

DCN: 87-233-016-03

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

**EMISSIONS TEST REPORT
DIOXIN/FURAN EMISSION TESTING**

**REFUSE FUELS ASSOCIATES
LAWRENCE, MASSACHUSETTS**

Prepared by:

**Dennis R. Knisley
Michael A. Palazzolo
Andrew J. Miles
Radian Corporation
Post Office Box 13000
Research Triangle Park, NC 27709**

Prepared for:

**Ashvin Patel
Refuse Fuels Associates
Ward Hill Industrial Park
100 Recovery Way
Haverhill, Massachusetts 01830**

June 3, 1987

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
1.0 INTRODUCTION.	1-1
2.0 SUMMARY OF RESULTS.	2-1
2.1 Dioxin/Furan Analysis Results.	2-1
2.1.1 Flue Gas Results.	2-1
2.1.2 ESP Ash Results	2-9
2.1.3 Total Ash Discharge Results	2-18
2.2 Incinerator Operating Data	2-25
3.0 PROCESS DESCRIPTION	3-1
4.0 SAMPLING LOCATIONS AND ANALYTICAL PROCEDURES.	4-1
4.1 Sampling Locations	4-1
4.1.1 Flue Gas Sampling Locations	4-1
4.1.2 Ash Sampling Locations.	4-1
4.2 Sampling and Analytical Procedures	4-6
4.2.1 Flue Gas Dioxin/Furan Determination	4-6
4.2.2 Volumetric Flowrate, Molecular Weight and Moisture.	4-9
4.2.3 Ash Sampling.	4-9
5.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC).	5-1
5.1 Manual Gas Sampling.	5-1
5.1.1 Equipment Calibration and Glassware Preparation	5-1
5.1.2 Procedural QC Activities/Manual Gas Sampling.	5-3
5.1.3 Sample Custody.	5-3
5.2 Laboratory Analyses.	5-5
5.2.1 Dioxin/Furan Analyses	5-5
5.2.1.1 Surrogate Recoveries of the Test Samples	5-5
5.2.1.2 Sample Blanks.	5-5
5.2.2 Duplicate Analyses.	5-5
6.0 REFERENCES	6-1
APPENDIX A Environmental Standards Workshop Protocol, December 1984 Draft	
APPENDIX B.1 Example Calculations and Terminology	
B.2 Method 5 Calculations for Dioxin/Furan Train	
APPENDIX C.1 MM5 Field Data Sheets	
C.2 Total Ash Discharge Field Data Sheets	
C.3 ESP Ash Sampling Field Data Sheets	
C.4 Orsat Analyses	
APPENDIX D Preliminary Sampling Measurements and Calculations	

TABLE OF CONTENTS
(cont'd.)

Section

- APPENDIX E Incinerator Operating Data
- APPENDIX F Triangle Labs Dioxin/Furan Analytical Report
- APPENDIX G Radian/RTP Total Ash Discharge
- APPENDIX H Calibration Data
- APPENDIX I Sample Shipment Letters
- APPENDIX J Ultimate and Proximate Analysis of a Representative RDF Sample

LIST OF FIGURES

<u>Figure</u>	<u>Page</u>
2-1 Dioxin homolog distribution in the flue gas.	2-13
2-2 Furan homolog distribution in the flue gas	2-14
2-3 Dioxin homolog distribution in the ESP ash	2-21
2-4 Furan homolog distribution in the ESP ash.	2-22
2-5 Dioxin homolog distribution in the total ash discharge	2-28
2-6 Furan homolog distribution in the total ash discharge.	2-29
3-1 Schematic diagram of the RFA facility.	3-2
4-1 Sampling locations at the RFA facility	4-3
4-2 Flue gas sampling location at the RFA facility	4-4
4-3 Traverse point layout for the RFA facility	4-5
4-4 ESP ash sampling location at the RFA facility.	4-7
4-5 Total ash discharge sampling location.	4-8
4-6 Dioxin/furan analysis methodology.	4-10
4-7 Ash sampling scheme for total ash discharge.	4-11

LIST OF TABLES

<u>Table</u>	<u>Page</u>
1-1 List of Chlorinated Organic Compounds for Analysis.	1-2
1-2 RFA Sampling Log.	1-3
1-3 RFA Dioxin/Furan Test Participants.	1-4
2-1 Summary of RFA Test Program Results for Flue Gas and Ash.	2-2
2-2 Summary of Dioxin/Furan Flue Gas Concentrations for RFA	2-4
2-3 Dioxin/Furan Results of Front Half/Back Half Samples.	2-5
2-4 Fraction of Total Dioxin/Furan in the Front Half Sample	2-6
2-5 Dioxin/Furan Concentrations Corrected to 12 percent CO ₂	2-7
2-6 Dioxin/Furan Concentration as 2378-TCDD Equivalents (Corrected to 12% CO ₂)	2-8
2-7 Dioxin/Furan Emission Factors for RFA	2-10
2-8 Summary of MM5 Train Sampling and Flue Gas Parameters at RFA.	2-11
2-9 Dioxin/Furan Distributions in the Flue Gas.	2-12
2-10 Isomer Coding Key	2-15
2-11 Dioxin/Furan Results of ESP Ash Samples for RFA	2-17
2-12 ESP Ash Dioxin/Furan Results Expressed as 2378-TCDD Equivalents .	2-19
2-13 Dioxin/Furan Isomer Distributions in the ESP Ash.	2-20
2-14 Results of Moisture Analysis for Total Ash Discharge.	2-23
2-15 Dioxin/Furan Results of Total Ash Discharge Samples for RFA . . .	2-24
2-16 Total Ash Discharge Dioxin/Furan Results Expressed as 2378-TCDD Equivalents.	2-26
2-17 Dioxin/Furan Isomer Distributions in the Total Ash Discharge. . .	2-27
2-18 Summary of Process Data at RFA's Lawrence, MA Facility.	2-30
4-1 Summary of Sampling Methods and Analytical Procedures	4-2
5-1 MM5 Dioxin Glassware Cleaning Procedure.	5-2
5-2 Isokinetics and Leak Check Results	5-4
5-3 Percent Surrogate Recoveries for RFA Dioxin/Furan Analyses	5-6
5-4 Percent Internal Standard Recoveries for RFA Dioxin/Furan Analyses	5-7
5-5 Analytical Results for RFA Quality Control Samples	5-8
5-6 Results of Duplicate Analysis of RFA MM5 Samples, Run 03, Front Half.	5-9

1.0 INTRODUCTION

Radian Corporation, under contract to Refuse Fuels Associates (RFA), provided technical and sampling support for the evaluation of emissions from the RFA resource recovery facility located in Lawrence, Massachusetts. The objective of the program was to accurately determine the flue gas mass emission rates of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) from the RDF boiler. Also, the PCDD and PCDF concentration in the ESP ash and total ash discharge streams produced by the incinerator were determined. One test consisting of three sampling runs was performed at this facility.

The resource recovery facility consisted of a suspension fired incinerator with a waterwall boiler which produces superheated steam. The feed to the incinerator is refuse derived fuel (RDF) which consists of municipal solid waste which has been sorted and shredded to remove noncombustibles and reduced to a uniform consistency. Stack particulate emissions were controlled by an electrostatic precipitator (ESP). The overall test program included sampling for PCDD's and PCDF's following ASME/EPA procedures¹ at the induced draft (ID) fan outlet. Concurrently, samples of the ESP ash and total ash discharge (ESP ash, boiler/economizer fly ash, and incinerator bottom ash combined) were collected and analyzed for PCDD/PCDF.

The PCDD/PCDF analysis of the flue gas and ash samples were performed by Triangle Laboratories, Inc. located in Research Triangle Park, North Carolina. The samples were analyzed by gas chromatography followed by high resolution mass spectrometry. The specific PCDD/PCDF homologues which were determined are listed in Table 1-1.

Sampling was conducted over a two day period from September 15 to September 18. The MM5 train sampling time was 192 minutes per test run. Table 1-2 summarizes the sampling times for each parameter sampled during the test period and any problems which occurred during the sampling runs. The test participants and their responsibilities are listed in Table 1-3.

The test program was executed with emphasis on completeness and data quality. A quality assurance (QA) and quality control (QC) program was an

TABLE 1-1. LIST OF CHLORINATED ORGANIC COMPOUNDS FOR ANALYSIS

1. Total Trichlorinated dibenzo dioxins (TrCDD)
2. 2,3,7,8 Tetrachloro dibenzo-p-dioxin (2,3,7,8 TCDD)
3. Total Tetrachlorinated dibenzo dioxins (TCDD)
4. 1,2,3,7,8, Pentachloro dibenzo dioxin (1,2,3,7,8 PCDD)
5. Total Pentachlorinated dibenzo dioxins (PCDD)
6. 1,2,3,4,7,8, Hexachloro dibenzo dioxin (1,2,3,4,7,8, HxCDD)
7. 1,2,3,6,7,8 Hexachloro dibenzo dioxin (1,2,3,6,7,8, HxCDD)
8. 1,2,3,7,8,9 Hexachloro dibenzo dioxin (1,2,3,7,8,9, HxCDD)
9. Total Hexachlorinated dibenzo dioxins (HxCDD)
10. Total Heptachlorinated dibenzo dioxins (HpCDD)
11. Total Octachlorinated dibenzo dioxins (OCDD)
12. Total Trichlorinated dibenzo furans (TrCDF)
13. 2,3,7,8 Tetrachloro dibenzo furans (2,3,7,8 TCDF)
14. Total Tetrachlorinated dibenzo furans (TCDF)
15. 1,2,3,7,8 Pentachloro dibenzo furan (1,2,3,7,8, PCDF)
16. 2,3,4,7,8 Pentachloro dibenzo furan (2,3,4,7,8, PCDF)
17. Total Pentachlorinated dibenzo furans (PCDF)
18. 1,2,3,4,7,8 Hexachloro dibenzo furan (1,2,3,4,7,8, HxCDF)
19. 1,2,3,7,8,9 Hexachloro dibenzo furan (1,2,3,7,8,9, HxCDF)
20. 2,3,4,6,7,8 Hexachloro dibenzo furan (2,3,4,6,7,8 HxCDF)
21. Total Hexachlorinated dibenzo furans (HxCDF)
22. Total Heptachlorinated dibenzo furans (HpCDF)
23. Total Octachlorinated dibenzo furans (OCDF)
24. Monochlorinated dibenzo dioxin (MCDD)
25. Total dichlorinated dibenzo dioxins (DCDD)
26. Monochlorinated dibenzo furan (MCDF)
27. Total dichlorinated dibenzo furan (DCDF)

TABLE 1-2. RFA SAMPLING LOG

Date	Run	MM5 Train		Total Ash Discharge	ESP Ash	Notes
		Sampling Time	Port ^a			
9-17-86	1	09:00-10:36 11:36-13:34	A B	09:45-13:25	10:01-13:31	Weather: Clear and cold.
9-17-86	2	14:22-16:51 17:14-18:48	A B	15:00-19:01	15:02-19:03	Midway thru Port A the incinerator grate became clogged and testing ceased while it was cleared. Weather: Clear and mild.
9-18-86	3	09:18-11:26 12:15-13:51	A B	10:30-13:59	10:32-13:32	When the test was initially started the grate became clogged and testing ceased while it was cleared. Weather: Clear and cool.

^aPort A was the vertical traverse.

^bPort B was the horizontal traverse.

TABLE 1-3. RFA DIOXIN/FURAN TEST PARTICIPANTS
September 15-18, 1986

Name	Affiliation	Responsibilities
Ashvin Patel	RFA	Test Program Coordinator
Joe Bacchi	RFA	Plant Manager
Dennis Knisley	Radian	Test Engineer
Mike Palazzolo	Radian	Ash Sampler
Lee Garcia	Radian	Stack Sampler
Gary Henry	Radian	Sample Recovery
Tom Natario	Massachusetts DEQE (Air Quality)	MM5 Sampling Observer
David Adams	Massachusetts DEQE (Solid Waste)	Ash Sampling Observer

integral part of Radian's test program. The goal of the QA/QC effort was to ensure that the data collected are of known precision and accuracy and that they are complete, representative and comparable. The results of the QA/QC activities are discussed in detail in Section 5.

2.0 SUMMARY OF RESULTS

The results of the sampling conducted at Refuse Fuels Associates (RFA) are summarized in Table 2-1. The results presented in this section are not corrected for blank results or surrogate recoveries which are presented in Section 5.0. The total average PCDD/PCDF concentration in the flue gas was 2719 ng/dscm. An average 76 percent of the total PCDD/PCDF was determined to be in the front half of the sampling train. The front half of the sampling train consists of the nozzle/probe rinse and the particulate on the filter. Dioxin/furans captured in this part of the train are generally considered to have condensed in or on the particulate matter in the flue gas. The dioxin/furans captured in the back half of the train, which includes the condenser coil, XAD^R trap, and the impinger catches, are considered to have been present in the gaseous phase. Corrected to 12 percent CO₂, the total average PCDD/PCDF concentration was 3341 ng/dscm at 12 percent CO₂ and the total average concentration in terms of 2378 TCDD equivalents was 43 ng/dscm of 2378 TCDD. The results of the ash sampling determined that the ESP ash contained an average of 6426 ng/g of total PCDD/PCDF. The total ash discharge sample contained an average of 1690 ng/g PCDD/PCDF over the three tests.

2.1 DIOXIN/FURAN ANALYSIS RESULTS

The dioxin/furan results for the flue gas, ESP ash and total ash discharge samples are presented in this section. The dioxin/furan flue gas samples were collected and analyzed according to the December 1984 Environmental Standards Workshop protocol for dioxin/furan sampling with several modifications which are discussed in Chapter 4. The protocol is included as Appendix A of this report.

2.1.1 Flue Gas Results

The dioxin/furan sampling trains were analyzed as front half and back half samples. The front half samples included the probe rinse, front half of the filter holder rinse and filter. Back half samples consisted of the back

TABLE 2-1. SUMMARY OF RFA TEST PROGRAM RESULTS FOR FLUE GAS AND ASH

Parameter	Average Concentrations		
	FLUE GAS		
<u>Dioxin/Furans</u>	<u>Average PCDD Concentration</u>	<u>Average PCDF Concentration</u>	<u>Total Average PCDD and PCDF Concentration</u>
Front Half (ng/dscm)	1333	747	2080
Back Half (ng/dscm)	315	324	639
Total (ng/dscm)	1648	1071	2719
Fraction in front half (%)	81	70	76
Total concentration corrected to 12% CO ₂ (ng/dscm)	2024	1317	3341
Total concentration as 2378-TCDD equivalents (ng/dscm)	33	10	43
Emission factors (10 ⁻⁹ lb/MMBtu)	NA	NA	NA
<hr/>			
ASH			
<u>ESP Ash</u>			
Concentration (ng/g)	3780	2799	6574
<u>Total ash discharge</u>			
Concentration (ng/g)	1519	338	1857

half filter holder rinse, condenser rinse, XAD^R trap, and the contents and rinses from the first four impingers.

The total concentrations of the mono- through octa- dioxin/furan isomers (front half plus back half) for each test run are summarized in Table 2-2. The average total 2378-TCDD concentration was 6.4 ng/dscm and the average 2378-TCDF concentration was 23.8 ng/dscm. The average total PCDD concentration was 1648 ng/dscm and the average total PCDF concentration was 1071 ng/dscm. The average total PCDD/PCDF concentration was 2719 ng/dscm.

The front half and back half dioxin/furan results are presented in Table 2-3. The fraction of the PCDD/PCDF found in the front half of the train is presented in Table 2-4. More than 80 percent of the PCDD and greater than 69 percent of the PCDF was detected in the front half of the sample train. An average of 2080 ng/dscm of PCDD/PCDF was detected in the front half sample which is 76 percent of the total PCDD/PCDF captured. This indicated that most of the PCDD/PCDF captured in the MM5 sample were condensed in or on the particulate matter in the flue gas. Less than 25 percent of the flue gas PCDD/PCDF emissions were in the gaseous phase.

Dioxin/furan results corrected to 12 percent CO₂ are presented in Table 2-5. The concentrations are corrected for each test run by multiplying by the quotient of 12/CO₂ measured. The measured value of CO₂ was determined by EPA Method 3 from an integrated bag sample using Orsat analysis. Corrected to 12 percent CO₂, the average 2378 TCDD concentration was 7.9 ng/dscm and the average 2378 TCDF concentration 29.4 ng/dscm. The average total PCDD concentration was 2024 ng/dscm and the average total PCDF concentration was 1317 ng/dscm. The average total PCDD/PCDF concentration at 12 percent CO₂ was 3341 ng/dscm.

The dioxin/furan results corrected to 12 percent CO₂ are expressed in terms of 2378 TCDD equivalents in Table 2-6. Each isomer has a 2378 TCDD toxicity equivalency factor², which is also contained in Table 2-6, that rates the toxicity of the isomers relative to 2378-TCDD. In terms of 2378 TCDD, the total PCDD concentration was 32.6 ng/dscm and the total PCDF concentration was 9.8 ng/dscm. The average total PCDD and PCDF concentration was 42.4 ng/dscm relative to 2378-TCDD.

TABLE 2-2. SUMMARY OF DIOXIN/FURAN FLUE GAS CONCENTRATIONS FOR RFA

ISOMER	CONCENTRATION (NG/DSCM, AS MEASURED)			
	RUN 01	RUN 02	RUN 03	AVERAGE
DIOXIN				
Mono-CDD	0.0	0.0	0.0	0.0
Di-CDD	9.2	7.0	1.6	5.9
Tri-CDD	34.1	38.3	18.0	30.1
2378 TCDD	7.6	7.9	3.7	6.4
Other TCDD	61.2	110.2	48.9	73.4
12378 PCDD	13.0	28.7	13.4	18.3
Other PCDD	28.1	191.1	84.2	101.1
123478 HxCDD	28.2	36.5	21.3	28.7
123678 HxCDD	113.9	47.1	22.8	61.3
123789 HxCDD	283.1	87.5	47.6	139.4
Other HxCDD	394.7	381.7	202.9	326.4
Hepta-CDD	93.9	751.5	422.9	422.8
Octa-CDD	97.0	795.5	411.3	434.6
TOTAL PCDD	1164.0	2482.9	1298.4	1648.5
FURAN				
Mono-CDF	0.5	0.1	0.8	0.4
Di-CDF	7.8	17.4	17.5	14.2
Tri-CDF	126.5	174.6	134.2	145.1
2378 TCDF	19.1	18.8	33.5	23.8
Other TCDF	131.1	250.1	140.1	173.8
12378 PCDF	8.2	20.0	11.8	13.3
23478 PCDF	16.6	41.9	23.6	27.4
Other PCDF	57.9	142.5	72.2	90.9
123478 HxCDF	42.4	99.8	59.5	67.2
123678 HxCDF	17.2	45.8	25.4	29.5
123789 HxCDF	1.5	0.0	0.0	0.5
Other HxCDF	86.8	186.1	135.7	136.2
Hepta-CDF	209.9	420.1	250.7	293.6
Octa-PCDF	43.5	76.1	45.9	55.2
TOTAL PCDF	769.0	1493.2	950.8	1071.0
TOTAL PCDD/PCDF	1933.0	3976.1	2249.3	2719.5

TABLE 2-3. DIOXIN/FURAN RESULTS OF FRONT HALF/BACK HALF SAMPLES

ISOMER	CONCENTRATION (NG/DSCM, AS MEASURED)					
	RUN 01 FRONT HALF	RUN 01 BACK HALF	RUN 02 FRONT HALF	RUN 02 BACK HALF	RUN 03 FRONT HALF	RUN 03 BACK HALF
DIOXIN						
Mono-CDD	0.00	0.00	0.00	0.00	0.00	0.00
Di-CDD	9.01	0.18	4.02	3.00	1.18	0.43
Tri-CDD	27.60	6.47	23.26	14.99	9.57	8.38
2378 TCDD	6.76	0.87	5.62	2.25	2.59	1.07
Other TCDD	47.87	13.34	73.41	36.81	32.45	16.40
12378 PCDD	10.47	2.51	20.80	7.85	9.86	3.56
Other PCDD	12.93	15.18	142.70	48.38	62.41	21.77
123478 HxCDD	24.76	3.46	27.56	8.94	16.52	4.79
123678 HxCDD	109.52	4.39	36.87	10.20	17.85	4.96
123789 HxCDD	275.74	7.37	69.31	18.22	37.80	9.75
Other HxCDD	359.69	35.02	290.76	90.90	158.45	44.45
Hepta-CDD	22.13	71.78	622.63	128.87	350.27	72.58
Octa-CDD	18.14	78.82	701.39	94.12	358.10	53.24
TOTAL PCDD	924.62	239.41	2018.36	464.54	1057.06	241.38
FURAN						
Mono-CDF	0.11	0.36	0.06	0.00	0.07	0.68
Di-CDF	7.81	0.00	11.10	6.29	0.00	17.51
Tri-CDF	70.19	56.31	94.05	80.54	70.59	63.66
2378 TCDF	19.11	0.00	0.00	18.75	21.73	11.81
Other TCDF	70.17	60.95	172.14	77.99	97.12	42.96
12378 PCDF	5.68	2.49	13.30	6.66	8.24	3.58
23478 PCDF	11.57	5.05	28.87	13.00	16.64	6.93
Other PCDF	38.79	19.11	95.38	47.12	48.10	24.11
123478 HxCDF	30.41	11.95	73.39	26.42	45.26	14.26
123678 HxCDF	12.07	5.17	33.41	12.39	19.72	5.64
123789 HxCDF	1.47	0.00	0.00	0.00	0.00	0.00
Other HxCDF	57.38	29.38	132.88	53.22	111.86	23.79
Hepta-CDF	158.89	51.05	324.65	95.49	200.11	50.55
Octa-PCDF	32.98	10.54	65.62	10.50	38.79	7.11
TOTAL PCDF	516.62	252.36	1044.84	448.38	678.21	272.61
TOTAL PCDD/PCDF	1441.24	491.77	3063.20	912.92	1735.27	513.99

TABLE 2-4. FRACTION OF TOTAL DIOXIN/FURAN IN THE FRONT HALF SAMPLE

ISOMER	RUN 01	RUN 02	FRACTION (%) RUN 03	AVERAGE
DIOXIN				
Mono-CDD	0.0	0.0	0.0	0.0
Di-CDD	98.1	57.2	73.4	76.3
Tri-CDD	81.0	60.8	53.3	65.0
2378 TCDD	88.6	71.5	70.8	76.9
Other TCDD	78.2	66.6	66.4	70.4
12378 PCDD	80.7	72.6	73.5	75.6
Other PCDD	46.0	74.7	74.1	64.9
123478 HxCDD	87.7	75.5	77.5	80.3
123678 HxCDD	96.1	78.3	78.3	84.2
123789 HxCDD	0.0	79.2	0.0	26.4
Other HxCDD	91.1	76.2	78.1	81.8
Hepta-CDD	23.6	82.9	82.8	63.1
Octa-CDD	18.7	88.2	87.1	64.6
TOTAL PCDD	79.4	81.3	81.4	80.7
FURAN				
Mono-CDF	22.8	100.0	9.1	44.0
Di-CDF	100.0	63.8	0.0	54.6
Tri-CDF	55.5	53.9	52.6	54.0
2378 TCDF	100.0	0.0	64.8	54.9
Other TCDF	53.5	68.8	69.3	63.9
12378 PCDF	69.5	66.6	69.7	68.6
23478 PCDF	69.6	69.0	70.6	69.7
Other PCDF	67.0	66.9	66.6	66.8
123478 HxCDF	71.8	73.5	76.0	73.8
123678 HxCDF	70.0	73.0	77.8	73.6
123789 HXCDF	0.0	0.0	0.0	0.0
Other HXCDF	66.1	71.4	82.5	73.3
Hepta-CDF	75.7	77.3	79.8	77.6
Octa-PCDF	75.8	86.2	84.5	82.2
TOTAL PCDF	67.2	70.0	71.3	69.5
TOTAL PCDD/PCDF	74.6	77.0	77.1	76.2

