

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

OGDEN PROJECTS, INC.

A-89-08
II-I-216

WATERGATE TOWER
SUITE 400
1900 POWELL STREET
EMERYVILLE CALIFORNIA 94608
415-420-1766

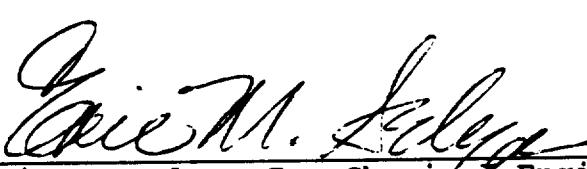
AN OGDEN COMPANY

Environmental Engineering Department

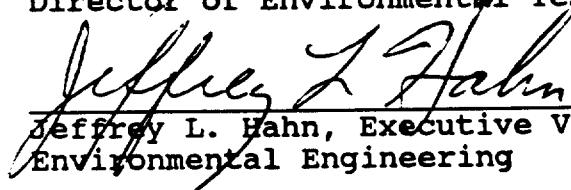
ENVIRONMENTAL TEST REPORT

PREPARED FOR: Ogden Martin Systems of Babylon, Inc.
128 Gleam Street
West Babylon, NY 11704

REGARDING: Babylon Resource Recovery Facility
Units 1 and 2


REGULATORY AGENCY: New York State Department of Environmental
Conservation


PURPOSE: Determination of Compliance with Permitted
Emission Limitations


TEST DATES: January 31 through February 9, 1989

ASSOCIATED REPORTS: OPI Report No. 162

PREPARED BY:

Eric M. Selya, Jr. Chemical Engineer

Henry P. Von Dem Fange
Director of Environmental Testing

Jeffrey L. Hahn, Executive Vice President
Environmental Engineering

March 17, 1989
OPI Report No. 193

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
A. INTRODUCTION		1
B. SUMMARY OF RESULTS		
1. Schedule of Activities		3
2. Summary of Emission Test Results		5
3. Toxic Equivalents by NYS DOH and EPA Scenarios		6
4. Summary of PAH and PCB Emissions		10
5. Additional Metals Emissions Presented for Health Risk Assessment: Sb, Co, Cu, Mn, Se, V, Zn		12
C. TOTAL SUSPENDED PARTICULATE		
1. Unit 1 Results: TSP		13
2. Unit 2 Results: TSP		18
3. Unit 1 Results (Reduced Load): TSP		23
D. CONTINUOUS EMISSION MONITORING		
1. Unit 1 Results: SO ₂ , NO _x , and CO		28
2. Unit 2 Results: SO ₂ , NO _x , and CO		40
3. Unit 1 Results (Reduced Load): SO ₂ , NO _x , and CO		52
E. HYDROGEN CHLORIDE		
1. Unit 1 Results: HCl		64
2. Unit 2 Results: HCl		73
3. Unit 1 Results (Reduced Load): HCl		82
F. METALS		
1. Metals per Source Test Plan: As, Cd, Cr, Pb, Hg, Ni		92
2. Metals per Source Test Plan: Be		97
3. Additional Metals for Health Risk Assessment: Sb, Co, Cu, Mn, Se, V, Zn		102
G. DIOXINS AND FURANS		107
H. PAHs AND PCBs		
1. Summary of Emissions: PAH		116
2. Summary of Emissions: PCB		120
I. OPERATIONAL DATA DURING EMISSION TESTING		124

Continued...

TABLE OF CONTENTS (Continued)

<u>Section</u>	<u>Page</u>
J. METHODOLOGY	
1. References	128
2. Calculations	129
3. Nomenclature	137
4. Equipment	140
5. Variations from the Source Test Plan	141
K. QUALITY ASSURANCE/QUALITY CONTROL	142
APPENDIX A: (Bound Separately)	
Field Data	
Laboratory Reports	
Quality Assurance/Quality Control	
APPENDIX B: (Bound Separately)	
Confidential Process Data	
Boiler Logs	
Refuse Feed Data	
Process Data (Data Logger/Strip Chart Recordings)	
APPENDIX C: (Bound Separately)	
Additional PCDD, PCDF, PAH, and PCB Analytical Data from Triangle Laboratories, Inc. (Available only upon request.)	

A. INTRODUCTION

Ogden Projects, Inc. (OPI) performed a series of emission tests on Units 1 and 2 at the Babylon Resource Recovery Facility from January 31 through February 9, 1989. The test program was required by Air Permit to Construct Incinerators A472000381400003R and A472000381400004R. Located in West Babylon, NY this waste-to-energy facility is owned and operated by Ogden Martin Systems of Babylon, Inc (OMSB).

Two municipal solid waste (MSW)-fired units of Martin GmbH Stoker Combustion System design, each with a capacity of 375 tons-per-day (TPD), were tested for various gaseous and solid air pollutant emissions at the air pollution control system outlet of each unit. Testing for hydrogen chloride and sulfur dioxide was also performed at the inlet to the air pollution control system for each unit to determine control efficiency.

As indicated in the Source Test Plan (OPI Report No. 162), the test program was conducted for the following parameters:

Parameter	Method	Unit(s)
Particulate, HCl	U.S. EPA Method 5	1 & 2
HC1	U.S. EPA Modified Method 6	1 & 2
SO ₂	U.S. EPA Method 6C	1 & 2
NO _x	U.S. EPA Method 7E	1 & 2
CO	U.S. EPA Method 10	1 & 2
As, Cd, Cr, Pb, Hg, Ni	U.S. EPA Method 12/101A	2
Dioxins/Furans	SW-846 0010	1
PAHs, PCBs	SW-846 0010	1
Be	U.S. EPA Method 104	2

Variations from the Source Test Plan are reported in Section J(5).

Emission tests were conducted by Messrs. Henry P. Von Dem Fange, Eric M. Selya, and Christian Colline, all of OPI. Mr. Henry Von Dem Fange supervised the test program. Messrs. Sideris Caramintzos, Gary Zimmerman, and Dick Forgea, of New York State Department of Environmental Conservation (NYSDEC), along with Messrs. John Donovan, Jim Meyer, and Ms. Estell Kahn of Suffolk County Department of Health, observed the testing.

Analyses for metals was conducted by Brown and Caldwell Laboratories, a California certified hazardous waste laboratory.

Analyses for dioxins, furans, PAHs, and PCBs were conducted by Triangle Laboratories, Inc. of Research Triangle Park, NC.

Analyses for TSP and HCl were performed by OPI in its Emeryville, CA laboratory.

B. SUMMARY OF RESULTS

B. 1. Schedule of Activities

Date	Time	Unit	Location*		Method	Run	Parameter
			I=Inlet	O=Outlet			
01/31/89	1348-1603	2	O	U.S. EPA 12/101A		2**	As, Cd, Cr, Pb, Hg, Ni, (Sb, Co, Cu, Mn, Se, V, Zn)***
01/31/89	1610-1824	2	O	U.S. EPA 12/101A		3	As, Cd, Cr, Pb, Hg, Ni, (Sb, Co, Cu, Mn, Se, V, Zn)***
02/01/89	0900-1212	2	O	U.S. EPA 104		1	Be
02/01/89	1013-1223	2	O	U.S. EPA 12/101A		4	As, Cd, Cr, Pb, Hg, Ni, (Sb, Co, Cu, Mn, Se, V, Zn)***
02/01/89	1424-1735	2	O	U.S. EPA 104		2	Be
02/02/89	0830-1229	1	O	SW-846 0010		1	Dioxin, Furan, PAH, PCB
02/02/89	0913-1250	2	O	U.S. EPA 104		3	Be
02/02/89	1618-1923	1	O	SW-846 0010		2	Dioxin, Furan, PAH, PCB
02/03/89	0856-1207	1	O	SW-846 0010		3	Dioxin, Furan, PAH, PCB
02/07/89	1345-1445	1	O	U.S. EPA 6C, 7E, 3A, 10	1		NO _x , SO ₂ , CO ₂ , CO
02/07/89	1345-1445	1	I	U.S. EPA 6C, 3A		1	SO ₂ , CO ₂
02/07/89	1345-1450	1	I	U.S. EPA Modified 6		1	HCl
02/07/89	1349-1455	1	O	U.S. EPA 5		1	Particulate, HCl
02/07/89	1540-1640	1	O	U.S. EPA 6C, 7E, 3A, 10	2		NO _x , SO ₂ , CO ₂ , CO
02/07/89	1540-1640	1	I	U.S. EPA 6C, 3A		2	SO ₂ , CO ₂
02/07/89	1540-1659	1	I	U.S. EPA Modified 6		2	HCl
02/07/89	1542-1654	1	O	U.S. EPA 5		2	Particulate, HCl

Continued...

*Inlet refers to exhaust gas sampled after exiting the economizer outlet and before entering any air pollution control devices. Outlet refers to exhaust gas sampled after exiting the baghouse and is commonly referred to as "main stack."

**U.S. EPA Method 12/101A Run 1 was discarded because it did not pass the leak rate check at the end of the test.

***Metals listed in parentheses are required for Health Risk Assessment.

B. 1. Schedule of Activities (Continued)

Date	Time	Unit	Location*	Method	Run**		Parameter
					O=Outlet	I=Inlet	
02/08/89	0845-0945	1	O	U.S. EPA 6C, 7E, 3A, 10	3		NO _x , SO ₂ , CO ₂ , CO
02/08/89	0845-0945	1	I	U.S. EPA 6C, 3A		3	SO ₂ , CO ₂
02/08/89	0845-0953	1	O	U.S. EPA 5		3	Particulate, HCl
02/08/89	0845-0955	1	I	U.S. EPA Modified 6		3	HCl
02/08/89	1149-1254	2	O	U.S. EPA 5		1	Particulate, HCl
02/08/89	1150-1250	2	O	U.S. EPA 6C, 7E, 3A, 10	1		NO _x , SO ₂ , CO ₂ , CO
02/08/89	1150-1250	2	I	U.S. EPA 6C, 3A		1	SO ₂ , CO ₂
02/08/89	1151-1250	2	I	U.S. EPA Modified 6		1	HCl
02/08/89	1340-1440	2	O	U.S. EPA 6C, 7E, 3A, 10	2		NO _x , SO ₂ , CO ₂ , CO
02/08/89	1340-1440	2	I	U.S. EPA 6C, 3A		2	SO ₂ , CO ₂
02/08/89	1340-1450	2	I	U.S. EPA Modified 6		2	HCl
02/08/89	1341-1445	2	O	U.S. EPA 5		2	Particulate, HCl
02/08/89	1530-1630	2	O	U.S. EPA 6C, 7E, 3A, 10	3		NO _x , SO ₂ , CO ₂ , CO
02/08/89	1530-1630	2	I	U.S. EPA 6C, 3A		3	SO ₂ , CO ₂
02/08/89	1530-1635	2	O	U.S. EPA 5		3	Particulate, HCl
02/08/89	1530-1635	2	I	U.S. EPA Modified 6		3	HCl
02/09/89	0930-1030	1	O	U.S. EPA 6C, 7E, 3A, 10	1R		NO _x , SO ₂ , CO ₂ , CO
02/09/89	0930-1030	1	I	U.S. EPA 6C, 3A		1R	SO ₂ , CO ₂
02/09/89	0930-1036	1	O	U.S. EPA 5		1R	Particulate, HCl
02/09/89	0935-1035	1	I	U.S. EPA Modified 6		1R	HCl
02/09/89	1140-1245	1	I	U.S. EPA Modified 6		2R	HCl
02/09/89	1144-1249	1	O	U.S. EPA 5		2R	Particulate, HCl
02/09/89	1200-1300	1	O	U.S. EPA 6C, 7E, 3A, 10	2R		NO _x , SO ₂ , CO ₂ , CO
02/09/89	1200-1300	1	I	U.S. EPA 6C, 3A		2R	SO ₂ , CO ₂
02/09/89	1401-1503	1	I	U.S. EPA Modified 6		3R	HCl
02/09/89	1403-1508	1	O	U.S. EPA 5		3R	Particulate, HCl
02/09/89	1405-1505	1	O	U.S. EPA 6C, 7E, 3A, 10	3R		NO _x , SO ₂ , CO ₂ , CO
02/09/89	1405-1505	1	I	U.S. EPA 6C, 3A		3R	SO ₂ , CO ₂

*See footnote, p. 3.

**"R" after run number indicates testing done at 70% of full load.

B. 2. Summary of Emission Test Results

Pollutant	Emission Concentration @ 12% CO ₂		Mass Emission Rates		
	ppm _{dv}	μg/Nm ³	lbs/yr	lbs/hr	g/s
Unit 1 (Full Load)					
TSP (gr/dscf)	0.0017		3.8E+03	0.43	5.4E-02
CO	15	---	1.7E+04	1.9	0.24
SO ₂	36	---	9.1E+04	10.4	1.3
NO _x	331	---	6.0E+05	68.4	8.6
HCl	20	---	3.1E+04	3.5	0.44
lbs NO _x per ton MSW: 4.24					
CO/CO ₂ Ratio: 99.987					
SO ₂ Removal Efficiency: 76%					
HCl Removal Efficiency: 97%					
Unit 1 (Reduced Load)					
TSP (gr/dscf)	0.0029		4.4E+03	0.50	---
CO	9	---	6.1E+03	0.7	---
SO ₂	16	---	2.6E+04	3.0	---
NO _x	281	---	3.4E+05	38.5	---
HCl	24	---	2.4E+04	2.7	---
lbs NO _x per ton MSW: 3.59					
CO/CO ₂ Ratio: 99.993					
SO ₂ Removal Efficiency: 94%					
HCl Removal Efficiency: 97%					
Unit 2 (Full Load)					
TSP (gr/dscf)	0.0012		3.0E+03	0.34	4.3E-02
CO	13	---	1.6E+04	1.8	1.2E-02
SO ₂	21	---	5.7E+04	6.5	0.82
NO _x	287	---	5.6E+05	64.3	8.1
HCl	48	---	8.0E+04	9.1	1.1
lbs NO _x per ton MSW: 3.95					
CO/CO ₂ Ratio: 99.989					
SO ₂ Removal Efficiency: 85%					
HCl Removal Efficiency: 95%					
Arsenic (As)	----	<1.5	<1.4E-00	<1.6E-04	<2.0E-05
Beryllium (Be)	---	<0.87	<8.0E-01	<1.0E-04	<1.3E-05
Cadmium (Cd)	---	<0.75	<7.0E-01	<8.0E-05	<1.0E-05
Chromium (Cr)	---	<1.5	<1.4E-00	<1.6E-04	<2.0E-05
Lead (Pb)	----	1.5	1.5E-00	1.7E-04	2.1E-05
Mercury (Hg)	---	470	4.5E+02	5.1E-02	6.4E-03
Nickel (Ni)	---	<3.7	<3.5E-00	<4.0E-04	<5.0E-05

Babylon Resource Recovery Facility, Unit 1

*Average Toxic Equivalent Emissions By
NYS DOH (EADON ET AL), (ng/Nm³ @ 12 % CO₂)

COMPOUND	Multiplying factor	*Average	*Toxic Equivalent
2378 TCDD	1.00	0.000	0.000
Other TCDD	0.01	0.617	0.006
12378 PCDD	1.00	0.063	0.063
Other PCDD	0.01	1.614	0.016
123478 HxCDD	0.03	0.022	0.001
123678 HxCDD	0.03	0.287	0.009
123789 HxCDD	0.03	0.309	0.009
Other HxCDD	0.0003	2.876	0.001
1234678 HpCDD	0.001	2.133	0.002
Other HpCDD	0.00001	3.226	0.000
OCDD	0.00	1.349	0.000
TOTAL PCDD			0.107
2378 TCDF	0.33	0.832	0.275
Other TCDF	0.003	2.951	0.009
12378 PCDF	0.33	0.087	0.029
23478 PCDF	0.33	0.241	0.080
Other PCDF	0.003	2.705	0.008
123478 HxCDF	0.01	0.275	0.003
123678 HxCDF	0.01	0.241	0.002
234678 HxCDF	0.01	0.404	0.004
123789 HxCDF	0.01	0.000	0.000
Other HxCDF	0.0001	1.224	0.000
1234678 HpCDF	0.001	1.062	0.001
1234789 HpCDF	0.001	0.047	0.000
Other HpCDF	0.00001	0.601	0.000
OCDF	0.00	0.207	0.000
TOTAL PCDF			0.410
Total Toxic Equivalent (2,3,7,8-TCDD Equivalents)			0.517

* Minimum detection limits of non-detectable congeners are considered as zeroes in calculating averages and toxic equivalencies.

Babylon Resource Recovery Facility, Unit 1

Average Toxic Equivalent Emissions By
NYS DOH (EADON ET AL), (ng/Nm³ @ 12 % CO₂)

COMPOUND	Multiplying factor	Average	Toxic Equivalent
2378 TCDD	1.00	<0.027	<0.027
Other TCDD	0.01	0.590	0.006
12378 PCDD	1.00	<0.072	<0.072
Other PCDD	0.01	1.605	0.016
123478 HxCDD	0.03	<0.059	<0.002
123678 HxCDD	0.03	0.287	0.009
123789 HxCDD	0.03	0.309	0.009
Other HxCDD	0.0003	2.839	0.001
1234678 HpCDD	0.001	2.133	0.002
Other HpCDD	0.00001	3.226	0.000
OCDD	0.00	<2.123	0.000
TOTAL PCDD			<0.144
2378 TCDF	0.33	0.832	0.275
Other TCDF	0.003	2.951	0.009
12378 PCDF	0.33	<0.159	<0.053
23478 PCDF	0.33	<0.315	<0.104
Other PCDF	0.003	2.558	0.008
123478 HxCDF	0.01	<0.521	<0.005
123678 HxCDF	0.01	0.241	0.002
234678 HxCDF	0.01	0.404	0.004
123789 HxCDF	0.01	<0.034	0.000
Other HxCDF	0.0001	0.944	0.000
1234678 HpCDF	0.001	1.062	0.001
1234789 HpCDF	0.001	<0.140	0.000
Other HpCDF	0.00001	0.507	0.000
OCDF	0.00	<0.505	0.000
TOTAL PCDF			<0.461
Total Toxic Equivalent (2,3,7,8-TCDD Equivalents)			<0.605

In calculating averages and toxic equivalencies, minimum detection limits of non-detectable congeners are used.

Babylon Resource Recovery Facility, Unit 1

*Average Toxic Equivalent Emissions By
EPA Scenario (ng/Nm3 at 12 % CO2)

COMPOUND	Multiplying factor	*Average	*Toxic equivalent
2378 TCDD	1.00000	0.000	0.000
Other TCDD	0.01000	0.617	0.006
12378 PCDD	0.50000	0.063	0.031
Other PCDD	0.00500	1.614	0.008
123478 HxCDD	0.04000	0.022	0.001
123678 HxCDD	0.04000	0.287	0.011
123789 HxCDD	0.04000	0.309	0.012
Other HxCDD	0.00040	2.876	0.001
1234678 HpCDD	0.00100	2.133	0.002
Other HpCDD	0.00001	3.226	0.000
OCDD	0.00000	1.349	0.000
TOTAL PCDD		12.496	0.074
2378 TCDF	0.10000	0.832	0.083
Other TCDF	0.00100	2.951	0.003
12378 PCDF	0.10000	0.087	0.009
23478 PCDF	0.10000	0.241	0.024
Other PCDF	0.00100	2.705	0.003
123478 HxCDF	0.01000	0.275	0.003
123678 HxCDF	0.01000	0.241	0.002
234678 HxCDF	0.01000	0.404	0.004
123789 HxCDF	0.01000	0.000	0.000
Other HxCDF	0.00010	1.224	0.000
1234678 HpCDF	0.00100	1.062	0.001
1234789 HpCDF	0.00100	0.047	0.000
Other HpCDF	0.00100	0.601	0.001
OCDF	0.00000	0.207	0.000
TOTAL PCDF			0.133
Total Toxic Equivalent (2,3,7,8-TCDD Equivalents)			0.206

* Minimum detection limits of non-detectable congeners are considered as zeroes in calculating averages and toxic equivalencies.

Babylon Resource Recovery Facility, Unit 1

Average Toxic Equivalent Emissions By
EPA Scenario (ng/Nm³ at 12 % CO₂)

COMPOUND	Multiplying factor	Average	Toxic equivalent
2378 TCDD	1.00000	<0.027	<0.027
Other TCDD	0.01000	0.590	0.006
12378 PCDD	0.50000	<0.072	<0.036
Other PCDD	0.00500	1.605	0.008
123478 HxCDD	0.04000	<0.059	<0.002
123678 HxCDD	0.04000	0.287	0.011
123789 HxCDD	0.04000	0.309	0.012
Other HxCDD	0.00040	2.839	0.001
1234678 HpCDD	0.00100	2.133	0.002
Other HpCDD	0.00001	3.226	0.000
OCDD	0.00000	<2.123	0.000
TOTAL PCDD		13.269	<0.106
2378 TCDF	0.10000	0.832	0.083
Other TCDF	0.00100	2.951	0.003
12378 PCDF	0.10000	<0.159	<0.016
23478 PCDF	0.10000	<0.315	<0.032
Other PCDF	0.00100	2.558	0.003
123478 HxCDF	0.01000	<0.521	<0.005
123678 HxCDF	0.01000	0.241	0.002
234678 HxCDF	0.01000	0.404	0.004
123789 HxCDF	0.01000	<0.034	0.000
Other HxCDF	0.00010	0.944	0.000
1234678 HpCDF	0.00100	1.062	0.001
1234789 HpCDF	0.00100	<0.140	0.000
Other HpCDF	0.00100	0.507	0.001
OCDF	0.00000	<0.505	0.000
TOTAL PCDF			<0.150
Total Toxic Equivalent (2,3,7,8-TCDD Equivalents)			<0.256

In calculating averages and toxic equivalencies, minimum detection limits of non-detectable congeners are used.

