probably not affected by the lower-than-typical amount of bypass. In any case, "typical" stack gas emissions can be estimated if the amount of flue gas bypass is known. For example, the bypass gas concentrations should be the same as those measured for the FGD inlet flue gas. Scrubber outlet flue gas concentrations can be approximated by the measured stack gas concentrations (assuming that 100 percent of the flue gas entered the scrubbers during the tests). Knowing these concentrations and the amount of flue gas bypass, the "typical" emission rates from the plant can be calculated.

### **Bottom Ash Sluicing**

Bottom ash and economizer ash are sluiced to an ash pond. Plant personnel report that very little economizer ash is produced, so only bottom ash was sampled at Site 20. The normal plant procedure is to sluice the bottom ash every 24 hours, usually at night. This procedure was modified to collect a bottom ash sample more representative of the gas sampling periods. That is, the plant sluiced bottom ash early in the morning to remove most of the ash before gas sampling activities started. After gas sampling was completed, the plant sluiced bottom ash again, and the sluicing stream was sampled to obtain a bottom ash sample that corresponded to the daily gas sampling activities.

The change in the bottom ash sluicing procedure should make the bottom ash sample more representative.

### **Soot Blowing**

The plant normally operates soot blowers on an "as-needed" basis (about every other day, according to plant personnel). During testing, however, one set of soot blowers, designated as "3 IKS sequence 9" was operated for one hour every day while gas sampling activities were in progress. No additional soot blowing occurred during the day, but plant personnel operated soot blowers at night on an "as-needed" basis.

The change in soot blowing schedule may represent a "worst-case" scenario for emissions from Site 20. That is, particulate emissions from the ESP should increase when the ESP inlet particulate loading increases. If all other parameters are held constant, the ESP inlet particulate loading should increase during soot blowing operations. Therefore, higher ESP outlet emissions would be expected. Since gas sampling activities were in progress during soot blowing operations, the measured emissions from Site 20 may be higher than the average values for "typical" plant operation.

### **Plant Operational Problems**

The only plant-related problem occurred on 6/9/93 (Run 2) when the ESP energy management system reduced the electrical power supplied to the A-side precipitator. The power was reduced because the energy management system received a faulty signal from the opacity monitor installed on the A-side ESP outlet duct work. Since the energy management system uses the opacity monitor signal to control the power supplied to the ESP transformer/rectifier (T/R) sets, the artificially low opacity signal resulted in less power supplied to the A-side T/R sets. The B-side ESP was not affected by these events.

The opacity monitor failure was not discovered until 8:00 a.m. on 6/10/93. At that time, the energy management system was set to manual control for the A-side precipitator. The system remained in this mode for the last two test days (6/10/93 and 6/11/93).

The reduced power supply to the A-side T/R sets probably caused an increase in the particulate grain loading at the ESP outlet during Run 2. The field data seem to support this conclusion. That is, the highest particulate concentrations were measured during Run 2 (for both the ESP outlet and stack gas locations). Even though the particulate data suggest that the ESP problems occurred during Run 2, the test data from Run 2 were used in the calculation of all concentration and emission factors.

One other item to note concerning the ESP at Site 20 was the large number of broken discharge electrodes. According to plant personnel, Site 20 commonly experiences broken electrodes and needs to repair broken electrodes every time the plant is shut down. Plant personnel also indicated that the number of broken electrodes was high relative to normal plant operation. Although the number of broken electrodes might have been higher than during "typical" plant operation, the plant continued to operate without exceeding its opacity limits, indicating that the broken electrodes had an insignificant effect on outlet mass emissions. Also, because the number of broken electrodes stayed constant during the field testing effort, any effect they caused should have been constant over the four days of testing.

At this time, it appears that the large number of broken electrodes did not affect the data from the field testing program.

### Sample Collection

Appendix A describes the sampling procedures used at Site 20. Following are some significant observations about sample collection:

- The multi-metals sample collected at the ESP outlet on 6/9/93 (Run 2) was voided because of an accident that caused the sample to be collected at nonisokinetic conditions for a substantial amount of time. The completeness objectives for the project were still met in spite of this accident.
- A red precipitate coated the hot box exit glass pieces for the anions and multi-metals trains at both sampling locations on every test day. The precipitate could not be recovered from the glassware using the rinses described by the sampling methods. The precipitate was removed by concentrated sulfuric acid during cleaning. This acid was not used for sample recovery since it was not specified in the sampling method.
- The above observations suggest that the anions and multi-metals sampling methods did not recover the elements in the red precipitate. If these elements were FCEM target species, the field test data may underestimate their concentrations in the flue gas streams.
- A mercury speciation sample was not collected at the stack on 6/8/93 (Run 1) because of sampling problems. The completeness objectives for the project were still met in spite of the sampling problems.
- Although the test plan called for one particle size distribution (PSD) sample to be collected each day, only a small amount of solids were collected on the first day; therefore, three-day composite samples were collected at the ESP outlet and stack locations (2 samples total). This limits the ability to generate average values and to estimate some of the uncertainties for the PSD data.

### Analytical Quality Control Results

Generally, the type of quality control information obtained pertains to measurement precision, accuracy, and blank effects, determined using various types of replicate, spiked, and blank samples. The specific characteristics evaluated depend on the type of quality control checks performed. For example, blanks may be prepared at different stages in the sampling and analysis process to isolate the source of a blank effect. Similarly, replicate samples may be generated at different stages to isolate and measure sources of variability. Table 4-2 summarizes the QA/QC measures commonly used as part of the FCEM data evaluation protocol, and the characteristic information obtained. The absence of any of these types of quality control checks from the data does not necessarily reflect poorly on the quality of the data but does limit the ability to estimate the magnitude of the measurement error and, hence, prevents estimating the confidence that can be placed in the results.

**Table 4-2**  
**Types of Quality Control Samples**

| QC Activity                                                     | Characteristic Measured                                                                                                                                                                      |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Precision</b>                                                |                                                                                                                                                                                              |
| Replicate samples collected over time under the same conditions | Total variability, including process or temporal, sampling, and analytical, but not bias.                                                                                                    |
| Duplicate field samples collected simultaneously                | Sampling plus analytical variability at the actual sample concentrations.                                                                                                                    |
| Duplicate analyses of a single sample                           | Analytical variability at the actual sample concentrations.                                                                                                                                  |
| Matrix- or media-spiked duplicates                              | Sampling plus analytical variability at an established concentration.                                                                                                                        |
| Laboratory control sample duplicates                            | Analytical variability in the absence of sample matrix effects.                                                                                                                              |
| <b>Accuracy (Includes Bias and Precision)</b>                   |                                                                                                                                                                                              |
| Matrix-spiked samples                                           | Analyte recovery in the sample matrix, indicating possible matrix interferences and other effects. In a single sample, includes both random error (imprecision) and systematic error (bias). |
| Media-spiked samples                                            | Same as matrix-spiked samples. Used where a matrix-spiked sample is not feasible, such as certain stack sampling methods.                                                                    |
| Laboratory control samples (LCS)                                | Analyte recovery in the absence of actual sample matrix effects. Used as an indicator of analytical control.                                                                                 |
| Standard Reference Material                                     | Analyte recovery in a matrix similar to the actual samples.                                                                                                                                  |
| <b>Blank Effects</b>                                            |                                                                                                                                                                                              |
| Field Blank                                                     | Total sampling plus analytical blank effect, including sampling equipment and reagents, sample transport and storage, and analytical reagents and equipment.                                 |
| Method Blank                                                    | Blank effects inherent in analytical method, including reagents and equipment.                                                                                                               |
| Reagent Blank                                                   | Blank effects from reagents used.                                                                                                                                                            |

As shown in Table 4-2, different QC checks provide different types of information, particularly pertaining to the sources of inaccuracy, imprecision, and blank effects. As part of the FCEM project, measurement precision and accuracy are typically estimated from QC indicators that cover as much of the total sampling and analytical process as feasible. Precision and accuracy measurements are based primarily on the actual sample matrix. The precision and accuracy estimates obtained experimentally during the test programs are compared with data quality objectives (DQOs) established for the FCEM project.

These DQOs are not intended to be used as validation criteria, but they can be used as empirical estimates of the precision and accuracy that would be expected from existing reference measurement methods and that would be considered acceptable. The precision and accuracy objectives are not necessarily derived from analyses of the same types of samples being investigated. Although analytical precision and accuracy are relatively easy to quantify and control, sampling precision and accuracy are unique to each site and each sample matrix. Data that do not meet these objectives are not necessarily unacceptable. Rather, the intent is to document the precision and accuracy actually obtained, and the objectives serve as benchmarks for comparison. The effects of not meeting the objectives should be considered in light of the intended use of the data.

Table 4-3 shows the types of quality control data reported for this site. The results of these analyses can be found in Appendix F. Table 4-4 presents a summary of precision and accuracy estimates. Most of the quality control results met the project objectives.

The quality control data show that the following information should be considered when the analytical data are evaluated:

- The recovery of arsenic in the coal by GFAAS was low (43% compared to a 75-125% objective), suggesting a low bias for arsenic in the coal.
- The recovery for cobalt in the coal by ICP-AES was high (193% compared to a 75-125% objective), suggesting a high bias for cobalt in the coal.
- The recovery of lead in the stack gas and ESP outlet solid phases measured by GFAAS (70%) was slightly below the project objectives (75-125%). The recovery of lead in the ICP-MS samples was higher (104%); however, significant levels of lead were found in the blanks for this method. The high blank levels could account for the higher recovery. The GFAAS values were used in the mass balance. In the flue gas samples, lead was contained primarily in the solid phase; therefore, the results for lead in the flue gas may be biased slightly low.
- The recoveries for all the metals (except for selenium and lead), as determined by ICP-MS, were outside the specifications for metals in flue gas (solid phase). ICP-MS is an evolving analytical technique, and the results seem to confirm that the technique needs further refinement before it will produce consistently useable results. However, for selenium, the recovery was 122% (within the 75-125% specification). In addition, no selenium was detected in the method blanks.

**Table 4-3**  
**Types of Quality Control Data Reported**

| Analysis<br>(Grouped by Source/Matrix) | Precision         |                      |                     |                                  | Accuracy                  |                                  |                    |                          | Blank                             |                |               |                 |
|----------------------------------------|-------------------|----------------------|---------------------|----------------------------------|---------------------------|----------------------------------|--------------------|--------------------------|-----------------------------------|----------------|---------------|-----------------|
|                                        | Replicate<br>Runs | Dup Field<br>Samples | Dup Lab<br>Analysts | Matrix or<br>Media<br>Spiked Dup | Lab Control<br>Sample Dup | Matrix<br>or Media<br>Spiked Dup | Surrogate<br>Spike | Lab<br>Control<br>Sample | Standard<br>Reference<br>Material | Field<br>Blank | Trip<br>Blank | Method<br>Blank |
| <b>ESP Outlet Gas</b>                  |                   |                      |                     |                                  |                           |                                  |                    |                          |                                   |                |               |                 |
| Metals - Vapor Phase                   | ✓                 |                      |                     |                                  | ✓                         | ✓                                | ✓                  | ✓                        | ✓                                 | ✓              | ✓             | ✓               |
| Metals - Solid Phase                   | ✓                 |                      |                     |                                  | ✓                         |                                  |                    | ✓                        | ✓                                 | ✓              | ✓             | ✓               |
| Anions - Vapor Phase                   | ✓                 |                      |                     |                                  | ✓                         | ✓                                | ✓                  | ✓                        | ✓                                 | ✓              | ✓             | ✓               |
| Anions - Solid Phase                   | ✓                 |                      |                     |                                  | ✓                         |                                  |                    | ✓                        | ✓                                 | ✓              | ✓             | ✓               |
| <b>Coal</b>                            |                   |                      |                     |                                  |                           |                                  |                    |                          |                                   |                |               |                 |
| Metals                                 | ✓                 | ✓                    | ✓                   |                                  |                           |                                  |                    | ✓                        |                                   |                |               |                 |
| Anions                                 | ✓                 | ✓                    | ✓                   |                                  |                           |                                  |                    | ✓                        |                                   |                |               |                 |

**Table 4-4**  
**Summary of Precision and Accuracy Estimates for Site 20**

| Measurement Parameter                                                                | How Measured | Objectives           |                          | Measured             |                          |  |
|--------------------------------------------------------------------------------------|--------------|----------------------|--------------------------|----------------------|--------------------------|--|
|                                                                                      |              | Precision<br>(% RPD) | Accuracy<br>(% Recovery) | Precision<br>(% RPD) | Accuracy<br>(% Recovery) |  |
| <b>Metals in Coal - GFAAS *</b>                                                      |              |                      |                          |                      |                          |  |
| Precision - Replicate Samples                                                        |              |                      |                          |                      |                          |  |
| Accuracy - Standard Reference Material                                               |              |                      |                          |                      |                          |  |
| Arsenic                                                                              |              | 20                   | 75-125                   | 46*                  | 43                       |  |
| Cadmium                                                                              |              | 20                   | 75-125                   | 70*                  | Not Defined <sup>b</sup> |  |
| Selenium                                                                             |              | 20                   | 75-125                   | 29*                  | 125                      |  |
| <b>Metals in Coal by CVAFS<sup>c</sup></b>                                           |              |                      |                          |                      |                          |  |
| Precision - Replicate Samples                                                        |              |                      |                          |                      |                          |  |
| Accuracy - Standard Reference Material                                               |              |                      |                          |                      |                          |  |
| Mercury                                                                              |              | 20                   | 75-125                   | 0                    | 85                       |  |
| <b>Metals in Coal by DGAA<sup>d</sup></b>                                            |              |                      |                          |                      |                          |  |
| Precision - Replicate Samples                                                        |              |                      |                          |                      |                          |  |
| Accuracy - Standard Reference Material                                               |              |                      |                          |                      |                          |  |
| Mercury                                                                              |              | 20                   | 75-125                   | 10                   | 116                      |  |
| <b>Metals in Coal by ICP-AES</b>                                                     |              |                      |                          |                      |                          |  |
| Precision - Replicate Samples                                                        |              |                      |                          |                      |                          |  |
| Accuracy - Standard Reference Material                                               |              |                      |                          |                      |                          |  |
| Barium                                                                               |              | 20                   | 75-125                   | 13*                  | 97                       |  |
| Beryllium                                                                            |              | 20                   | 75-125                   | 37*                  | 104                      |  |
| Cobalt                                                                               |              | 20                   | 75-125                   | 33*                  | 193                      |  |
| Chromium                                                                             |              | 20                   | 75-125                   | 9*                   | 98                       |  |
| Lead                                                                                 |              | 20                   | 75-125                   | 52*                  | 85                       |  |
| Manganese                                                                            |              | 20                   | 75-125                   | 26*                  | 101                      |  |
| Nickel                                                                               |              | 20                   | 75-125                   | 21*                  | 96                       |  |
| Phosphorus                                                                           |              | 20                   | 75-125                   | 42*                  | 110                      |  |
| Vanadium                                                                             |              | 20                   | 75-125                   | 12*                  | 98                       |  |
| <b>Metals in Stack Gas &amp; ESP Outlet Solid Phase - ICP-AES<sup>e</sup></b>        |              |                      |                          |                      |                          |  |
| Precision - Analytical Spike Replicates                                              |              |                      |                          |                      |                          |  |
| Accuracy - Analytical Spike                                                          |              |                      |                          |                      |                          |  |
| Beryllium                                                                            |              | 20                   | 75-125                   | 1                    | 88                       |  |
| Chromium                                                                             |              | 20                   | 75-125                   | 1                    | 90                       |  |
| Nickel                                                                               |              | 20                   | 75-125                   | 1                    | 85                       |  |
| <b>Metals in Stack Gas &amp; ESP Outlet Solid Phase - GFAAS and CVAA<sup>f</sup></b> |              |                      |                          |                      |                          |  |
| Precision - Analytical Spike Replicate                                               |              |                      |                          |                      |                          |  |
| Accuracy - Analytical Spike                                                          |              |                      |                          |                      |                          |  |
| Arsenic                                                                              |              | 20                   | 75-125                   | 2                    | 92                       |  |
| Cadmium                                                                              |              | 20                   | 75-125                   | 1                    | 89                       |  |
| Lead                                                                                 |              | 20                   | 75-125                   | 3                    | 71                       |  |
| Mercury                                                                              |              | 20                   | 75-125                   | 1                    | 121                      |  |
| Selenium                                                                             |              | 20                   | 75-125                   | 0                    | 100                      |  |

Table 4-4 (Continued)

| Measurement Parameter                                                      | How Measured                            | Objectives        |                       |                   | Measured Accuracy (% Recovery) |
|----------------------------------------------------------------------------|-----------------------------------------|-------------------|-----------------------|-------------------|--------------------------------|
|                                                                            |                                         | Precision (% RPD) | Accuracy (% Recovery) | Precision (% RPD) |                                |
| <b>Metals in Stack Gas &amp; ESP Outlet Solid Phase - ICP-MS *</b>         |                                         |                   |                       |                   |                                |
| <b>Arsenic</b>                                                             | Precision - Reference Sample Replicates | 20                | 75-125                | 5                 | 53                             |
| <b>Beryllium</b>                                                           | Accuracy - Reference Sample Recovery    | 20                | 75-125                | 13                | 56                             |
| <b>Cadmium</b>                                                             |                                         | 20                | 75-125                | 1                 | 147                            |
| <b>Chromium</b>                                                            |                                         | 20                | 75-125                | 1                 | 38                             |
| <b>Lead</b>                                                                |                                         | 20                | 75-125                | 6                 | 104                            |
| <b>Mercury</b>                                                             |                                         | 20                | 75-125                | 18                | 3100                           |
| <b>Nickel</b>                                                              |                                         | 20                | 75-125                | 4                 | 40                             |
| <b>Selenium</b>                                                            |                                         | 20                | 75-125                | 24                | 122                            |
| <b>Metals in Stack Gas &amp; ESP Outlet Vapor Phase - ICP-AES</b>          |                                         |                   |                       |                   |                                |
| <b>Beryllium</b>                                                           | Precision - Matrix Spike Replicate      | 20                | 75-125                | 0                 | 100                            |
| <b>Chromium</b>                                                            | Accuracy - Matrix Spike                 | 20                | 75-125                | 0                 | 97                             |
| <b>Nickel</b>                                                              |                                         | 20                | 75-125                | 1                 | 96                             |
| <b>Metals in Stack Gas &amp; ESP Outlet Vapor Phase - GFAAS and CVAAAS</b> |                                         |                   |                       |                   |                                |
| <b>Arsenic</b>                                                             |                                         | 20                | 75-125                | 1.1               | 94                             |
| <b>Cadmium</b>                                                             |                                         | 20                | 75-125                | 2.9               | 104                            |
| <b>Lead</b>                                                                |                                         | 20                | 75-125                | 13                | 95                             |
| <b>Mercury</b>                                                             |                                         | 20                | 75-125                | 2 <sup>b</sup>    | 95 <sup>b</sup>                |
| <b>Selenium</b>                                                            |                                         | 20                | 75-125                | >500              | 8 <sup>b</sup>                 |
| <b>Metals in Stack Gas &amp; ESP Outlet Vapor Phase - ICP-MS †</b>         |                                         |                   |                       |                   |                                |
| <b>Arsenic</b>                                                             | Precision - Laboratory Control Spike    | 20                | 75-125                | 2                 | 87                             |
| <b>Beryllium</b>                                                           | Accuracy - Laboratory Control Spike     | 20                | 75-125                | --                | --                             |
| <b>Cadmium</b>                                                             |                                         | 20                | 75-125                | 3                 | 71                             |
| <b>Chromium</b>                                                            |                                         | 20                | 75-125                | 1                 | 61                             |
| <b>Lead</b>                                                                |                                         | 20                | 75-125                | 1                 | 92                             |
| <b>Mercury</b>                                                             |                                         | 20                | 75-125                | --                | --                             |
| <b>Nickel</b>                                                              |                                         | 20                | 75-125                | 0                 | 73                             |
| <b>Selenium</b>                                                            |                                         | 20                | 75-125                | 1                 | 61                             |

Table 4-4 (Continued)

| Measurement Parameter            | How Measured                                        | Objectives           |                          | Measured             |                          |
|----------------------------------|-----------------------------------------------------|----------------------|--------------------------|----------------------|--------------------------|
|                                  |                                                     | Precision<br>(% RPD) | Accuracy<br>(% Recovery) | Precision<br>(% RPD) | Accuracy<br>(% Recovery) |
| Anions in Stack Gas & ESP Outlet | Precision - Matrix Spike<br>Accuracy - Matrix Spike |                      |                          |                      |                          |
| Chloride                         |                                                     | 20                   | 80-120                   | 9 <sup>h</sup>       | 88 <sup>h</sup>          |
| Fluoride                         |                                                     | 20                   | 80-120                   | 4 <sup>h</sup>       | 9 <sup>h</sup>           |

<sup>a</sup>GFAAS = Graphite furnace atomic absorption spectrophotometry. These values were measured by CT&E Laboratories.

<sup>b</sup>Not defined; this coal has no certified value for cadmium.

<sup>c</sup>CVAFS = Cold vapor atomic fluorescence spectroscopy. These values were measured by Frontier Geosciences.

<sup>d</sup>DGAA = Double gold amalgam atomic absorption spectrophotometry. These values were measured by CT&E Laboratories.

<sup>e</sup>ICP-AES = Inductively coupled plasma emission spectroscopy.

<sup>f</sup>CVAAAS = Cold vapor atomic absorptions spectrophotometry.

<sup>g</sup>ICP-MS = Inductively coupled plasma emission spectroscopy coupled with mass spectrometry. The concentrations measured by Harvard University.

<sup>h</sup>These are averages of recoveries from several MS/MSD pairs.

<sup>i</sup>Matrix spike duplicate not available. This precision was estimated from the laboratory control spike duplicate results for the gas metals nitric impinger fraction.

<sup>j</sup>Precision is expressed as coefficient of variance (CV) based on replicate samples. Precision objective was based on duplicate not replicate samples. However, there was not enough sample available to conduct duplicate analyses.

- Selenium in the vapor phase measured by GFAAS showed poor precision ( $>500\%$  RPD compared to the 20% specification), and accuracy (8% compared to the 75% to 125% specification), indicating a severe low bias in these data. The GFAAS data were not used. The ICP-MS data were used to report selenium concentrations in the gas streams and to calculate the emission factors in the selenium mass balance closure levels.
- The recovery of all the metals (except for arsenic and lead), as determined by ICP-MS, were outside the specifications for metals in flue gas (vapor phase). In addition, the blanks showed high levels of contamination for most analytes. The recovery for selenium (61%), however, was well above the recovery by GFAAS. In addition, the precision was well within the specification. For this reason, the ICP-MS data for selenium in the vapor phase was used to calculate selenium concentrations in the gas streams.
- For measurements by ICP-AES, GFAAS, CVAAS, CVAFS, all blanks, except for one field blank, showed either no contamination, contamination less than five times the detection limit, or contamination at concentrations significantly below those found in the corresponding samples.
- For measurements by ICP-MS, the digestion blanks contained all of the analytes (except for selenium) at levels that would be expected to bias the results high.

### **Detailed QC Results**

Precision is a measure of the reproducibility of measurements under a given set of conditions. It is expressed in terms of the distribution, or scatter, of the data, calculated as the standard deviation or coefficient of variation (CV, standard deviation divided by the mean). For duplicates, precision is expressed as the relative percent difference (RPD).

Accuracy is a measure of the degree of conformity of a value generated by a specific procedure to the assumed or accepted true value; it includes both precision and bias. Bias is the persistent positive or negative deviation of the method average value from the assumed or accepted true value.

The efficiency of the analytical procedure for a given sample matrix is quantified by the analysis of spiked samples containing target or indicator analytes or other quality assurance measures, as necessary. However, all spikes, unless made to the flowing stream ahead of the sampling, produce only estimates of recovery of the analyte through all of the measurement steps occurring after the addition of the spike. A good spike recovery tells little about the true value of the sample before spiking.

Representativeness expresses how well the sampling data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. The representativeness criterion is based on making certain that sampling locations are properly selected and that a sufficient number of samples are collected.

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. Sampling data should be comparable with other measurement data for similar samples collected under similar conditions. This goal is achieved using standard techniques to collect and analyze representative samples and by reporting analytical results in appropriate units. Data sets can be compared with confidence when the precision and accuracy are known.

Completeness is an expression of the number of valid measurements obtained compared with the number planned for a given study. The goal is to generate a sufficient quantity of valid data.

A discussion of the overall measurement precision, accuracy, and blank effects appears below for each measurement type.

### **Metals**

**Precision.** The precision of metals analyses was estimated for coal samples using replicate samples, which include a component of sampling variability.

For the flue gas metals in the vapor phase analyzed by ICP-AES, GFAAS, and CVAAS, precision was estimated using matrix spike replicate analyses; seven out of eight met the precision objectives. The exception was selenium (>500% RPD), for which the variability was greater than the objective. For flue gas metals in the vapor phase analyzed by ICP-MS precision was estimated by analyzing replicate laboratory control samples. The results for all metals were found to meet the precision objectives.

For the flue gas metals in the solid phase analyzed by ICP-AES, GFAAS, and CVAAS, precision was estimated using analytical spike replicate results, and all the metals were found to meet precision objectives. For flue gas metals in the solid phase analyzed by ICP-MS, precision was estimated using the analysis of replicate standard samples. Seven of the eight metals met precision objectives. The exception was selenium (24% RPD), for which the variability was slightly greater than the objective.

**Accuracy.** The accuracy of metals analyses was estimated for coal samples using standard reference coal samples. Of the metals analyzed by ICP-AES, GFAAS, CVAAS, and DGAA, 10 of the 13 met the accuracy objective. Recoveries outside the objectives were identified for chromium (193% recovery) and arsenic (43% recovery). The standard reference coal sample was not certified for cadmium, so a recovery could not be calculated.

Matrix spikes were used to estimate the accuracy of metals analyses of flue gas vapor-phase samples. Seven of the eight metals analyzed by ICP-AES, GFAAS, and CVAAS met the accuracy objective. The recovery of selenium (8%) was well below the specification. Of the metals analyzed by ICP-MS, two of the eight met the accuracy objective. Low recoveries for cadmium (71%), chromium (61%), nickel (73%), and selenium (61%) were slightly outside the accuracy objective. However, the accuracy of the selenium measurement for

ICP-MS was significantly above that for GFAAS; therefore, the ICP-MS selenium value was chosen as the primary value.

The accuracy of metals analyses was estimated for flue gas particulate phase samples using analytical spike recoveries. The results show that the recoveries of seven of the eight metals analyzed by ICP-AES, GFAAS, and CVAAS met the 75-125% accuracy objective. For lead, the recovery of 71% was slightly below the objective.

The accuracy of metals analyses was estimated for flue gas particulate-phase samples measured by ICP-MS using standard reference material (NIST 1633a fly ash). The matrix of the standard is not identical to that of the samples, especially since flue gas particulate samples are digested along with the filters; however, no better estimates of accuracy are available for these samples. Except for selenium (122%) and lead (102%), the results for no metal showed a recovery within the accuracy objective [arsenic (53%), beryllium (56%), cadmium (147%), chromium (38%), mercury (3100%), and nickel (40%)]. For that reason, ICP-AES, GFAAS, and CVAAS were chosen as the primary values for the flue gas samples (vapor phase + solid phase), with the exceptions noted above.

**Blank Effects.** The only significant blank effect found for ICP-AES, GFAAS, or CVAAS analyses was a field blank that contained significant concentrations of silicon. This was probably the result of the digestion of an inappropriate filter.

Because of the increased sensitivity of ICP-MS, blank effects are more significant, although compared with measurements at much lower levels than by ICP-AES, GFAAS, or CVAAS. Nearly all of the ICP-MS digestion blanks contained significant quantities of seven of the eight analytes. Both of the digestion blanks were devoid of selenium.

### **Anions**

**Precision.** The precision of anion analyses was estimated for coal and ash samples using matrix-spiked duplicates. The precision estimates for both chloride and fluoride met the objective of 20% RPD. Replicate runs were used to estimate the precision of anions analysis of flue gas samples. The CVs for both chloride and fluoride met the precision objective.

**Accuracy.** Matrix spikes were used to estimate the accuracy of anion analyses of coal, ash, and flue gas samples. The 75-125% recovery objective was met for chloride and fluoride in all of the samples.

**Blank Effects.** Field blank and trip blank impinger solutions were analyzed for chloride and fluoride, and the concentrations were below detection limits in all of the blanks. No blank contamination problems were identified.

### **Material Balances**

Evaluating data consistency can be another overall data quality evaluation tool, especially the evaluation of coal, ash, and flue gas flow rates. Material balances for ash and major

elements can be used to verify the internal consistency of stream flow rates. Material balance closures for trace species can be used to indicate whether the samples collected were representative with respect to the trace element concentrations and can help identify analytical biases in one or more types of samples.

The results of material balances performed around the boiler/ESP, the FGD system, and the entire plant are shown in Table 4-5. Closure is defined as the ratio of outlet to inlet mass rates for a particular substance. A 100% closure indicates perfect agreement. When trace substances are analyzed, a closure of between 70% and 130% has been set as a goal for the FCEM project. This range reflects the typical level of uncertainty in the measurements and, therefore, allows one to interpret the inlet and outlet mass flow rates as being equivalent. The 95% confidence intervals about the closures have been calculated using an error propagation analysis, discussed in detail in Appendix E.

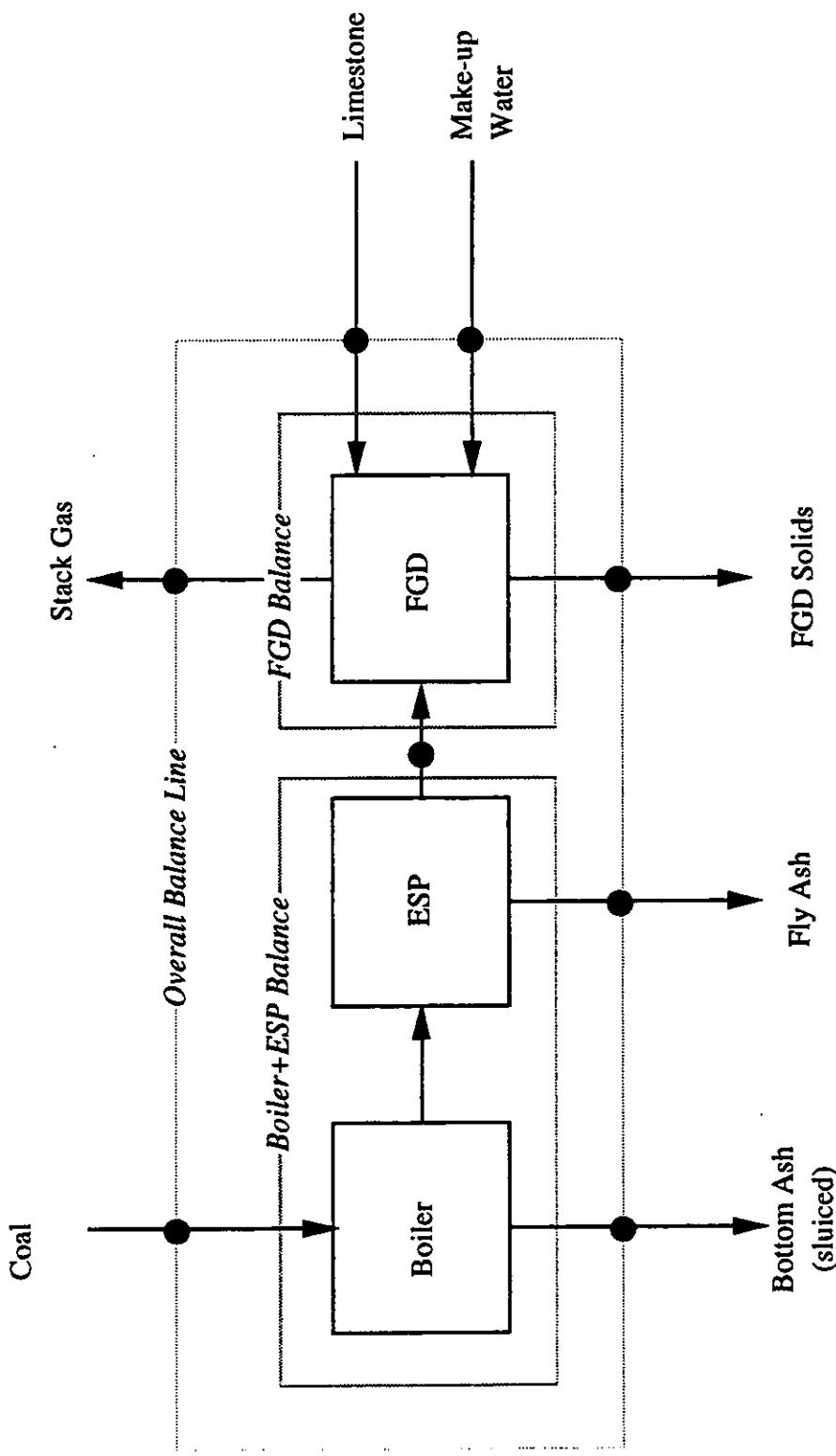
The material balances will be discussed for each of the three types of balances. Figure 4-3 illustrates the systems used to calculate material balance closures at Site 20. Table 4-6 lists the steam flow rates used in the material balance calculations.

#### ***Boiler/Process ESP System***

Good material balance closures were obtained around the boiler/ESP for most of the target species for Site 20. Material balance closures between 70% and 130% were obtained for beryllium, cadmium, chromium, cobalt, fluoride, manganese, phosphorus, and vanadium. When the 95% confidence intervals (CI) were considered, the closures met the target criteria for all the FCEM species except for barium ( $290 \pm 81$ ). The large values for the calculated 95% CIs are primarily due to run-to-run concentration variability in the ESP outlet gas stream and in the coal. The 95% CIs do not strongly depend on the standard deviations or biases for the process stream flow rates.

#### ***FGD System***

Material balance closures between 70% and 130% were obtained around the FGD system for cadmium, cobalt, manganese, molybdenum, nickel, and phosphorus. When the 95% confidence intervals were considered, the closures for barium, beryllium, chromium, mercury, selenium, and vanadium met, or almost met, the FCEM target criteria. The poor closures for arsenic and lead are not explainable, given the QC data reported in Table 4-4.


The closures for chloride ( $36\% \pm 10\%$ ) and fluoride ( $13\% \pm 16\%$ ) may have been low because of the accumulation of these species in the FGD scrubber slurry. That is, these species accumulate in the FGD scrubber slurry, making it difficult to obtain acceptable material balance closures for these species when the fuel concentration varies.

**Table 4-5**  
**Site 20 Material Balances**

| FCEM Substances      | Boiler/ESP |           | FGD System |           | Entire Plant |           |
|----------------------|------------|-----------|------------|-----------|--------------|-----------|
|                      | Out/In, %  | 95% CI, % | Out/In, %  | 95% CI, % | Out/In, %    | 95% CI, % |
| Arsenic              | 276        | 210       | 32         | 14        | 229          | 144       |
| Barium               | 290        | 81        | 69         | 28        | 281          | 76        |
| Beryllium            | 95         | 56        | 61         | 29        | 95           | 56        |
| Cadmium              | 84         | 100       | 77         | 25        | 81           | 78        |
| Chloride             | 40         | 85        | 36         | 10        | 17           | 10        |
| Chromium             | 109        | 25        | 183        | 50        | 110          | 25        |
| Cobalt               | 127        | 69        | 103        | 38        | 127          | 68        |
| Fluoride             | 79         | 27        | 13         | 16        | 12           | 14        |
| Lead                 | 46         | 37        | 29         | 16        | 46           | 37        |
| Manganese            | 110        | 46        | 101        | 31        | 108          | 44        |
| Mercury              | 58         | 31        | 148        | 22        | 86           | 16        |
| Molybdenum           | --         | --        | 105        | 42        | --           | --        |
| Nickel               | 143        | 54        | 111        | 58        | 143          | 53        |
| Phosphorus           | 95         | 68        | 77         | 28        | 93           | 60        |
| Selenium             | 228        | 112       | 61         | 24        | 154          | 65        |
| Vanadium             | 104        | 27        | 142        | 39        | 105          | 27        |
| <b>Other Species</b> |            |           |            |           |              |           |
| Aluminum             | 98         | 25        | 117        | 28        | 98           | 25        |
| Calcium              | 102        | 41        | 100        | 29        | 100          | 24        |
| Copper               | --         | --        | 124        | 33        | --           | --        |
| Iron                 | 107        | 34        | 121        | 31        | 107          | 37        |
| Magnesium            | 103        | 35        | 88         | 26        | 101          | 32        |
| Potassium            | --         | --        | 116        | 33        | --           | --        |
| Sulfur               | 84         | 16        | 124        | 25        | 104          | 24        |
| Sodium               | 89         | 63        | 69         | 18        | 90           | 61        |

CI = Confidence interval.

NC = Not calculated. The beryllium content of the coal was less than the method detection limit.



- Denotes sampling locations used for material balance calculations

Figure 4-3  
Systems for Material Balance Closure Calculations for Site 20

**Table 4-6**  
**Process Stream Flows at Site 20**

| Stream                                 | Mean Flow Rate | Std. Dev.         | Source                  |
|----------------------------------------|----------------|-------------------|-------------------------|
| Coal (lb/hr, dry)                      | 620,250        | 6850              | Measured <sup>a</sup>   |
| Economizer Ash <sup>b</sup>            | —              | —                 | —                       |
| Bottom Ash (lb/hr, dry)                | 26,000         | 300 <sup>c</sup>  | Calculated <sup>d</sup> |
| Fly Ash (lb/hr, dry)                   | 104,000        | 1150 <sup>c</sup> | Calculated <sup>d</sup> |
| FGD Makeup Water (lb/hr)               | 342,000        | 3800 <sup>c</sup> | Calculated <sup>e</sup> |
| Limestone Flow (lb/hr)                 | 60,300         | 670 <sup>c</sup>  | Calculated <sup>f</sup> |
| FGD Solids Flow (lb/hr, dry)           | 76,400         | 840 <sup>c</sup>  | Calculated <sup>g</sup> |
| Flue Gas Flow (dry Nm <sup>3</sup> /h) | 3,095,000      | 41,200            | Measured <sup>h</sup>   |

<sup>a</sup>"As-received" coal flow rate determined from plant's data acquisition system. Dry coal flow rate calculated using measured coal moisture values.

<sup>b</sup>Not measured. Flow rate assumed to be insignificant compared to ESP fly ash.

<sup>c</sup>Standard deviation assumed to be proportional to standard deviation for coal flow rate.

<sup>d</sup>Calculated from the dry coal flow rate, the measured coal ash content, and the assumption that 80% of the coal ash is transformed into fly ash and 20% is transformed into bottom ash.

<sup>e</sup>Calculated from measured stack gas flow rate and moisture content and assuming a flue gas moisture content of 13% of the FGD inlet. Also assumes that the wet FGD solids contain 35 wt % water.

<sup>f</sup>Calculations assume no flue gas bypass, 95% SO<sub>2</sub> removal, and that limestone is 90% CaCO<sub>3</sub>.

<sup>g</sup>Same assumptions as f, and that FGD solids oxidation is 15 percent.

<sup>h</sup>Measured at the stack. Assumes that the ESP outlet gas flow equals the stack gas flow.

***Entire Plant***

Table 4-5 shows that good closures around the entire Site 20 plant were obtained for most of the target elements. Poor closures were obtained for chloride and fluoride, presumably because of the accumulation of these species in Site 20's FGD system.

# 5

## ADDITIONAL DATA

---

This section presents miscellaneous data from Site 20. These data are presented separately because they are not direct measurements of trace substances. The methods employed also have less stringent QA requirements.

Specifically, this section presents the results from mercury speciation tests, the results of the particle size distribution tests, and the measured concentrations of dibasic acid in the FGD liquor.

### Mercury Speciation Tests

The solid sorbent method developed by Frontier Geosciences was used to determine the speciation of mercury in the flue gas. This method collects vapor phase mercury on two KCl-impregnated soda lime traps followed by two iodated carbon traps. The traps are installed in a quartz tube which is placed in a heated probe (maintained at 100-120°C). All of the sampling is performed at a single point in the gas stream. At Site 20, approximately 100 L of flue gas was collected at a rate of 0.5 L/min. The sorbent traps were then removed by Radian personnel, packaged, and shipped to Frontier Geosciences for analysis.