TABLE 2-5. DIOXIN/FURAN CONCENTRATIONS CORRECTED
TO 12 PERCENT CO₂

ISOMER	CONCENTRATION (NG/DSCM, CORRECTED TO 12% CO ₂)			
	RUN 01	RUN 02	RUN 03	AVERAGE
DIOXIN				
Mono-CDD	0.0	0.0	0.0	0.0
Di-CDD	11.4	8.5	2.0	7.3
Tri-CDD	42.1	46.4	22.4	37.0
2378 TCDD	9.4	9.5	4.6	7.9
Other TCDD	75.7	133.6	61.1	90.1
12378 PCDD	16.1	34.7	16.8	22.5
Other PCDD	34.8	231.6	105.2	123.9
123478 HxCDD	34.9	44.2	26.6	35.3
123678 HxCDD	140.9	57.1	28.5	75.5
123789 HxCDD	350.2	106.1	59.4	171.9
Other HxCDD	488.3	462.6	253.6	401.5
Hepta-CDD	116.2	910.9	528.6	518.6
Octa-CDD	120.0	964.3	514.2	532.8
TOTAL PCDD	1440.0	3009.6	1623.0	2024.2
FURAN				
Mono-CDF	0.6	0.1	0.9	0.5
Di-CDF	9.7	21.1	21.9	17.5
Tri-CDF	156.5	211.6	167.8	178.6
2378 TCDF	23.6	22.7	41.9	29.4
Other TCDF	162.2	303.2	175.1	213.5
12378 PCDF	10.1	24.2	14.8	16.4
23478 PCDF	20.6	50.7	29.5	33.6
Other PCDF	71.6	172.7	90.3	111.5
123478 HxCDF	52.4	121.0	74.4	82.6
123678 HxCDF	21.3	55.5	31.7	36.2
123789 HxCDF	1.8	0.0	0.0	0.6
Other HxCDF	107.3	225.6	169.6	167.5
Hepta-CDF	259.7	509.3	313.3	360.8
Octa-PCDF	53.8	92.3	57.4	67.8
TOTAL PCDF	951.3	1810.0	1188.5	1316.6
TOTAL PCDD/PCDF	2391.4	4819.5	2811.6	3340.8

TABLE 2-6. DIOXIN/FURAN CONCENTRATION AS 2378-TCDD EQUIVALENTS (CORRECTED TO 12 PERCENT CO₂)

ISOMER	2378 TCDD EQUIV. FACTORS	2378 TCDD EQUIVALENT CONCENTRATION (NG/DSCM)			AVERAGE
		RUN 01	RUN 02	RUN 03	
DIOXIN					
Mono-CDD	0.0000	0.00	0.00	0.00	0.00
Di-CDD	0.0000	0.00	0.00	0.00	0.00
Tri-CDD	0.0000	0.00	0.00	0.00	0.00
2378 TCDD	1.0000	9.45	9.54	4.58	7.86
Other TCDD	0.0100	0.76	1.34	0.61	0.90
12378 PCDD	0.5000	8.03	17.37	8.38	11.26
Other PCDD	0.0050	0.17	1.16	0.53	0.62
123478 HxCDD	0.0400	1.40	1.77	1.07	1.41
123678 HxCDD	0.0400	5.64	2.28	1.14	3.02
123789 HxCDD	0.0400	14.01	4.24	2.38	6.88
Other HxCDD	0.0004	0.20	0.19	0.10	0.16
Hepta-CDD	0.0010	0.12	0.91	0.53	0.52
Octa-CDD	0.0000	0.00	0.00	0.00	0.00
TOTAL PCDD		39.76	38.79	19.32	32.62
FURAN					
Mono-CDF	0.0000	0.00	0.00	0.00	0.00
Di-CDF	0.0000	0.00	0.00	0.00	0.00
Tri-CDF	0.0000	0.00	0.00	0.00	0.00
2378 TCDF	0.1000	2.36	2.27	4.19	2.94
Other TCDF	0.0010	0.16	0.30	0.18	0.21
12378 PCDF	0.1000	1.01	2.42	1.48	1.64
23478 PCDF	0.1000	2.06	5.07	2.95	3.36
Other PCDF	0.0010	0.07	0.17	0.09	0.11
123478 HxCDF	0.0100	0.52	1.21	0.74	0.83
123678 HxCDF	0.0100	0.21	0.56	0.32	0.36
123789 HxCDF	0.0100	0.02	0.00	0.00	0.01
Other HxCDF	0.0001	0.01	0.02	0.02	0.02
Hepta-CDF	0.0010	0.26	0.51	0.31	0.36
Octa-PCDF	0.0000	0.00	0.00	0.00	0.00
TOTAL PCDF		6.69	12.54	10.27	9.83
TOTAL PCDD/PCDF		46.45	51.33	29.59	42.46

Dioxin/furan emission factors are summarized in Table 2-7. Emission factors express dioxin/furan emissions as pounds of an isomer emitted per million Btu of refuse derived fuel incinerated. The conversion is based on an F-factor (dscf of flue gas per million Btu of refuse derived fuel incinerated) that is characteristic of the fuel. The average emission factor for total PCDD's was 3.75×10^{-3} lb/MMBtu and 2.44×10^{-3} lb/MMBtu for total PCDF's. The total PCDD/PCDF average emission factor was 6.20×10^{-3} lb/MMBtu.

The dioxin/furan train sampling and flue gas parameters are summarized for each test run in Table 2-8. The average volumetric flowrate of the flue gas was 2,947 dscmm (103,974 dscfm) and the average moisture content was 12.3 percent by volume. The flue gas combustion products (O_2 , CO_2) concentrations which are used in the isokinetic calculations and to correct the PCDD/PCDF results to 12 percent CO_2 were measured using EPA Method 3. The average oxygen concentration was 10.3 percent by volume and the average carbon dioxide concentration was 9.7 percent by volume. An average of 2.9 dscm (102 dscf) of flue gas was sampled at an average sampling rate of 0.015 dscmm (0.53 dscfm). For all the test runs, the sample volume met the 90 dscf minimum sample volume requirement. Isokinetics ranged from 98.1 to 99.9 percent which were within the quality assurance objectives of 100 ± 10 percent.

The distribution of the dioxin and furan isomers are shown in tabular form in Table 2-9 and in graphical form in Figures 2-1 and 2-2. The isomer coding key is shown in Table 2-10. The hexa- thru octa-PCDD isomers composed greater than 80 percent of the total PCDD detected in the flue gas. The tri- and tetra- PCDF isomers accounted for 40 percent of the total PCDF detected. Another 40 percent of the PCDF sample was composed of the hexa- and hepta-PCDF isomers.

2.1.2 ESP Ash Results

The ESP ash sample was collected at an intermediate transfer point at the start of the screw conveyor which transfers the ash to the total ash discharge point. The ESP ash is water quenched in this screw conveyor; however, the sample was taken before quenching occurred. A sample was collected every 30 minutes during flue gas sampling. Sampling began 45 minutes after the start of the flue gas sampling. Approximately four pounds of ESP ash was collected

TABLE 2-7. DIOXIN/FURAN EMISSION FACTORS FOR RFA

ISOMER	EMISSION FACTORS (1E-6 lb/MMBtu)			
	RUN 01	RUN 02	RUN 03	AVERAGE
DIOXIN				
Mono-CDD	0.00	0.00	0.00	0.00
Di-CDD	21.17	15.74	3.73	13.55
Tri-CDD	78.48	85.70	41.78	68.66
2378 TCDD	17.60	17.62	8.53	14.58
Other TCDD	141.05	246.92	113.65	167.20
12378 PCDD	29.91	64.19	31.20	41.77
Other PCDD	64.79	428.06	195.83	229.56
123478 HxCDD	65.03	81.78	49.57	65.46
123678 HxCDD	262.47	105.46	53.05	140.33
123789 HxCDD	652.35	196.09	110.62	319.69
Other HxCDD	909.48	854.99	472.01	745.49
Hepta-CDD	216.38	1683.49	983.69	961.19
Octa-CDD	223.42	1782.08	956.92	987.47
TOTAL PCDD	2682.13	5562.12	3020.59	3754.94
FURAN				
Mono-CDF	1.08	0.13	1.75	0.99
Di-CDF	18.00	38.96	40.73	32.56
Tri-CDF	291.46	391.10	312.31	331.62
2378 TCDF	44.02	42.01	78.03	54.69
Other TCDF	302.12	560.35	325.87	396.11
12378 PCDF	18.82	44.73	27.50	30.35
23478 PCDF	38.31	93.78	54.83	62.30
Other PCDF	133.42	319.23	167.98	206.88
123478 HxCDF	97.61	223.59	138.46	153.22
123678 HxCDF	39.73	102.60	59.00	67.11
123789 HxCDF	3.39	0.00	0.00	1.13
Other HxCDF	199.90	416.88	315.57	310.78
Hepta-CDF	483.74	941.19	583.12	669.35
Octa-PCDF	100.28	170.52	106.79	125.86
TOTAL PCDF	1771.87	3345.07	2211.93	2442.96
TOTAL PCDD/PCDF	4454.00	8907.18	5232.52	6197.90

TABLE 2-8. SUMMARY OF MM5 TRAIN SAMPLING AND FLUE GAS PARAMETERS AT RFA

Parameters	Run 01	Run 02	Run 03	Average
Flue Gas Combustion Products				
O ₂ (Vol%) ^a	10.4	10.1	10.5	10.3
CO ₂ (Vol%) ^a	9.7	9.9	9.6	9.7
Flue Gas Temperature				
(°F)	396	408	403	402
(°C)	202	209	206	206
Flue Gas Moisture Content				
(Vol%)	11.9	12.4	12.5	12.3
Flue Gas Volumetric Flowrate				
(dscfm) ^b	105,501	102,205	104,135	103,947
(dscmm) ^c	2,998	2,894	2,949	2,947
(acf m) ^d	191,758	189,599	191,958	191,105
(acmm) ^e	5,431	5,369	5,436	5,412
Volume of Flue Gas Sampled				
(dscf) ^f	102.2	99.6	102.8	101.5
(dscm) ^g	2.9	2.8	2.9	2.9
Average Sampling Rate				
(dscfm) ^b	0.53	0.51	0.54	0.53
(dscmm) ^c	0.015	0.015	0.015	0.015
Isokinetics				
(%) ^h	98.1	98.6	99.9	98.9

^aEPA Method 3 by Orsat.

^bDry standard cubic ft/minute, standard conditions; 29.92 inches (760 mm) of mercury 68°F (20°C).

^cDry standard cubic meters per minute

^dActual cubic feet per minute at stack conditions.

^eActual cubic meters per minute at stack conditions.

^fDry standard cubic feet.

^gDry standard cubic meters.

^hThe quality assurance objective for EPA Method 5 testing is isokinetics of 100 \pm 10%.

TABLE 2-9. DIOXIN/FURAN DISTRIBUTIONS IN THE FLUE GAS

ISOMER	MOLE FRACTION			
	RUN 01	RUN 02	RUN 03	AVERAGE
DIOXIN				
Mono-CDD	0.00	0.00	0.00	0.00
Di-CDD	0.01	0.00	0.00	0.01
Tri-CDD	0.04	0.02	0.02	0.03
2378 TCDD	0.01	0.00	0.00	0.01
Other TCDD	0.06	0.06	0.05	0.06
12378 PCDD	0.01	0.01	0.01	0.01
Other PCDD	0.03	0.09	0.07	0.06
123478 HxCDD	0.02	0.02	0.02	0.02
123678 HxCDD	0.10	0.02	0.02	0.05
123789 HxCDD	0.24	0.04	0.04	0.11
Other HxCDD	0.34	0.16	0.16	0.22
Hepta-CDD	0.07	0.29	0.32	0.23
Octa-CDD	0.07	0.29	0.28	0.21
FURAN				
Mono-CDF	0.00	0.00	0.00	0.00
Di-CDF	0.01	0.02	0.03	0.02
Tri-CDF	0.21	0.15	0.18	0.18
2378 TCDF	0.03	0.01	0.04	0.03
Other TCDF	0.19	0.19	0.17	0.18
12378 PCDF	0.01	0.01	0.01	0.01
23478 PCDF	0.02	0.03	0.03	0.03
Other PCDF	0.08	0.10	0.08	0.08
123478 HxCDF	0.05	0.06	0.06	0.06
123678 HxCDF	0.02	0.03	0.02	0.02
123789 HxCDF	0.00	0.00	0.00	0.00
Other HxCDF	0.10	0.12	0.13	0.12
Hepta-CDF	0.23	0.24	0.22	0.23
Octa-PCDF	0.04	0.04	0.04	0.04

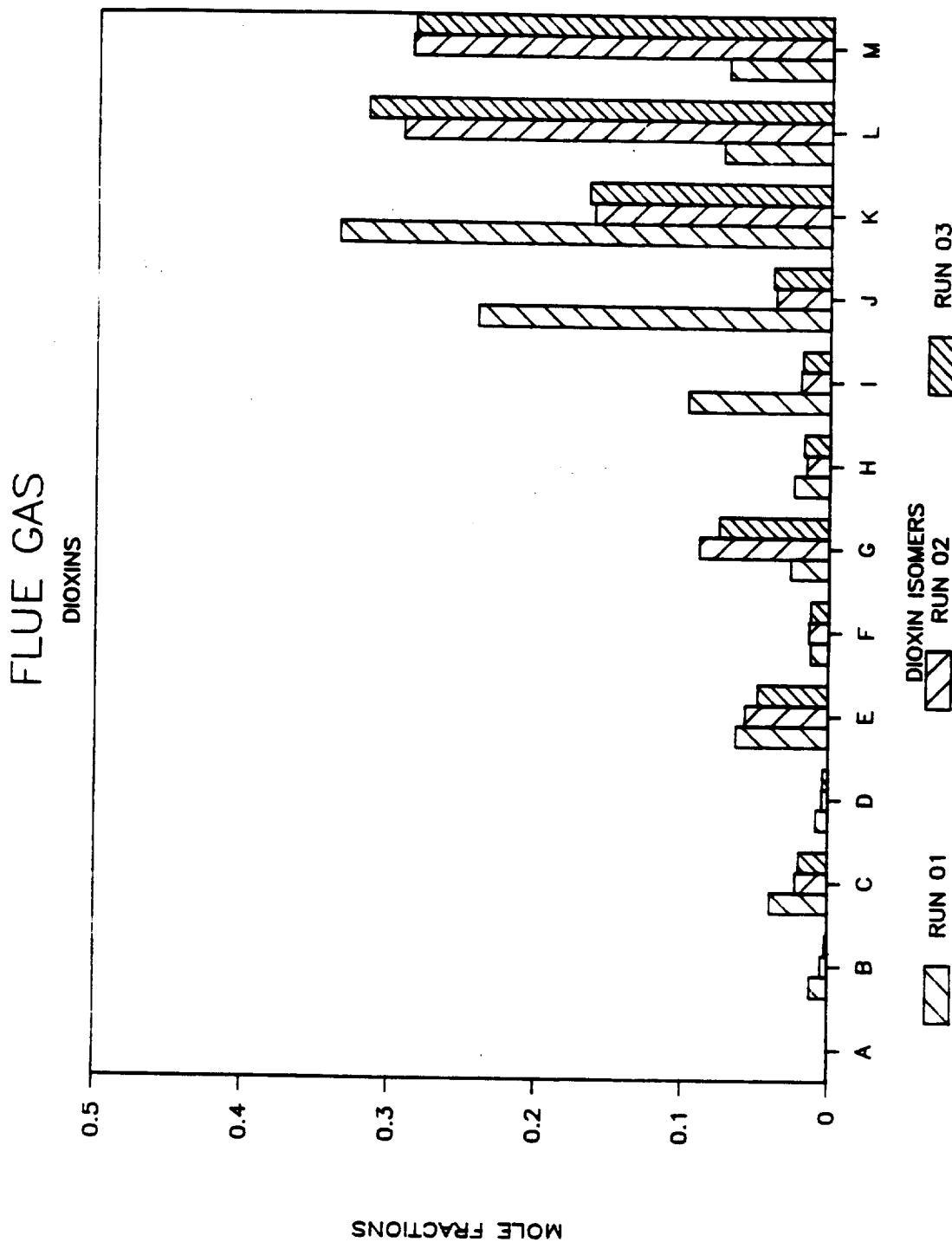


Figure 2-1. Dioxin homolog distribution in the flue gas.

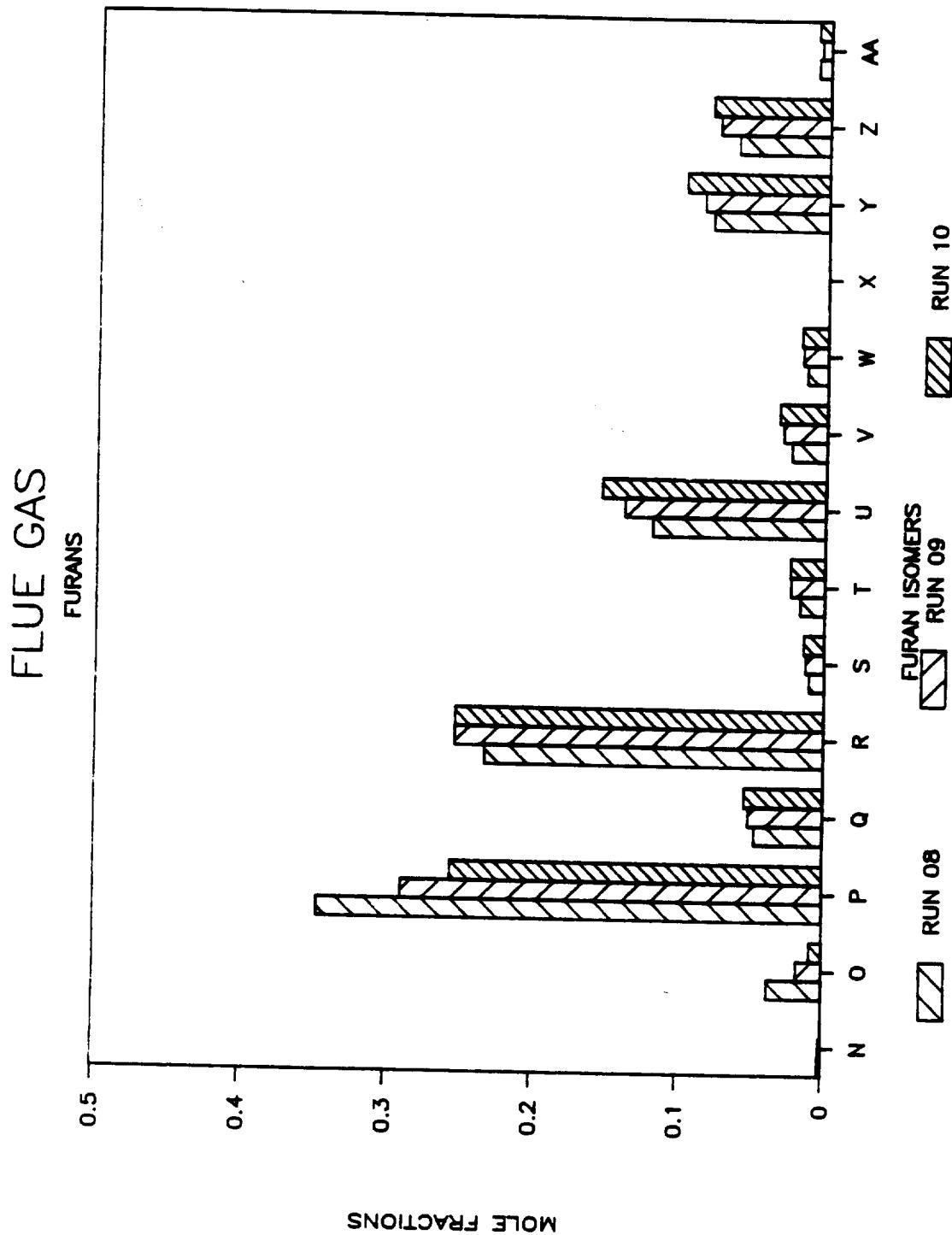


Figure 2-2. Furan homolog distribution in the flue gas.

TABLE 2-10. KEY TO ISOMER CODING FOR FIGURES 2-1 THROUGH 2-6.

CODE	ISOMER
<u>Dioxins</u>	
A =	Mono-CDD
B =	Di-CDD
C =	Tri-CDD
D =	2378-TCDD
E =	Other TCDD
F =	12378 PCDD
G =	Other PCDD
H =	123478 HxCDD
I =	123678 HxCDD
J =	123789 HxCDD
K =	Other HxCDD
L =	Hepta-CDD
M =	Octa-CDD
<u>Furans</u>	
N =	Mono-CDF
O =	Di-CDF
P =	Tri-CDF
Q =	2378-TCDF
R =	Other TCDF
S =	12378 PCDF
T =	Other PCDF
U =	123478 HxCDF
V =	123678 HxCDF
W =	123789 HxCDF
X =	Other HxCDF
Z =	Hepta-CDF
AA =	Octa-CDF

during each run which was composited and an aliquot was placed in a 950 ml amber glass bottle. Approximately 10 grams of this aliquot was extracted by Triangle Labs for PCDD/PCDF analysis.

The ESP ash samples contained high levels of PCDD/PCDF which caused some problems with the analysis of the samples. The maximum values for which the high resolution GC/MS was calibrated for each of the dioxin/furan isomers was as follows:

<u>Homolog</u>	<u>Maximum Calibrated Value</u>
Mono-through tetra-PCDD/PCDF	20 ng/g
Penta- through hepta-PCDD/PCDF	100 ng/g
Octa- PCDD/PCDF	400 ng/g

According to Triangle Laboratories, the reported values of the individual isomers should be relatively accurate up to twice the maximum calibrated value. Above this limit the accuracy is unknown and the reported values should be used as a minimum amount of PCDD/PCDF in the sample. Individual isomers in several of the samples analyzed were reported to be greater than 1000 ng/g PCDD or PCDF. Therefore, the results presented in the ash analysis sections should be considered to be a minimum value. The actual results could not be quantified because of the high levels of contamination.

The results of the ESP ash analyses are summarized in Table 2-11. The ESP ash sample from Run 02 was the most contaminated of the three samples analyzed. Several of the individual isomers were above the maximum concentration which could be quantified by the high resolution GC/MS analysis. The concentration of the octa-PCDD homolog was greater than 1,000 ng/g for each run. The concentration of the hepta-PCDD homolog was higher than the quantitation limit for the samples from Run 02 and 03 and the hexa-PCDD homolog concentration was greater than 1,000 ng/g for the Run 02 sample. The PCDF isomers were not as concentrated as the PCDD species. The hexa-, hepta- and octa-PCDF homologs were above the maximum quantitation limit for the Run 02 sample. The only other furan species which was above the quantitation limit was the hepta-PCDF homolog in Run 03. The average 2378-TCDD concentration was 6.24 ng/g and the average 2378-TCDF concentration was

TABLE 2-11. DIOXIN/FURAN RESULTS OF ESP ASH
SAMPLES FOR RFA

ISOMER	CONCENTRATION (ng/g or ppb, mass basis)			
	RUN 01	RUN 02	RUN 03	AVERAGE
DIOXIN				
Mono-CDD	0.00	0.00	0.00	0.00
Di-CDD	2.52	8.71	4.88	5.37
Tri-CDD	10.22	37.54	19.40	22.39
2378 TCDD	1.35	10.78	6.58	6.24
Other TCDD	20.80	120.45 ^a	78.94 ^a	73.40
12378 PCDD	7.56	40.60	28.78	25.65
Other PCDD	43.81	181.56	135.28	120.22
123478 HxCDD	22.04	81.05	68.10	57.06
123678 HxCDD	22.63	1000.00 ^a	77.88	366.84
123789 HxCDD	51.55	1000.00 ^a	200.85	417.47
Other HxCDD	191.73	1000.00 ^a	608.22	599.98
Hepta-CDD	833.33 ^a	1000.00 ^a	1000.00 ^a	944.44
Octa-CDD	1423.38 ^a	1000.00 ^a	1000.00 ^a	1141.13
TOTAL PCDD	2630.92	5480.69	3228.91	3780.17
FURAN				
Mono-CDF	0.00	0.00	0.01	0.00
Di-CDF	0.00	0.00	4.81	1.60
Tri-CDF	32.39	50.59 ^a	50.74	44.57
2378 TCDF	9.02	23.64	0.00	10.89
Other TCDF	42.37 ^a	130.68 ^a	148.45 ^a	107.17
12378 PCDF	1.84	13.14	11.14	8.71
23478 PCDF	9.91	34.61	24.20	22.91
Other PCDF	38.67	81.65	88.46	69.59
123478 HxCDF	38.10	1000.00 ^a	109.35	382.48
123678 HxCDF	14.68	1000.00 ^a	57.02	357.23
123789 HxCDF	2.41	8.19	5.77	5.46
Other HxCDF	117.93	1000.00 ^a	330.12	482.68
Hepta-CDF	289.86 ^a	1000.00 ^a	1020.46 ^a	770.11
Octa-PCDF	152.27	1000.00 ^a	437.88	530.05
TOTAL PCDF	749.45	5342.50	2288.40	2793.45
TOTAL PCDD/PCDF	3380.37	10823.19	5517.31	6573.62

a

These values are greater than twice the maximum calibrated value and should be considered minimum values.