B. 4. Summary of PAH and PCB Emissions

PAH	Average Emissions (Unit 1, Runs 1-3)		
	$\mu\text{g}/\text{Nm}^3$ @ 12% CO_2	lbs/hr	g/s
Naphthalene	<1.17E-00	<1.19E-04	<1.50E-05
2-Methylnaphthalene	<2.60E-01	<2.67E-05	<3.36E-06
2-Chloronaphthalene	<2.46E-01	<2.52E-05	<3.18E-06
Acenaphthylene	<1.69E-01	<1.80E-05	<2.19E-06
Acenaphthene	<2.50E-01	<2.57E-05	<3.23E-06
Fluorene	<2.58E-01	<2.65E-05	<3.35E-06
Phenanthrene	<1.99E-01	<2.05E-05	<2.58E-06
Anthracene	<2.27E-01	<2.33E-05	<2.93E-06
Fluoranthene	<2.28E-01	<2.34E-05	<2.95E-06
Pyrene	<2.39E-01	<2.46E-05	<3.10E-06
Benzo (a) anthracene	<3.14E-01	<3.24E-05	<4.08E-06
Chrysene	<2.74E-01	<2.82E-05	<3.55E-06
Benzo (b) fluoranthene	<3.89E-01	<4.00E-05	<5.03E-06
Benzo (k) fluoranthene	<3.21E-01	<3.29E-05	<4.15E-06
Benzo (a) pyrene	<4.42E-01	<4.54E-05	<5.71E-06
Indeno (1,2,3-CD) pyrene	<8.57E-01	<8.77E-05	<1.11E-05
Dibenz (a,h) anthracene	<9.75E-01	<1.00E-04	<1.26E-05
Benzo (g,h,i) perylene	<8.07E-01	<8.26E-05	<1.04E-05
Total	<7.63E-00	<7.82E-04	<9.84E-05

Continued...

B. 4. Summary of PAH and PCB Emissions (Continued)

PCB	Average Emissions (Unit 1, Runs 1-3)		
	µg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Total Mono PCB	<9.91E-03	<1.02E-06	<1.2E-07
Total Di PCB	<9.50E-03	<9.75E-07	<1.23E-07
Total Tri PCB	<1.06E-00	<1.08E-04	<1.36E-05
Total Tetra PCB	<3.91E-02	<4.02E-06	<5.07E-07
Total Penta PCB	<1.81E-02	<1.86E-06	<2.35E-07
Total Hexa PCB	<2.15E-02	<2.22E-06	<2.79E-07
Total Hepta PCB	<1.63E-02	<1.67E-06	<2.11E-07
Total Octa PCB	<2.13E-02	<2.20E-06	<2.76E-07
Total Nona PCB	<2.01E-02	<2.07E-06	<2.61E-07
Total Deca PCB	<2.01E-02	<2.07E-06	<2.61E-07
Total PCB	<1.24E-00	<1.27E-04	<1.06E-05

B. 5. Additional Metals Emissions Presented for Health Risk Assessment: Sb, Co, Cu, Mn, Se, V, Zn

Average Emissions Unit 1			
	μg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Antimony (Sb)	<7.5	<8.0E-04	<1.0E-04
Cobalt (Co)	<3.7	<4.0E-04	<5.0E-05
Copper (Cu)	<1.5	<1.6E-04	<2.0E-05
Manganese (Mn)	<0.12	<1.3E-05	<1.6E-06
Selenium (Se)	<0.75	<8.0E-05	<1.0E-05
Vanadium (V)	<15	<1.6E-03	<2.0E-04
Zinc (Zn)	18	1.8E-03	2.3E-04

C. TOTAL SUSPENDED PARTICULATE

C. 1. Unit 1 Results: TSP

Run	gr/dscf @ 12% CO ₂	lbs/hr
1	0.0016	0.44
2	0.0022	0.55
3	0.0012	0.31
Average	0.0017	0.43

FACILITY: Babylon Resource Recovery

DATE: 02-07-89

UNIT: Unit 1

PARTICULATE RESULTS

Unit 1, Run 1

SAMPLE	net mg	gr/dscf	gr/scf	gr/dscf @ 12% CO2	lbs/hr
Front-half:	5.8	0.0013	0.0011	0.0016	0.44

ADDITIONAL DATA:

TIME		%O2	%CO2	%H2O	Vm(std)	DSCFM
start	finish	-----	-----	-----	-----	-----
1349	1455	10.4	9.2	15.7	70.70	41000

FACILITY: Babylon Resource Recovery
DATE: 02-07-89
UNIT: Unit 1

PARTICULATE RESULTS

Unit 1, Run 2

SAMPLE	net mg	gr/dscf	gr/scf	gr/dscf @ 12% CO2	lbs/hr
Front-half:	6.9	0.0015	0.0013	0.0022	0.55

ADDITIONAL DATA:

TIME		%O2	%CO2	%H2O	Vm(std)	DSCFM
start	finish	-----	-----	-----	-----	-----
1542	1654	11.2	8.4	13.3	69.30	41600

FACILITY: Babylon Resource Recovery

DATE: 02-08-89

UNIT: Unit 1

PARTICULATE RESULTS

Unit 1, Run 3

SAMPLE	net mg	gr/dscf	gr/scf	gr/dscf @ 12% CO2	lbs/hr
Front-half:	4.0	0.0009	0.0007	0.0012	0.31

ADDITIONAL DATA:

TIME		%O2	%CO2	%H2O	Vm(std)	DSCFM
start	finish	---	---	---	---	---
845	953	11.2	8.4	14.8	71.10	41400

FACILITY: Babylon Resource Recovery
 DATE: 02-07-89, 02-08-89
 UNIT: Unit 1

METHOD: U.S EPA Method 5/ HCl @ 68' F	RUN #	1	2	3
	DATE:	02-07-89	02-07-89	02-08-89
	FROM:	1349	1542	845
	TO:	1455	1654	953
Vm (dry gas sampled, dcf).....	69.36	68.10	68.79	
Y (meter calib. factor).....	1.02	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	30.15	30.15	30.23	
P static (stack pressure, " H2O).....	-1.00	-1.00	-1.00	
Delta H (differential meter press, " H2O)....	4.6	4.5	4.6	
Tm (meter temperature, R').....	536	537	530	
Vol H2O mls	279.8	225.2	261.6	
Vm(std), dscf @ 68' F	70.7	69.3	71.1	
Vm(std),Nm3 @ 32' F	1.87	1.83	1.88	
Bws-H2O vapor	0.157	0.133	0.148	
MF-moisture factor	0.843	0.867	0.853	
% CO2	9.2	8.4	8.4	
% O2	10.4	11.2	11.2	
% N2	80.4	80.4	80.4	
Md-MW stk gas,dry	29.89	29.79	29.79	
Ms-MW stk gas,wet	28.02	28.23	28.05	
Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt 'p	0.96	0.95	0.96	
T stack, R'.....	761	761	766	
Stack area,ft2	17.72	17.72	17.72	
Vs-fps	65.6	64.7	65.8	
Qstd-dscfm	41000	41600	41400	
Qstd-Nm3/sec at 32'F	18.0	18.3	18.2	
Area noz,ft2	5.14E-04	5.14E-04	5.14E-04	
Sample time	60	60	60	
% Isokinetic	99	96	99	

C. 2. Unit 2 Results: TSP

Run	gr/dscf @ 12% CO ₂	lbs/hr
1	0.0013	0.36
2	0.0008	0.24
3	0.0016	0.43
Average	0.0012	0.34

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
UNIT: Unit 2

PARTICULATE RESULTS

Unit 2, Run 1

SAMPLE	net mg	gr/dscf	gr/scf	gr/dscf @ 12% CO2	lbs/hr
Front-half:	4.7	0.0010	0.0008	0.0013	0.36

ADDITIONAL DATA:

TIME		%O2		%CO2		%H2O		Vm(std)		DSCFM	
start	finish	---	---	---	---	---	---	---	---	---	---
1149	1254		10.1		9.5		14.3		73.00		42700

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
UNIT: Unit 2

PARTICULATE RESULTS

Unit 2, Run 2

SAMPLE	net mg	gr/dscf	gr/scf	gr/dscf @ 12% CO2	lbs/hr
Front-half:	3.1	0.0007	0.0006	0.0008	0.24

ADDITIONAL DATA:

TIME		%O2	%CO2	%H2O	Vm(std)	DSCFM
start	finish	---	---	---	---	---
1341	1445	10.1	9.5	15.1	73.00	42400

FACILITY: Babylon Resource Recovery

DATE: 02-08-89

UNIT: Unit 2

PARTICULATE RESULTS

Unit 2, Run 3

SAMPLE	net mg	gr/dscf	gr/scf	gr/dscf @ 12% CO2	lbs/hr
Front-half:	6.0	0.0013	0.0011	0.0016	0.43

ADDITIONAL DATA:

TIME		%O2	%CO2	%H2O	Vm(std)	DSCFM
start	finish	---	---	---	---	---
1530	1635	10.1	9.5	15.1	72.40	39500

FACILITY: Babylon Resource Recovery
 DATE: 02-08-89
 UNIT: Unit 2

METHOD: U.S EPA Method 5/ HCl @ 68' F	RUN #	1	2	3
	DATE:	02-08-89	02-08-89	02-08-89
	FROM:	1149	1341	1530
	TO:	1254	1445	1635
Vm (dry gas sampled, dcf).....	70.77	71.71	70.73	
Y (meter calib. factor).....	1.02	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	30.23	30.23	30.23	
P static (stack pressure, " H2O).....	-1.00	-1.00	-1.00	
Delta H (differential meter press, " H2O).....	4.6	5.0	5.0	
Tm (meter temperature, R').....	531	539	536	
Vol H2O mls	258.5	276.5	272.8	

Vm(std), dscf @ 68' F	73.0	73.0	72.4	
Vm(std),Nm3 @ 32' F	1.93	1.93	1.91	

Bws-H2O vapor	0.143	0.151	0.151	
MF-moisture factor	0.857	0.849	0.849	

% CO2	9.5	9.5	9.5	
% O2	10.1	10.1	10.1	
% N2	80.4	80.4	80.4	

Md-MW stk gas,dry	29.92	29.92	29.92	
Ms-MW stk gas,wet	28.22	28.12	28.12	

Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt 'p	0.99	0.99	0.92	
T stack, R'.....	764	763	761	
Stack area,ft2	17.72	17.72	17.72	

Vs-fps	67.3	67.4	62.6	
Qstd-dscfm	42700	42400	39500	
Qstd-Nm3/sec at 32'F	18.8	18.6	17.4	

Area noz,ft2	5.14E-04	5.14E-04	5.14E-04	
Sample time	60	60	60	

% Isokinetic	98	99	105	

C. 3. Unit 1 Results (Reduced Load): TSP

Run	gr/dscf @ 12% CO ₂	lbs/hr
1	0.0022	0.37
2	0.0036	0.63
3	0.0029	0.50
Average	0.0029	0.50

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
UNIT: Unit 1, Reduced Load

PARTICULATE RESULTS

Unit 1, Run 1

SAMPLE	net mg	gr/dscf	gr/scf	gr/dscf @ 12% CO2	lbs/hr
Front-half:	4.7	0.0015	0.0013	0.0022	0.37

ADDITIONAL DATA:

TIME						
start	finish	%O2	%CO2	%H2O	Vm(std)	DSCFM
930	1036	11.1	8.5	13.9	46.80	27700

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
UNIT: Unit 1, Reduced Load

PARTICULATE RESULTS

Unit 1, Run 2

SAMPLE	net mg	gr/dscf	gr/scf	gr/dscf @ 12% CO2	lbs/hr
Front-half:	8.1	0.0026	0.0022	0.0036	0.63

ADDITIONAL DATA:

TIME						
start	finish	%O2	%CO2	%H2O	Vm(std)	DSCFM
1144	1249	11.0	8.6	13.2	48.60	28500

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
UNIT: Unit 1, Reduced Load

PARTICULATE RESULTS

Unit 1, Run 3

SAMPLE	net mg	gr/dscf	gr/scf	gr/dscf @ 12% CO ₂	lbs/hr
Front-half:	6.4	0.0020	0.0017	0.0029	0.50

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	V _m (std)	DSCFM
start	finish	---	---	---	---	---
1403	1508	11.2	8.4	13.7	49.00	28800

FACILITY: Babylon Resource Recovery
 DATE: 02-09-89
 UNIT: Unit 1, Reduced Load

METHOD: U.S EPA Method 5/ HCl @ 68' F	RUN #	1	2	3
	DATE:	02-09-89	02-09-89	02-09-89
	FROM:	930	1144	1403
	TO:	1036	1249	1508
Vm (dry gas sampled, dcf).....	43.89	45.95	46.43	
Y (meter calib. factor).....	1.02	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	30.18	30.18	30.18	
P static (stack pressure, " H2O).....	-0.60	-0.60	-0.60	
Delta H (differential meter press, " H2O).....	2.0	1.9	1.9	
Tm (meter temperature, R').....	510	514	515	
Vol H2O mls	161.0	157.3	164.7	

Vm(std), dscf @ 68' F	46.8	48.6	49.0	
Vm(std),Nm3 @ 32' F	1.23	1.28	1.29	

Bws-H2O vapor	0.139	0.132	0.137	
MF-moisture factor	0.861	0.868	0.863	

% CO2	8.5	8.6	8.4	
% O2	11.1	11.0	11.2	
% N2	80.4	80.4	80.4	

Md-MW stk gas,dry	29.80	29.82	29.79	
Ms-MW stk gas,wet	28.16	28.26	28.18	

Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt ^p	0.62	0.64	0.65	
T stack, R'.....	737	738	739	
Stack area,ft2	17.72	17.72	17.72	

Vs-fps	41.9	42.9	43.6	
Qstd-dscfm	27700	28500	28800	
Qstd-Nm3/sec at 32'F	12.2	12.5	12.7	

Area noz,ft2	5.14E-04	5.14E-04	5.14E-04	
Sample time	60	60	60	

% Isokinetic	97	98	98	

D. CONTINUOUS EMISSION MONITORING

D. 1. Unit 1 Results: SO₂, NO_x, and CO

Parameter	Uncontrolled Emissions		Controlled Emissions		Removal Efficiency %
	ppm _{dv} @ 12% CO ₂	ppm _{dv} @ 12% CO ₂	lbs/hr	lbs/ton MSW	
SO₂					
Run 1	94	35	11.0	---	63
Run 2	241	40	10.4	---	83
Run 3	179	34	9.9	---	81
Average	171	36	10.4	---	76
NO_x					
Run 1	---	331	74.3	4.60	---
Run 2	---	366	69.1	4.38	---
Run 3	---	295	61.7	3.74	---
Average	---	331	68.4	4.24	---
CO					
Run 1	---	15	2.1	---	---
Run 2	---	16	1.8	---	---
Run 3	---	14	1.8	---	---
Average	---	15	1.9	---	---

FACILITY: BABYLON

DATE: 2-7-89

UNIT: UNIT 1 Inlet (uncontrolled emissions)

SO2/CO2 DATA

RUN #1

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
01:45 PM	- 01:55 PM	10.9	103	113
01:55 PM	- 02:05 PM	10.6	83	94
02:05 PM	- 02:15 PM	11.0	92	101
02:15 PM	- 02:25 PM	10.9	83	91
02:25 PM	- 02:35 PM	10.8	73	81
02:35 PM	- 02:45 PM	11.1	79	85
Averages:		10.9	85	94

CO2;% SO2;ppm

ZERO DRIFT	0	13
CALIB. DRIFT	0	1
CAL GAS value	9.63	55
FULL SCALE RANGE	15	200
dscfm = 41000 U.S.EPA Method 5 Run 1		

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2, ppm	@12%CO2	lbs/hr
	10.9	85	94	34.7

DRIFT VALUES

	CO2	SO2
INITAL zero	0	0
INITAL span	64	28
FINAL zero	0	6.5
FINAL span	64	35

FACILITY: BABYLON
 DATE: 2-7-89
 UNIT: UNIT 1 Inlet (uncontrolled emissions)

SO2/CO2 DATA

RUN #2

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
03:40 PM	- 03:50 PM	10.6	207	234
03:50 PM	- 04:00 PM	10.6	202	228
04:00 PM	- 04:10 PM	10.3	186	217
04:10 PM	- 04:20 PM	10.5	223	256
04:20 PM	- 04:30 PM	10.5	212	244
04:30 PM	- 04:40 PM	10.5	233	268
Averages:		10.5	210	241

CO2;% SO2;ppm

ZERO DRIFT	0	13
CALIB. DRIFT	-0.2	0
CAL GAS value	9.63	55
FULL SCALE RANGE	15	500
dscfm = 41600 U.S.EPA Method 5 Run 2		

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	10.5	210	241	87.1

DRIFT VALUES

	CO2	SO2
INITAL zero	0	0.5
INITAL span	64.5	11
FINAL zero	0	3
FINAL span	63	11

FACILITY: BABYLON
 DATE: 2-8-89
 UNIT: UNIT 1 Inlet (uncontrolled emissions)

SO2/CO2 DATA

RUN #3

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
08:45 AM	- 08:55 AM	10.2	***	***
08:55 AM	- 09:05 AM	10.4	***	***
09:05 AM	- 09:15 AM	10.2	***	***
09:15 AM	- 09:25 AM	10.4	160	185
09:25 AM	- 09:35 AM	10.2	140	164
09:35 AM	- 09:45 AM	9.9	155	187
Averages;		10.2	152	179

CO2;% SO2;ppm

ZERO DRIFT	0	13
CALIB. DRIFT	-0.2	5
CAL GAS value	9.63	55
FULL SCALE RANGE	15	500
dscfm = 41400 U.S.EPA Method 5 Run 3		

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2, ppm	@12%CO2	lbs/hr
	10.2	152	179	62.7

DRIFT VALUES

	CO2	SO2
INITAL zero	0	0
INITAL span	61	11
FINAL zero	0	2.5
FINAL span	60	14.5

*** equipment malfunction

FACILITY: BABYLON
 DATE: 2-7-89
 UNIT: UNIT 1 Outlet (controlled emissions)

SO2/CO2 DATA

RUN #1

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
01:45 PM	- 01:55 PM	9.3	27	35
01:55 PM	- 02:05 PM	9.1	29	38
02:05 PM	- 02:15 PM	9.3	24	31
02:15 PM	- 02:25 PM	9.1	19	26
02:25 PM	- 02:35 PM	9.1	27	35
02:35 PM	- 02:45 PM	9.1	34	45
Averages:		9.2	27	35

CO2;% SO2;ppm

ZERO DRIFT	0	2
CALIB. DRIFT	1.3	10
CAL GAS value	10.02	48.5
FULL SCALE RANGE	15	500

dscfm = 41000 U.S.EPA Method 5 Run 1

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	9.2	27	35	11.0

DRIFT VALUES

	CO2	SO2
INITIAL zero	0	-0.5
INITIAL span	67	9.5
FINAL zero	0	0
FINAL span	76	11

FACILITY: BABYLON
 DATE: 2-7-89
 UNIT: UNIT 1 Outlet (controlled emissions)

SO2/CO2 DATA

RUN #2

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
03:40 PM	- 03:50 PM	7.5	26	41
03:50 PM	- 04:00 PM	7.7	33	52
04:00 PM	- 04:10 PM	7.5	26	41
04:10 PM	- 04:20 PM	7.7	31	48
04:20 PM	- 04:30 PM	7.6	26	40
04:30 PM	- 04:40 PM	7.5	10	16
Averages:		7.6	25	40

CO2;% SO2;ppm

ZERO DRIFT	0	-3
CALIB. DRIFT	-0.1	0
CAL GAS value	10.02	48.5
FULL SCALE RANGE	15	500

dscfm = 41600 U.S.EPA Method 5 Run 2

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	7.6	25	40	10.4

DRAIFT VALUES

	CO2	SO2
INITIAL zero	0	0
INITIAL span	73	9.5
FINAL zero	0	-0.5
FINAL span	72	9

FACILITY: BABYLON
 DATE: 2-8-89
 UNIT: UNIT 1 Outlet (controlled emissions)

SO2/CO2 DATA

RUN #3

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
08:45 AM	- 08:55 AM	8.2	12	18
08:55 AM	- 09:05 AM	8.5	29	41
09:05 AM	- 09:15 AM	8.4	29	42
09:15 AM	- 09:25 AM	8.8	22	30
09:25 AM	- 09:35 AM	8.2	22	32
09:35 AM	- 09:45 AM	8.5	32	44
Averages:		8.4	24	34

CO2;% SO2;ppm

ZERO DRIFT	0	0
CALIB. DRIFT	-0.1	0
CAL GAS value	10.02	48.5
FULL SCALE RANGE	15	500
dscfm =	41400	U.S.EPA Method 5 Run 3

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2, ppm	@12%CO2	lbs/hr
	8.4	24	34	9.9

DRIFT VALUES

	CO2	SO2
INITIAL zero	0	0
INITIAL span	77	9.5
FINAL zero	0	0
FINAL span	76.5	9.5

FACILITY: BABYLON

DATE: 2-7-89

UNIT: UNIT 1 Outlet (controlled emissions)