Oxidized mercury ( $\text{Hg}^{2+}$ ) and methyl mercury ( $\text{CH}_3\text{-Hg}$ ) were determined by dissolving the KCl-impregnated traps in an acetic acid/HCl mixture, followed by aqueous ethylation, separation by GC, and detection by cold vapor atomic fluorescence spectrometry (CVAFS). Oxidized mercury was detected as diethyl mercury and methyl mercury as methyl ethyl mercury. Recently, the validity of the methyl mercury determination has been questioned by Frontier Geosciences. Therefore, the distinction between methyl and ionic mercury is questionable.

Elemental mercury ( $\text{Hg}^0$ ) was determined by digesting the carbon traps in 10 mL of 7:3  $\text{HNO}_3/\text{H}_2\text{SO}_4$  at 70°C for two to three hours and then diluting them to 100 mL with 0.05 N BrCl. The mercury in the resulting digestate was reduced using  $\text{SnCl}_2$ , trapped on a gold surface, then detected by CVAFS.

The speciation procedure assumes that all the oxidized and methyl mercury is collected on the KCl/soda lime trap and that all the mercury on the carbon trap is elemental (i.e.,  $\text{Hg}^0$ ).

Table 5-1 shows that the ESP outlet gas contained about  $3.2 \mu\text{g}/\text{Nm}^3$  elemental mercury; the stack gas contained about  $12.4 \mu\text{g}/\text{Nm}^3$ . These data suggest that a large

**Table 5-1**  
**Mercury Speciation Data ( $\mu\text{g}/\text{Nm}^3$ )**

| Location   | Run  | Frontier Geosciences Hg <sup>0</sup> | Method 29 Permanganate Impinger | Frontier Geosciences Hg <sup>2+</sup> <sup>a</sup> | Method 29 Peroxide Impinger |
|------------|------|--------------------------------------|---------------------------------|----------------------------------------------------|-----------------------------|
| ESP Outlet | 1    | 3.23                                 | 9.3                             | 20.4                                               | 3.8                         |
|            | 2    | 5.46                                 | NC                              | 21.0                                               | NC                          |
|            | 3    | 1.77                                 | 5.8                             | 14.7                                               | 5.1                         |
|            | 4    | <u>2.41</u>                          | <u>7.0</u>                      | <u>22.7</u>                                        | <u>9.1</u>                  |
|            | Avg: | 3.22                                 | 7.4                             | 19.7                                               | 6.0                         |
| Stack      | 1    | NC                                   | 11.6                            | NC                                                 | 1.1                         |
|            | 2    | 14.2                                 | 9.6                             | 0.44                                               | 0.8                         |
|            | 3    | 10.4                                 | 8.0                             | 1.88                                               | 1.7                         |
|            | 4    | <u>12.7</u>                          | <u>8.8</u>                      | <u>0.52</u>                                        | <u>0.9</u>                  |
|            | Avg: | 12.4                                 | 9.5                             | 0.95                                               | 1.1                         |

<sup>a</sup>Frontier Geosciences Hg<sup>2+</sup> values include the data that was originally reported as methyl mercury.

NC = Sample not collected.

fraction of the oxidized mercury ( $\text{Hg}^{2+}$ ) or methyl mercury was converted to elemental mercury in the FGD system.

Table 5-2 compares the total mercury concentrations measured by the multi-metals method (EPA Method 29) with the results from the mercury speciation method. At both locations, the concentrations measured by Method 29 were lower than those determined by the mercury speciation method. The difference was greatest at the ESP outlet, ranging from 52-80%. The stack concentrations differed by 26-40%. Also, note that the average mercury removal differs for the methods.

The theoretical flue gas mercury content in the ESP outlet gas is  $23 \mu\text{g}/\text{Nm}^3$ , based on the levels of mercury in the fly ash, bottom ash, and coal at Site 20 (using the DGAA values for mercury in the coal). The average value obtained by Method 29 was  $13.4 \pm 6.5 \mu\text{g}/\text{Nm}^3$ ; the average obtained using the mercury speciation method was  $22.9 \pm 7.1 \mu\text{g}/\text{Nm}^3$ .

The method comparison results are surprising because data from previous sites have shown good agreement between the two methods. Note that the low values for the field blanks (Table 5-1) indicate that the solid sorbent traps were not contaminated.

Frontier Geosciences reported that an unexpected precipitate formed in three of the soda lime traps for the ESP outlet location (first trap only). Frontier Geosciences dissolved the precipitate by adding an extra 10 mL HCl to the digestion. Initially, Frontier Geosciences attributed the precipitate to particulate on the glass wool or to contamination by a flue gas species associated with the lignite coal. Further investigation revealed that the initial acetic acid solution was too dilute. The extra HCl added solubilized the soda lime by lowering the pH.

### **Dibasic Acid Concentrations**

Radian collected FGD liquor samples from both of the lower loop reaction tanks on each test day. Radian analyzed these samples for dibasic acid (DBA) to document the level of this additive in the FGD system. The DBA results are presented in Table 5-3.

### **Particle Size Distribution Tests**

Table 5-4 presents the results of the particle size distribution tests for the ESP outlet and stack locations. Samples from the various size fractions were archived for possible elemental analyses in the future.

### **Fly Ash Enrichment Data**

Although the particle size distribution samples were not chemically analyzed, the existing test data were used to estimate whether certain trace species were enriched in the smaller particle sizes at Site 20. For species that were enriched in the smaller particle sizes, their concentration should be highest in the solids collected on the ESP outlet

---

**Additional Data****Table 5-2**  
**Comparison of Method 29 with the Mercury Speciation Method (Total Hg  $\mu\text{g}/\text{Nm}^3$ )**

| Location                  | Run                 | Method 29    | Solid Sorbent |
|---------------------------|---------------------|--------------|---------------|
| ESP Outlet                | 1                   | 13.13        | 23.66         |
|                           | 2                   | NC           | 26.48         |
|                           | 3                   | 10.89        | 16.50         |
|                           | 4                   | <u>16.07</u> | <u>25.11</u>  |
|                           | Days 1,3,4 Average: | 13.36        | 21.76         |
| Stack                     | 1                   | 12.70        | NC            |
|                           | 2                   | 10.43        | 14.63         |
|                           | 3                   | 9.72         | 12.28         |
|                           | 4                   | <u>9.74</u>  | <u>13.23</u>  |
|                           | Days 2,3,4 Average: | 9.96         | 13.38         |
| Average Hg Removal:       |                     | 25%          | 39%           |
| Average Hg Removal by FGD | Days 3,4            | 28%          | 39%           |
|                           | Days 1,3,4          | 20%          | --            |
|                           | Days 2,3,4          | --           | 41%           |

NC = Sample not collected.

**Table 5-3**  
**Dibasic Acid Concentrations at Site 20**

| Run     | Reaction Tank A |       | Reaction Tank B |       |
|---------|-----------------|-------|-----------------|-------|
|         | (mmol/l)        | (ppm) | (mmol/l)        | (ppm) |
| 1       | 3.31            | 430   | 3.41            | 443   |
| 2       | 3.22            | 419   | 3.12            | 406   |
| 3       | 2.68            | 348   | 3.04            | 395   |
| 4       | 2.48            | 322   | 2.97            | 386   |
| Average | 2.92            | 380   | 3.14            | 408   |

**Table 5-4**  
**Particle Size Distribution Data for Site 20**

| ESP Outlet Location |                                    |                       |                               |                                           |
|---------------------|------------------------------------|-----------------------|-------------------------------|-------------------------------------------|
| Gas Sampled         | 865.1 dscf<br>26.3 Nm <sup>3</sup> |                       |                               |                                           |
| Percent Isokinetic  | 79                                 |                       |                               |                                           |
| Stage Number        | Cut Size<br>( $\mu$ m)             | Collected<br>Mass (g) | Grain<br>Loading<br>(gr/dscf) | Grain<br>Loading<br>(mg/Nm <sup>3</sup> ) |
| 1                   | 7.2                                | 0.2337                | 0.0042                        | 8.89                                      |
| 2                   | 2.4                                | 0.0258                | 0.0005                        | 0.98                                      |
| 3                   | 0.54                               | 0.0034                | 0.0001                        | 0.13                                      |
| Filter              |                                    | 0.0062                | 0.0001                        | 0.24                                      |
|                     |                                    | Total:                | 0.0048                        | 10.23                                     |
| Stack Location      |                                    |                       |                               |                                           |
| Gas Sampled         | 788.4 dscf<br>24.0 Nm <sup>3</sup> |                       |                               |                                           |
| Percent Isokinetic  | 97                                 |                       |                               |                                           |
| Stage Number        | Cut Size<br>( $\mu$ m)             | Collected<br>Mass (g) | Grain<br>Loading<br>(gr/dscf) | Grain<br>Loading<br>(mg/Nm <sup>3</sup> ) |
| 1                   | 7.2                                | 0.1994                | 0.0039                        | 8.32                                      |
| 2                   | 2.4                                | 0.3201                | 0.0063                        | 13.36                                     |
| 3                   | 0.54                               | 0.0645                | 0.0013                        | 2.69                                      |
| Filter              |                                    | 0.0498                | 0.0010                        | 2.08                                      |
|                     |                                    | Total:                | 0.0124                        | 26.45                                     |

sample filters and lowest in the bottom ash solids. The concentrations in the bulk fly ash and the fly ash collected in the last field of the ESP should be in between the other two concentrations (the concentration should be lower in the bulk fly ash because the ash collected in the last ESP field should have a smaller particle size than the bulk fly ash).

Figure 5-1 shows that arsenic, cadmium, lead, selenium, and phosphorus are the primary species enriched in the finer particle sizes. These results were expected, because of the relatively high vapor pressure of these elements at boiler temperatures. The concentrations of arsenic and phosphorus were about twice as high in the last field ash compared to the bulk fly ash. Selenium was about four times more concentrated in the last field ash.

### **Comparison of Analytical Methods**

Historically, three analytical techniques have been used to analyze for the FCEM target metals. Because of its greater sensitivity, GFAAS is used to analyze for arsenic, cadmium, lead, nickel, and selenium; CVAAS is used for mercury; and ICP-AES is used for the others. ICP-MS, which is sensitive enough for all of the target elements, was investigated as an alternative analytical method at Site 20. ICP-MS analyses were done on both the front half (solid phase) and back half (vapor phase) of the three multi-metals trains at the absorber outlet and the four multi-metals trains at the stack. Also, ICP-MS analyses were done on digested and undigested fractions of the vapor phase samples and the results were compared.

Table 5-5 compares GFAAS and ICP-AES with ICP-MS analytical results for the solid phase fraction. These data show that the ICP-MS results are generally the same as standard GFAAS or ICP-AES results. Although the mean values may vary slightly between the methods, the 95% confidence intervals of these values overlap for most analytes. The ICP-MS QA spike recoveries for a laboratory control sample (LCS) were generally below the data quality objectives, indicating that a method (sample preparation/analysis) bias may exist. The LCS is a blank filter prepared in a standardized aqueous solution. Since the entire sample filters were digested, it was not possible to prepare matrix spike/duplicate QA samples for analysis. The matrix spike and matrix spike duplicate (MS/MSD) samples might have been able to indicate if interferences or method biases were responsible for these poor results. For these reasons, except for selenium, the ICP-MS results were not presented in Section 3. ICP-MS data for selenium were chosen over the GFAAS data since the QC results for GFAAS were outside the control limits. Because the selenium concentrations in the samples were high, the spectral interferences common to the ICP-MS determination of selenium are minimized.

The impingers (vapor phase fraction) were analyzed by ICP-MS (digested and undigested samples) and GFAAS or ICP-AES. The results for the vapor-phase fractions which appear in Table 5-6, show that, in general, the analytes not detected by standard methods (arsenic, beryllium, and chromium) were detected by ICP-MS at levels at or below the standard method detection limits. Two analytes, arsenic in the undigested

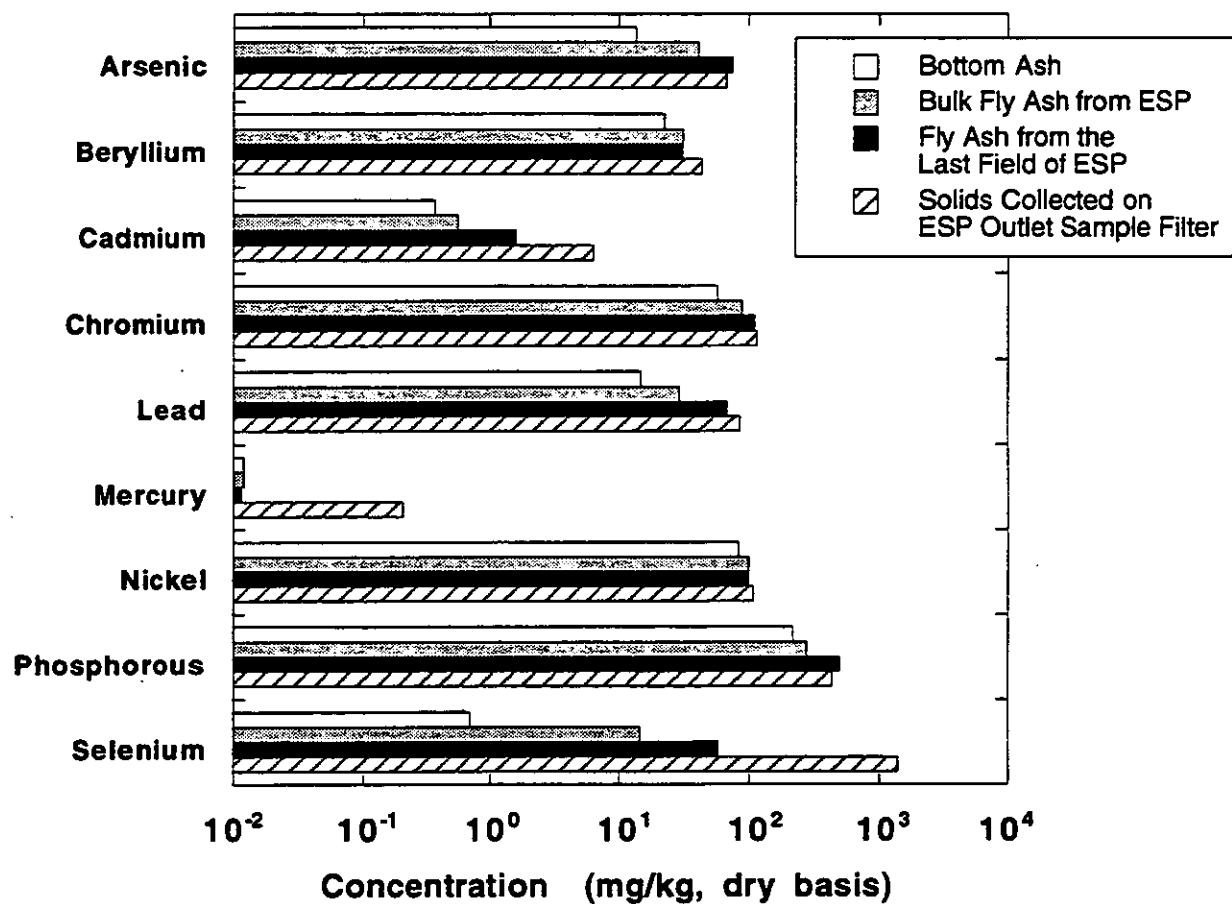



Figure 5-1  
FCEM Target Species Concentrations in Site 20 Ash Streams

**Table 5-5**  
**Comparison of ICP-MS to Standard Methods for ESP Outlet and Stack Gas Solid Phase ( $\mu\text{g}/\text{Nm}^3$ )**

| Method            | Substance | ESP<br>Outlet Mean <sup>a</sup> | 95% CI <sup>b</sup> | Stack Mean <sup>c</sup> | 95% CI <sup>b</sup> |
|-------------------|-----------|---------------------------------|---------------------|-------------------------|---------------------|
| GFAAS<br>ICP-MS   | Arsenic   | 3.1                             | 2.7                 | 0.58                    | 0.3                 |
|                   | Arsenic   | 1.6                             | 1.2                 | 0.27                    | 0.12                |
| ICP-AES<br>ICP-MS | Beryllium | 2.0                             | 2.8                 | 0.32                    | 0.15                |
|                   | Beryllium | 1.1                             | 1.5                 | 0.15                    | 0.07                |
| GFAAS<br>ICP-MS   | Cadmium   | 0.3                             | 0.2                 | 0.48                    | 0.59                |
|                   | Cadmium   | 0.24                            | 0.16                | 0.28                    | 0.29                |
| ICP-AES<br>ICP-MS | Chromium  | 5.3                             | 3.2                 | 2.5                     | 1.6                 |
|                   | Chromium  | 2.6                             | 1.8                 | 0.90                    | 0.54                |
| GFAAS<br>ICP-MS   | Lead      | 3.6                             | 3.6                 | 0.7                     | 0.52                |
|                   | Lead      | 3.92                            | 3.32                | 0.96                    | 0.53                |
| GFAAS<br>ICP-MS   | Nickel    | 5.0                             | 5.3                 | 3.9                     | 1.6                 |
|                   | Nickel    | 16.1                            | 16.94               | 2.67                    | 1.09                |
| GFAAS<br>ICP-MS   | Selenium  | 125                             | 117                 | 45.1                    | 25.5                |
|                   | Selenium  | 64.6                            | 49.47               | 17.9                    | 6.57                |
| CVAAS<br>ICP-MS   | Mercury   | ND                              | --                  | 0.04                    | 0.04                |
|                   | Mercury   | 0.06                            | 0.11                | 0.06                    | 0.05                |

<sup>a</sup>The mean was calculated using three data points.

<sup>b</sup>CI = Confidence interval.

<sup>c</sup>The mean was calculated using four data points.

**Table 5-6****Comparison of ICP-MS to Standard Methods for ESP Outlet and Stack Gas Vapor Phase ( $\mu\text{g}/\text{Nm}^3$ )**

| Method                                                          | Substance | ESP<br>Outlet Mean <sup>a</sup> | 95% CI <sup>b</sup> | Stack Mean <sup>c</sup> | 95% CI <sup>b</sup> |
|-----------------------------------------------------------------|-----------|---------------------------------|---------------------|-------------------------|---------------------|
| GFAAS<br>undig <sup>d</sup> /ICP-MS<br>dig <sup>d</sup> /ICP-MS | Arsenic   | ND(0.14)                        | --                  | ND(0.12)                | --                  |
|                                                                 | Arsenic   | 0.26                            | 0.15                | 0.008                   | 0.008               |
|                                                                 | Arsenic   | 0.06                            | 0.06                | 0.008                   | 0.008               |
| ICP-AES<br>undig/ICP-MS<br>dig/ICP-MS                           | Beryllium | ND(0.12)                        | --                  | ND(0.12)                | --                  |
|                                                                 | Beryllium | 0.01                            | 0.02                | ND                      | --                  |
|                                                                 | Beryllium | 0.01                            | 0.02                | 0.008                   | 0.008               |
| GFAAS<br>undig/ICP-MS<br>dig/ICP-MS                             | Cadmium   | 0.18                            | 0.12                | 0.17                    | 0.18                |
|                                                                 | Cadmium   | 0.05                            | 0.04                | 0.05                    | 0.03                |
|                                                                 | Cadmium   | 0.17                            | 0.04                | 0.14                    | 0.12                |
| ICP-AES<br>undig/ICP-MS<br>dig/ICP-MS                           | Chromium  | ND(0.54)                        | --                  | ND(0.53)                | --                  |
|                                                                 | Chromium  | 0.40                            | 0.30                | 0.14                    | 0.02                |
|                                                                 | Chromium  | 0.76                            | 0.15                | 0.47                    | 0.04                |
| GFAAS<br>undig/ICP-MS<br>dig/ICP-MS                             | Lead      | 2.4                             | 2.1                 | 2.0                     | 2.0                 |
|                                                                 | Lead      | 0.17                            | 0.06                | 0.07                    | 0.03                |
|                                                                 | Lead      | 3.1                             | 2.6                 | 2.45                    | 2.54                |
| GFAAS<br>undig/ICP-MS<br>dig/ICP-MS                             | Nickel    | ND(2.13)                        | --                  | ND(2.08)                | --                  |
|                                                                 | Nickel    | 0.89                            | 0.46                | 0.26                    | 0.1                 |
|                                                                 | Nickel    | 0.85                            | 0.49                | 0.44                    | 0.14                |
| GFAAS<br>undig/ICP-MS<br>dig/ICP-MS                             | Selenium  | 90.5                            | 334.5               | 140                     | 32                  |
|                                                                 | Selenium  | 659                             | 196                 | 132                     | 38                  |
|                                                                 | Selenium  | 644                             | 186                 | 129                     | 58                  |
| CVAAS<br>undig/ICP-MS<br>dig/ICP-MS                             | Mercury   | 13.4                            | 6.5                 | 10.6                    | 2.3                 |
|                                                                 | Mercury   | 11.07                           | 10.45               | 2.19                    | 1.6                 |
|                                                                 | Mercury   | 10.45                           | 10.77               | 1.68                    | 1.59                |

<sup>a</sup>The mean was calculated using three data points.<sup>b</sup>CI = Confidence interval.<sup>c</sup>The mean was calculated using four data points.<sup>d</sup>"Undig" = undigested sample; "dig" = digested sample.

---

*Additional Data*

fraction and chromium in the digested fraction, were detected by ICP-MS above the standard method detection limits. Arsenic results may be biased high because of the formation of ArCl in the argon plasma. Chromium was detected in the method blank at levels similar to that observed in the digested sample, suggesting that a method (sample preparation) bias may exist.

A comparison of the ICP-MS results for digested and undigested vapor-phase fractions indicates that the results were essentially the same. While there is some variation between the mean values for the digested and undigested fractions, the 95% confidence intervals of these values overlap. Since the vapor-phase samples are trapped in aqueous solution (i.e., the analytes are soluble) it is not unexpected that digestion of these samples has little or no effect on the observed concentrations.

Further study is needed to address the apparent bias problem associated with the analysis of solid-phase fractions of the metals train by ICP-MS before this method can be used as the primary means of analysis. The digestion of vapor-phase fractions was shown to have virtually no effect on the observed analyte concentrations. We recommend that, in the future, only undigested vapor-phase fractions be analyzed.

---

# 6

## EXAMPLE CALCULATIONS

---

This section presents selected examples of the calculations used to develop the results discussed in Sections 3 and 4. Specifically, the calculation of stream flow rates, mean concentration values and confidence intervals, and emission factors are presented here.

### Stream Flow Rates

Coal flow rates were determined from the plant's calibrated coal feeders. Bottom ash and fly ash flow rates were calculated based on the ash content of the coal and assuming that 20% of the total ash was bottom ash and the rest was fly ash. This assumption was based on the boiler design information for Site 20.

Flue gas flow rates were measured directly during sampling at the stack location. The flow rate measurements at the ESP outlet location were considered to be unreliable, due to the nonideal gas flow characteristics at this location. Since material ( $\text{SO}_2$ ) and energy balances indicated that no flue gas bypassed the FGD system, the ESP outlet flue gas flow rate was assumed to be the same as the stack flow rate (both flows on a dry basis). A combustion calculation using data for the Site 20 coal showed the calculated gas flow rate to be very close to the measured stack gas flow rate.

Estimates for the FGD system flow rates (i.e., limestone and FGD solids) were based on the amount of  $\text{SO}_2$  removed from the system (as determined by gas-phase analyses and gas flow rates). The makeup water flow rate was estimated by a water balance around the FGD system and was corrected for the amount of water lost with the FGD solids (assuming the FGD solids contained 35% water).

### Means and Confidence Intervals for Stream Concentrations

The mean concentrations and 95% confidence intervals (CIs) about the mean were calculated for each target substance in the streams sampled. The means were calculated according to the conventions listed in Section 3. The equations used to calculate the 95% confidence intervals are presented in Appendix E. Example calculations for arsenic in the ESP outlet gas follow here; these results were shown in Table 3-10.

The concentration data (in  $\mu\text{g}/\text{Nm}^3$ ) given for arsenic in Table 3-10 are:

---

*Example Calculations*

|             | <u>Run 1</u> | <u>Run 3</u> | <u>Run 4</u> |
|-------------|--------------|--------------|--------------|
| Solid Phase | 2.9          | 4.3          | 2.2          |
| Vapor Phase | ND(0.12)     | ND(0.13)     | ND(0.14)     |
| Total       | 2.9          | 4.3          | 2.2          |

The mean is calculated from the individual run totals:

$$\begin{aligned}\text{Mean} &= (2.9 + 4.3 + 2.2)/3 \\ &= 3.1\end{aligned}$$

The sample standard deviation of the individual run totals is calculated:

$$S_p = \sqrt{[(2.9-3.1)^2 + (4.3-3.1)^2 + (2.2-3.1)^2]/2}$$

$$= 1.07$$

The standard deviation of the average is calculated according to Equation 6 in Appendix E for  $N = 3$ :

$$S_{\bar{p}} = 1.07/\sqrt{3}$$

$$= 0.62$$

The bias error is found by root-sum-squaring the product of the bias error and the sensitivity from each run (see Equation 2 in Appendix E). According to the conventions listed in Section 3, no bias error is assigned to values above reporting limits, whereas a bias error of one-half the detection limit is assigned to values below detection limits. The sensitivity of the mean to each run in this case is  $1/3$ .

$$\beta_r = \sqrt{(1/3 \times 0)^2 + (1/3 \times 0)^2 + (1/3 \times 0)^2}$$

$$= 0$$

The total uncertainty in the result is found from Equation 1 in Appendix E:

$$\begin{aligned} U_r &= \sqrt{\beta_r^2 + (t \times S_p)^2} \\ &= \sqrt{0^2 + (4.3 \times 0.62)^2} \\ &= 2.7 \end{aligned}$$

Thus, the result is reported as  $3.1 \pm 2.7 \mu\text{g}/\text{Nm}^3$ .

### Unit Energy Emission Factors

In addition to the gas phase concentrations, unit energy-based emission factors have been developed for each target substance. These values were determined by calculating the mass flow rate of a substance in the flue gas (mean concentration times mean flow rate) and dividing by the mean heat input to the boiler during testing. The mean heat input is the product of the mean coal flow rate and the mean higher heating value (HHV) of the coal.

For example, note the calculation of the emission factor for arsenic at the ESP outlet. The mean coal flow rate is 620,000 lb/hr on a dry basis. The mean HHV of the coal is 10,017 Btu/lb on a dry basis. Multiplying the coal flow rate by the HHV gives a mean heat input of  $6.2 \times 10^9 \text{ Btu/hr}$ . The mean arsenic mass flow through the stack (the product of the mean concentration,  $0.57 \mu\text{g}/\text{Nm}^3$ , and the mean gas flow rate,  $3,095,000 \text{ Nm}^3/\text{hr}$ ) is  $1.8 \times 10^6 \mu\text{g}/\text{hr}$  or  $0.004 \text{ lb/hr}$ . When the mean mass flow rate is divided by the mean heat input, an emission factor of  $0.63 \text{ lb}/10^{12} \text{ Btu}$  is obtained, as shown in Table 3-12.

The 95% confidence intervals for emission factors were calculated according to the equations presented in Appendix E. For each parameter (flue gas flow rate, concentration, coal flow rate, and HHV) the mean, standard deviation, number of points, and bias estimates were used to calculate the combined uncertainty in the mean emission factors.

# 7

## GLOSSARY

---

|                             |                                                         |
|-----------------------------|---------------------------------------------------------|
| AAS                         | Atomic Absorption Spectrometry                          |
| Btu                         | British Thermal Unit                                    |
| CI                          | Confidence Interval                                     |
| CVAAS                       | Cold Vapor Atomic Absorption Spectrophotometry          |
| DGAA                        | Double Gold Amalgamation                                |
| DQO                         | Data Quality Objective                                  |
| dscfm                       | Dry Standard Cubic Feet per Minute (1 atm, 68°F)        |
| ESP                         | Electrostatic Precipitator                              |
| FCEM                        | Field Chemical Emissions Monitoring                     |
| GFAAS                       | Graphite Furnace Atomic Absorption Spectrophotometry    |
| HHV                         | Higher Heating Value                                    |
| IC                          | Ion Chromatography                                      |
| ICP (ICAP, ICP-AES, ICAPES) | Inductively Coupled Plasma Atomic Emission Spectroscopy |
| ICP-MS, ICPES-MS            | Inductively Coupled Argon Plasma Mass Spectroscopy      |
| INAA                        | Instrument Neutron Activation Analysis                  |
| ISE                         | Ion Selective Electrode                                 |
| MDL                         | Method Detection Limit                                  |
| MSD                         | Matrix Spike Duplicate                                  |
| MW                          | Megawatt                                                |
| NBS                         | National Bureau of Standards                            |
| ND                          | Not Detected (below detection limit)                    |
| Nm <sup>3</sup>             | Dry Normal Cubic Meter (0°C, 1 atm)                     |
| PAH                         | Polynuclear Aromatic Hydrocarbons                       |
| POM                         | Polycyclic Organic Matter                               |
| QA/QC                       | Quality Assurance/Quality Control                       |
| RPD                         | Relative Percent Difference                             |
| RSD                         | Relative Standard Deviation                             |

## **APPENDIX A: SAMPLING AND ANALYTICAL SUMMARY**

---

This appendix presents details of the sampling and analytical activities performed at Site 20.

### **Sampling Summary**

Sampling was performed from June 8 to June 11, 1993. Samples from several process streams were collected during each day of sampling. These streams included:

- ESP outlet flue gas;
- Stack flue gas;
- Coal fed to the power plant boiler;
- ESP collected fly ash;
- Sluiced boiler bottom ash;
- Fly ash from one of the last ESP fields;
- Limestone;
- FGD makeup water;
- FGD solids; and
- FGD liquor.

### **Flue Gas Sampling**

Flue gas samples were collected at the ESP outlet and at the stack to determine the concentration of the following substances:

- Trace metals;
- Mercury (speciated); and
- Anions.

Information about the sampling methods used for these substances is presented below.

### **Multi-Metals Collection**

The sampling methodology specified in Section 3.1 of the 40 CFR Part 266, Appendix IX was used to determine the particulate mass loading and simultaneously collect solid and vapor phase samples of the stack flue gas for trace metals analysis. This method was modified for sampling at the ESP outlet location.

The first modification consisted of using Teflon® tubing to transfer flue gas from the filter holder to the impinger train. This tubing was necessary because vertical sampling was conducted using a very long sampling probe (20 feet). A three-inch filter holder was attached directly to the exit of this probe and a small oven was used to keep the filter at 250° F. The Teflon® tubing was needed because it was not practical or safe to attach the impinger train directly to the exit of the filter holder as is specified by the published method. At the end of each test day, the Teflon® tubing was soaked for a minimum of 15 minutes with nitric acid solution to recover any trace metals that might have adsorbed during sampling. The resulting rinse was added to the first nitric acid impinger sample.

The second modification consisted of not monitoring the flue gas flow rate during actual sample collection at the ESP outlet. A velocity profile was performed just prior to testing and the flow rate data from the velocity profile was used to determine the sampling rate needed to collect the sample at isokinetic conditions. The approach of using velocity profile data to calculate isokinetic sampling rates was also used during the collection of anions samples and Cyclade PSD samples at the ESP outlet.

Twelve sampling ports were present at the ESP outlet sampling location. A detailed velocity profile was performed on June 7 at the ESP outlet to determine the distribution of flue gas flow across the entire duct. Results of the 96 point (12 X 8) velocity profile traverse are presented in Table A-1. The velocity profile data were used to select suitable sampling ports for collecting the ESP outlet samples. On the first day of testing (June 8), ports 2, 4, 8, and 10 were used to collect metals samples while ports 3, 5, 9, and 11 were used to collect the anions sample. The metals and anions samples were collected from 32 sampling points (4 X 8). Ports 3, 5, 8, and 10 were used to collect both the metals and anions samples at the ESP outlet on June 9, 10, and 11.

Horizontal sampling was performed at the stack. The stack sampling ports were far enough upstream and downstream from any disturbances to allow for the use of twelve sampling points (4 x 3) to collect composite metals and anions samples on the stack.

**Table A-1**  
**FCEM Site 20 - ESP Outlet Detailed Velocity profile Data**

| Depth | Port        |             |             |             |             |             |             |             |             |             |             |             |
|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|       | 1           | 2           | 3           | 4           | 5           | 6           | 7           | 8           | 9           | 10          | 11          | 12          |
| 1     | 59.1<br>318 | 59.4<br>324 | 60.2<br>315 | 57.5<br>327 | 54.7<br>320 | 45.9<br>323 | 54.9<br>325 | 59.4<br>326 | 61.3<br>324 | 63.0<br>310 | 58.3<br>307 | 65.2<br>311 |
| 2     | 61.1<br>319 | 65.0<br>323 | 58.5<br>313 | 61.8<br>327 | 59.2<br>320 | 49.4<br>323 | 57.3<br>323 | 59.8<br>326 | 61.3<br>324 | 60.6<br>305 | 58.6<br>305 | 64.3<br>307 |
| 3     | 64.8<br>319 | 67.4<br>322 | 55.1<br>308 | 58.3<br>328 | 58.8<br>320 | 50.3<br>323 | 55.2<br>322 | 62.1<br>325 | 60.1<br>324 | 60.4<br>301 | 62.3<br>303 | 64.9<br>305 |
| 4     | 60.3<br>319 | 62.7<br>321 | 53.7<br>305 | 57.5<br>329 | 56.8<br>321 | 53.1<br>323 | 52.5<br>320 | 60.5<br>324 | 61.3<br>325 | 60.4<br>300 | 64.1<br>301 | 66.0<br>305 |
| 5     | 58.0<br>319 | 61.1<br>320 | 52.4<br>303 | 53.3<br>330 | 50.7<br>321 | 50.8<br>322 | 50.6<br>318 | 56.9<br>323 | 60.6<br>326 | 61.7<br>327 | 62.9<br>299 | 67.7<br>306 |
| 6     | 59.2<br>320 | 55.1<br>321 | 52.9<br>294 | 53.3<br>330 | 52.1<br>322 | 49.3<br>321 | 45.2<br>316 | 56.5<br>323 | 60.6<br>326 | 62.4<br>296 | 61.0<br>297 | 65.8<br>308 |
| 7     | 55.6<br>276 | 56.5<br>324 | 56.6<br>283 | 59.6<br>330 | 57.3<br>324 | 48.4<br>323 | 41.0<br>318 | 53.2<br>326 | 59.9<br>327 | 62.5<br>299 | 61.6<br>304 | 63.9<br>315 |
| 8     | 53.5<br>254 | 54.8<br>322 | 60.5<br>286 | 61.5<br>330 | 56.6<br>327 | 45.3<br>320 | 36.1<br>318 | 42.8<br>325 | 53.2<br>327 | 63.3<br>318 | 65.1<br>310 | 63.0<br>320 |

Average

Range

Temperature:  
 Velocity:

315.6  
 57.68  
 254-330  
 36.1-67.7

The top entry in each cell is the gas velocity in feet per second; the second entry is the gas temperature in °F. Temperatures are from the velocity traverse performed on 06/07/93. Velocities are calculated using the measured temperatures and ΔPs from 06/07/94 and average molecular weight and absolute pressure of 28.4 and 30.3, respectively.

A summary of the ESP outlet and stack trace metals source sampling data is presented in Table A-2. A total of four sets of ESP outlet and absorber outlet trace metal samples were collected. The trace metals sample collected at the ESP outlet on the second day of testing was voided because the isokinetic rate could not be maintained. The three sets of ESP outlet and four sets of stack trace metal samples were submitted for analysis.

### **Anions Collection**

A modification to the procedures specified in EPA Method 5 was used to collect solid and vapor phase samples of the ESP outlet and stack flue gas for anions analysis. The anions sampling trains were also used to determine the particulate mass loading. Horizontal sampling was performed at the stack using a typical EPA Method 5-style sampling train. Vertical sampling was performed at the ESP outlet using a modified EPA Method 5 train similar to the one described for the collection of trace metals. A Teflon® sample line was used to transfer the flue gas from the filter holder to the impingers. At the end of each test day, the Teflon® sample line was soaked for a minimum of 15 minutes with a carbonate/bicarbonate solution to recover any anions that may have adsorbed onto the walls of the tubing during sampling. The resulting rinse solution was added to the first impinger sample for analysis.

Two impingers containing 6% hydrogen peroxide were used to collect the vapor phase anions. These impingers were combined into a single sample container. Upon completion of sampling, the probe liner and sampling nozzle (P&N) were rinsed with deionized water and acetone to recover any solids that were present for mass loading determination. The probe liner and nozzle were then rinsed with a carbonate/bicarbonate solution to recover any anions that may have adsorbed onto the walls of the tubing during sampling. The deionized water/acetone P&N rinse was evaporated to determine the mass of solids present. These solids were combined with the carbonate/bicarbonate P&N rinse and the filter to generate the solid phase anions sample.

A summary of the ESP outlet and stack anions sampling data is presented in Table A-4. A total of three sets of ESP outlet and stack anions samples were collected over the period of June 8, 9, and 10. All three sets of anion samples were submitted to the lab for analysis.

### **Mercury Speciation**

Samples of the ESP outlet and stack flue gas were collected for mercury speciation using the Frontier Geosciences' solid sorbent system. The sampling configuration consists of two KCl-saturated soda-lime traps and two iodated carbon traps. The mercury speciation samples were collected at a single point approximately two to three feet from the wall. A total of four sets of mercury speciation samples were collected at the ESP outlet over the period of June 8, 9, 10, and 11. Attempts at collecting a mercury speciation sample on the stack on June 8 were unsuccessful. This resulted in a total of three sets of mercury speciation samples being collected at the stack over the period of June 9, 10, and 11. A summary of the ESP outlet and stack mercury speciation sampling data is

**Table A-2**  
**FCEM Site 20 - Trace Metals Source Sampling Data**

| ESP Outlet     |                          |                           |                                 |                                  |              |
|----------------|--------------------------|---------------------------|---------------------------------|----------------------------------|--------------|
| Run No.        | Sample Gas Volume (dscf) | Flue Gas Composition      |                                 |                                  | % Isokinetic |
|                |                          | Moisture (%)              | O <sub>2</sub> <sup>a</sup> (%) | CO <sub>2</sub> <sup>a</sup> (%) |              |
| 1              | 288.33                   | 13.1                      | 6.5                             | 10.0                             | 100.3        |
| 2 <sup>b</sup> |                          |                           |                                 |                                  |              |
| 3              | 243.08                   | 13.3                      | 7.5                             | 10.5                             | 103.1        |
| 4              | 200.40                   | 13.4                      | 7                               | 10.0                             | 103.7        |
| Stack          |                          |                           |                                 |                                  |              |
| Run No.        | Sample Gas Volume (dscf) | Flue Gas Composition      |                                 |                                  | % Isokinetic |
|                |                          | Moisture <sup>c</sup> (%) | O <sub>2</sub> <sup>a</sup> (%) | CO <sub>2</sub> <sup>a</sup> (%) |              |
| 1              | 217.90                   | 16.4/18.1                 | 10                              | 10.5                             | 97.7         |
| 2              | 266.67                   | 16.4/18.2                 | 10                              | 10.5                             | 99.3         |
| 3              | 253.89                   | 16.8/18.0                 | 10                              | 11.0                             | 101.0        |
| 4              | 221.79                   | 17.3/18.2                 | 8.5                             | 10.7                             | 101.1        |

<sup>a</sup>Two composite bag samples were collected during multi-metals sample collection at the ESP outlet and stack for CO<sub>2</sub> and O<sub>2</sub> analysis by Fyrite.

<sup>b</sup>ESP outlet metals Run 2 was voided.

<sup>c</sup>The stack flue gas moisture was supersaturated with respect to moisture. The first number represents the saturation moisture content at the average stack temperature. The second number represents the measured flue gas moisture content.

presented in Table A-3. The three sets of ESP outlet and stack mercury speciation samples collected over the period of June 9, 10, and 11 were submitted to Frontier Geosciences for analysis.