10.89 ng/g. The average total PCDD concentration was 3780 ng/g and the average total PCDF concentration 2794 ng/g. The average total PCDD/PCDF concentration was 6574 ng/g.

The dioxin/furan results for the ESP ash are expressed in terms of 2378 TCDD equivalents² in Table 2-12. In terms of 2378 TCDD, the average total PCDD concentration was 55.2 ng/g and the average total PCDF concentration 55.2 ng/g. The average total PCDD/PCDF concentration was 110.4 ng/g expressed as 2378 TCDD equivalents.

The distribution of the dioxin and furan homologs are presented in tabular form in Table 2-13 and in graphical form in Figures 2-3 and 2-4. The key for the isomer coding is shown in Table 2-10. Greater than 90 percent of the PCDD concentration is composed of the hexa-, hepta- and octa-PCDD homologs. These same homologs compose more than 80 percent of the PCDF isomers.

2.1.3 Total Ash Discharge Results

The total ash discharge sample included boiler bottom ash, ESP ash and boiler/economizer fly ash. The sample was collected at the exit chute which was immediately above the dump truck which is used to transport the ash to the landfill. A bucket was used to collect a representative sample of the total ash discharge at 15 minute intervals while flue gas testing was being conducted. The ash sampling did not begin until 45 minutes after the flue gas sampling began to ensure that the ash samples coincided with the flue gas samples. After the total sample was collected, the ash was mixed in a cement mixer and 2 samples were collected in 950 ml amber glass jars. One of the samples was returned to Radian Laboratories for moisture analysis and the other sample was sent to Triangle Labs for dioxin/furan analysis.

The moisture analyses of the total ash discharge samples are summarized in Table 2-14. The average percent solids content of the ash was 79 weight percent. The solids content ranged from 78 to 80 percent.

The results of the dioxin/furan analyses of the total ash discharge samples are summarized in Table 2-15. The average total PCDD concentration was 1519 ng/g and the average total PCDF concentration 338 ng/g. The average total PCDD and PCDF concentration in the total ash discharge sample was

TABLE 2-12. ESP ASH DIOXIN/FURAN RESULTS EXPRESSED AS
2378-TCDD EQUIVALENTS

ISOMER	2378 TCDD EQUIV. FACTORS	2378 TCDD EQUIVALENT CONCENTRATION (ng/g or ppb, mass basis)			AVERAGE
		RUN 01	RUN 02	RUN 03	
DIOXIN					
Mono-CDD	0.0000	0.00	0.00	0.00	0.00
Di-CDD	0.0000	0.00	0.00	0.00	0.00
Tri-CDD	0.0000	0.00	0.00	0.00	0.00
2378 TCDD	1.0000	1.35	10.78	6.58	6.24
Other TCDD	0.0100	0.21	1.20	0.79	0.73
12378 PCDD	0.5000	3.78	20.30	14.39	12.82
Other PCDD	0.0050	0.22	0.91	0.68	0.60
123478 HxCDD	0.0400	0.88	3.24	2.72	2.28
123678 HxCDD	0.0400	0.91	40.00	3.12	14.67
123789 HxCDD	0.0400	2.06	40.00	8.03	16.70
Other HxCDD	0.0004	0.08	0.40	0.24	0.24
Hepta-CDD	0.0010	0.83	1.00	1.00	0.94
Octa-CDD	0.0000	0.00	0.00	0.00	0.00
TOTAL PCDD		10.32	117.83	37.55	55.23
FURAN					
Mono-CDF	0.0000	0.00	0.00	0.00	0.00
Di-CDF	0.0000	0.00	0.00	0.00	0.00
Tri-CDF	0.0000	0.00	0.00	0.00	0.00
2378 TCDF	0.1000	0.90	2.36	0.00	1.09
Other TCDF	0.0010	0.04	0.13	0.15	0.11
12378 PCDF	0.1000	0.18	1.31	1.11	0.87
23478 PCDF	0.1000	0.99	3.46	2.42	2.29
Other PCDF	0.0010	0.04	0.08	0.09	0.07
123478 HxCDF	0.0100	0.38	10.00	1.09	3.82
123678 HxCDF	0.0100	0.15	10.00	0.57	3.57
123789 HxCDF	0.0100	0.02	0.08	0.06	0.05
Other HxCDF	0.0001	0.01	0.10	0.03	0.05
Hepta-CDF	0.0010	0.29	1.00	1.02	0.77
Octa-PCDF	0.0000	0.00	0.00	0.00	0.00
TOTAL PCDF		10.32	117.83	37.55	55.23
TOTAL PCDD/PCDF		20.63	235.67	75.10	110.47

TABLE 2-13. DIOXIN/FURAN ISOMER DISTRIBUTIONS IN THE ESP ASH

ISOMER	ESP ASH			
	RUN 08	RUN 09	RUN 10	AVERAGE
DIOXIN				
Mono-CDD	0.00	0.00	0.00	0.00
Di-CDD	0.00	0.00	0.00	0.00
Tri-CDD	0.01	0.01	0.01	0.01
2378 TCDD	0.00	0.00	0.00	0.00
Other TCDD	0.01	0.03	0.03	0.02
12378 PCDD	0.00	0.01	0.01	0.01
Other PCDD	0.02	0.04	0.05	0.04
123478 HxCDD	0.01	0.02	0.02	0.02
123678 HxCDD	0.01	0.19	0.03	0.07
123789 HxCDD	0.02	0.19	0.07	0.09
Other HxCDD	0.08	0.19	0.20	0.16
Hepta-CDD	0.32	0.17	0.30	0.27
Octa-CDD	0.51	0.16	0.28	0.32
FURAN				
Mono-CDF	0.00	0.00	0.00	0.00
Di-CDF	0.00	0.00	0.00	0.00
Tri-CDF	0.06	0.01	0.03	0.04
2378 TCDF	0.02	0.01	0.00	0.01
Other TCDF	0.07	0.03	0.08	0.06
12378 PCDF	0.00	0.00	0.01	0.00
23478 PCDF	0.01	0.01	0.01	0.01
Other PCDF	0.06	0.02	0.04	0.04
123478 HxCDF	0.05	0.19	0.05	0.10
123678 HxCDF	0.02	0.19	0.03	0.08
123789 HxCDF	0.00	0.00	0.00	0.00
Other HxCDF	0.16	0.19	0.15	0.17
Hepta-CDF	0.36	0.18	0.42	0.32
Octa-PCDF	0.18	0.16	0.17	0.17

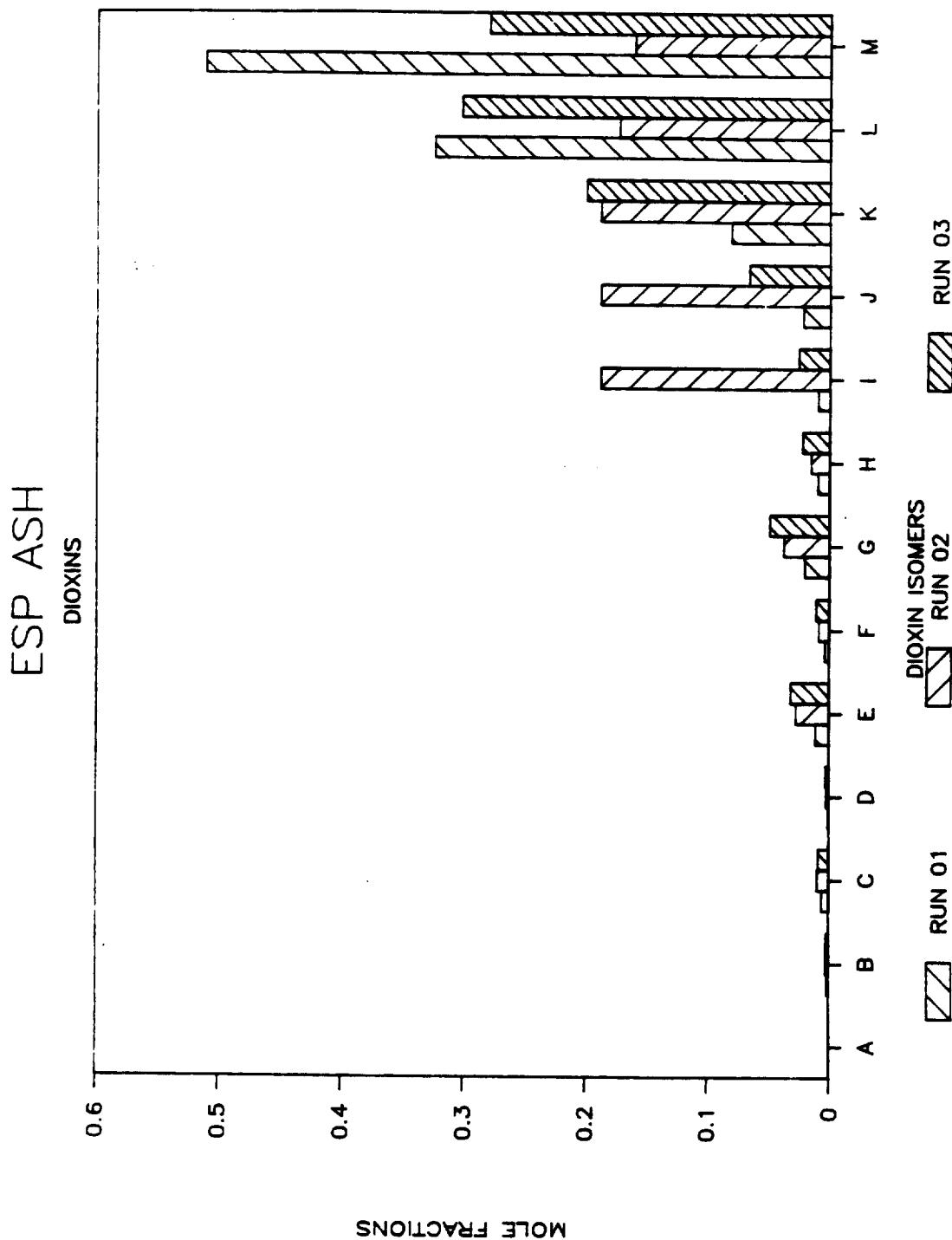


Figure 2-3. Dioxin homolog distribution in the ESP ash.

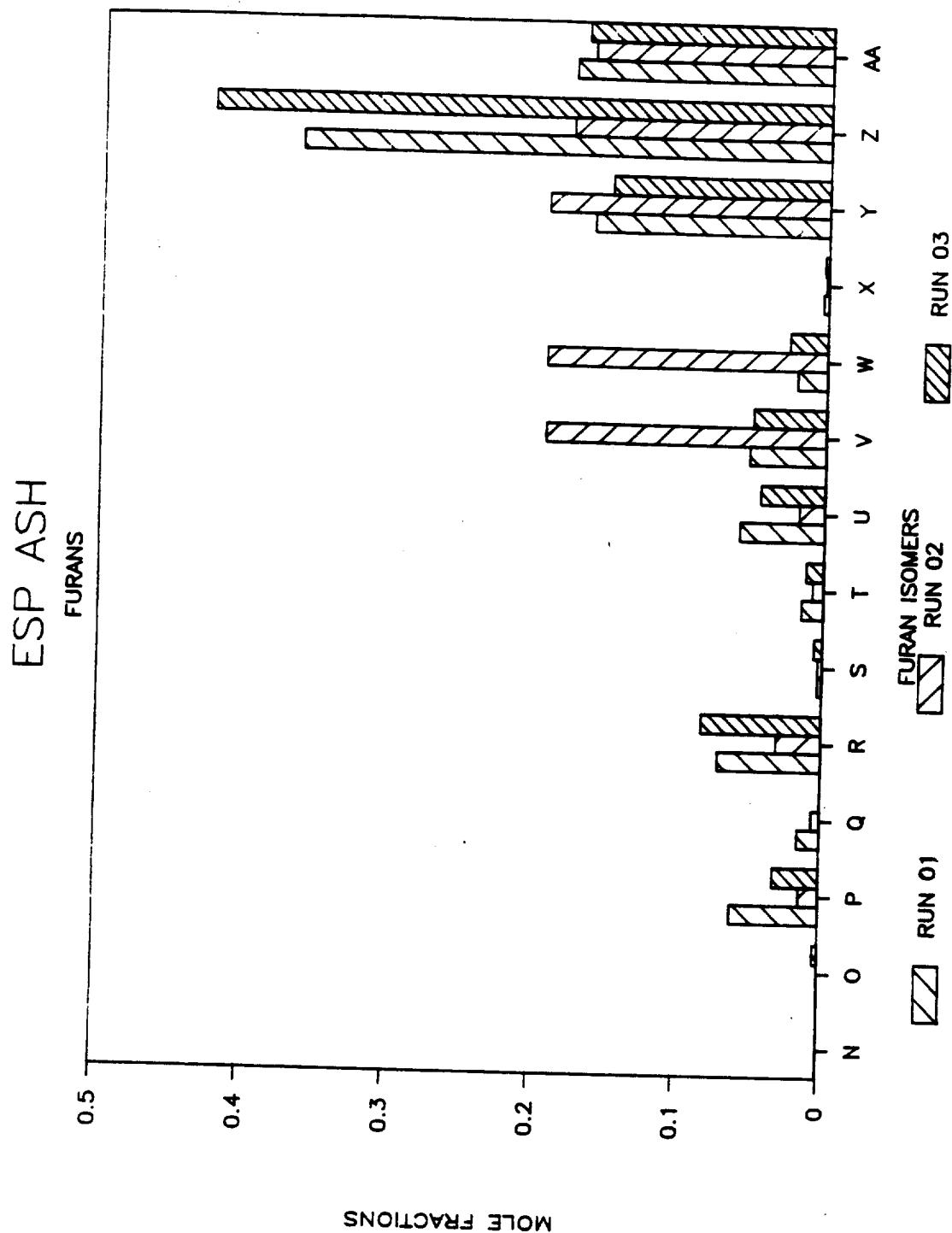


Figure 2-4. Furan homolog distribution in the ESP ash.

TABLE 2-14. RESULTS OF MOISTURE ANALYSIS FOR TOTAL ASH DISCHARGE

Run #	Percent solids, Mass basis
1	79
2	78
3	80
Average	79

TABLE 2-15. DIOXIN/FURAN RESULTS OF TOTAL ASH DISCHARGE SAMPLES FOR RFA

ISOMER	CONCENTRATION (ng/g or ppb, mass basis)			
	RUN 01	RUN 02	RUN 03	AVERAGE
DIOXIN				
Mono-CDD	0.00	0.00	0.00	0.00
Di-CDD	0.74	1.53	0.49	0.92
Tri-CDD	3.85	9.24	2.53	5.21
2378 TCDD	1.28	2.78	0.99	1.68
Other TCDD	14.60	31.29 ^a	11.57	19.15
12378 PCDD	4.85	8.98	5.25	6.36
Other PCDD	22.91	41.03	25.52	29.82
123478 HxCDD	11.65	16.38	11.98	13.34
123678 HxCDD	14.15	18.52	13.06	15.24
123789 HxCDD	31.03	44.75	30.93	35.57
Other HxCDD	103.81	137.42	95.01	112.08
Hepta-CDD	367.51 ^a	402.29 ^a	335.21 ^a	368.34
Octa-CDD	735.55	1498.65 ^a	499.87	911.36
TOTAL PCDD	1311.93	2212.86	1032.41	1519.07
FURAN				
Mono-CDF	0.00	0.00	0.00	0.00
Di-CDF	0.00	0.00	0.00	0.00
Tri-CDF	9.47	10.22	7.47	9.05
2378 TCDF	4.24	4.89	3.70	4.28
Other TCDF	20.54	29.71	18.23	22.83
12378 PCDF	1.84	2.95	1.89	2.23
23478 PCDF	3.91	5.34	4.05	4.43
Other PCDF	14.03	18.22	14.32	15.52
123478 HxCDF	17.54	23.18	16.30	19.01
123678 HxCDF	8.35	11.21	7.25	8.94
123789 HxCDF	0.00	0.00	0.00	0.00
Other HxCDF	57.27	69.73	51.15	59.38
Hepta-CDF	116.79	151.48	103.73	124.00
Octa-PCDF	51.90	116.42	35.05	67.79
TOTAL PCDF	305.88	443.35	263.14	337.46
TOTAL PCDD/PCDF	1617.81	2656.21	1295.55	1856.52

a

These values are greater than twice the maximum calibrated value and should be considered minimum values.

1857 ng/g. These values are relatively high compared to the PCDD/PCDF concentrations detected in the total ash discharge from other municipal solid waste incinerators.

The dioxin/furan results for the total ash discharge are expressed in terms of 2378 TCDD equivalents¹ in Table 2-16. In terms of 2378 TCDD, the average total PCDD and PCDF concentration was 9.7 ng/g.

The dioxin and furan isomer distributions are presented in tabular form in Table 2-17 and in graphical form in Figures 2-5 and 2-6. The key for isomer coding is shown in Table 2-10. The hepta- and octa-CDD isomers composed about 80 percent of the PCDD species. The hepta- and octa-CDF isomers were also the most prevalent accounting for more than 50 percent of the PCDF species. The distribution in the ESP ash and total ash discharge samples was very similar.

2.2 INCINERATOR OPERATING DATA

The incinerator operating data which were monitored during each test run are summarized in Table 2-18. The values given for each test run are averages of 15 minute readings taken during the flue gas sampling interval. The original data sheets are shown in Appendix E.

The average steam production during the three test runs was 213,000 lb/hr. The undergrate air flow averaged 56,000 lb/hr while the overfire air flow was greater than 150,000 lb/hr. The oxygen level at the air heater averaged 9.4 percent in duct A and 7.1 percent in duct B, based on plant instrumentation.

During normal operation of the incinerator the grate is manually cleared of noncombustibles and ash every 60 to 90 minutes to prevent the grate and quench bath chute from becoming clogged. During the test program this was not done while flue gas sampling was being performed. There were several instances where testing was ceased while the grate was cleared. Otherwise, the operation of the boiler was conducted as normal.

TABLE 2-16. TOTAL ASH DISCHARGE DIOXIN/FURAN RESULTS
EXPRESSED AS 2378-TCDD EQUIVALENTS

ISOMER	2378 TCDD EQUIV. FACTORS	2378 TCDD EQUIVALENT CONCENTRATION (ng/g or ppb, mass basis)			AVERAGE
		RUN 01	RUN 02	RUN 03	
DIOXIN					
Mono-CDD	0.0000	0.00	0.00	0.00	0.00
Di-CDD	0.0000	0.00	0.00	0.00	0.00
Tri-CDD	0.0000	0.00	0.00	0.00	0.00
2378 TCDD	1.0000	1.28	2.78	0.99	1.68
Other TCDD	0.0100	0.15	0.31	0.12	0.19
12378 PCDD	0.5000	2.43	4.49	2.63	3.18
Other PCDD	0.0050	0.11	0.21	0.13	0.15
123478 HxCDD	0.0400	0.47	0.66	0.48	0.53
123678 HxCDD	0.0400	0.57	0.74	0.52	0.61
123789 HxCDD	0.0400	1.24	1.79	1.24	1.42
Other HxCDD	0.0004	0.04	0.05	0.04	0.04
Hepta-CDD	0.0010	0.37	0.40	0.34	0.37
Octa-CDD	0.0000	0.00	0.00	0.00	0.00
TOTAL PCDD		6.65	11.43	6.47	8.18
FURAN					
Mono-CDF	0.0000	0.00	0.00	0.00	0.00
Di-CDF	0.0000	0.00	0.00	0.00	0.00
Tri-CDF	0.0000	0.00	0.00	0.00	0.00
2378 TCDF	0.1000	0.42	0.49	0.37	0.43
Other TCDF	0.0010	0.02	0.03	0.02	0.02
12378 PCDF	0.1000	0.18	0.30	0.19	0.22
23478 PCDF	0.1000	0.39	0.53	0.41	0.44
Other PCDF	0.0010	0.01	0.02	0.01	0.02
123478HxCDF	0.0100	0.18	0.23	0.16	0.19
123678 HxCDF	0.0100	0.08	0.11	0.07	0.09
123789 HxCDF	0.0100	0.00	0.00	0.00	0.00
Other HxCDF	0.0001	0.01	0.01	0.01	0.01
Hepta-CDF	0.0010	0.12	0.15	0.10	0.12
Octa-PCDF	0.0000	0.00	0.00	0.00	0.00
TOTAL PCDF		1.41	1.87	1.34	1.54
TOTAL PCDD/PCDF		8.06	13.30	7.81	9.72

TABLE 2-17. DIOXIN/FURAN ISOMER DISTRIBUTIONS IN THE TOTAL ASH DISCHARGE

ISOMER	MOLE FRACTIONS			
	RUN 01	RUN 02	RUN 03	AVERAGE
DIOXIN				
Mono-CDD	0.00	0.00	0.00	0.00
Di-CDD	0.00	0.00	0.00	0.00
Tri-CDD	0.00	0.01	0.00	0.00
2378 TCDD	0.00	0.00	0.00	0.00
Other TCDD	0.01	0.02	0.01	0.02
12378 PCDD	0.00	0.00	0.01	0.01
Other PCDD	0.02	0.02	0.03	0.02
123478 HxCDD	0.01	0.01	0.01	0.01
123678 HxCDD	0.01	0.01	0.01	0.01
123789 HxCDD	0.03	0.02	0.03	0.03
Other HxCDD	0.09	0.07	0.10	0.09
Hepta-CDD	0.29	0.19	0.33	0.27
Octa-CDD	0.53	0.65	0.45	0.54
FURAN				
Mono-CDF	0.00	0.00	0.00	0.00
Di-CDF	0.00	0.00	0.00	0.00
Tri-CDF	0.04	0.03	0.04	0.04
2378 TCDF	0.02	0.01	0.02	0.02
Other TCDF	0.08	0.09	0.09	0.09
12378 PCDF	0.01	0.01	0.01	0.01
23478 PCDF	0.01	0.01	0.02	0.02
Other PCDF	0.05	0.05	0.06	0.05
123478HxCDF	0.06	0.05	0.06	0.06
123678 HxCDF	0.03	0.03	0.03	0.03
123789 HxCDF	0.00	0.00	0.00	0.00
Other HxCDF	0.19	0.16	0.20	0.18
Hepta-CDF	0.36	0.33	0.37	0.35
Octa-PCDF	0.15	0.23	0.11	0.16

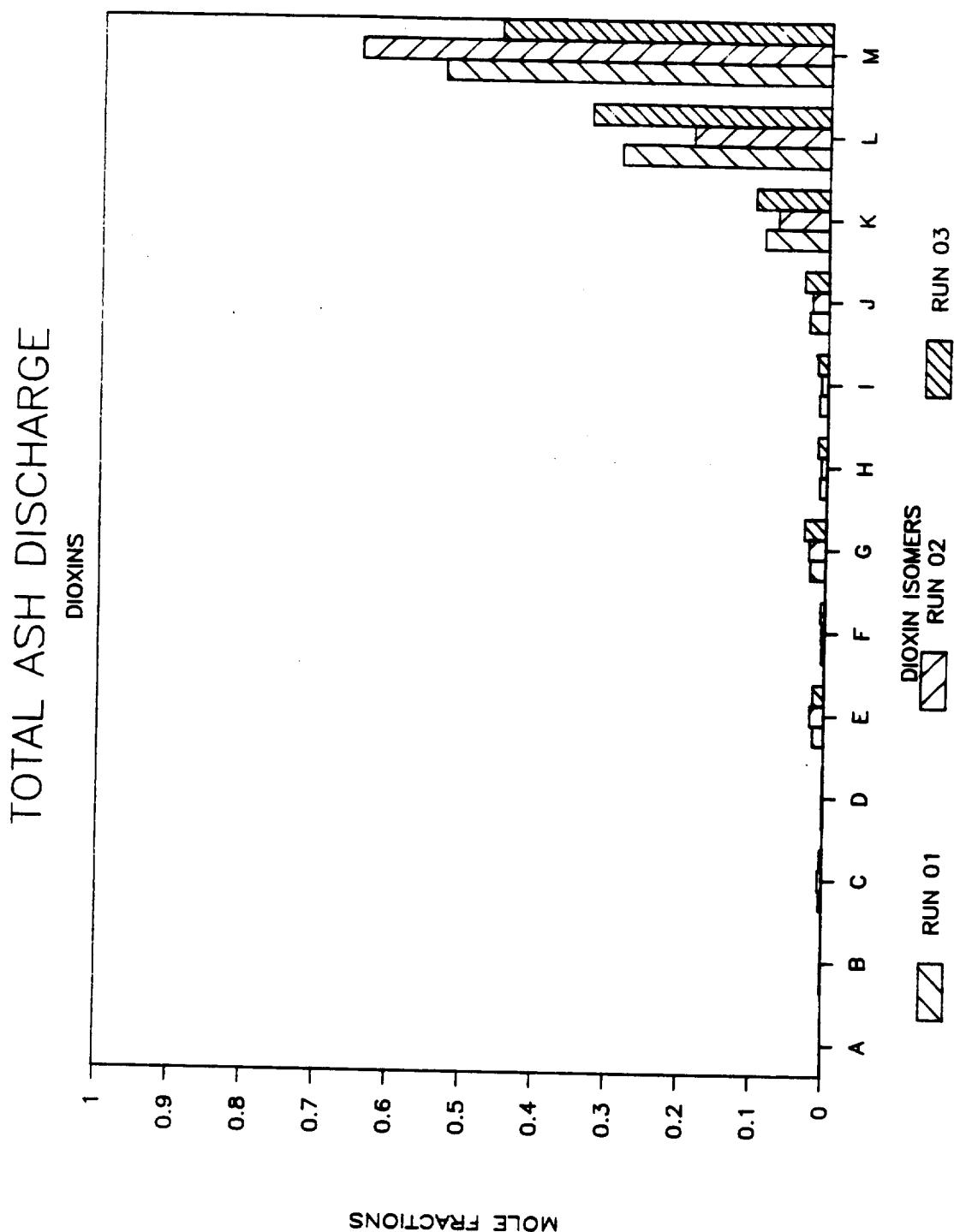


Figure 2-5. Dioxin homolog distribution in the total ash discharge.