NOx/CO/CO2 DATA

RUN #1

TIME INTERVAL		CONCENTRATIONS			CORRECTED to 12 % CO2	
BEGIN	END	CO2;%	NOx;ppm	CO;ppm	NOx;ppm	CO;ppm
01:45 PM	- 01:55 PM	9.3	269	13	348	16
01:55 PM	- 02:05 PM	9.1	269	10	353	13
02:05 PM	- 02:15 PM	9.3	269	13	348	16
02:15 PM	- 02:25 PM	9.1	238	10	313	13
02:25 PM	- 02:35 PM	9.1	238	13	313	16
02:35 PM	- 02:45 PM	9.1	238	13	313	16
Averages;		9.2	253	12	331	15

	CO2;%	NOx;ppm	CO;ppm
ZERO DRIFT	0	0	0
CALIB. DRIFT	1.3	5	0
CAL GAS value	10.02	279	50
FULL SCALE RANGE	15	1000	500

dscfm = 41000 U.S.EPA Method 5 Run 1

NOx Emission Summary:	Concentration			Mass Emission
	%CO2	NOx, ppm	@12%CO2	lbs/hr
	9.2	253	331	74.3

CO Emission Summary:	Concentration			Mass Emission
	%CO2	CO, ppm	@12%CO2	lbs/hr
	9.2	12	15	2.1

DRIFT CORRECTIONS	CO2	NOx	CO
INITIAL zero	0	0	0
INITIAL span	67	27	10
FINAL zero	0	0	0
FINAL span	76	27.5	10

FACILITY: BABYLON
 DATE: 2-7-89
 UNIT: UNIT 1 Outlet (controlled emissions)

NOx/CO/CO2 DATA

RUN #2

TIME INTERVAL		CONCENTRATIONS			CORRECTED to 12 % CO2	
BEGIN	END	CO2;%	NOx;ppm	CO;ppm	NOx;ppm	CO;ppm
03:40 PM	- 03:50 PM	7.5	238	10	379	16
03:50 PM	- 04:00 PM	7.7	249	10	388	16
04:00 PM	- 04:10 PM	7.5	243	13	391	20
04:10 PM	- 04:20 PM	7.7	223	10	348	16
04:20 PM	- 04:30 PM	7.6	223	8	352	12
04:30 PM	- 04:40 PM	7.5	213	13	339	20
Averages:		7.6	232	10	366	16

	CO2;%	NOx;ppm	CO;ppm
ZERO DRIFT	0	0	0
CALIB. DRIFT	-0.1	-5	0
CAL GAS value	10.02	279	50
FULL SCALE RANGE	15	1000	500

dscfm = 41600 U.S.EPA Method 5 Run 2

NOx Emission Summary:	Concentration			Mass Emission
	%CO2	NOx,ppm	@12%CO2	lbs/hr
	7.6	232	366	69.1

CO Emission Summary:	Concentration			Mass Emission
	%CO2	CO,ppm	@12%CO2	lbs/hr
	7.6	10	16	1.8

DRIFT CORRECTIONS	CO2	NOx	CO
INITIAL zero	0	0	0
INITIAL span	73	27.5	10
FINAL zero	0	0	0
FINAL span	72	27	10

FACILITY: BABYLON
 DATE: 2-8-89
 UNIT: UNIT 1 Outlet (controlled emissions)

NOx/CO/CO2 DATA

RUN #3

TIME INTERVAL		CONCENTRATIONS			CORRECTED to 12 % O2	
BEGIN	END	CO2;%	NOx;ppm	CO;ppm	NOx;ppm	CO;ppm
08:45 AM	- 08:55 AM	8.2	238	15	347	22
08:55 AM	- 09:05 AM	8.5	253	10	356	14
09:05 AM	- 09:15 AM	8.4	238	8	341	11
09:15 AM	- 09:25 AM	8.8	186	5	253	7
09:25 AM	- 09:35 AM	8.2	155	10	226	15
09:35 AM	- 09:45 AM	8.5	176	10	247	14
Averages:		8.4	208	10	295	14

	CO2;%	NOx;ppm	CO;ppm
ZERO DRIFT	0	0	0
CALIB. DRIFT	-0.1	-10	0
CAL GAS value	10.02	279	50
FULL SCALE RANGE	15	1000	500

dscfm = 41400 U.S.EPA Method 5 Run 3

NOx Emission Summary:	Concentration			Mass Emission
	%CO2	NOx, ppm	@12%CO2	lbs/hr
	8.4	208	295	61.7

CO Emission Summary:	Concentration			Mass Emission
	%CO2	CO, ppm	@12%CO2	lbs/hr
	8.4	10	14	1.8

DRIFT CORRECTIONS	CO2	NOx	CO
INITIAL zero	0	0	0
INITIAL span	77	28.5	10
FINAL zero	0	0	0
FINAL span	76.5	27.5	10

Combustion Index: Unit 1

$$CI = \frac{CO_2 \times 100}{CO_2 + CO}$$

Run	% CO ₂	ppm _{dv} CO ₂	ppm _{dv} CO	CI
1	9.2	92,000	12	99.987
2	7.6	76,000	10	99.987
3	8.4	84,000	10	99.988
Average	8.4	84,000	11	99.987

Babylon Resource Recovery Facility

Unit 1

Run	Steam Pres. psig	Steam Temp. °F	Steam Heat Value Btu/lb	Steam Flow lbs/hr	Steam Heat Flow MBtu/hr	MSW Heat Content MBtu/hr	MSW tons/hr
1	640	658	1318	88000	116	168	16.16
2	640	650	1317	86000	113	164	15.78
3	640	672	1331	89000	119	172	16.51
Avg	640	660	1322	87700	116	168	16.15

$$\text{Boiler Efficiency} = .69 = \frac{\text{Btu Steam}}{\text{Btu MSW}}$$

HHV = 5200 Btu/lb MSW

Run	NO _x lbs/hr	MSW tons/hr	NO _x lbs/ton MSW
1	74.3	16.16	4.60
2	69.1	15.78	4.38
3	61.7	16.51	3.74
Avg	68.4	16.15	3.74

D. 2. Unit 2 Results: SO₂, NO_x, and CO

Parameter	Uncontrolled Emissions		Controlled Emissions		Removal Efficiency %
	ppm _{dv} @ 12% CO ₂	ppm _{dv} @ 12% CO ₂	lbs/hr	lbs/ton MSW	
SO₂					
Run 1	126	23	7.2	---	82
Run 2	121	16	5.1	---	87
Run 3	163	24	7.1	---	85
Average	137	21	6.5	---	85
NO_x					
Run 1	---	305	70.0	4.48	---
Run 2	---	270	61.7	3.95	---
Run 3	---	287	61.1	3.91	---
Average	---	287	64.3	4.11	---
CO					
Run 1	---	13	1.9	---	---
Run 2	---	14	2.0	---	---
Run 3	---	12	1.5	---	---
Average	---	13	1.8	---	---

FACILITY: BABYLON
 DATE: 2-8-89
 UNIT: UNIT 2 Inlet (uncontrolled emissions)

SO2/CO2 DATA

RUN #1

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
11:50 AM	12:00 PM	10.2	125	147
12:00 PM	12:10 PM	9.7	125	154
12:10 PM	12:20 PM	10.3	115	133
12:20 PM	12:30 PM	10.0	110	132
12:30 PM	12:40 PM	10.2	85	100
12:40 PM	12:50 PM	10.2	75	88
Averages:		10.1	106	126

CO2;%	SO2;ppm
-------	---------

ZERO DRIFT	-0.1	0
CALIB. DRIFT	0.4	-13
CAL GAS value	9.63	55
FULL SCALE RANGE	15	500

dscfm = 42700 U.S.EPA Method 5 Run 1

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	10.1	106	126	45.1

DRAIFT VALUES

	CO2	SO2
INITAL zero	1	0
INITAL span	61.5	11
FINAL zero	0.5	0
FINAL span	64	8.5

FACILITY: BABYLON

DATE: 2-8-89

UNIT: UNIT 2 Inlet (uncontrolled emissions)

SO2/CO2 DATA

RUN #2

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
01:40 PM	- 01:50 PM	9.8	***	***
01:50 PM	- 02:00 PM	9.6	***	***
02:00 PM	- 02:10 PM	9.6	70	87
02:10 PM	- 02:20 PM	9.6	70	87
02:20 PM	- 02:30 PM	9.8	105	129
02:30 PM	- 02:40 PM	10.0	150	180
Averages;		9.7	99	121

CO2;% SO2;ppm

ZERO DRIFT	0	18
CALIB. DRIFT	-0.2	0
CAL GAS value	9.63	55
FULL SCALE RANGE	15	500

dscfm = 42400 U.S.EPA Method 5 Run 2

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	9.7	99	121	41.8

DRIFT VALUES

	CO2	SO2
INITAL zero	0	0
INITAL span	64	11
FINAL zero	0	3.5
FINAL span	63	11

*** equipment malfunction

FACILITY: BABYLON
 DATE: 2-8-89
 UNIT: UNIT 2 Inlet (uncontrolled emissions)

SO2/CO2 DATA

RUN #3

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
03:30 PM	- 03:40 PM	10.6	95	108
03:40 PM	- 03:50 PM	9.9	75	90
03:50 PM	- 04:00 PM	10.7	135	152
04:00 PM	- 04:10 PM	9.9	***	***
04:10 PM	- 04:20 PM	10.4	250	288
04:20 PM	- 04:30 PM	9.7	145	179
Averages:		10.2	140	163

CO2;% SO2;ppm

ZERO DRIFT	0	8
CALIB. DRIFT	0.3	13
CAL GAS value	9.63	55
FULL SCALE RANGE	15	500
dscfm = 39500 U.S.EPA Method 5 Run 3		

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	10.2	140	163.4041	55.1

DRIFT VALUES

	CO2	SO2
INITIAL zero	0	0
INITIAL span	64	11
FINAL zero	0	1.5
FINAL span	66	15

*** equipment malfunction

FACILITY: BABYLON
 DATE: 2-8-89
 UNIT: UNIT 2 Outlet (controlled emissions)

SO2/CO2 DATA

RUN #1

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
11:50 AM	- 12:00 PM	9.0	15	20
12:00 PM	- 12:10 PM	9.3	23	30
12:10 PM	- 12:20 PM	9.0	15	20
12:20 PM	- 12:30 PM	8.9	20	27
12:30 PM	- 12:40 PM	8.8	15	21
12:40 PM	- 12:50 PM	9.0	13	17
Averages:		9	17	23

CO2;% SO2;ppm

ZERO DRIFT	0	0
CALIB. DRIFT	0.2	-3
CAL GAS value	10.02	48.5
FULL SCALE RANGE	15	500

dscfm = 42700 U.S.EPA Method 5 Run 1

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	9	17	23	7.2

DRIFT VALUES

	CO2	SO2
INITIAL zero	-0.5	0
INITIAL span	68	9.5
FINAL zero	-0.5	0
FINAL span	68.5	9

FACILITY: BABYLON

DATE: 2-8-89

UNIT: UNIT 2 Outlet (controlled emissions)

SO2/CO2 DATA

RUN #2

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
01:40 PM	- 01:50 PM	9.1	11	14
01:50 PM	- 02:00 PM	8.8	13	18
02:00 PM	- 02:10 PM	8.8	11	15
02:10 PM	- 02:20 PM	9.2	13	18
02:20 PM	- 02:30 PM	9.1	13	18
02:30 PM	- 02:40 PM	9.2	8	11
Averages:		9	12	16

CO2;% SO2;ppm

ZERO DRIFT	0.1	-3
CALIB. DRIFT	0	0
CAL GAS value	10.02	48.5
FULL SCALE RANGE	15	500
dscfm = 42400 U.S.EPA Method 5 Run 2		

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	9	12	16	5.1

DRAIFT VALUES

	CO2	SO2
INITAL zero	-0.5	0
INITAL span	68.5	9
FINAL zero	0	-0.5
FINAL span	68	8.5

FACILITY: BABYLON
 DATE: 2-8-89
 UNIT: UNIT 2 Outlet (controlled emissions)

SO2/CO2 DATA

 RUN #3

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
03:30 PM	- 03:40 PM	9.1	5	7
03:40 PM	- 03:50 PM	9.1	5	7
03:50 PM	- 04:00 PM	9.1	13	17
04:00 PM	- 04:10 PM	9.1	23	30
04:10 PM	- 04:20 PM	8.8	36	48
04:20 PM	- 04:30 PM	9.0	26	34
Averages:		9.1	18	24

CO2;% SO2;ppm

ZERO DRIFT	0	3
CALIB. DRIFT	0	5
CAL GAS value	10.02	48.5
FULL SCALE RANGE	15	500

dscfm = 39500 U.S.EPA Method 5 Run 3

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2, ppm	@12%CO2	lbs/hr
	9.1	18	24	7.1

DRIFT VALUES

	CO2	SO2
INITAL zero	0	-0.5
INITAL span	68	8.5
FINAL zero	0	0
FINAL span	68	9

FACILITY: BABYLON

DATE: 2-8-89

UNIT: UNIT 2 Outlet (controlled emissions)

NOx/CO/CO2 DATA

RUN #1

TIME INTERVAL		CONCENTRATIONS			CORRECTED to 12 % CO2	
BEGIN	END	CO2;%	NOx;ppm	CO;ppm	NOx;ppm	CO;ppm
11:50 AM	- 12:00 PM	9.0	244	10	325	13
12:00 PM	- 12:10 PM	9.3	252	8	326	10
12:10 PM	- 12:20 PM	9.0	221	10	295	13
12:20 PM	- 12:30 PM	8.9	221	10	298	13
12:30 PM	- 12:40 PM	8.8	221	10	300	14
12:40 PM	- 12:50 PM	9.0	213	10	284	13
Averages:		9	229	10	305	13

	CO2;%	NOx;ppm	CO;ppm
ZERO DRIFT	0	0	0
CALIB. DRIFT	0.2	-13	0
CAL GAS value	10.02	279	50
FULL SCALE RANGE	15	1000	500

dscfm = 42700 U.S.EPA Method 5 Run 1

NOx Emission Summary:	%CO2	Concentration		Mass Emission
		NOx, ppm	@12%CO2	
	9	229	305	70.0

CO Emission Summary:	%CO2	Concentration		Mass Emission
		CO, ppm	@12%CO2	
	9	10	13	1.9

DRIFT CORRECTIONS	CO2	NOx	CO
INITIAL zero	-0.5	0	0
INITIAL span	68	31.5	10
FINAL zero	-0.5	0	0
FINAL span	68.5	30	10

FACILITY: BABYLON
 DATE: 2-8-89
 UNIT: UNIT 2 Outlet (controlled emissions)

NOx/CO/CO2 DATA

RUN #2

TIME INTERVAL		CONCENTRATIONS			CORRECTED to 12 % CO2		
BEGIN	-	END	CO2;%	NOx;ppm	CO;ppm	NOx;ppm	CO;ppm
01:40 PM	-	01:50 PM	9.1	214	10	283	13
01:50 PM	-	02:00 PM	8.8	200	13	273	17
02:00 PM	-	02:10 PM	8.8	219	10	299	14
02:10 PM	-	02:20 PM	9.2	195	13	254	16
02:20 PM	-	02:30 PM	9.1	195	13	258	17
02:30 PM	-	02:40 PM	9.2	195	8	254	10
Averages:			9	203	11	270	14

	CO2;%	NOx;ppm	CO;ppm
ZERO DRIFT	0.1	0	0
CALIB. DRIFT	0	0	0
CAL GAS value	10.02	279	50
FULL SCALE RANGE	15	1000	500

dscfm = 42400 U.S.EPA Method 5 Run 2

NOx Emission Summary:	%CO2	Concentration		Mass Emission lbs/hr
		NOx, ppm	@12%CO2	
	9	203	270	61.7

CO Emission Summary:	%CO2	Concentration		Mass Emission lbs/hr
		CO, ppm	@12%CO2	
	9	11	14	2.0

DRIFT CORRECTIONS	CO2	NOx	CO
INITIAL zero	-0.5	0	0
INITIAL span	68.5	30	10
FINAL zero	0	0	0
FINAL span	68	30	10

FACILITY: BABYLON

DATE: 2-8-89

UNIT: UNIT 2 Outlet (controlled emissions)

NOx/CO/CO2 DATA

RUN #3

TIME INTERVAL		CONCENTRATIONS			CORRECTED to 12 % O2	
BEGIN	END	CO2;%	NOx;ppm	CO;ppm	NOx;ppm	CO;ppm
03:30 PM	- 03:40 PM	9.1	190	8	250	10
03:40 PM	- 03:50 PM	9.1	204	10	267	13
03:50 PM	- 04:00 PM	9.1	221	8	291	10
04:00 PM	- 04:10 PM	9.1	239	10	316	13
04:10 PM	- 04:20 PM	8.8	230	8	312	10
04:20 PM	- 04:30 PM	9.0	213	10	284	13
Averages:		9.1	216	9	287	12

CO2;% NOx;ppm CO;ppm

ZERO DRIFT	0	0	0
CALIB. DRIFT	0	0	3
CAL GAS value	10.02	279	50
FULL SCALE RANGE	15	1000	500

dscfm = 39500 U.S.EPA Method 5 Run 3

NOx Emission Summary:	%CO2	Concentration		Mass Emission
		NOx, ppm	@12%CO2	
	9.1	216	287	lbs/hr 61.1

CO Emission Summary:	%CO2	Concentration		Mass Emission
		CO, ppm	@12%CO2	
	9.1	9	12	lbs/hr 1.55

DRIFT CORRECTIONS	CO2	NOx	CO
INITAL zero	0	0	0
INITAL span	68	30	10
FINAL zero	0	0	0
FINAL span	68	30	10.5

Combustion Index: Unit 2

$$CI = \frac{CO_2 \times 100}{CO_2 + CO}$$

Run	% CO ₂	ppm _{dv} CO ₂	ppm _{dv} CO	CI
1	9.0	90,000	10	99.987
2	9.0	90,000	11	99.988
3	9.1	91,000	9	99.998
Average	9.0	90,300	10	99.989

Babylon Resource Recovery Facility

Unit 2

Run	Steam Pres. psig	Steam Temp. °F	Steam Heat Value Btu/lb	Steam Flow lbs/hr	Steam Heat Flow MBtu/hr	MSW Heat Content MBtu/hr	MSW tons/hr
1	633	701	1348	86000	116	168	16.15
2	640	702	1347	88000	119	172	16.52
3	640	700	1347	87000	117	170	16.33
Avg	638	701	1347	87000	117	170	16.33

$$\text{Boiler Efficiency} = .69 = \frac{\text{Btu Steam}}{\text{Btu MSW}}$$

HHV = 5200 Btu/lb MSW

Run	NO _x lbs/hr	MSW tons/hr	NO _x lbs/ton MSW
1	70.6	16.15	4.37
2	61.7	16.52	3.73
3	61.1	16.33	3.74
Avg	64.3	16.33	3.95

D. 3. Unit 1 Results (Reduced Load): SO₂, NO_x, and CO

Parameter	Uncontrolled Emissions		Controlled Emissions		Removal Efficiency %
	ppm _{dv} @ 12% CO ₂	ppm _{dv} @ 12% CO ₂	lbs/hr	lbs/ton MSW	
SO₂					
Run 1	184	12	2.2	---	93
Run 2	143	6	1.1	---	96
Run 3	227	30	5.7	---	87
Average	185	16	3.0	---	92
NO_x					
Run 1	---	294	39.3	3.63	---
Run 2	---	247	34.9	3.27	---
Run 3	---	301	41.2	3.86	---
Average	---	281	38.5	3.59	---
CO					
Run 1	---	12	1.0	---	---
Run 2	---	7	0.6	---	---
Run 3	---	8	0.6	---	---
Average	---	9	0.7	---	---

FACILITY: BABYLON

DATE: 2-9-89

UNIT: UNIT 1 Inlet reduced load (uncontrolled emissions)

SO2/CO2 DATA

RUN #1

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
09:30 AM	- 09:40 AM	10.4	165	191
09:40 AM	- 09:50 AM	9.0	160	212
09:50 AM	- 10:00 AM	8.9	***	***
10:00 AM	- 10:10 AM	8.9	***	***
10:10 AM	- 10:20 AM	7.8	118	181
10:20 AM	- 10:30 AM	8.2	105	153
Averages:		8.9	137	184

CO2;% SO2;ppm

ZERO DRIFT	0	-8
CALIB. DRIFT	-0.1	-3
CAL GAS value	9.63	55
FULL SCALE RANGE	15	500

dscfm = 27700 U.S.EPA Method 5RL Run 1

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2, ppm	@12%CO2	lbs/hr
	8.9	137	184	37.8

DRIFT VALUES

	CO2	SO2
INITIAL zero	0	0.5
INITIAL span	64	11
FINAL zero	0	-1
FINAL span	63.5	10

*** equipment malfunction

FACILITY: BABYLON

DATE: 2-9-89

UNIT: UNIT 1 Inlet reduced load (uncontrolled emissions)

SO2/CO2 DATA

RUN #2

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
12:00 PM	- 12:10 PM	11.6	150	155
12:10 PM	- 12:20 PM	10.8	145	162
12:20 PM	- 12:30 PM	10.9	115	127
12:30 PM	- 12:40 PM	11.1	120	129
12:40 PM	- 12:50 PM	11.3	135	144
12:50 PM	- 01:00 PM	11.1	133	143
Averages:		11.1	133	143

CO2;% SO2;ppm

ZERO DRIFT	0	10
CALIB. DRIFT	1.1	-3
CAL GAS value	9.63	55
FULL SCALE RANGE	15	500
dscfm = 28500 U.S.EPA Method 5RL Run 2		

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2, ppm	@12%CO2	lbs/hr
	11.1	133	143	37.8

DRIIFT VALUES

	CO2	SO2
INITAL zero	0	0
INITAL span	64	11
FINAL zero	0	2
FINAL span	71	12.5

FACILITY: BABYLON

DATE: 2-8-89

UNIT: UNIT 1 Inlet reduced load (uncontrolled emissions)