### **Particle Size Distribution**

Size-fractionated samples of the particulate matter were collected from the ESP outlet and stack using a Cyclade Model 283-2 cascade cyclone sampler which consists of three cyclones and a final filter. The aerodynamic cut-points of the cyclones are approximately 7.5, 2.7, and 0.57 microns for a flow rate of 1.0 acfm and temperature of 300 degrees F. A point of average velocity was selected for use in collecting the size-fractionated sample at both the ESP outlet and stack.

The ESP outlet and stack Cyclades were allowed to preheat for a minimum of 30 minutes and 60 minutes, respectively, before initiating sampling. The Cyclade final filter was heated using heat tape and a variable voltage transformer to prevent blinding of the filter. A thermocouple monitored the skin temperature of the filter holder during preheating and sample collection. The skin temperature of the stack Cyclade was maintained at between 190 to 230° F during sample collection.

Observations made during the recovery of the PSD samples are documented below:

#### ***ESP Outlet***

- A very small portion of the filter could not be recovered because parts of the filter were stuck in the holes around the outside perimeter of the support screen. This did not affect the recovery of the filter solids.
- The center of the filter was lightly coated with beige colored solids.
- A small amount of solids were recovered from the No. 5 cyclone. Some of the solids were in the cyclone body, but the majority of solids were recovered from the collection cup. The solids adhered to each other and to the cyclone. The solids had to be scraped from the cyclone. The solids had the sweet aroma of sulfuric acid samples collected at another site.
- There was a small amount of solids in the catch bulbs of cyclones No. 1 and 3. The solids were easily recovered using a camel hair brush.

#### ***Stack***

- The filter stuck to the support screen in a manner very similar to that encountered at the ESP outlet. Some of the filter media was not recovered, but this should not have affected the recovery of the collected solids.
- The solids on the stack filter were a lighter in color than the ESP outlet solids.

**Table A-3**  
**FCEM Site 20 - Mercury Speciation Data**

| Run No. | Integrator Volume (liters) |       |
|---------|----------------------------|-------|
|         | ESP Outlet                 | Stack |
| 1       | 101.6                      | NC    |
| 2       | 101.4                      | 100   |
| 3       | 103.2                      | 61.9  |
| 4       | 102.7                      | 32.3  |

NC = Not collected.

- There were no solids in the catch cup of the No. 5 cyclone. There were a small amount of very fine red colored solids in the inlet throat of the No. 5 cyclone. The solids did not appear to be rust. An attempt was made to recover these solids into the sample bottle.
- Cyclone No. 3 contained a small amount of solids that were easily recovered using a camel hair brush.
- Cyclone No. 1 had a layer of solids along the walls of the cyclone chamber, but there were no solids present in the collection cup. The solids appeared to have been wetted at some point and were left behind after the water evaporated.
- It was difficult to move the Cyclade into and out of the port. The Cyclade was generally dirty when it was removed from the stack and contamination of the nozzle area with wet solids is a possibility.
- Amber glass bottles with Teflon® lid inserts were used to store all the cyclone samples.

### **Flue Gas Flow Rate**

The flow rate of flue gas entering the FGD system and exiting the stack were determined using the procedures specified in EPA Methods 1, 2, 3, and 4. Two velocity profiles were performed during each day of testing at the ESP outlet. An initial velocity profile was performed in the morning to determine the conditions necessary to achieve the isokinetic sampling rate at the meter for both the metals and anions samples. A second ESP outlet velocity profile was performed at the end of the day to verify that the flow rate had not changed appreciably during the day. The velocity data showed that the flue gas temperature increased from about 310° F in the morning to about 330° F in the afternoon. The increase in flue gas temperature was attributed to a combination of increasing ambient temperature during the day and heat loss to duct work structure and fans early in the morning while the boiler load was being increased. The higher, end of the day, ESP outlet flue gas temperatures were used to calculate the flue gas flow rate each day because the plant's process data indicated that these temperatures were more representative of the average gas temperature for the entire run. A summary of the flue gas flow rate data obtained at the ESP outlet and stack is presented in Table A-5.

### **Process Stream Sampling**

#### ***Coal***

Coal samples were collected every day from samplers on four of the six operating coal feed chutes. The individual samples (approximately 500 ml each) were taken about every two hours during the gas sampling activities and added to a plastic collection bucket. At the end of the test day, the material in the bucket was well-mixed using a

**Table A-4**  
**FCEM Site 20 - Anions Source Sampling Data**

| ESP Outlet |                          |                           |                                 |                                  |              |
|------------|--------------------------|---------------------------|---------------------------------|----------------------------------|--------------|
| Run No.    | Sample Gas Volume (dscf) | Flue Gas Composition      |                                 |                                  | % Isokinetic |
|            |                          | Moisture (%)              | O <sub>2</sub> <sup>a</sup> (%) | CO <sub>2</sub> <sup>a</sup> (%) |              |
| 1          | 72.98                    | 13.5                      | 6.5                             | 10.0                             | 100.5        |
| 2          | 63.45                    | 13.3                      | 8.0                             | 11.0                             | 102.4        |
| 3          | 62.21                    | 13.9                      | 7.5                             | 10.5                             | 102.4        |
| Stack      |                          |                           |                                 |                                  |              |
| Run No.    | Sample Gas Volume (dscf) | Flue Gas Composition      |                                 |                                  | % Isokinetic |
|            |                          | Moisture <sup>b</sup> (%) | O <sub>2</sub> <sup>a</sup> (%) | CO <sub>2</sub> <sup>a</sup> (%) |              |
| 1          | 73.43                    | 17.7/18.6                 | 10                              | 10.5                             | 96.3         |
| 2          | 74.81                    | 17.7/18.9                 | 10                              | 10.5                             | 98.0         |
| 3          | 72.32                    | 17.7/21.0                 | 10                              | 11.0                             | 99.6         |

<sup>a</sup>Two composite bag samples were collected during multi-metals sample collection at the ESP outlet and stack for CO<sub>2</sub> and O<sub>2</sub> analysis by Fyrite.

<sup>b</sup>The stack flue gas moisture was supersaturated with respect to moisture. The first number represents the saturation moisture content at the average stack temperature. The second number represents the measured flue gas moisture content.

**Table A-5**  
**FCEM Site 20 - Flue Gas Flow Rate Data**

| ESP Outlet |                                              |                                  |                      |                           |
|------------|----------------------------------------------|----------------------------------|----------------------|---------------------------|
| Run No.    | Average Flue Gas                             |                                  |                      |                           |
|            | ΔP <sup>a</sup><br>(inches H <sub>2</sub> O) | Temperature <sup>a</sup><br>(°F) | Velocity<br>(ft/sec) | Flow Rate<br>(dscfm E+06) |
| 1          | 0.96                                         | 312                              | 66.8                 | 1.73                      |
| 2          | 0.93                                         | 332                              | 66.4                 | 1.68                      |
| 3          | 0.92                                         | 332                              | 66.0                 | 1.68                      |
| 4          | 0.89                                         | 335                              | 65.1                 | 1.65                      |

| Stack   |        |                                 |                     |                      |                           |                                                         |
|---------|--------|---------------------------------|---------------------|----------------------|---------------------------|---------------------------------------------------------|
|         |        | Average Flue Gas                |                     |                      |                           |                                                         |
| Run No. | Train  | ΔP<br>(inches H <sub>2</sub> O) | Temperature<br>(°F) | Velocity<br>(ft/sec) | Flow Rate<br>(dscfm E+06) | Average Flow Rate<br>of Metals & Anions<br>(dscfm E+06) |
| 1       | Metals | 1.48                            | 133                 | 74.4                 | 1.93                      | 1.96                                                    |
|         | Anions | 1.61                            | 136                 | 77.9                 | 1.98                      |                                                         |
| 2       | Metals | 1.56                            | 133                 | 76.1                 | 1.98                      | 1.98                                                    |
|         | Anions | 1.61                            | 136                 | 77.8                 | 1.98                      |                                                         |
| 3       | Metals | 1.51                            | 134                 | 74.9                 | 1.94                      | 1.92                                                    |
|         | Anions | 1.49                            | 136                 | 74.5                 | 1.98                      |                                                         |
| 4       | Metals | 1.49                            | 135                 | 74.5                 | 1.92                      | N/A                                                     |

<sup>a</sup>The ΔPs and flue gas temperatures for Day 1 are from the pre-test velocity traverse. The ΔPs and flue gas temperature for Days 2, 3, and 4 are from the post-test velocity.

large plastic spoon. A daily composite sample was then obtained by scooping the well-mixed material into a composite sample bottle.

There were two different types of samplers: continuous and batch. The continuous samplers used a slow turning screw to extract coal from the feed chute. The coal accumulated in a stainless steel collection pipe, which was emptied each time an individual sample was collected.

The batch samplers consisted of a knife-gate valve and collection pipe mounted on the wall of the feed chute. The collection pipe was constructed out of a combination of carbon steel pipe and PVC pipe. The knife-gate valves did not close properly, so coal accumulated in the collection pipe in between the collection of the individual samples. The accumulated coal was purged from the collection pipe before each of the individual samples were collected, so the valve problem should have no impact on the collected coal samples.

### ***Bottom Ash***

Bottom ash samples were collected using a PVC pipe that was manually inserted into the bottom ash slurry stream as the slurry entered the bottom ash pond. The slurry samples flowed through the pipe into a five-gallon bucket. The slurry was allowed to settle before decanting most of the liquid. The concentrated slurry was then stirred and added to another bucket, which accumulated the bottom ash sample for the test. Multiple slurry samples were collected and processed in an identical manner. At the end of the bottom ash sluicing process, the bucket containing the accumulated bottom ash slurry sample was stirred and then allowed to settle. Most of the water was then decanted. The composite bottom ash sample for the test was obtained by scooping a sample from the settled bottom ash bucket.

Bottom ash samples were collected within one hour after the flue gas sampling was completed. In order to provide a sample of the boiler bottom ash that was representative of the gas sampling period, bottom ash sluicing was suspended approximately one hour before gas testing began and resumed after gas testing was completed. Grab samples of the sluice were collected after bottom ash solids appeared in the sluice water. Sampling continued until it became apparent by the amount of solids present in the sluice water that the boiler bottom ash transfer was complete.

### ***Fly Ash***

Fly ash samples were collected during Site 20's daily fly ash silo emptying procedure. Four or five grab samples were collected each day using a plastic scoop to collect the ash as it fell off the end of the fly ash silo's screw conveyor. The grab samples were then combined to form the composite sample for the test day.

## **FGD Solids**

FGD solids samples were collected during Site 20's daily FGD sludge dewatering procedure. Four or five grab samples were collected each day using a plastic scoop to collect the solids as they fell off the rotary vacuum drum filter. The grab samples were then combined to form the composite sample for the test day.

## **FGD Makeup Water**

Radian collected two FGD makeup water samples each day. The samples were collected from a tap near the entrance to the FGD system. The tap was opened and water was allowed to flow at a high rate for at least 15 seconds before collecting the water samples. One sample was cooled to 4°C and then analyzed for anions (in Austin). The other sample was acidified using nitric acid. The acidified sample was analyzed for metals (also in Austin).

## **Limestone**

Radian collected limestone samples from the conveyor belts that feed the limestone ball mills. Multiple samples were collected each day using plastic scoops. These samples were composited to form the sample for the test day.

## **FGD Liquor**

Radian collected daily FGD liquor samples from both of the lower loop reaction tanks. These samples were immediately filtered into a sample bottle containing a known amount of distilled water. The resulting liquid was then analyzed (in Austin) for dibasic acid (DBA), an FGD system performance additive, using ion chromatography.

## **Detailed Sample Collection/Preparation/Analysis Tables**

Table A-6 lists the techniques used to collect, preserve, and handle the samples at Site 20. Analytical methods applied to the coal samples are listed in Table A-7. Analytical methods for all other samples are listed in Table A-8.

**Table A-6**  
**Sample Collection, Preservation, and Handling Techniques for Site 20**

| Stream                      | Collection Method                                             | Fraction Description                 | Sample Handling & Preservation                                                                       | Comments                                                                                                                                                                      |
|-----------------------------|---------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Flue Gas Samples</b>     |                                                               |                                      |                                                                                                      |                                                                                                                                                                               |
| ESP Outlet Gas<br>Stack Gas | Specified in Section 3.1 of 40<br>CFR, Part 266, Appendix IX* | Metals Probe and Nozzle Rinse        | Acetone portion dried and weighed;<br>nitric acid portion sealed and kept<br>at ambient temperature. | Digested probe and nozzle rinses<br>combined with digested filters<br>prior to analysis.                                                                                      |
|                             |                                                               | Metals Filter                        | Dried at room temperature to<br>constant weight.                                                     |                                                                                                                                                                               |
|                             |                                                               | Metals Impingers 1 & 2               | Sealed and kept at ambient<br>temperature.                                                           |                                                                                                                                                                               |
|                             |                                                               | Metals Impingers 3 & 4               | Sealed and kept at ambient<br>temperature.                                                           | Analyzed for mercury only.                                                                                                                                                    |
|                             | Radian Method                                                 | Anions Train                         | Sealed and kept at ambient<br>temperature.                                                           | Analyzed for chloride, fluoride,<br>and sulfate.                                                                                                                              |
| <b>Water Samples</b>        |                                                               |                                      |                                                                                                      |                                                                                                                                                                               |
| FGD Makeup Water            | Grab                                                          | Metals                               | Nitric acid to pH <2; kept in a<br>sealed container.                                                 | One grab sample during each<br>test run.                                                                                                                                      |
|                             |                                                               | Cl, F                                | Kept in a sealed container.<br>Cooled to 4°C.                                                        |                                                                                                                                                                               |
| <b>Solid Samples</b>        |                                                               |                                      |                                                                                                      |                                                                                                                                                                               |
| Coal                        | Grab/Composite                                                | Ultimate, Proximate<br>Metals; Cl, F | Kept in a sealed container; submitted<br>"as collected."                                             | Multiple grab samples collected<br>during the test period were<br>composited directly into buckets,<br>coned and quartered to reduce<br>sample size.                          |
| Bottom Ash Solids           | Grab/Composite                                                | Metals; Cl, F                        | Placed in sealed container in the<br>field; dried at 105°C and ground<br>prior to analysis.          | Multiple grab samples taken<br>during bottom ash sluicing were<br>composited in a large plastic<br>container. Solids were allowed<br>to settle and the water was<br>decanted. |

Table A-6 (Continued)

| Stream     | Collection Method | Fraction Description | Sample Handling & Preservation                      | Comments                                                                                        |
|------------|-------------------|----------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| ESP Ash    | Grab/Composite    | Metals; Cl, F        | Kept in sealed container; submitted "as collected." | Multiple grab samples taken from screw feeder with plastic scoop; composited in plastic bucket. |
| FGD Solids | Grab/Composite    | Metals; Cl, F        | Kept in sealed container; submitted "as collected." | Multiple grab samples from rotary drum filter; composited in a plastic bucket.                  |
| Limestone  | Grab/Composite    | Metals; Cl, F        | Kept in sealed container; submitted "as collected." | Multiple grab samples from limestone conveyor belts; composited in a plastic bucket.            |

\*40 CFR, Part 266, Appendix IX, Section 3.1, "Methodology for the Determination of Metals Emissions from Hazardous Waste Incineration and Similar Combustion Processes," 1991.

**Table A-7**  
**Preparation Procedures and Chemical Analysis Methods Applied to Coal at Site 20**

| Component                                     | Method Reference        |
|-----------------------------------------------|-------------------------|
| <b>Ultimate Analysis of Coal</b>              |                         |
| Ash                                           | ASTM D 3174             |
| Carbon                                        | ASTM D 3178             |
| Hydrogen                                      | ASTM D 3178             |
| Nitrogen                                      | ASTM D 3179             |
| Sulfur                                        | ASTM D 4239             |
| Heating Value                                 | ASTM D 2015             |
| <b>Chlorine and Fluorine Analysis in Coal</b> |                         |
| <b>Preparation</b>                            |                         |
| Oxygen Bomb Digestion                         | ASTM D 4208/ASTM D 3761 |
| <b>Analysis by Potentiometric Titration</b>   |                         |
| Chloride                                      | SM 407C                 |
| <b>Analysis by Ion Selective Electrode</b>    |                         |
| Fluoride                                      | ASTM D 3761             |
| <b>Other FCEM Species in Coal</b>             |                         |
| <b>Preparation</b>                            |                         |
| Ashing at 500°C/Acid Digestion                | ASTM 3683               |
| <b>Analysis by GFAAS</b>                      |                         |
| Cadmium                                       | SW 7131                 |
| Arsenic                                       | SW 7131                 |
| Selenium                                      | SW 7740                 |
| <b>Analysis by ICP-AES</b>                    |                         |
| Ba, Be, Co, Cr, Pb, Ni, P, V                  | SW 6010                 |
| Selenium                                      | ASTM D 4326-84          |
| <b>Mercury Analysis in Coal</b>               |                         |
| <b>Preparation</b>                            |                         |
| Double Gold Amalgamation                      | Karr, Chapter 14        |
| <b>Analysis by CVAAS</b>                      |                         |
| Mercury                                       | Karr, Chapter 14        |

Karr, C. Jr., (ed.), "Analytical Methods for Coal and Coal Products."

SW is EPA SW-846, "Test Methods for Evaluating Solid Waste".

SM is "Standard Methods for the Examination of Water and Wastewater," 16th ed.

**Table A-8**  
**Preparation Procedures and Chemical Analysis Methods for Inorganic Chemical Components in Non-Coal Solids,**  
**Water Samples, and Flue Gas at Site 20**

| Component                         | Method Reference | Non-Coal Solids | Water Samples | Flue Gas Solids | Metals Impingers 1 & 2 | Metals Impingers 3 & 4 | Anions Impingers |
|-----------------------------------|------------------|-----------------|---------------|-----------------|------------------------|------------------------|------------------|
| <b>Target Elements by ICP-AES</b> |                  |                 |               |                 |                        |                        |                  |
| Preparation                       |                  |                 |               |                 |                        |                        |                  |
| MW Digestion for Filters          | CEM-F            |                 |               | X               |                        |                        |                  |
| MW Digestion for Solids           | CEM-FA           | X               |               |                 |                        |                        |                  |
| <b>Analysis by ICP-AES</b>        |                  |                 |               |                 |                        |                        |                  |
| Beryllium                         | SW 6010          | X               | X             | X               | X                      | X                      |                  |
| Chromium                          | SW 6010          | X               | X             | X               | X                      | X                      |                  |
| Nickel                            | SW 6010          | X               | X             | X               | X                      | X                      |                  |
| <b>Target Elements by GFAAS</b>   |                  |                 |               |                 |                        |                        |                  |
| Preparation                       |                  |                 |               |                 |                        |                        |                  |
| MW Digestion for Filters          | CEM-F            |                 |               | X               |                        |                        |                  |
| MW Digestion for Solids           | CEM-FA           | X               |               |                 |                        |                        |                  |
| <b>Analysis by GFAAS</b>          |                  |                 |               |                 |                        |                        |                  |
| Arsenic                           | SW 7060          | X               | X             | X               | X                      | X                      |                  |
| Cadmium                           | SW 7131          | X               | X             | X               | X                      | X                      |                  |
| Lead                              | SW 7421          | X               | X             | X               | X                      | X                      |                  |
| Selenium                          | SW 7740          | X               | X             | X               | X                      | X                      |                  |

Table A-8 (Continued)

| Component                                       | Method Reference    | Non-Coal Solids | Water Samples | Flue Gas Solids | Metals Impingers 1 & 2 | Metals Impingers 3 & 4 | Anions Impingers |
|-------------------------------------------------|---------------------|-----------------|---------------|-----------------|------------------------|------------------------|------------------|
| <b>Mercury by CVAAS</b>                         |                     |                 |               |                 |                        |                        |                  |
| Preparation                                     |                     |                 |               |                 |                        |                        |                  |
| MW Digestion for Filters                        | CEM-F               |                 |               | X               |                        |                        |                  |
| MW Digestion for Solids                         | CEM-FA              | X               |               |                 |                        |                        |                  |
| <b>Analysis by CVAAS</b>                        |                     |                 |               |                 |                        |                        |                  |
| Mercury                                         | SW 7470             | X               | X             | X               | X                      | X                      | X                |
| <b>Acid-Forming Anions</b>                      |                     |                 |               |                 |                        |                        |                  |
| Preparation                                     |                     |                 |               |                 |                        |                        |                  |
| Aqueous Extraction of Solids (Cl,F)             | Radian              | X               |               | X               |                        |                        |                  |
| Sodium Hydroxide Fusion (F)                     | McQuaker and Gurney | X               |               |                 |                        |                        |                  |
| Chloride by IC                                  | EPA 300.0           | X               | X             | X               |                        |                        | X                |
| Fluoride by ISE                                 | EPA 340.2           | X               | X             | X               |                        |                        | X                |
| <b>Additional Inorganic Analytes by ICP-AES</b> |                     |                 |               |                 |                        |                        |                  |
| Preparation                                     |                     |                 |               |                 |                        |                        |                  |
| MW Digestion for Filters                        | CEM-F               |                 |               |                 | X                      |                        |                  |
| MW Digestion for Solids                         | CEM-FA              | X               |               |                 |                        |                        |                  |
| <b>Analysis by ICP-AES</b>                      |                     |                 |               |                 |                        |                        |                  |
| Aluminum                                        | SW 6010             | X               | X             | X               | X                      | X                      | X                |
| Antimony                                        | SW 6010             | X               | X             | X               | X                      | X                      | X                |
| Barium                                          | SW 6010             | X               | X             | X               | X                      | X                      | X                |
| Calcium                                         | SW 6010             | X               | X             | X               | X                      | X                      | X                |
| Cobalt                                          | SW 6010             | X               | X             | X               | X                      | X                      | X                |

Table A-8 (Continued)

| Component  | Method Reference | Non-Coal Solids | Water Samples | Flue Gas Solids | Metals Impingers 1 & 2 | Metals Impingers 3 & 4 | Anions Impingers |
|------------|------------------|-----------------|---------------|-----------------|------------------------|------------------------|------------------|
| Copper     | SW 6010          | X               | X             | X               | X                      |                        |                  |
| Iron       | SW 6010          | X               | X             | X               | X                      |                        |                  |
| Magnesium  | SW 6010          | X               | X             | X               | X                      |                        |                  |
| Manganese  | SW 6010          | X               | X             | X               | X                      |                        |                  |
| Molybdenum | SW 6010          | X               | X             | X               | X                      |                        |                  |
| Phosphorus | SW 6010          | X               | X             | X               | X                      |                        |                  |
| Potassium  | SW 6010          | X               | X             | X               | X                      |                        |                  |
| Sodium     | SW 6010          | X               | X             | X               | X                      |                        |                  |
| Vanadium   | SW 6010          | X               | X             | X               | X                      |                        |                  |

ASTM is American Society for Testing and Materials.

EPA is EPA Methods for Chemical Analysis of Water and Wastes, 1983.

SW is EPA SW-846, "Test Methods for Evaluating Solid Waste", 3rd ed.

CEM-FA CEM Corporation, Matthews, NC Procedure for microwave digestion of coal fly ash.

CEM-F CEM Corporation, Matthews, NC Procedure for microwave digestion of glass or quartz filters.

McQuaker, N. R., and M. Gurney. "Determination of Total Fluoride in Soil and Vegetation Using An Alkali Fusion-Selective Ion Electrode Technique", *Analytical Chemistry*, Vol. 49, No. 1, January 1977, pp. 53-56.

## **APPENDIX B: DATA USED IN CALCULATIONS**

---

| Stream                  | Test code | Analyte  | Units              | Run 1    | Run 2    | Run 3    | Run 4    |
|-------------------------|-----------|----------|--------------------|----------|----------|----------|----------|
| Bottom ash              | ICP-AES   | Aluminum | mg/kg              | 5.28E+04 | 5.18E+04 | 5.34E+04 | 5.57E+04 |
| Coal                    | XRF       | Aluminum | percent            | 1.68E+00 | 1.54E+00 | 1.76E+00 | 1.33E+00 |
| ESP outlet, gas phase   | ICP-AES   | Aluminum | µg/Nm <sub>3</sub> | 1.61E+01 | 2.54E+01 | 2.59E+01 | 1.35E+00 |
| ESP outlet, solid phase | ICP-AES   | Aluminum | µg/Nm <sub>3</sub> | 3.40E+03 | 4.50E+03 | 3.29E+03 | 3.29E+03 |
| FGD solids              | ICP-AES   | Aluminum | mg/kg              | 7.12E+02 | 6.97E+02 | 7.78E+02 | 6.30E+02 |
| Fly ash                 | ICP-AES   | Aluminum | mg/kg              | 7.48E+04 | 7.50E+04 | 8.33E+04 | 8.08E+04 |
| Limestone               | ICP-AES   | Aluminum | mg/kg              | 4.11E+02 | 3.76E+02 | 3.79E+02 | 4.24E+02 |
| Makeup water            | ICP-AES   | Aluminum | mg/L               | 1.73E-01 | 1.44E-01 | 1.56E-01 | 1.61E-01 |
| Precipitator ash        | ICP-AES   | Aluminum | mg/kg              | 9.22E+04 | 9.22E+04 | 9.30E+04 | 9.30E+04 |
| Slack gas, gas phase    | ICP-AES   | Aluminum | µg/Nm <sub>3</sub> | 6.43E+00 | 5.57E+00 | 9.32E+00 | 8.42E+00 |
| Slack gas, solid phase  | ICP-AES   | Aluminum | µg/Nm <sub>3</sub> | 5.11E+02 | 9.49E+02 | 4.65E+02 | 6.12E+02 |
| Bottom ash              | ICP-AES   | Antimony | mg/kg              | 1.82E+02 | 7.39E+01 | 7.22E+01 | 7.34E+01 |
| ESP outlet, gas phase   | ICP-AES   | Antimony | µg/Nm <sub>3</sub> | 4.31E+00 | 4.90E+00 | 5.20E+00 | 5.20E+00 |
| ESP outlet, solid phase | ICP-AES   | Antimony | µg/Nm <sub>3</sub> | 9.92E-01 | 1.18E+00 | 1.43E+00 | 1.43E+00 |
| FGD solids              | ICP-AES   | Antimony | mg/kg              | 1.30E+00 | 1.62E+00 | 1.48E+00 | 1.38E+00 |
| Fly ash                 | ICP-AES   | Antimony | mg/kg              | 7.12E+01 | 7.44E+01 | 7.42E+01 | 7.48E+01 |
| Limestone               | ICP-AES   | Antimony | mg/kg              | 1.44E+00 | 1.41E+00 | 1.45E+00 | 1.43E+00 |
| Makeup water            | ICP-AES   | Antimony | mg/L               | 2.41E-02 | 2.41E-02 | 2.41E-02 | 2.41E-02 |
| Precipitator ash        | ICP-AES   | Antimony | mg/kg              | 7.24E+01 | 7.32E+01 | 2.25E+02 | 2.25E+02 |
| Slack gas, gas phase    | ICP-AES   | Antimony | µg/Nm <sub>3</sub> | 4.85E+00 | 4.73E+00 | 5.09E+00 | 5.09E+00 |
| Slack gas, solid phase  | ICP-AES   | Antimony | µg/Nm <sub>3</sub> | 1.31E+00 | 1.07E+00 | 1.13E+00 | 1.29E+00 |
| Bottom ash              | GFAAS     | Arsenic  | mg/kg              | 1.40E+01 | 1.49E+01 | 1.23E+01 | 1.31E+01 |
| Coal                    | GFAAS     | Arsenic  | mg/kg              | 4.00E+00 | 3.00E+00 | 3.00E+00 | 1.00E+00 |
| ESP outlet, gas phase   | GFAAS     | Arsenic  | µg/Nm <sub>3</sub> | 1.18E-01 | 1.34E-01 | 1.42E-01 | 1.42E-01 |
| ESP outlet, solid phase | GFAAS     | Arsenic  | µg/Nm <sub>3</sub> | 2.94E+00 | 1.62E+00 | 4.29E+00 | 2.17E+00 |
| FGD solids              | GFAAS     | Arsenic  | mg/kg              | 1.97E+00 | 1.85E+00 | 1.50E+00 | 1.50E+00 |
| Fly ash                 | GFAAS     | Arsenic  | mg/kg              | 3.87E+01 | 4.18E+01 | 4.67E+01 | 3.94E+01 |
| Limestone               | GFAAS     | Arsenic  | mg/kg              | 6.27E+00 | 7.19E+00 | 8.27E+00 | 4.93E+00 |
| Makeup water            | GFAAS     | Arsenic  | mg/L               | 1.20E-03 | 1.80E-03 | 2.00E-03 | 1.50E-03 |
| Precipitator ash        | GFAAS     | Arsenic  | mg/kg              | 7.52E+01 | 7.54E+01 | 7.46E+01 | 7.46E+01 |
| Slack gas, gas phase    | GFAAS     | Arsenic  | µg/Nm <sub>3</sub> | 1.27E-01 | 1.29E-01 | 1.39E-01 | 1.39E-01 |
| Slack gas, solid phase  | GFAAS     | Arsenic  | µg/Nm <sub>3</sub> | 4.59E-01 | 8.57E-01 | 4.96E-01 | 4.85E-01 |
| Coal                    | Proximate | Ash      | percent            | 2.11E+01 | 2.00E+01 | 2.01E+01 | 2.26E+01 |
| Bottom ash              | ICP-AES   | Barium   | mg/kg              | 2.25E+03 | 2.53E+03 | 4.00E+03 | 2.25E+03 |
| Coal                    | ICP-AES   | Barium   | mg/Nm <sub>3</sub> | 2.10E+02 | 1.80E+02 | 1.60E+02 | 2.10E+02 |
| ESP outlet, gas phase   | ICP-AES   | Barium   | µg/Nm <sub>3</sub> | 2.15E+00 | 2.15E+00 | 6.16E-01 | 6.26E-01 |
| ESP outlet, solid phase | ICP-AES   | Barium   | µg/Nm <sub>3</sub> | 1.29E+02 | 1.29E+02 | 2.02E+02 | 1.35E+02 |
| FGD solids              | ICP-AES   | Barium   | mg/kg              | 4.91E+01 | 5.41E+01 | 5.80E+01 | 5.15E+01 |
| Fly ash                 | ICP-AES   | Barium   | mg/kg              | 2.25E+03 | 2.41E+03 | 3.10E+03 | 2.60E+03 |
| Limestone               | ICP-AES   | Barium   | mg/kg              | 8.67E+01 | 1.12E+02 | 7.31E+01 | 6.75E+01 |
| Makeup water            | ICP-AES   | Barium   | mg/L               | 1.50E-01 | 1.70E-01 | 1.51E-01 | 1.64E-01 |

| Stream                  | Test code | Analyte   | Units              | Run 1      | Run 2      | Run 3      | Run 4      |
|-------------------------|-----------|-----------|--------------------|------------|------------|------------|------------|
| Precipitator ash        | ICP-AES   | Barium    | mg/kg              | 2.63E+03   | 2.68E+03   | 2.68E+03   | 3.46E-01   |
| Stack gas, gas phase    | ICP-AES   | Barium    | µg/Nm <sub>3</sub> | 3.92E+00   | 3.71E-01   | 2.68E-01   | 2.91E+01   |
| Stack gas, solid phase  | ICP-AES   | Barium    | µg/Nm <sub>3</sub> | 2.73E+01   | 6.56E+01   | 2.78E+01   | 1.25E+01   |
| Bottom ash              | ICP-AES   | Beryllium | mg/kg              | 2.03E+01   | 2.38E+01   | 3.34E+01   | 4.60E+00   |
| Coal                    | ICP-AES   | Beryllium | mg/kg              | 5.10E+00   | 6.40E+00   | 1.00E+01   | < 1.20E-01 |
| ESP outlet, gas phase   | ICP-AES   | Beryllium | µg/Nm <sub>3</sub> | < 9.92E-02 | < 1.13E-01 | < 1.20E-01 | < 1.20E-01 |
| ESP outlet, solid phase | ICP-AES   | Beryllium | µg/Nm <sub>3</sub> | 1.43E+00   | 3.34E+00   | 1.31E+00   | 3.34E+00   |
| FGD solids              | ICP-AES   | Beryllium | mg/kg              | 9.64E-02   | 6.67E-02   | 1.48E-01   | 1.42E-01   |
| Fly ash                 | ICP-AES   | Beryllium | mg/kg              | 2.59E+01   | 2.84E+01   | 4.38E+01   | 2.69E+01   |
| Limestone               | ICP-AES   | Beryllium | mg/kg              | 5.54E-02   | 7.48E-02   | 5.34E-02   | 5.62E-02   |
| Makeup water            | ICP-AES   | Beryllium | mg/L               | < 5.54E-04 | < 5.54E-04 | 6.10E-04   | < 5.54E-04 |
| Precipitator ash        | ICP-AES   | Beryllium | µg/Nm <sub>3</sub> | 3.23E+01   | 2.94E+01   | 3.05E+01   | < 3.05E+01 |
| Stack gas, gas phase    | ICP-AES   | Beryllium | mg/kg              | < 1.07E-01 | < 1.09E-01 | < 1.17E-01 | < 1.17E-01 |
| Stack gas, solid phase  | ICP-AES   | Beryllium | µg/Nm <sub>3</sub> | 2.56E-01   | 4.61E-01   | 2.88E-01   | 2.81E-01   |
| Bottom ash              | GFAAS     | Cadmium   | mg/kg              | < 3.61E-01 | < 3.68E-01 | < 3.58E-01 | < 3.63E-01 |
| Coal                    | GFAAS     | Cadmium   | mg/kg              | 3.00E-01   | 2.00E-01   | 1.00E-01   | 1.00E-01   |
| ESP outlet, gas phase   | GFAAS     | Cadmium   | µg/Nm <sub>3</sub> | 2.11E-01   | 1.16E-01   | 2.03E-01   | 2.03E-01   |
| ESP outlet, solid phase | GFAAS     | Cadmium   | µg/Nm <sub>3</sub> | 2.18E-01   | 3.01E-01   | 3.60E-01   | 3.60E-01   |
| FGD solids              | GFAAS     | Cadmium   | mg/kg              | 1.92E-01   | 2.02E-01   | 2.61E-01   | 1.82E-01   |
| Fly ash                 | GFAAS     | Cadmium   | mg/kg              | 1.10E+00   | 7.78E-01   | < 3.67E-01 | < 3.71E-01 |
| Limestone               | GFAAS     | Cadmium   | mg/kg              | 3.52E-01   | 3.90E-01   | 4.11E-01   | 3.81E-01   |
| Makeup water            | GFAAS     | Cadmium   | mg/L               | < 3.10E-04 | < 3.10E-04 | < 3.10E-04 | < 3.10E-04 |
| Precipitator ash        | GFAAS     | Cadmium   | mg/kg              | 1.67E+00   | 1.83E+00   | 1.28E+00   | 2.01E-01   |
| Stack gas, gas phase    | GFAAS     | Cadmium   | µg/Nm <sub>3</sub> | 3.07E-01   | 8.44E-02   | 2.01E-01   | 7.81E-02   |
| Stack gas, solid phase  | GFAAS     | Cadmium   | µg/Nm <sub>3</sub> | 9.04E-01   | 7.29E-02   | 6.39E-01   | 2.63E-01   |
| Bottom ash              | ICP-AES   | Calcium   | mg/kg              | 4.95E-04   | 4.52E-04   | 3.46E-04   | 6.04E+04   |
| Coal                    | XFF       | Calcium   | percent            | 1.31E+00   | 1.21E+00   | 7.50E-01   | 1.30E+00   |
| ESP outlet, gas phase   | ICP-AES   | Calcium   | µg/Nm <sub>3</sub> | 5.55E+01   | 1.05E+02   | 1.08E+02   | 1.08E+02   |
| ESP outlet, solid phase | ICP-AES   | Calcium   | mg/kg              | 2.42E+03   | 2.81E+03   | 2.53E+03   | 2.53E+03   |
| FGD solids              | ICP-AES   | Calcium   | percent            | 2.81E+05   | 2.78E+05   | 2.82E+05   | 2.63E+05   |
| Fly ash                 | ICP-AES   | Calcium   | mg/kg              | 5.00E+04   | 6.73E+04   | 4.39E+04   | 6.85E+04   |
| Limestone               | GFAAS     | Calcium   | mg/kg              | 3.49E+05   | 3.43E+05   | 3.45E+05   | 3.37E+05   |
| Makeup water            | ICP-AES   | Calcium   | mg/L               | 5.17E+01   | 5.31E+01   | 5.04E+01   | 5.11E+01   |
| Precipitator ash        | ICP-AES   | Calcium   | mg/kg              | 6.84E+04   | 6.42E+04   | 6.69E+04   | < 3.12E+01 |
| Stack gas, gas phase    | ICP-AES   | Calcium   | µg/Nm <sub>3</sub> | < 2.86E+01 | < 2.90E+01 | < 3.13E+01 | < 3.13E+01 |
| Stack gas, solid phase  | ICP-AES   | Calcium   | µg/Nm <sub>3</sub> | 7.13E+02   | 1.49E+03   | 7.52E+02   | 1.15E+03   |
| Coal                    | Ultimate  | Carbon    | percent            | 6.12E+01   | 6.23E+01   | 6.04E+01   | 5.98E+01   |
| Bottom ash              | C         | Chloride  | mg/kg              | 3.62E+00   | 5.35E+00   | 3.28E+00   | 5.64E+00   |
| Coal                    | C         | Chloride  | mg/kg              | 9.02E+01   | 1.65E+02   | 1.80E+02   | 7.66E+01   |
| ESP outlet, gas phase   | C         | Chloride  | µg/Nm <sub>3</sub> | 2.53E+03   | 8.75E+03   | 2.37E+03   | 2.32E+01   |
| ESP outlet, solid phase | C         | Chloride  | µg/Nm <sub>3</sub> | 3.24E+01   | 6.51E+01   | 6.51E+01   | < 3.05E+01 |