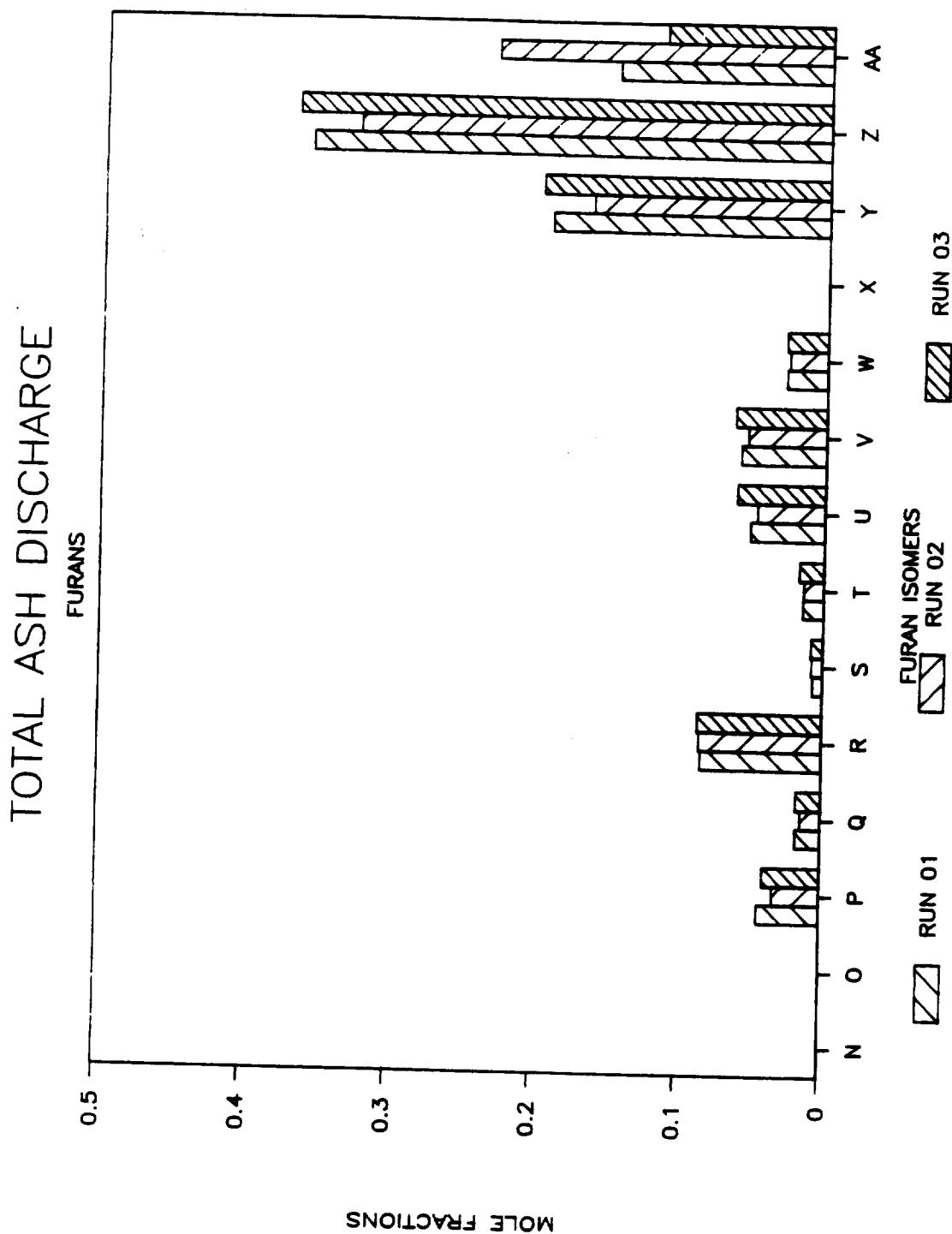


Figure 2-6. Furan homolog distribution in the total ash discharge.

TABLE 2-18. SUMMARY OF PROCESS DATA AT RFA's LAWRENCE, MA FACILITY

Parameter	Run 01	Run 02	Run 03	Average
Boiler				
Steam Production (10^{-3} lb/hr)	217	208	215	213
Superheater Outlet				
Steam Temperature ($^{\circ}$ F)	701	698	700	700
Steam Pressure (PSIG)	632	640	586	619
Gas Temperature ($^{\circ}$ F)	531	538	534	534
Exit Gas Temperature ($^{\circ}$ F)	819	823	821	821
Undergrate Air Flow (10^3 lb/hr)	56	56	55	56
Overfire Air Flow (10^3 lb/hr)	>150	>150	>150	--
RDF Demand (%)	52	52	53	52
Economizer Exit Gas Temperature ($^{\circ}$ F)	538	545	544	542
Air Heater				
Flue Gas Inlet Temperature ($^{\circ}$ F)	511	521	518	517
Flue Gas Outlet Temperature ($^{\circ}$ F)	344	354	349	349
Air Inlet Temperature ($^{\circ}$ F)	90	95	94	93
Air Outlet Temperature ($^{\circ}$ F)	354	366	358	359
Flue Gas				
Oxygen A (%)	9.3	9.5	9.5	9.4
Oxygen B (%)	7.3	7.0	7.1	7.1
Conductivity (u MHOS)	992	962	1192	1049

3.0 PROCESS DESCRIPTION

The Refuse Fuels facility located in Lawrence, Massachusetts, is a cogenerating plant consisting of a RDF boiler and three oil-fired boilers. The RDF boiler, a Babcock and Wilcox Sterling Power Boiler, is designed to fire both refuse derived fuel (RDF) and number 6 fuel oil. Operation of the boiler was limited to RDF firing during the testing period. A generalized schematic of the process line is presented in Figure 3-1.

The boiler at the RFA facility is a suspension fired boiler designed to produce 250,000 pounds of steam per hour. The RDF is introduced into the boiler above the moving grates and is ignited while suspended. The refuse is presorted and shredded before it arrives at the plant in dump trucks. It is loaded onto a conveyor by front-end loader then fed to the incinerator pneumatically through chutes. The burning mass of RDF then travels through the boiler at a predetermined speed on the moving grate. Noncombustibles and ash are discharged continuously to a quench bath. Normal operation includes clearing the grate of ash deposits and non-combustibles every 60 to 90 minutes to prevent the chute leading to the quench bath from being clogged.

Flue gas particulate emissions are controlled with a Belco hot side electrostatic precipitator (ESP). The ESP ash is discharged from hoppers to a screw conveyor. The ESP ash is combined with the bottom ash after the quench bath and the total discharge ash is landfilled at the Refuse Fuels facility in Haverhill.

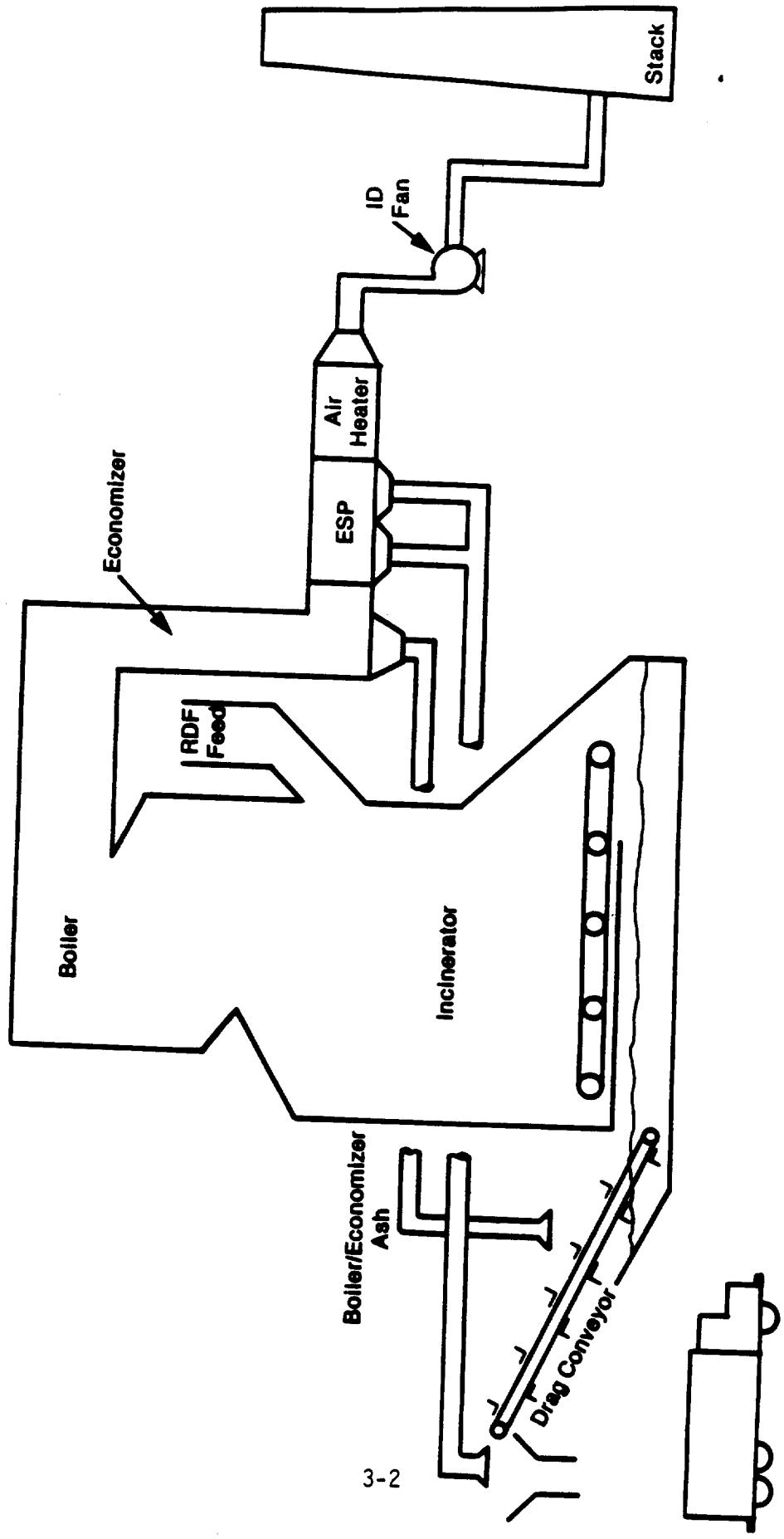


Figure 3-1. Schematic diagram of the RFA facility.

4.0 SAMPLING LOCATIONS AND ANALYTICAL PROCEDURES

The sampling methods and analytical procedures used at this site are summarized in Table 4-1. A brief description of these methods and the sampling locations are included in this section.

4.1 Sampling Locations

The sampling locations for the flue gas samples and ash samples are discussed in this section. The sampling locations are shown on the process flow diagram presented in Figure 4-1.

4.1.1 Flue Gas Sampling Locations

The flue gas was sampled at the outlet of the induced draft (ID) fan. The sampling location, port locations, and dimensions of the duct are shown in Figure 4-2. Scaffolding was constructed in order to gain access to this sampling location. The average flue gas temperature and moisture at this location were 402°F and 12.3 percent by volume, respectively.

Two 4-inch ports are located 90° apart on a 9-foot diameter circular, horizontal duct. The sampling ports are located 18 feet (2 equivalent diameters) downstream of a bend in the duct and 9 feet (1 equivalent diameter) upstream of a disturbance. In accordance with EPA Method 1, 24 sampling points were used; twelve points on each diameter. The traverse point layout used during sampling is shown in Figure 4-3.

The presence of cyclonic flow at the flue gas sampling location was a concern. Straightening veins are located at the bend which precedes the sample ports. The flow was checked for cyclonic conditions according to EPA Method 1 twice before sampling began. The average angle from the zeroed position for the two runs was 13.3 degrees. The original data sheets are located in Appendix D. The maximum average angle for which flow is not considered cyclonic is 10 degrees according to EPA Method 1. The Massachusetts DEQE observer approved sampling at the conditions which were present.

4.1.2 Ash Sampling Locations

The ESP ash samples were collected from the screw conveyor which transports the ash from the hoppers to the total ash discharge point. The ESP

TABLE 4-1. SUMMARY OF SAMPLING METHODS AND ANALYTICAL PROCEDURES

Parameter	Sampling Method	Analytical Procedure
Dioxin/furans	ASME Environmental Standards Workshop Protocol (December 1984 draft)	High resolution GC/MS
Volumetric flowrate	EPA Method 2	Radian computer program
Molecular weight (O_2 , CO_2 , N_2)	EPA Method 3	Orsat Analysis
Moisture	EPA Method 4	Gravimetric, analytical balance

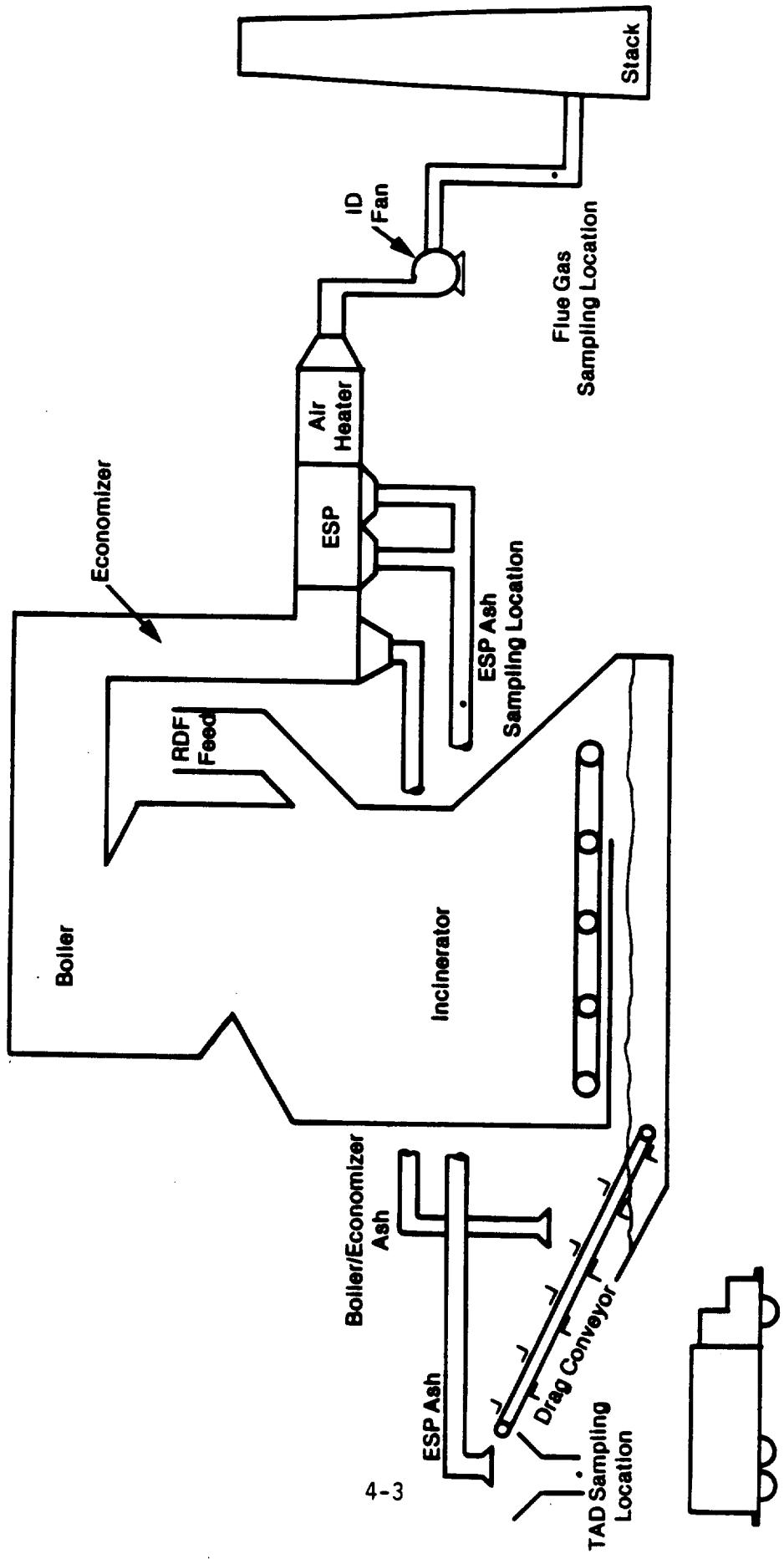


Figure 4-1. Sampling locations at the RFA facility.

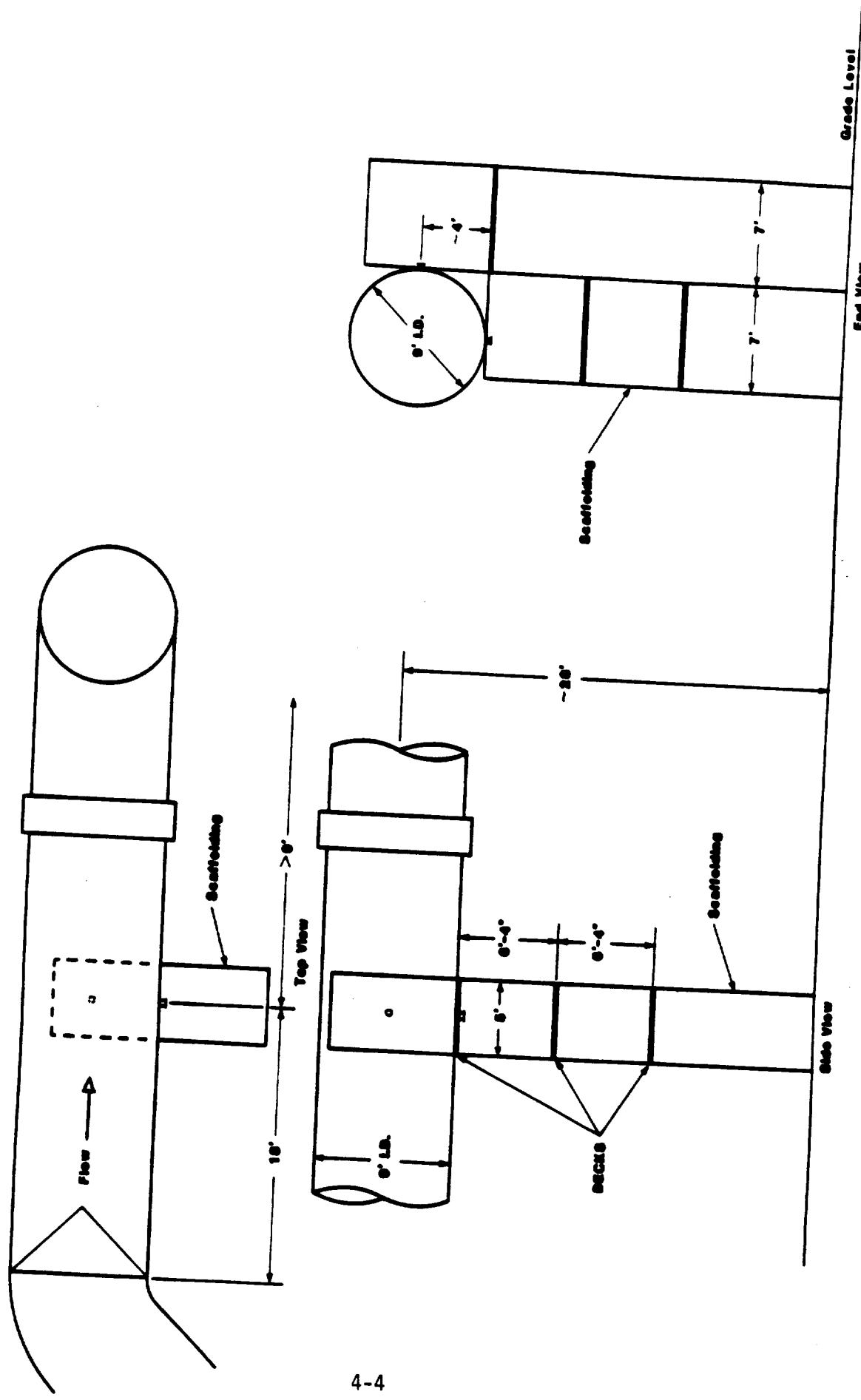


Figure 4-2. Flue gas sampling location at the RFA Facility.