SO2/CO2 DATA

RUN #3

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
02:05 PM	- 02:15 PM	11.0	210	229
02:15 PM	- 02:25 PM	10.8	196	219
02:25 PM	- 02:35 PM	10.6	207	234
02:35 PM	- 02:45 PM	11.1	***	***
02:45 PM	- 02:55 PM	11.3	***	***
02:55 PM	- 03:05 PM	11.3	***	***
Averages:		11	204	227

CO2;% SO2;ppm

ZERO DRIFT	0.1	0
CALIB. DRIFT	-0.5	0
CAL GAS value	9.63	55
FULL SCALE RANGE	15	500
dscfm = 28800 U.S.EPA Method 5RL Run 3		

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	11	204	227	58.6

DRIFT VALUES

	CO2	SO2
INITIAL zero	0	0.5
INITIAL span	71	11.5
FINAL zero	0.5	0.5
FINAL span	67.5	11.5

*** equipment malfunction

FACILITY: BABYLON

DATE: 2-9-89

UNIT: UNIT 1 reduced load Outlet (controlled emissions)

SO2/CO2 DATA

RUN #1

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
09:30 AM	- 09:40 AM	8.1	5	8
09:40 AM	- 09:50 AM	8.2	10	15
09:50 AM	- 10:00 AM	8.1	10	15
10:00 AM	- 10:10 AM	8.1	10	15
10:10 AM	- 10:20 AM	8.1	8	11
10:20 AM	- 10:30 AM	8.0	5	8
Averages;		8.1	8	12

CO2;% SO2;ppm

ZERO DRIFT	-0.1	0
CALIB. DRIFT	0	-3
CAL GAS value	10.02	48.5
FULL SCALE RANGE	15	500
dscfm =	27700	U.S.EPA Method 5 Run 1RL

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2, ppm	@12%CO2	lbs/hr
	8.1	8	12	2.2

DRIFT VALUES

	CO2	SO2
INITAL zero	0	0
INITAL span	67	9.5
FINAL zero	-1	0
FINAL span	67	9

FACILITY: BABYLON

DATE: 2-9-89

UNIT: UNIT 1 reduced load Outlet (controlled emissions)

SO2/CO2 DATA

RUN #2

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
12:00 PM	- 12:10 PM	8.4	3	4
12:10 PM	- 12:20 PM	8.3	0	0
12:20 PM	- 12:30 PM	8.1	3	4
12:30 PM	- 12:40 PM	8.5	3	4
12:40 PM	- 12:50 PM	8.3	5	7
12:50 PM	- 01:00 PM	8.3	10	15
Averages:		8.3	4	6

CO2;% SO2;ppm

ZERO DRIFT	0	0
CALIB. DRIFT	0	3
CAL GAS value	10.02	48.5
FULL SCALE RANGE	15	500
dscfm =	28500	U.S.EPA Method 5 Run 2RL

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	8.3	4	6	1.1

DRAIFT VALUES

	CO2	SO2
INITAL zero	-1	0
INITAL span	67	9.5
FINAL zero	-1	0
FINAL span	65	10

FACILITY: BABYLON

DATE: 2-9-89

UNIT: UNIT 1 reduced load Outlet (controlled emissions)

SO2/CO2 DATA

RUN #3

TIME INTERVAL		CONCENTRATIONS		CORRECTED to 12 % CO2
BEGIN	END	CO2;%	SO2;ppm	SO2;ppm
02:05 PM	- 02:15 PM	8.1	28	42
02:15 PM	- 02:25 PM	7.9	20	31
02:25 PM	- 02:35 PM	7.9	15	23
02:35 PM	- 02:45 PM	7.9	15	23
02:45 PM	- 02:55 PM	***	***	***
02:55 PM	- 03:05 PM	***	***	***
Averages:		8	20	30

CO2;% SO2;ppm

ZERO DRIFT	0	2
CALIB. DRIFT	0.5	0
CAL GAS value	10.02	48.5
FULL SCALE RANGE	15	500
dscfm =	28800	U.S.EPA Method 5 Run 3RL

SO2 Emission Summary:	Concentration			Mass Emissions
	%CO2	SO2,ppm	@12%CO2	lbs/hr
	8	20	30	5.7

DRIFT VALUES

	CO2	SO2
INITIAL zero	-1	0
INITIAL span	65	10
FINAL zero	-1	0.5
FINAL span	66	10.5

FACILITY: BABYLON

DATE: 2-9-89

UNIT: UNIT 1 reduced load Outlet (controlled emissions)

NOX/CO/CO2 DATA

RUN #1

TIME INTERVAL		CONCENTRATIONS			CORRECTED to 12 % CO2	
BEGIN	END	CO2;%	NOx;ppm	CO;ppm	NOx;ppm	CO;ppm
09:30 AM	- 09:40 AM	8.1	196	5	291	7
09:40 AM	- 09:50 AM	8.2	191	10	278	15
09:50 AM	- 10:00 AM	8.1	191	10	284	15
10:00 AM	- 10:10 AM	8.1	201	10	298	15
10:10 AM	- 10:20 AM	8.1	210	8	313	11
10:20 AM	- 10:30 AM	8.0	201	5	301	7
Averages:		8.1	198	8	294	12

CO2;% NOx;ppm CO;ppm

ZERO DRIFT	-0.1	0	0
CALIB. DRIFT	0	-15	0
CAL GAS value	10.02	279	50
FULL SCALE RANGE	15	1000	500

dscfm = 27700 U.S.EPA Method 5 Run 1RL

NOX Emission Summary:	Concentration			Mass Emission
	%CO2	NOx,ppm	@12%CO2	lbs/hr
	8.1	198	294	39.3

CO Emission Summary:	Concentration			Mass Emission
	%CO2	CO,ppm	@12%CO2	lbs/hr
	8.1	8	12	1.0

DRIFT CORRECTIONS	CO2	NOX	CO
INITIAL zero	0	0.5	0
INITIAL span	67	29	10
FINAL zero	-1	0.5	0
FINAL span	67	28.5	10

FACILITY: BABYLON

DATE: 2-9-89

UNIT: UNIT 1 reduced load Outlet (controlled emissions)

NOx/CO/CO2 DATA

RUN #2

TIME INTERVAL		CONCENTRATIONS			CORRECTED to 12 % CO2	
BEGIN	END	CO2;%	NOx;ppm	CO;ppm	NOx;ppm	CO;ppm
12:00 PM	- 12:10 PM	8.4	194	5	278	7
12:10 PM	- 12:20 PM	8.3	184	5	268	7
12:20 PM	- 12:30 PM	8.1	164	5	243	7
12:30 PM	- 12:40 PM	8.5	144	5	205	7
12:40 PM	- 12:50 PM	8.3	154	5	223	7
12:50 PM	- 01:00 PM	8.3	184	5	268	7
Averages:		8.3	171	5	247	7

	CO2;%	NOx;ppm	CO;ppm
ZERO DRIFT	0	0	0
CALIB. DRIFT	0	-15	0
CAL GAS value	10.02	279	50
FULL SCALE RANGE	15	1000	500

dscfm = 28500 U.S.EPA Method 5 Run 2RL

NOx Emission Summary:	Concentration			Mass Emission
	%CO2	NOx,ppm	@12%CO2	lbs/hr
	8.3	171	247	34.9

CO Emission Summary:	Concentration			Mass Emission
	%CO2	CO,ppm	@12%CO2	lbs/hr
	8.3	5	7	0.6

DRIFT CORRECTIONS	CO2	NOx	CO
INITIAL zero	-1	0.5	0
INITIAL span	67	28.5	10
FINAL zero	-1	0.5	0
FINAL span	65	28	10

FACILITY: BABYLON

DATE: 2-9-89

UNIT: UNIT 1 reduced load Outlet (controlled emissions)

NOx/CO/CO2 DATA

RUN #3

TIME INTERVAL		CONCENTRATIONS			CORRECTED to 12 % O2	
BEGIN	END	CO2;%	NOx;ppm	CO;ppm	NOx;ppm	CO;ppm
02:05 PM	- 02:15 PM	8.1	196	5	291	7
02:15 PM	- 02:25 PM	7.9	191	5	289	8
02:25 PM	- 02:35 PM	7.9	206	5	311	8
02:35 PM	- 02:45 PM	7.9	206	5	311	8
02:45 PM	- 02:55 PM	***	***	***	***	***
02:55 PM	- 03:05 PM	***	***	***	***	***
Averages:		8	200	5	301	8

	CO2;%	NOx;ppm	CO;ppm
ZERO DRIFT	0	0	0
CALIB. DRIFT	0.5	-15	0
CAL GAS value	10.02	279	50
FULL SCALE RANGE	15	1000	500

dscfm = 28800 U.S.EPA Method 5 Run 3RL

NOx Emission Summary:	Concentration			Mass Emission
	%CO2	NOx,ppm	@12%CO2	lbs/hr
	8	200	301	41.2

CO Emission Summary:	Concentration			Mass Emission
	%CO2	CO,ppm	@12%CO2	lbs/hr
	8	5	7.5	0.63

DRIFT CORRECTIONS	CO2	NOx	CO
INITIAL zero	-1	0.5	0
INITIAL span	65	28	10
FINAL zero	-1	0.5	0
FINAL span	66	27.5	10

Combustion Index: Unit 1 (Reduced Load)

$$CI = \frac{CO_2 \times 100}{CO_2 + CO}$$

Run	% CO ₂	ppm _{dv} CO ₂	ppm _{dv} CO	CI
1	8.1	81,000	8	99.990
2	8.3	83,000	5	99.994
3	8.0	80,000	5	99.994
Average	8.1	81,300	6	99.993

Babylon Resource Recovery Facility

Unit 1 Reduced Load

Run	Steam Pres. psig	Steam Temp. °F	Steam Heat Value Btu/lb	Steam Flow lbs/hr	Steam Heat Flow MBtu/hr	MSW Heat Content MBtu/hr	MSW tons/hr
1	634	612	1297	60000	79	113	10.84
2	640	618	1276	60000	77	111	10.67
3	640	620	1277	60000	77	111	10.67
Avg	638	617	1283	60000	77	111	10.73

$$\text{Boiler Efficiency} = .69 = \frac{\text{Btu Steam}}{\text{Btu MSW}}$$

HHV = 5200 Btu/lb MSW

Run	NO _x lbs/hr	MSW tons/hr	NO _x lbs/ton MSW
1	39.3	10.84	3.63
2	34.9	10.67	3.27
3	41.2	10.67	3.86
Avg	38.5	10.73	3.59

E. HYDROGEN CHLORIDE

E. 1. Unit 1 Results: HCl

Run	Uncontrolled Emissions		Controlled Emissions		Removal Efficiency %
	ppm _{dv} @ 12% CO ₂	ppm _{dv} @ 12% CO ₂	lbs/hr		
1	549	20	3.7	96	
2	754	19	3.2	97	
3	766	22	3.7	97	
Average	690	20	3.5	97	

FACILITY: Babylon Resource Recovery
DATE: 02-07-89
TEST UNIT 1 Outlet (controlled emissions)

Hydrogen Chloride Results

Unit 1, Run 1

SAMPLE	net mg	mg/Nm3	mg/Nm3@ 12% CO2	ppm @ 12% CO2	lbs/hr
Impinger Catch Analysis	47.8	26	33	20	3.7

ADDITIONAL DATA:

TIME		%O2	%CO2	%H2O	Nm3	Nm3/sec
start	finish	-----	-----	-----	-----	-----
1349	1455	10.4	9.2	15.7	1.87	18.0

FACILITY: Babylon Resource Recovery
DATE: 02-07-89
TEST UNIT 1 Outlet (controlled emissions)

Hydrogen Chloride Results

Unit 1, Run 2

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂	lbs/hr
Impinger Catch Analysis	40.5	22	32	19	3.2

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃	Nm ₃ /sec
start	finish	---	---	---	---	---
1542	1654	11.2	8.4	13.3	1.83	18.3

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
TEST UNIT 1 Outlet (controlled emissions)

Hydrogen Chloride Results

Unit 1, Run 3

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂	lbs/hr
Impinger Catch Analysis	48.1	26	37	22	3.7

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃	Nm ₃ /sec
start	finish	---	---	---	---	---
845	953	11.2	8.4	14.8	1.88	18.2

FACILITY: Babylon Resource Recovery
 DATE: 02-07-89, 02-08-89
 UNIT: Unit 1 Outlet (controlled emissions)

METHOD: U.S EPA Method 5/ HCl @ 68' F	RUN #	1	2	3
	DATE:	02-07-89	02-07-89	02-08-89
	FROM:	1349	1542	845
	TO:	1455	1654	953
Vm (dry gas sampled, dcf).....	69.36	68.10	68.79	
Y (meter calib. factor).....	1.02	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	30.15	30.15	30.23	
P static (stack pressure, " H2O).....	-1.00	-1.00	-1.00	
Delta H (differential meter press, " H2O).....	4.6	4.5	4.6	
Tm (meter temperature, R').....	536	537	530	
Vol H2O mls	279.8	225.2	261.6	

Vm(std), dscf @ 68' F	70.7	69.3	71.1	
Vm(std), Nm3 @ 32' F	1.87	1.83	1.88	

Bws-H2O vapor	0.157	0.133	0.148	
MF-moisture factor	0.843	0.867	0.853	

% CO2	9.2	8.4	8.4	
% O2	10.4	11.2	11.2	
% N2	80.4	80.4	80.4	

Md-MW stk gas,dry	29.89	29.79	29.79	
Ms-MW stk gas,wet	28.02	28.23	28.05	

Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt ^p	0.96	0.95	0.96	
T stack, R'.....	761	761	766	
Stack area,ft2	17.72	17.72	17.72	

Vs-fps	65.6	64.7	65.8	
Qstd-dscfm	41000	41600	41400	
Qstd-Nm3/sec at 32'F	18.0	18.3	18.2	

Area noz,ft2	5.14E-04	5.14E-04	5.14E-04	
Sample time	60	60	60	

% Isokinetic	99	96	99	

FACILITY: Babylon Resource Recovery
DATE: 02-07-89
TEST UNIT 1 Inlet (uncontrolled emissions)

Hydrogen Chloride Results

Unit 1, Run 1

SAMPLE	net mg	mg/Nm3	mg/Nm3@ 12% CO2	ppm @ 12% CO2
Impinger Catch Analysis	105.6	812	894	549

ADDITIONAL DATA:

TIME	start	finish	%O2	%CO2	%H2O	Nm3
	1345	1450	8.8	10.9	12.7	0.13

FACILITY: Babylon Resource Recovery
DATE: 02-07-89
TEST UNIT 1 Inlet (uncontrolled emissions)

Hydrogen Chloride Results

Unit 1, Run 2

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂
Impinger Catch Analysis	217.1	1086	1229	754

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃
start	finish	---	---	---	---
1540	1659	9.1	10.6	13.7	0.20

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
TEST UNIT 1 Inlet (uncontrolled emissions)

Hydrogen Chloride Results

Unit 1, Run 3

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂
Impinger Catch Analysis	212.1	1061	1248	766

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃
start	finish	---	---	---	---
845	955	9.5	10.2	13.0	0.20

FACILITY: Babylon Resource Recovery
 DATE: 02-07-89, 02-08-89
 UNIT: Unit 1 Inlet (uncontrolled emissions)

METHOD: U.S EPA Method 6 @ 68° F	RUN #	1	2	3
	DATE:	02-07-89	02-07-89	02-08-89
	FROM:	1345	1540	845
	TO:	1450	1659	955
Vm (dry gas sampled, dcf).....	4.46	6.94	6.99	
Y (meter calib. factor).....	1.02	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	30.15	30.15	30.23	
Delta H (differential meter press, " H ₂ O)....	2.0	2.0	2.0	
Tm (meter temperature, R').....	500	501	509	
Vol H ₂ O mls	15.0	25.5	23.8	
Vm(std), dscf @ 68° F	4.9	7.6	7.5	
Vm(std), Nm ³ @ 32° F	0.13	0.20	0.20	
Bws-H ₂ O vapor	0.127	0.137	0.130	
MF-moisture factor	0.873	0.863	0.870	
% CO ₂	10.9	10.6	10.2	
% O ₂	8.8	9.1	9.5	
% N ₂	80.3	80.3	80.3	
Md-MW stk gas, dry	30.10	30.06	30.01	
Ms-MW stk gas, wet	28.57	28.41	28.45	

E. 2. Unit 2 Results: HCl

Run	Uncontrolled Emissions	Controlled Emissions	lbs/hr	Removal Efficiency %
	ppm _{dv} @ 12% CO ₂	ppm _{dv} @ 12% CO ₂		
1	858	60	11.5	93
2	1113	46	8.8	96
3	983	39	6.9	96
Average	985	48	9.1	95

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
TEST UNIT 2 Outlet (controlled emissions)

Hydrogen Chloride Results

Unit 2, Run 1

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂	lbs/hr
Impinger Catch Analysis	148.8	77	97	60	11.5

ADDITIONAL DATA:

TIME		%O ₂		%CO ₂		Nm ₃		Nm ₃ /sec	
start	finish	-----	-----	-----	-----	-----	-----	-----	-----
1149	1254	10.1	-----	9.5	14.3	1.93	-----	18.8	-----

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
TEST UNIT 2 Outlet (controlled emissions)

Hydrogen Chloride Results

Unit 2, Run 2

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂	lbs/hr
Impinger Catch Analysis	115.0	60	75	46	8.8

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃	Nm ₃ /sec
start	finish	---	---	---	---	---
1341	1445	10.1	9.5	15.1	1.93	18.6

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
TEST UNIT 2 Outlet (controlled emissions)

Hydrogen Chloride Results

Unit 2, Run 3

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂	lbs/hr
Impinger Catch Analysis	95.3	50	63	39	6.9

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃	Nm ₃ /sec
start	finish	---	---	---	---	---
1530	1635	10.1	9.5	15.1	1.91	17.4

FACILITY: Babylon Resource Recovery
 DATE: 02-08-89
 UNIT: Unit 2 Outlet (controlled emissions)

METHOD: U.S EPA Method 5/ HCl @ 68' F	RUN #	1	2	3
	DATE:	02-08-89	02-08-89	02-08-89
	FROM:	1149	1341	1530
	TO:	1254	1445	1635
Vm (dry gas sampled, dcf).....	70.77	71.71	70.73	
Y (meter calib. factor).....	1.02	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	30.23	30.23	30.23	
P static (stack pressure, " H2O).....	-1.00	-1.00	-1.00	
Delta H (differential meter press, " H2O).....	4.6	5.0	5.0	
Tm (meter temperature, R').....	531	539	536	
Vol H2O mls	258.5	276.5	272.8	

Vm(std), dscf @ 68' F	73.0	73.0	72.4	
Vm(std),Nm3 @ 32' F	1.93	1.93	1.91	

Bws-H2O vapor	0.143	0.151	0.151	
MF-moisture factor	0.857	0.849	0.849	

% CO2	9.5	9.5	9.5	
% O2	10.1	10.1	10.1	
% N2	80.4	80.4	80.4	

Md-MW stk gas,dry	29.92	29.92	29.92	
Ms-MW stk gas,wet	28.22	28.12	28.12	

Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt 'p	0.99	0.99	0.92	
T stack, R'.....	764	763	761	
Stack area,ft2	17.72	17.72	17.72	

Vs-fps	67.3	67.4	62.6	
Qstd-dscfm	42700	42400	39500	
Qstd-Nm3/sec at 32'F	18.8	18.6	17.4	

Area noz,ft2	5.14E-04	5.14E-04	5.14E-04	
Sample time	60	60	60	

* Isokinetic	98	99	105	

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
TEST UNIT 2 Inlet (uncontrolled emissions)

Hydrogen Chloride Results

Unit 2, Run 1

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂
Impinger Catch Analysis	323.0	1154	1398	858

ADDITIONAL DATA:

TIME					
start	finish	%O ₂	%CO ₂	%H ₂ O	Nm ₃
1151	1256	9.8	9.9	12.6	0.28

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
TEST UNIT 2 Inlet (uncontrolled emissions)

Hydrogen Chloride Results

Unit 2, Run 2

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂
Impinger Catch Analysis	473.9	1481	1813	1113

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃
start	finish	---	---	---	---
1340	1450	9.9	9.8	12.3	0.32

FACILITY: Babylon Resource Recovery
DATE: 02-08-89
TEST UNIT 2 Inlet (uncontrolled emissions)

Hydrogen Chloride Results

Unit 2, Run 3

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂
Impinger Catch Analysis	400.2	1334	1601	983

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃
start	finish	---	---	---	---
1530	1635	9.7	10.0	12.6	0.30

FACILITY: Babylon Resource Recovery
 DATE: 02-08-89
 UNIT: Unit 2 Inlet (uncontrolled emissions)

METHOD: U.S EPA Method 6 @ 68° F	RUN #	1	2	3
	DATE:	02-08-89	02-08-89	02-08-89
	FROM:	1151	1340	1530
	TO:	1256	1450	1635
Vm (dry gas sampled, dcf).....	10.03	11.34	10.63	
Y (meter calib. factor).....	1.02	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	30.23	30.23	30.23	
Delta H (differential meter press, " H2O)....	2.0	2.0	2.0	
Tm (meter temperature, R).....	511	510	511	
Vol H2O mls	32.9	36.3	34.7	

Vm(std), dscf @ 68° F	10.7	12.2	11.4	
Vm(std),Nm3 @ 32° F	0.28	0.32	0.30	
Bws-H2O vapor	0.126	0.123	0.126	
MF-moisture factor	0.874	0.877	0.875	