| Stream                  | Test code | Analyte  | Units              | Run 1      | Run 2      | Run 3      | Run 4      |
|-------------------------|-----------|----------|--------------------|------------|------------|------------|------------|
| FGD solids              | C         | Chloride | mg/kg              | 1.61E+02   | 1.50E+02   | 1.77E+02   | 1.92E+02   |
| Fly ash                 | C         | Chloride | mg/kg              | < 2.56E-01 | 1.57E+00   | < 2.53E-01 | 2.24E+00   |
| Limestone               | C         | Chloride | mg/kg              | 2.24E+01   | 2.48E+01   | 2.69E+01   | 6.45E+01   |
| Makeup water            | C         | Chloride | mg/L               | 1.71E+01   | 2.15E+01   | 8.25E+00   | 1.98E+01   |
| Precipitator ash        | C         | Chloride | mg/kg              | 1.14E+00   |            |            |            |
| Stack gas, gas phase    | C         | Chloride | µg/Nm <sup>3</sup> | 5.21E+01   | 6.86E+01   | 1.74E+02   |            |
| Stack gas, solid phase  | C         | Chloride | µg/Nm <sup>3</sup> | 1.27E+02   | 1.33E+02   | 6.00E+02   |            |
| Bottom ash              | ICP-AES   | Chromium | mg/kg              | 5.81E+01   | 5.58E+01   | 6.18E+01   | 5.45E+01   |
| Coal                    | ICP-AES   | Chromium | mg/kg              | 1.60E+01   | 1.40E+01   | 1.70E+01   | 1.70E+01   |
| ESP outlet, gas phase   | ICP-AES   | Chromium | µg/Nm <sup>3</sup> | < 4.46E-01 | < 5.07E-01 | < 5.37E-01 |            |
| ESP outlet, solid phase | ICP-AES   | Chromium | µg/Nm <sup>3</sup> | 4.61E+00   | 6.81E+00   | 4.55E+00   |            |
| FGD solids              | ICP-AES   | Chromium | mg/kg              | 5.26E+00   | 5.49E+00   | 5.32E+00   | 4.84E+00   |
| Fly ash                 | ICP-AES   | Chromium | mg/kg              | 8.64E+01   | 8.36E+01   | 9.51E+01   | 9.00E+01   |
| Limestone               | ICP-AES   | Chromium | mg/kg              | 3.05E+00   | 3.36E+00   | 3.01E+00   | 3.07E+00   |
| Makeup water            | ICP-AES   | Chromium | mg/L               | < 2.49E-03 | < 2.49E-03 | < 2.49E-03 | < 2.49E-03 |
| Precipitator ash        | ICP-AES   | Chromium | mg/kg              | 1.10E+02   | 1.14E+02   |            |            |
| Stack gas, gas phase    | ICP-AES   | Chromium | µg/Nm <sup>3</sup> | < 4.81E-01 | < 4.89E-01 | < 5.26E-01 |            |
| Stack gas, solid phase  | ICP-AES   | Chromium | µg/Nm <sup>3</sup> | 2.79E+00   | 3.70E+00   | 1.34E+00   | 2.24E+00   |
| Bottom ash              | ICP-AES   | Cobalt   | mg/kg              | 3.00E+01   | 2.94E+01   | 4.20E+01   | 1.80E+01   |
| Coal                    | ICP-AES   | Cobalt   | mg/kg              | 6.00E+00   | 6.00E+00   | 9.00E+00   | 4.00E+00   |
| ESP outlet, gas phase   | ICP-AES   | Cobalt   | µg/Nm <sup>3</sup> | < 6.09E-01 | < 6.92E-01 | < 7.34E-01 |            |
| ESP outlet, solid phase | ICP-AES   | Cobalt   | µg/Nm <sup>3</sup> | 1.99E+00   | 3.67E+00   | 1.82E+00   |            |
| FGD solids              | ICP-AES   | Cobalt   | mg/kg              | 4.75E-01   | 6.62E-01   | 5.16E-01   |            |
| Fly ash                 | ICP-AES   | Cobalt   | mg/kg              | 3.49E+01   | 5.10E+01   | 3.81E+01   |            |
| Limestone               | ICP-AES   | Cobalt   | mg/kg              | 6.49E-01   | 4.21E-01   | 4.45E-01   |            |
| Makeup water            | ICP-AES   | Cobalt   | mg/L               | < 3.40E-03 | < 3.40E-03 | < 3.40E-03 |            |
| Precipitator ash        | ICP-AES   | Cobalt   | mg/kg              | 4.28E+01   | 4.26E+01   | 4.59E+01   |            |
| Stack gas, gas phase    | ICP-AES   | Cobalt   | µg/Nm <sup>3</sup> | < 6.57E-01 | < 6.67E-01 | < 7.19E-01 |            |
| Stack gas, solid phase  | ICP-AES   | Cobalt   | µg/Nm <sup>3</sup> | 4.98E-01   | 8.93E-01   | 4.55E-01   |            |
| Bottom ash              | ICP-AES   | Copper   | mg/kg              | 9.44E+01   | 8.77E+01   | 9.42E+01   | 8.69E+01   |
| ESP outlet, gas phase   | ICP-AES   | Copper   | µg/Nm <sup>3</sup> | 2.51E+00   |            | 1.39E+00   | < 8.22E-01 |
| ESP outlet, solid phase | ICP-AES   | Copper   | µg/Nm <sup>3</sup> | 7.47E+00   |            | 1.03E+01   | 7.72E+00   |
| FGD solids              | ICP-AES   | Copper   | mg/kg              | 2.57E+00   | 2.68E+00   | 2.73E+00   | 2.39E+00   |
| Fly ash                 | ICP-AES   | Copper   | mg/kg              | 1.16E+02   | 1.30E+02   | 1.39E+02   | 1.37E+02   |
| Limestone               | ICP-AES   | Copper   | mg/kg              | 1.84E+00   | 2.12E+00   | 1.46E+00   | 1.81E+00   |
| Makeup water            | ICP-AES   | Copper   | mg/L               | < 3.81E-03 | < 3.81E-03 | < 3.81E-03 | < 3.81E-03 |
| Precipitator ash        | ICP-AES   | Copper   | mg/kg              | 1.66E+02   | 1.88E+02   | 2.27E+02   |            |
| Stack gas, gas phase    | ICP-AES   | Copper   | µg/Nm <sup>3</sup> | < 7.36E-01 | < 7.48E-01 | < 8.05E-01 |            |
| Stack gas, solid phase  | ICP-AES   | Copper   | µg/Nm <sup>3</sup> | 6.43E+00   | 2.64E+00   | 1.50E+00   | 1.87E+00   |
| Bottom ash              | SE        | Fluoride | mg/kg              | B 7.53E-01 | B 7.09E-01 | B 8.56E-01 | B 8.72E-01 |
| Coal                    | SE        | Fluoride | mg/kg              | 4.00E+01   | 3.00E+01   | 4.00E+01   | 4.00E+01   |

| Stream                  | Test code   | Analyte   | Units              | Run 1      | Run 2      | Run 3      | Run 4      |
|-------------------------|-------------|-----------|--------------------|------------|------------|------------|------------|
| ESP outlet, gas phase   | SE          | Fluoride  | µg/Nm <sub>3</sub> | 4.42E+03   | 4.16E+03   | 4.08E+03   |            |
| ESP outlet, solid phase | SE          | Fluoride  | µg/Nm <sub>3</sub> | 9.40E+00   | 1.45E+01   | 1.89E+01   |            |
| FGD solids              | SE          | Fluoride  | mg/kg              | 1.73E+01   | 1.55E+01   | 1.50E+01   | 1.76E+01   |
| Fly ash                 | SE          | Fluoride  | mg/kg              | 7.96E+00   | 6.51E+00   | 8.55E+00   | 6.20E+00   |
| Limestone               | SE          | Fluoride  | mg/kg              | B 3.25E+00 | B 2.99E+00 | B 5.22E+00 | 6.36E+00   |
| Makeup water            | SE          | Fluoride  | mg/L               | 3.11E-01   | 3.25E-01   | 3.30E-01   | 3.14E-01   |
| Precipitator ash        | SE          | Fluoride  | mg/kg              | 6.95E+01   |            |            |            |
| Stack gas, gas phase    | SE          | Fluoride  | µg/Nm <sub>3</sub> | B 9.19E+01 | B 7.15E+01 |            |            |
| Stack gas, solid phase  | SE          | Fluoride  | µg/Nm <sub>3</sub> | B 1.53E+02 | B 6.37E+02 |            |            |
| Coal                    | Calorimetry | HHV       | BTU/lb             | 1.00E+04   | 1.01E+04   | 1.01E+04   | 9.86E+03   |
| Coal                    | Ultimate    | Hydrogen  | percent            | 4.17E+00   | 4.29E+00   | 4.22E+00   | 3.93E+00   |
| Bottom ash              | ICP-AES     | Iron      | mg/kg              | 9.50E+04   | 9.11E+04   | 1.09E+05   | 7.96E+04   |
| Coal                    | XRF         | Iron      | percent            | 1.58E+00   | 1.68E+00   | 2.28E+00   | 1.85E+00   |
| ESP outlet, gas phase   | ICP-AES     | Iron      | µg/Nm <sub>3</sub> | 1.22E+01   | 1.22E+01   | 2.40E+01   | 1.90E+01   |
| FGD solids              | ICP-AES     | Iron      | µg/Nm <sub>3</sub> | 2.67E+03   | 2.67E+03   | 5.28E+03   | 2.57E+03   |
| Fly ash                 | ICP-AES     | Iron      | mg/kg              | 1.17E+03   | 1.20E+03   | 1.29E+03   | 1.10E+03   |
| Limestone               | ICP-AES     | Iron      | mg/kg              | 9.27E+04   | 8.92E+04   | 9.79E+04   | 8.35E+04   |
| Makeup water            | ICP-AES     | Iron      | mg/kg              | 8.80E+02   | 8.93E+02   | 8.78E+02   | 9.32E+02   |
| Precipitator ash        | ICP-AES     | Iron      | mg/L               | 1.03E-01   | 8.78E-02   | 9.05E-02   | 2.26E-01   |
| Stack gas, gas phase    | ICP-AES     | Iron      | µg/Nm <sub>3</sub> | 8.99E+04   | 9.80E+04   | 9.45E+04   |            |
| Stack gas, solid phase  | ICP-AES     | Iron      | µg/Nm <sub>3</sub> | 4.13E+00   | 3.24E+00   | 5.33E+00   | 5.02E+00   |
| Bottom ash              | ICP-AES     | Iron      | µg/Nm <sub>3</sub> | 4.06E+02   | 8.68E+02   | 4.38E+02   | 4.77E+02   |
| Coal                    | GFAAS       | Lead      | mg/kg              | 2.84E+01   | 1.33E+01   | 1.00E+01   | 7.48E+00   |
| ESP outlet, gas phase   | GFAAS       | Lead      | mg/kg              | 2.10E+01   | 1.10E+01   | 9.00E+00   | 7.00E+00   |
| ESP outlet, solid phase | GFAAS       | Lead      | µg/Nm <sub>3</sub> | 3.29E+00   | 1.70E+00   | 2.05E+00   | 2.57E+00   |
| FGD solids              | GFAAS       | Lead      | µg/Nm <sub>3</sub> | 5.30E+00   | 3.02E+00   |            |            |
| Fly ash                 | GFAAS       | Lead      | mg/kg              | < 7.28E-02 | < 7.75E-02 | < 8.21E-02 | < 1.24E-01 |
| Limestone               | GFAAS       | Lead      | mg/kg              | 3.58E+01   | 3.48E+01   | 2.32E+01   | 2.27E+01   |
| Makeup water            | GFAAS       | Lead      | mg/L               | 9.02E-01   | 8.29E-01   | 7.40E-01   | 9.53E-01   |
| Precipitator ash        | GFAAS       | Lead      | mg/kg              | 5.26E-03   | 6.73E-03   | 6.86E-03   | 9.22E-03   |
| Stack gas, gas phase    | GFAAS       | Lead      | µg/Nm <sub>3</sub> | 3.86E+01   | 1.25E+02   | 4.24E+01   |            |
| Stack gas, solid phase  | GFAAS       | Lead      | µg/Nm <sub>3</sub> | 3.59E+00   | 5.38E-01   | 2.01E+00   | 1.81E+00   |
| Bottom ash              | ICP-AES     | Magnesium | mg/kg              | 6.54E-01   | 1.15E+00   | 3.84E-01   | 6.02E-01   |
| Coal                    | XRF         | Magnesium | percent            | 1.06E+04   | 1.06E+04   | 8.19E+03   | 1.25E+04   |
| ESP outlet, gas phase   | ICP-AES     | Magnesium | µg/Nm <sub>3</sub> | 2.80E-01   | 2.70E-01   | 1.80E-01   | 2.80E-01   |
| FGD solids              | ICP-AES     | Magnesium | mg/kg              | 5.46E+00   |            |            |            |
| Fly ash                 | ICP-AES     | Magnesium | µg/Nm <sub>3</sub> | 5.38E+02   | 6.38E+02   | 5.45E+02   | 4.92E+00   |
| Limestone               | ICP-AES     | Magnesium | mg/kg              | 2.45E+03   | 2.35E+03   | 2.40E+03   | 2.38E+03   |
| Makeup water            | ICP-AES     | Magnesium | mg/L               | 7.81E+00   | 8.05E+00   | 7.68E+00   | 7.96E+00   |

| Stream                  | Test code | Analyte    | Units              | Run 1      | Run 2      | Run 3      | Run 4      |
|-------------------------|-----------|------------|--------------------|------------|------------|------------|------------|
| Precipitator ash        | ICP-AES   | Magnesium  | mg/kg              | 1.55E+04   | 1.47E+04   | 1.51E+04   | < 4.81E+00 |
| Stack gas, gas phase    | ICP-AES   | Magnesium  | µg/Nm <sub>3</sub> | < 4.40E+00 | < 4.47E+00 | < 4.82E+00 | < 4.81E+00 |
| Stack gas, solid phase  | ICP-AES   | Magnesium  | µg/Nm <sub>3</sub> | 4.63E+02   | 8.67E+02   | 4.26E+02   | 7.52E+02   |
| Bottom ash              | ICP-AES   | Manganese  | mg/kg              | 2.45E+02   | 2.65E+02   | 3.61E+02   | 2.70E+02   |
| Coal                    | ICP-AES   | Manganese  | mg/kg              | 5.40E+01   | 6.80E+01   | 9.80E+01   | 6.90E+01   |
| ESP outlet, gas phase   | ICP-AES   | Manganese  | µg/Nm <sub>3</sub> | 4.35E+00   | 1.66E+01   | 1.08E+00   | 7.10E-01   |
| ESP outlet, solid phase | ICP-AES   | Manganese  | µg/Nm <sub>3</sub> | 9.58E+01   | 9.25E+01   | 3.38E+01   | 1.65E+01   |
| FGD solids              | ICP-AES   | Manganese  | mg/kg              | 4.22E+02   | 3.62E+02   | 4.46E+02   | 3.67E+02   |
| Fly ash                 | ICP-AES   | Manganese  | mg/kg              | 1.12E+02   | 1.11E+02   | 1.12E+02   | 1.13E+02   |
| Limestone               | ICP-AES   | Manganese  | mg/L               | 1.17E-02   | 7.70E-03   | 6.80E-03   | 1.34E-02   |
| Makeup water            | ICP-AES   | Manganese  | mg/kg              | 5.13E+02   | 5.66E+02   | 5.46E+02   | < 4.60E+02 |
| Precipitator ash        | ICP-AES   | Manganese  | µg/Nm <sub>3</sub> | 2.11E-01   | 6.08E+00   | 2.58E+00   | 9.25E+01   |
| Stack gas, gas phase    | ICP-AES   | Manganese  | µg/Nm <sub>3</sub> | 3.90E+00   | 6.51E+00   | 3.85E+00   | 4.90E+00   |
| Stack gas, solid phase  | CVAAS     | Mercury    | mg/kg              | 1.17E-02   | < 1.17E-02 | < 1.20E-02 | < 1.15E-02 |
| Bottom ash              | DGAA      | Mercury    | mg/kg              | 2.80E-01   | 2.20E-01   | 2.70E-01   | 2.60E-01   |
| Coal                    | CVAFS     | Mercury    | µg/g               | 2.74E-01   | 2.45E-01   | 2.81E-01   | 2.88E-01   |
| Coal                    | CVAAS     | Mercury    | µg/Nm <sub>3</sub> | 1.31E+01   | 1.09E+01   | 1.09E+01   | 1.61E+01   |
| ESP outlet, gas phase   | CVAAS     | Mercury    | µg/Nm <sub>3</sub> | 9.99E-03   | < 9.99E-03 | 9.04E-03   | 9.08E-03   |
| ESP outlet, solid phase | CVAAS     | Mercury    | mg/kg              | 9.53E-01   | 7.24E-01   | 8.20E-01   | 8.29E-01   |
| FGD solids              | CVAAS     | Mercury    | mg/kg              | < 1.20E-02 | < 1.09E-02 | < 1.20E-02 | < 1.20E-02 |
| Fly ash                 | CVAAS     | Mercury    | mg/kg              | < 1.20E-02 | < 1.20E-02 | < 1.20E-02 | < 1.20E-02 |
| Limestone               | CVAAS     | Mercury    | mg/L               | < 4.80E-05 | < 4.80E-05 | < 4.80E-05 | < 4.80E-05 |
| Makeup water            | CVAAS     | Mercury    | mg/kg              | < 1.20E-02 | < 1.20E-02 | 2.25E-02   | < 1.20E-02 |
| Precipitator ash        | CVAAS     | Mercury    | µg/Nm <sub>3</sub> | 1.27E+01   | 1.04E+01   | 9.72E+00   | 9.74E+00   |
| Stack gas, gas phase    | CVAAS     | Mercury    | µg/Nm <sub>3</sub> | 4.35E-02   | 6.59E-02   | 1.07E-02   | 4.99E-02   |
| Stack gas, solid phase  | CVAAS     | Mercury    | percent            | 3.35E+01   | 3.42E+01   | 3.38E+01   | 3.44E+01   |
| Coal                    | Proximate | Moisture   | mg/kg              | < 1.41E+01 | < 1.43E+01 | < 1.40E+01 | < 1.42E+01 |
| Bottom ash              | ICP-AES   | Molybdenum | mg/kg              | 4.00E+00   | 4.00E+00   | 3.00E+00   | 4.00E+00   |
| Coal                    | ICP-AES   | Molybdenum | µg/Nm <sub>3</sub> | < 8.29E-01 | < 8.29E-01 | < 9.42E-01 | < 9.98E-01 |
| ESP outlet, gas phase   | ICP-AES   | Molybdenum | µg/Nm <sub>3</sub> | 2.35E+00   | 2.83E-01   | 3.04E-01   | 2.99E+00   |
| ESP outlet, solid phase | ICP-AES   | Molybdenum | mg/kg              | < 1.38E+01 | < 1.38E+01 | < 1.44E+01 | < 1.43E+01 |
| FGD solids              | ICP-AES   | Molybdenum | mg/kg              | 2.67E-01   | 2.50E-01   | 2.50E-01   | 2.54E-01   |
| Fly ash                 | ICP-AES   | Molybdenum | mg/L               | 1.16E-02   | 1.08E-02   | 8.95E-03   | 9.94E-01   |
| Limestone               | ICP-AES   | Molybdenum | mg/kg              | 1.48E+01   | < 1.41E+01 | < 4.36E+01 | 1.25E-02   |
| Makeup water            | ICP-AES   | Molybdenum | µg/Nm <sub>3</sub> | < 8.94E-01 | < 8.94E-01 | < 9.79E-01 | < 9.77E-01 |
| Precipitator ash        | ICP-AES   | Molybdenum | µg/Nm <sub>3</sub> | 2.57E+00   | 3.52E+00   | 2.11E+00   | 2.69E+00   |
| Stack gas, gas phase    | ICP-AES   | Nickel     | mg/kg              | 6.95E+01   | 7.85E+01   | 1.28E+02   | 5.84E+01   |
| Stack gas, solid phase  | ICP-AES   | Nickel     | mg/kg              | 1.50E+01   | 1.10E+01   | 1.80E+01   | 1.30E+01   |
| Bottom ash              | ICP-AES   | Nickel     | µg/Nm <sub>3</sub> | < 1.76E+00 | < 2.01E+00 | < 2.13E+00 | < 2.13E+00 |

| Stream                  | Test code | Analyte     | Units              | Run 1      | Run 2      | Run 3      | Run 4      |
|-------------------------|-----------|-------------|--------------------|------------|------------|------------|------------|
| ESP outlet, solid phase | ICP-AES   | Nickel      | µg/Nm <sup>3</sup> | 3.58E+00   | 7.45E+00   | 4.03E+00   | 4.03E+00   |
| FGD solids              | ICP-AES   | Nickel      | mg/kg              | 3.33E+00   | 2.33E+00   | 3.27E+00   | 3.27E+00   |
| Fly ash                 | ICP-AES   | Nickel      | mg/kg              | 7.71E+01   | 9.84E+01   | 1.28E+02   | 1.01E+02   |
| Limestone               | ICP-AES   | Nickel      | mg/kg              | 2.42E+00   | 3.40E+00   | 2.18E+00   | 2.85E+00   |
| Makeup water            | ICP-AES   | Nickel      | mg/L               | < 9.88E-03 | < 9.88E-03 | < 9.88E-03 | < 9.88E-03 |
| Precipitator ash        | ICP-AES   | Nickel      | mg/kg              | 1.01E+02   | 1.04E+02   | 9.82E+01   | 9.82E+01   |
| Slack gas, gas phase    | ICP-AES   | Nickel      | µg/Nm <sup>3</sup> | < 1.90E+00 | < 1.93E+00 | < 2.08E+00 | < 2.08E+00 |
| Slack gas, solid phase  | ICP-AES   | Nickel      | µg/Nm <sup>3</sup> | 3.46E+00   | 4.73E+00   | 2.70E+00   | 4.69E+00   |
| Coal                    | Ultimate  | Nitrogen    | percent            | 1.25E+00   | 1.21E+00   | 1.16E+00   | 1.48E+00   |
| Coal                    | Ultimate  | Oxygen      | percent            | 1.02E+01   | 1.02E+01   | 1.18E+01   | 9.68E+00   |
| Bottom ash              | ICP-AES   | Phosphorous | mg/kg              | 2.74E+02   | 2.26E+02   | 2.53E+02   | 1.22E+02   |
| Coal                    | ICP-AES   | Phosphorous | mg/kg              | 9.80E+01   | 6.00E+01   | 3.50E+01   | 5.00E+01   |
| ESP outlet, gas phase   | ICP-AES   | Phosphorous | µg/Nm <sup>3</sup> | < 1.09E+01 | 1.59E+01   | < 1.32E+01 |            |
| ESP outlet, solid phase | ICP-AES   | Phosphorous | µg/Nm <sup>3</sup> | 2.37E+01   | 2.14E+01   | 1.53E+01   |            |
| FGD solids              | ICP-AES   | Phosphorous | mg/kg              | 4.38E+01   | 4.28E+01   | 4.05E+01   | 3.09E+01   |
| Fly ash                 | ICP-AES   | Phosphorous | mg/kg              | 3.25E+02   | 2.89E+02   | 2.55E+02   | 2.61E+02   |
| Limestone               | GFAAS     | Phosphorous | mg/kg              | 6.88E+01   | 5.18E+01   | 6.94E+01   | 6.46E+01   |
| Makeup water            | ICP-AES   | Phosphorous | mg/L               | 7.10E-02   | < 6.10E-02 | < 6.10E-02 | < 6.10E-02 |
| Precipitator ash        | ICP-AES   | Phosphorous | mg/kg              | 4.85E+02   | 5.07E+02   | 4.62E+02   | 4.05E+01   |
| Slack gas, gas phase    | ICP-AES   | Phosphorous | µg/Nm <sup>3</sup> | 1.22E+01   | < 1.20E+01 | 1.54E+01   | 1.89E+01   |
| Slack gas, solid phase  | ICP-AES   | Phosphorous | µg/Nm <sup>3</sup> | 6.11E+00   | 7.80E+00   | 3.22E+00   | 5.55E+00   |
| Bottom ash              | ICP-AES   | Potassium   | mg/kg              | 5.18E+03   | 5.46E+03   | 5.70E+03   | 5.24E+03   |
| ESP outlet, gas phase   | ICP-AES   | Potassium   | µg/Nm <sup>3</sup> | < 5.14E-01 | < 5.14E-01 | 5.84E-01   | < 6.19E-01 |
| ESP outlet, solid phase | ICP-AES   | Potassium   | µg/Nm <sup>3</sup> | 2.73E+02   | 1.85E+02   | 2.08E+02   | 3.79E+02   |
| FGD solids              | ICP-AES   | Potassium   | mg/kg              | 7.79E+03   | 7.55E+03   | 9.82E+03   | 9.13E+03   |
| Fly ash                 | ICP-AES   | Potassium   | µg/kg              | 1.38E+02   | 1.20E+02   | 1.28E+02   | 1.28E+02   |
| Limestone               | ICP-AES   | Potassium   | mg/L               | 5.84E+00   | 6.17E+00   | 5.73E+00   | 5.99E+00   |
| Makeup water            | ICP-AES   | Potassium   | mg/kg              | 8.03E+03   | 8.11E+03   | 8.30E+03   |            |
| Precipitator ash        | ICP-AES   | Potassium   | µg/Nm <sup>3</sup> | < 5.54E-01 | < 5.63E-01 | 6.55E+00   | 1.68E+02   |
| Slack gas, gas phase    | ICP-AES   | Potassium   | µg/Nm <sup>3</sup> | 5.79E+01   | 9.39E+01   | 3.82E+01   | 5.86E+01   |
| Slack gas, solid phase  | ICP-AES   | Potassium   | mg/L               | < 6.82E-01 | < 6.91E-01 | < 6.76E-01 | < 6.86E-01 |
| Bottom ash              | GFAAS     | Selenium    | mg/kg              | 6.00E+00   | 5.00E+00   | 4.00E+00   | 3.00E+00   |
| Coal                    | GFAAS     | Selenium    | µg/Nm <sup>3</sup> | 1.66E+01   | 7.41E+01   | 8.79E+00   | 2.46E+02   |
| ESP outlet, gas phase   | GFAAS     | Selenium    | µg/Nm <sup>3</sup> | 5.79E+01   | 2.16E+01   | 1.36E+02   | 1.66E+02   |
| ESP outlet, solid phase | GFAAS     | Selenium    | mg/kg              | 1.32E+01   | 2.15E+01   | 3.95E+01   | 2.48E+01   |
| FGD solids              | GFAAS     | Selenium    | mg/L               | 1.32E+01   | 1.46E+01   | 8.97E+00   | 1.15E+01   |
| Fly ash                 | GFAAS     | Selenium    | mg/kg              | 3.08E+00   | 3.44E+00   | 2.87E+00   | 2.72E+00   |
| Limestone               | GFAAS     | Selenium    | mg/L               | 3.02E-03   | 4.29E-03   | 2.70E-03   | 3.29E-03   |
| Makeup water            | GFAAS     | Selenium    | mg/kg              | 5.78E+01   | 5.79E+01   | 6.02E+01   |            |
| Precipitator ash        | GFAAS     | Selenium    | µg/Nm <sup>3</sup> | 1.23E+02   | 1.58E+02   | 1.23E+02   | 1.57E+02   |
| Slack gas, gas phase    | GFAAS     | Selenium    |                    |            |            |            |            |

| Stream                  | Test code | Analyte  | Units                     | Run 1      | Run 2      | Run 3      | Run 4    |
|-------------------------|-----------|----------|---------------------------|------------|------------|------------|----------|
| Stack gas, solid phase  | GFAAS     | Selenium | $\mu\text{g}/\text{Nm}^3$ | 4.21E+01   | 6.85E+01   | 3.24E+01   | 3.76E+01 |
| Bottom ash              | ICP-AES   | Sodium   | mg/kg                     | 2.44E+03   | 2.37E+03   | 1.41E+03   | 2.47E+03 |
| Coal                    | XRF       | Sodium   | percent                   | 1.10E-01   | 8.00E-02   | 3.00E-02   | 7.00E-02 |
| ESP outlet, gas phase   | ICP-AES   | Sodium   | $\mu\text{g}/\text{Nm}^3$ | 5.58E+01   | 8.38E+01   | 1.03E+02   |          |
| ESP outlet, solid phase | ICP-AES   | Sodium   | mg/kg                     | 2.10E+02   | 3.20E+02   | 3.05E+02   | 2.24E+02 |
| FGD solids              | ICP-AES   | Sodium   | mg/kg                     | 2.78E+03   | 3.94E+03   | 2.55E+03   | 3.34E+02 |
| Fly ash                 | ICP-AES   | Sodium   | mg/kg                     | 5.02E+01   | 4.99E+01   | 5.06E+01   | 4.98E+01 |
| Limestone               | ICP-AES   | Sodium   | mg/kg                     | 5.69E+01   | 5.65E+01   | 5.13E+01   | 5.49E+01 |
| Makeup water            | ICP-AES   | Sodium   | mg/L                      | 4.21E+03   | 3.99E+03   | 5.00E+03   |          |
| Precipitator ash        | ICP-AES   | Sodium   | $\mu\text{g}/\text{Nm}^3$ | 5.50E+01   | 3.92E+01   | 5.03E+01   | 4.39E+01 |
| Stack gas, gas phase    | ICP-AES   | Sodium   | $\mu\text{g}/\text{Nm}^3$ | 1.85E+02   | 1.58E+02   | 1.09E+02   | 1.68E+02 |
| Stack gas, solid phase  | ICP-AES   | Sulfate  | $\mu\text{g}/\text{Nm}^3$ | 5.15E+06   | 2.23E+03   | 3.94E+03   | 4.51E+06 |
| ESP outlet, gas phase   | S04       | Sulfate  | $\mu\text{g}/\text{Nm}^3$ | 2.08E+02   | 2.30E+02   | 2.30E+02   | 6.84E+03 |
| ESP outlet, solid phase | S04       | Sulfate  | mg/L                      | 2.08E+02   | 2.30E+02   | 1.19E+02   | 2.19E+02 |
| Makeup water            | S04       | Sulfate  | $\mu\text{g}/\text{Nm}^3$ | 2.55E+05   | 1.90E+05   | 2.40E+05   |          |
| Stack gas, gas phase    | S04       | Sulfate  | $\mu\text{g}/\text{Nm}^3$ | 5.88E+03   | 6.10E+03   | 2.51E+04   |          |
| Stack gas, solid phase  | S04       | Sulfur   | percent                   | 2.15E+00   | 2.03E+00   | 2.32E+00   | 2.47E+00 |
| Coal                    | Ultimate  | Vanadium | mg/kg                     | 1.19E+02   | 1.07E+02   | 1.20E+02   | 1.04E+02 |
| Bottom ash              | ICP-AES   | Vanadium | mg/kg                     | 2.80E+01   | 3.20E+01   | 3.70E+01   | 3.60E+01 |
| Coal                    | ICP-AES   | Vanadium | $\mu\text{g}/\text{Nm}^3$ | < 4.22E-01 | < 4.80E-01 | < 5.09E-01 |          |
| ESP outlet, gas phase   | ICP-AES   | Vanadium | $\mu\text{g}/\text{Nm}^3$ | 1.05E+01   | 1.35E+01   | 9.59E+00   |          |
| ESP outlet, solid phase | ICP-AES   | Vanadium | mg/kg                     | 6.40E+00   | 7.49E+00   | 7.24E+00   | 6.58E+00 |
| FGD solids              | ICP-AES   | Vanadium | mg/kg                     | 1.84E+02   | 1.74E+02   | 1.91E+02   | 1.83E+02 |
| Fly ash                 | ICP-AES   | Vanadium | mg/kg                     | 5.28E+00   | 4.97E+00   | 4.76E+00   | 4.99E+00 |
| Limestone               | ICP-AES   | Vanadium | mg/L                      | 1.57E-02   | 1.44E-02   | 1.20E-02   | 1.41E-02 |
| Makeup water            | ICP-AES   | Vanadium | mg/kg                     | 2.45E+02   | 2.37E+02   | 2.35E+02   |          |
| Precipitator ash        | ICP-AES   | Vanadium | $\mu\text{g}/\text{Nm}^3$ | < 4.58E-01 | < 4.63E-01 | < 4.09E-01 | 4.98E-01 |
| Stack gas, gas phase    | ICP-AES   | Vanadium | $\mu\text{g}/\text{Nm}^3$ | 2.45E+00   | 3.67E+00   | 2.27E+00   | 2.85E+00 |
| Stack gas, solid phase  | ICP-AES   | Vanadium |                           |            |            |            |          |

## **APPENDIX C: DATA NOT USED IN CALCULATIONS**

---

The following data in this appendix were not used in any calculations for this report. Note that this section contains trace substance concentrations for the coal at Site 20. The analytical methods used to obtain these data were not the methods specified in the test plan; therefore, these coal data were not used in any calculations for Site 20.

| Stream                  | Test code | Analyte   | Units   | Run 1      | Run 2      | Run 3      | Run 4      |
|-------------------------|-----------|-----------|---------|------------|------------|------------|------------|
| Bottom ash              | ICP-AES   | Arsenic   | mg/kg   | < 2.01E+02 | < 5.09E+01 | < 4.98E+01 | < 5.05E+01 |
| Coal                    | GFAAS     | Arsenic   | µg/g    | < 9.00E+00 | 7.00E+00   | 1.20E+01   | 1.20E+01   |
| ESP outlet, gas phase   | ICP-AES   | Arsenic   | µg/Nm3  | < 4.03E+00 | < 6.22E+00 | < 4.86E+00 | < 4.86E+00 |
| ESP outlet, solid phase | ICP-AES   | Arsenic   | µg/Nm3  | < 6.84E-01 | < 8.11E-01 | < 9.83E-01 | < 9.83E-01 |
| FGD solids              | ICP-AES   | Arsenic   | mg/kg   | < 2.80E+00 | 1.80E+00   | 2.45E+00   | 1.58E+00   |
| Fly ash                 | ICP-AES   | Arsenic   | mg/kg   | < 4.91E+01 | < 5.12E+01 | < 5.15E+01 | < 5.15E+01 |
| Limestone               | ICP-AES   | Arsenic   | mg/kg   | < 1.18E+00 | 1.70E+00   | 2.12E+00   | 2.68E+00   |
| Makeup water            | ICP-AES   | Arsenic   | mg/L    | < 2.54E-02 | < 2.86E-02 | < 2.25E-02 | < 2.25E-02 |
| Precipitator ash        | ICP-AES   | Arsenic   | mg/kg   | < 4.99E+01 | < 5.04E+01 | < 5.55E+02 | < 5.55E+02 |
| Slack gas, gas phase    | ICP-AES   | Arsenic   | µg/Nm3  | < 4.35E+00 | < 4.42E+00 | < 4.76E+00 | < 4.76E+00 |
| Slack gas, solid phase  | ICP-AES   | Arsenic   | µg/Nm3  | < 9.04E-01 | < 7.39E-01 | < 7.76E-01 | < 8.89E-01 |
| Coal                    | AAS       | Beryllium | µg/g    | < 1.00E+00 | < 1.00E+00 | < 1.00E+00 | < 1.00E+00 |
| Bottom ash              | ICP-AES   | Boron     | µg/Nm3  | 7.93E+02   | 2.00E+03   | 4.19E+02   | 4.19E+02   |
| Slack gas, gas phase    | ICP-AES   | Boron     | mg/kg   | 9.47E+01   | 8.95E+01   | 9.70E+01   | 1.20E+02   |
| FGD solids              | ICP-AES   | Boron     | mg/kg   | 1.11E+00   | 1.23E+00   | 9.12E-01   | 1.24E+00   |
| Limestone               | ICP-AES   | Boron     | mg/L    | 2.10E+00   | 2.11E+00   | 1.98E+00   | 2.01E+00   |
| Makeup water            | ICP-AES   | Boron     | µg/Nm3  | 9.37E+01   | 8.44E+01   | 1.36E+02   | 9.06E+01   |
| Slack gas, gas phase    | ICP-AES   | Boron     | mg/kg   | < 3.10E+00 | < 3.14E+00 | < 3.27E+00 | < 3.12E+00 |
| Bottom ash              | ICP-AES   | Cadmium   | µg/g    | < 1.50E+00 | < 2.00E+00 | < 2.00E+00 | < 1.00E+00 |
| Coal                    | XRF       | Cadmium   | µg/Nm3  | < 3.08E-01 | < 3.50E-01 | < 3.71E-01 | < 3.74E-01 |
| Bottom ash              | ICP-AES   | Cadmium   | mg/kg   | 2.20E-01   | < 2.78E-01 | < 2.78E-01 | < 2.78E-01 |
| Slack gas, solid phase  | ICP-AES   | Cadmium   | mg/kg   | 3.25E-01   | < 2.41E-01 | < 3.23E-01 | < 3.23E-01 |
| Bottom ash              | ICP-AES   | Cadmium   | mg/kg   | 3.11E+00   | < 3.16E+00 | 4.14E+00   | 5.04E+00   |
| Slack gas, solid phase  | ICP-AES   | Cadmium   | mg/kg   | 2.51E-01   | 3.22E-01   | 3.28E-01   | 3.62E-01   |
| Coal                    | ICP-AES   | Cadmium   | mg/L    | < 1.72E-03 | < 1.72E-03 | < 1.72E-03 | < 1.72E-03 |
| Bottom ash              | ICP-AES   | Cadmium   | mg/kg   | 4.53E+00   | 6.11E+00   | 9.58E+00   | 9.58E+00   |
| Slack gas, solid phase  | ICP-AES   | Cadmium   | µg/Nm3  | 1.31E+00   | < 3.38E-01 | < 3.84E-01 | < 6.04E-01 |
| Coal                    | ICP-AES   | Cadmium   | µg/Nm3  | 8.36E-01   | 1.34E-01   | 5.81E-01   | 2.55E-01   |
| Bottom ash              | XRF       | Chloride  | percent | < 1.00E-02 | < 1.00E-02 | < 1.00E-02 | < 1.00E-02 |
| Coal                    | XRF       | Chromium  | µg/g    | 1.30E+01   | 1.20E+01   | 1.50E+01   | 1.80E+01   |
| Bottom ash              | ICP-AES   | Fluoride  | mg/kg   | 5.04E+01   | 5.71E+01   | 7.93E+01   | 5.62E+01   |
| Coal                    | ICP-AES   | Lead      | mg/kg   | 6.54E+01   | < 6.59E+01 | < 6.44E+01 | < 6.54E+01 |
| Bottom ash              | XRF       | Lead      | µg/g    | 1.70E+01   | @ 7.00E+00 | @ 6.00E+00 | @ 7.00E+00 |
| Slack gas, solid phase  | ICP-AES   | Lead      | µg/Nm3  | < 4.83E+00 | < 5.49E+00 | < 5.83E+00 | < 5.83E+00 |
| Bottom ash              | ICP-AES   | Lead      | µg/Nm3  | < 7.05E+00 | < 5.40E+00 | < 5.12E+00 | < 5.12E+00 |
| Slack gas, solid phase  | ICP-AES   | Lead      | mg/kg   | < 1.67E+00 | < 2.08E+00 | < 1.90E+00 | < 1.76E+00 |
| Coal                    | ICP-AES   | Lead      | mg/kg   | 9.33E+01   | 8.84E+01   | 8.70E+01   | 7.54E+01   |
| Bottom ash              | ICP-AES   | Lead      | mg/kg   | < 1.84E+00 | < 1.80E+00 | < 1.88E+00 | < 1.83E+00 |
| Slack gas, solid phase  | ICP-AES   | Lead      | mg/L    | < 2.70E-02 | < 2.70E-02 | < 2.70E-02 | < 2.70E-02 |
| Coal                    | ICP-AES   | Lead      | mg/kg   | 1.00E+02   | 7.49E+01   | 2.01E+02   | 5.71E+00   |
| Bottom ash              | ICP-AES   | Lead      | µg/Nm3  | 1.75E+01   | < 5.30E+00 | < 5.71E+00 | < 5.70E+00 |