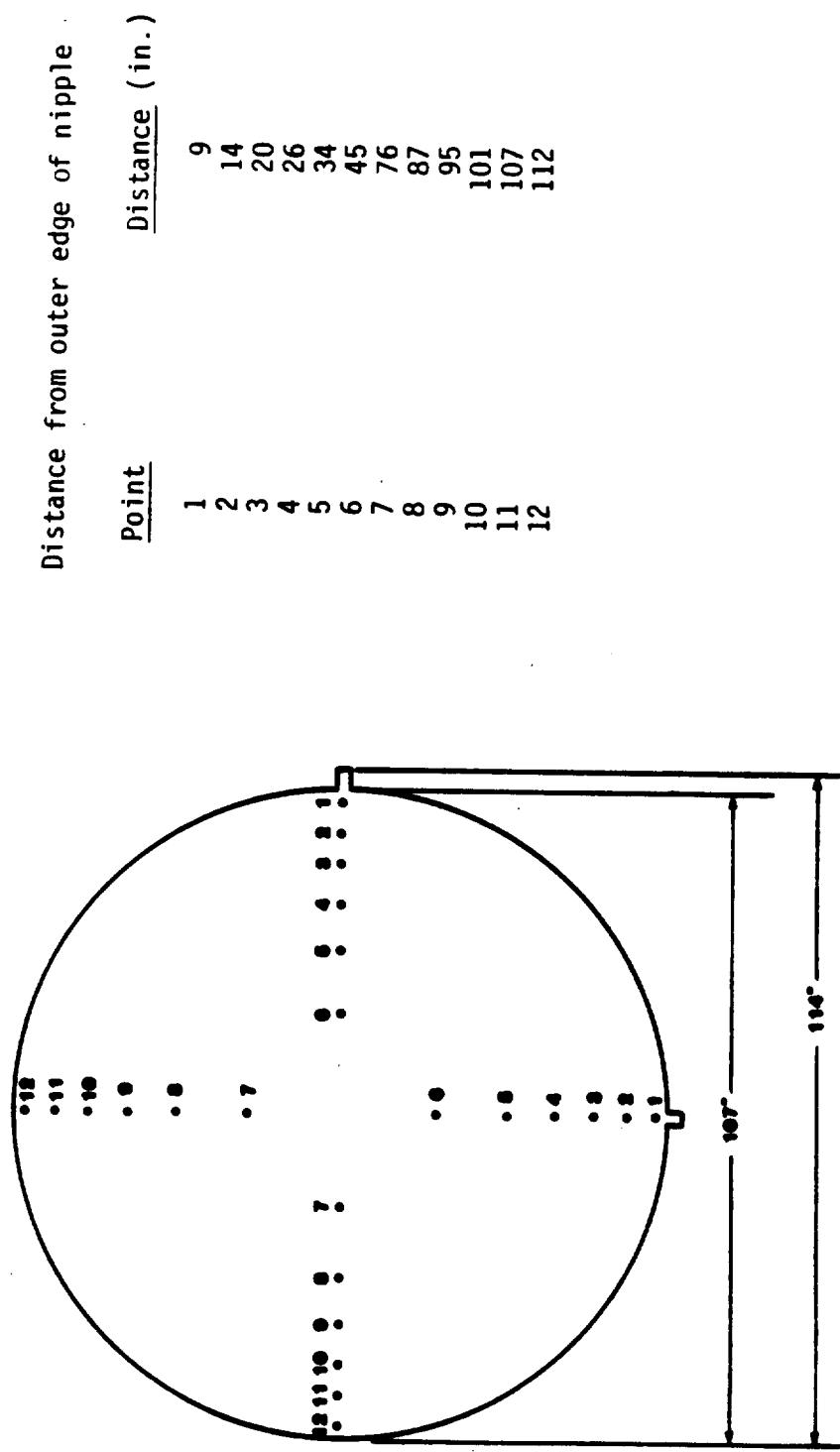


Figure 4-3. Traverse Point Layout for the RFA Facility.

ash sample was taken from a point immediately prior to the ESP ash being water quenched. A schematic diagram of the ESP ash sampling location is shown in Figure 4-4. The total ash discharge samples were collected at the chute where the combined economizer ash, boiler bottom ash and the ESP ash are discharged to the dump truck. A bucket was used to get a representative cross-section of the ash sample as it fell from the chute. A schematic diagram of the total ash discharge handling system is shown in Figure 4-5.

4.2 SAMPLING AND ANALYTICAL PROCEDURES

4.2.1 Flue Gas Dioxin/Furan Determination

Gas sampling and analysis for PCDD/PCDF were conducted according to the latest draft of the Environmental Standards Workshop (sponsored by EPA and ASME) chlorinated organic compound sampling protocol with several modifications. This protocol is included in Appendix A.

The sampling method is a modified version of EPA Method 5 that includes a solid sorbent module for trapping vapor phase organics. Radian has modified the protocol to include: 1) the use of a horizontal condenser, and 2) the use of methylene chloride for final recovery of dioxins. These deviations have been approved by both EPA and New York DEC and have been used in the Tier 4 program conducted for U.S. EPA and a joint test on the Westchester facility which involved New York DEC and the EPA's Office of Solid Waste. The horizontal condenser lowers the profile of the train and reduces breakage. The XAD trap following the condenser is maintained in a vertical position. No problems of channeling have been noted. In one of the Tier 4 test series, a backup XAD trap was used to determine if any breakthrough was occurring. None was found. Methylene chloride has been shown to be a better solvent for hepta- and octa- dioxins and is an acceptable solvent for EPA, New York DEC and Environment Canada Dioxin tests.

Each sample was collected for a total of 192 minutes. The sampling train was leak checked before and after sampling was conducted at each port. After sampling, the filters and resin traps were removed from the train and sealed. The contents of the impingers and acetone and methylene chloride rinses of the train glassware were recovered into pre-cleaned amber glass bottles. The field data and sample recovery sheets are included in Appendix C.

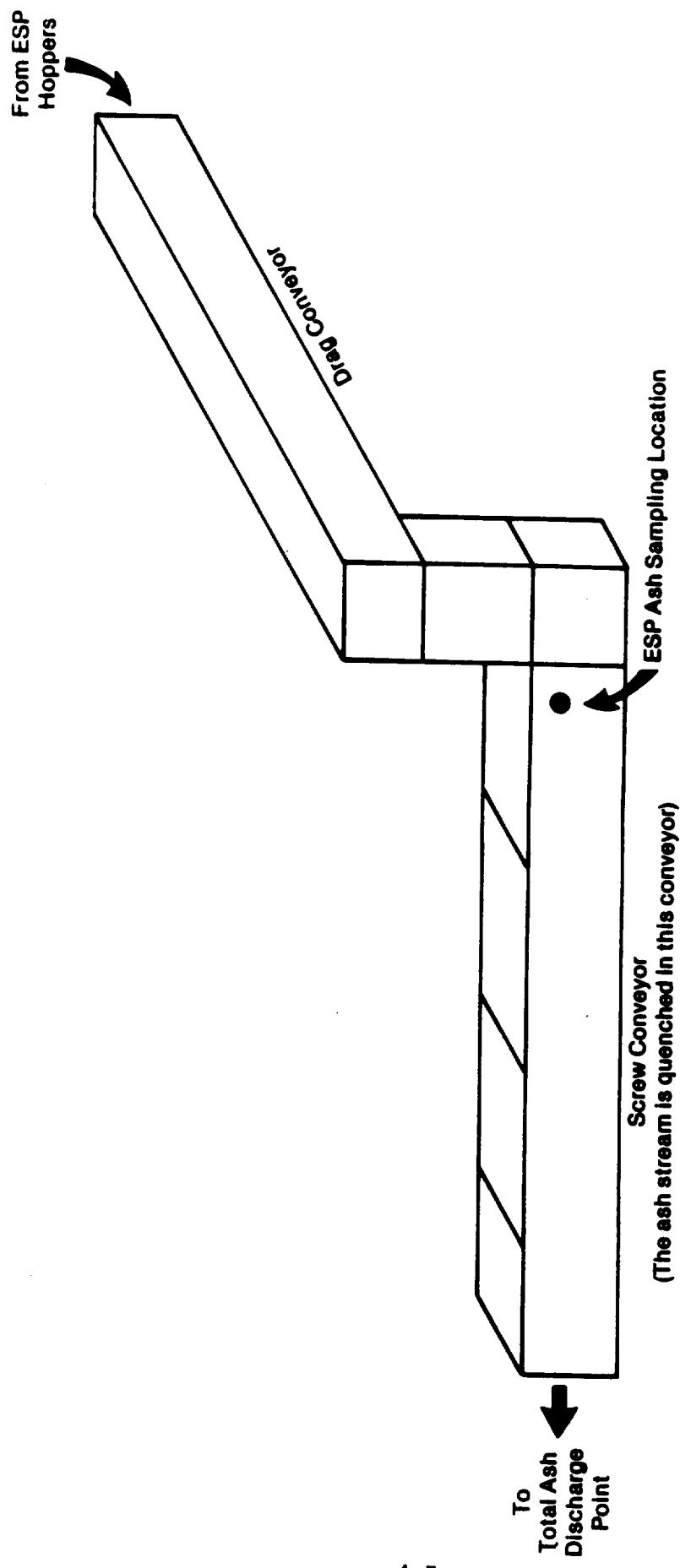


Figure 4-4. ESP ash sampling location at the RFA facility.

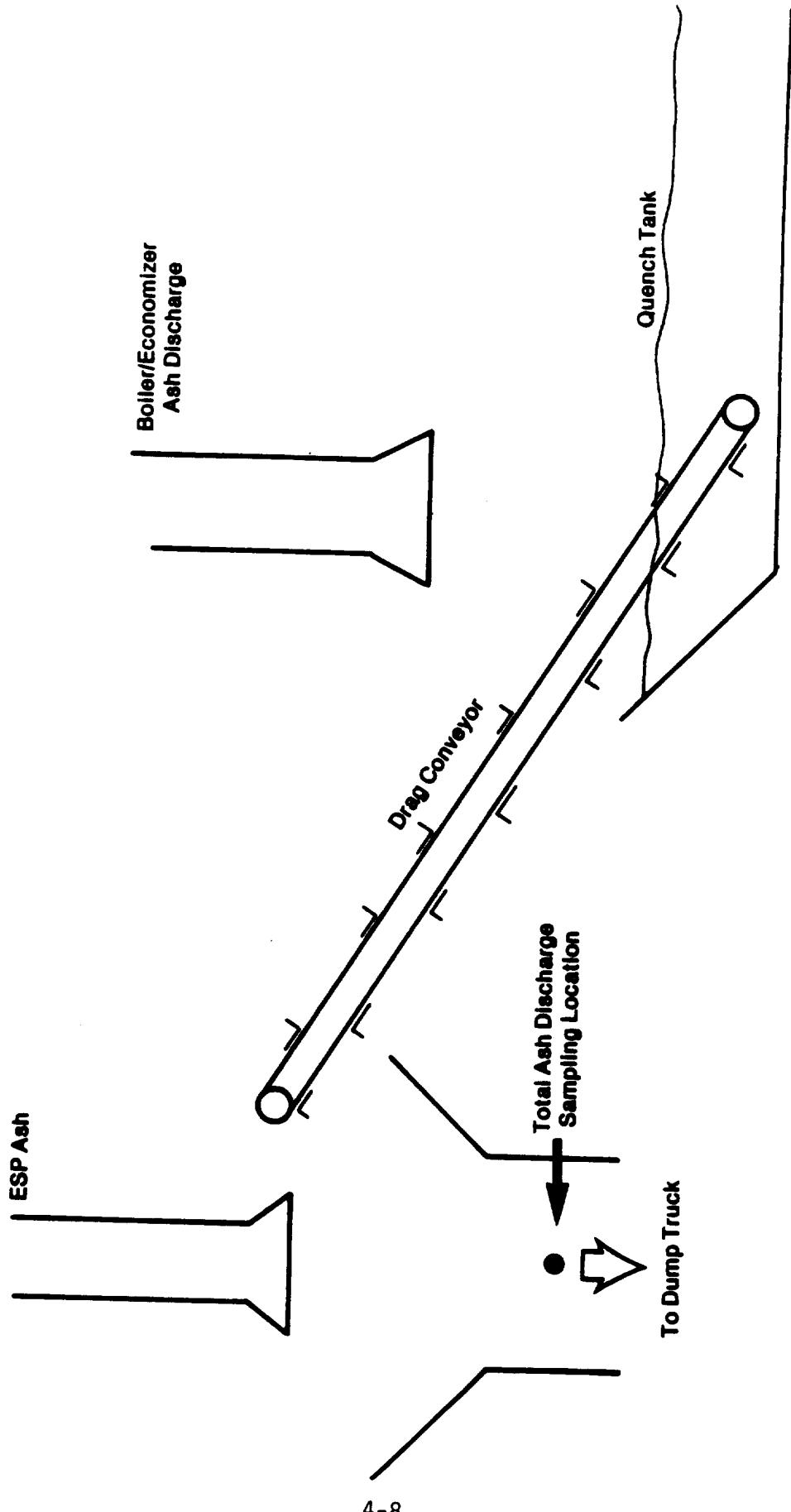


Figure 4-5. Total ash discharge sampling location.

The dioxin/furan analyses were performed by Triangle Laboratories, Research Triangle Park, North Carolina, according to ASME/EPA procedures.¹ During sample preparation, the sample components are extracted, combined and concentrated according to the scheme in Figure 4-6. The samples are analyzed by gas chromatography followed by high resolution mass spectrometry (GC/MS). Internal standards and isotopically labelled spikes are used to tune and calibrate the GC/MS system.

4.2.2 Volumetric Flowrate, Molecular Weight and Moisture

Volumetric flowrate was measured according to EPA Method 2. A type K thermocouple and S-type pitot tube were used to measure flue gas temperature and velocity, respectively. The average flue gas moisture content was determined by measuring the amount of condensate that collected in the sampling train impingers according to EPA Method 4. The molecular weight of the flue gas was determined from an integrated bag sample collected according to the technique described in EPA Method 3. An Orsat analyzer was used to determine the CO₂ and O₂ concentration of the sample. Nitrogen was determined by difference.

4.2.3 Ash Sampling

The ash collecting methods used for this project followed ASTM D 2234-82 procedures as closely as possible. Two (2) ash streams were sampled for dioxin/furan analysis during each test run: ESP ash and total plant ash discharge (a combination of furnace bottom ash, boiler/economizer fly ash and ESP dust).

For the total ash discharge, a flow diagram of the sampling procedure used is presented in Figure 4-7. No standard protocol was available. However, ASTM D2234-82, collection of a gross sample of coal, was used for guidance in terms of sampling method, frequency, and size.

The number of grab samples of ash required to represent a statistically relevant average of the ash over the sampling period cannot be determined at this time since an estimate of the variance in the parameter of concern in the bulk lot is needed. The coal sampling procedures in D 2234 are based on some estimate of the variance of the ash content of the coal. However, a grab sample of total ash discharge was collected every 15 minutes throughout the test period, starting 45 minutes after the flue gas sampling begins. This lag

Chlorinated Dibenzodioxin/Dibenzofuran Analyses*

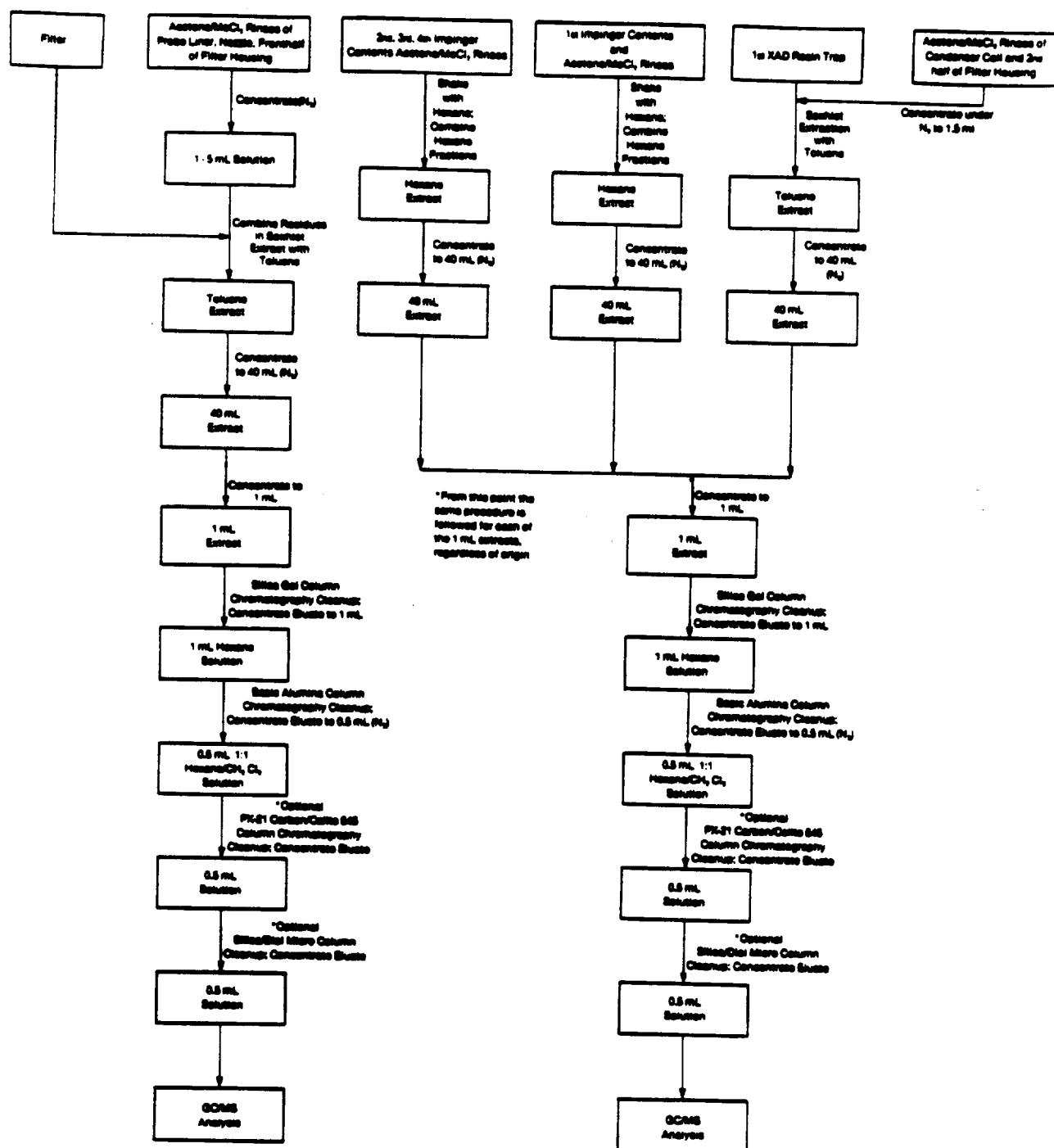


Figure 4-6. Dioxin/Furan analysis methodology.

Tier 4 Cleaning

Clean sampling equipment
storage containers,
and mixing area.

ASTM D2234

Sample every 15 minutes
during test. (Start sampling
45 minutes after start
of flue gas sampling.)

Weigh each grab sample.

Composite 15 grab samples.
Approximately 30 lb.

ASTM D346-78

Mix in cement mixer.
Cone & quarter
Collect 2 950 ml bottles
of the ash sample.

At RTP,

Determine moisture content.

1 kg sample shipped to
Triangle Laboratories for
dioxin/furan analysis.
Analyses reported on
as sampled basis.

Figure 4-7. Ash sampling scheme for total ash discharge.

in the start time of ash sampling was because of the grate holdup time for the bottom ash, and allowed closer correlation of the ash results to the flue gas results.

ASTM D 2234 does not require that all grabs be of the same size, volume or weight, just that a minimum number and size of sample be taken. Sampling was conducted using a bucket attached to a rope. A representative cross-section was collected from the ash discharge chute which is immediately above the dump truck. Each grab sample was weighed and held for compositing. Hand-sorting of the ash was not necessary.

Approximately 30 pounds of total ash discharge was collected over the sample period. The composite sample was mixed in a cement mixer before a 5 pound composite sample was collected which was returned to the Radian RTP laboratories. At RTP one aliquot was analyzed for moisture and one was sent to Triangle Labs for dioxin/furan analysis. The moisture content of the samples is reported on an as-received basis.

ESP samples were taken from an intermediate transfer point on the screw conveyor prior to combination with the other ash streams. The samples were collected every 30 minutes starting 45 minutes after the start of flue gas sampling. Approximately 4 pounds of ESP ash was collected during each test run which was composited and an aliquot placed in a 950 mL amber glass bottle.

One kg of each type of ash is sufficient for laboratory extraction and analysis. (Ten grams maximum per extraction.) The analytical results are reported as mass of dioxin/furans detected per mass of sample analyzed.

5.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

This section summarizes results of Quality Assurance and Quality Control (QA/QC) activities for sampling and analytical activities for Refuse Fuels Associates (RFA) in Lawrence, Massachusetts. Manual gas sampling methods are considered in Section 5.1. Analytical QA/QC results are reported in Section 5.2. The Site Specific Test Plan describes the QA/QC activities that took place in greater detail.

5.1 MANUAL GAS SAMPLING

Quality Assurance and Quality Control (QA/QC) activities for the manual sampling methods centered around (1) equipment calibration, (2) glassware cleaning, (3) procedural QC checks, and (4) sample custody procedures. Key activities and QC results in each of these areas are discussed in this section. Also discussed are problems encountered that may have affected data quality.

5.1.1 Equipment Calibration and Glassware Preparation

Pre-test calibrations or inspections were conducted on pitot tubes, sampling nozzles, temperature sensors and analytical balances. Both pre-test and post-test calibrations were performed on the dry gas meters. All of the field test equipment met the calibration criteria specified in the Quality Assurance Project Plan. Differences in the pre-test and post-test dry gas meter calibrations were less than 1 percent.

Precleaning procedures were used for all MM5 dioxin/furan and TOCL sample train glassware and sample containers. The cleaning procedure outlined in Table 5-1 was implemented to minimize the potential for sample contamination with substances that could interfere with the dioxin/furan analysis. To determine dioxin/furan background levels in the glassware a blank MM5 dioxin/furan train that had been pre-cleaned using the procedure in Table 5-1 (i.e., proof train blank) was recovered according to the usual MM5 dioxin procedures. The rinses and other train components of the proof train blank (i.e., filter XAD trap, and impinger solution) were submitted to Triangle Laboratories for dioxin/furan analysis. To minimize the potential for

TABLE 5-1. MM5 DIOXIN GLASSWARE CLEANING PROCEDURE

NOTE: USE DISPOSABLE GLOVES AND ADEQUATE VENTILATION

1. Soak all glassware in hot soapy water (Alconox^R)
2. H₂O rinse (X3)^a.
3. Distilled/deionized H₂O rinse (X3).
4. Bake at 450⁰F for 2 hours.^b
5. Acetone rinse (X3), (pesticide grade).
6. Methylene chloride rinse (X3), (pesticide grade).
7. Cap glassware with clean glass plugs or MeCl₂ rinsed aluminum foil.

^a(X3) = three times.

^bStep (4) was not used for probe liners and non-glass components of the train that could not withstand 450⁰F (i.e., teflon coated filter frits and seals). The probe liners are too large for the baking ovens.

contamination in the field, all sample train glassware was capped with rinsed foil prior to use. To determine the field recovery efficiency, a blank MM5 dioxin/furan train that had been used and field-recovered at least once at Lawrence (i.e., field recovery train blank) was also recovered and submitted for analysis. Analytical results for the MM5 proof train blanks and the field recovery train blanks are presented in Section 5.2.1.3.

5.1.2 Procedural QC Activities/Manual Gas Sampling

Procedural QC activities during the manual gas sampling for dioxin/furan focused on:

- visual equipment inspections,
- utilization of sample train blanks,
- ensuring the proper location and number of traverse points,
- conducting pre-test and post-test sample train leak checks,
- maintaining proper temperatures at the filter housing, sorbent trap and impinger train,
- maintaining isokinetic sampling rates, and
- recording all data on preformatted field data sheets.

Unusual circumstances that occurred while carrying out the procedural QC activities were also noted.