% CO2	9.9	9.8	10.0	
% O2	9.8	9.9	9.7	
% N2	80.3	80.3	80.3	

Md-MW stk gas,dry	29.98	29.96	29.99	
Ms-MW stk gas,wet	28.47	28.49	28.49	

E. 3. Unit 1 Results (Reduced Load): HCl

Run	Uncontrolled Emissions		Controlled Emissions		Removal Efficiency %
	ppm _{dv} @ 12% CO ₂	ppm _{dv} @ 12% CO ₂	lbs/hr		
1	840	26	2.9	97	
2	680	21	2.4	97	
3	692	25	2.9	96	
Average	737	24	2.7	97	

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
TEST UNIT 1, Reduced Load, Outlet (controlled)

Hydrogen Chloride Results

Unit 1, Run 1

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂	lbs/hr
Impinger Catch Analysis	36.8	30	42	26	2.9

ADDITIONAL DATA:

TIME	start	finish	%O ₂	%CO ₂	%H ₂ O	Nm ₃	Nm ₃ /sec
	930	1036	11.1	8.5	13.9	1.23	12.2

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
TEST UNIT 1, Reduced Load, Outlet (controlled)

Hydrogen Chloride Results

Unit 1, Run 2

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂	lbs/hr
Impinger Catch Analysis	31.3	24	34	21	2.4

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃	Nm ₃ /sec
start	finish	---	---	---	---	---
1144	1249	11.0	8.6	13.2	1.28	12.5

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
TEST UNIT 1, Reduced Load, Outlet (controlled)

Hydrogen Chloride Results

Unit 1, Run 3

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂	lbs/hr
Impinger Catch Analysis	37.1	29	41	25	2.9

ADDITIONAL DATA:

TIME	start	finish	%O ₂	%CO ₂	%H ₂ O	Nm ₃	Nm ₃ /sec
-----	-----	-----	---	-----	-----	-----	-----
	1403	1508	11.2	8.4	13.7	1.29	12.7

FACILITY: Babylon Resource Recovery
 DATE: 02-09-89
 UNIT: Unit 1, Reduced Load, Outlet (controlled emissions)

METHOD: U.S EPA Method 5/ HCl @ 68' F	RUN #	1	2	3
	DATE:	02-09-89	02-09-89	02-09-89
	FROM:	930	1144	1403
	TO:	1036	1249	1508
Vm (dry gas sampled, dcf).....	43.89	45.95	46.43	
Y (meter calib. factor).....	1.02	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	30.18	30.18	30.18	
P static (stack pressure, " H2O).....	-0.60	-0.60	-0.60	
Delta H (differential meter press, " H2O)....	2.0	1.9	1.9	
Tm (meter temperature, R').....	510	514	515	
Vol H2O mls	161.0	157.3	164.7	

Vm(std), dscf @ 68' F	46.8	48.6	49.0	
Vm(std),Nm3 @ 32' F	1.23	1.28	1.29	

Bws-H2O vapor	0.139	0.132	0.137	
MF-moisture factor	0.861	0.868	0.863	

% CO2	8.5	8.6	8.4	
% O2	11.1	11.0	11.2	
% N2	80.4	80.4	80.4	

Md-MW stk gas,dry	29.80	29.82	29.79	
Ms-MW stk gas,wet	28.16	28.26	28.18	

Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt 'p	0.62	0.64	0.65	
T stack, R'.....	737	738	739	
Stack area,ft2	17.72	17.72	17.72	

Vs-fps	41.9	42.9	43.6	
Qstd-dscfm	27700	28500	28800	
Qstd-Nm3/sec at 32'F	12.2	12.5	12.7	

Area noz,ft2	5.14E-04	5.14E-04	5.14E-04	
Sample time	60	60	60	

% Isokinetic	97	98	98	

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
TEST UNIT 1, Reduced Load-Economizer Outlet

Hydrogen Chloride Results

Unit 1, Run 1

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂
Impinger Catch Analysis	162.3	1014	1368	840

ADDITIONAL DATA:

TIME					
start	finish	%O ₂	%CO ₂	%H ₂ O	Nm ₃
935	1035	10.8	8.9	12.0	0.16

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
TEST UNIT 1, Reduced Load, Inlet (uncontrolled)

Hydrogen Chloride Results

Unit 1, Run 1

SAMPLE	net mg	mg/Nm3	mg/Nm3@ 12% CO2	ppm @ 12% CO2
Impinger Catch Analysis	162.3	1014	1368	840

ADDITIONAL DATA:

TIME		%O2	%CO2	%H2O	Nm3
start	finish	---	---	---	---
935	1035	10.8	8.9	12.0	0.16

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
TEST UNIT 1, Reduced Load, Inlet (uncontrolled)

Hydrogen Chloride Results

Unit 1, Run 2

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂
Impinger Catch Analysis	288.0	960	1108	680

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ₃
start	finish	---	---	---	---
1140	1240	9.3	10.4	11.2	0.30

FACILITY: Babylon Resource Recovery
DATE: 02-09-89
TEST UNIT 1, Reduced Load, Inlet (uncontrolled)

Hydrogen Chloride Results

Unit 1, Run 3

SAMPLE	net mg	mg/Nm ₃	mg/Nm ₃ @ 12% CO ₂	ppm @ 12% CO ₂
Impinger Catch Analysis	227.3	1033	1127	692

ADDITIONAL DATA:

TIME	start	finish	%O ₂	%CO ₂	%H ₂ O	Nm ₃
-----	-----	-----	-----	-----	-----	-----
	1401	1503	8.7	11.0	12.6	0.22

FACILITY: Babylon Resource Recovery

DATE: 02-09-89

UNIT: Unit 1, Reduced Load, Inlet (uncontrolled emissions)

METHOD: U.S EPA Method 6 @ 68° F	RUN #	1	2	3
	DATE:	02-09-89	02-09-89	02-09-89
	FROM:	935	1140	1401
	TO:	1035	1240	1503
<hr/>				
Vm (dry gas sampled, dcf).....	5.50	10.30	7.52	
Y (meter calib. factor).....	1.02	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	30.01	30.01	30.01	
<hr/>				
Delta H (differential meter press, " H2O)....	2.0	2.0	2.0	
Tm (meter temperature, R').....	484	491	492	
Vol H2O mls	17.8	30.4	25.3	
<hr/>				
Vm(std), dscf @ 68° F	6.2	11.4	8.3	
Vm(std), Nm3 @ 32° F	0.16	0.30	0.22	
<hr/>				
Bws-H2O vapor	0.120	0.112	0.126	
MF-moisture factor	0.880	0.888	0.874	
<hr/>				
% CO2	8.9	10.4	11.0	
% O2	10.8	9.3	8.7	
% N2	80.3	80.3	80.3	
<hr/>				
Md-MW stk gas,dry	29.86	30.04	30.11	
Ms-MW stk gas,wet	28.44	28.70	28.59	

F. METALS

F. 1. Metals per Source Test Plan: As, Cd, Cr, Pb, Hg, Ni

Parameter	$\mu\text{g}/\text{Nm}^3$ @ 12% CO_2	lbs/hr	g/s
Arsenic (As)	<1.5	<1.6E-04	<2.0E-05
Cadmium (Cd)	<7.5	<8.0E-05	<1.0E-05
Chromium (Cr)	<1.5	<1.6E-04	<2.0E-05
Lead (Pb)	1.5	1.7E-04	2.1E-05
Mercury (Hg)	470	5.1E-02	6.4E-03
Nickel (Ni)	<3.7	<4.0E-04	<5.0E-05

Babylon Resource Recovery Facility

Date: 02/01/89

Unit: 2

Run 2: Metals Results per Source Test Plan

Parameter	mg collected	mg/Nm ³ @ 12% CO ₂	lbs/hr
Arsenic (As)	<4.0E-03	<1.9E-03	<1.8E-04
Cadmium (Cd)	<2.0E-03	<9.5E-04	<9.2E-05
Chromium (Cr)	<4.0E-03	<1.9E-03	<1.8E-04
Lead (Pb)	1.8E-03	8.5E-04	8.1E-05
Mercury (Hg)	1.2E-00	5.7E-01	5.4E-02
Nickel (Ni)	<1.0E-02	<4.7E-03	<4.5E-04

Additional Data:

Time	%O ₂	%CO ₂	%H ₂ O	Nm ³	Nm ³ /s
1348-1603	9.7	9.9	18.3	2.56	14.6

Babylon Resource Recovery Facility
Date: 02/01/89
Unit: 2

Run 3: Metals Results per Source Test Plan

Parameter	mg collected	mg/Nm ³ @ 12% CO ₂	lbs/hr
Arsenic (As)	<4.0E-03	<1.3E-03	<1.5E-04
Cadmium (Cd)	<2.0E-03	<6.5E-04	<7.4E-05
Chromium (Cr)	<4.0E-03	<1.3E-03	<1.5E-04
Lead (Pb)	8.1E-03	2.6E-03	3.0E-04
Mercury (Hg)	2.0E-00	6.5E-01	7.4E-02
Nickel (Ni)	<1.0E-02	<3.2E-03	<3.7E-04

Additional Data:

Time	%O ₂	%CO ₂	%H ₂ O	Nm ³	Nm ³ /s
1610-1824	9.7	9.9	17.7	3.73	17.3

Babylon Resource Recovery Facility
Date: 02/01/89
Unit: 2

Run 4: Metals Results per Source Test Plan

Parameter	mg collected	mg/Nm ³ @ 12% CO ₂	lbs/hr
Arsenic (As)	<4.0E-03	<1.3E-03	<1.5E-04
Cadmium (Cd)	<2.0E-03	<6.5E-04	<7.6E-05
Chromium (Cr)	<4.0E-03	<1.3E-03	<1.5E-04
Lead (Pb)	3.5E-03	1.1E-03	1.3E-04
Mercury (Hg)	6.3E-01	2.0E-01	2.4E-02
Nickel (Ni)	<1.0E-02	<3.2E-03	<3.8E-04

Additional Data:

Time	%O ₂	%CO ₂	%H ₂ O	Nm ³	Nm ³ /s
1013-1223	10.1	9.5	16.1	3.9	18.6

FACILITY: Babylon Resource Recovery
 DATE: 01-31-89, 02-01-89
 UNIT: Unit 2

METHOD: U.S EPA Method 12/101A @ 68' F	RUN #	2	3	4
	DATE:	01-31-89	01-31-89	02-01-89
	FROM:	1348	1610	1013
	TO:	1603	1824	1223
Vm (dry gas sampled, dcf).....	98.91	145.54	151.93	
Y (meter calib. factor).....	1.02	1.01	1.02	
P bar (Barometric pressure, in. Hg).....	29.80	29.80	29.76	
P static (stack pressure, " H2O).....	-1.00	-1.00	-0.85	
Delta H (differential meter press, " H2O).....	2.2	3.6	4.3	
Tm (meter temperature, R').....	548	551	554	
Vol H2O mls	462.3	646.6	604.6	

Vm(std), dscf @ 68' F	97.0	141.5	147.9	
Vm(std), Nm3 @ 32' F	2.56	3.73	3.90	

Bws-H2O vapor	0.183	0.177	0.161	
MF-moisture factor	0.817	0.823	0.839	

% CO2	9.9	9.9	9.5	
% O2	9.7	9.7	10.1	
% N2	80.4	80.4	80.4	

Md-MW stk gas,dry	29.97	29.97	29.92	
Ms-MW stk gas,wet	27.78	27.85	28.00	

Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt 'p	0.81	0.95	1.01	
T stack, R'.....	764	764	763	
Stack area,ft2	17.72	17.72	17.72	

Vs-fps	55.9	65.6	68.9	
Qstd-dscfm	33300	39400	42200	
Qstd-Nm3/sec at 32'F	14.6	17.3	18.6	

Area noz,ft2	4.04E-04	5.14E-04	5.14E-04	
Sample time	120	120	120	

% Isokinetic	106	103	101	

F. 2. Metals per Source Test Plan: Be

	$\mu\text{g}/\text{Nm}^3$ @ 12% CO ₂	lbs/hr	g/s
Beryllium (Be)			
Run 1	<0.87	<1.0E-04	<1.3E-05
Run 2	<0.84	<1.0E-04	<1.3E-05
Run 3	<0.89	<1.0E-04	<1.3E-05
<hr/>			
Average	<0.87	<1.0E-04	<1.3E-05
<hr/>			

FACILITY: Babylon Resource Recovery

DATE: 02-01-89

TEST Unit 2

Beryllium Results

Unit 2, Run 1

SAMPLE	net mg	mg/Nm ³	mg/m ³	wet	12% CO ₂	mg/Nm ³ @ lbs/hr
Front and Back Half	<4.00E-03	<7.0E-04	<5.8E-04	<8.7E-04	<1.0E-04	

ADDITIONAL DATA:

TIME							
start	finish	%O ₂	%CO ₂	%H ₂ O	Nm ³	Nm ³ /sec	
900	1212	10.0	9.6	16.0	5.75	18.4	

FACILITY: Babylon Resource Recovery

DATE: 02-01-89

TEST Unit 2

Beryllium Results

Unit 2, Run 2

SAMPLE	net mg	mg/Nm ³	mg/m ³	wet	12% CO ₂	mg/Nm ³ @ lbs/hr
Front and Back Half	<4.00E-03	<6.6E-04	<5.5E-04	<8.4E-04	<1.0E-04	

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ³	Nm ³ /sec
start	finish					
1424	1735	10.2	9.4	16.3	6.09	19.5

FACILITY: Babylon Resource Recovery

DATE: 02-02-89

TEST Unit 2

Beryllium Results

Unit 2, Run 3

SAMPLE	net mg	mg/Nm ³	mg/m ³	wet	12% CO ₂	mg/Nm ³ @ 12% CO ₂	lbs/hr
Front and Back Half	< 4.00E-03	<7.0E-04	<5.9E-04	<8.9E-04	<1.0E-04		

ADDITIONAL DATA:

TIME		%O ₂	%CO ₂	%H ₂ O	Nm ³	Nm ³ /sec
start	finish	-----	-----	-----	-----	-----
913	1250	10.2	9.4	15.1	5.75	18.6

FACILITY: Babylon Resource Recovery
 DATE: 02-01-89, 02-02-89
 UNIT: Unit 2

METHOD: U.S EPA Method 104 @ 68' F	RUN #	1	2	3
	DATE:	02-01-89	02-01-89	02-02-89
	FROM:	900	1424	913
	TO:	1212	1735	1250
Vm (dry gas sampled, dcf).....	223.59	242.60	222.84	
Y (meter calib. factor).....	1.01	1.02	1.02	
P bar (Barometric pressure, in. Hg).....	29.76	29.76	30.01	
P static (stack pressure, " H2O).....	-0.66	-1.00	-0.80	
Delta H (differential meter press, " H2O).....	5.8	6.4	3.8	
Tm (meter temperature, R').....	552	570	555	
Vol H2O mls	879.1	953.6	822.5	
Vm(std), dscf @ 68' F	217.9	230.7	218.1	
Vm(std),Nm3 @ 32' F	5.75	6.09	5.75	
Bws-H2O vapor	0.160	0.163	0.151	
MF-moisture factor	0.840	0.837	0.849	
% CO2	9.6	9.4	9.4	
% O2	10.0	10.2	10.2	
% N2	80.4	80.4	80.4	
Md-MW stk gas,dry	29.94	29.91	29.91	
Ms-MW stk gas,wet	28.03	27.97	28.11	
Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt 'p	1.00	1.07	0.99	
T stack, R'.....	764	774	762	
Stack area,ft2	17.72	17.72	17.72	
Vs-fps	68.2	73.8	67.7	
Qstd-dscfm	41800	44400	42400	
Qstd-Nm3/sec at 32'F	18.4	19.5	18.6	
Area noz,ft2	5.14E-04	5.14E-04	5.14E-04	
Sample time	180	180	180	
% Isokinetic	100	99	99	

F. 3. Additional Metals for Health Risk Assessment: Sb, Co, Cu, Mn, Se, V, Zn

Average Emissions			
	μg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Antimony (Sb)	<7.5	<8.0E-04	<1.0E-04
Cobalt (Co)	<3.7	<4.0E-04	<5.0E-05
Copper (Cu)	<1.5	<1.6E-04	<2.0E-05
Manganese (Mn)	<0.12	<1.3E-05	<1.6E-06
Selenium (Se)	<0.75	<8.0E-05	<1.0E-05
Vanadium (V)	<15	<1.6E-03	<2.0E-04
Zinc (Zn)	18	1.8E-03	2.3E-04

Babylon Resource Recovery Facility
Date: 02/01/89
Unit: 2

Run 2: Additional Metals Results for Health Risk Assessment

Parameter	mg collected	mg/Nm ³ @ 12% CO ₂	lbs/hr
Antimony (Sb)	<2.0E-02	<9.5E-02	<9.1E-04
Cobalt (Co)	<1.0E-02	<4.7E-03	<4.5E-04
Copper (Cu)	<4.0E-03	<1.9E-03	<1.8E-04
Manganese (Mn)	<3.0E-04	<1.4E-04	<1.4E-05
Selenium (Se)	<2.0E-03	<9.5E-04	<9.1E-05
Vanadium (V)	<4.0E-02	<1.9E-02	<1.8E-03
Zinc (Zn)	4.3E-03	4.7E-04	5.9E-05

Additional Data:

Time	%O ₂	%CO ₂	%H ₂ O	Nm ³	Nm ³ /s
1348-1603	9.7	9.9	18.3	2.56	14.6

Babylon Resource Recovery Facility
Date: 02/01/89
Unit: 2

Run 3: Additional Metals Results for Health Risk Assessment

Parameter	mg collected	mg/Nm ³ @ 12% CO ₂	lbs/hr
Antimony (Sb)	<2.0E-02	<6.5E-03	<7.4E-04
Cobalt (Co)	<1.0E-02	<3.2E-03	<3.7E.04
Copper (Cu)	<4.0E-03	<1.3E-03	<1.5E-04
Manganese (Mn)	<4.0E-04	<1.3E-04	<1.5E-05
Selenium (Se)	<2.0E-03	<6.5E-04	<7.4E-05
Vanadium (V)	<4.0E-02	<1.3E-02	<1.5E-03
Zinc (Zn)	8.0E-03	2.6E-03	2.9E-04

Additional Data:

Time	%O ₂	%CO ₂	%H ₂ O	Nm ³	Nm ³ /s
1610-1824	9.7	9.9	17.7	3.73	17.3

Babylon Resource Recovery Facility
Date: 02/01/89
Unit: 2

Run 4: Additional Metals Results for Health Risk Assessment

Parameter	mg collected	mg/Nm ³ @ 12% CO ₂	lbs/hr
Antimony (Sb)	<2.0E-02	<6.5E-03	<7.6E-04
Cobalt (Co)	<1.0E-02	<3.2E-03	<3.8E-04
Copper (Cu)	<4.0E-03	<1.3E-03	<1.5E-04
Manganese (Mn)	<3.0E-04	<9.7E-05	<1.1E-05
Selenium (Se)	<2.0E-03	<6.5E-04	<7.6E-05
Vanadium (V)	<4.0E-02	<1.3E-02	<1.5E-03
Zinc (Zn)	2.0E-02	6.5E-03	7.6E-04

Additional Data:

Time	%O ₂	%CO ₂	%H ₂ O	Nm ³	Nm ³ /s
1013-1223	10.1	9.5	16.1	3.90	18.6

FACILITY: Babylon Resource Recovery
 DATE: 01-31-89, 02-01-89
 UNIT: Unit 2

METHOD: U.S EPA Method 12/101A @ 68' F	RUN #	2	3	4
	DATE:	01-31-89	01-31-89	02-01-89
	FROM:	1348	1610	1013
	TO:	1603	1824	1223
Vm (dry gas sampled, dcf).....	98.91	145.54	151.93	
Y (meter calib. factor).....	1.02	1.01	1.02	
P bar (Barometric pressure, in. Hg).....	29.80	29.80	29.76	
P static (stack pressure, " H2O).....	-1.00	-1.00	-0.85	
Delta H (differential meter press, " H2O).....	2.2	3.6	4.3	
Tm (meter temperature, R').....	548	551	554	
Vol H2O mls	462.3	646.6	604.6	

Vm(std), dscf @ 68' F	97.0	141.5	147.9	
Vm(std), Nm3 @ 32' F	2.56	3.73	3.90	

Bws-H2O vapor	0.183	0.177	0.161	
MF-moisture factor	0.817	0.823	0.839	

% CO2	9.9	9.9	9.5	
% O2	9.7	9.7	10.1	
% N2	80.4	80.4	80.4	

Md-MW stk gas,dry	29.97	29.97	29.92	
Ms-MW stk gas,wet	27.78	27.85	28.00	

Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt ^p	0.81	0.95	1.01	
T stack, R'.....	764	764	763	
Stack area,ft2	17.72	17.72	17.72	

Vs-fps	55.9	65.6	68.9	
Qstd-dscfm	33300	39400	42200	
Qstd-Nm3/sec at 32'F	14.6	17.3	18.6	

Area noz,ft2	4.04E-04	5.14E-04	5.14E-04	
Sample time	120	120	120	

% Isokinetic	106	103	101	

G. DIOXINS AND FURANS

***AVERAGE CONCENTRATIONS OF PCDD AND PCDF IN THE FLUE GAS**
Babylon Resource Recovery, Unit 1

COMPOUND	ng/Nm3 AT 12 % CO2			
	RUN 1	RUN 2	RUN 3	*AVERAGE
2378 TCDD	0.000	0.000	0.000	0.000
TOTAL TCDD	0.600	0.700	0.551	0.617
12378 PCDD	0.000	0.092	0.096	0.063
TOTAL PCDD	0.337	2.816	1.878	1.677
123478 HxCDD	0.000	0.066	0.000	0.022
123678 HxCDD	0.147	0.340	0.372	0.287
123789 HxCDD	0.170	0.360	0.396	0.309
TOTAL HxCDD	1.780	4.339	4.362	3.494
1234678 HpCDD	1.315	1.985	3.099	2.133
TOTAL HpCDD	3.458	5.268	7.350	5.359
TOTAL OCDD	2.029	2.017	0.000	1.349
TOTAL PCDD	8.205	15.141	14.140	12.496
2378 TCDF	0.503	0.952	1.042	0.832
TOTAL TCDF	2.359	4.735	4.256	3.783
12378 PCDF	0.073	0.187	0.000	0.087
23478 PCDF	0.000	0.321	0.402	0.241
TOTAL PCDF	1.347	4.011	3.740	3.033
123478 HxCDF	0.000	0.000	0.824	0.275
123678 HxCDF	0.107	0.257	0.359	0.241
234678 HxCDF	0.215	0.346	0.650	0.404
123789 HxCDF	0.000	0.000	0.000	0.000
TOTAL HxCDF	0.571	1.984	3.875	2.143
1234678 HpCDF	0.575	1.042	1.570	1.062
1234789 HpCDF	0.000	0.140	0.000	0.047
TOTAL HpCDF	0.932	1.745	2.453	1.710
TOTAL OCDF	0.000	0.000	0.621	0.207
TOTAL PCDF	5.209	12.476	14.944	10.876
TOTAL PCDD & PCDF	13.41	27.62	29.08	23.37

* Minimum detection limits of non-detectable congeners are considered as zeroes in calculating averages and toxic equivalencies.