| Stream                  | Test code | Analyte          | Units              | Run 1      |            | Run 2      |            | Run 3 |       | Run 4 |       |
|-------------------------|-----------|------------------|--------------------|------------|------------|------------|------------|-------|-------|-------|-------|
|                         |           |                  |                    | Run 1      | Run 2      | Run 3      | Run 4      | Run 1 | Run 2 | Run 3 | Run 4 |
| Stack gas, solid phase  | ICP-AES   | Lead             | µg/Nm <sub>3</sub> | 2.78E+00   | 3.20E+00   | 2.10E+00   | 2.79E+00   |       |       |       |       |
| Coal                    | DGAA      | Mercury          | µg/g               | 2.11E-01   | 2.13E-01   | 2.26E-01   | 2.13E-01   |       |       |       |       |
| Coal                    | XRF       | Nickel           | µg/g               | 1.80E+01   | 1.10E+01   | 1.20E+01   | 1.90E+01   |       |       |       |       |
| Bottom ash              | SW846     | Percent moisture | %                  | 1.43E+01   | 1.29E+01   | 1.32E+01   | 1.38E+01   |       |       |       |       |
| FGD solids              | SW846     | Percent moisture | %                  | 3.20E+01   | 3.69E+01   | 3.54E+01   | 3.87E+01   |       |       |       |       |
| Limestone               | SW846     | Percent moisture | %                  | 1.55E+00   | 2.15E+00   | 1.75E+00   | 1.57E+00   |       |       |       |       |
| Bottom ash              | ICP-AES   | Selenium         | mg/kg              | < 1.50E+02 | < 1.52E+02 | < 1.48E+02 | < 1.51E+02 |       |       |       |       |
| Coal                    | XRF       | Selenium         | µg/g               | 7.50E+00   | 7.00E+00   | 7.00E+00   | 7.00E+00   |       |       |       |       |
| ESP outlet, gas phase   | ICP-AES   | Selenium         | µg/Nm <sub>3</sub> | 3.87E+02   |            | 5.27E+02   | 4.88E+02   |       |       |       |       |
| ESP outlet, solid phase | ICP-AES   | Selenium         | µg/Nm <sub>3</sub> | 8.81E+01   |            | 1.51E+02   | 1.70E+02   |       |       |       |       |
| FGD solids              | ICP-AES   | Selenium         | mg/kg              | 2.38E+01   | 2.84E+01   | 3.20E+01   | 3.43E+01   |       |       |       |       |
| Fly ash                 | ICP-AES   | Selenium         | mg/kg              | < 1.46E+02 | < 1.53E+02 | < 1.52E+02 | < 1.54E+02 |       |       |       |       |
| Limestone               | ICP-AES   | Selenium         | mg/kg              | 4.39E+00   |            | < 3.32E+00 | < 3.27E+00 |       |       |       |       |
| Makeup water            | ICP-AES   | Selenium         | mg/L               | < 4.17E-02 | < 4.17E-02 | < 5.33E-02 | < 4.17E-02 |       |       |       |       |
| Precipitator ash        | ICP-AES   | Selenium         | mg/kg              | < 1.49E+02 | < 1.50E+02 | < 4.63E+02 | < 4.63E+02 |       |       |       |       |
| Stack gas, gas phase    | ICP-AES   | Selenium         | µg/Nm <sub>3</sub> | 1.12E+02   | 1.49E+02   | 2.05E+02   | 1.48E+02   |       |       |       |       |
| Stack gas, solid phase  | ICP-AES   | Selenium         | µg/Nm <sub>3</sub> | 3.95E+01   | 7.58E+01   | 4.58E+01   | 4.85E+01   |       |       |       |       |
| Bottom ash              | ICP-AES   | Silicon          | mg/kg              | 2.08E+05   | 2.14E+05   | 2.12E+05   | 2.05E+05   |       |       |       |       |
| ESP outlet, gas phase   | ICP-AES   | Silicon          | µg/Nm <sub>3</sub> | 3.79E+02   |            | 5.29E+02   | 4.10E+02   |       |       |       |       |
| ESP outlet, solid phase | ICP-AES   | Silicon          | µg/Nm <sub>3</sub> | B 1.21E+04 | 6.41E+02   | B 1.92E+04 | B 2.65E+04 |       |       |       |       |
| FGD solids              | ICP-AES   | Silicon          | mg/kg              | 6.10E+02   | 2.22E+05   | 6.33E+02   | 5.86E+02   |       |       |       |       |
| Fly ash                 | ICP-AES   | Silicon          | mg/kg              | 2.25E+05   | 2.27E+05   | 2.27E+05   | 2.24E+05   |       |       |       |       |
| Limestone               | ICP-AES   | Silicon          | mg/kg              | 3.30E+02   | 2.75E+02   | 2.69E+02   | 3.11E+02   |       |       |       |       |
| Makeup water            | ICP-AES   | Silicon          | mg/L               | 3.61E+00   | 3.49E+00   | 3.34E+00   | 3.31E+00   |       |       |       |       |
| Precipitator ash        | ICP-AES   | Silicon          | mg/kg              | 1.78E+05   | 1.88E+05   | 1.94E+05   |            |       |       |       |       |
| Stack gas, gas phase    | ICP-AES   | Silicon          | µg/Nm <sub>3</sub> | 9.41E+01   | 7.42E+01   | 5.33E+01   | 5.53E+01   |       |       |       |       |
| Bottom ash              | ICP-AES   | Silicon          | µg/Nm <sub>3</sub> | B 2.50E+04 | B 2.00E+04 | B 2.12E+04 | B 2.39E+04 |       |       |       |       |
| Stack gas, solid phase  | ICP-AES   | Silicon          | mg/kg              | < 1.08E+01 | < 1.10E+01 | < 1.07E+01 | < 1.09E+01 |       |       |       |       |
| Bottom ash              | ICP-AES   | Silver           | µg/Nm <sub>3</sub> | < 8.81E-01 | < 1.00E+00 | < 1.00E+00 | < 1.06E+00 |       |       |       |       |
| ESP outlet, gas phase   | ICP-AES   | Silver           | µg/Nm <sub>3</sub> | < 1.47E-01 | < 1.75E-01 | < 2.12E-01 |            |       |       |       |       |
| ESP outlet, solid phase | ICP-AES   | Silver           | mg/kg              | < 1.24E-01 | < 1.54E-01 | < 1.44E-01 | < 1.31E-01 |       |       |       |       |
| FGD solids              | ICP-AES   | Silver           | mg/kg              | < 1.08E+01 | < 1.10E+01 | < 1.10E+01 | < 1.11E+01 |       |       |       |       |
| Fly ash                 | ICP-AES   | Silver           | mg/kg              | < 1.37E-01 | < 1.34E-01 | < 1.38E-01 | < 1.36E-01 |       |       |       |       |
| Limestone               | ICP-AES   | Silver           | mg/L               | 4.92E-03   | < 4.92E-03 | < 4.92E-03 | < 4.92E-03 |       |       |       |       |
| Makeup water            | ICP-AES   | Silver           | mg/kg              | 1.07E+01   | < 1.09E+01 | < 1.04E+01 | < 1.04E+01 |       |       |       |       |
| Precipitator ash        | ICP-AES   | Silver           | µg/Nm <sub>3</sub> | 9.50E-01   | < 9.66E-01 | < 1.04E+00 | < 1.04E+00 |       |       |       |       |
| Stack gas, gas phase    | ICP-AES   | Silver           | µg/Nm <sub>3</sub> | < 1.95E-01 | < 1.59E-01 | < 1.67E-01 | < 1.91E-01 |       |       |       |       |
| Bottom ash              | ICP-AES   | Silver           | Strontium          | 1.32E+03   | 1.21E+03   | 8.98E+02   | 1.61E+03   |       |       |       |       |
| ESP outlet, gas phase   | ICP-AES   | Strontium        | µg/Nm <sub>3</sub> | 2.06E-01   | 4.41E-01   | 4.40E-01   | 4.40E-01   |       |       |       |       |
| ESP outlet, solid phase | ICP-AES   | Strontium        | µg/Nm <sub>3</sub> | 6.87E+01   | 7.23E+01   | 6.92E+01   | 6.92E+01   |       |       |       |       |
| FGD solids              | ICP-AES   | Strontium        | mg/kg              | 8.43E+02   | 8.19E+02   | 7.92E+02   | 7.92E+02   |       |       |       |       |

| Stream                  | Test code | Analyte   | Units              | Run 1      | Run 2      | Run 3      | Run 4      |
|-------------------------|-----------|-----------|--------------------|------------|------------|------------|------------|
| Fly ash                 | ICP-AES   | Strontium | mg/kg              | 1.28E+03   | 1.77E+03   | 1.11E+03   | 1.83E+03   |
| Limestone               | ICP-AES   | Strontium | mg/kg              | 1.06E+03   | 1.06E+03   | 1.10E+03   | 1.04E+03   |
| Makeup water            | ICP-AES   | Strontium | mg/L               | 1.44E+00   | 1.47E+00   | 1.37E+00   | 1.38E+00   |
| Precipitator ash        | ICP-AES   | Strontium | mg/kg              | 1.76E+03   | 1.67E+03   | 1.74E+03   |            |
| Stack gas, gas phase    | ICP-AES   | Strontium | µg/Nm <sup>3</sup> | 4.83E-02   | 1.00E-01   | 1.35E-01   | 1.35E-01   |
| Stack gas, solid phase  | ICP-AES   | Strontium | mg/kg              | 1.28E+01   | 2.37E+01   | 1.07E+01   | 1.64E+01   |
| Bottom ash              | ICP-AES   | Thallium  | mg/kg              | < 1.00E+02 | < 1.02E+02 | < 9.95E+01 | < 1.01E+02 |
| ESP outlet, gas phase   | ICP-AES   | Thallium  | µg/Nm <sup>3</sup> | 3.58E+00   | < 3.50E+00 | < 3.71E+00 |            |
| ESP outlet, solid phase | ICP-AES   | Thallium  | µg/Nm <sup>3</sup> | < 1.37E+00 | < 1.62E+00 | < 1.97E+00 |            |
| FGD solids              | ICP-AES   | Thallium  | mg/kg              | < 4.69E+00 | < 5.83E+00 | < 5.34E+00 | < 4.96E+00 |
| Fly ash                 | ICP-AES   | Thallium  | mg/kg              | < 9.81E+01 | < 1.02E+02 | < 1.02E+02 | < 1.03E+02 |
| Limestone               | ICP-AES   | Thallium  | mg/kg              | < 5.18E+00 | < 5.07E+00 | < 5.22E+00 | < 5.14E+00 |
| Makeup water            | ICP-AES   | Thallium  | mg/L               | < 1.72E-02 | < 1.72E-02 | < 1.72E-02 | < 1.72E-02 |
| Precipitator ash        | ICP-AES   | Thallium  | mg/kg              | < 9.97E+01 | < 1.01E+02 | < 3.10E+02 |            |
| Stack gas, gas phase    | ICP-AES   | Thallium  | µg/Nm <sup>3</sup> | < 3.32E+00 | < 3.38E+00 | < 3.84E+00 | < 3.63E+00 |
| Stack gas, solid phase  | ICP-AES   | Thallium  | µg/Nm <sup>3</sup> | < 1.81E+00 | < 1.48E+00 | < 1.55E+00 | < 1.78E+00 |
| Bottom ash              | ICP-AES   | Zinc      | mg/kg              | 3.31E+02   | 2.98E+02   | 2.95E+02   | 5.90E+01   |
| ESP outlet, gas phase   | ICP-AES   | Zinc      | µg/Nm <sup>3</sup> | 3.08E+00   | < 3.08E+00 | 6.29E+00   | 4.47E+00   |
| ESP outlet, solid phase | ICP-AES   | Zinc      | µg/Nm <sup>3</sup> | 5.11E+01   | 6.07E+01   | 3.55E+01   |            |
| FGD solids              | ICP-AES   | Zinc      | mg/kg              | 7.80E+00   | 8.61E+00   | 9.51E+00   | 7.47E+00   |
| Fly ash                 | ICP-AES   | Zinc      | mg/kg              | 7.87E+02   | 5.50E+02   | 4.81E+02   | 2.96E+02   |
| Limestone               | ICP-AES   | Zinc      | mg/kg              | 5.60E+00   | 5.96E+00   | 5.56E+00   | 5.78E+00   |
| Makeup water            | ICP-AES   | Zinc      | mg/L               | 5.91E-03   | 5.80E-03   | 4.93E-03   | 1.21E-02   |
| Precipitator ash        | ICP-AES   | Zinc      | mg/kg              | 1.07E+03   | 1.30E+03   | 1.26E+03   |            |
| Stack gas, gas phase    | ICP-AES   | Zinc      | µg/Nm <sup>3</sup> | 4.33E+00   | 1.14E+00   | 2.79E+00   | 2.98E+00   |
| Stack gas, solid phase  | ICP-AES   | Zinc      | µg/Nm <sup>3</sup> | 1.71E+01   | 2.12E+01   | 1.27E+01   | 2.74E+01   |

## **APPENDIX D: FLUE GAS SAMPLING DATA SHEETS**

**(On File at Radian Corporation)**

---

## APPENDIX E: ERROR PROPAGATION AND UNCERTAINTY CALCULATIONS

---

An error propagation analysis was performed on calculated results to determine the contribution of process, sampling, and analytical variability, and measurement bias, to the overall uncertainty in the result. This uncertainty was determined by propagating the bias and precision error of individual parameters into the calculation of the results. This uncertainty does not represent the total uncertainty in the result since many important bias errors are unknown and have been assigned a value of zero for this analysis. Also, this uncertainty is only the uncertainty in the result for the period of time that the measurements were taken.

The procedure described below is based on ANSI/ASME PTC 19.1-1985, "Measurement Uncertainty."

### Nomenclature

- $r$  = Calculated result;
- $S_{pi}$  = Sample standard deviation of parameter  $i$ ;
- $\theta_i$  = Sensitivity of the result to parameter  $i$ ;
- $\beta_{pi}$  = Bias error estimate for parameter  $i$ ;
- $v_i$  = Degrees of freedom in parameter  $i$ ;
- $v_r$  = Degrees of freedom in result;
- $S_r$  = Precision component of result uncertainty;
- $\delta_r$  = Bias component of result uncertainty;
- $t$  = Student "t" factor (two-tailed distribution at 95%);

$U_r$  = Uncertainty in  $r$ ; and

$N_i$  = Number of measurements of parameter  $i$ .

For a result,  $r$ , the uncertainty in  $r$  is calculated as:

$$U_r = \sqrt{\beta_r^2 + (S_r * t)^2} \quad (1)$$

The components are calculated by combining the errors in the parameters used in the result calculation.

$$\beta_r = \sqrt{\sum_{i=1}^j (\theta_i * \beta_{pi})^2} \quad (2)$$

$$S_r = \sqrt{\sum_{i=1}^j (\theta_i * S_{pi})^2} \quad (3)$$

The sensitivity of the result to each parameter is found from a Taylor series estimation method:

$$\theta_i = \frac{\partial r}{\partial p_i} \quad (4)$$

Or using a perturbation method (useful in computer applications):

$$\theta_i = \frac{r(P_i + \Delta P_i) - r(P_i)}{\Delta P_i} \quad (5)$$

The standard deviation of the average for each parameter is calculated as:

$$S_{\bar{p}_i} = \frac{S_{p_i}}{\sqrt{N}} \quad (6)$$

The degrees of freedom for each parameter is found from

$$v_i = N_i - 1 \quad (7)$$

and the degrees of freedom for the result is found by weighing the sensitivity and precision error in each parameter.

$$v_r = \frac{S_r^4}{\sum_{i=1}^j \left[ \frac{(S_{\bar{p}_i} \times \theta_i)^4}{v_i} \right]} \quad (8)$$

The student "t" in Equation 1 is associated with the degrees of freedom in the result.

The precision error terms are easily generated using collected data. The bias error terms are more difficult to quantify. The following conventions were used for this report:

- 5% bias in coal flow rates.
- 20% bias in limestone and FGD flow rates.
- 5% bias in gas flow rates.
- No bias in analytical results unless the result is less than reporting limit. Then one-half the reporting limit is used for both the parameter value and its bias in calculations.

The flow rate bias values are assigned using engineering judgment. No bias is assigned to the analytical results (above the reporting limit) or gas flow rate since a good estimate for magnitude of these terms is unknown. These bias terms may be very large (relative to the mean values of the parameters) and may represent a large amount of unaccounted uncertainty in each result. Analytical bias near the instrument reporting limit may be especially large. Therefore, the uncertainty values calculated for this report should be used with care.

In addition to the assumptions about bias errors referred to above, the calculations also assume that the population distribution of each measurement is normally distributed and that the samples collected reflect the true population.

Also, the uncertainty calculated is only for the average value over the sampling period. The uncertainty does not represent long-term process variations. In other words, the calculated uncertainty does not include a bias term to reflect the fact that the sampled system was probably not operating (and emitting) at conditions equivalent to the average conditions for that system over a longer period (in other words, autocorrelation may be important). An example of the confidence interval calculation is provided below.

### **Confidence Interval Calculations**

Confidence intervals (CIs) were calculated for the mean particulate phase concentrations, the mean vapor phase concentrations, and the total concentrations in all gas streams. In addition, confidence intervals were determined for the stack gas emission factors presented in Table 3-12.

The following example shows an example calculation for the 95% confidence interval around the emission factor. This procedure utilizes the same method outlined earlier in this appendix. The example uses concentration data for mercury in the stack gas.

$$E = \frac{(g * s) + (g * v)}{HHV * Coal} * 2204.6 \quad (5-3)$$

where:

$g$  = Gas flow rate,  $\text{Nm}^3/\text{hr}$ ;

$s$  = Solid phase conc.,  $\mu\text{g}/\text{Nm}^3$ ;

$v$  = Vapor phase conc.,  $\mu\text{g}/\text{Nm}^3$ ;

HHV = Coal higher heating value,  $\text{Btu/lb}$ ; and

Coal = Coal feed rate,  $\text{lb/hr}$ .

The values used to calculate the emission factor and the confidence interval are as follows:

|               | Parameter                      |                                |                                |                        |                        |
|---------------|--------------------------------|--------------------------------|--------------------------------|------------------------|------------------------|
|               | <u>g<br/>Nm<sup>3</sup>/hr</u> | <u>s<br/>mg/Nm<sup>3</sup></u> | <u>v<br/>mg/Nm<sup>3</sup></u> | <u>HHV<br/>Btu/lb</u>  | <u>Coal<br/>Klb/hr</u> |
| Mean          | 3,095,000                      | 0.0425                         | 10.647                         | 10,016                 | 620.16                 |
| $S_p$         | 41,231                         | 0.0232                         | 1.407                          | 120                    | 6.85                   |
| $S_{\bar{p}}$ | 20,616                         | 0.0116                         | 0.703                          | 59.8                   | 3.42                   |
| N             | 4                              | 4                              | 4                              | 4                      | 4                      |
| $\beta_p$     | 154,750                        | 0                              | 0                              | 0                      | 31.0                   |
| $\theta$      | $3.8 \times 10^{-6}$           | 1,098                          | 1,098                          | $-1.16 \times 10^{-5}$ | $-1.87 \times 10^{-5}$ |
| $v_p$         | 3                              | 3                              | 3                              | 3                      | 3                      |

The calculation for the solid phase values is included for reference.

Solid phase analytical:  $0.043 \mu\text{g}/\text{Nm}^3$

$0.066 \mu\text{g}/\text{Nm}^3$

$0.011 \mu\text{g}/\text{Nm}^3$

$0.050 \mu\text{g}/\text{Nm}^3$

$$N = 4$$

$$\text{Mean} = 0.043$$

$$S_p = 0.037$$

$$S_{\bar{p}} = \frac{0.037}{\sqrt{4}} = 0.012$$

As explained above, the  $\beta$  for analytical results is assigned as zero.

$$\beta_p = 0$$

Next, calculate the sensitivity using perturbation method and a 10% perturbation:

$$\theta_i = \frac{r(0.047) - r(0.043)}{0.0042}$$

$$= 1.098$$

Similar calculations can be done for each parameter.

The precision component is then found by root-sum-squaring the product of the parameter  $S_p$ s and their sensitivities.

$$S_r = \sqrt{(\theta_g S_g)^2 + (\theta_s S_s)^2 + (\theta_v S_v)^2 + (\theta_{HHV} S_{HHV})^2 + (\theta_{coal} S_{coal})^2}$$

$$S_r = 0.781$$

The bias component is found using the same equation substituting  $\beta_p$  for the  $S_p$  term.

$$\beta_r = \sqrt{(\theta_g \beta_g)^2 + (\theta_s \beta_s)^2 + (\theta_v \beta_v)^2 + (\theta_{HHV} \beta_{HHV})^2 + (\theta_{coal} \beta_{coal})^2}$$

$$\beta_r = 0.793$$

The uncertainty in the result is then

$$U_r = \sqrt{\beta_r^2 + (t \times S_r)^2}$$

The degrees of freedom is found from:

$$v_r = \frac{S_r^4}{\sum_{i=1}^j \frac{(S_{pi} \theta_i)^4}{v_{pi}}}$$

$$= \frac{0.373}{0.119} = 3$$

Therefore, "t" = 3.182.

$$U_r = \sqrt{(0.793)^2 + (3.182 \times 0.781)^2}$$

$$= 2.6$$

The emission rate is calculated as  $11.7 \text{ lb}/10^{12} \text{ Btu}$ .

The value is reported as  $11.7 \pm 2.6 \text{ lb}/10^{12} \text{ Btu}$ .

## **APPENDIX F: QUALITY ASSESSMENT/QUALITY CONTROL RESULTS**

---

This appendix presents the detailed quality assessment/quality control results for the coal, flue gas, limestone, makeup water, and ash samples. The tables included in this section are:

- **Table F-1:** Summary of Blank Sample Results for Site 20;
- **Table F-2:** Detailed Blank Sample Results for Site 20;
- **Table F-3:** Summary of Laboratory Control Spike (LCS) Results for Site 20;
- **Table F-4:** Detailed Laboratory Control Spike Results for Site 20;
- **Table F-5:** Summary of Matrix Spike Results for Site 20;
- **Table F-6:** Detailed Matrix Spike Results for Site 20;
- **Table F-7:** Summary of Analytical Spike Results for Site 20;
- **Table F-8:** Detailed Analytical Spike Results for Site 20;
- **Table F-9:** Coal QA/QC for Site 20;
- **Table F-10:** Detailed Blank Results for Metals Measured by ICP-MS, Site 20;
- **Table F-11:** Detailed Spike Results for Metals Measured by ICP-MS, Site 20; and
- **Table F-12:** Detailed Reference Sample Results for Metals Measured by ICP-MS for Site 20.

The first eight tables (F-1 through F-8) correspond to the flue gas, ash, limestone, and makeup water samples analyzed using ICPES<sup>a</sup>, GFAA<sup>b</sup>, CVAA<sup>c</sup>, IC<sup>d</sup>, or SIE<sup>e</sup>. Table F-9 contains QA/QC information for coal analyzed by XRF<sup>f</sup>, GFAA<sup>g</sup>, DGAA<sup>h</sup>, or CVAFS<sup>i</sup>. Finally, Tables F-10, F-11, and F-12 contain information pertaining to the

---

*Appendix F*

the determination of metals on flue gas streams by ICP-MS<sup>j</sup>. This information was used to derive the data evaluation summary presented in Section 4.

<sup>a</sup>ICPES = Inductively couple plasma emission spectroscopy.

<sup>b</sup>GFAA = Graphite furnace atomic absorption spectrophotometry.

<sup>c</sup>CVAA = Cold vapor atomic absorption spectrophotometry.

<sup>d</sup>IC = Ion chromatography.

<sup>e</sup>SIE = Ion selective electrode.

<sup>f</sup>XRF = X-Ray fluorescence, measured by Wyoming Analytical Laboratory.

<sup>g</sup>GFAA = Graphite furnace atomic absorption spectrophotometry, measured by Wyoming Analytical Laboratories.

<sup>h</sup>DGAA = Double gold amalgam atomic absorption spectrophotometry, measured by Wyoming Analytical Laboratories.

<sup>i</sup>CVAFS = Cold vapor atomic fluorescence spectroscopy measured by Frontier Geosciences.

<sup>j</sup>ICPES-MS = Inductively coupled plasma emission spectroscopy coupled with mass spectroscopy, measured by Harvard University.

**Table F-1**  
**Summary of Blank Sample Results for Site 20**

| Parameter                                                                                      | No. of Blanks Analyzed | No. of Detects <sup>a</sup> | Range of Compounds Detected <sup>b</sup>                                          | Highest Detection Limit <sup>c</sup> |
|------------------------------------------------------------------------------------------------|------------------------|-----------------------------|-----------------------------------------------------------------------------------|--------------------------------------|
| <b>Laboratory (Method) Blanks - Solids<sup>d</sup>: Metals determined by ICPES<sup>e</sup></b> |                        |                             |                                                                                   |                                      |
| Aluminum                                                                                       | 4                      | 0                           | NA <sup>f</sup>                                                                   | 135 mg/kg                            |
| Antimony                                                                                       | 4                      | 0                           | NA                                                                                | 75.5 mg/kg                           |
| Barium                                                                                         | 5                      | 0                           | NA                                                                                | 2.15 mg/kg                           |
| Beryllium                                                                                      | 4                      | 0                           | NA                                                                                | 0.61 mg/kg                           |
| Boron                                                                                          | 2                      | 0                           | NA                                                                                | 0.90 mg/kg                           |
| Calcium                                                                                        | 5                      | 0                           | NA                                                                                | 225 mg/kg                            |
| Chromium                                                                                       | 4                      | 0                           | NA                                                                                | 10.5 mg/kg                           |
| Cobalt                                                                                         | 4                      | 0                           | NA                                                                                | 14 mg/kg                             |
| Copper                                                                                         | 4                      | 1                           | 0.00341 (0.00247) mg/kg                                                           | 10.5 mg/kg                           |
| Iron                                                                                           | 4                      | 0                           | NA                                                                                | 309 mg/kg                            |
| Magnesium                                                                                      | 4                      | 0                           | NA                                                                                | 92.1 mg/kg                           |
| Manganese                                                                                      | 4                      | 1                           | 0.00019 (0.000118) mg/kg                                                          | 2.72 mg/kg                           |
| Molybdenum                                                                                     | 4                      | 0                           | NA                                                                                | 14.6 mg/kg                           |
| Nickel                                                                                         | 4                      | 0                           | NA                                                                                | 24.4 mg/kg                           |
| Phosphorus                                                                                     | 3                      | 1                           | 13.3 (7.29) mg/kg                                                                 | 61 mg/kg                             |
| Potassium                                                                                      | 4                      | 0                           | NA                                                                                | 1640 mg/kg                           |
| Silicon                                                                                        | 4                      | 2                           | 0.102 (0.0371) mg/kg<br>774 (132) mg/kg                                           | 132 mg/kg                            |
| Sodium                                                                                         | 4                      | 3                           | 10.4 (6.12) mg/kg<br>331 (6.12) mg/kg<br>330 (61.2) mg/kg                         | 61.2 mg/kg                           |
| Vanadium                                                                                       | 4                      | 0                           | NA                                                                                | 15.5 mg/kg                           |
| Zinc                                                                                           | 4                      | 1                           | 0.00293 (0.00291) mg/kg                                                           | 2.73 mg/kg                           |
| <b>Laboratory (Method) Blanks - Solids: Metals determined by GFAA<sup>e</sup></b>              |                        |                             |                                                                                   |                                      |
| Arsenic                                                                                        | 3                      | 1                           | 3.1 (0.933) mg/kg                                                                 | 0.933 mg/kg                          |
| Cadmium                                                                                        | 2                      | 0                           | NA                                                                                | 0.374 mg/kg                          |
| Lead                                                                                           | 3                      | 0                           | NA                                                                                | 1.1 mg/kg                            |
| Selenium                                                                                       | 4                      | 0                           | NA                                                                                | 0.116 mg/kg                          |
| <b>Laboratory (Method) Blanks - Solids: Metals determined by CVAA<sup>b</sup></b>              |                        |                             |                                                                                   |                                      |
| Mercury                                                                                        | 3                      | 0                           | NA                                                                                | 0.012 mg/kg                          |
| <b>Laboratory (Method) Blanks - Solids: Anions</b>                                             |                        |                             |                                                                                   |                                      |
| Chloride                                                                                       | 9                      | 2                           | 0.953 (0.252) mg/kg<br>0.130 (0.0126) mg/kg                                       | 0.63 mg/kg                           |
| Fluoride                                                                                       | 4                      | 4                           | 0.57 (0.47) mg/kg<br>3.48 (2.35) mg/kg<br>2.99 (2.35) mg/kg<br>0.535 (0.47) mg/kg | 2.35 mg/kg                           |
| Sulfate                                                                                        | 2                      | 0                           | NA                                                                                | 0.05 mg/kg                           |

Table F-1 (Continued)

| Parameter                                                                           | No. of Blanks Analyzed | No. of Detects | Range of Compounds Detected | Highest Detection Limit |
|-------------------------------------------------------------------------------------|------------------------|----------------|-----------------------------|-------------------------|
| <b>Laboratory (Method) Blanks - Filters<sup>i</sup>: Metals determined by ICPES</b> |                        |                |                             |                         |
| Aluminum                                                                            | 1                      | 0              | NA                          | 13.5 $\mu$ g            |
| Antimony                                                                            | 1                      | 0              | NA                          | 7.55 $\mu$ g            |
| Barium                                                                              | 1                      | 0              | NA                          | 0.215 $\mu$ g           |
| Beryllium                                                                           | 1                      | 0              | NA                          | 0.061 $\mu$ g           |
| Cadmium                                                                             | 1                      | 0              | NA                          | 0.10 $\mu$ g            |
| Calcium                                                                             | 1                      | 0              | NA                          | 22.5 $\mu$ g            |
| Chromium                                                                            | 1                      | 0              | NA                          | 1.05 $\mu$ g            |
| Cobalt                                                                              | 1                      | 0              | NA                          | 1.4 $\mu$ g             |
| Copper                                                                              | 1                      | 0              | NA                          | 1.05 $\mu$ g            |
| Iron                                                                                | 1                      | 0              | NA                          | 30.9 $\mu$ g            |
| Magnesium                                                                           | 1                      | 0              | NA                          | 9.21 $\mu$ g            |
| Manganese                                                                           | 1                      | 0              | NA                          | 0.272 $\mu$ g           |
| Molybdenum                                                                          | 1                      | 0              | NA                          | 1.46 $\mu$ g            |
| Nickel                                                                              | 1                      | 0              | NA                          | 2.44 $\mu$ g            |
| Phosphorus                                                                          | 1                      | 0              | NA                          | 7.29 $\mu$ g            |
| Potassium                                                                           | 1                      | 0              | NA                          | 164 $\mu$ g             |
| Silicon                                                                             | 1                      | 1              | 114 $\mu$ g <sup>j</sup>    | 13.2 $\mu$ g            |
| Sodium                                                                              | 1                      | 1              | 10.4 $\mu$ g                | 6.12 $\mu$ g            |
| Vanadium                                                                            | 1                      | 0              | NA                          | 1.55 $\mu$ g            |
| Zinc                                                                                | 1                      | 0              | NA                          | 0.273 $\mu$ g           |
| <b>Laboratory (Method) Blanks - Filters: Metals determined by GFAA</b>              |                        |                |                             |                         |
| Arsenic                                                                             | 1                      | 0              | NA                          | 0.0933 $\mu$ g          |
| Cadmium                                                                             | 1                      | 0              | NA                          | 0.10 $\mu$ g            |
| Lead                                                                                | 1                      | 0              | NA                          | 0.11 $\mu$ g            |
| Selenium                                                                            | 1                      | 0              | NA                          | 0.116 $\mu$ g           |
| <b>Laboratory (Method) Blanks - Filters: Metals determined by CVAA</b>              |                        |                |                             |                         |
| Mercury                                                                             | 1                      | 1              | 0.010 $\mu$ g               | 0.0096 $\mu$ g          |
| <b>Laboratory (Method) Blanks - Liquids: Metals determined by ICPES</b>             |                        |                |                             |                         |
| Aluminum                                                                            | 1                      | 0              | NA                          | 0.0284 mg/L             |
| Antimony                                                                            | 1                      | 0              | NA                          | 0.0241 mg/L             |
| Barium                                                                              | 1                      | 0              | NA                          | 0.00053 mg/L            |
| Beryllium                                                                           | 1                      | 0              | NA                          | 0.000554 mg/L           |
| Boron                                                                               | 1                      | 0              | NA                          | 0.015 mg/L              |
| Calcium                                                                             | 1                      | 0              | NA                          | 0.148 mg/L              |
| Chromium                                                                            | 1                      | 0              | NA                          | 0.000249 mg/kg          |
| Cobalt                                                                              | 1                      | 0              | NA                          | 0.0034 mg/L             |
| Copper                                                                              | 1                      | 0              | NA                          | 0.00381 mg/L            |
| Iron                                                                                | 1                      | 0              | NA                          | 0.00596 mg/L            |
| Magnesium                                                                           | 1                      | 0              | NA                          | 0.0228 mg/L             |
| Manganese                                                                           | 1                      | 0              | NA                          | 0.000395 mg/L           |

Table F-1 (Continued)

| Parameter                                                              | No. of Blanks Analyzed | No. of Detects | Range of Compounds Detected                                           | Highest Detection Limit        |
|------------------------------------------------------------------------|------------------------|----------------|-----------------------------------------------------------------------|--------------------------------|
| Molybdenum                                                             | 1                      | 0              | NA                                                                    | 0.00463 mg/L                   |
| Nickel                                                                 | 1                      | 0              | NA                                                                    | 0.00986 mg/L                   |
| Phosphorus                                                             | 1                      | 0              | NA                                                                    | 0.0061 mg/L                    |
| Potassium                                                              | 1                      | 0              | NA                                                                    | 0.00287 mg/L                   |
| Silicon                                                                | 1                      | 1              | 0.102 (0.0371) mg/L                                                   | 0.0371 mg/L                    |
| Sodium                                                                 | 1                      | 0              | NA                                                                    | 0.0397 mg/L                    |
| Vanadium                                                               | 1                      | 0              | NA                                                                    | 0.00236 mg/L                   |
| Zinc                                                                   | 1                      | 0              | NA                                                                    | 0.00153 mg/L                   |
| <b>Laboratory (Method) Blanks - Liquids: Metals determined by GFAA</b> |                        |                |                                                                       |                                |
| Arsenic                                                                | 1                      | 0              | NA                                                                    | 0.0933 mg/L                    |
| Cadmium                                                                | 2                      | 0              | NA                                                                    | 0.031 mg/L                     |
| Lead                                                                   | 1                      | 1              | 0.00255 (0.00105) mg/L                                                | 0.00105 mg/L                   |
| Selenium                                                               | 2                      | 0              | NA                                                                    | 0.000843 mg/L                  |
| <b>Laboratory (Method) Blanks - Liquids: Metals determined by CVAA</b> |                        |                |                                                                       |                                |
| Mercury                                                                | 5                      | 0              | NA                                                                    | 0.000048 mg/L                  |
| <b>Laboratory (Method) Blanks - Liquids: Anions</b>                    |                        |                |                                                                       |                                |
| Chloride                                                               | 6                      | 0              | NA                                                                    | 0.026 mg/L                     |
| Fluoride                                                               | 4                      | 3              | 0.037 (0.0235) mg/L<br>0.0295 (0.0235) mg/L<br>0.0207 (0.0200) mg/L   | 0.0235 mg/L                    |
| Sulfate                                                                | 5                      | 0              | NA                                                                    | 0.060 mg/L                     |
| <b>Field Blanks<sup>k</sup>: Metals determined by ICPES</b>            |                        |                |                                                                       |                                |
| Aluminum                                                               | 3                      | 3              | 0.104 (0.0284) mg/L<br>110 (13.5) $\mu$ g<br>129 (54) $\mu$ g         | 0.0284 mg/L<br>54 $\mu$ g      |
| Antimony                                                               | 2                      | 0              | NA                                                                    | 0.0241 mg/L<br>7.55 $\mu$ g    |
| Barium                                                                 | 3                      | 3              | 0.00812 (0.00053) mg/L<br>5.48 (0.86) $\mu$ g<br>5.09 (0.215) $\mu$ g | 0.00053 mg/L<br>0.86 $\mu$ g   |
| Beryllium                                                              | 2                      | 0              | NA                                                                    | 0.000554 mg/L<br>0.061 $\mu$ g |
| Boron                                                                  | 1                      | 1              | 0.0289 (0.0150) mg/L                                                  | 0.0150 mg/L                    |
| Calcium                                                                | 2                      | 2              | 0.536 (0.148) mg/L<br>163 (22.5) $\mu$ g                              | 0.148 mg/L<br>22.5 $\mu$ g     |
| Chromium                                                               | 2                      | 1              | 1.91 (1.05) $\mu$ g                                                   | 0.00249 mg/L<br>1.05 $\mu$ g   |
| Cobalt                                                                 | 2                      | 0              | NA                                                                    | 0.0034 mg/L<br>1.4 $\mu$ g     |
| Copper                                                                 | 2                      | 2              | 0.00061 (0.00381) mg/L<br>1.76 (1.05) $\mu$ g                         | 0.000381 mg/L<br>1.05 $\mu$ g  |
| Iron                                                                   | 2                      | 2              | 0.13 (0.000596) mg/L<br>36.8 (30.9) $\mu$ g                           | 0.000596 mg/L<br>30.9 $\mu$ g  |

**Table F-1 (Continued)**

| Parameter                                      | No. of Blanks Analyzed | No. of Detects | Range of Compounds Detected                                           | Highest Detection Limit         |
|------------------------------------------------|------------------------|----------------|-----------------------------------------------------------------------|---------------------------------|
| Magnesium                                      | 2                      | 2              | 0.0301 (0.0228) mg/L<br>26.8 (9.21) $\mu$ g                           | 0.0288 mg/L<br>9.21 $\mu$ g     |
| Manganese                                      | 3                      | 3              | 0.034 (0.000395) mg/L<br>0.738 (0.272) $\mu$ g<br>1.49 (1.09) $\mu$ g | 0.000395 mg/L<br>1.09 $\mu$ g   |
| Molybdenum                                     | 3                      | 2              | 12.9 (5.84) $\mu$ g<br>12.8 (1.46) $\mu$ g                            | 0.00463 mg/L<br>5.84 $\mu$ g    |
| Nickel                                         | 2                      | 0              | NA                                                                    | 0.00986 mg/L<br>2.44 $\mu$ g    |
| Phosphorus                                     | 2                      | 1              | 0.0918 (0.0610) mg/L                                                  | 0.610 mg/L<br>7.29 $\mu$ g      |
| Potassium                                      | 2                      | 0              | NA                                                                    | 0.00287 mg/L<br>7.29 $\mu$ g    |
| Silicon                                        | 2                      | 2              | 0.541 (0.0371) mg/L<br>151000 (52.8) $\mu$ g                          | 0.0371 mg/L<br>52.8 $\mu$ g     |
| Sodium                                         | 3                      | 3              | 0.468 (0.0397) mg/L<br>252 (6.12) $\mu$ g<br>283 (24.5) $\mu$ g       | 0.0397 mg/L<br>24.5 $\mu$ g     |
| Vanadium                                       | 2                      | 0              | NA                                                                    | 0.00236 mg/L<br>1.155 $\mu$ g   |
| Zinc                                           | 3                      | 3              | 0.0333 (0.00153) mg/L<br>6.09 (0.273) $\mu$ g<br>11.3 (1.09) $\mu$ g  | 0.00153 mg/L<br>1.09 $\mu$ g    |
| <b>Field Blanks: Metals determined by GFAA</b> |                        |                |                                                                       |                                 |
| Arsenic                                        | 2                      | 0              | NA                                                                    | 0.000657 mg/L<br>0.0933 $\mu$ g |
| Cadmium                                        | 2                      | 2              | 0.00034 (0.00031) mg/L<br>0.114 (0.100) $\mu$ g                       | 0.00031 mg/L<br>0.100 $\mu$ g   |
| Lead                                           | 2                      | 2              | 0.00524 (0.00105) mg/L<br>0.300 (0.110) $\mu$ g                       | 0.00105 mg/L<br>0.110 $\mu$ g   |
| Selenium                                       | 2                      | 2              | 0.0112 (0.000843) mg/L<br>1.05 (0.116) $\mu$ g                        | 0.000843 mg/L<br>0.116 $\mu$ g  |
| <b>Field Blanks: Metals determined by CVAA</b> |                        |                |                                                                       |                                 |
| Mercury                                        | 2                      | 2              | 0.0015 (0.00048) mg/L<br>0.018 (0.0096) $\mu$ g                       | 0.00048 mg/L<br>0.0096 $\mu$ g  |
| <b>Field Blanks<sup>1</sup>: Anions</b>        |                        |                |                                                                       |                                 |
| Chloride                                       | 6                      | 4              | 0.041 - 1.03 mg/L                                                     | 0.0200 mg/L                     |
| Fluoride                                       | 6                      | 6              | 0.0383 - 0.101 mg/L                                                   | 0.0235 mg/L                     |
| Sulfate                                        | 7                      | 3              | 2.51 - 5.96 mg/L                                                      | 0.0600 mg/L                     |

- Only those compounds detected above the detection limit are reported in this summary table. Table F-2 (Detailed Blank Sample Results for Site 20) contain all blank results.
- Analyte concentration detected in the sample is shown followed by the corresponding detection limit for that sample (in parentheses).

- c. Detection Limit = Method detection limit as defined in 40 CFR, Part 136, Appendix B, multiplied by a sample specific dilution and digestion factor. As a result of multiplication by the sample specific dilution/digestion factor, there may be a range of detection limits for a single analyte for a single matrix. The highest detection limit is shown here. Table F-2 (Detailed Blank Sample Results for Site 20) contains the detection limit for each blank sample.
- d. These are actually liquid samples of the digestion fluid. They are reported here in mg/kg units so that they can be easily compared to the corresponding solid samples that they were batched with.
- e. ICPES = Inductively coupled plasma emissions spectroscopy.
- f. NA = Not applicable. This term is used when there were no "hits" for that analyte in that matrix.
- g. GFAA = Graphite furnace atomic absorption spectrophotometry.
- h. CVAA = Cold vapor atomic absorption spectrophotometry.
- i. These are filter samples that are digested and analyzed.
- j. Silicon contamination on filters is common.
- k. Field blanks with units in mg/L correspond to nitric acid impinger fractions. Field blanks with units in  $\mu\text{g}$  correspond to nitric and acetone probe and nozzle rinse + filter fractions. For these entries, the largest detection limit for each type of blank is listed.
- l. All field blanks for the anions train were carbonate impinger solution.