Results of the average isokinetics calculations and leak checks for the six MM5 dioxin test runs are shown in Table 5-2. The QA objective of 100 ± 10 percent was met for all test runs. Initial, final, and port change leak checks for the MM5 sample trains achieved the QA objectives for all test runs [leakage rate $\leq 0.02 \text{ ft}^3/\text{min}$ or 4% of the average sampling rate (whichever is less)].

5.1.3 Sample Custody

Sample custody procedures used during this program emphasized documentation of the collected samples and the use of chain-of-custody records for samples transported to the laboratory for analysis. Steps taken to identify and document samples collected included labeling each sample with a unique code and logging each individual sample in a master logbook. All samples shipped to Triangle Laboratories were also logged on chain-of-custody records that were signed by the field sample custodian upon shipment and also signed upon receipt at the laboratory. Each sample container lid was

TABLE 5-2. ISOKINETICS AND LEAK CHECK RESULTS

Run Number	Isokinetics (Percent)	Met QC Objective? ^a	Leak ^b Check
<u>MM5 Dioxin Tests^c</u>			
01	98.1	Yes	Good
02	98.6	Yes	Good
03	99.9	Yes	Good

^aThe QC objective for isokinetics is 100 \pm 10 percent.

^bThe QC objective for leak checks is a leak-free train or leakage rate less than or equal to 0.02 cfm or less than 4% of the average sampling rate (whichever is less).

individually sealed to ensure that samples were not tampered with. No evidence of loss of sample integrity was reported for samples collected at this site.

5.2 LABORATORY ANALYSES

QA/QC activities were carried out for dioxin/furan analyses performed on RFA samples. The dioxin/furan analyses of MM5 train samples (performed by Triangle Laboratories) are discussed in Section 5.2.1.

5.2.1 Dioxin/Furan Analyses

Analytical recoveries of labeled surrogate compounds spiked onto MM5 train samples, prior to extraction are reported in Section 5.2.1.1. Sample blank data are reported in Section 5.2.1.2.

5.2.1.1 Surrogate Recoveries of the Test Samples. Table 5-3 presents the analytical recovery data reported by Triangle Laboratories for three isotopically labeled surrogate compounds spiked onto the MM5 train and quality control samples. Samples were spiked with the surrogates shown in Table 5-3. In general, the data show excellent surrogate recoveries, with values ranging from 87-125 percent, excluding those recoveries that were flagged for interferences or column saturation. Table 5-4 presents the analytical recovery data for internal standards. The surrogate recovery efficiencies are used to estimate the recovery efficiency of the target compound since they cannot be measured directly.

5.2.1.2 Sample Blanks. Table 5-5 summarizes the analytical results reported by Triangle for internal laboratory blanks, proof blank MM5 train samples, field recovery blank MM5 train samples, and reagent blanks. Insignificant quantities of target dioxin and furan species were found in all of the blank quality control samples.

5.2.2 Duplicate Analyses

A duplicate injection was performed with MM5, Run 03 front half sample. The results are presented in Table 5-6. The purpose of the duplicate injection was to evaluate the reproducibility (precision) of the analytical methodology. The average absolute relative error for duplicate pairs was 8.7 percent, well within the acceptance criteria of \pm 10 percent. Thus, the analytical system was shown to be in control during analysis of the RFA samples.

TABLE 5-3. PERCENT SURROGATE RECOVERIES FOR RFA DIOXIN/FURAN ANALYSES

Sample Type	$^{13}\text{C}_{-12}\text{TCDF}$	$^{37}\text{Cl}_4\text{-TCDD}$	$^{13}\text{C}_{12}\text{-HxCDF}$
<u>MM5 Samples</u>	FH/BH	FH/BH	FH/BH
Run 01	115/101	118/101	92/90
Run 02	111/89	114/91	101/96
Run 03	103/91	107/92	115/87
Run 03 (Duplicate)	107/a	105/a	124/a
<u>ESP Ash Samples</u>			
Run 01	94	100	185 ^b
Run 02	108	117	278 ^c
Run 04	104	116	186 ^c
<u>Total Ash Discharge</u>			
Run 01	109	125	138 ^c
Run 02	113 ^b	119	139 ^c
Run 03	102	101	176 ^c
<u>Quality Control Samples</u>			
Field Blank	97/90	104/97	95/93
Analytical Method Blank	106	109	103
Soxhlet Blank	111	116	99
<u>Proof Blank</u>			
Probe Rinse	93	100	92
Coil Rinse	94	100	91
Condenser Rinse	85	89	75
Impinger Rinse	86	94	83

^aOnly the front half was analyzed in duplicate.

^bAbove the calibration range, experienced interferences.

^cExperienced interferences.

TABLE 5-4. PERCENT INTERNAL STANDARD RECOVERIES FOR RFA DIOXIN/FURAN ANALYSES

Sample Type	2378- ¹³ C- ₁₂ TCDD	¹³ C ₁₂ -PCDD	¹³ C ₁₂ -HxCDD	¹³ C ₁₂ -HpCDD	¹³ C ₁₂ -OCDD
<u>MM5 Samples</u>	FH/BH	FH/BH	FH/BH	FH/BH	FH/BH
Run 01	83/92	99/106	98/111	95/132	61/124
Run 02	94/91	105/82	120/79	152/97	147/86
Run 03	91/103	78/96	71/92	76/116	89/114
Run 03 (Duplicate)	96/a	104/a	99/a	104/a	80/a
<u>ESP Ash Samples</u>					
Run 01	88	73	68	70 ^b	57
Run 02	96	113	98	0.05 ^b	0.03 ^b
Run 03	65	65	71	88	71
<u>Total Ash Discharge</u>					
Run 01	96	117	100	130	113
Run 02	99	117	105	157	76
Run 03	101	89	80	92	92
<u>Quality Control Samples</u>					
Field Blank	91/91	79/82	71/75	82/82	72/80
Analytical Method Blank	101	99	87	97	77
Soxhlet Blank	99	112	107	109	101
<u>Proof Blank</u>					
Probe Rinse	92	74	67	67	52
Coil Rinse	86	70	68	65	58
Condenser Rinse	82	63	63	59	51
Impinger Rinse	90	74	72	70	66

^aOnly the front half was analyzed in duplicate.

^bAbove the calibration range, experienced interferences.

^cExperienced interferences.

TABLE 5-5 ANALYTICAL RESULTS FOR RFA QUALITY CONTROL SAMPLES^a

Compound	Flue Gas Quality Control Samples			
	Laboratory	Proof	Field	
	Method	Blank	Blank	Soxlet
	Blank	MM5 Train	MM5 Train	Blank
<u>Dioxins</u>				
Mono-CDD	ND	ND	ND	ND
Di-CDD	ND	ND	ND	ND
Tri-CDD	ND	ND	ND	ND
2378-TCDD	ND	ND	ND	ND
Other TCDD	ND	ND	ND	ND
12378 PCDD	ND	ND	ND	ND
Other PCDD	ND	ND	ND	ND
123478 HxCDD	ND	ND	ND	ND
123678 HxCDD	ND	ND	ND	ND
123789 HxCDD	ND	ND	ND	ND
Other HxCDD	ND	ND	ND	ND
Hepta-CCD	ND	ND	1.95	ND
Octa-CCD	ND	ND	5.45	ND
Total PCCD	ND	ND	8.46	ND
			15.68	ND
<u>Furans</u>				
Mono-CDF	ND	ND	ND	ND
Di-CDF	ND	ND	ND	ND
Tri-CDF	ND	ND	ND	ND
2378 TCDF	ND	ND	ND	ND
Other TCDF	ND	ND	ND	ND
12378 PCDF	ND	ND	ND	ND
23478 PCDF	ND	ND	ND	ND
Other PCDF	ND	ND	ND	ND
123478 HxCDF	ND	ND	0.15	ND
123678 HxCDF	ND	ND	0.53	ND
123789 HxCDF	ND	ND	0.22	0.04
Other HxCDF	ND	ND	ND	ND
Hepta-CDF	ND	ND	0.65	0.01
Octa-CDF	ND	ND	2.06	0.16
Total PCDF	ND	ND	0.80	ND
			4.41	0.21

^aAll values reported in nanograms (10^{-9} g) per sample.
ND = Not detected.

TABLE 5-6. RESULTS OF DUPLICATE ANALYSIS OF
RFA MM5 SAMPLE, RUN 03, FRONT HALF

Homologue	Run #1	Run #2	Absolute Percent Difference
<u>Dioxins</u>			
Mono-CDD	ND	ND	0.00
Di-CDD	1.30	1.06	22.6
Tri-CDD	10.93	8.22	33.0
2378-TCDD	2.58	2.60	0.77
Other TCDD	33.47	31.44	6.5
12378 PCDD	10.23	9.47	8.0
Other PCDD	58.53	66.28	11.7
123478 HxCDD	16.82	16.21	3.8
123678 HxCDD	18.08	17.62	2.6
123789 HxCDD	37.87	37.73	0.38
Other HxCDD	160.60	156.29	2.8
Hepta-CDD	349.94	350.6	0.20
Octa-CDD	362.94	353.27	2.7
Total PCDD	1063.29	1050.79	1.2
<u>Furans</u>			
Mono-CDF	0.13	ND	--
Di-CDF	ND	ND	0.00
Tri-CDF	75.70	65.47	15.6
2378 TCDF	22.09	21.36	3.4
Other TCDF	102.05	92.19	10.7
12378 PCDF	9.15	7.32	0.04
23478 PCDF	18.42	14.85	0.04
Other PCDF	53.32	42.87	0.38
123478 HxCDF	46.51	44.00	0.03
123678 HxCDF	20.25	19.18	0.01
123789 HxCDF	ND	ND	0.00
Other HxCDF	115.82	107.90	0.11
Hepta-CDF	206.42	193.80	0.14
Octa-CDF	40.65	36.93	0.06
Total PCDF	710.51	645.89	0.60

^aAll values reported in nanograms (10^{-9} g) per gram of sample.
ND = not detected.

6.0 REFERENCES

1. Environmental Standards Workshop, Sponsored by the American Society of Mechanical Engineers, U.S. Department of Energy and U.S. Environmental Protection Agency, December 31, 1984.
2. Procedures for Estimating Risks Associated with Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans (CDD and CDF). (Prepared by the U.S. Environmental Protection Agency, Washington, DC.) April 1986.

APPENDIX A

Environmental Standards Workshop Protocol
December, 1984
Draft

APPENDIX B.1
Example Calculations and Terminology

**RADIAN SOURCE TEST
EPA METHODS 2-5
DEFINITION OF TERMS**

PARAMETER	DEFINITION
T _t (min.)	TOTAL SAMPLING TIME
D _n (in.)	SAMPLING NOZZLE DIAMETER
P _s (in. H ₂ O)	ABSOLUTE STACK STATIC GAS PRESSURE
V _m (cu. ft.)	ABSOLUTE VOLUME OF GAS SAMPLE MEASURED BY DGM
V _w (gm.)	TOTAL STACK MOISTURE COLLECTED
P _m (in. H ₂ O)	AVERAGE STATIC PRESSURE OF DGM
T _m (F)	AVERAGE TEMPERATURE OF DGM
P _b (in. Hg.)	BAROMETRIC PRESSURE
% CO ₂	CARBON DIOXIDE CONTENT OF STACK GAS
% O ₂	OXYGEN CONTENT OF STACK GAS
% N ₂	NITROGEN CONTENT OF STACK GAS
SQR (DELPS)	AVE. SQ. ROOT OF S-PITOT DIFF. PRESSURE-TEMP. PRODUCTS
A _s (sq. in.)	CROSS-SECTIONAL AREA OF STACK (DUCT)
T _s (F)	TEMPERATURE OF STACK
V _m (dscf)	STANDARD VOLUME OF GAS SAMPLED ,V _m (std), AS DRY STD. CF
V _m (dscm)	STANDARD VOLUME OF GAS SAMPLED, V _m (std), AS DRY STD. CM
V _w gas (scf)	VOLUME OF WATER VAPOR IN GAS SAMPLE, STD
% moisture	WATER VAPOR COMPOSITION OF STACK GAS
M _d	PROPORTION, BY VOLUME, OF DRY GAS IN GAS SAMPLE
M _{Wd}	MOLECULAR WEIGHT OF STACK GAS, DRY BASIS LB/LB-MOLE
M _W	MOLECULAR WEIGHT OF STACK GAS, WET BASIC LB/LB-MOLE
V _s (fpm)	AVERAGE STACK GAS VELOCITY
Flow (acf m)	AVERAGE STACK GAS FLOW RATE (ACTUAL STACK COND.)
Flow (acmm)	AVERAGE STACK GAS FLOW RATE (ACTUAL STACK COND.)
Flow (dscfm)	AVERAGE STACK GAS VOLUMETRIC FLOW RATE (DRY BASIS)
Flow (dscmm)	AVERAGE STACK GAS VOLUMETRIC FLOW RATE (DRY BASIS)
% I	PERCENT ISOKINETIC
% EA	PERCENT EXCESS AIR IN STACK GAS
DGM	DRY GAS METER
Y	DRY GAS METER CORRECTION FACTOR
P _g	STACK STATIC GAS PRESSURE
C _p	PITOT COEFFICIENT
dH	ORIFICE PLATE DIFF. PRESS. VALUE
dP	PITOT DIFF. PRESS. VALUE

*** EPA
STANDARD
CONDITIONS

Temperature = 68 deg-F (528 deg-R)
Pressure = 29.92 in. Hg.

SAMPLE CALCULATION
PAGE TWO

5) Average Molecular Weight of DRY stack gas :

$$MW_d = (.44 \times \%CO_2) + (.32 \times \%O_2) + (.28 \times \%N_2)$$

$$MW_d = (.44 \times 9.7) + (.32 \times 10.4) + (.28 \times 78.9) = 29.688$$

6) Average Molecular Weight of wet stack gas :

$$MW = MW_d \times Md + 18(1 - Md)$$

$$MW = 29.688 \times .8812872 + 18(1 - .8812872) = 28.30048$$

7) Stack gas velocity in feet-per-minute (fpm) at stack conditions :

$$Vs = K_p \times C_p \times [\text{SQRT } (dP)] \times \text{ave} \times \text{SQRT } [T_s \text{ (avg)}] \times \text{SQRT } [1/(P_s \times MW)] \times 60 \text{ sec}$$

$$Vs = 85.49 \times .84 \times 60 \times 20.48185 \times \text{SQRT}[1/(30.28883 \times 28.30048)]$$

$$Vs = 3014.235 \text{ FPM}$$

8) Average stack gas dry volumetric flow rate (DSCFM) :

$$Q_{sd} = \frac{Vs \times A_s \times Md \times T(\text{std}) \times P_s}{144 \text{ cu.in./cu.ft.} \times (T_s + 460) \times P(\text{std})}$$

$$Q_{sd} = \frac{3014.235 \times 9160.905 \times .8812872 \times 528 \times 30.28883}{144 \times 856.1875 \times 29.92}$$

$$Q_{sd} = 105500.9 \text{ dscfm}$$

APPENDIX B.2
Method 5 Calculations for Dioxin/Furan Train

RADIAN SOURCE TEST
EPA METHODS 2-5
FINAL RESULTS

PLANT : RFA
PLANT SITE : LAWRENCE , MA
SAMPLING LOCATION : ESP OUTLET
TEST # : ONE
DATE : 9/17/96
TEST PERIOD : 0900-1334

PARAMETER	RESULT
-----	-----
Vm(dscf)	102.2253
Vm(dscm)	2.895021
Vw gas(scf)	13.77016
Vw gas (scm)	.3899709
% moisture	11.87129
Md	.8812872
MWd	29.688
MW	28.30048
Vs(fpm)	3014.235
Vs (mpm)	918.9739
Flow(acfm)	191757.8
Flow(acmm)	5430.579
Flow(dscfm)	105500.9
Flow(dscmm)	2987.786
% I	98.12344
% EA	99.71619

Program Revision:1

RADIAN SOURCE TEST
EPA METHOD 2-5
(RAW DATA)

PLANT : RFA
PLANT SITE : LAWRENCE , MA
SAMPLING LOCATION : ESP OUTLET
TEST # : TWO
DATE : 9/17/96
TEST PERIOD : 1422-1848

PARAMETER	VALUE
Sampling time (min.)	192
Barometric Pressure (in.Hg)	30.28
Sampling nozzle diameter (in.)	.245
Meter Volume (cu.ft.)	102.479
Meter Pressure (in.H2O)	.9079591
Meter Temperature (F)	90.44898
Stack dimension (sq.in.)	9160.905
Stack Static Pressure (in.H2O)	.12
Stack Moisture Collected (gm)	299.3
Absolute stack pressure(in Hg)	30.28883
Average stack temperature (F)	408.449
Percent CO2	9.899999
Percent O2	10.1
Percent N2	80
Delps Subroutine result	20.32236
DGM Factor	.9985
Pitot Constant	.84

RADIAN SOURCE TEST
EPA METHOD 2-5
(RAW DATA)

PLANT : RFA
PLANT SITE : LAWRENCE , MA
SAMPLING LOCATION : ESP OUTLET
TEST # : THREE
DATE : 9/18/86
TEST PERIOD : 0918-1351

PARAMETER	VALUE
-----	-----
Sampling time (min.)	192
Barometric Pressure (in.Hg)	30.31
Sampling nozzle diameter (in.)	.245
Meter Volume (cu.ft.)	106.469
Meter Pressure (in.H2O)	.9391666
Meter Temperature (F)	94.65625
Stack dimension (sq.in.)	9160.905
Stack Static Pressure (in.H2O)	.12
Stack Moisture Collected (gm)	310.2
Absolute stack pressure(in Hg)	30.31882
Average stack temperature (F)	403.375
Percent CO2	9.600001
Percent O2	10.5
Percent N2	79.9
Delp's Subroutine result	20.57342
DGM Factor	.9985
Pitot Constant	.84

APPENDIX C.1
MM5 Field Data Sheets

RADIANT

CORPORATION

MODIFIED METHOD 5 DATA

PLANT RFA
 DATE 9/10/86
 SAMPLING LOCATION ESL outlet
 SAMPLE TYPE PM5
 RUN NUMBER 7
 OPERATOR Jay
 AMBIENT TEMPERATURE 54°C
 BAROMETRIC PRESSURE 30.28
 STATIC PRESSURE (P_s) 4.12
 FILTER NUMBER (s) 90
 MINIMUM SAMPLE VOLUME 90 ccf
 INITIAL LEAK CHECK 0.1% @ 15"

PROBE LENGTH AND TYPE 10' glass
 NOZZLE I.D. .245
 ASSURED MOISTURE % 12
 SAMPLE BOX NUMBER 4
 METER BOX NUMBER 1,76
 METER A I.D. .06
 C FACTOR .00
 PROBE HEATER SETTING 100.20
 HEATED BOX SETTING 250°
 REFERENCE AP 1/4
 DRY/GAS METER FACTOR (Y) .9985
 FINAL LEAK CHECK _____

SCHEMATIC OF TRAVERSE POINT LAYOUT
 READ AND RECORD ALL DATA EVERY 4 MINUTES

Traverse Point Number	Sampling Time Min.	Clock Time (24-hr Clock)	Gas Meter Reading (V _m), ft ³	Orifice pressure differential (in. H ₂ O)		Temperature & Pt (Circle One)				Pump Vacuum in. Hg	
				Desired		Probe	Filter	Inlet (1 in. dia)	Outlet (1 in. dia)		
				Velocity Head (in. H ₂ O)	Stack T-50						
A-12	4	04	950.4	.38	.385	.72	.72	410.281	—	—	
12	8	08	952.2	.38	.386	.72	.72	411.278	—	—	
11	12	12	954.1	.38	.386	.72	.72	398.271	—	—	
11	16	16	955.9	.38	.391	.72	.72	395.268	—	—	
10	20	20	957.8	.40	.388	.76	.76	389.251	—	—	
10	24	24	959.8	.40	.391	.76	.76	376.231	—	—	
9	28	28	961.8	.44	.394	.84	.84	360.244	—	—	
9	32	32	963.9	.44	.388	.84	.84	321.235	—	—	
8	36	36	965.8	.42	.388	.80	.80	278.246	—	—	
8	40	40	967.9	.45	.389	.85	.85	231.231	—	—	
7	44	44	970.0	.45	.388	.85	.85	249.240	—	—	
7	48	48	972.1	.49	.396	.93	.93	271.267	—	—	
6	52	52	974.2	.45	.393	.85	.85	275.269	—	—	
6	56	56	976.3	.45	.396	.85	.85	262.269	—	—	
5	60	1000	978.6	.54	.395	1.03	1.03	271.381	—	—	

MOISTURE RECOVERY FORM FOR METHODS 4, 5, 6

Plant Refuse FuelsSample Identification Code: RFA-0917-mm5-02Date 9/17/86

Trap # 10

Sampling location outletSample type mm5Run number RFA-0917-mm5-02Sample box number 2Clean-up person G015Solvent rinses Acetone / MeCH₃

Impinger Number	Impinger Solution	Amount of Solution (g)	Impinger Tip Configuration	Impinger Weight (grams)		
				Final	Initial	Weight Gain
1	Empty	0	cut off stem	718.5	459.88	258.72
2	HPLC WATER	100.45	STD	576.1	574.05	2.05
3	HPLC Water	100.37	STD	533.7	533.33	.43
4	Empty	0	STD	463.9	461.25	2.65
5	Solvent 6c1	254.64	STD	748.8	720.6	28.2
6						
7						

Total Weight Gain (grams)

292.05

PLANT BFA
 DATE 9/12/86
 SAMPLING LOCATION ESP outlet
 SAMPLE TYPE trans
 RUN NUMBER 2
 OPERATOR leg
 AMBIENT TEMPERATURE 66
 BAROMETRIC PRESSURE 30.28
 STATIC PRESSURE (P₀) 11.2
 FILTER NUMBER (s) 2
 MINIMUM SAMPLE VOLUME 90 c.f.
 INITIAL LEAK CHECK .008 @ 15°
 FLOW RATE 53.751

SCHEMATIC OF TRAVERSE POINT LAYOUT
 READ AND RECORD ALL DATA EVERY 45 MINUTES

PIPE LENGTH AND TYPE 10' glass
 NOZZLE I.D. .145
 ASSURED MOISTURE % 12
 SAMPLE BOX NUMBER 2
 METER BOX NUMBER 4
 METER A MP 1.76
 C FACTOR A/A
 PROBE HEATER SETTING 100.2
 HEATER BOX SETTING 250°
 REFERENCE TO A/A
 DRY/GAS METER FACTOR (Y) .9985
 FINAL LEAK CHECK _____