FACILITY: Babylon Resource Recovery, Unit 1

DATE: 02-02-89

TIME: 830-1229

RUN: 1

COMPOUND	@ O' C		DRY		ng/s	lbs/hr
	STACK NM3/S	METER NM3	%CO2	%O2		
	17.7	1.5	8.7	10.9		
2378 TCDD	0		0.000		0.000	0.00E+00
TOTAL TCDD	0.653		0.600		7.705	6.12E-08
12378 PCDD	0		0.000		0.000	0.00E+00
TOTAL PCDD	0.366		0.337		4.319	3.43E-08
123478 HxCDD	0		0.000		0.000	0.00E+00
123678 HxCDD	0.16		0.147		1.888	1.50E-08
123789 HxCDD	0.185		0.170		2.183	1.73E-08
TOTAL HxCDD	1.936		1.780		22.845	1.81E-07
1234678 HpCDD	1.43		1.315		16.874	1.34E-07
TOTAL HpCDD	3.761		3.458		44.380	3.52E-07
TOTAL OCDD	2.207		2.029		26.043	2.07E-07
TOTAL PCDD	8.923		8.205		105.291	8.36E-07
2378 TCDF	0.547		0.503		6.455	5.12E-08
TOTAL TCDF	2.565		2.359		30.267	2.40E-07
12378 PCDF	0.079		0.073		0.932	7.40E-09
23478 PCDF	0		0.000		0.000	0.00E+00
TOTAL PCDF	1.465		1.347		17.287	1.37E-07
123478 HxCDF	0		0.000		0.000	0.00E+00
123678 HxCDF	0.116		0.107		1.369	1.09E-08
234678 HxCDF	0.234		0.215		2.761	2.19E-08
123789 HxCDF	0		0.000		0.000	0.00E+00
TOTAL HxCDF	0.621		0.571		7.328	5.82E-08
1234678 HpCDF	0.625		0.575		7.375	5.85E-08
1234789 HpCDF	0		0.000		0.000	0.00E+00
TOTAL HpCDF	1.014		0.932		11.965	9.50E-08
TOTAL OCDF	0		0.000		0.000	0.00E+00
TOTAL PCDF	5.665		5.209		66.847	5.31E-07
TOTAL PCDD & PCDF			13.414		172.138	1.37E-06

FACILITY: Babylon Resource Recovery, Unit 1

DATE: 02-02-89

TIME: 1618-1923

RUN: 2

COMPOUND	@ O' C		DRY	
	STACK NM3/S	METER NM3	%CO2	%O2
	17.9	4.34	8.7	10.9
2378 TCDD	0		0.000	0.000 0.00E+00
TOTAL TCDD	2.201		0.700	9.078 7.20E-08
12378 PCDD	0.291		0.092	1.200 9.53E-09
TOTAL PCDD	8.862		2.816	36.551 2.90E-07
123478 HxCDD	0.209		0.066	0.862 6.84E-09
123678 HxCDD	1.071		0.340	4.417 3.51E-08
123789 HxCDD	1.132		0.360	4.669 3.71E-08
TOTAL HxCDD	13.654		4.339	56.315 4.47E-07
1234678 HpCDD	6.247		1.985	25.765 2.04E-07
TOTAL HpCDD	16.577		5.268	68.371 5.43E-07
TOTAL OCDD	6.348		2.017	26.182 2.08E-07
TOTAL PCDD	47.642		15.141	196.496 1.56E-06
2378 TCDF	2.995		0.952	12.353 9.80E-08
TOTAL TCDF	14.9		4.735	61.454 4.88E-07
12378 PCDF	0.589		0.187	2.429 1.93E-08
23478 PCDF	1.01		0.321	4.166 3.31E-08
TOTAL PCDF	12.622		4.011	52.058 4.13E-07
123478 HxCDF	0		0.000	0.000 0.00E+00
123678 HxCDF	0.809		0.257	3.337 2.65E-08
234678 HxCDF	1.089		0.346	4.491 3.56E-08
123789 HxCDF	0		0.000	0.000 0.00E+00
TOTAL HxCDF	6.242		1.984	25.745 2.04E-07
1234678 HpCDF	3.28		1.042	13.528 1.07E-07
1234789 HpCDF	0.439		0.140	1.811 1.44E-08
TOTAL HpCDF	5.492		1.745	22.651 1.80E-07
TOTAL OCDF	0		0.000	0.000 0.00E+00
TOTAL PCDF	39.256		12.476	161.908 1.28E-06
TOTAL PCDD & PCDF			27.617	358.404 2.84E-06

FACILITY: Babylon Resource Recovery, Unit 1

DATE: 02-03-89

TIME: 856-1207

RUN: 3

COMPOUND	@ 0° C		DRY		ng/s	lbs/hr
	STACK NM3/S	METER NM3	%CO2	%O2		
	18.9	4.65	8.4	11.2		
2378 TCDD	0		0.000		0.000	0.00E+00
TOTAL TCDD	1.793		0.551		7.288	5.78E-08
12378 PCDD	0.311		0.096		1.264	1.00E-08
TOTAL PCDD	6.112		1.878		24.842	1.97E-07
123478 HxCDD	0		0.000		0.000	0.00E+00
123678 HxCDD	1.212		0.372		4.926	3.91E-08
123789 HxCDD	1.289		0.396		5.239	4.16E-08
TOTAL HxCDD	14.198		4.362		57.708	4.58E-07
1234678 HpCDD	10.086		3.099		40.995	3.25E-07
TOTAL HpCDD	23.924		7.350		97.239	7.72E-07
TOTAL OCDD	0		0.000		0.000	0.00E+00
TOTAL PCDD	46.027		14.140		187.077	1.48E-06
2378 TCDF	3.393		1.042		13.791	1.09E-07
TOTAL TCDF	13.852		4.256		56.302	4.47E-07
12378 PCDF	0		0.000		0.000	0.00E+00
23478 PCDF	1.308		0.402		5.316	4.22E-08
TOTAL PCDF	12.173		3.740		49.477	3.93E-07
123478 HxCDF	2.681		0.824		10.897	8.65E-08
123678 HxCDF	1.17		0.359		4.755	3.77E-08
234678 HxCDF	2.115		0.650		8.596	6.82E-08
123789 HxCDF	0		0.000		0.000	0.00E+00
TOTAL HxCDF	12.614		3.875		51.270	4.07E-07
1234678 HpCDF	5.11		1.570		20.770	1.65E-07
1234789 HpCDF	0		0.000		0.000	0.00E+00
TOTAL HpCDF	7.984		2.453		32.451	2.58E-07
TOTAL OCDF	2.02		0.621		8.210	6.52E-08
TOTAL PCDF	48.643		14.944		197.710	1.57E-06
TOTAL PCDD & PCDF			29.084		384.788	3.05E-06

AVERAGE CONCENTRATIONS OF PCDD AND PCDF IN THE FLUE GAS
Babylon Resource Recovery, Unit 1

COMPOUND	ng/Nm ³ AT 12 % CO ₂			
	RUN 1	RUN 2	RUN 3	AVERAGE
2378 TCDD	<0.026	<0.032	<0.024	<0.027
TOTAL TCDD	0.600	0.700	0.551	0.617
12378 PCDD	<0.028	0.092	0.096	<0.072
TOTAL PCDD	0.337	2.816	1.878	1.677
123478 HxCDD	<0.037	0.066	<0.075	<0.059
123678 HxCDD	0.147	0.340	0.372	0.287
123789 HxCDD	0.170	0.360	0.396	0.309
TOTAL HxCDD	1.780	4.339	4.362	3.494
1234678 HpCDD	1.315	1.985	3.099	2.133
TOTAL HpCDD	3.458	5.268	7.350	5.359
TOTAL OCDD	2.029	2.017	< 2.321	<2.123
TOTAL PCDD	8.205	15.141	16.461	13.269
2378 TCDF	0.503	0.952	1.042	0.832
TOTAL TCDF	2.359	4.735	4.256	3.783
12378 PCDF	0.073	0.187	<0.218	<0.159
23478 PCDF	<0.223	0.321	0.402	<0.315
TOTAL PCDF	1.347	4.011	3.740	3.033
123478 HxCDF	<0.247	<0.491	0.824	<0.521
123678 HxCDF	0.107	0.257	0.359	0.241
234678 HxCDF	0.215	0.346	0.650	0.404
123789 HxCDF	<0.044	<0.024	<0.035	<0.034
TOTAL HxCDF	0.571	1.984	3.875	2.143
1234678 HpCDF	0.575	1.042	1.570	1.062
1234789 HpCDF	<0.106	0.140	<0.176	<0.140
TOTAL HpCDF	0.932	1.745	2.453	1.710
TOTAL OCDF	< 0.290	< 0.605	0.621	<0.505
TOTAL PCDF	5.499	13.082	14.944	11.175
TOTAL PCDD & PCDF	13.70	28.22	31.41	24.44

In calculating averages and toxic equivalencies, minimum detection limits of non-detectable congeners are used.

FACILITY: Babylon Resource Recovery, Unit 1

DATE: 02-02-89

TIME: 830-1229

RUN: 1

COMPOUND	@ O' C		DRY	
	STACK NM3/S	METER NM3	%CO2	%O2
	17.7	1.5	8.7	10.9
2378 TCDD	< 0.028		< 0.026	< 0.330 < 2.62E-09
TOTAL TCDD	0.653		0.600	7.705 6.12E-08
12378 PCDD	< 0.03		< 0.028	< 0.354 < 2.81E-09
TOTAL PCDD	0.366		0.337	4.319 3.43E-08
123478 HxCDD	< 0.04		< 0.037	< 0.472 < 3.75E-09
123678 HxCDD	0.16		0.147	1.888 1.50E-08
123789 HxCDD	0.185		0.170	2.183 1.73E-08
TOTAL HxCDD	1.936		1.780	22.845 1.81E-07
1234678 HpCDD	1.43		1.315	16.874 1.34E-07
TOTAL HpCDD	3.761		3.458	44.380 3.52E-07
TOTAL OCDD	2.207		2.029	26.043 2.07E-07
TOTAL PCDD	8.923		8.205	105.291 8.36E-07
2378 TCDF	0.547		0.503	6.455 5.12E-08
TOTAL TCDF	2.565		2.359	30.267 2.40E-07
12378 PCDF	0.079		0.073	0.932 7.40E-09
23478 PCDF	< 0.242		< 0.223	< 2.856 < 2.27E-08
TOTAL PCDF	1.465		1.347	17.287 1.37E-07
123478 HxCDF	< 0.269		< 0.247	< 3.174 < 2.52E-08
123678 HxCDF	0.116		0.107	1.369 1.09E-08
234678 HxCDF	0.234		0.215	2.761 2.19E-08
123789 HxCDF	< 0.048		< 0.044	< 0.566 < 4.50E-09
TOTAL HxCDF	0.621		0.571	7.328 5.82E-08
1234678 HpCDF	0.625		0.575	7.375 5.85E-08
1234789 HpCDF	< 0.115		< 0.106	< 1.357 < 1.08E-08
TOTAL HpCDF	1.014		0.932	11.965 9.50E-08
TOTAL OCDF	< 0.315		< 0.290	< 3.717 < 2.95E-08
TOTAL PCDF	5.98		5.499	70.564 5.60E-07
TOTAL PCDD & PCDF			13.704	175.855 1.40E-06

FACILITY: Babylon Resource Recovery, Unit 1

DATE: 02-02-89

TIME: 1618-1923

RUN: 2

COMPOUND	@ O' C		DRY	
	STACK NM3/S	METER NM3	%CO2	%O2
	17.9	4.34	8.7	10.9
2378 TCDD	< 0.1		<0.032	<0.412 <3.27E-09
TOTAL TCDD	2.201		0.700	9.078 7.20E-08
12378 PCDD	0.291		0.092	1.200 9.53E-09
TOTAL PCDD	8.862		2.816	36.551 2.90E-07
123478 HxCDD	0.209		0.066	0.862 6.84E-09
123678 HxCDD	1.071		0.340	4.417 3.51E-08
123789 HxCDD	1.132		0.360	4.669 3.71E-08
TOTAL HxCDD	13.654		4.339	56.315 4.47E-07
1234678 HpCDD	6.247		1.985	25.765 2.04E-07
TOTAL HpCDD	16.577		5.268	68.371 5.43E-07
TOTAL OCDD	6.348		2.017	26.182 2.08E-07
TOTAL PCDD	47.642		15.141	196.496 1.56E-06
2378 TCDF	2.995		0.952	12.353 9.80E-08
TOTAL TCDF	14.9		4.735	61.454 4.88E-07
12378 PCDF	0.589		0.187	2.429 1.93E-08
23478 PCDF	1.01		0.321	4.166 3.31E-08
TOTAL PCDF	12.622		4.011	52.058 4.13E-07
123478 HxCDF	<1.544		<0.491	<6.368 <5.05E-08
123678 HxCDF	0.809		0.257	3.337 2.65E-08
234678 HxCDF	1.089		0.346	4.491 3.56E-08
123789 HxCDF	<0.075		<0.024	<0.309 <2.46E-09
TOTAL HxCDF	6.242		1.984	25.745 2.04E-07
1234678 HpCDF	3.28		1.042	13.528 1.07E-07
1234789 HpCDF	0.439		0.140	1.811 1.44E-08
TOTAL HpCDF	5.492		1.745	22.651 1.80E-07
TOTAL OCDF	<1.905		<0.605	<7.857 <6.24E-08
TOTAL PCDF	41.161		13.082	169.765 1.35E-06
TOTAL PCDD & PCDF			28.223	366.261 2.91E-06

FACILITY: Babylon Resource Recovery, Unit 1

DATE: 02-03-89

TIME: 856-1207

RUN: 3

COMPOUND	@ O' C		DRY	
	STACK NM3/S	METER NM3	%CO2	%O2
	18.9	4.65	8.4	11.2
2378 TCDD	< 0.077		< 0.024	< 0.313 < 2.48E-09
TOTAL TCDD	1.793		0.551	7.288 5.78E-08
12378 PCDD	0.311		0.096	1.264 1.00E-08
TOTAL PCDD	6.112		1.878	24.842 1.97E-07
123478 HxCDD	< 0.244		< 0.075	< 0.992 < 7.87E-09
123678 HxCDD	1.212		0.372	4.926 3.91E-08
123789 HxCDD	1.289		0.396	5.239 4.16E-08
TOTAL HxCDD	14.198		4.362	57.708 4.58E-07
1234678 HpCDD	10.086		3.099	40.995 3.25E-07
TOTAL HpCDD	23.924		7.350	97.239 7.72E-07
TOTAL OCDD	< 7.554		< 2.321	< 30.703 < 2.44E-07
TOTAL PCDD	53.581		16.461	217.781 1.73E-06
2378 TCDF	3.393		1.042	13.791 1.09E-07
TOTAL TCDF	13.852		4.256	56.302 4.47E-07
12378 PCDF	< 0.709		< 0.218	< 2.882 < 2.29E-08
23478 PCDF	1.308		0.402	5.316 4.22E-08
TOTAL PCDF	12.173		3.740	49.477 3.93E-07
123478 HxCDF	2.681		0.824	10.897 8.65E-08
123678 HxCDF	1.17		0.359	4.755 3.77E-08
234678 HxCDF	2.115		0.650	8.596 6.82E-08
123789 HxCDF	< 0.113		< 0.035	< 0.459 < 3.65E-09
TOTAL HxCDF	12.614		3.875	51.270 4.07E-07
1234678 HpCDF	5.11		1.570	20.770 1.65E-07
1234789 HpCDF	< 0.573		< 0.176	< 2.329 < 1.85E-08
TOTAL HpCDF	7.984		2.453	32.451 2.58E-07
TOTAL OCDF	2.02		0.621	8.210 6.52E-08
TOTAL PCDF	48.643		14.944	197.710 1.57E-06
TOTAL PCDD & PCDF			31.405	415.491 3.30E-06

FACILITY: Babylon Resource Recovery
 DATE: 02-02-89, 02-03-89
 UNIT: Unit 1

METHOD: SW-846 Method 0010 @ 68° F	RUN #	1	2	3
	DATE:	02-02-89	02-02-89	02-03-89
	FROM:	830	1618	856
	TO:	1229	1923	1207
Vm (dry gas sampled, dcf).....	57.39	168.36	177.22	
Y (meter calib. factor).....	1.01	1.01	1.01	
P bar (Barometric pressure, in. Hg).....	30.01	30.01	30.05	
P static (stack pressure, " H2O).....	-0.60	-0.60	-1.00	
Delta H (differential meter press, " H2O)....	0.3	3.4	3.3	
Tm (meter temperature, R').....	540	552	543	
Vol H2O mls	216.8	625.0	720.2	

Vm(std), dscf @ 68° F	56.9	164.5	176.2	
Vm(std), Nm3 @ 32° F	1.50	4.34	4.65	

Bws-H2O vapor	0.152	0.152	0.161	
MF-moisture factor	0.848	0.848	0.839	

% CO2	8.7	8.7	8.4	
% O2	10.9	10.9	11.2	
% N2	80.4	80.4	80.4	

Md-MW stk gas,dry	29.83	29.83	29.79	
Ms-MW stk gas,wet	28.03	28.04	27.89	

Cp-pitot tube	0.84	0.84	0.84	
Avg sq rt 'p	0.94	0.95	1.02	
T stack, R'.....	762	759	771	
Stack area,ft2	17.72	17.72	17.72	

Vs-fps	64.2	64.8	70.1	
Qstd-dscfm	40200	40700	42900	
Qstd-Nm3/sec at 32° F	17.7	17.9	18.9	

Area noz,ft2	1.42E-04	4.08E-04	4.08E-04	
Sample time	180	180	180	

% Isokinetic	98	97	99	

H. PAH AND PCB

H. 1. Summary of Emissions: PAH

Average PAH Emissions	$\mu\text{g}/\text{Nm}^3$ @ 12% CO_2	lb/hr	g/s
Naphthalene	<1.17E-00	<1.19E-04	<1.50E-05
2-Methylnaphthalene	<2.60E-01	<2.67E-05	<3.36E-06
2-Chloronaphthalene	<2.46E-01	<2.52E-05	<3.18E-06
Acenaphthylene	<1.69E-01	<1.80E-05	<2.19E-06
Acenaphthene	<2.50E-01	<2.57E-05	<3.23E-06
Fluorene	<2.58E-01	<2.65E-05	<3.35E-06
Phenanthrene	<1.99E-01	<2.05E-05	<2.58E-06
Anthracene	<2.27E-01	<2.33E-05	<2.93E-06
Fluoranthene	<2.28E-01	<2.34E-05	<2.95E-06
Pyrene	<2.39E-01	<2.46E-05	<3.10E-06
Benzo (a) anthracene	<3.14E-01	<3.24E-05	<4.08E-06
Chrysene	<2.74E-01	<2.82E-05	<3.55E-06
Benzo (b) fluoranthene	<3.89E-01	<4.00E-05	<5.03E-06
Benzo (k) fluoranthene	<3.21E-01	<3.29E-05	<4.15E-06
Benzo (a) pyrene	<4.42E-01	<4.54E-05	<5.71E-06
Indeno (1,2,3-CD) pyrene	<8.57E-01	<8.77E-05	<1.11E-05
Dibenz (a,h) anthracene	<9.75E-01	<1.00E-04	<1.26E-05
Benzo (g,h,i) perylene	<8.07E-01	<8.26E-05	<1.04E-05
Total	<7.63E-01	<7.82E-04	<9.84E-05