**Table F-2**  
**Detailed Blank Sample Results for Site 20**

| Sample Type  | Analyte   | Matrix | Units | Result   | Detection Limit |
|--------------|-----------|--------|-------|----------|-----------------|
| Method Blank | Aluminum  | W      | mg/L  | 0.00034J | 0.0284          |
| Method Blank | Aluminum  | S      | µg    | 3.49J    | 13.5            |
| Method Blank | Aluminum  | S      | mg/kg | 0.0385J  | 0.0733          |
| Method Blank | Aluminum  | S      | mg/kg | 11.9J    | 135             |
| Method Blank | Aluminum  | S      | mg/kg | 25.8J    | 135             |
| Method Blank | Aluminum  | S      | mg/kg | ND       | 7.33            |
| Method Blank | Antimony  | S      | mg/kg | ND       | 1.93            |
| Method Blank | Antimony  | S      | mg/kg | ND       | 75.5            |
| Method Blank | Antimony  | S      | mg/kg | 0.00043J | 0.0193          |
| Method Blank | Antimony  | S      | mg/kg | ND       | 75.5            |
| Method Blank | Antimony  | W      | mg/L  | 0.00091J | 0.0241          |
| Method Blank | Antimony  | S      | µg    | ND       | 7.55            |
| Method Blank | Arsenic   | S      | mg/kg | ND       | 0.0933          |
| Method Blank | Arsenic   | W      | mg/L  | ND       | 0.000657        |
| Method Blank | Arsenic   | S      | mg/kg | ND       | 0.0933          |
| Method Blank | Arsenic   | S      | mg/L  | ND       | 0.0933          |
| Method Blank | Arsenic   | S      | mg/kg | 3.1      | 0.933           |
| Method Blank | Arsenic   | S      | µg    | ND       | 0.0933          |
| Method Blank | Barium    | S      | mg/kg | 0.00012J | 0.000579        |
| Method Blank | Barium    | S      | mg/kg | 0.31J    | 2.15            |
| Method Blank | Barium    | S      | mg/kg | 0.21J    | 2.15            |
| Method Blank | Barium    | S      | mg/kg | ND       | 0.0579          |
| Method Blank | Barium    | W      | mg/L  | ND       | 0.00053         |
| Method Blank | Barium    | S      | µg    | 0.062J   | 0.215           |
| Method Blank | Barium    | S      | mg/kg | 0J       | 0.666           |
| Method Blank | Beryllium | W      | mg/L  | 0.00007J | 0.000554        |
| Method Blank | Beryllium | S      | mg/kg | ND       | 0.0589          |
| Method Blank | Beryllium | S      | mg/kg | ND       | 0.61            |
| Method Blank | Beryllium | S      | mg/kg | ND       | 0.61            |
| Method Blank | Beryllium | S      | mg/kg | 0.00026J | 0.000589        |
| Method Blank | Beryllium | S      | µg    | ND       | 0.061           |
| Method Blank | Boron     | W      | mg/L  | 0.0131J  | 0.015           |
| Method Blank | Boron     | S      | mg/kg | 0.00653J | 0.009           |

Table F-2 (Continued)

| Sample Type  | Analyte  | Matrix | Units | Result   | Detection Limit |
|--------------|----------|--------|-------|----------|-----------------|
| Method Blank | Boron    | S      | mg/kg | 0.0274J  | 0.9             |
| Method Blank | Cadmium  | S      | mg/kg | ND       | 0.374           |
| Method Blank | Cadmium  | T      | µg    | ND       | 0.1             |
| Method Blank | Cadmium  | S      | mg/kg | 0.01J    | 0.0374          |
| Method Blank | Cadmium  | W      | mg/L  | 0.00019J | 0.00031         |
| Method Blank | Cadmium  | W      | mg/L  | ND       | 0.031           |
| Method Blank | Calcium  | S      | mg/kg | 0.0236J  | 23.8            |
| Method Blank | Calcium  | S      | mg/kg | 13.7J    | 225             |
| Method Blank | Calcium  | S      | mg/kg | 0.0553J  | 0.238           |
| Method Blank | Calcium  | W      | mg/L  | 0.0227J  | 0.148           |
| Method Blank | Calcium  | S      | mg/kg | 6.47J    | 225             |
| Method Blank | Calcium  | S      | µg    | 0.803J   | 22.5            |
| Method Blank | Calcium  | S      | mg/kg | 11.2J    | 25.9            |
| Method Blank | Chloride | S      | mg/kg | ND       | 0.252           |
| Method Blank | Chloride | S      | mg/kg | ND       | 0.0126          |
| Method Blank | Chloride | S      | mg/kg | 0.953@   | 0.252           |
| Method Blank | Chloride | W      | mg/L  | ND       | 0.0126          |
| Method Blank | Chloride | W      | mg/L  | ND       | 0.0126          |
| Method Blank | Chloride | S      | mg/kg | ND       | 0.63            |
| Method Blank | Chloride | W      | mg/L  | ND       | 0.026           |
| Method Blank | Chloride | S      | mg/kg | 0.00296J | 0.0126          |
| Method Blank | Chloride | W      | mg/L  | ND       | 0.026           |
| Method Blank | Chloride | W      | mg/L  | ND       | 0.0126          |
| Method Blank | Chloride | W      | mg/L  | ND       | 0.02            |
| Method Blank | Chloride | S      | mg/kg | 0.13     | 0.0126          |
| Method Blank | Chromium | S      | µg    | 0.433J   | 1.05            |
| Method Blank | Chromium | S      | mg/kg | 3.34J    | 10.5            |
| Method Blank | Chromium | W      | mg/L  | ND       | 0.00249         |
| Method Blank | Chromium | S      | mg/kg | 2.01J    | 10.5            |
| Method Blank | Chromium | S      | mg/kg | 0.00129J | 0.00273         |
| Method Blank | Chromium | S      | mg/kg | 0.00424J | 0.273           |
| Method Blank | Cobalt   | S      | mg/kg | ND       | 0.00522         |
| Method Blank | Cobalt   | S      | mg/kg | 0.00043J | 0.522           |
| Method Blank | Cobalt   | W      | mg/L  | 0.00022J | 0.0034          |
| Method Blank | Cobalt   | S      | mg/kg | 1.16J    | 14              |

Table F-2 (Continued)

| Sample Type  | Analyte   | Matrix | Units | Result   | Detection Limit |
|--------------|-----------|--------|-------|----------|-----------------|
| Method Blank | Cobalt    | S      | mg/kg | 1.62J    | 14              |
| Method Blank | Cobalt    | S      | µg    | 0.306J   | 1.4             |
| Method Blank | Copper    | S      | mg/kg | ND       | 10.5            |
| Method Blank | Copper    | W      | mg/L  | 0.00148J | 0.00381         |
| Method Blank | Copper    | S      | mg/kg | 0.00111J | 0.247           |
| Method Blank | Copper    | S      | mg/kg | 0.00341@ | 0.00247         |
| Method Blank | Copper    | S      | µg    | 0.579J   | 1.05            |
| Method Blank | Copper    | S      | mg/kg | 0.88J    | 10.5            |
| Method Blank | Fluoride  | S      | mg/kg | 0.57@    | 0.47            |
| Method Blank | Fluoride  | W      | mg/L  | 0.037@   | 0.0235          |
| Method Blank | Fluoride  | W      | mg/kg | 3.48@    | 2.35            |
| Method Blank | Fluoride  | S      | mg/kg | 2.99@    | 2.35            |
| Method Blank | Fluoride  | S      | mg/kg | 0.535@   | 0.47            |
| Method Blank | Fluoride  | W      | mg/L  | 0.0295@  | 0.0235          |
| Method Blank | Fluoride  | W      | mg/L  | 0.0194J  | 0.0235          |
| Method Blank | Fluoride  | W      | mg/L  | 0.0207@  | 0.0200          |
| Method Blank | Iron      | S      | µg    | ND       | 30.9            |
| Method Blank | Iron      | S      | mg/kg | 0.0226J  | 31.1            |
| Method Blank | Iron      | W      | mg/L  | 0.00116J | 0.00596         |
| Method Blank | Iron      | S      | mg/kg | 0.0371J  | 0.311           |
| Method Blank | Lead      | W      | mg/L  | 0.00255@ | 0.00105         |
| Method Blank | Lead      | S      | mg/kg | ND       | 1.1             |
| Method Blank | Lead      | S      | mg/kg | ND       | 0.11            |
| Method Blank | Lead      | S      | µg    | 0.05J    | 0.11            |
| Method Blank | Lead      | S      | mg/kg | ND       | 0.11            |
| Method Blank | Magnesium | S      | mg/kg | 0.00568J | 0.0273          |
| Method Blank | Magnesium | S      | µg    | 2.6J     | 9.21            |
| Method Blank | Magnesium | S      | mg/kg | 0.00019J | 2.73            |
| Method Blank | Magnesium | W      | mg/L  | 0.00094J | 0.0228          |
| Method Blank | Magnesium | S      | mg/kg | 10.1J    | 92.1            |
| Method Blank | Magnesium | S      | mg/kg | 21.7J    | 92.1            |
| Method Blank | Manganese | S      | µg    | 0.015J   | 0.272           |
| Method Blank | Manganese | S      | mg/kg | 0.00019@ | 0.000118        |
| Method Blank | Manganese | S      | mg/kg | ND       | 0.0118          |

Table F-2 (Continued)

| Sample Type  | Analyte    | Matrix | Units | Result   | Detection Limit |
|--------------|------------|--------|-------|----------|-----------------|
| Method Blank | Manganese  | S      | mg/kg | ND       | 2.72            |
| Method Blank | Manganese  | S      | mg/kg | ND       | 2.72            |
| Method Blank | Manganese  | W      | mg/L  | ND       | 0.000395        |
| Method Blank | Mercury    | W      | mg/L  | ND       | 0.000048        |
| Method Blank | Mercury    | W      | mg/L  | ND       | 0.000048        |
| Method Blank | Mercury    | W      | mg/L  | ND       | 0.000048        |
| Method Blank | Mercury    | W      | µg    | 0.0100@  | 0.0096          |
| Method Blank | Mercury    | S      | mg/kg | ND       | 0.012           |
| Method Blank | Mercury    | S      | mg/kg | ND       | 0.012           |
| Method Blank | Mercury    | S      | mg/kg | ND       | 0.012           |
| Method Blank | Molybdenum | S      | mg/kg | 0.00114J | 0.00262         |
| Method Blank | Molybdenum | S      | mg/kg | ND       | 14.6            |
| Method Blank | Molybdenum | S      | mg/kg | ND       | 0.262           |
| Method Blank | Molybdenum | S      | µg    | ND       | 1.46            |
| Method Blank | Molybdenum | W      | mg/L  | 0.00154J | 0.00463         |
| Method Blank | Molybdenum | S      | mg/kg | ND       | 14.6            |
| Method Blank | Nickel     | S      | mg/kg | ND       | 0.0109          |
| Method Blank | Nickel     | S      | mg/kg | 6J       | 24.4            |
| Method Blank | Nickel     | S      | mg/kg | ND       | 1.09            |
| Method Blank | Nickel     | S      | mg/kg | ND       | 24.4            |
| Method Blank | Nickel     | S      | µg    | 0.172J   | 2.44            |
| Method Blank | Nickel     | W      | mg/L  | 0.00662J | 0.00986         |
| Method Blank | Phosphorus | S      | mg/kg | 13.3@    | 7.29            |
| Method Blank | Phosphorus | S      | mg/kg | ND       | 7.29            |
| Method Blank | Phosphorus | S      | mg/kg | ND       | 61              |
| Method Blank | Phosphorus | S      | µg    | ND       | 7.29            |
| Method Blank | Phosphorus | W      | mg/L  | 0.0705@  | 0.061           |
| Method Blank | Potassium  | S      | µg    | 22J      | 164             |
| Method Blank | Potassium  | S      | mg/kg | 38.6J    | 1,640           |
| Method Blank | Potassium  | S      | mg/kg | 0.246J   | 34.6            |
| Method Blank | Potassium  | S      | mg/kg | 82.8J    | 1,640           |
| Method Blank | Potassium  | S      | mg/kg | ND       | 0.346           |
| Method Blank | Potassium  | W      | mg/L  | ND       | 0.00287         |
| Method Blank | Selenium   | S      | mg/kg | ND       | 0.0706          |

Table F-2 (Continued)

| Sample Type  | Analyte  | Matrix | Units | Result   | Detection Limit |
|--------------|----------|--------|-------|----------|-----------------|
| Method Blank | Selenium | S      | mg/kg | ND       | 0.116           |
| Method Blank | Selenium | S      | µg    | ND       | 0.116           |
| Method Blank | Selenium | W      | mg/L  | ND       | 0.000843        |
| Method Blank | Selenium | W      | mg/L  | ND       | 0.000843        |
| Method Blank | Selenium | S      | mg/kg | ND       | 0.706           |
| Method Blank | Silicon  | S      | mg/kg | 0.107J   | 0.11            |
| Method Blank | Silicon  | W      | mg/L  | 0.102@   | 0.0371          |
| Method Blank | Silicon  | S      | mg/kg | 0.0535J  | 11              |
| Method Blank | Silicon  | S      | µg    | 114      | 13.2            |
| Method Blank | Silicon  | S      | mg/kg | 13.5J    | 16.4            |
| Method Blank | Silicon  | W      | mg/L  | 0.102@   | 0.0371          |
| Method Blank | Silicon  | S      | mg/kg | 774      | 132             |
| Method Blank | Silicon  | S      | mg/kg | 1,020    | 132             |
| Method Blank | Sodium   | S      | mg/kg | ND       | 2.59            |
| Method Blank | Sodium   | S      | mg/kg | 330      | 61.2            |
| Method Blank | Sodium   | W      | mg/L  | ND       | 0.0397          |
| Method Blank | Sodium   | S      | mg/kg | ND       | 0.0259          |
| Method Blank | Sodium   | S      | µg    | 10.4@    | 6.12            |
| Method Blank | Sodium   | S      | mg/kg | 331      | 61.2            |
| Method Blank | Sulfate  | W      | mg/kg | ND       | 2.5             |
| Method Blank | Sulfate  | W      | mg/L  | ND       | 0.05            |
| Method Blank | Sulfate  | W      | mg/kg | ND       | 0.05            |
| Method Blank | Sulfate  | W      | mg/L  | ND       | 0.05            |
| Method Blank | Sulfate  | W      | mg/L  | ND       | 0.05            |
| Method Blank | Sulfate  | W      | mg/L  | ND       | 0.06            |
| Method Blank | Sulfate  | W      | mg/L  | ND       | 0.06            |
| Method Blank | Vanadium | S      | mg/kg | 0.00092J | 0.43            |
| Method Blank | Vanadium | S      | mg/kg | 1.48J    | 15.5            |
| Method Blank | Vanadium | S      | mg/kg | 1.71J    | 15.5            |
| Method Blank | Vanadium | S      | mg/kg | 0.00053J | 0.0043          |
| Method Blank | Vanadium | W      | mg/L  | ND       | 0.00236         |
| Method Blank | Vanadium | S      | µg    | 0.325J   | 1.55            |
| Method Blank | Zinc     | S      | µg    | ND       | 0.273           |
| Method Blank | Zinc     | S      | mg/kg | 0.00293@ | 0.00291         |
| Method Blank | Zinc     | S      | mg/kg | 0.0012J  | 0.291           |

Table F-2 (Continued)

| Sample Type                     | Analyte   | Matrix | Units | Result   | Detection Limit |
|---------------------------------|-----------|--------|-------|----------|-----------------|
| Method Blank                    | Zinc      | S      | mg/kg | 2.1J     | 2.73            |
| Method Blank                    | Zinc      | S      | mg/kg | 1.61J    | 2.73            |
| Method Blank                    | Zinc      | W      | mg/L  | 0.00001J | 0.00153         |
| Nitric Impinger                 | Aluminum  | W      | mg/L  | 0.104@   | 0.0284          |
| Nitric & Ace PNR & Filter       | Aluminum  | S      | µg    | 110      | 13.5            |
| Nitric & Ace PNR & Filter       | Aluminum  | S      | µg    | 129@     | 54              |
| Nitric Impinger                 | Antimony  | W      | mg/L  | ND       | 0.0241          |
| Nitric & Ace PNR & Filter       | Antimony  | S      | µg    | ND       | 7.55            |
| Nitric Impinger                 | Arsenic   | W      | mg/L  | ND       | 0.000657        |
| Nitric & Ace PNR                | Arsenic   | S      | µg    | ND       | 0.0933          |
| Nitric Impinger                 | Barium    | W      | mg/L  | 0.00821  | 0.00053         |
| Nitric & Ace PNR & Filter       | Barium    | S      | µg    | 5.48     | 0.86            |
| Nitric & Ace PNR & Filter       | Barium    | S      | µg    | 5.09     | 0.215           |
| Nitric Impinger                 | Beryllium | W      | mg/L  | 0.00006J | 0.000554        |
| Nitric & Ace PNR & Filter       | Beryllium | S      | µg    | 0.008J   | 0.061           |
| Nitric Impinger                 | Boron     | W      | mg/L  | 0.0289@  | 0.015           |
| Nitric Impinger                 | Cadmium   | W      | mg/L  | 0.00034@ | 0.00031         |
| Nitric & Ace PNR                | Cadmium   | S      | µg    | 0.114@   | 0.100           |
| Nitric Impinger                 | Calcium   | W      | mg/L  | 0.536@   | 0.148           |
| Nitric & Ace PNR & Filter       | Calcium   | S      | µg    | 163      | 22.5            |
| Carbonate Impinger 1            | Chloride  | W      | mg/L  | 0.179    | 0.0126          |
| Carbonate Impinger 2            | Chloride  | W      | mg/L  | 0.0676   | 0.0126          |
| Carbonate & Ace PNR             | Chloride  | W      | mg/L  | 1.03     | 0.020           |
| Reagent Blank, Anions Impingers | Chloride  | W      | mg/L  | ND       | 0.0126          |
| Reagent Blank, Anions Impingers | Chloride  | W      | mg/L  | 0.041@   | 0.0126          |
| Reagent Blank, Anions Impingers | Chloride  | W      | mg/L  | ND       | 0.0126          |
| Nitric Impinger                 | Chromium  | W      | mg/L  | 0.00116J | 0.00249         |
| Nitric & Ace PNR & Filter       | Chromium  | S      | µg    | 1.91@    | 1.05            |
| Nitric Impinger                 | Cobalt    | W      | mg/L  | ND       | 0.0034          |
| Nitric & Ace PNR & Filter       | Cobalt    | S      | µg    | 0.177J   | 1.4             |
| Nitric Impinger                 | Copper    | W      | mg/L  | 0.0061@  | 0.00381         |
| Nitric & Ace PNR & Filter       | Copper    | S      | µg    | 1.76@    | 1.05            |
| Carbonate Impinger 1            | Fluoride  | W      | mg/L  | 0.101@   | 0.0235          |
| Carbonate & Ace PNR             | Fluoride  | W      | mg/L  | 0.053@   | 0.0235          |

**Table F-2 (Continued)**

| Sample Type                     | Analyte    | Matrix | Units | Result   | Detection Limit |
|---------------------------------|------------|--------|-------|----------|-----------------|
| Reagent Blank, Anions Impingers | Fluoride   | W      | mg/L  | 0.0383@  | 0.0235          |
| Reagent Blank, Anions Impingers | Fluoride   | W      | mg/L  | 0.0658@  | 0.0235          |
| Reagent Blank, Anions Impingers | Fluoride   | W      | mg/L  | 0.0535@  | 0.0235          |
| Reagent Blank, Anions Impingers | Fluoride   | W      | mg/L  | 0.0394@  | 0.0235          |
| Nitric Impinger                 | Iron       | W      | mg/L  | 0.13     | 0.00596         |
| Nitric & Ace PNR & Filter       | Iron       | S      | µg    | 36.8@    | 30.9            |
| Nitric Impinger                 | Lead       | W      | mg/L  | 0.00524@ | 0.00105         |
| Nitric & Ace PNR                | Lead       | S      | µg    | 0.3@     | 0.11            |
| Nitric Impinger                 | Magnesium  | W      | mg/L  | 0.0301@  | 0.0228          |
| Nitric & Ace PNR & Filter       | Magnesium  | S      | µg    | 26.8@    | 9.21            |
| Nitric Impinger                 | Manganese  | W      | mg/L  | 0.034    | 0.000395        |
| Nitric & Ace PNR & Filter       | Manganese  | S      | µg    | 0.738@   | 0.272           |
| Nitric & Ace PNR & Filter       | Manganese  | S      | µg    | 1.49@    | 1.09            |
| Nitric Impinger                 | Mercury    | W      | mg/L  | 0.0015   | 0.00048         |
| Nitric & Ace PNR                | Mercury    | W      | µg    | 0.018@   | 0.0096          |
| Nitric Impinger                 | Molybdenum | W      | mg/L  | 0.00254J | 0.00463         |
| Nitric & Ace PNR & Filter       | Molybdenum | S      | µg    | 12.9@    | 5.84            |
| Nitric & Ace PNR & Filter       | Molybdenum | S      | µg    | 12.8     | 1.46            |
| Nitric Impinger                 | Nickel     | W      | mg/L  | 0.00267J | 0.00986         |
| Nitric & Ace PNR & Filter       | Nickel     | S      | µg    | 1.27J    | 2.44            |
| Nitric Impinger                 | Phosphorus | W      | mg/L  | 0.0918@  | 0.061           |
| Nitric & Ace PNR & Filter       | Phosphorus | S      | µg    | ND       | 7.29            |
| Nitric Impinger                 | Potassium  | W      | mg/L  | ND       | 0.00287         |
| Nitric & Ace PNR & Filter       | Potassium  | S      | µg    | 16.6J    | 164             |
| Nitric Impinger                 | Selenium   | W      | mg/L  | 0.0112   | 0.000843        |
| Nitric & Ace PNR                | Selenium   | S      | µg    | 1.05     | 0.116           |
| Nitric Impinger                 | Silicon    | W      | mg/L  | 0.541    | 0.0371          |
| Nitric & Ace PNR & Filter       | Silicon    | S      | µg    | 151,000  | 52.8            |
| Nitric Impinger                 | Silver     | W      | mg/L  | 0.00195J | 0.00492         |
| Nitric & Ace PNR & Filter       | Silver     | S      | µg    | ND       | 1.12            |
| Nitric Impinger                 | Sodium     | W      | mg/L  | 0.468    | 0.0397          |
| Nitric & Ace PNR & Filter       | Sodium     | S      | µg    | 252      | 6.12            |
| Nitric & Ace PNR & Filter       | Sodium     | S      | µg    | 283      | 24.5            |
| Carbonate Impinger 1            | Sulfate    | W      | mg/L  | 5.96     | 0.06            |

**Table F-2 (Continued)**

| Sample Type                     | Analyte  | Matrix | Units | Result   | Detection Limit |
|---------------------------------|----------|--------|-------|----------|-----------------|
| Carbonate Impinger 2            | Sulfate  | W      | mg/L  | 5.96     | 0.06            |
| Carbonate & Ace PNR             | Sulfate  | W      | mg/L  | 2.51     | 0.06            |
| Reagent Blank, Anions Impingers | Sulfate  | W      | mg/L  | ND       | 0.06            |
| Reagent Blank, Anions Impingers | Sulfate  | W      | mg/L  | ND       | 0.06            |
| Reagent Blank, Anions Impingers | Sulfate  | W      | mg/L  | ND       | 0.06            |
| Reagent Blank, anions Impingers | Sulfate  | W      | mg/L  | ND       | 0.06            |
| Nitric Impinger                 | Vanadium | W      | mg/L  | 0.00088J | 0.00236         |
| Nitric & Ace PNR & Filter       | Vanadium | S      | µg    | 0.581J   | 1.55            |
| Nitric Impinger                 | Zinc     | W      | mg/L  | 0.0333   | 0.00153         |
| Nitric & Ace PNR & Filter       | Zinc     | S      | µg    | 6.09     | 0.273           |
| Nitric & Ace PNR & Filter       | Zinc     | S      | µg    | 11.3     | 1.09            |

ND = Not detected at stated concentration.

J = Results less than detection limit.

S = Solid

W = Water

T = Train

@ = Concentration is less than five times detection limit.

**Table F-3**  
**Summary of Laboratory Control Spike (LCS) Results for Site 20**

| Compound                                                                      | No. of Spiked Samples | Mean % Recovery | Mean RPD | No. Below Recov. Limits | No. Above Recov. Limits | DQO <sup>a</sup> for Recovery |
|-------------------------------------------------------------------------------|-----------------------|-----------------|----------|-------------------------|-------------------------|-------------------------------|
| <b>Solid (ERA Soil <sup>b</sup>): Metals Determined by ICPES <sup>c</sup></b> |                       |                 |          |                         |                         |                               |
| Aluminum                                                                      | 4                     | 102             | 7        | 0                       | 0                       | 75-125%                       |
| Antimony                                                                      | 4                     | 129             | 5        | 0                       | 2                       | 75-125%                       |
| Barium                                                                        | 4                     | 91              | 2        | 0                       | 0                       | 75-125%                       |
| Beryllium                                                                     | 4                     | 93              | 2        | 0                       | 0                       | 75-125%                       |
| Calcium                                                                       | 6                     | 95              | 2        | 0                       | 0                       | 75-125%                       |
| Chromium                                                                      | 4                     | 108             | 4        | 0                       | 2                       | 75-125%                       |
| Cobalt                                                                        | 4                     | 91              | 2        | 0                       | 0                       | 75-125%                       |
| Copper                                                                        | 4                     | 94              | 3        | 0                       | 0                       | 75-125%                       |
| Iron                                                                          | 4                     | 107             | 6        | 0                       | 0                       | 75-125%                       |
| Magnesium                                                                     | 4                     | 92              | 2        | 0                       | 0                       | 75-125%                       |
| Manganese                                                                     | 4                     | 92              | 1        | 0                       | 0                       | 75-125%                       |
| Molybdenum                                                                    | 4                     | 97              | 4        | 0                       | 0                       | 75-125%                       |
| Nickel                                                                        | 4                     | 96              | 2        | 0                       | 0                       | 75-125%                       |
| Phosphorus                                                                    |                       |                 |          |                         |                         | 75-125%                       |
| Potassium                                                                     | 4                     | 95              | 4        | 0                       | 0                       | 75-125%                       |
| Silicon                                                                       |                       |                 |          |                         |                         | 75-125%                       |
| Sodium                                                                        | 4                     | 110             | 2        | 0                       | 2                       | 75-125%                       |
| Vanadium                                                                      | 4                     | 102             | 2        | 0                       | 0                       | 75-125%                       |
| Zinc                                                                          | 4                     | 97              | 9        | 0                       | 0                       | 75-125%                       |
| <b>Solids (ERA Soil): Metals Determined by GFAA <sup>d</sup></b>              |                       |                 |          |                         |                         |                               |
| Arsenic                                                                       | 4                     | 110             | 3        | 0                       | 0                       | 75-125%                       |
| Cadmium                                                                       | 4                     | 107             | 3        | 0                       | 0                       | 75-125%                       |
| Lead                                                                          | 4                     | 93              | 1        | 0                       | 0                       | 75-125%                       |
| Selenium                                                                      | 6                     | 106             | 2        | 0                       | 0                       | 75-125%                       |
| <b>Solids (ERA Soil): Metals Determined by CVAA <sup>e</sup></b>              |                       |                 |          |                         |                         |                               |
| Mercury                                                                       | 4                     | 95              | 3        | 0                       | 0                       | 75-125%                       |
| <b>Solid (NBS 1633A <sup>f</sup>): Metals Determined by ICPES</b>             |                       |                 |          |                         |                         |                               |
| Aluminum                                                                      | 8                     | 77              | 17       | 0                       | 0                       | 75-125%                       |
| Barium                                                                        | 10                    | 77              | 4        | 0                       | 0                       | 75-125%                       |

Table F-3 (Continued)

| Compound  | No. of Spiked Samples | Mean % Recovery | Mean RPD | No. Below Recov. Limits | No. Above Recov. Limits | DQO for Recovery |
|-----------|-----------------------|-----------------|----------|-------------------------|-------------------------|------------------|
| Beryllium | 8                     | 98              | 1        | 0                       | 0                       | 75-125%          |
| Calcium   | 8                     | 86              | 10       | 0                       | 0                       | 75-125%          |
| Chromium  | 8                     | 91              | 2        | 0                       | 0                       | 75-125%          |
| Cobalt    | 8                     | 98              | 20       | 0                       | 1                       | 75-125%          |
| Copper    | 8                     | 94              | 2        | 0                       | 0                       | 75-125%          |
| Iron      | 8                     | 88              | 2        | 0                       | 0                       | 75-125%          |
| Magnesium | 8                     | 77              | 21       | 0                       | 0                       | 75-125%          |
| Manganese | 8                     | 90              | 5        | 0                       | 0                       | 75-125%          |
| Nickel    | 8                     | 108             | 4        | 0                       | 0                       | 75-125%          |
| Potassium | 8                     | 85              | 2        | 0                       | 0                       | 75-125%          |
| Silicon   | 8                     | 94              | 8        | 0                       | 0                       | 75-125%          |
| Sodium    | 8                     | 111             | 6        | 0                       | 2                       | 75-125%          |
| Vanadium  | 8                     | 93              | 1        | 0                       | 0                       | 75-125%          |
| Zinc      | 8                     | 100             | 1        | 0                       | 0                       | 75-125%          |

**Solids (NBS 1633A): Metals Determined by GFAA**

|          |   |     |    |   |   |         |
|----------|---|-----|----|---|---|---------|
| Arsenic  | 4 | 112 | 2  | 0 | 0 | 75-125% |
| Cadmium  | 4 | 28  | 84 | 4 | 0 | 75-125% |
| Lead     | 6 | 77  | 1  | 4 | 0 | 75-125% |
| Selenium | 4 | 81  | 5  | 1 | 0 | 75-125% |

**Solids (NBS 1633A): Metals Determined by CVAA**

|         |   |     |   |   |   |         |
|---------|---|-----|---|---|---|---------|
| Mercury | 6 | 105 | 3 | 0 | 0 | 75-125% |
|---------|---|-----|---|---|---|---------|

**Gas Metals Nitric Impingers: Metals Determined by ICPES**

|           |    |    |   |   |   |         |
|-----------|----|----|---|---|---|---------|
| Aluminum  | 10 | 93 | 1 | 0 | 0 | 75-125% |
| Antimony  | 10 | 89 | 4 | 0 | 0 | 75-125% |
| Barium    | 12 | 95 | 1 | 0 | 0 | 75-125% |
| Beryllium | 10 | 92 | 1 | 0 | 0 | 75-125% |
| Boron     | 6  | 99 | 2 | 0 | 0 | 75-125% |
| Calcium   | 12 | 94 | 1 | 0 | 0 | 75-125% |
| Chromium  | 10 | 94 | 1 | 0 | 0 | 75-125% |
| Cobalt    | 10 | 92 | 1 | 0 | 0 | 75-125% |
| Copper    | 10 | 93 | 1 | 0 | 0 | 75-125% |
| Iron      | 10 | 91 | 1 | 0 | 0 | 75-125% |

**Table F-3 (Continued)**

| Compound                                   | No. of Spiked Samples | Mean % Recovery | Mean RPD | No. Below Recov. Limits | No. Above Recov. Limits | DQO for Recovery |
|--------------------------------------------|-----------------------|-----------------|----------|-------------------------|-------------------------|------------------|
| Magnesium                                  | 10                    | 92              | 1        | 0                       | 0                       | 75-125%          |
| Manganese                                  | 10                    | 92              | 1        | 0                       | 0                       | 75-125%          |
| Molybdenum                                 | 10                    | 92              | 2        | 0                       | 0                       | 75-125%          |
| Nickel                                     | 10                    | 93              | 1        | 0                       | 0                       | 75-125%          |
| Phosphorous                                | 10                    | 98              | 2        | 0                       | 0                       | 75-125%          |
| Potassium                                  | 10                    | 91              | 2        | 0                       | 0                       | 75-125%          |
| Silicon                                    | 12                    | 97              | 1        | 0                       | 0                       | 75-125%          |
| Sodium                                     | 10                    | 94              | 1        | 0                       | 0                       | 75-125%          |
| Vanadium                                   | 10                    | 94              | 1        | 0                       | 0                       | 75-125%          |
| Zinc                                       | 10                    | 92              | 1        | 0                       | 0                       | 75-125%          |
| Cadmium                                    | 10                    | 108             | 3        | 0                       | 0                       | 75-125%          |
| Lead                                       | 10                    | 103             | 2        | 0                       | 0                       | 75-125%          |
| Selenium                                   | 12                    | 94              | 1        | 0                       | 0                       | 75-125%          |
| <b>Gas Metals Nitric Impingers:</b>        |                       |                 |          |                         |                         |                  |
| <b>Metals determined by CVAA</b>           |                       |                 |          |                         |                         |                  |
| Mercury                                    | 12                    | 108             | 2        | 0                       | 0                       | 75-125%          |
| <b>Gas Metals Nitric Impingers: Anions</b> |                       |                 |          |                         |                         |                  |
| Chloride                                   | 26                    | 101             | 4        | 0                       | 0                       | 80-120%          |
| Fluoride                                   | 16                    | 95              | 3        | 0                       | 0                       | 80-120%          |
| Sulfate                                    | 12                    | 95              | 5        | 0                       | 0                       | 80-120%          |

<sup>a</sup>DQO = Data quality objective.

<sup>b</sup>ERA soil is a standard soil which has been spiked with an appropriate concentration of the designated analyte. The soil is then digested and analyzed per the method.

<sup>c</sup>ICPES = Inductively coupled plasma emission spectroscopy.

<sup>d</sup>GFAA = Graphite furnace atomic absorption spectrophotometry.

<sup>e</sup>CVAA = Cold vapor atomic absorption spectrophotometry.

<sup>f</sup>NBS 1633A is a standard fly ash (National Bureau of Standards standard reference coal fly ash). Recoveries are based on the comparison of analyzed concentration to certified value.

**Table F-4**  
**Laboratory Control Spike Results (%)**

| Analyte    | Method | Sample Type                 | LCS Type           | Minimum Recovery | Maximum Recovery | Average Recovery | Duplicate RPD |
|------------|--------|-----------------------------|--------------------|------------------|------------------|------------------|---------------|
| Arsenic    | GFAA   |                             | ERA                | 110              | 111              | 111              | 1             |
| Arsenic    | GFAA   |                             | Lab Control Sample | 91               | 93               | 92               | 2             |
| Chloride   | IC     |                             | Lab Control Sample | 97               | 98               | 98               | 1             |
| Chloride   | IC     |                             | Lab Control Sample | 100              | 100              | 100              | 0             |
| Fluoride   | SIE    |                             | Lab Control Sample | 96               | 97               | 97               | 1             |
| Mercury    | CVAA   |                             | Lab Control Sample | 102              | 103              | 103              | 1             |
| Chloride   | IC     | Gas Anions Impingers        | Lab Control Sample | 95               | 97               | 96               | 2             |
| Chloride   | IC     | Gas Anions Impingers        | Lab Control Sample | 97               | 108              | 103              | 11            |
| Chloride   | IC     | Gas Anions Impingers        | Lab Control Sample | 99               | 102              | 101              | 3             |
| Fluoride   | SIE    | Gas Anions Impingers        | Lab Control Sample | 96               | 98               | 97               | 2             |
| Fluoride   | SIE    | Gas Anions Impingers        | Lab Control Sample | 94               | 102              | 98               | 8             |
| Sulfate    | IC     | Gas Anions Impingers        | Lab Control Sample | 97               | 97               | 97               | 0             |
| Chloride   | IC     | Gas Anions Solids           | Lab Control Sample | 92               | 105              | 99               | 13            |
| Chloride   | IC     | Gas Anions Solids           | Lab Control Sample | 101              | 102              | 102              | 1             |
| Fluoride   | SIE    | Gas Anions Solids           | Lab Control Sample | 100              | 104              | 102              | 4             |
| Fluoride   | SIE    | Gas Anions Solids           | Lab Control Sample | 100              | 100              | 100              | 0             |
| Sulfate    | IC     | Gas Anions Solids           | Lab Control Sample | 99               | 102              | 100              | 3             |
| Sulfate    | IC     | Gas Anions Solids           | Lab Control Sample | 79               | 100              | 90               | 24            |
| Sulfate    | IC     | Gas Anions Solids           | Lab Control Sample | 90               | 91               | 90               | 0             |
| Sulfate    | IC     | Gas Anions Solids           | Lab Control Sample | 96               | 96               | 96               | 0             |
| Sulfate    | IC     | Gas Anions Solids           | Lab Control Sample | 100              | 100              | 100              | 0             |
| Aluminum   | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 97               | 98               | 98               | 1             |
| Antimony   | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 96               | 98               | 97               | 2             |
| Arsenic    | GFAA   | Gas Metals Nitric Impingers | Lab Control Sample | 97               | 100              | 98               | 3             |
| Barium     | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 100              | 100              | 100              | 0             |
| Beryllium  | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 102              | 102              | 102              | 0             |
| Boron      | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 103              | 105              | 104              | 2             |
| Cadmium    | GFAA   | Gas Metals Nitric Impingers | Lab Control Sample | 108              | 108              | 108              | 0             |
| Calcium    | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 100              | 101              | 101              | 1             |
| Chromium   | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 100              | 101              | 101              | 1             |
| Cobalt     | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 98               | 99               | 98               | 1             |
| Copper     | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 99               | 100              | 99               | 1             |
| Iron       | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 98               | 98               | 98               | 1             |
| Lead       | GFAA   | Gas Metals Nitric Impingers | Lab Control Sample | 112              | 116              | 114              | 3             |
| Magnesium  | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 97               | 98               | 98               | 1             |
| Manganese  | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 99               | 99               | 99               | 1             |
| Mercury    | CVAA   | Gas Metals Nitric Impingers | Lab Control Sample | 104              | 106              | 105              | 2             |
| Mercury    | CVAA   | Gas Metals Nitric Impingers | Lab Control Sample | 102              | 102              | 102              | 0             |
| Molybdenum | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 97               | 98               | 98               | 1             |
| Nickel     | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 100              | 100              | 100              | 0             |
| Phosphorus | ICAP   | Gas Metals Nitric Impingers | Lab Control Sample | 98               | 100              | 99               | 2             |

RPD = relative percent difference    NBS 1633A = National Bureau of Standards standard reference coal fly ash