Traverse Point Number	Sampling Time Min.	Clock Time (24-hr Clock)	Clock Time (24-hr Clock)	Velocity Head (in. H ₂ O)	Stack T in stir	Orifice Pressure Differential (MM. in. Hg)	Temperature °F (Circle One)				Pump Vacuum in. Hg	
							Desired	Actual	Probe	Filter		
A-12	4	26	53.751	.40	.406	.76	.76	.333	.250	—	—	
12	8	30	57.5	.38	.406	.72	.72	.39.5	.28	—	58	
11	12	34	59.4	.40	.404	.76	.76	.428	.261	—	52	
11	16	38	61.4	.40	.407	.76	.76	.412	.333	—	57	
10	20	42	63.5	.47	.409	.89	.89	.409	.154	—	57	
10	24	46	65.6	.47	.408	.89	.89	.402	.243	—	55	
9	28	50	67.7	.42	.409	.80	.80	.399	.250	—	56	
9	32	54	69.7	.42	.409	.80	.80	.403	.341	—	57	
8	36	58	72.0	.47	.410	.89	.89	.398	.248	—	60	
8	40	62	74.0	.47	.411	.89	.89	.395	.245	—	59	
7	44	66	76.1	.46	.409	.87	.87	.395	.237	—	58	
7	45	62	76.488	.46	.409	.87	.87	.344	.239	—	57	
7	45	62	76.488	.46	.409	.87	.87	.344	.239	—	57	
										stopped to clear plant grafting	7	

reference point number	sampling time min.	clock time (24-hour clock)	gas meter reading (cu. ft.)	velocity head (sq. ft.)	stack temp. in. Hg	stack temp. in. Hg	Temperature 70°F (circle one)				gas flow in. cu. min.				
							orifice pressure difference (in. in. Hg)		probe	filter skin out water					
							bottom	actual							
3-12	100	1718	108.8	.42	405	.80	.80	.255	.223	-	64	81	79	55	8
12	104	1722	111.3	.48	404	.91	.91	.365	.246	-	67	91	80	52	9
11	108	1726	113.4	.47	405	.90	.90	.374	.265	-	57	91	80	52	7
11	112	1730	115.6	.98	404	.91	.91	.401	.268	-	55	100	80	53	7
10	116	1734	117.8	.47	404	.90	.90	.407	.274	-	57	102	81	54	7
10	120	1738	119.9	.48	406	.91	.91	.449	.286	-	58	103	81	53	7
9	124	42	122.0	.48	405	.91	.91	.462	.311	-	57	104	82	54	7
9	128	46	124.2	.48	404	.91	.91	.438	.271	-	58	104	82	53	2
8	132	50	126.4	.46	406	.87	.87	.416	.269	-	58	106	83	55	7
8	136	54	128.5	.46	405	.87	.87	.414	.259	-	59	106	84	56	7
7	140	58	130.6	.44	405	.84	.84	.464	.288	-	60	106	84	56	7
7	144	1802	132.6	.44	407	.84	.84	.343	.253	-	60	107	85	56	2
6	148	86	134.5	.36	405	.68	.68	.330	.280	-	60	107	85	56	6
6	152	10	136.4	.36	406	.68	.68	.269	.246	-	61	107	86	56	6
5	156	14	138.5	.46	407	.87	.87	.272	.246	-	61	108	86	56	7
5	160	18	140.6	.46	410	.87	.87	.280	.257	-	61	109	87	56	7
4	164	22	142.6	.40	408	.74	.74	.222	.257	-	61	110	88	55	7
4	168	24	144.6	.40	407	.76	.76	.269	.258	-	61	109	88	55	7
3	172	28	145.6	.44	409	.84	.84	.261	.251	-	62	109	89	56	2
3	176	32	147.8	.46	410	.87	.87	.262	.261	-	62	110	89	56	7
2	180	36	149.9	.46	408	.87	.87	.267	.263	-	62	111	89	55	7
2	184	40	152.1	.48	406	.91	.91	.260	.260	-	62	111	90	55	7
1	188	44	154.3	.48	408	.91	.91	.257	.261	-	63	113	90	55	7
1	192	1848	156.488	.48	408	.91	.91	.258	.254	-	64	114	90	54	7

MOISTURE RECOVERY FORM FOR METHODS 4, 5, 6

Plant Refuse FuelsSample Identification Code: RFA-0917-mmsDate 9/17/86TRAP # 4Sampling location ESP outletSample type mmsRun number RFA-0917-mms-02Sample box number —Clean-up person GD ItSolvent rinses Acetone / MeOH

Impinger Number	Impinger Solution	Amount of Solution (g)	Impinger Tip Configuration	Impinger Weight (grams)			Weight Gain
				Final	Initial		
1	empty	0	cut off stem	706.9	442.36	264.54	
2	HPLC water	101.48	STD	543.12	535.86	7.26	
3	HPLC water	101.15	STD	555.50	544.40	1.10	
4	empty	0	STD	519.7	517.68	2.02	
5	Silica Gel	258.8	STD	771.0	746.6	24.4	
6							
7							

Total Weight Gain (grams)

299.3

RADIANT

CORPORATION

MODIFIED METHOD 5 DATA

PLANT RFA
 DATE 9/18/86
 SAMPLING LOCATION E3P outlet
 SAMPLE TYPE mm5
 RUN NUMBER 3
 OPERATOR Aleg
 AMBIENT TEMPERATURE 49
 BAROMETRIC PRESSURE 10.31
 STATIC PRESSURE (P_s) 4.17
 FILTER NUMBER (s) 3
 MINIMUM SAMPLE VOLUME 90 ccf
 INITIAL LEAK CHECK .018 @ 15"

PIPE LENGTH AND TYPE 10' glass
 NOZZLE I.D. .245
 ASSURED MOISTURE % 1.2
 SAMPLE BOX NUMBER 3
 METER BOX NUMBER 4
 METER A.H.P. 1.76
 C FACTOR N/A
 PIPE HEATER SETTING 100%
 HEATER BOX SETTING 250
 REFERENCE A.P. N/A
 DRY/GAS METER FACTOR (Y) .9985
 FINAL LEAK CHECK

SCHEMATIC OF TRAVERSE POINT LAYOUT
 READ AND RECORD ALL DATA EVERY 4 MINUTES

Traverse Point Number	Sampling Time Min.	Clock Time (24-Hr Clock)	Gas Meter Reading (Nm ³), ft ³	Orifice Pressure		Temperature (°F/°C (Circle One))		Pump Vacuum in. Hg					
				Velocity Head (AP), in. H ₂ O	Static Head (AP), in. H ₂ O	Differential Pressure (AP, in. H ₂ O)	Filter						
				Desired	Actual	Probe	Skin						
A-12	4	22	160.585	.44	.401	.84	282	-38	-50	65	60	56	6
			STANDPIPE	.44	.401	.84	282	-38	-				
			STANDING PIPE	.44	.401	.84	282	-38	-				
A-12	8	58	160.585	.44	.405	.84	312	241	-	49	63	63	56
			STANDING PIPE	.44	.403	.76	309	245	-	45	71	63	57
			STANDING PIPE	.45	.405	.89	381	230	-	46	79	64	57
A-12	10	20	160.585	.48	.405	.91	359	251	-	47	86	64	58
			STANDING PIPE	.48	.403	.91	342	234	-	47	92	66	58
A-12	14	24	171.1	.48	.403	.91	342	234	-	47	96	68	59
			STANDING PIPE	.48	.405	.91	353	251	-	47	96	68	59
A-12	18	28	173.3	.48	.405	.91	337	233	-	48	99	70	59
			STANDING PIPE	.48	.405	.91	337	233	-	48	99	70	59
A-12	22	32	175.4	.48	.405	.91	337	233	-	48	99	70	59
			STANDING PIPE	.48	.403	.89	344	253	-	49	101	72	60
A-12	26	36	177.6	.47	.403	.89	344	253	-	49	101	72	60
			STANDING PIPE	.47	.404	.89	279	230	-	49	102	74	60
A-12	30	40	179.7	.47	.404	.89	279	230	-	49	102	74	60
			STANDING PIPE	.47	.403	.89	279	230	-	49	102	74	60
A-12	34	44	182.0	.54	.403	1.03	249	248	-	50	104	75	61
			STANDING PIPE	.54	.404	1.03	1.03	231	-	50	107	77	61
A-12	38	48	184.3	.54	.401	.87	230	257	-	51	109	79	61
			STANDING PIPE	.54	.401	.87	230	257	-	51	109	79	61

MOISTURE RECOVERY FORM FOR METHODS 4, 5, 6

Plant Refuse Fuels

Sample Identification Code: RFA-0918-mm5-

TRAP #9

Date 9/18/86

Sampling location ESP outlet

Sample type mm5

Run number RFA-0918-MM5-03

Sample box number

Clean-up person GO H

Solvent rinses Acetone/meclz

Impinger Number	Impinger Solution	Amount of Solution (g)	Impinger Tip Configuration	Impinger Weight (grams)		
				Final	Initial	Weight Gain
1	Empty	0	cut off stem	733.1	460.4	
2	HPLC water	102.7	STD	580.7	577.4	
3	HPLC water	102.01	STD	535.2	534.4	
4	Empty	0	STD	464.2	461.2	
5	SilicaGel	254.05	STD	750.3	719.9	
6						
7						

Total Weight Gain (grams)

APPENDIX C.2
Total Ash Discharge Field Data Sheets

PROCESS SAMPLE FIELD DATA

Plant RFAProcess Sample Total AshSampling Location Ash Conveyor

Date	Run No.	Time (military)	Composite Number	Sample Weight	Container weight	Comments
9/17/86	01	0945	1	1.5 lb	4 lb	
		0959	2	2	6	
		1014	3	1	7	
		1029	4	2	9	
		10:44	5	2	11	
		11:00	6	1	12	
		11:16	7	1.5	13.5	
		11:30	8	1.5	15	
		11:44	9	1.	16	
		11:59	10	2	18	
		12:15	11	2	20	
		12:30	12	2	4	
		12:44	13	2.5	6.5	
		12:59	14	6	12.5	
		13:29	15	2	14.5	No sample at 13:15 - belt stopped to change ash truck

PROCESS SAMPLE FIELD DATA

Plant RFA

Process Sample Total AsL

Sampling Location Ash conveyor

APPENDIX C.3
ESP Ash Sampling Field Data Sheets

PROCESS SAMPLE FIELD DATA

Plant RFA

Process Sample ES,0 ASL

Sampling Location Screw Conveyor

PROCESS SAMPLE FIELD DATA

Plant RFA

Process Sample ESP Ash

Sampling Location Screw Conveyor

APPENDIX C.4
Orsat Analyses

ORSAT DATA SHEET

Comment 8 FA-0917 - M3 - 01

Comments RFA-0917-M3-01

Location Reference

Date 9/17/66

fine

תְּבִיבָה

Sorbing Reagents: 40% Kolt (CO₂) by gasule (O₂) non (CO)

Replicate Number	Original Volume Reading 1 (ml)	(CO ₂) Reading 2 (ml)	(CO ₂) Volume (2-1) (ml)	(CO ₂) Reading 3 (ml)	(CO ₂) Reading 4 (ml)	(CO ₂) Volume (4-3) (ml)
①	0	9.6	9.6	20.4	10.8	
②	0		9.8	20.2	10.4	
③	0		9.7	20.2	10.5	

Averaged Results: $\text{Z}_{\text{CO}_1} = \frac{9.7}{\text{N}_1}$, $\text{Z}_{\text{O}_2} = \frac{7.0}{\text{N}_1}$, $\text{Z}_{\text{H}_2} = \frac{10.4}{\text{N}_1}$, $\text{Z}_{\text{N}_1} = \frac{78.9}{\text{N}_1}$

$$\text{Dry Molecular Weight, MW (dry)} = 0.44 \frac{9.7}{(\pi \text{ CO}_2)} + 0.32 \frac{10.4}{(\pi \text{ O}_2)} + 0.28 \frac{78.9}{(\pi \text{ CO}_2 + \frac{1}{2} \text{ O}_2)}$$

$$= \frac{29.69 \text{ g/mol}}{1}$$

ORSAT DATA SHEET
 Location Refuse Fuels Date 9/16/66 Time Operator GDH

Comments RFA - 0918 - ~~1055~~ - 03

Sorbing Reagents: 40% KI/Hg (CO₂) Lyrozyme (O₂) (CO) NONE

Replicate Number	Original Volume Reading 1 (ml)	(CO ₂) Volume (2-1) (ml)		(O ₂) Reading 3 (3-2) (ml)		(CO) Reading 4 (4-3) (ml)	
		(CO ₂) Reading 2 (ml)	(O ₂) Reading 3 (ml)	(CO) Reading 4 (ml)	(CO) Reading 4 (ml)		
①	0	9.4	9.4	20.0	10.6		
②	0	9.4	9.4	20.0	10.6		
③	0	9.8	9.8	20.8	10.1		

Averaged Results: % CO₂ 9.6 % O₂ 10.5
 % CO % N₂ 72.9

Dry Molecular Weight, MW (dry) -

$$= 0.44 \frac{9.6}{(2 \text{CO}_2)} + 0.32 \frac{10.5}{(2 \text{O}_2)} + 0.28 \frac{72.9}{(2 \text{CO}_2 + 2 \text{O}_2)}$$

- 29.96 g/mole + + + + + + +

APPENDIX D
Preliminary Sampling Measurements and Calculations

RADIAN CORPORATION

PRELIMINARY VELOCITY TRAVERSE

PLANT RFA
DATE 29/5/86
LOCATION CUTLET DUCT
STACK I.D. 9 FT.
BAROMETRIC PRESSURE, in. Hg 1010
STACK GAUGE PRESSURE, in. H₂O 212
OPERATORS FLG / MAP

SCHEMATIC OF TRAVERSE POINT LAYOUT

TRAVERSE POINT NUMBER	VELOCITY HEAD (ΔP_s), in. H ₂ O	STACK TEMPERATURE (T_s), °F	CYCLONIC FLOW CHECK ($^{\circ}$)
B - 1	.52	399	+ 23
2	.57	400	+ 18
3	.53	399	+ 17
4	.48	399	+ 17
5	.42	399	+ 13
6	.43	398	+ 11
7	.53	396	- 5
8	.56	395	- 8
9	.59	394	- 11
10	.61	393	- 18
11	.60	393	- 17
12	.56	392	- 23
7 1			- 22
2			- 16
3			- 14
4			- 10
5			- 8
6			0
7			+ 4
8			+ 12
9			+ 13
10			+ 16
11			+ 18
12			
AVERAGE	.533	396.4	13.4

CALCULATIONS

$$(1) \text{ V.P.} = \text{S.V.P.} - \left[(3.67 \times 10^{-4}) \cdot (P_s) \cdot (T_d - T_w) \cdot \left[1 + \left(\frac{T_w - 32}{1571} \right) \right] \right]$$

$$\text{_____} = \text{_____} - \left[() \cdot () \cdot () \cdot \left[1 + \left(\frac{T_w - 32}{1571} \right) \right] \right]$$

$$(2) B_{ws} = \frac{V.P.}{P_s} = \text{_____}$$

$$(3) M_d = ((0.44) \cdot (\% \text{ CO}_2)) + ((0.32) \cdot (\% \text{ O}_2)) + ((0.28) \cdot (\% \text{ CO} + \% \text{ N}_2))$$

$$\frac{29.96}{29.92} = ((0.44) \cdot (9.6)) + ((0.32) \cdot (10.5)) + ((0.28) \cdot (0 + 79.9))$$

$$(4) M_s = \left[\left(\frac{M_d}{M_s} \right) \cdot \left(1 - B_{ws} \right) \right] + \left[(18) \times (B_{ws}) \right]$$

$$\frac{28.52}{29.96} = \left[(29.96) \cdot (0.89) \right] + \left[(18) \cdot (0.12) \right]$$

$$(5) \Delta H = K \Delta P$$

$$K = (846.72) \cdot (D_n^4) \cdot (\Delta H \Theta) \cdot (C_p^2) \cdot (1 - B_{ws})^2 \cdot \left(\frac{29.96}{29.92} \right) \left(\frac{29.93}{29.92} \right) \left(\frac{531}{864} \right)$$

$$\frac{1}{2.064} = (846.72) \cdot () \cdot (1.16) \cdot (0.1056) \cdot (0.7744) \cdot () \cdot ()$$

$$(6) \% I = \frac{\left(\frac{T_s}{T_{std}} \right)^{\frac{1}{2}} \cdot (\text{GAS VOL. S.T.P.}) \cdot (P_{std}) \cdot (100)}{\left(\frac{T_{std}}{T_s} \right)^{\frac{1}{2}} \cdot (V_s \text{ ft. / sec.}) \cdot (P_s) \cdot (\text{Sampling Time Min.}) (60) (A_n) (1 - B_{ws})}$$

$$\frac{1}{2.064} \% = \frac{\left(\frac{1}{2} \frac{^{\circ}R}{^{\circ}R} \right) \cdot (2 \text{ stp}) \cdot (29.92) \cdot (100)}{(528 \frac{^{\circ}R}{^{\circ}R}) \cdot (\text{ ft/sec.}) \cdot (\text{ "Hg}) \cdot (5 \text{ Min.}) \cdot (60 \frac{\text{ Sec.}}{\text{ Min.}}) \cdot (\text{ g ft})}$$

$$\text{RUN \# 2} \quad K = 1.93 \quad D = 0.246$$

$$\text{RUN \# 1} \quad K = 1.89 \quad D = 0.245$$

APPENDIX E
Incinerator Operating Data

Shift: A/c

Refuse Fuels Daily Log Sheet - RDF Boiler

Date: 9/17/96

	8:30	8:45	9:00	9:15	9:30	9:45	10:00	10:15	10:30	10:45	11:00
FEEDWATER TEMP	6:00	7:00	8:00	9:00	10:00	11:00	12:00	1:00	2:00	3:00	4:00
AIR HEATER GAS OUT #1	231	238	230	232	230	230	230	230	230	230	230
AIR HEATER GAS OUT #2	345	348	349	349	350	350	350	350	350	350	350
AIR HEATER AIR INLET	397	335	336	330	329	330	330	330	330	330	330
AIR HEATER GAS OUTLET #1	84	85	86	86	86	86	86	86	86	86	86
AIR HEATER GAS OUTLET #2	330	341	333	333	333	333	333	333	333	333	333
CONDUCTIVITY	361	360	363	367	365	365	365	365	365	365	365
STEAM PRESSURE (PSIG)	990	980	950	960	1000	1010	1000	1000	1000	1000	1000
BRN FF (#/hr x 1000)	645	650	650	640	650	640	640	640	640	640	650
BRN FF (#/hr x 1000)	—	—	—	—	—	—	—	—	—	—	—
SF (#/hr x 1000)	43000	43000	44000	43000	43000	43000	43000	43000	43000	43000	44000
FW FLOW (#hr x 1000)	220000	220000	217000	218000	218000	218000	218000	218000	218000	218000	220000
DRUM LEVEL INLET	N	N	N	N	N	N	N	N	N	N	N
RDF DEMAND Z	56%	48%	53%	48%	60%	48%	60%	50%	49%	49%	44%
UG A/F (#/hr x 1000)	55%	55%	55%	55%	55%	55%	55%	55%	55%	55%	55%
OF A/F (#/hr x 1000)	150+	150+	150+	150+	150+	150+	150+	150+	150+	150+	150+
OXYGEN A Z	9.9%	9.6%	9.7%	10%	10.6%	8.8%	10.2%	10.2%	10.2%	10.2%	9.8%
OXYGEN B Z	7.3%	6.4%	6.4%	7.0%	8.0%	7.6%	7.9%	7.9%	8.0%	8.0%	7.7%
FEEDWATER (PSIG)	1000	1010	1010	1010	1020	1010	1010	1010	1010	1010	990
SH OUTLET TEMP	522	525	530	525	530	525	530	535	539	539	527
FINAL STEAM TEMP	697	700	702	701	693	703	706	705	697	697	704
FUEL OIL FLOW	778934	778934	778934	778934	778934	778934	778934	778934	778934	778934	778934
STEAM FLOW	605177	605203	605203	605203	605203	605203	605203	605203	605203	605203	605203
FEEDWATER FLOW	751370	751426	751426	751426	751533	751533	751533	751640	751703	751716	751817
BOILER EXIT GAS TEMP	818	816	815	818	805	822	816	816	816	816	816
ECON EXIT GAS TEMP	529	531	530	531	528	535	540	539	539	539	545
AIR HEATER GAS INLET	503	505	504	504	505	505	505	505	505	505	505
AIR HEATER GAS INLET	806	810	811	811	798	804	804	804	804	804	804
	790	808	816	816	783	800	800	800	800	800	800

Shift: C

Refuse Fuels Daily Log Sheet - RDF Boiler

Date: 9/17/84

	2:00	2:15	2:30	2:45	3:00	3:15	3:30	3:45	4:00	4:15	4:30	4:45
FEEDWATER TEMP	230	230	230	230	233				230	230	230	230
AIR HEATER GAS OUT #1	360	355	357	360	363				385	370	365	365
AIR HEATER GAS OUT #2	345	340	340	342	344				360	350	345	345
AIR HEATER AIR INLET	95	95	94	94	95				95	95	95	95
AIR HEATER GAS OUTLET #1	345	345	346	346	350				365	355	350	350
AIR HEATER GAS OUTLET #2	375	375	378	380	380				400	390	385	380
CONDUCTIVITY	350	1000	950	1000	950				750	950	1000	
STEAM PRESSURE (PSIG)	650	640	640	630	640				640	630	640	650
BRN FP (#/hr x 100)	—	—	—	—	—				—	—	—	—
BRN FF (#/hr x 1000)	43000	43000	42000	42000	42000				42000	43000	44000	45000
SF (#/hr x 1000)	210,000	210,000	213,000	210,000	208,000				209,000	211,000	212,000	
FW FLOW (#hr x 1000)	215,600	235,000	280,000	285,000	300,000				208,000	210,000	225,000	235,000
DRUM LEVEL INLET	✓	✓	✓	✓	✓				✓	✓	✓	✓
RDF DEMAND Z	52%	52%	60%	60%	57%				60%	54%	50%	48%
UG A/F (#/hr x 1000)	58%	58%	58%	58%	56%				57%	57%	56%	53%
OF A/F (#/hr x 1000)	150+	150+	150+	150+	150+				150+	150+	150+	150+
OXYGEN A Z	9.0%	9.2%	9.2%	9.1%	9.1%				10.8%	10.8%	9.6%	9.6%
OXYGEN B Z	7.8%	7.2%	7.2%	7.2%	7.2%				7.2%	7.2%	6.6%	6.2%
FEEDWATER (PSIG)	1040	1020	1000	1000	1000				1040	1020	1000	1020
SH OUTLET TEMP	535	535	525	525	580				530	520	530	535
FINAL STEAM TEMP	705	698	693	693	721				696	687	694	701
FUEL OIL FLOW	778954	778954	778954	778954	778954				778954	778954	778954	778954
STEAM FLOW	606251	606297	606354	606447	606462				606474	606474	606474	606474
ECON EXIT GAS TEMP	752487	752536	752545	752644	752744				752929	753031	753075	
BOILER EXIT GAS TEMP	850	840	837	837	834				826	810	830	830
AIR HEATER GAS INLET	520	520	518	518	520				550	535	540	545
AIR HEATER GAS INLET	25	25	25	25	25				530	525	520	520
	9	820	800	800	805				810	805	815	815
	11	11	11	11	11				11	11	11	11

Shift: C 73 85

Refuse Fuels Daily Log Sheet - RDF Boiler

Date: 9-18-86

	12:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00
FEEDWATER TEMP	100	100	100	100	100	100	100	100	100	100	100	100	100
AIR HEATER GAS OUT #1	265	265	265	265	265	265	265	265	265	265	265	265	265
AIR HEATER GAS OUT #2	255	255	255	255	255	255	255	255	255	255	255	255	255
AIR HEATER AIR INLET	85	85	85	85	85	85	85	85	85	85	85	85	85
AIR HEATER GAS OUTLET #1	285	285	285	285	285	285	285	285	285	285	285	285	285
AIR HEATER GAS OUTLET #2	220	220	220	220	220	220	220	220	220	220	220	220	220
CONDUCTIVITY	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25
STEAM PRESSURE (PSIG)	590	590	590	590	590	590	590	590	590	590	590	590	590
BRN FF (#/hr x 1000)	41.5000	41.5000	41.5000	41.5000	41.5000	41.5000	41.5000	41.5000	41.5000	41.5000	41.5000	41.5000	41.5000
CRN FF (#/hr x 1000)	145.0000	145.0000	145.0000	145.0000	145.0000	145.0000	145.0000	145.0000	145.0000	145.0000	145.0000	145.0000	145.0000
SF (#/hr x 1000)	217.0000	217.0000	217.0000	217.0000	217.0000	217.0000	217.0000	217.0000	217.0000	217.0000	217.0000	217.0000	217.0000
FW FLOW (#hr x 1000)	711.0000	711.0000	711.0000	711.0000	711.0000	711.0000	711.0000	711.0000	711.0000	711.0000	711.0000	711.0000	711.0000
DRUM LEVEL INLET	11	11	11	11	11	11	11	11	11	11	11	11	11
RDF DEMAND Z	55	55	55	55	55	55	55	55	55	55	55	55	55
UC A/F (#/hr x 1000)	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
OF A/F (#/hr x 1000)	661	661	661	661	661	661	661	661	661	661	661	661	661
OXYGEN A Z	76	76	76	76	76	76	76	76	76	76	76	76	76
OXYGEN B Z	1062	1062	1062	1062	1062	1062	1062	1062	1062	1062	1062	1062	1062
FEEDWATER (PSIG)	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
SH OUTLET TEMP	540	540	540	540	540	540	540	540	540	540	540	540	540
FINAL STEAM TEMP	698	698	698	698	698	698	698	698	698	698	698	698	698
FUEL OIL FLOW	728854	728854	728854	728854	728854	728854	728854	728854	728854	728854	728854	728854	728854
STEAM FLOW	610280	610280	610280	610280	610280	610280	610280	610280	610280	610280	610280	610280	610280
FEEDWATER FLOW	256220	256220	256220	256220	256220	256220	256220	256220	256220	256220	256220	256220	256220
BOILER EXIT GAS TEMP	925	925	925	925	925	925	925	925	925	925	925	925	925
ECON EXIT GAS TEMP	545	545	545	545	545	545	545	545	545	545	545	545	545
AIR HEATER GAS INLET	520	520	520	520	520	520	520	520	520	520	520	520	520
AIR HEATER GAS INLET	25	25	25	25	25	25	25	25	25	25	25	25	25

26/09/86 4:45 PM

APPENDIX F

Triangle Labs Dioxin/Furan Analytical Report

TRIANGLE LABS

DATE : 10/30/86

TLI# : 8601181

OBJECTIVE: ANALYSIS OF ASH AND MM-5 TRAIN SAMPLES FOR THE PRESENCE OF MONO-OCTA CHLORO-DIBENZODIOXINS AND FURANS

METHOD. A method based on the ASME protocol was used for extraction of the ash samples and the modified method 5 train. Front half and back half were analyzed separately. Twenty nanograms of internal standards and surrogate standards were added to each sample, except 13C-OCDD which was added at 40 ngs. For the ash samples this gave approximately 2 ng/g (4 ng/g for 13C-OCDD). The weight of each ash sample is given on the enclosed analyst worksheet. The results for the MM-5 trains and ash samples are enclosed.