Babylon Resource Recovery
 Date: 02/02/89
 Unit: 1
 Time: 0830-1229

@ 0°C		Dry	
Stack Nm ³ /s	Meter Nm ³	% CO ₂	% O ₂
17.7	1.50	8.7	10.9

Run 1: PAH

PAH	μg detected	μg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Naphthalene	<2.336	<2.15E-00	<2.19E-04	<2.76E-05
2-Methylnaphthalene	<0.385	<3.55E-01	<3.61E-05	<4.55E-06
2-Chloronaphthalene	<0.465	<4.28E-01	<4.35E-05	<5.49E-06
Acenaphthylene	<0.320	<2.94E-01	<3.00E-05	<3.78E-06
Acenaphthene	<0.473	<4.35E-01	<4.43E-05	<5.58E-06
Fluorene	<0.487	<4.48E-01	<4.56E-05	<5.75E-06
Phenanthrene	<0.384	<3.53E-01	<3.60E-05	<4.53E-06
Anthracene	<0.435	<4.00E-01	<4.07E-05	<5.13E-06
Fluoranthene	<0.438	<4.03E-01	<4.10E-05	<5.17E-06
Pyrene	<0.422	<3.88E-01	<3.95E-05	<4.98E-06
Benzo (a) anthracene	<0.555	<5.10E-01	<5.20E-05	<6.55E-06
Chrysene	<0.483	<4.44E-01	<4.52E-05	<5.70E-06
Benzo (b) fluoranthene	<0.755	<6.94E-01	<7.07E-05	<8.91E-06
Benzo (k) fluoranthene	<0.622	<5.72E-01	<5.83E-05	<7.34E-06
Benzo (a) pyrene	<0.858	<7.89E-01	<8.04E-05	<1.01E-05
Indeno (1,2,3-CD) pyrene	<1.660	<1.53E-00	<1.55E-04	<1.96E-05
Dibenz (a,h) anthracene	<1.891	<1.74E-00	<1.77E-04	<2.23E-05
Benzo (g,h,i) perylene	<1.563	<1.44E-00	<1.46E-04	<1.84E-05
Total	<14.533	<1.34E+01	<1.36E-03	<1.71E-04

Babylon Resource Recovery
 Date: 02/02/89
 Unit: 1
 Time: 1618-1923

@ 0 °C		Dry	
Stack Nm ³ /s	Meter Nm ³	% CO ₂	% O ₂
17.9	4.34	8.7	10.9

Run 2: PAH

PAH	μ detected	μg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Naphthalene	<3.879	<1.23E-00	<1.27E-04	<1.60E-05
2-Methylnaphthalene	<0.760	<2.42E-01	<2.49E-05	<3.13E-06
2-Chloronaphthalene	<0.465	<1.48E-01	<1.52E-05	<1.92E-06
Acenaphthylene	<0.319	<1.01E-01	<1.04E-05	<1.32E-06
Acenaphthene	<0.473	<1.50E-01	<1.55E-05	<1.95E-06
Fluorene	<0.487	<1.55E-01	<1.59E-05	<2.01E-06
Phenanthrene	<0.384	<1.22E-01	<1.26E-05	<1.58E-06
Anthracene	<0.446	<1.42E-01	<1.46E-05	<1.84E-06
Fluoranthene	<0.449	<1.43E-01	<1.47E-05	<1.85E-06
Pyrene	<0.410	<1.30E-01	<1.34E-05	<1.69E-06
Benzo (a) anthracene	<0.539	<1.71E-01	<1.76E-05	<2.22E-06
Chrysene	<0.470	<1.49E-01	<1.54E-05	<1.94E-06
Benzo (b) fluoranthene	<0.880	<2.80E-01	<2.88E-05	<3.63E-06
Benzo (k) fluoranthene	<0.725	<2.30E-01	<2.37E-05	<2.99E-06
Benzo (a) pyrene	<1.000	<3.18E-01	<3.27E-05	<4.12E-06
Indeno (1,2,3-CD) pyrene	<1.936	<6.15E-01	<6.34E-05	<7.98E-06
Dibenz (a,h) anthracene	<2.205	<7.01E-01	<7.22E-05	<9.09E-06
Benzo (g,h,i) perylene	<1.822	<5.79E-01	<5.96E-05	<7.51E-06
Total	<17.649	<5.61E-00	<5.78E-04	<7.28E-05

Babylon Resource Recovery
 Date: 02/03/89
 Unit: 1
 Time: 0856-1207

@ 0 °C		Dry	
Stack Nm ³ /s	Meter Nm ³	%CO ₂	%O ₂
18.9	4.65	8.4	11.2

Run 3: PAH

PAH	μ detected	μg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Naphthalene	<0.377	<1.16E-01	<1.22E-05	<1.53E-06
2-Methylnaphthalene	<0.594	<1.82E-01	<1.92E-05	<2.41E-06
2-Chloronaphthalene	<0.525	<1.61E-01	<1.69E-05	<2.13E-06
Acenaphthylene	<0.361	<1.11E-01	<1.37E-05	<1.47E-06
Acenaphthene	<0.534	<1.64E-01	<1.72E-05	<2.17E-06
Fluorene	<0.560	<1.72E-01	<1.81E-05	<2.28E-06
Phenanthrene	<0.398	<1.22E-01	<1.28E-05	<1.62E-06
Anthracene	<0.450	<1.38E-01	<1.45E-05	<1.83E-06
Fluoranthene	<0.453	<1.39E-01	<1.46E-05	<1.84E-06
Pyrene	<0.649	<1.99E-01	<2.09E-05	<2.64E-06
Benzo (a) anthracene	<0.854	<2.62E-01	<2.75E-05	<3.47E-06
Chrysene	<0.743	<2.28E-01	<2.40E-05	<3.02E-06
Benzo (b) fluoranthene	<0.631	<1.94E-01	<2.04E-05	<2.56E-06
Benzo (k) fluoranthene	<0.520	<1.60E-01	<1.68E-05	<2.11E-06
Benzo (a) pyrene	<0.717	<2.20E-01	<2.31E-05	<2.91E-06
Indeno (1,2,3-CD) pyrene	<1.386	<4.26E-01	<4.47E-05	<5.63E-06
Dibenz (a,h) anthracene	<1.579	<4.85E-01	<5.09E-05	<6.42E-06
Benzo (g,h,i) perylene	<1.305	<4.01E-01	<4.21E-05	<5.30E-06
Total	<12.636	<3.88E-00	<4.08E-04	<5.14E-05

H. 2. Summary of Emissions: PCB

Average Emissions (Unit 1, Runs 1-3)			
	μg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Total Mono PCB	<9.91E-03	<1.02E-06	<1.2E-07
Total Di PCB	<9.50E-03	<9.75E-07	<1.23E-07
Total Tri PCB	<1.06E-00	<1.08E-04	<1.36E-05
Total Tetra PCB	<3.91E-02	<4.02E-06	<5.07E-07
Total Penta PCB	<1.81E-02	<1.86E-06	<2.35E-07
Total Hexa PCB	<2.15E-02	<2.22E-06	<2.79E-07
Total Hepta PCB	<1.63E-02	<1.67E-06	<2.11E-07
Total Octa PCB	<2.13E-02	<2.20E-06	<2.76E-07
Total Nona PCB	<2.01E-02	<2.07E-06	<2.61E-07
Total Deca PCB	<2.01E-02	<2.07E-06	<2.61E-07
Total PCB	<1.24E-00	<1.27E-04	<1.06E-05

Babylon Resource Recovery Facility
 Date: 02/02/89
 Unit: 1
 Time: 0830-1229

@ 0°C		Dry	
Stack Nm ³ /s	Meter Nm ³	%CO ₂	%O ₂
17.7	1.50	8.7	10.9

Run 1: PCB

Parameter	μg detected	μg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Total Mono PCB	<0.018	<1.66E-02	<1.69E-06	<2.12E-07
Total Di PCB	<0.018	<1.66E-02	<1.69E-06	<2.12E-07
Total Tri PCB	<2.105	<1.94E-00	<1.97E-04	<2.48E-05
Total Tetra PCB	<0.064	<5.89E-02	<5.99E-06	<7.55E-07
Total Penta PCB	<0.033	<3.03E-02	<3.09E-06	<3.89E-07
Total Hexa PCB	<0.037	<3.40E-02	<3.47E-06	<4.36E-07
Total Hepta PCB	<0.028	<2.57E-02	<2.62E-06	<3.30E-07
Total Octa PCB	<0.037	<3.40E-02	<3.47E-06	<4.36E-07
Total Nona PCB	<0.035	<3.22E-02	<3.28E-06	<4.13E-07
Total Deca PCB	<0.035	<3.22E-02	<3.28E-06	<4.13E-07
Total PCB	<2.411	<2.22E-00	<2.26E-04	<2.84E-05

Babylon Resource Recovery Facility

Date: 02/02/89

Unit: 1

Time: 1618-1923

@ 0°C		Dry	
Stack Nm ³ /s	Meter Nm ³	%CO ₂	%O ₂
17.9	4.34	8.7	10.9

Run 2: PCB

Parameter	μg detected	μg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Total Mono PCB	<0.022	<6.99E-03	<7.20E-07	<9.07E-08
Total Di PCB	<0.020	<6.36E-03	<6.55E-07	<8.25E-08
Total Tri PCB	<3.187	<1.01E-00	<1.04E-04	<1.31E-05
Total Tetra PCB	<0.102	<3.24E-02	<3.34E-06	<4.21E-07
Total Penta PCB	<0.040	<1.27E-02	<1.31E-06	<1.65E-07
Total Hexa PCB	<0.050	<1.59E-02	<1.64E-06	<2.06E-07
Total Hepta PCB	<0.037	<1.18E-02	<1.21E-06	<1.53E-07
Total Octa PCB	<0.048	<1.53E-02	<1.57E-06	<1.98E-07
Total Nona PCB	<0.045	<1.43E-02	<1.47E-06	<1.86E-07
Total Deca PCB	<0.045	<1.43E-02	<1.47E-06	<1.86E-07
Total PCB	<3.641	<1.16E-00	<1.19E-04	<1.50E-05

Babylon Resource Recovery Facility
 Date: 02/03/89
 Unit: 1
 Time: 0856-1207

@ 0°C		Dry	
Stack Nm ³ /s	Meter Nm ³	%CO ₂	%O ₂
18.9	4.65	8.4	11.2

Run 3: PCB

Parameter	μg detected	μg/Nm ³ @ 12% CO ₂	lbs/hr	g/s
Total Mono PCB	<0.020	<6.14E-03	<6.45E-07	<8.13E-08
Total Di PCB	<0.018	<5.53E-03	<5.81E-07	<7.32E-08
Total Tri PCB	<0.714	<2.19E-01	<2.30E-05	<2.90E-06
Total Tetra PCB	<0.085	<2.61E-02	<2.74E-06	<3.45E-07
Total Penta PCB	<0.037	<1.14E-02	<1.19E-06	<1.50E-07
Total Hexa PCB	<0.048	<1.47E-02	<1.55E-06	<1.95E-07
Total Hepta PCB	<0.037	<1.14E-02	<1.19E-06	<1.50E-07
Total Octa PCB	<0.048	<1.47E-02	<1.55E-06	<1.95E-07
Total Nona PCB	<0.045	<1.38E-02	<1.45E-06	<1.83E-07
Total Deca PCB	<0.045	<1.38E-02	<1.45E-06	<1.83E-07
Total PCB	<1.097	<3.37E-01	<3.54E-05	<4.46E-06

X. OPERATIONAL DATA DURING EMISSION TESTING

I. 1. Steam and Temperature Data During Test Programs

Date	Time	Unit	Location: I=Inlet O=Outlet	Method	Run	Steam	Steam	Steam	Temp.
						Flow 1000 lbs/hr	Temp. °F	Pres. psig	Top Of 1st Pass °F
01/31/89	1348-1603	2	O	U.S. EPA 12/101A	2	88	676	610	1600
01/31/89	1610-1824	2	O	U.S. EPA 12/101A	3	87	679	605	1590
02/01/89	0900-1212	2	O	U.S. EPA 104	1	86	682	604	1595
02/01/89	1013-1223	2	O	U.S. EPA 12/101A	4	86	681	603	1590
02/01/89	1424-1735	2	O	U.S. EPA 104	2	85	682	603	1555
02/02/89	0830-1229	1	O	SW-846 0010	1	86	649	600	1470
02/02/89	0913-1250	2	O	U.S. EPA 104	3	86	696	600	1560
02/02/89	1618-1923	1	O	SW-846 0010	2	87	658	600	1490
02/03/89	0856-1207	1	O	SW-846 0010	3	86	674	620	1490
02/07/89	1345-1445	1	O	U.S. EPA 6C, 7E, 3A, 10	1	88	658	640	1500
02/07/89	1345-1445	1	I	U.S. EPA 6C, 3A	1	88	658	640	1500
02/07/89	1345-1450	1	I	U.S. EPA Modified 6	1	88	658	640	1500
02/07/89	1349-1455	1	O	U.S. EPA 5	1	88	658	640	1500
02/07/89	1540-1640	1	O	U.S. EPA 6C, 7E, 3A, 10	2	86	650	640	1500
02/07/89	1540-1640	1	I	U.S. EPA 6C, 3A	2	86	650	640	1500
02/07/89	1540-1659	1	I	U.S. EPA Modified 6	2	86	650	640	1500
02/07/89	1542-1654	1	O	U.S. EPA 5	2	86	650	640	1500
02/08/89	0845-0945	1	O	U.S. EPA 6C, 7E, 3A, 10	3	89	672	640	1525
02/08/89	0845-0945	1	I	U.S. EPA 6C, 3A	3	89	672	640	1525
02/08/89	0845-0953	1	O	U.S. EPA 5	3	89	672	640	1525
02/08/89	0845-0955	1	I	U.S. EPA Modified 6	3	89	672	640	1525
02/08/89	1149-1254	2	O	U.S. EPA 5	1	86	701	633	1510
02/08/89	1150-1250	2	O	U.S. EPA 6C, 7E, 3A, 10	1	86	701	633	1510
02/08/89	1150-1250	2	I	U.S. EPA 6C, 3A	1	86	701	633	1510
02/08/89	1151-1250	2	I	U.S. EPA Modified 6	1	86	701	633	1510
02/08/89	1340-1440	2	O	U.S. EPA 6C, 7E, 3A, 10	2	88	702	640	1535
02/08/89	1340-1440	2	I	U.S. EPA 6C, 3A	2	88	702	640	1535
02/08/89	1340-1450	2	I	U.S. EPA Modified 6	2	88	702	640	1535
02/08/89	1341-1445	2	O	U.S. EPA 5	2	88	702	640	1535
02/08/89	1530-1630	2	O	U.S. EPA 6C, 7E, 3A, 10	3	87	700	640	1550
02/08/89	1530-1635	2	I	U.S. EPA Modified 6	3	87	700	640	1550
02/08/89	1530-1635	2	O	U.S. EPA 5	3	87	700	640	1550

Continued...

I. 1. Steam and Temperature Data During Test Program (continued)

Date	Time	Unit	Location: I=Inlet O=Outlet	Method	Run*	Steam	Steam	Steam	Temp.**
						Flow 1000 lbs/hr			Top Of 1st Pass °F
02/09/89	0930-1030	1	O	U.S. EPA 6C, 7E, 3A, 10	1R	60	612	634	1415
02/09/89	0930-1030	1	I	U.S. EPA 6C, 3A	1R	60	612	634	1415
02/09/89	0930-1036	1	O	U.S. EPA 5	1R	60	612	634	1415
02/09/89	0935-1035	1	I	U.S. EPA Modified 6	1R	60	612	634	1415
02/09/89	1140-1245	1	I	U.S. EPA Modified 6	2R	60	618	640	1450
02/09/89	1144-1249	1	O	U.S. EPA 5	2R	60	618	640	1450
02/09/89	1200-1300	1	O	U.S. EPA 6C, 7E, 3A, 10	2R	60	618	640	1450
02/09/89	1200-1300	1	I	U.S. EPA 6C, 3A	2R	60	618	640	1450
02/09/89	1401-1503	1	I	U.S. EPA Modified 6	3R	60	620	640	1415
02/09/89	1403-1508	1	O	U.S. EPA 5	3R	60	620	640	1415
02/09/89	1405-1505	1	O	U.S. EPA 6C, 7E, 3A, 10	3R	60	620	640	1415
02/09/89	1405-1505	1	I	U.S. EPA 6C, 3A	3R	60	620	640	1415

* "R" after run number indicates testing done at 70% of full load

** Temperature measurements taken with an unshielded thermocouple, i.e., temperature values reported here are lower than actual temperature.

I. 2. Acid Gas Control Data During Test Program

Date	Time	Unit	Location: I=Inlet O=Outlet	Method	Run	Economizer		Spray Dryer	Baghouse	Lime Slurry
						Outlet	Temp. °F	Outlet Temp. °F	Temp. °F	Feed Rate lbs/hr
01/31/89	1348-1603	2	O	U.S. EPA 12/101A	2	494	317	307	538	
01/31/89	1610-1824	2	O	U.S. EPA 12/101A	3	498	316	307	527	
02/01/89	0900-1212	2	O	U.S. EPA 104	1	493	318	307	596	
02/01/89	1013-1223	2	O	U.S. EPA 12/101A	4	493	319	306	708	
02/01/89	1424-1735	2	O	U.S. EPA 104	2	494	326	315	467	
02/02/89	0830-1229	1	O	SW-846 0010	1	441	315	308	322	
02/02/89	0913-1250	2	O	U.S. EPA 104	3	435	312	302	538	
02/02/89	1618-1923	1	O	SW-846 0010	2	458	313	303	315	
02/03/89	0856-1207	1	O	SW-846 0010	3	478	322	312	204	
02/07/89	1345-1445	1	O	U.S. EPA 6C, 7E, 3A, 10	1	449	317	305	414	
02/07/89	1345-1445	1	I	U.S. EPA 6C, 3A	1	449	317	305	414	
02/07/89	1345-1450	1	I	U.S. EPA Modified 6	1	449	317	305	414	
02/07/89	1349-1455	1	O	U.S. EPA 5	1	449	317	305	414	
02/07/89	1540-1640	1	O	U.S. EPA 6C, 7E, 3A, 10	2	448	318	304	508	
02/07/89	1540-1640	1	I	U.S. EPA 6C, 3A	2	448	318	304	508	
02/07/89	1540-1659	1	I	U.S. EPA Modified 6	2	448	318	304	508	
02/07/89	1542-1654	1	O	U.S. EPA 5	2	448	318	304	508	
02/08/89	0845-0945	1	O	U.S. EPA 6C, 7E, 3A, 10	3	466	314	307	465	
02/08/89	0845-0945	1	I	U.S. EPA 6C, 3A	3	466	314	307	465	
02/08/89	0845-0953	1	O	U.S. EPA 5	3	466	314	307	465	
02/08/89	0845-0955	1	I	U.S. EPA Modified 6	3	466	314	307	465	
02/08/89	1149-1254	2	O	U.S. EPA 5	1	460	316	308	283	
02/08/89	1150-1250	2	O	U.S. EPA 6C, 7E, 3A, 10	1	460	316	308	283	
02/08/89	1150-1250	2	I	U.S. EPA 6C, 3A	1	460	316	308	283	
02/08/89	1151-1250	2	I	U.S. EPA Modified 6	1	460	316	308	283	
02/08/89	1340-1440	2	O	U.S. EPA 6C, 7E, 3A, 10	2	465	318	308	359	
02/08/89	1340-1440	2	I	U.S. EPA 6C, 3A	2	465	318	308	359	
02/08/89	1340-1450	2	I	U.S. EPA Modified 6	2	465	318	308	359	
02/08/89	1341-1445	2	O	U.S. EPA 5	2	465	318	308	359	
02/08/89	1530-1630	2	O	U.S. EPA 6C, 7E, 3A, 10	3	369	314	305	507	
02/08/89	1530-1630	2	I	U.S. EPA 6C, 3A	3	369	314	305	507	
02/08/89	1530-1635	2	O	U.S. EPA 5	3	369	314	305	507	
02/08/89	1530-1635	2	I	U.S. EPA Modified 6	3	369	314	305	507	

Continued...

I. 2. Acid Gas Control Data During Test Program (continued)

Date	Time	Unit	Location: I=Inlet	Method	Run*	Economizer		Spray	Baghouse		Lime
						Outlet	Outlet	Temp. °F	Temp. °F	Temp. °F	Feed Rate lbs/hr
02/09/89	0930-1030	1	O	U.S. EPA 6C, 7E, 3A, 10	1R	395		301	283	153	
02/09/89	0930-1030	1	I	U.S. EPA 6C, 3A	1R	395		301	283	153	
02/09/89	0930-1036	1	O	U.S. EPA 5	1R	395		301	283	153	
02/09/89	0935-1035	1	I	U.S. EPA Modified 6	1R	395		301	283	153	
02/09/89	1140-1245	1	I	U.S. EPA Modified 6	2R	417		305	290	185	
02/09/89	1144-1249	1	O	U.S. EPA 5	2R	417		305	290	185	
02/09/89	1200-1300	1	O	U.S. EPA 6C, 7E, 3A, 10	2R	417		305	290	185	
02/09/89	1200-1300	1	I	U.S. EPA 6C, 3A	2R	417		305	290	185	
02/09/89	1401-1503	1	I	U.S. EPA Modified 6	3R	406		302	284	211	
02/09/89	1403-1508	1	O	U.S. EPA 5	3R	406		302	284	211	
02/09/89	1405-1505	1	O	U.S. EPA 6C, 7E, 3A, 10	3R	406		302	284	211	
02/09/89	1405-1505	1	I	U.S. EPA 6C, 3A	3R	406		302	284	211	

* "R" after run number indicates testing done at 70% of full load

J. METHODOLOGY

J. 1. References

Parameter	Test Method	Reference
CO ₂	U.S. EPA Method 3A	40CFR60, App. A, 1987.
TSP/HCl	U.S. EPA Method 5	40CFR60, App. A, 1987.
HCl	U.S. EPA Mod. Method 6	40CFR60, App. A, 1987.
SO ₂	U.S. EPA Method 6C	40CFR60, App. A, 1987.
NO _x	U.S. EPA Method 7E	40CFR60, App. A, 1987.
CO	U.S. EPA Method 10	40CFR60, App. A, 1987.
Heavy Metals	U.S. EPA Method 12/101A	40CFR60, App. A, 1987.
Be	U.S. EPA Method 104	40CFR60, App. B, 1987.
Dioxin/Furan, PAH, PCB	U.S. EPA Method 0010	SW-846, Test Methods for Evaluating Solid Waste, 1986.