Table F-4 (Continued)

| Analyte   | Method | Sample Type                       | LCS Type           | Minimum Recovery | Maximum Recovery | Average Recovery | Duplicate RPD |
|-----------|--------|-----------------------------------|--------------------|------------------|------------------|------------------|---------------|
| Potassium | ICAP   | Gas Metals Nitric Impingers       | Lab Control Sample | 95               | 98               | 96               | 4             |
| Selenium  | GFAA   | Gas Metals Nitric Impingers       | Lab Control Sample | 99               | 103              | 101              | 4             |
| Selenium  | GFAA   | Gas Metals Nitric Impingers       | Lab Control Sample | 95               | 96               | 96               | 1             |
| Silicon   | ICAP   | Gas Metals Nitric Impingers       | Lab Control Sample | 105              | 106              | 106              | 1             |
| Sodium    | ICAP   | Gas Metals Nitric Impingers       | Lab Control Sample | 98               | 99               | 99               | 2             |
| Vanadium  | ICAP   | Gas Metals Nitric Impingers       | Lab Control Sample | 101              | 102              | 102              | 1             |
| Zinc      | ICAP   | Gas Metals Nitric Impingers       | Lab Control Sample | 97               | 98               | 97               | 1             |
| Mercury   | CVAA   | Gas Metals Permanganate Impingers | Lab Control Sample | 109              | 112              | 111              | 3             |
| Mercury   | CVAA   | Gas Metals Permanganate Impingers | Lab Control Sample | 102              | 104              | 103              | 2             |
| Aluminum  | ICAP   | Solids                            | ERA                | 102              | 108              | 105              | 6             |
| Aluminum  | ICAP   | Solids                            | ERA                | 94               | 103              | 99               | 8             |
| Aluminum  | ICAP   | Solids                            | Lab Control Sample | 94               | 94               | 94               | 0             |
| Aluminum  | ICAP   | Solids                            | Lab Control Sample | 95               | 95               | 95               | 1             |
| Aluminum  | ICAP   | Solids                            | Lab Control Sample | 90               | 90               | 90               | 0             |
| Aluminum  | ICAP   | Solids                            | Lab Control Sample | 93               | 93               | 93               | 0             |
| Aluminum  | ICAP   | Solids                            | Lab Control Sample | 87               | 89               | 88               | 3             |
| Aluminum  | ICAP   | Solids                            | NBS 1633A          | 76               | 93               | 84               | 21            |
| Aluminum  | ICAP   | Solids                            | NBS 1633A          | 76               | 90               | 83               | 17            |
| Aluminum  | ICAP   | Solids                            | NBS 1633A          | 68               | 78               | 73               | 14            |
| Aluminum  | ICAP   | Solids                            | NBS 1633A          | 63               | 73               | 68               | 14            |
| Antimony  | ICAP   | Solids                            | ERA                | 127              | 138              | 133              | 8             |
| Antimony  | ICAP   | Solids                            | ERA                | 124              | 125              | 124              | 1             |
| Antimony  | ICAP   | Solids                            | Lab Control Sample | 87               | 89               | 88               | 2             |
| Antimony  | ICAP   | Solids                            | Lab Control Sample | 89               | 91               | 90               | 2             |
| Antimony  | ICAP   | Solids                            | Lab Control Sample | 87               | 89               | 88               | 3             |
| Antimony  | ICAP   | Solids                            | Lab Control Sample | 82               | 82               | 82               | 0             |
| Antimony  | ICAP   | Solids                            | Lab Control Sample | 76               | 85               | 81               | 12            |
| Antimony  | ICAP   | Solids                            | NBS 1633A          |                  |                  |                  |               |
| Antimony  | ICAP   | Solids                            | NBS 1633A          |                  |                  |                  |               |
| Arsenic   | GFAA   | Solids                            | ERA                | 102              | 106              | 104              | 4             |
| Arsenic   | GFAA   | Solids                            | ERA                | 112              | 117              | 114              | 4             |
| Arsenic   | GFAA   | Solids                            | Lab Control Sample | 116              | 116              | 116              | 1             |
| Arsenic   | GFAA   | Solids                            | Lab Control Sample | 91               | 92               | 91               | 1             |
| Arsenic   | GFAA   | Solids                            | Lab Control Sample | 93               | 93               | 93               | 1             |
| Arsenic   | GFAA   | Solids                            | Lab Control Sample | 123              | 124              | 123              | 1             |
| Arsenic   | GFAA   | Solids                            | NBS 1633A          | 102              | 103              | 102              | 1             |
| Arsenic   | GFAA   | Solids                            | NBS 1633A          | 119              | 123              | 121              | 3             |
| Arsenic   | ICAP   | Solids                            | Lab Control Sample | 116              | 116              | 116              | 1             |
| Arsenic   | ICAP   | Solids                            | NBS 1633A          | 102              | 103              | 102              | 1             |

RPD = relative percent difference    NBS 1633A = National Bureau of Standards standard reference coal fly ash

Table F-4 (Continued)

| Analyte   | Method | Sample Type | LCS Type           | Minimum Recovery | Maximum Recovery | Average Recovery | Duplicate RPD |
|-----------|--------|-------------|--------------------|------------------|------------------|------------------|---------------|
| Barium    | ICAP   | Solids      | ERA                | 90               | 93               | 91               | 2             |
| Barium    | ICAP   | Solids      | ERA                | 90               | 92               | 91               | 2             |
| Barium    | ICAP   | Solids      | Lab Control Sample | 97               | 97               | 97               | 0             |
| Barium    | ICAP   | Solids      | Lab Control Sample | 93               | 93               | 93               | 0             |
| Barium    | ICAP   | Solids      | Lab Control Sample | 98               | 98               | 98               | 0             |
| Barium    | ICAP   | Solids      | Lab Control Sample | 95               | 96               | 95               | 1             |
| Barium    | ICAP   | Solids      | Lab Control Sample | 90               | 90               | 90               | 0             |
| Barium    | ICAP   | Solids      | Lab Control Sample | 85               | 87               | 86               | 3             |
| Barium    | ICAP   | Solids      | NBS 1633A          | 77               | 81               | 79               | 5             |
| Barium    | ICAP   | Solids      | NBS 1633A          | 81               | 83               | 82               | 2             |
| Barium    | ICAP   | Solids      | NBS 1633A          | 83               | 83               | 83               | 0             |
| Barium    | ICAP   | Solids      | NBS 1633A          | 71               | 77               | 74               | 7             |
| Barium    | ICAP   | Solids      | NBS 1633A          | 66               | 70               | 68               | 6             |
| Beryllium | ICAP   | Solids      | ERA                | 93               | 94               | 94               | 1             |
| Beryllium | ICAP   | Solids      | ERA                | 91               | 94               | 93               | 3             |
| Beryllium | ICAP   | Solids      | Lab Control Sample | 92               | 92               | 92               | 1             |
| Beryllium | ICAP   | Solids      | Lab Control Sample | 94               | 94               | 94               | 0             |
| Beryllium | ICAP   | Solids      | Lab Control Sample | 88               | 88               | 88               | 1             |
| Beryllium | ICAP   | Solids      | Lab Control Sample | 84               | 84               | 84               | 0             |
| Beryllium | ICAP   | Solids      | Lab Control Sample | 82               | 83               | 83               | 2             |
| Beryllium | ICAP   | Solids      | NBS 1633A          | 109              | 109              | 109              | 0             |
| Beryllium | ICAP   | Solids      | NBS 1633A          | 97               | 97               | 97               | 0             |
| Beryllium | ICAP   | Solids      | NBS 1633A          | 97               | 103              | 100              | 6             |
| Beryllium | ICAP   | Solids      | NBS 1633A          | 88               | 88               | 88               | 0             |
| Boron     | ICAP   | Solids      | ERA                |                  |                  |                  |               |
| Boron     | ICAP   | Solids      | Lab Control Sample | 97               | 99               | 98               | 2             |
| Boron     | ICAP   | Solids      | Lab Control Sample | 95               | 96               | 95               | 1             |
| Cadmium   | GFAA   | Solids      | ERA                | 109              | 113              | 111              | 3             |
| Cadmium   | GFAA   | Solids      | ERA                | 101              | 104              | 102              | 3             |
| Cadmium   | GFAA   | Solids      | Lab Control Sample | 99               | 102              | 100              | 3             |
| Cadmium   | GFAA   | Solids      | Lab Control Sample | 112              | 120              | 116              | 7             |
| Cadmium   | GFAA   | Solids      | Lab Control Sample | 111              | 112              | 112              | 1             |
| Cadmium   | GFAA   | Solids      | Lab Control Sample | 101              | 105              | 103              | 4             |
| Cadmium   | GFAA   | Solids      | NBS 1633A          | 3                | 21               | 12               | 151           |
| Cadmium   | GFAA   | Solids      | NBS 1633A          | 40               | 47               | 43               | 16            |
| Calcium   | ICAP   | Solids      | ERA                | 93               | 94               | 93               | 2             |
| Calcium   | ICAP   | Solids      | ERA                | 95               | 98               | 96               | 3             |
| Calcium   | ICAP   | Solids      | ERA                | 96               | 97               | 97               | 1             |
| Calcium   | ICAP   | Solids      | Lab Control Sample | 91               | 92               | 91               | 1             |
| Calcium   | ICAP   | Solids      | Lab Control Sample | 95               | 95               | 95               | 0             |
| Calcium   | ICAP   | Solids      | Lab Control Sample | 95               | 95               | 95               | 1             |

RPD = relative percent difference

NBS 1633A = National Bureau of Standards standard reference coal fly ash

Table F-4 (Continued)

| Analyte  | Method | Sample Type | LCS Type           | Minimum Recovery | Maximum Recovery | Average Recovery | Duplicate RPD |
|----------|--------|-------------|--------------------|------------------|------------------|------------------|---------------|
| Calcium  | ICAP   | Solids      | Lab Control Sample | 91               | 92               | 92               | 1             |
| Calcium  | ICAP   | Solids      | Lab Control Sample | 96               | 96               | 96               | 0             |
| Calcium  | ICAP   | Solids      | Lab Control Sample | 91               | 94               | 92               | 4             |
| Calcium  | ICAP   | Solids      | NBS 1633A          | 93               | 102              | 97               | 9             |
| Calcium  | ICAP   | Solids      | NBS 1633A          | 88               | 95               | 92               | 9             |
| Calcium  | ICAP   | Solids      | NBS 1633A          | 76               | 86               | 81               | 12            |
| Calcium  | ICAP   | Solids      | NBS 1633A          | 70               | 78               | 74               | 11            |
| Chloride | IC     | Solids      | Lab Control Sample | 101              | 109              | 105              | 7             |
| Chloride | IC     | Solids      | Lab Control Sample | 101              | 109              | 105              | 7             |
| Chloride | IC     | Solids      | Lab Control Sample | 101              | 103              | 102              | 3             |
| Chloride | IC     | Solids      | Lab Control Sample | 102              | 105              | 104              | 2             |
| Chloride | IC     | Solids      | Lab Control Sample | 100              | 101              | 101              | 1             |
| Chloride | IC     | Solids      | Lab Control Sample | 98               | 103              | 101              | 5             |
| Chromium | ICAP   | Solids      | ERA                | 130              | 135              | 132              | 4             |
| Chromium | ICAP   | Solids      | ERA                | 83               | 85               | 84               | 3             |
| Chromium | ICAP   | Solids      | Lab Control Sample | 92               | 93               | 93               | 1             |
| Chromium | ICAP   | Solids      | Lab Control Sample | 95               | 96               | 96               | 1             |
| Chromium | ICAP   | Solids      | Lab Control Sample | 93               | 94               | 93               | 0             |
| Chromium | ICAP   | Solids      | Lab Control Sample | 89               | 89               | 89               | 0             |
| Chromium | ICAP   | Solids      | Lab Control Sample | 86               | 88               | 87               | 2             |
| Chromium | ICAP   | Solids      | NBS 1633A          | 94               | 96               | 95               | 2             |
| Chromium | ICAP   | Solids      | NBS 1633A          | 90               | 92               | 91               | 2             |
| Chromium | ICAP   | Solids      | NBS 1633A          | 93               | 94               | 94               | 1             |
| Chromium | ICAP   | Solids      | NBS 1633A          | 84               | 85               | 85               | 1             |
| Cobalt   | ICAP   | Solids      | ERA                | 90               | 91               | 91               | 1             |
| Cobalt   | ICAP   | Solids      | ERA                | 89               | 92               | 91               | 3             |
| Cobalt   | ICAP   | Solids      | Lab Control Sample | 90               | 90               | 90               | 0             |
| Cobalt   | ICAP   | Solids      | Lab Control Sample | 94               | 94               | 94               | 0             |
| Cobalt   | ICAP   | Solids      | Lab Control Sample | 92               | 92               | 92               | 1             |
| Cobalt   | ICAP   | Solids      | Lab Control Sample | 87               | 87               | 87               | 0             |
| Cobalt   | ICAP   | Solids      | Lab Control Sample | 84               | 86               | 85               | 2             |
| Cobalt   | ICAP   | Solids      | NBS 1633A          | 94               | 139              | 116              | 39            |
| Cobalt   | ICAP   | Solids      | NBS 1633A          | 90               | 97               | 93               | 7             |
| Cobalt   | ICAP   | Solids      | NBS 1633A          | 82               | 107              | 94               | 26            |
| Cobalt   | ICAP   | Solids      | NBS 1633A          | 84               | 92               | 88               | 8             |
| Copper   | ICAP   | Solids      | ERA                | 99               | 100              | 100              | 1             |
| Copper   | ICAP   | Solids      | ERA                | 87               | 90               | 88               | 4             |
| Copper   | ICAP   | Solids      | Lab Control Sample | 91               | 91               | 91               | 0             |
| Copper   | ICAP   | Solids      | Lab Control Sample | 96               | 96               | 96               | 0             |
| Copper   | ICAP   | Solids      | Lab Control Sample | 92               | 95               | 94               | 2             |

RPD = relative percent difference    NBS 1633A = National Bureau of Standards standard reference coal fly ash

Table F-4 (Continued)

| Analyte   | Method | Sample Type | LCS Type           | Minimum Recovery | Maximum Recovery | Average Recovery | Duplicate RPD |
|-----------|--------|-------------|--------------------|------------------|------------------|------------------|---------------|
| Copper    | ICAP   | Solids      | Lab Control Sample | 88               | 88               | 88               | 0             |
| Copper    | ICAP   | Solids      | Lab Control Sample | 84               | 87               | 86               | 3             |
| Copper    | ICAP   | Solids      | NBS 1633A          | 96               | 97               | 96               | 1             |
| Copper    | ICAP   | Solids      | NBS 1633A          | 97               | 103              | 100              | 5             |
| Copper    | ICAP   | Solids      | NBS 1633A          | 96               | 96               | 96               | 0             |
| Copper    | ICAP   | Solids      | NBS 1633A          | 83               | 83               | 83               | 1             |
| Fluoride  | SIE    | Solids      | Lab Control Sample | 91               | 94               | 92               | 3             |
| Fluoride  | SIE    | Solids      | Lab Control Sample | 80               | 83               | 81               | 4             |
| Fluoride  | SIE    | Solids      | Lab Control Sample | 88               | 90               | 89               | 2             |
| Iron      | ICAP   | Solids      | ERA                | 111              | 114              | 113              | 3             |
| Iron      | ICAP   | Solids      | ERA                | 96               | 105              | 100              | 8             |
| Iron      | ICAP   | Solids      | Lab Control Sample | 92               | 92               | 92               | 0             |
| Iron      | ICAP   | Solids      | Lab Control Sample | 92               | 93               | 93               | 0             |
| Iron      | ICAP   | Solids      | Lab Control Sample | 86               | 88               | 87               | 2             |
| Iron      | ICAP   | Solids      | Lab Control Sample | 86               | 86               | 86               | 0             |
| Iron      | ICAP   | Solids      | Lab Control Sample | 83               | 85               | 84               | 2             |
| Iron      | ICAP   | Solids      | NBS 1633A          | 89               | 91               | 90               | 2             |
| Iron      | ICAP   | Solids      | NBS 1633A          | 87               | 88               | 87               | 2             |
| Iron      | ICAP   | Solids      | NBS 1633A          | 89               | 92               | 91               | 3             |
| Iron      | ICAP   | Solids      | NBS 1633A          | 83               | 84               | 83               | 1             |
| Lead      | GFAA   | Solids      | ERA                | 100              | 101              | 101              | 1             |
| Lead      | GFAA   | Solids      | ERA                | 85               | 86               | 85               | 1             |
| Lead      | GFAA   | Solids      | Lab Control Sample | 94               | 95               | 95               | 1             |
| Lead      | GFAA   | Solids      | Lab Control Sample | 106              | 109              | 108              | 3             |
| Lead      | GFAA   | Solids      | Lab Control Sample | 95               | 97               | 96               | 2             |
| Lead      | GFAA   | Solids      | Lab Control Sample | 99               | 102              | 100              | 2             |
| Lead      | GFAA   | Solids      | NBS 1633A          | 85               | 85               | 85               | 0             |
| Lead      | GFAA   | Solids      | NBS 1633A          | 72               | 73               | 73               | 1             |
| Lead      | GFAA   | Solids      | NBS 1633A          | 72               | 73               | 73               | 0             |
| Lead      | GFAA   | Solids      | unknown            | 111              | 111              | 111              | 0             |
| Magnesium | ICAP   | Solids      | ERA                | 99               | 102              | 101              | 3             |
| Magnesium | ICAP   | Solids      | ERA                | 82               | 83               | 83               | 1             |
| Magnesium | ICAP   | Solids      | Lab Control Sample | 92               | 93               | 93               | 0             |
| Magnesium | ICAP   | Solids      | Lab Control Sample | 93               | 94               | 93               | 1             |
| Magnesium | ICAP   | Solids      | Lab Control Sample | 89               | 90               | 90               | 0             |
| Magnesium | ICAP   | Solids      | Lab Control Sample | 93               | 93               | 93               | 0             |
| Magnesium | ICAP   | Solids      | Lab Control Sample | 87               | 90               | 89               | 4             |
| Magnesium | ICAP   | Solids      | NBS 1633A          | 76               | 97               | 87               | 24            |
| Magnesium | ICAP   | Solids      | NBS 1633A          | 73               | 93               | 83               | 24            |
| Magnesium | ICAP   | Solids      | NBS 1633A          | 66               | 80               | 73               | 19            |
| Magnesium | ICAP   | Solids      | NBS 1633A          | 61               | 73               | 67               | 17            |

RPD = relative percent difference

NBS 1633A = National Bureau of Standards standard reference coal fly ash

Table F-4 (Continued)

| Analyte    | Method | Sample Type | LCS Type           | Minimum Recovery | Maximum Recovery | Average Recovery | Duplicate RPD |
|------------|--------|-------------|--------------------|------------------|------------------|------------------|---------------|
| Manganese  | ICAP   | Solids      | ERA                | 90               | 93               | 91               | 2             |
| Manganese  | ICAP   | Solids      | ERA                | 92               | 92               | 92               | 0             |
| Manganese  | ICAP   | Solids      | Lab Control Sample | 91               | 91               | 91               | 0             |
| Manganese  | ICAP   | Solids      | Lab Control Sample | 95               | 95               | 95               | 0             |
| Manganese  | ICAP   | Solids      | Lab Control Sample | 91               | 92               | 92               | 1             |
| Manganese  | ICAP   | Solids      | Lab Control Sample | 87               | 87               | 87               | 0             |
| Manganese  | ICAP   | Solids      | Lab Control Sample | 84               | 86               | 85               | 2             |
| Manganese  | ICAP   | Solids      | NBS 1633A          | 93               | 95               | 94               | 2             |
| Manganese  | ICAP   | Solids      | NBS 1633A          | 90               | 91               | 91               | 1             |
| Manganese  | ICAP   | Solids      | NBS 1633A          | 87               | 97               | 92               | 10            |
| Manganese  | ICAP   | Solids      | NBS 1633A          | 79               | 86               | 83               | 8             |
| Mercury    | CVAA   | Solids      | ERA                | 94               | 94               | 94               | 1             |
| Mercury    | CVAA   | Solids      | ERA                | 95               | 98               | 96               | 4             |
| Mercury    | CVAA   | Solids      | Lab Control Sample | 122              | 124              | 123              | 2             |
| Mercury    | CVAA   | Solids      | NBS 1633A          | 94               | 99               | 97               | 5             |
| Mercury    | CVAA   | Solids      | NBS 1633A          | 104              | 106              | 105              | 2             |
| Mercury    | CVAA   | Solids      | NBS 1633A          | 114              | 116              | 115              | 2             |
| Molybdenum | ICAP   | Solids      | ERA                | 96               | 99               | 98               | 4             |
| Molybdenum | ICAP   | Solids      | ERA                | 94               | 97               | 96               | 3             |
| Molybdenum | ICAP   | Solids      | Lab Control Sample | 89               | 89               | 89               | 0             |
| Molybdenum | ICAP   | Solids      | Lab Control Sample | 94               | 94               | 94               | 1             |
| Molybdenum | ICAP   | Solids      | Lab Control Sample | 86               | 88               | 87               | 2             |
| Molybdenum | ICAP   | Solids      | Lab Control Sample | 86               | 86               | 86               | 0             |
| Molybdenum | ICAP   | Solids      | Lab Control Sample | 87               | 91               | 89               | 4             |
| Molybdenum | ICAP   | Solids      | NBS 1633A          |                  |                  |                  |               |
| Molybdenum | ICAP   | Solids      | NBS 1633A          |                  |                  |                  |               |
| Nickel     | ICAP   | Solids      | ERA                | 98               | 100              | 99               | 2             |
| Nickel     | ICAP   | Solids      | ERA                | 91               | 93               | 92               | 2             |
| Nickel     | ICAP   | Solids      | Lab Control Sample | 90               | 91               | 90               | 1             |
| Nickel     | ICAP   | Solids      | Lab Control Sample | 94               | 95               | 94               | 0             |
| Nickel     | ICAP   | Solids      | Lab Control Sample | 94               | 94               | 94               | 0             |
| Nickel     | ICAP   | Solids      | Lab Control Sample | 88               | 88               | 88               | 0             |
| Nickel     | ICAP   | Solids      | Lab Control Sample | 87               | 91               | 89               | 4             |
| Nickel     | ICAP   | Solids      | NBS 1633A          | 120              | 120              | 120              | 1             |
| Nickel     | ICAP   | Solids      | NBS 1633A          | 97               | 100              | 98               | 3             |
| Nickel     | ICAP   | Solids      | NBS 1633A          | 113              | 119              | 116              | 5             |
| Nickel     | ICAP   | Solids      | NBS 1633A          | 95               | 100              | 98               | 5             |
| Phosphorus | ICAP   | Solids      | Lab Control Sample | 100              | 101              | 101              | 1             |
| Phosphorus | ICAP   | Solids      | Lab Control Sample | 101              | 104              | 103              | 3             |
| Phosphorus | ICAP   | Solids      | Lab Control Sample | 95               | 99               | 97               | 4             |
| Phosphorus | ICAP   | Solids      | Lab Control Sample | 88               | 89               | 89               | 0             |

RPD = relative percent difference

NBS 1633A = National Bureau of Standards standard reference coal fly ash

Table F-4 (Continued)

| Analyte   | Method | Sample Type | LCS Type           | Minimum Recovery | Maximum Recovery | Average Recovery | Duplicate RPD |
|-----------|--------|-------------|--------------------|------------------|------------------|------------------|---------------|
| Potassium | ICAP   | Solids      | ERA                | 94               | 97               | 96               | 2             |
| Potassium | ICAP   | Solids      | ERA                | 92               | 98               | 95               | 6             |
| Potassium | ICAP   | Solids      | Lab Control Sample | 92               | 93               | 93               | 0             |
| Potassium | ICAP   | Solids      | Lab Control Sample | 93               | 94               | 93               | 1             |
| Potassium | ICAP   | Solids      | Lab Control Sample | 89               | 90               | 90               | 2             |
| Potassium | ICAP   | Solids      | Lab Control Sample | 88               | 88               | 88               | 0             |
| Potassium | ICAP   | Solids      | Lab Control Sample | 84               | 85               | 84               | 1             |
| Potassium | ICAP   | Solids      | NBS 1633A          | 87               | 89               | 88               | 2             |
| Potassium | ICAP   | Solids      | NBS 1633A          | 82               | 86               | 84               | 5             |
| Potassium | ICAP   | Solids      | NBS 1633A          | 90               | 90               | 90               | 1             |
| Potassium | ICAP   | Solids      | NBS 1633A          | 78               | 80               | 79               | 2             |
| Selenium  | GFAA   | Solids      | ERA                | 104              | 104              | 104              | 0             |
| Selenium  | GFAA   | Solids      | ERA                | 102              | 107              | 105              | 4             |
| Selenium  | GFAA   | Solids      | ERA                | 110              | 111              | 110              | 1             |
| Selenium  | GFAA   | Solids      | Lab Control Sample | 104              | 104              | 104              | 0             |
| Selenium  | GFAA   | Solids      | Lab Control Sample | 103              | 103              | 103              | 0             |
| Selenium  | GFAA   | Solids      | Lab Control Sample | 96               | 96               | 96               | 0             |
| Selenium  | GFAA   | Solids      | Lab Control Sample | 87               | 87               | 87               | 0             |
| Selenium  | GFAA   | Solids      | Lab Control Sample | 99               | 100              | 100              | 1             |
| Selenium  | GFAA   | Solids      | Lab Control Sample | 83               | 83               | 83               | 1             |
| Selenium  | GFAA   | Solids      | NBS 1633A          | 74               | 81               | 77               | 9             |
| Selenium  | GFAA   | Solids      | NBS 1633A          | 84               | 84               | 84               | 1             |
| Silicon   | ICAP   | Solids      | ERA                |                  |                  |                  |               |
| Silicon   | ICAP   | Solids      | ERA                |                  |                  |                  |               |
| Silicon   | ICAP   | Solids      | Lab Control Sample | 98               | 99               | 99               | 1             |
| Silicon   | ICAP   | Solids      | Lab Control Sample | 93               | 94               | 93               | 1             |
| Silicon   | ICAP   | Solids      | Lab Control Sample | 98               | 98               | 98               | 0             |
| Silicon   | ICAP   | Solids      | Lab Control Sample | 98               | 99               | 99               | 1             |
| Silicon   | ICAP   | Solids      | Lab Control Sample | 91               | 91               | 91               | 0             |
| Silicon   | ICAP   | Solids      | Lab Control Sample | 90               | 92               | 91               | 2             |
| Silicon   | ICAP   | Solids      | NBS 1633A          | 99               | 100              | 100              | 2             |
| Silicon   | ICAP   | Solids      | NBS 1633A          | 95               | 98               | 97               | 3             |
| Silicon   | ICAP   | Solids      | NBS 1633A          | 88               | 97               | 93               | 9             |
| Silicon   | ICAP   | Solids      | NBS 1633A          | 82               | 93               | 88               | 12            |
| Sodium    | ICAP   | Solids      | ERA                | 130              | 134              | 132              | 3             |
| Sodium    | ICAP   | Solids      | ERA                | 87               | 88               | 88               | 0             |
| Sodium    | ICAP   | Solids      | Lab Control Sample | 95               | 95               | 95               | 0             |
| Sodium    | ICAP   | Solids      | Lab Control Sample | 96               | 96               | 96               | 1             |
| Sodium    | ICAP   | Solids      | Lab Control Sample | 91               | 92               | 92               | 1             |
| Sodium    | ICAP   | Solids      | Lab Control Sample | 95               | 95               | 95               | 0             |
| Sodium    | ICAP   | Solids      | Lab Control Sample | 88               | 91               | 90               | 3             |

RPD = relative percent difference

NBS 1633A = National Bureau of Standards standard reference coal fly ash

Table F-4 (Continued)

| Analyte  | Method | Sample Type | LCS Type           | Minimum Recovery | Maximum Recovery | Average Recovery | Duplicate RPD |
|----------|--------|-------------|--------------------|------------------|------------------|------------------|---------------|
| Sodium   | ICAP   | Solids      | NBS 1633A          | 99               | 104              | 101              | 5             |
| Sodium   | ICAP   | Solids      | NBS 1633A          | 88               | 89               | 89               | 1             |
| Sodium   | ICAP   | Solids      | NBS 1633A          | 132              | 143              | 137              | 8             |
| Sodium   | ICAP   | Solids      | NBS 1633A          | 111              | 121              | 116              | 8             |
| Vanadium | ICAP   | Solids      | ERA                | 110              | 112              | 111              | 2             |
| Vanadium | ICAP   | Solids      | ERA                | 93               | 94               | 93               | 1             |
| Vanadium | ICAP   | Solids      | Lab Control Sample | 94               | 95               | 95               | 1             |
| Vanadium | ICAP   | Solids      | Lab Control Sample | 96               | 96               | 96               | 1             |
| Vanadium | ICAP   | Solids      | Lab Control Sample | 92               | 93               | 93               | 1             |
| Vanadium | ICAP   | Solids      | Lab Control Sample | 87               | 87               | 87               | 0             |
| Vanadium | ICAP   | Solids      | Lab Control Sample | 84               | 86               | 85               | 2             |
| Vanadium | ICAP   | Solids      | NBS 1633A          | 95               | 96               | 95               | 0             |
| Vanadium | ICAP   | Solids      | NBS 1633A          | 93               | 93               | 93               | 1             |
| Vanadium | ICAP   | Solids      | NBS 1633A          | 95               | 95               | 95               | 1             |
| Vanadium | ICAP   | Solids      | NBS 1633A          | 87               | 87               | 87               | 0             |
| Zinc     | ICAP   | Solids      | ERA                | 100              | 117              | 108              | 16            |
| Zinc     | ICAP   | Solids      | ERA                | 85               | 87               | 86               | 2             |
| Zinc     | ICAP   | Solids      | Lab Control Sample | 87               | 87               | 87               | 0             |
| Zinc     | ICAP   | Solids      | Lab Control Sample | 92               | 93               | 92               | 1             |
| Zinc     | ICAP   | Solids      | Lab Control Sample | 92               | 93               | 92               | 1             |
| Zinc     | ICAP   | Solids      | Lab Control Sample | 90               | 90               | 90               | 0             |
| Zinc     | ICAP   | Solids      | Lab Control Sample | 93               | 94               | 93               | 1             |
| Zinc     | ICAP   | Solids      | NBS 1633A          | 113              | 114              | 114              | 1             |
| Zinc     | ICAP   | Solids      | NBS 1633A          | 88               | 89               | 88               | 1             |
| Zinc     | ICAP   | Solids      | NBS 1633A          | 103              | 105              | 104              | 2             |
| Zinc     | ICAP   | Solids      | NBS 1633A          | 95               | 95               | 95               | 0             |

RPD = relative percent difference    NBS 1633A = National Bureau of Standards standard reference coal fly ash

**Table F-5**  
**Summary of Matrix Spike Results for Site 20**

| Compound                                   | No. of Spiked Samples | Mean % Recovery | Mean RPD | No. Below Recov. Limits | No. Above Recov. Limits | DQO* for Recovery |
|--------------------------------------------|-----------------------|-----------------|----------|-------------------------|-------------------------|-------------------|
| <b>Solid: Metals Determined by ICPES</b>   |                       |                 |          |                         |                         |                   |
| Aluminum                                   | 10                    | 113             | 2        | 0                       | 4                       | 75-125%           |
| Antimony                                   | 10                    | 100             | 15       | 1                       | 4                       | 75-125%           |
| Barium                                     | 12                    | 105             | 9        | 2                       | 4                       | 75-125%           |
| Beryllium                                  | 14                    | 101             | 2        | 0                       | 1                       | 75-125%           |
| Calcium                                    | 4                     | 89              | 3        | 0                       | 0                       | 75-125%           |
| Chromium                                   | 12                    | 100             | 1        | 0                       | 3                       | 75-125%           |
| Cobalt                                     | 12                    | 87              | 2        | 2                       | 0                       | 75-125%           |
| Copper                                     | 12                    | 104             | 4        | 0                       | 4                       | 75-125%           |
| Iron                                       | 12                    | 97              | 1        | 1                       | 3                       | 75-125%           |
| Magnesium                                  | 10                    | 93              | 2        | 1                       | 3                       | 75-125%           |
| Manganese                                  | 10                    | 105             | 4        | 0                       | 4                       | 75-125%           |
| Molybdenum                                 | 10                    | 103             | 4        | 0                       | 1                       | 75-125%           |
| Nickel                                     | 12                    | 98              | 2        | 0                       | 1                       | 75-125%           |
| Phosphorus                                 | 8                     | 90              | 3        | 0                       | 0                       | 75-125%           |
| Potassium                                  | 12                    | 96              | 3        | 2                       | 4                       | 75-125%           |
| Silicon                                    | 12                    | 151             | 6        | 0                       | 7                       | 75-125%           |
| Sodium                                     | 10                    | 113             | 5        | 0                       | 4                       | 75-125%           |
| Vanadium                                   | 10                    | 104             | 2        | 0                       | 4                       | 75-125%           |
| Zinc                                       | 12                    | 102             | 2        | 0                       | 0                       | 75-125%           |
| <b>Solids: Metals Determined by GFAA</b>   |                       |                 |          |                         |                         |                   |
| Arsenic                                    | 10                    | 97              | 2        | 2                       | 1                       | 75-125%           |
| Cadmium                                    | 9                     | 111             | 5        | 0                       | 0                       | 75-125%           |
| Lead                                       | 6                     | 98              | 9        | 0                       | 0                       | 75-125%           |
| Selenium                                   | 6                     | 91              | 11       | 1                       | 0                       | 75-125%           |
| <b>Solids: Metals Determined by CVAA</b>   |                       |                 |          |                         |                         |                   |
| Mercury                                    | 14                    | 102             | 8        | 0                       | 0                       | 75-125%           |
| <b>Solids: Anions</b>                      |                       |                 |          |                         |                         |                   |
| Chloride                                   | 12                    | 62              | 9        | 6                       | 0                       | 80-120%           |
| Fluoride                                   | 8                     | 93              | 2        | 0                       | 0                       | 80-120%           |
| Sulfate                                    | 2                     | 91              | 4        | 0                       | 0                       | 80-120%           |
| <b>Liquids: Metals Determined by ICPES</b> |                       |                 |          |                         |                         |                   |
| Aluminum                                   | 4                     | 94              | 0        | 0                       | 0                       | 75-125%           |
| Antimony                                   | 4                     | 92              | 2        | 0                       | 0                       | 75-125%           |
| Barium                                     | 4                     | 62              | 6        | 2                       | 0                       | 75-125%           |

**Table F-5 (Continued)**

| Compound                                  | No. of Spiked Samples | Mean % Recovery | Mean RPD | No. Below Recov. Limits | No. Above Recov. Limits | DQO for Recovery |
|-------------------------------------------|-----------------------|-----------------|----------|-------------------------|-------------------------|------------------|
| Beryllium                                 | 4                     | 98              | 0        | 0                       | 0                       | 75-125%          |
| Calcium                                   | 4                     | 83              | 3        | 1                       | 0                       | 75-125%          |
| Chromium                                  | 4                     | 96              | 0        | 0                       | 0                       | 75-125%          |
| Cobalt                                    | 4                     | 94              | 0        | 0                       | 0                       | 75-125%          |
| Copper                                    | 4                     | 95              | 0        | 0                       | 0                       | 75-125%          |
| Iron                                      | 5                     | 79              | 8        | 1                       | 0                       | 75-125%          |
| Magnesium                                 | 4                     | 89              | 1        | 0                       | 0                       | 75-125%          |
| Manganese                                 | 4                     | 95              | 0        | 0                       | 0                       | 75-125%          |
| Molybdenum                                | 4                     | 94              | 2        | 0                       | 0                       | 75-125%          |
| Nickel                                    | 4                     | 95              | 1        | 0                       | 0                       | 75-125%          |
| Phosphorus                                | 4                     | 99              | 1        | 0                       | 0                       | 75-125%          |
| Potassium                                 | 4                     | 96              | 3        | 0                       | 0                       | 75-125%          |
| Silicon                                   | 4                     | 100             | 1        | 0                       | 0                       | 75-125%          |
| Sodium                                    | 4                     | 82              | 4        | 2                       | 0                       | 75-125%          |
| Vanadium                                  | 4                     | 97              | 0        | 0                       | 0                       | 75-125%          |
| Zinc                                      | 4                     | 93              | 0        | 0                       | 0                       | 75-125%          |
| <b>Liquids: Metals Determined by GFAA</b> |                       |                 |          |                         |                         |                  |
| Arsenic                                   | 4                     | 101             | 1        | 0                       | 0                       | 75-125%          |
| Cadmium                                   | 3                     | 101             | 3        | 0                       | 0                       | 75-125%          |
| Lead                                      | 4                     | 105             | 0        | 0                       | 0                       | 75-125%          |
| Selenium                                  | 6                     | 29              | 750      | 6                       | 0                       | 75-125%          |
| <b>Liquids: Metals Determined by CVAA</b> |                       |                 |          |                         |                         |                  |
| Mercury                                   | 14                    | 93              | 2        | 2                       | 0                       | 75-125%          |
| <b>Liquids: Anions</b>                    |                       |                 |          |                         |                         |                  |
| Chloride                                  | 12                    | 94              | 9        | 2                       | 0                       | 80-120%          |
| Fluoride                                  | 12                    | 81              | 10       | 3                       | 0                       | 80-120%          |
| Sulfate                                   | 8                     | 98              | 15       | 0                       | 0                       | 80-120%          |

\*DQO = Data quality objective.