Calculations - Particulate Emissions

Compound:	Total Suspended Particulate
Analysis:	Gravimetric
Analysis Parameter:	(x)mg
Meter Volume (VmSTD):	(y)dscf at 68°F, 29.92 "Hg
Standard Reported Concentration:	grains/dscf at 12% CO ₂

$$\boxed{\text{grains/dscf @ 12% CO}_2} = \frac{(x)\text{mg}}{(y)\text{dscf}} * \frac{12\% \text{ CO}_2}{(i)\% \text{ CO}_2} * \frac{\text{gram}}{1000 \text{ mg}} * \frac{15.432 \text{ grains}}{\text{gram}}$$

$$\boxed{\text{lbs/hr}} = \frac{(x)\text{mg}}{(y)\text{dscf}} * \frac{(z)\text{dscf}}{\text{min}} * \frac{60 \text{ min}}{\text{hr}} * \frac{\text{gram}}{1000 \text{ mg}} * \frac{\text{lb}}{453.6 \text{ grams}}$$

(z) dscf is calculated from U.S. EPA Method 5 test.

(i) % CO₂ is measured during U.S. EPA Method 5 test.

Calculations - Hydrogen Chloride Emissions

Compound:	Hydrogen Chloride (HCl)
Analysis:	Standard Titration
Analysis Parameter:	(x) mg
Meter Volume (VmSTD):	Nm ³ @ 0°C and 760mm Hg
Standard Reported Concentration:	mg/Nm ³ @ 12% CO ₂ and ppmdv @ 12% CO ₂

$$(Y) \text{Nm}^3 @ 0^\circ\text{C (VmSTD)} = (y) \text{dscf} @ 68^\circ\text{F} * \frac{492^\circ\text{R}}{528^\circ\text{R}} * \frac{\text{M}^3}{35.314 \text{ dscf}}$$

$$(Z) \text{dscf} @ 68^\circ\text{F} = \frac{\text{min}}{\text{min}} * \frac{492^\circ\text{R}}{528^\circ\text{R}} * \frac{\text{M}^3}{35.314 \text{ dscf}} * \frac{\text{min}}{60 \text{ sec}}$$

$$(X) \text{mg/Nm}^3 @ 12\% \text{CO}_2 = \frac{(x) \text{mg}}{(Y) \text{Nm}^3 @ 0^\circ\text{C}} * \frac{12\% \text{CO}_2}{(i)\% \text{CO}_2}$$

$$\text{ppmdv @ 12\% CO}_2 = \frac{(X) \text{mg} @ 12\% \text{CO}_2}{\text{Nm}^3} * \frac{\text{M}^3}{35.314 \text{ dscf}} * \frac{0.7916 \text{ dscf} @ 0^\circ\text{C}}{\text{mole (gm)}} * \frac{\text{gram}}{1000 \text{ mg}} * \frac{1}{\text{mw}} * \frac{10^6 \mu \text{mole}}{\text{mole}}$$

Where HCl molecular weight = 36.5 grams/mole

$$\text{lbs/hr} = \frac{(x) \text{mg}}{(Y) \text{Nm}^3 @ 0^\circ\text{C}} * \frac{\text{M}^3 @ 0^\circ\text{C}}{\text{sec}} * \frac{3600 \text{ sec}}{\text{hr}} * \frac{\text{grams}}{1000 \text{ mg}} * \frac{\text{lb}}{453.6 \text{ grams}}$$

(y) dscf @ 68°F is calculated from U.S. EPA Method 5 test.

(z)dscf/min is calculated from U.S. EPA Method 5 test.

(i)% CO₂ is measured during U.S. EPA Method 5 test.

Calculations - Sulfur Dioxide Emissions

Compound:	Sulfur Dioxide (SO ₂)
Analysis:	Pulsed Fluorescent Analyzer
Analysis Parameter:	(x) ppmdv
Standard Reported Concentration:	ppmdv @ 12% CO ₂

$$\boxed{\text{ppmdv @ 12% CO}_2} = (x) \text{ppmdv} * \frac{12\% \text{ CO}_2}{(i)\% \text{ CO}_2}$$

$$\boxed{\text{lbs/hr}} = (x) \text{ppmdv} * \frac{(z) \text{dscf}}{\text{min}} * \text{molecular weight} * 1.557 \times 10^{-7} @ 68^\circ\text{F}$$

Where SO₂ molecular weight = 64 grams/mole

(z) dscf is calculated using U.S. EPA Methodology.

(i) % CO₂ is measured during U.S. EPA Method 6C test.

Calculations - Oxides of Nitrogen Emissions

Compound:	Oxides of Nitrogen as (NO ₂)
Analysis:	Chemiluminescent Analyzer
Analysis Parameter:	(x) ppmdv
Standard Reported Concentration:	ppmdv @ 12% CO ₂

$$\boxed{\text{ppmdv @ 12% CO}_2} = (x) \text{ppmdv} * \frac{12\% \text{ CO}_2}{(i)\% \text{ CO}_2}$$

$$\boxed{\text{lbs/hr}} = (x) \text{ppmdv} * \frac{(z) \text{dscf}}{\text{min}} * \text{molecular weight} * 1.557 \times 10^{-7} @ 68^\circ\text{F}$$

Where NO_x molecular weight = 46 grams/mole

(z) dscf is calculated using U.S. EPA Methodology.

(i) % CO₂ is measured during U.S. EPA Method 7 test.

Calculations - Carbon Monoxide Emissions

Compound:	Carbon Monoxide (CO)
Analysis:	Gas Filter Correlation
Analysis Parameter:	(x) ppmdv
Standard Reported Concentration:	ppmdv @ 12% CO ₂

$$\boxed{\text{ppmdv @ 12% CO}_2} = (x) \text{ppmdv} * \frac{12\% \text{ CO}_2}{(i)\% \text{ CO}_2}$$

$$\boxed{\text{lbs/hr}} = (x) \text{ppmdv} * \frac{(z) \text{dscf}}{\text{min}} * \text{molecular weight} * 1.557 \times 10^{-7} @ 68^\circ\text{F}$$

Where CO molecular weight = 28 grams/mole

(z) dscf/min is calculated using U.S. EPA Methodology.

(i) % CO₂ is measured during U.S. EPA Method 10 test.

Calculations - Beryllium Emissions

Compound:	Be
Analysis:	Atomic Absorption Spectroscopy
Analysis Parameter:	(x)
Meter Volume (VmSTD):	(Y) Nm ³ @ 0°C and 760mm Hg
Standard Reported Concentration:	mg/Nm ³ @ 12% CO ₂

$$(Y) \text{Nm}^3 @ 0^\circ\text{C (VmSTD)} = (y) \text{dscf} @ 68^\circ\text{F} * \frac{492^\circ\text{R}}{528^\circ\text{R}} * \frac{\text{M}^3}{35.314 \text{ dscf}}$$

(z) dscf

$$(Z) \text{Nm}^3/\text{sec} @ 0^\circ\text{C} = \frac{\text{@ } 68^\circ\text{F}}{\text{min}} * \frac{492^\circ\text{R}}{528^\circ\text{R}} * \frac{\text{M}^3}{35.314 \text{ dscf}} * \frac{\text{min}}{60 \text{ sec}}$$

$$\text{mg/Nm}^3 @ 12\% \text{CO}_2 = \frac{(x) \text{mg}}{(Y) \text{Nm}^3 @ 0^\circ\text{C}} * \frac{12\% \text{CO}_2}{(i)\% \text{CO}_2}$$

$$\text{lbs/hr} = \frac{(x) \text{mg}}{(Y) \text{Nm}^3 @ 0^\circ\text{C}} * \frac{(Z) \text{Nm}^3 @ 0^\circ\text{C}}{\text{sec}} * \frac{3600 \text{ sec}}{\text{hr}} * \frac{\text{grams}}{1000 \text{ mg}} * \frac{\text{lb}}{453.6 \text{ grams}}$$

(y) dscf @ 68°F is calculated from U.S. EPA Method 104 test.

(z) dscf/min is calculated from U.S. EPA Method 104 test.

(i)% CO₂ is measured during U.S. EPA Method 104 test.

Calculations - Metals Emissions

Compound:	As, Cd, Cr, Hg, Ni
Analysis:	Atomic Absorption Spectroscopy
Analysis Parameter:	(x)mg
Meter Volume (VmSTD):	(Y)Nm ³ @ 0°C and 760mm Hg, or (Y)dscf @ 68°F and 29.92" Hg
Standard Reported Concentration:	mg/Nm ³ @ 12% CO ₂ , or gr/dscf @ 12% CO ₂

$$(Y) \text{Nm}^3 @ 0^\circ\text{C (VmSTD)} = (y) \text{dscf} @ 68^\circ\text{F} * \frac{492^\circ\text{R}}{528^\circ\text{R}} * \frac{\text{M}^3}{35.314 \text{ dscf}}$$

$$(z) \text{dscf} = \frac{\text{@ } 68^\circ\text{F}}{\text{min}} * \frac{492^\circ\text{R}}{528^\circ\text{R}} * \frac{\text{M}^3}{35.314 \text{ dscf}} * \frac{\text{min}}{60 \text{ sec}}$$

$$\text{mg/Nm}^3 @ 12\% \text{ CO}_2 = \frac{(x) \text{mg}}{(Y) \text{Nm}^3 @ 0^\circ\text{C}} * \frac{12\% \text{ CO}_2}{(i)\% \text{ CO}_2}$$

$$\text{lbs/hr} = \frac{(x) \text{mg}}{(Y) \text{Nm}^3 @ 0^\circ\text{C}} * \frac{(Z) \text{Nm}^3 @ 0^\circ\text{C}}{\text{sec}} * \frac{3600 \text{ sec}}{\text{hr}} * \frac{\text{grams}}{1000 \text{ mg}} * \frac{\text{lb}}{453.6 \text{ grams}}$$

$$\text{gr/dscf @ 12\% CO}_2 = \frac{(x) \text{mg}}{(Y) \text{dscf} @ 68^\circ\text{C}} * \frac{12\% \text{ CO}_2}{(i)\% \text{ CO}_2} * \frac{0.0154 \text{ gr}}{\text{mg}}$$

(y)dscf @ 68°F is calculated from U.S. EPA Method 12 test.

(z)dscf/min is calculated from U.S. EPA Method 12 test.

(i)% CO₂ is measured during U.S. EPA Method 12 test.

Calculations - Dioxin Emissions

Compound:	PCDD and PCDF isomers
Analysis:	GC, MS
Analysis Parameter:	(x) ng
Meter Volume (VmSTD):	Nm ³ @ 0°C and 760mm Hg
Standard Reported Concentration:	ng/Nm ³ @ 12% CO ₂

$$(Y) \text{Nm}^3 @ 0^\circ\text{C (VmSTD)} = (y) \text{dscf} @ 68^\circ\text{F} * \frac{492^\circ\text{R}}{528^\circ\text{R}} * \frac{\text{M}^3}{35.314 \text{ dscf}}$$

$$(Z) \text{Nm}^3/\text{sec} @ 0^\circ\text{C} = \frac{\text{min}}{\text{min}} * \frac{492^\circ\text{R}}{528^\circ\text{R}} * \frac{\text{M}^3}{35.314 \text{ dscf}} * \frac{\text{min}}{60 \text{ sec}}$$

$$(X) \text{ng/Nm}^3 @ 12\% \text{CO}_2 = \frac{(x) \text{ng}}{(Y) \text{Nm}^3 @ 0^\circ\text{C}} * \frac{12\% \text{CO}_2}{(i)\% \text{CO}_2}$$

$$\text{lbs/hr} = \frac{(x) \text{ng}}{(Y) \text{Nm}^3 @ 0^\circ\text{C}} * \frac{(Z) \text{Nm}^3 @ 0^\circ\text{C}}{\text{sec}} * \frac{(i) \text{CO}_2}{12} * \frac{3600 \text{ sec}}{\text{hr}} * \frac{\text{grams}}{109 \text{ ng}} * \frac{\text{lb}}{453.6 \text{ gm}}$$

(y)dscf @ 68°F is calculated from U.S. EPA Method 0010 test.

(z)dscf/min is calculated from U.S. EPA Method 0010 test.

(i)% CO₂ is measured during U.S. EPA Method 0010 test.

NOMENCLATURE

A	=	Cross-sectional area of stack (ft ²)
A_n	=	Cross-sectional area of nozzle, (ft ²)
B_{ws}	=	Proportion of water vapor, by volume, in the gas stream
C_p	=	Pitot tube coefficient, dimensionless
C_s	=	Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, (gr/dscf)
C_{SO_2}	=	Concentration of sulfur dioxide, dry basis
$C_{H_2SO_4}$	=	Sulfuric acid (including SO ₃) concentration, corrected to standard conditions (lg/dscf)
ΔH	=	Average pressure differential across the orifice meter, (in H ₂ O)
K_p	=	Pitot tube constant, 85.49 $\frac{\text{ft}}{\text{sec}} \left[\frac{(\text{lb/lb-mole})(\text{in Hg})}{(\text{OR}) (\text{in H}_2\text{O})} \right]^{\frac{1}{2}}$
L_p	=	Leakage rate observed during the post-test leak check, (cfm)
L_a	=	Maximum acceptable leakage rate, (0.02 cfm or 4% of averaging sampling rate, whichever is less)
L_i	=	Individual leakage rate observed during the leak check conducted prior to the "i"th component change, (cfm)
M_d	=	Molecular weight of stack gas, dry basis, (lb/lb-mole)
m_n	=	Total weight of particulate matter collected, mg.
M_s	=	Molecular weight of stack gas, wet basis, (lb/lb-mole)
M_w	=	Molecular weight of water, 18 lb/lb-mole
N	=	Normality of barium perchlorate titrant, (millequivalents/ml)
Δp	=	Velocity head of stack, (in H ₂ O)
P_{bar}	=	Barometric pressure at measurement site (in Hg)
P_g	=	Stack static pressure, (in Hg)
P_m	=	Absolute pressure at dry gas meter
P_s	=	Absolute stack gas pressure, (in Hg)
P_{std}	=	^{Standard} Absolute stack gas pressure, 29.92 in Hg

Q_{std}	=	Dry volumetric stack gas flow rate, standard conditions, (dscfm)
R	=	Ideal gas constant, 21.85 (in Hg) (ft^3)/(lb-mole) $(^{\circ}R)$
t_s	=	Stack temperature, ($^{\circ}F$)
T_m	=	Absolute temperature at meter, ($^{\circ}R$)
T_{std}	=	Standard Absolute temperature, ($5280^{\circ}R$)
T_s	=	Absolute stack temperature, ($460^{\circ} + t_s$)
V_a	=	Volume of sample aliquot titrated, (ml)
V_{ab}	=	Volume of acetone blank, ml
V_m	=	Dry gas volume measured by dry gas meter, (dcf)
$V_{m(std)}$	=	Dry gas volume measured by dry gas meter, corrected to standard conditions, (dscf)
$V_{w_c(std)}$	=	Volume of water vapor condensed corrected to standard conditions, (scf)
$V_{w_g(std)}$	=	Volume of water vapor collected in silica gel corrected to standard conditions (scf)
V_{1c}	=	Volume of water vapor condensed in impingers and silica gel, (ml)
V_f	=	Final volume of condensed water, ml
V_i	=	Initial volume of condensed water, ml
v_s	=	Average stack gas velocity, (ft/sec)
V_{soln}	=	Total volume of solution in which the sulfur dioxide sample is contained (ml)
V_t	=	Volume of barium perchlorate titrant used for the sample, (ml)
V_{tb}	=	Volume of barium perchlorate titrant used for the blank, (ml)
W_f	=	Final weight of silica gel or silica gel plus impinger, (g)
W_i	=	Initial weight of silica gel or silica gel plus impinger, (g)
Y	=	Dry gas meter calibration factor
ρ_w	=	Density of water, (0.00224 lb/ml at $68^{\circ}F$)
ρ_a	=	Density of acetone, (g/ml)(see bottle label)

MF	=	Moisture factor
%CO ₂	=	Percent CO ₂ by volume (dry basis)
%O ₂	=	Percent O ₂ by volume (dry basis)
%CO	=	Percent CO by volume (dry basis)
%CH ₄	=	Percent CH ₄ by volume (dry basis)
%N ₂	=	Percent N ₂ by volume (dry basis)
0.264	=	Ratio of O ₂ to N ₂ in air v/v
0.280	=	Molecular weight of N ₂ or CO, divided by 100
0.320	=	Molecular weight of O ₂ , divided by 100
0.440	=	Molecular weight of CO ₂ , divided by 100
60	=	Conversion factor, (sec/min)
18.0	=	Molecular weight of water, (lb/lb-mole)
32.03	=	Equivalent weight of sulfur dioxide
Θ	=	Total sampling time (min)
Θ ₁	=	Sampling time interval, from the run beginning until first component change, (min)
Θ _i	=	Sampling time interval, between two successive component changes, beginning with the interval between the first and second changes, (min)
Θ _p	=	Sampling time interval, from the final (n th) component change until the end of the sampling run, (min)

J. 4. Equipment

Continuous Emission Monitoring System Rented Clean Air Engineering

Sulfur Dioxide Analyzers	Model No. 721AT2 (Outlet) Model No. 721A (Outlet) Model No. 721A (Inlet)
	Western Research Division of Bow Valley Resources Services, Ltd. Calgary, Alberta, Canada (403) 291-1313
Oxides of Nitrogen Analyzer	Model No. 10AR
	Thermo Electron Corporation Instruments Division 108 South Street Hopkinton, MA 01748 (617) 525-0430
Carbon Monoxide Analyzer	Model No. 48
	Thermo Electron Corporation Instruments Division 108 South Street Hopkinton, MA 01748 (617) 525-0430
Carbon Dioxide Analyzer	Model No. PIR-2000 (Inlet) Model No. PIR-2000 (Outlet)
	Horiba Instruments 1021 Duryea Avenue Irvine, CA 92714 (714) 250-4811
Chart Recorder	Model No. DS-8404
	Soltec Corporation 12977 Arroyo Street San Fernando, CA 91340 (818) 365-0800

J. 5. Variations from the Source Test Plan

In addition to a change of order in which emissions tests were performed, the following is a list of variations from the Source Test Plan:

U.S. EPA Method 11/101A: Run 1 did not pass the final system leak check; therefore, an extra run was performed. Results of Runs 2, 3, and 4 are reported. The samples were analyzed for the following additional metals required for the health risk assessment: Antimony, Cobalt, Copper, Manganese, Selenium, Vanadium, and Zinc.

SW-846 Method 0010: PAH results are expressed as a list of individual compounds rather than as benzo-a-pyrene. The additive total of non-detectable levels is misleading and listing individual compounds portrays a clearer perception of the sensitivity of the analytical method.

U.S. EPA Methods 3A, 6C, and Modified 6 (Inlet)
U.S. EPA Methods 3A, 5, 6C, 7E, and 10 (Outlet)

Three additional one-hour runs were performed on Unit 1 while the facility was operating at 70% full capacity. These additional tests were performed to demonstrate compliance at reduced load operating conditions.

Removal efficiencies for HCl and SO₂ were calculated using ppm_d corrected to 12% CO₂. This was done to eliminate any possible dilution effects or flow disturbances associated with mass flow emission when sampled at the inlet. Subsequently, all mass emission rates presented for the inlet (uncontrolled emission) were generated using flow data obtained during simultaneous outlet (controlled emission) testing.

CEM equipment used for compliance testing was rented from Clean Air Engineering. Equipment manufacturers and model numbers are presented in Section J(4).

U.S. EPA Method 9:

Facility geometry and weather conditions made it impossible for NYSDEC to conduct visible emissions evaluations. However, the signed facility opacity excursion log sheets for the days that U.S. EPA Method 5 testing was performed are included in Appendix B.

K. QUALITY ASSURANCE/QUALITY CONTROL

In accordance with EPA-600/4-77-027b, dated August 1977, all OPI field data sheets, analytical data sheets (particulate) and calibration sheets are included in Appendix A.

Organic toxics analysis was performed using National Institute of Standards and Technology (NIST) traceable reagents according to referenced methods. Appendix A includes analytical data (dioxins, furans, PCBs and PAHs) from Triangle Laboratories, Inc. (TLI) as well as data on field blanks, laboratory blanks and surrogate recovery. OPI reviewed the recoveries and although some are below EPA guidelines (40%) they were hand-checked for Quality Assurance by TLI and were deemed to be valid data. These low recoveries occurred for isomers with relatively greater impact on toxic equivalencies. If there had been more time to prepare the report, OPI would have requested that these samples be re-analyzed. TLI review procedures and individual chromatograms are in Appendix C and are available on request.

Metallic toxics analysis was performed using NIST traceable reagents according to referenced methods. Appendix A includes analysis data from Brown and Caldwell Laboratories (Sb, As, Be, Cd, Co, Cr, Cu, Pb, Mn, Hg, Ni, Se, V, and Zn).

Custody sheets documenting the custody exchanges of all samples from OPI to the contract laboratories are included in Appendix A.

Detailed and confidential facility process data for the test periods are included in Appendix B. These data are submitted only for the use of the NYSDEC.