**Table F-6**  
**Detailed Matrix Spike Results**

| Analyte   | Units | Result  | Spike Recovery | Dup Recovery | RPD  | Stream       | Sample Type     |
|-----------|-------|---------|----------------|--------------|------|--------------|-----------------|
| Aluminum  | mg/kg | 6,090   | 152Q           | 146Q         | 4    | FGD Solids   | Grab            |
| Aluminum  | mg/kg | 5,800   | 144Q           | 146Q         | 1.4  | FGD Solids   | Grab            |
| Aluminum  | mg/kg | 160,000 | 83Q            | 88           | 5.8  | Fly Ash      | Grab            |
| Aluminum  | mg/kg | 157,000 | 81             | 82           | 1.2  | Fly Ash      | Grab            |
| Aluminum  | mg/kg | 4240    | 102            | 102          | 0    | Limestone    | Grab            |
| Aluminum  | mg/L  | 9.4     | 93             | 93           | 0    | ESP Outlet   | Nitric Impinger |
| Aluminum  | mg/L  | 9.54    | 94             | 94           | 0    | Makeup Water | Grab            |
| Antimony  | mg/kg | 85.9    | 138Q           | 128Q         | 7.5  | FGD Solids   | Grab            |
| Antimony  | mg/kg | 85.6    | 138Q           | 128Q         | 7.5  | FGD Solids   | Grab            |
| Antimony  | mg/kg | 259J    | 43Q            | 75           | 54Q  | Fly Ash      | Grab            |
| Antimony  | mg/kg | 370     | 82             | 86           | 4.8  | Fly Ash      | Grab            |
| Antimony  | mg/kg | 57.2    | 86             | 86           | 0    | Limestone    | Grab            |
| Antimony  | mg/L  | 0.968   | 98             | 94           | 4.2  | ESP Outlet   | Nitric Impinger |
| Antimony  | mg/L  | 0.888   |                |              |      |              |                 |
| Antimony  | mg/L  | 0.89    | 88             | 88           | 0    | Makeup Water | Grab            |
| Arsenic   | mg/L  | 16.8    | 87             | 86           | 1.2  | QA           | MSD             |
| Arsenic   | mg/kg | 14.8    | 64Q            | 65Q          | 1.6  | Limestone    | Grab            |
| Arsenic   | mg/kg | 391     | 123            | 132Q         | 7.1  | Fly Ash      | Grab            |
| Arsenic   | mg/kg | 12.9    | 109            | 108          | 0.92 | FGD Solids   | Grab            |
| Arsenic   | mg/kg | 12.8    | 96             | 95           | 1    | QA           | MSD             |
| Arsenic   | mg/L  | 0.047   | 95             | 94           | 1.1  | ESP Outlet   | Nitric Impinger |
| Arsenic   | mg/L  | 0.0553  | 108            | 108          | 0    | Makeup Water | Grab            |
| Barium    | mg/kg | 3,200   | 95             | 77           | 21Q  | Fly Ash      | Grab            |
| Barium    | mg/kg | 162     | 154Q           | 143Q         | 7.4  | FGD Solids   | Grab            |
| Barium    | mg/kg | 154     | 142Q           | 144Q         | 0.7  | FGD Solids   | Grab            |
| Barium    | mg/kg | 2,940   | 80             | 84           | 4.9  | Fly Ash      | Grab            |
| Barium    | mg/kg | 2,830   | 74Q            | 66Q          | 11   | Fly Ash      | Grab            |
| Barium    | mg/kg | 148     | 108            | 97           | 11   | Limestone    | Grab            |
| Barium    | mg/L  | 0.279   | 28Q            | 31Q          | 10   | ESP Outlet   | Nitric Impinger |
| Barium    | mg/L  | 1.09    | 93             | 94           | 1.1  | Makeup Water | Grab            |
| Beryllium | mg/kg | 93.3    | 129Q           | 125          | 3.2  | FGD Solids   | Grab            |
| Beryllium | mg/kg | 88.7    | 123            | 125          | 1.6  | FGD Solids   | Grab            |
| Beryllium | mg/kg | 439     | 87             | 89           | 2.3  | Fly Ash      | Grab            |

Table F-6 (Continued)

| Analyte   | Units     | Result  | Spike Recovery | Dup Recovery | RPD  | Stream           | Sample Type                  |
|-----------|-----------|---------|----------------|--------------|------|------------------|------------------------------|
| Beryllium | mg/kg     | 415     | 82             | 81           | 1.2  | Fly Ash          | Grab                         |
| Beryllium | mg/kg     | 62      | 83             | 83           | 0    | Limestone        | Grab                         |
| Beryllium | mg/L      | 1       | 100            | 100          | 0    | ESP Outlet       | Nitric Impinger              |
| Beryllium | mg/L      | 0.979   | 98             | 98           | 0    | Makeup Water     | Grab                         |
| <hr/>     |           |         |                |              |      |                  |                              |
| Cadmium   | mg/kg     | 3.25    | 109            | 114          | 4.5  | FGD Solids       | Grab                         |
| Cadmium   | mg/kg     | 2.47    | 110            | 105          | 4.6  | QA               | MSD                          |
| Cadmium   | mg/kg     | 22      | 114            | 106          | 7.3  | Fly Ash          | Grab                         |
| Cadmium   | mg/kg     | 0.0442  | 110            | 101          | 8.5  | Makeup Water     | Grab                         |
| Cadmium   | mg/kg     | 3.96    | 116            | 117          | 0.86 | Limestone        | Grab                         |
| Cadmium   | mg/L      | 0.043   | 105            | 102          | 2.9  | ESP Outlet       | Nitric Impinger              |
| <hr/>     |           |         |                |              |      |                  |                              |
| Calcium   | mg/kg     | 271,000 | 49Qx           | 52Qx         | 5.9  | FGD Solids       | Grab                         |
| Calcium   | mg/kg     | 155,000 | 90             | 94           | 4.4  | Fly Ash          | Grab                         |
| Calcium   | mg/kg     | 148,000 | 85             | 86           | 1.2  | Fly Ash          | Grab                         |
| Calcium   | mg/kg     | 348,000 | 148Qx          | 321Qx        | 129Q | Limestone        | Grab                         |
| Calcium   | mg/L      | 10.2    | 97             | 96           | 1    | ESP Outlet       | Nitric Impinger              |
| Calcium   | mg/L      | 57.9    | 68Q            | 72Q          | 5.7  | Makeup Water     | Grab                         |
| <hr/>     |           |         |                |              |      |                  |                              |
| Chloride  | mg/kg     | 5.52    | 74Q            | 71Q          | 4.1  | Precipitator Ash | Grab                         |
| Chloride  | mg/kg     | 31      | 60Q            | 60Q          | 0    | Limestone        | Grab                         |
| Chloride  | mg/kg     | 6.26    | 62Q            | 67Q          | 7.8  | Fly Ash          | Grab                         |
| Chloride  | mg/kg     | 11.1    | 88             | 99           | 12   | Fly Ash          | Grab                         |
| Chloride  | mg/kg     | 526     | 109            | 93           | 16   | FGD Solids       | Grab                         |
| Chloride  | mg/kg     | 115     | 103            | 97           | 6    | Coal             | Grab                         |
| Chloride  | µg/filter | 184     | 100            | 95           | 5.1  | Stack Gas        | Analytical Spike             |
| Chloride  | mg/L      | 59.9    | 100            | 99           | 1    | Makeup Water     | Grab                         |
| Chloride  | mg/L      | 0.236   | 80             | 87           | 8.4  | Stack Gas        | Carbonate Impinger 2         |
| Chloride  | mg/L      | 0.622   | 91             | 108          | 17   | Stack Gas        | Carbonate Impinger 1         |
| Chloride  | mg/L      | 50.5    | 107            | 97           | 9.8  | Stack Gas        | Carbonate & Ace PNR          |
| Chloride  | mg/L      | 0.24    | 70Q            | 70Q          | 0    | Stack Gas        | Carbonate Impinger 2         |
| Chloride  | mg/L      | 5.19    | 120            | 103          | 15   | ESP Outlet       | Carbonate & Ace PNR & Filter |
| <hr/>     |           |         |                |              |      |                  |                              |
| Chromium  | mg/kg     | 99      | 131Q           | 127Q         | 3.1  | FGD Solids       | Grab                         |
| Chromium  | mg/kg     | 94.7    | 125            | 127Q         | 1.6  | FGD Solids       | Grab                         |
| Chromium  | mg/kg     | 82      | 85             | 87           | 2.3  | QA               | MSD                          |
| Chromium  | mg/kg     | 516     | 90             | 90           | 0    | Fly Ash          | Grab                         |

Table F-6 (Continued)

| Analyte  | Units | Result | Spike Recovery | Dup Recovery | RPD  | Stream       | Sample Type                  |
|----------|-------|--------|----------------|--------------|------|--------------|------------------------------|
| Chromium | mg/kg | 489    | 84             | 84           | 0    | Fly Ash      | Grab                         |
| Chromium | mg/kg | 64.9   | 83             | 82           | 1.2  | Limestone    | Grab                         |
| Chromium | mg/L  | 0.972  | 97             | 97           | 0    | ESP Outlet   | Nitric Impinger              |
| Chromium | mg/L  | 0.952  | 95             | 95           | 0    | Makeup Water | Grab                         |
| Cobalt   | mg/kg | 90     | 124            | 122          | 1.6  | FGD Solids   | Grab                         |
| Cobalt   | mg/kg | 86.2   | 119            | 121          | 2.5  | FGD solids   | Grab                         |
| Cobalt   | mg/kg |        | 27Q            | 26Q          | 3.8  | FGD Solids   | Grab                         |
| Cobalt   | mg/kg | 469    | 90             | 88           | 2.2  | Fly Ash      | Grab                         |
| Cobalt   | mg/kg | 433    | 83             | 83           | 0    | Fly Ash      | Grab                         |
| Cobalt   | mg/kg | 60.1   | 80             | 80           | 0    | Limestone    | Grab                         |
| Cobalt   | mg/L  | 0.944  | 95             | 95           | 0    | ESP Outlet   | Nitric Impinger              |
| Cobalt   | mg/L  | 0.932  | 93             | 93           | 0    | Makeup Water | Grab                         |
| Copper   | mg/kg | 105    | 143Q           | 135Q         | 5.8  | FGD Solids   | Grab                         |
| Copper   | mg/kg | 100    | 136Q           | 135Q         | 0.74 | FGD Solids   | Grab                         |
| Copper   | mg/kg | 85.9   | 85             | 89           | 4.6  | QA           | MSD                          |
| Copper   | mg/kg | 543    | 85             | 89           | 4.6  | Fly Ash      | Grab                         |
| Copper   | mg/kg | 530    | 83             | 84           | 1.2  | Fly Ash      | Grab                         |
| Copper   | mg/kg | 74     | 97             | 92           | 5.3  | Limestone    | Grab                         |
| Copper   | mg/L  | 0.959  | 96             | 96           | 0    | ESP Outlet   | Nitric Impinger              |
| Copper   | mg/L  | 0.947  | 94             | 94           | 0    | Makeup Water | Grab                         |
| Fluoride | mg/kg | 26.6   | 88             | 87           | 1.1  | FGD Solids   | Grab                         |
| Fluoride | mg/kg | 14.1   | 94             | 93           | 1.1  | ESP Outlet   | Carbonate Impinger 1         |
| Fluoride | mg/kg | 14.4   | 102            | 99           | 3    | Stack Gas    | Carbonate & Ace PNR          |
| Fluoride | mg/kg | 13     | 87             | 87           | 0    | FGD Solids   | Grab                         |
| Fluoride | mg/L  | 16.6   | 88             | 87           | 1.1  | Limestone    | MSD                          |
| Fluoride | mg/L  | 17.1   | 65Q            |              |      | Fly Ash      | Grab                         |
| Fluoride | mg/L  | 0.821  | 82             | 83           | 1.2  | ESP Outlet   | Carbonate & Ace PNR & Filter |
| Fluoride | mg/L  | 17.2   | 85             | 93           | 9    | Stack Gas    | Carbonate Impinger 1         |
| Fluoride | mg/L  | 0.811  | 69Q            | 47Q          | 38Q  | Fly Ash      | Grab                         |
| Fluoride | mg/L  | 0.759  | 83             |              |      | QA           | MS                           |
| Fluoride | mg/L  | 0.72   | 96             | 96           | 0    | Makeup Water | Grab                         |
| Iron     | mg/kg |        | 136Q           | 129Q         | 5.3  | FGD Solids   | Grab                         |
| Iron     | mg/kg |        | 94             | 94           | 0    | QA           | MSD                          |

Table F-6 (Continued)

| Analyte   | Units | Result  | Spike Recovery | Dup Recovery | RPD  | Stream       | Sample Type     |
|-----------|-------|---------|----------------|--------------|------|--------------|-----------------|
| Iron      | mg/kg | 169,000 | 93             | 93           | 0    | Makeup Water | Grab            |
| Iron      | mg/kg | 11,700  | 93             | 93           | 0    | QA           | MSD             |
| Iron      | mg/kg | 11,100R | 128Q           | 129Q         | 0.78 | FGD Solids   | Grab            |
| Iron      | mg/kg | 155,000 | 93             |              |      | QA           | MS              |
| Iron      | mg/kg | 3,860   | 94             | 94           | 0    | ESP Outlet   | Nitric Impinger |
| Iron      | mg/kg | 165,000 | 28Qx           | 28Q          | 0    | FGD Solids   | Grab            |
| Iron      | mg/kg | 156,000 | 129Qx          |              |      | FGD Solids   | Grab            |
| Iron      | mg/L  | 9.51    | 81             | 80           | 1.2  | Limestone    | Grab            |
| Iron      | mg/L  | 9.52    | 83             | 87           | 4.7  | Fly Ash      | Grab            |
| Iron      | mg/L  | 9.48    | 65Q            | 79           | 19   | QA           | MSD             |
| Lead      | mg/kg | 512     | 101            | 89           | 13   | ESP Outlet   | Nitric Impinger |
| Lead      | mg/kg | 9.55    | 103            | 102          | 0.98 | Fly Ash      | Grab            |
| Lead      | mg/kg | 9.61    | 101            | 89           | 13   | ESP Outlet   | MSD             |
| Lead      | mg/L  | 0.0892  | 115            | 115          | 0    | Limestone    | Grab            |
| Lead      | mg/L  | 0.104   | 105            |              |      | Makeup Water | Grab            |
| Lead      | mg/L  | 0.157   | 85             | 85           | 0    | FGD Solids   | Grab            |
| Magnesium | mg/kg | 7,190   | 92             |              |      | ESP Outlet   | Nitric Impinger |
| Magnesium | mg/kg | 101,000 | 29Q            | 28Q          | 3.5  | FGD Solids   | Grab            |
| Magnesium | mg/kg | 96,200  | 139Q           | 140Q         | 0.72 | FGD Solids   | Grab            |
| Magnesium | mg/kg | 6,820   | 93             | 92           | 1.1  | QA           | MSD             |
| Magnesium | mg/L  | 9.24    | 89             | 89           | 0    | QA           | MSD             |
| Magnesium | mg/L  | 16.9    | 89             | 89           | 0    | Makeup Water | Grab            |
| Magnesium | mg/L  | 16.8    | 88             | 90           | 2.2  | Fly Ash      | Grab            |
| Manganese | mg/kg | 183     | 145Q           | 138Q         | 5    | FGD Solids   | Grab            |
| Manganese | mg/kg | 174     | 133Q           | 137Q         | 3.7  | FGD Solids   | Grab            |
| Manganese | mg/kg | 779     | 85             | 88           | 3.5  | Fly Ash      | Grab            |
| Manganese | mg/kg | 738     | 81             | 81           | 0    | Fly Ash      | Grab            |
| Manganese | mg/kg | 174     | 82             | 75           | 8.9  | Limestone    | Grab            |
| Manganese | mg/L  | 0.953   | 95             | 95           | 0    | ESP Outlet   | Nitric Impinger |
| Manganese | mg/L  | 0.952   | 94             | 94           | 0    | Makeup Water | Grab            |
| Mercury   | mg/kg | 1.1     | 111            | 111          | 0    | Limestone    | Grab            |
| Mercury   | mg/kg | 1.68    | 101            | 99           | 2    | FGD Solids   | Grab            |
| Mercury   | mg/kg | 0.941   | 96             | 105          | 9    | QA           | MSD             |
| Mercury   | mg/kg | 1.49    | 126Q           | 96           | 27Q  | FGD Solids   | Grab            |

Table F-6 (Continued)

| Analyte    | Units | Result  | Spike Recovery | Dup Recovery | RPD  | Stream       | Sample Type                |
|------------|-------|---------|----------------|--------------|------|--------------|----------------------------|
| Mercury    | mg/kg | 1.47    | 100            | 103          | 3    | QA           | MSD                        |
| Mercury    | mg/kg | 1.16    | 85             | 75           | 12   | QA           | MSD                        |
| Mercury    | mg/kg | 1.1     | 109            | 106          | 2.8  | Fly Ash      | Grab                       |
| Mercury    | mg/L  | 0.636   | 72Q            | 71Q          | 1.4  | QA           | MSD                        |
| Mercury    | mg/L  | 0.0835  | 103            | 102          | 0.98 | ESP Outlet   | Nitric Impinger            |
| Mercury    | mg/L  | 0.0019  | 98             | 92           | 6.3  | Makeup Water | Grab                       |
| Mercury    | mg/L  | 0.00194 | 101            | 102          | 0.98 | Makeup Water | Grab                       |
| Mercury    | mg/L  | 0.159   | 86             | 87           | 1.2  | Stack Gas    | KMnO <sub>4</sub> Impinger |
| Mercury    | mg/L  | 0.31    | 98             | 102          | 4    | Stack Gas    | KMnO <sub>4</sub> Impinger |
| Mercury    | mg/L  | 0.0788  | 92             | 91           | 1.1  | ESP Outlet   | Nitric Impinger            |
| Molybdenum | mg/kg | 92.2    | 128Q           | 124          | 3.2  | FGD Solids   | Grab                       |
| Molybdenum | mg/kg | 85.4    | 124            |              |      | FGD Solids   | Grab                       |
| Molybdenum | mg/kg | 88.3    | 122            | 124          | 1.6  | FGD Solids   | Grab                       |
| Molybdenum | mg/kg | 204     | 95             | 88           | 7.6  | Fly Ash      | Grab                       |
| Molybdenum | mg/kg | 183     | 90             | 90           | 0    | Fly Ash      | Grab                       |
| Molybdenum | mg/kg | 61.6    | 82             | 82           | 0    | Limestone    | Grab                       |
| Molybdenum | mg/L  | 0.938   | 94             | 94           | 0    | ESP Outlet   | Nitric Impinger            |
| Molybdenum | mg/L  | 0.944   | 93             | 93           | 0    | Makeup Water | Grab                       |
| Nickel     | mg/kg | 93.6    | 126Q           | 123          | 2.4  | FGD Solids   | Grab                       |
| Nickel     | mg/kg | 88.3    | 118            | 122          | 4.2  | FGD Solids   | Grab                       |
| Nickel     | mg/kg | 564     | 94             | 93           | 1.1  | Fly Ash      | Grab                       |
| Nickel     | mg/kg | 72.4    | 85             | 86           | 1.2  | QA           | MSD                        |
| Nickel     | mg/kg | 490     | 85             | 83           | 2.4  | Fly Ash      | Grab                       |
| Nickel     | mg/kg | 61.7    | 79             | 78           | 1.3  | Limestone    | Grab                       |
| Nickel     | mg/L  | 0.969   | 97             | 96           | 1    | ESP Outlet   | Nitric Impinger            |
| Nickel     | mg/L  | 0.946   | 95             | 95           | 0    | Makeup Water | Grab                       |
| Phosphorus | mg/kg | 695     | 92             | 93           | 1.1  | FGD Solids   | Grab                       |
| Phosphorus | mg/kg | 46,300  | 97             | 96           | 1    | Fly Ash      | Grab                       |
| Phosphorus | mg/kg | 775     | 94             | 89           | 5.5  | Limestone    | Grab                       |
| Phosphorus | mg/kg | 670     | 81             | 79           | 2.5  | Limestone    | Grab                       |
| Phosphorus | mg/L  | 10.4    | 103            | 104          | 0.97 | ESP Outlet   | Nitric Impinger            |
| Phosphorus | mg/L  | 9.51    | 95             | 94           | 1.1  | Makeup Water | Grab                       |

Table F-6 (Continued)

| Analyte   | Units | Result  | Spike Recovery | Dup Recovery | RPD    | Stream       | Sample Type     |
|-----------|-------|---------|----------------|--------------|--------|--------------|-----------------|
| Potassium | mg/kg | 5,450   | 146Q           | 141Q         | 3.5    | FGD Solids   | Grab            |
| Potassium | mg/kg | 5,220   | 140Q           | 141Q         | 0.71   | FGD Solids   | Grab            |
| Potassium | mg/kg |         | 27Q            | 29Q          | 7.1    | FGD Solids   | Grab            |
| Potassium | mg/kg | 50,100  | 85             | 88           | 3.5    | Fly Ash      | Grab            |
| Potassium | mg/kg | 48,800  | 84             | 83           | 1.2    | Fly Ash      | Grab            |
| Potassium | mg/kg | 3,730   | 96             | 96           | 0      | Limestone    | Grab            |
| Potassium | mg/L  | 18.5    | 93             | 92           | 1.1    | ESP Outlet   | Nitric Impinger |
| Potassium | mg/L  | 24.3    | 91             | 92           | 1.1    | Makeup Water | Grab            |
| Selenium  | mg/kg | 52.6    | 82             | 83           | 1.2    | Fly Ash      | Grab            |
| Selenium  | mg/kg | 4.54F,R | 68Q            | 85           | 22Q    | Limestone    | Grab            |
| Selenium  | mg/kg | 6.89    | 108            | 118          | 8.8    | Limestone    | Grab            |
| Selenium  | mg/kg | 19      | 200Qx          | 71Q          | 103Q   | FGD Solids   | Grab            |
| Selenium  | mg/L  | 1.49    | 11Q            |              |        | ESP Outlet   | Nitric Impinger |
| Selenium  | mg/L  | 1.65    | 19Q            |              | Q      | ESP Outlet   | Nitric Impinger |
| Selenium  | mg/L  | 0.914   | 5Q             | 6.1Q         | 2,240Q | ESP Outlet   | Nitric Impinger |
| Selenium  | mg/L  | 0.0397  | 73Q            | 71Q          | 2.8    | Makeup Water | Grab            |
| Silicon   | mg/kg | 1,460   | 244Q           | 228Q         | 6.8    | FGD Solids   | Grab            |
| Silicon   | mg/kg | 1,400   | 227Q           | 228Q         | 0.44   | FGD Solids   | Grab            |
| Silicon   | mg/kg | 392,000 | 88             | 93           | 5.5    | Fly Ash      | Grab            |
| Silicon   | mg/kg | 387,000 | 87             | 88           | 1.1    | Fly Ash      | Grab            |
| Silicon   | mg/kg | 968     | 132Q           | 145Q         | 9.4    | Limestone    | Grab            |
| Silicon   | mg/kg | 747     | 117            | 135Q         | 14     | Limestone    | Grab            |
| Silicon   | mg/L  | 6.7     | 96             | 97           | 1      | ESP Outlet   | Nitric Impinger |
| Silicon   | mg/L  | 8.53    | 104            | 102          | 1.9    | Makeup Water | Grab            |
| Sodium    | mg/kg | 5,780   | 151Q           | 146Q         | 3.4    | FGD Solids   | Grab            |
| Sodium    | mg/kg | 5,510   | 144Q           | 146Q         | 1.4    | FGD Solids   | Grab            |
| Sodium    | mg/kg | 86,800  | 87             | 90           | 3.4    | Fly Ash      | Grab            |
| Sodium    | mg/kg | 86,100  | 87             | 87           | 0      | Fly Ash      | Grab            |
| Sodium    | mg/kg | 3,700   | 98             | 97           | 1      | Limestone    | Grab            |
| Sodium    | mg/L  | 9.9     | 94             | 94           | 0      | ESP Outlet   | Nitric Impinger |
| Sodium    | mg/L  | 61.5    | 66Q            | 72Q          | 8.7    | Makeup Water | Grab            |

Table F-6 (Continued)

| Analyte  | Units     | Result | Spike Recovery | Dup Recovery | RPD | Stream       | Sample Type          |
|----------|-----------|--------|----------------|--------------|-----|--------------|----------------------|
| Sulfate  | µg/filter | 15,200 | 89             | 93           | 4.4 | Stack Gas    | Analytical Spike     |
| Sulfate  | mg/L      | 413    | 96             | 97           | 1   | Makeup Water | Grab                 |
| Sulfate  | mg/L      | 1,730  | 85             | 85           | 0   | Stack Gas    | Carbonate Impinger 1 |
| Sulfate  | mg/L      | 641    | 116            | 107          | 8.1 | QA           | MSD                  |
| Sulfate  | mg/L      | 337    | 114            | 86           | 28Q | QA           | MSD                  |
| Vanadium | mg/kg     | 105    | 137Q           | 133Q         | 3   | FGD Solids   | Grab                 |
| Vanadium | mg/kg     | 100    | 130Q           | 133Q         | 2.3 | FGD Solids   | Grab                 |
| Vanadium | mg/kg     | 676    | 86             | 88           | 2.3 | Fly Ash      | Grab                 |
| Vanadium | mg/kg     | 647    | 83             | 82           | 1.2 | Fly Ash      | Grab                 |
| Vanadium | mg/kg     | 68.9   | 86             | 85           | 1.2 | Limestone    | Grab                 |
| Vanadium | mg/L      | 0.98   | 98             | 98           | 0   | ESP Outlet   | Nitric Impinger      |
| Vanadium | mg/L      | 0.978  | 96             | 96           | 0   | Makeup Water | Grab                 |
| Zinc     | mg/kg     | 101    | 129            | 125          | 3.2 | FGD Solids   | Grab                 |
| Zinc     | mg/kg     | 96.7   | 124            | 125          | 0.8 | FGD Solids   | Grab                 |
| Zinc     | mg/kg     | 753    | 95             | 97           | 2.1 | Fly Ash      | Grab                 |
| Zinc     | mg/kg     | 85.2   | 88             | 84           | 4.6 | QA           | MSD                  |
| Zinc     | mg/kg     | 723    | 92             | 90           | 2.2 | Fly Ash      | Grab                 |
| Zinc     | mg/kg     | 69.2   | 85             | 84           | 1.2 | Limestone    | Grab                 |
| Zinc     | mg/L      | 0.942  | 92             | 92           | 0   | ESP Outlet   | Nitric Impinger      |
| Zinc     | mg/L      | 0.943  | 93             | 93           | 0   | Makeup Water | Grab                 |

x = Indicates inappropriate spike concentration; this value not used in calculations.

**Table F-7**  
**Summary of Analytical Spike Results for Site 20**

| Compound                                                                                                       | No. of Spiked Samples | Mean % Recovery | Mean RPD | No. Below Recov. Limits | No. Above Recov. Limits | DQO* for Recovery |
|----------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|----------|-------------------------|-------------------------|-------------------|
| <b>Probe and Nozzle Rinse + Filter Fraction<br/>(Metals Train, ESP Outlet): Metals<br/>Determined by ICPES</b> |                       |                 |          |                         |                         |                   |
| Aluminum                                                                                                       |                       |                 |          |                         |                         |                   |
| Antimony                                                                                                       | 4                     | 89              | 5        | 0                       | 0                       | 75-125%           |
| Barium                                                                                                         | 4                     | 66              | 5        | 4                       | 0                       | 75-125%           |
| Beryllium                                                                                                      | 4                     | 88              | 1        | 0                       | 0                       | 75-125%           |
| Calcium                                                                                                        | 4                     | 91              | 1        | 0                       | 0                       | 75-125%           |
| Chromium                                                                                                       | 4                     | 90              | 1        | 0                       | 0                       | 75-125%           |
| Cobalt                                                                                                         | 4                     | 91              | 1        | 0                       | 0                       | 75-125%           |
| Copper                                                                                                         | 4                     | 91              | 1        | 0                       | 0                       | 75-125%           |
| Iron                                                                                                           | 4                     | 85              | 1        | 0                       | 0                       | 75-125%           |
| Magnesium                                                                                                      | 4                     | 89              | 0        | 0                       | 0                       | 75-125%           |
| Manganese                                                                                                      | 4                     | 88              | 1        | 0                       | 0                       | 75-125%           |
| Molybdenum                                                                                                     | 4                     | 85              | 1        | 0                       | 0                       | 75-125%           |
| Nickel                                                                                                         | 4                     | 90              | 3        | 0                       | 0                       | 75-125%           |
| Phosphorus                                                                                                     | 2                     | 95              | 1        | 0                       | 0                       | 75-125%           |
| Potassium                                                                                                      | 4                     | 86              | 0        | 0                       | 0                       | 75-125%           |
| Silicon                                                                                                        | 4                     | 242             | 1        | 0                       | 0                       | 75-125%           |
| Sodium                                                                                                         | 4                     | 91              | 1        | 0                       | 0                       | 75-125%           |
| Vanadium                                                                                                       | 4                     | 90              | 1        | 0                       | 0                       | 75-125%           |
| Zinc                                                                                                           | 4                     | 86              | 2        | 0                       | 0                       | 75-125%           |
| <b>Probe and Nozzle Rinse + Filter Fraction<br/>(Metals Train, ESP Outlet): Metals<br/>Determined by GFAA</b>  |                       |                 |          |                         |                         |                   |
| Arsenic                                                                                                        |                       |                 |          |                         |                         |                   |
| Cadmium                                                                                                        | 4                     | 89              | 1        | 0                       | 0                       | 75-125%           |
| Lead                                                                                                           | 4                     | 71              | 3        | 4                       | 0                       | 75-125%           |
| Selenium                                                                                                       | 2                     | 100             | 0        | 0                       | 0                       | 75-125%           |
| <b>Probe and Nozzle Rinse + Filter Fraction<br/>(Metals Train, ESP Outlet): Metals<br/>Determined by GFAA</b>  |                       |                 |          |                         |                         |                   |
| Mercury                                                                                                        |                       |                 |          |                         |                         |                   |
| <b>Solids: Anions</b>                                                                                          |                       |                 |          |                         |                         |                   |
| Fluoride                                                                                                       | 4                     | 99              | 1        | 0                       | 0                       | 80-120%           |

\*DQO = Data quality objective.

**Table F-8**  
**Detailed Analytical Spike Results**

| Analyte   | Spike Recovery | Duplicate Recovery | RPD | Stream     | Sample type               |
|-----------|----------------|--------------------|-----|------------|---------------------------|
| Aluminum  | 89             | 88                 | 1.1 | ESP Outlet | Nitric & Ace PNR & Filter |
| Aluminum  | 83             | 84                 | 1.2 | ESP Outlet | Nitric & Ace PNR & Filter |
| Antimony  | 90             | 92                 | 2.2 | ESP Outlet | Nitric & Ace PNR & Filter |
| Antimony  | 83             | 90                 | 8.1 | ESP Outlet | Nitric & Ace PNR & Filter |
| Arsenic   | 93             | 91                 | 2.2 | ESP Outlet | Nitric & Ace PNR & Filter |
| Barium    | 73Q            | 70Q                | 4.2 | ESP Outlet | Nitric & Ace PNR & Filter |
| Barium    | 59Q            | 63Q                | 6.6 | ESP Outlet | Nitric & Ace PNR & Filter |
| Beryllium | 92             | 92                 | 0   | ESP Outlet | Nitric & Ace PNR & Filter |
| Beryllium | 84             | 85                 | 1.2 | ESP Outlet | Nitric & Ace PNR & Filter |
| Cadmium   | 88             | 90                 | 2.2 | ESP Outlet | Nitric & Ace PNR & Filter |
| Cadmium   |                |                    |     |            |                           |
| Calcium   | 95             | 95                 | 0   | ESP Outlet | Nitric & Ace PNR & Filter |
| Calcium   | 87             | 88                 | 1.1 | ESP Outlet | Nitric & Ace PNR & Filter |
| Chromium  | 93             | 94                 | 1.1 | ESP Outlet | Nitric & Ace PNR & Filter |
| Chromium  | 86             | 87                 | 1.2 | ESP Outlet | Nitric & Ace PNR & Filter |
| Cobalt    | 95             | 94                 | 1.1 | ESP Outlet | Nitric & Ace PNR & Filter |
| Cobalt    | 87             | 87                 | 0   | ESP Outlet | Nitric & Ace PNR & Filter |
| Copper    | 93             | 93                 | 0   | ESP Outlet | Nitric & Ace PNR & Filter |
| Copper    | 88             | 89                 | 1.1 | ESP Outlet | Nitric & Ace PNR & Filter |
| Fluoride  | 85             | 91                 | 6.8 | Stack Gas  | Analytical Spike          |
| Iron      | 89             | 89                 | 0   | ESP Outlet | Nitric & Ace PNR & Filter |
| Iron      | 81             | 82                 | 1.2 | ESP Outlet | Nitric & Ace PNR & Filter |
| Lead      | 69Q            | 69Q                | 0   | ESP Outlet | Nitric & Ace PNR & Filter |
| Lead      | 70Q            | 74Q                | 5.6 | ESP Outlet | Nitric & Ace PNR & Filter |
| Magnesium | 92             | 92                 | 0   | ESP Outlet | Nitric & Ace PNR & Filter |
| Magnesium | 86             | 86                 | 0   | ESP Outlet | Nitric & Ace PNR & Filter |

**Table F-8 (Continued)**

| Analyte    | Spike Recovery | Duplicate Recovery | RPD  | Stream     | Sample type               |
|------------|----------------|--------------------|------|------------|---------------------------|
| Manganese  | 91             | 91                 | 0    | ESP Outlet | Nitric & Ace PNR & Filter |
| Manganese  | 84             | 85                 | 1.2  | ESP Outlet | Nitric & Ace PNR & Filter |
| Molybdenum | 86             | 86                 | 0    | ESP Outlet | Nitric & Ace PNR & Filter |
| Molybdenum | 85             | 83                 | 2.4  | ESP Outlet | Nitric & Ace PNR & Filter |
| Nickel     | 93             | 90                 | 3.3  | ESP Outlet | Nitric & Ace PNR & Filter |
| Nickel     | 86             | 89                 | 3.4  | ESP Outlet | Nitric & Ace PNR & Filter |
| Phosphorus | 94             | 95                 | 1.1  | Stack Gas  | Nitric & Ace PNR & Filter |
| Potassium  | 88             | 88                 | 0    | ESP Outlet | Nitric & Ace PNR & Filter |
| Potassium  | 84             | 84                 | 0    | ESP Outlet | Nitric & Ace PNR & Filter |
| Selenium   | 100            | 100                | 0    | ESP Outlet | Nitric & Ace PNR & Filter |
| Silicon    | 161Q           | 162Q               | 1.62 | ESP Outlet | Nitric & Ace PNR & Filter |
| Silicon    | 323Q           | 323Q               | 0    | ESP Outlet | Nitric & Ace PNR & Filter |
| Silver     | 92             | 90                 | 2.2  | ESP Outlet | Nitric & Ace PNR & Filter |
| Silver     | 80             | 81                 | 1.2  | ESP Outlet | Nitric & Ace PNR & Filter |
| Sodium     | 93             | 93                 | 0    | ESP Outlet | Nitric & Ace PNR & Filter |
| Sodium     | 89             | 90                 | 1.1  | ESP Outlet | Nitric & Ace PNR & Filter |
| Vanadium   | 93             | 93                 | 0    | ESP Outlet | Nitric & Ace PNR & Filter |
| Vanadium   | 87             | 88                 | 1.1  | ESP Outlet | Nitric & Ace PNR & Filter |
| Zinc       | 90             | 88                 | 2.2  | ESP Outlet | Nitric & Ace PNR & Filter |
| Zinc       | 81             | 83                 | 2.4  | ESP Outlet | Nitric & Ace PNR & Filter |
| Fluoride   | 112            | 111                | 0.9  | Coal       | Grab                      |
| Fluoride   | 86             | 87                 | 1.2  | Fly Ash    | Grab                      |
| Mercury    | 120            | 121                | 0.83 | ESP Outlet | Nitric & Ace PNR & Filter |

Table F-9  
Coal QA/QC

| Lab  | Stream  | Analyte     | Method | Result (dry) | Units | Det. Limit | SARM Value | Certified % | Flag |
|------|---------|-------------|--------|--------------|-------|------------|------------|-------------|------|
| CT&E | SARM 20 | Arsenic     | GFAA   | 2            | µg/g  |            | 4.70       | 43          |      |
| CT&E | SARM 20 | Barium      | ICPES  | 360          | µg/g  |            | 372        | 97          |      |
| CT&E | SARM 20 | Cadmium     | GFAA   |              |       |            |            |             |      |
| CT&E | SARM 20 | Chromium    | ICPES  | 66           | µg/g  |            | 67         | 98          |      |
| CT&E | SARM 20 | Cobalt      | ICPES  | 16           | µg/g  |            | 8.3        | 193         |      |
| CT&E | SARM 20 | Lead        | ICPES  | 22           | µg/g  |            | 26         | 85          |      |
| CT&E | SARM 20 | Manganese   | ICPES  | 81           | µg/g  |            | 80         | 101         |      |
| CT&E | SARM 20 | Mercury     | DGAA   | 0.29         | µg/g  |            | 0.25       | 116         |      |
| CT&E | SARM 20 | Molybdenum  |        |              |       |            |            |             |      |
| CT&E | SARM 20 | Nickel      | ICPES  | 24           | µg/g  |            | 25         | 96          |      |
| CT&E | SARM 20 | Phosphorous | ICPES  | 670          | µg/g  |            | 612        | 110         |      |
| CT&E | SARM 20 | Selenium    | GFAA   | 1            | µg/g  | 1          | 0.8        | 125         |      |
| CT&E | SARM 20 | Vanadium    | ICPES  | 46           | µg/g  |            | 47         | 98          |      |

< Flag indicates value shown is less than the detection limit.

RPD = Relative percent difference.

SARM 20 = South African Reference Material distributed by the South African Bureau of Standards.

NIST = National Institute of Standards and Testing reference material.

**Table F-10**  
**Detailed Blank Results for Metals Measured by ICP-MS, Site 20**

| <b>Description</b>        | <b>Analyte</b> | <b>Conc.<br/>µg/L</b> | <b>Detection<br/>Limit</b> |
|---------------------------|----------------|-----------------------|----------------------------|
| Blank Microwave Digestion | Arsenic        | 5.41                  | 0.026                      |
| Blank Microwave Digestion | Beryllium      | 4.84                  | 0.009                      |
| Blank Microwave Digestion | Cadmium        | 0.07@                 | 0.023                      |
| Blank Microwave Digestion | Chromium       | 0.52                  | 0.033                      |
| Blank Microwave Digestion | Lead           | 0.25                  | 0.056                      |
| Blank Microwave Digestion | Mercury        | 0.67                  | 0.064                      |
| Blank Microwave Digestion | Nickel         | 0.33                  | 0.039                      |
| Blank Microwave Digestion | Selenium       | ND                    | 0.762                      |
| Blank 3020 Digestions     | Arsenic        | 0.04@                 | 0.026                      |
| Blank 3020 Digestions     | Beryllium      | 0.05                  | 0.009                      |
| Blank 3020 Digestions     | Cadmium        | 0.12                  | 0.023                      |
| Blank 3020 Digestions     | Chromium       | 2.39                  | 0.033                      |
| Blank 3020 Digestions     | Lead           | 3.95                  | 0.056                      |
| Blank 3020 Digestions     | Mercury        | 0.78                  | 0.064                      |
| Blank 3020 Digestions     | Nickel         | 1.31                  | 0.039                      |
| Blank 3020 Digestions     | Selenium       | ND                    | 0.762                      |

ND = Analyte not detected at stated detection limit.

**Table F-11**  
**Detailed Spike Results for Metals Measured by ICP-MS for Site 20**

| Description             | Conc.<br>µg/L | Duplicate<br>Conc.<br>µg/L | Detection<br>Limit | Analyte   | Spiked<br>Conc.<br>µg/L | Percent<br>Recovery | Duplicate<br>Percent<br>Recovery | Relative<br>Percent<br>Difference |
|-------------------------|---------------|----------------------------|--------------------|-----------|-------------------------|---------------------|----------------------------------|-----------------------------------|
| LCS 3020 Digestions     | 43.28         | 44.02                      | 0.026              | Arsenic   | 50                      | 86.56               | 88.04                            | 2                                 |
| LCS Microwave Digestion | 597.33        | 640.4                      | 0.026              | Arsenic   | 300                     | 199.11              | 213.47                           | 7                                 |
| LCS 3020 Digestions     | 30.96         | 31.11                      | 0.009              | Beryllium | 0 <sup>a</sup>          |                     |                                  |                                   |
| LCS Microwave Digestion | 446.31        | 449.04                     | 0.009              | Beryllium | 500                     | 89.26               | 89.81                            | 1                                 |
| LCS 3020 Digestions     | 35.27         | 36.3                       | 0.023              | Cadmium   | 50                      | 70.54               | 72.6                             | 3                                 |
| LCS Microwave Digestion | 15.08         | 17.52                      | 0.023              | Cadmium   | 20                      | 75.40               | 87.6                             | 15                                |
| LCS 3020 Digestions     | 30.74         | 30.53                      | 0.033              | Chromium  | 50                      | 61.48               | 61.06                            | 1                                 |
| LCS Microwave Digestion | 555.73        | 530.31                     | 0.033              | Chromium  | 500                     | 111.15              | 106.06                           | 5                                 |
| LCS 3020 Digestions     | 83.91         | 82.91                      | 0.056              | Lead      | 90                      | 93.23               | 92.12                            | 1                                 |
| LCS Microwave Digestion | 423.21        | 438.54                     | 0.056              | Lead      | 500                     | 84.64               | 97.71                            | 14                                |
| LCS 3020 Digestions     | 1.11          | 0.42                       | 0.064              | Mercury   | 0 <sup>a</sup>          |                     |                                  |                                   |
| LCS Microwave Digestion | 29.96         | 17.63                      | 0.064              | Mercury   | 0 <sup>a</sup>          |                     |                                  |                                   |
| LCS 3020 Digestions     | 65.38         | 65.47                      | 0.039              | Nickel    | 90                      | 72.64               | 72.74                            | 0                                 |
| LCS Microwave Digestion | 537.73        | 513.73                     | 0.039              | Nickel    | 500                     | 107.55              | 102.78                           | 5                                 |
| LCS 3020 Digestions     | 30.49         | 30.14                      | 0.762              | Selenium  | 50                      | 60.98               | 60.28                            | 1                                 |
| LCS Microwave Digestion | 115.70        | 114.76                     | 0.762              | Selenium  | 50                      | 231.40              | 229.52                           | 1                                 |

<sup>a</sup>3020 digestions are performed for analytes that are determined by graphite furnace atomic absorption spectrophotometry. Beryllium and mercury are not analyzed by this method.

<sup>b</sup>Microwave digestions are performed for analytes that are determined by inductively coupled plasma emission spectroscopy. Mercury is not analyzed by this method.

ICPES-MS = Inductively coupled plasma emission spectroscopy coupled with mass spectrometry.

**Table F-12**  
**Detailed Reference Sample Results for Metals Measured by ICP-MS for Site 20**

| Description | Conc.<br>µg/L | Duplicate<br>Conc.<br>µg/L | Detection<br>Limit | Analyte   | NBS 1633a<br>Conc.<br>µg/g | Percent<br>Recovery | Duplicate<br>Percent<br>Recovery | Relative<br>Percent<br>Difference |
|-------------|---------------|----------------------------|--------------------|-----------|----------------------------|---------------------|----------------------------------|-----------------------------------|
| NBS 1633a   | 78.20         | 76.13                      | 0.026              | Arsenic   | 145                        | 53.93               | 51.47                            | 5                                 |
| NBS 1633a   | 6.22          | 7.23                       | 0.009              | Beryllium | 12                         | 51.83               | 59.07                            | 13                                |
| NBS 1633a   | 1.46          | 1.51                       | 0.023              | Cadmium   | 1                          | 146.00              | 148.04                           | 1                                 |
| NBS 1633a   | 73.95         | 76.49                      | 0.033              | Chromium  | 196                        | 37.73               | 38.26                            | 1                                 |
| NBS 1633a   | 77.50         | 74.49                      | 0.056              | Lead      | 72.4                       | 107.04              | 100.87                           | 6                                 |
| NBS 1633a   | 4.64          | 5.47                       | 0.064              | Mercury   | 0.16                       | 2843.14             | 3418.75                          | 18                                |
| NBS 1633a   | 53.21         | 49.9                       | 0.039              | Nickel    | 127                        | 41.08               | 39.29                            | 4                                 |
| NBS 1633a   | 11.05         | 14.28                      | 0.762              | Selenium  | 10.3                       | 107.28              | 135.92                           | 24                                |

For fly ash samples, 0.100 grams were digested; for duplicate samples, 0.1020 grams were digested.

ICPES-MS = Inductively coupled plasma emission spectroscopy coupled with mass spectrometry.