The data enclosed indicates that the samples were highly contaminated, and some of the results are beyond the calibration range. The highest amounts used in the initial calibration were 20 ng for the mono through tetra isomers, 100 ng for the penta through hepta isomers and 200 ng for 13C12-OCDD. The results may give a reasonable approximation at twice the calibration amount, but beyond that the numbers should be considered lower limits.

Dorothy Bertino, Ph.D.
Quality Control Officer

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DB FILE NAME M1861875
DATE 10/22/86 SAMPLE ID RADIAN BLANK (SOX)
CONCAL # M1861874
FRACT. INJ. 0.05 TLI # 8601181

NAME	AMT (ng)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.005	1.000	
TOTAL DCDD	ND	0	0.007	1.000	
TOTAL TRICDD	ND	0	0.007	1.000	
2378-TCDD	ND		0.039	10.000	25.23
TOTAL TCDD	ND	0	0.174	2.731	
12378-PCDD	ND		0.008	1.000	0.00
TOTAL PCDD	ND	0	0.008	1.000	
123478-HxCDD	ND		0.013	1.000	0.00
123678-HxCDD	ND		0.014	1.000	0.00
123789-HxCDD	ND		0.016	1.000	0.00
TOTAL HxCDD	ND	0	1.258	3.034	
1234678-HpCDD	ND		0.471	0.952	42.29
TOTAL HpCDD	ND	0	0.690	1.449	
OCDD	ND		0.475	0.268	0.00
TOTAL MCDF	ND	0	0.004	1.000	
TOTAL DCDF	ND	0	0.003	1.000	
TOTAL TRICDF	ND	0	0.006	1.000	
2378-TCDF	ND		0.005	1.000	0.00
TOTAL TCDF	ND	0	0.122	0.755	
12378-PCDF	ND		0.047	0.500	30.05
23478-PCDF	ND		0.007	1.000	0.00
TOTAL PCDF	ND	0	0.058	0.500	
123478-HxCDF	ND		0.007	1.000	0.00
123678-HxCDF	0.04			1.222	34.55
234678-HxCDF	ND		0.009	1.000	0.00
123789-HxCDF	ND		0.010	1.000	0.00
TOTAL HxCDF	0.05	1		1.222	
1234678-HpCDF	0.14			0.926	41.04
1234789-HpCDF	ND		0.019	1.000	0.00
TOTAL HpCDF	0.16	1		0.926	
OCDF	ND		0.031	1.000	0.00

SURROGATE RESULTS SUMMARY

NAME	AMT (ng)	% RECOVERY	RATIO	RT
13C12-TCDF	22.28	111.40	0.769	24.42
37C1 TCDD	23.00	116.09		25.20
13C12-HxCDF	19.88	99.40	1.227	34.46

INTERNAL STANDARDS RECOVERY RESULTS

NAME	AMT (ng)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	19.88	99.42	0.773	25.23
13C12-PCDD	22.36	111.80	0.639	31.22
13C12-HxCDD	21.42	107.11	1.225	35.59
13C12-HpCDD	21.90	109.48	1.052	42.30
13C12-OCDD	40.25	100.63	0.902	48.03

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DB FILE NAME M1861886
 DATE 10/28/86 SAMPLE ID MM5-01 FH #1
 CONCAL # M1861884
 FRACT. INJ. 0.05 TLI # 8601181

NAME	AMT (ng)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.003	1.000	
TOTAL DCDD	6.39	3		1.575	
TOTAL TRICDD	26.09	4		1.036	
2378-TCDD	6.20			0.695	25.20
TOTAL TCDD	86.09	12		0.741	
12378-PCDD	19.58			0.581	31.20
TOTAL PCDD	158.17	12		0.584	
123478-HxCDD	30.31			1.254	35.49
123678-HxCDD	37.44			1.265	35.56
123789-HxCDD	71.68			1.263	36.24
TOTAL HxCDD	456.48	7		1.260	
1234678-HpCDD	358.13			1.001	42.37
TOTAL HpCDD	798.28	2		0.996	
OCDD	1041.31			0.869	48.10
TOTAL MCDF	0.31	1		3.511	
TOTAL DCDF	22.61	2		1.332	
TOTAL TRICDF	203.19	9		0.995	
2378-TCDF	55.31			0.749	24.43
TOTAL TCDF	258.45	9		0.746	
12378-PCDF	16.43			0.652	30.03
23478-PCDF	33.50			0.605	30.54
TOTAL PCDF	162.23	10		0.585	
123478-HxCDF	88.05			1.248	34.44
123678-HxCDF	34.94			1.248	34.54
234678-HxCDF	47.66			1.257	35.39
123789-HxCDF	4.26			1.122	36.53
TOTAL HxCDF	293.36	10		1.245	
1234678-HpCDF	318.81			0.972	41.11
1234789-HpCDF	12.83			0.958	43.13
TOTAL HpCDF	459.99	4		0.972	
OCDF	95.48			0.912	48.23

SURROGATE RESULTS SUMMARY

NAME	AMT (ng)	% RECOVERY	RATIO	RT
13C12-TCDF	23.13	115.67	0.751	24.39
37C1-TCDD	23.52	117.53		25.20
13C12-HxCDF	18.31	91.56	1.167	34.45

INTERNAL STANDARDS RECOVERY RESULTS

NAME	AMT (ng)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	16.66	83.29	0.776	25.19
13C12-PCDD	19.85	99.23	0.608	31.19
13C12-HxCDD	19.61	98.05	1.230	35.55
13C12-HpCDD	18.92	94.60	1.043	42.37
13C12-OCDD	24.33	60.82	0.856	48.09

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DB FILE NAME M1861890
 DATE 10/20/86 SAMPLE ID MM5-02 BH #4
 CONCAL # M1861388
 FRACT. INJ. 0.05 TLI # 8601181

NAME	AMT (ng)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.006	1.000	
TOTAL DCDD	3.47	5		1.450	
TOTAL TRICDD	42.27	6		0.963	
2378-TCDD	6.33			0.704	25.18
TOTAL TCDD	110.10	12		0.780	
12378-PCDD	22.13			0.580	31.17
TOTAL PCDD	158.52	11		0.574	
123478-HxCDD	25.21			1.227	35.45
123678-HxCDD	28.77			1.256	35.53
123789-HxCDD	51.37			1.201	36.21
TOTAL HxCDD	361.63	7		1.250	
1234678-HpCDD	159.53			0.985	42.33
TOTAL HpCDD	363.33	2		0.984	
OCDD	265.36			0.830	48.06
TOTAL MCDF	ND	0	0.004	1.000	
TOTAL DCDF	17.74	4		1.587	
TOTAL TRICDF	227.06	9		0.939	
2378-TCDF	52.87			0.735	24.40
TOTAL TCDF	272.76	10		0.734	
12378-PCDF	18.79			0.610	30.00
23478-PCDF	36.64			0.658	30.52
TOTAL PCDF	183.28			0.627	
123478-HxCDF	74.49			1.254	34.41
123678-HxCDF	34.92			1.267	34.50
234678-HxCDF	34.12			1.241	35.36
123789-HxCDF	ND		0.010	1.000	0.00
TOTAL HxCDF	259.45	9		1.252	
1234678-HpCDF	194.11			0.985	41.07
1234789-HpCDF	7.09			0.986	43.10
TOTAL HpCDF	269.23	4		0.983	
OCDF	29.60			0.905	48.18

SURROGATE RESULTS SUMMARY

NAME	AMT (ng)	% RECOVERY	RATIO	RT
13C12-TCDF	17.79	88.96	0.794	24.37
37C1-TCDD	18.26	91.29		25.17
13C12-HxCDF	19.28	96.42	1.147	34.41

INTERNAL STANDARDS RECOVERY RESULTS

NAME	AMT (ng)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	18.02	90.09	0.800	25.17
13C12-PCDD	16.47	82.35	0.629	31.16
13C12-HxCDD	15.77	78.86	1.236	35.52
13C12-HpCDD	19.40	96.99	1.012	42.33
13C12-OCDD	34.31	85.78	0.871	48.05

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DB FILE NAME M1861910
DATE 10/29/86 SAMPLE ID MM5-03 FH #5
CONCAL # M1861906
FRACT. INJ. 0.05 TLI # 8601181

NAME	AMT (ng)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.006	1.000	
TOTAL DCDD	3.08	1		1.790	
TOTAL TRICDD	23.91	4		1.072	
2378-TCDD	7.58			0.792	25.20
TOTAL TCDD	99.07	12		0.791	
12378-PCDD	27.57			0.615	31.19
TOTAL PCDD	220.45	13		0.621	
123478-HxCDD	47.17			1.258	35.48
123678-HxCDD	51.26			1.262	35.55
123789-HxCDD	109.78			1.240	36.23
TOTAL HxCDD	663.00	7		1.250	
1234678-HpCDD	474.73			1.015	42.38
TOTAL HpCDD	1020.25	2		1.014	
OCDD	1028.00			0.879	48.13
TOTAL MCDF	ND	0	0.957	2.398	
TOTAL DCDF	ND	0	52.515	11.357	
TOTAL TRICDF	190.52	9		0.976	
2378-TCDF	62.17			0.747	24.42
TOTAL TCDF	330.45	13		0.748	
12378-PCDF	21.31			0.615	30.02
23478-PCDF	43.22			0.618	30.54
TOTAL PCDF	189.27	8		0.623	
123478-HxCDF	128.05			1.232	34.44
123678-HxCDF	55.82			1.243	34.53
234678-HxCDF	63.69			1.232	35.39
123789-HxCDF	ND		0.016	1.000	0.00
TOTAL HxCDF	497.85	10		1.238	
1234678-HpCDF	393.41			0.985	41.11
1234789-HpCDF	18.88			0.997	43.13
TOTAL HpCDF	563.96	4		0.988	
OCDF	107.46			0.902	48.23

SURROGATE RESULTS SUMMARY

NAME	AMT (ng)	% RECOVERY	RATIO	RT
13C12-TCDF	21.35	106.76	0.778	24.39
37C1-TCDD	21.05	105.26		25.20
13C12-HxCDF	24.82	124.11	0.956	34.45

INTERNAL STANDARDS RECOVERY RESULTS

NAME	AMT (ng)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	19.15	95.76	0.786	25.19
13C12-PCDD	20.77	103.84	0.618	31.18
13C12-HxCDD	19.80	98.99	1.262	35.55
13C12-HpCDD	20.73	103.67	1.042	42.37
13C12-OCDD	31.99	79.99	0.910	48.12

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DB FILE NAME M1861893
 DATE 10/24/86 SAMPLE ID MM5 FIELD BLANK #7
 CONCAL # M1861888
 FRACT. INJ. 0.05 TLI # 8601181

NAME	AMT (ng)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.006	1.000	
TOTAL DCDD	ND	0	0.008	1.000	
TOTAL TRICDD	ND	0	0.011	1.000	
2378-TCDD	ND		0.151	0.030	25.15
TOTAL TCDD	ND	0	0.838	0.811	
12378-PCDD	ND		0.216	0.027	31.13
TOTAL PCDD	ND	0	0.426	1.027	
123478-HxCDD	ND		0.017	1.000	0.00
123678-HxCDD	ND		0.365	46.500	35.50
123789-HxCDD	ND		0.700	0.014	36.20
TOTAL HxCDD	1.95	3		1.345	
1234678-HpCDD	2.67			0.968	42.30
TOTAL HpCDD	5.45	2		0.952	
OCDD	8.46			0.845	48.00
TOTAL MCDF	ND	0	0.005	1.000	
TOTAL DCDF	ND	0	0.004	1.000	
TOTAL TRICDF	ND	0	1.305	1.400	
2378-TCDF	ND		0.657	0.569	24.37
TOTAL TCDF	ND	0	1.328	0.598	
12378-PCDF	ND		0.006	1.000	0.00
23478-PCDF	ND		0.009	1.000	0.00
TOTAL PCDF	0.15	1		0.675	
123478-HxCDF	0.53			1.188	34.38
123678-HxCDF	0.22			1.343	34.48
234678-HxCDF	0.27			1.008	35.33
123789-HxCDF	ND		0.013	1.000	0.00
TOTAL HxCDF	1.67	4		1.235	
1234678-HpCDF	1.81			0.948	41.03
1234789-HpCDF	ND		0.017	1.000	0.00
TOTAL HpCDF	2.06	1		0.948	
OCDF	0.30			1.008	48.15

SURROGATE RESULTS SUMMARY

NAME	AMT (ng)	% RECOVERY	RATIO	RT
13C12-TCDF	19.93	99.65	0.783	24.34
37C1-TCDD	20.78	103.91		25.15
13C12-HxCDF	18.93	94.65	1.255	34.38

INTERNAL STANDARDS RECOVERY RESULTS

NAME	AMT (ng)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	18.20	90.98	0.797	25.14
13C12-PCDD	15.72	78.59	0.634	31.14
13C12-HxCDD	14.11	70.55	1.229	35.49
13C12-HpCDD	16.49	82.47	1.038	42.30
13C12-OCDD	28.88	72.20	0.884	48.01

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DE FILE NAME M1361895
 DATE 10/21/86 SAMPLE ID RFA-3 #9
 CONCAL # M1361888
 FRACT. INJ. 0.05 TLI # 8601181

NAME	AMT (ng)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.009	1.000	
TOTAL DCDD	ND	0	0.012	1.000	
TOTAL TRICDD	ND	0	0.016	1.000	
2378-TCDD	ND		0.013	1.000	0.00
TOTAL TCDD	ND	0	0.337	1.667	
12378-PCDD	ND		0.018	1.000	0.00
TOTAL PCDD	ND	0	0.018	1.000	
123478-HxCDD	ND		0.027	1.000	0.00
123678-HxCDD	ND		0.024	1.000	0.00
123789-HxCDD	ND		0.030	1.000	0.00
TOTAL HxCDD	ND	0	0.027	1.000	
1234678-HpCDD	ND		0.040	1.000	0.00
TOTAL HpCDD	ND	0	0.040	1.000	
OCDD	ND		0.071	1.000	0.00
TOTAL MCDF	ND	0	0.007	1.000	
TOTAL DCDF	ND	0	0.007	1.000	
TOTAL TRICDF	ND	0	0.012	1.000	
2378-TCDF	ND		0.009	1.000	0.00
TOTAL TCDF	ND	0	0.246	0.316	
12378-PCDF	ND		0.010	1.000	0.00
23478-PCDF	ND		0.015	1.000	0.00
TOTAL PCDF	ND	0	0.012	1.000	
123478-HxCDF	ND		0.013	1.000	0.00
123678-HxCDF	ND		0.014	1.000	0.00
234678-HxCDF	ND		0.018	1.000	0.00
123789-HxCDF	ND		0.020	1.000	0.00
TOTAL HxCDF	ND	0	0.016	1.000	
1234678-HpCDF	ND		0.024	1.000	0.00
1234789-HpCDF	ND		0.032	1.000	0.00
TOTAL HpCDF	ND	0	0.028	1.000	
OCDF	ND		0.064	1.000	0.00

SURROGATE RESULTS SUMMARY

NAME	AMT (ng)	% RECOVERY	RATIO	RT
13C12-TCDF	18.57	92.84	0.780	24.32
37C1-TCDD	19.94	99.69		25.13
13C12-HxCDF	18.31	91.56	1.220	34.36

INTERNAL STANDARDS RECOVERY RESULTS

NAME	AMT (ng)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	18.35	91.74	0.776	25.12
13C12-PCDD	14.78	73.91	0.603	31.12
13C12-HxCDD	13.44	67.19	1.201	35.47
13C12-HpCDD	13.34	66.71	0.997	42.27
13C12-OCDD	20.87	52.18	0.850	47.59

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DE FILE NAME M1861897
 DATE 10/21/86 SAMPLE ID RFA-5 #11
 CONCAL # M1861883
 FRACT. INJ. 0.05 TLI # 8601181

NAME	AMT (ng)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.009	1.000	
TOTAL DCDD	ND	0	0.013	1.000	
TOTAL TRICDD	ND	0	0.016	1.000	
2378-TCDD	ND		0.013	1.000	0.00
TOTAL TCDD	ND	0	0.013	1.000	
12378-PCDD	ND		0.019	1.000	0.00
TOTAL PCDD	ND	0	0.019	1.000	
123478-HxCDD	ND		0.026	1.000	0.00
123678-HxCDD	ND		0.024	1.000	0.00
123789-HxCDD	ND		0.030	1.000	0.00
TOTAL HxCDD	ND	0	0.026	1.000	
1234678-HpCDD	ND		0.042	1.000	0.00
TOTAL HpCDD	ND	0	0.042	1.000	
OCDD	ND		0.068	1.000	0.00
TOTAL MCDF	ND	0	0.007	1.000	
TOTAL DCDF	ND	0	0.007	1.000	
TOTAL TRICDF	ND	0	0.013	1.000	
2378-TCDF	ND		0.010	1.000	0.00
TOTAL TCDF	ND	0	0.010	1.000	
12378-PCDF	ND		0.010	1.000	0.00
23478-PCDF	ND		0.016	1.000	0.00
TOTAL PCDF	ND	0	0.013	1.000	
123478-HxCDF	ND		0.013	1.000	0.00
123678-HxCDF	ND		0.013	1.000	0.00
234678-HxCDF	ND		0.017	1.000	0.00
123789-HxCDF	ND		0.020	1.000	0.00
TOTAL HxCDF	ND	0	0.015	1.000	
1234678-HpCDF	ND		0.025	1.000	0.00
1234789-HpCDF	ND		0.033	1.000	0.00
TOTAL HpCDF	ND	0	0.029	1.000	
OCDF	ND		0.060	1.000	0.00

SURROGATE RESULTS SUMMARY

NAME	AMT (ng)	% RECOVERY	RATIO	RT
13C12-TCDF	17.08	85.42	0.755	24.33
37C1-TCDD	17.86	89.31		25.14
13C12-HxCDF	15.05	75.25	1.268	34.38

INTERNAL STANDARDS RECOVERY RESULTS

NAME	AMT (ng)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	16.49	82.45	0.764	25.13
13C12-PCDD	12.66	63.30	0.626	31.13
13C12-HxCDD	12.68	63.41	1.337	35.48
13C12-HpCDD	11.85	59.25	1.049	42.30
13C12-OCDD	20.30	50.75	0.933	48.00

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DB FILE NAME M1361899
 DATE 10/20/86 SAMPLE ID FRA-22 #13
 CONCAL # M1361888
 FRACT. INJ. 0.05 TLI # 8601181

NAME	CONC(ng/g)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.001	1.000	
TOTAL DCDD	2.52	5		1.467	
TOTAL TRICDD	10.22	5		1.062	
2378-TCDD	1.35			0.767	25.16
TOTAL TCDD	22.15	13		0.774	
12378-PCDD	7.56			0.588	31.15
TOTAL PCDD	51.37	12		0.609	
123478-HxCDD	22.04			1.257	35.45
123678-HxCDD	22.63			1.240	35.53
123789-HxCDD	51.55			1.234	36.21
TOTAL HxCDD	287.95	7		1.240	
1234678-HpCDD	447.19			0.996	42.40
TOTAL HpCDD	833.33	2		0.994	
OCDD <i>(2)</i>	1423.38			0.927	48.26
TOTAL MCDF	ND	0	0.001	1.000	
TOTAL DCDF	ND	0	0.001	1.000	
TOTAL TRICDF	32.39	9		0.989	
2378-TCDF	9.02			0.733	24.38
TOTAL TCDF	51.39	13		0.739	
12378-PCDF	1.34			0.596	29.52
23478-PCDF	9.91			0.611	30.51
TOTAL PCDF	50.42	10		0.611	
123478-HxCDF	38.10			1.231	34.42
123678-HxCDF	14.68			1.236	34.51
234678-HxCDF	20.57			1.230	35.36
123789-HxCDF	2.41			1.209	36.49
TOTAL HxCDF	173.12	10		1.227	
1234678-HpCDF	193.96			0.981	41.10
1234789-HpCDF	10.38			0.961	43.11
TOTAL HpCDF	289.36	4		0.983	
OCDF	152.27			0.897	48.30

SURROGATE RESULTS SUMMARY

NAME	CONC(ng/g)	% RECOVERY	RATIO	RT
13C12-TCDF	1.87	93.72	0.767	24.35
37C1-TCDD	1.99	100.11		25.16
13C12-HxCDF <i>(2)</i>	3.67	184.63	0.574	34.42

INTERNAL STANDARDS RECOVERY RESULTS

NAME	CONC(ng/g)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	1.75	87.84	0.803	25.15
13C12-PCDD	1.45	72.74	0.620	31.15
13C12-HxCDD	1.35	67.91	1.209	35.52
13C12-HpCDD <i>(2)</i>	1.39	70.09	0.512	42.38
13C12-OCDD	2.27	57.00	0.718	48.28

① above the calibration range

② interference

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DB FILE NAME M1861903
 DATE 10/28/86 SAMPLE ID RFA-38 #15
 SAMPLE WT 10.1 CONCAL # M1861901
 FRACT. INJ. 0.05 TLI # 8601181

NAME	CONC(ng/g)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.001	1.000	
TOTAL DCDD	4.88	5		1.437	
TOTAL TRICDD	19.40	5		0.994	
2378-TCDD	6.58			0.781	25.15
TOTAL TCDD	85.52	13		0.791	
12378-PCDD	28.78			0.598	31.15
TOTAL PCDD	164.06	11		0.608	
123478-HxCDD	68.10			1.265	35.47
123678-HxCDD	77.88			1.267	35.55
123789-HxCDD	200.85			1.260	36.24
TOTAL HxCDD	955.05	7		1.255	
1234678-HpCDD	1789.81 C			0.995	42.42
TOTAL HpCDD	3300.68 C	2		0.996	
OCDD	3177.59 C			0.752	48.39
TOTAL MCDF	0.01	1		2.879	
TOTAL DCDF	4.81	3		1.546	
TOTAL TRICDF	50.74	10		0.990	
2378-TCDF	ND		0.002	1.000	0.00
TOTAL TCDF	148.45	16		0.756	
12378-PCDF	11.14			0.613	29.59
23478-PCDF	24.20			0.603	30.51
TOTAL PCDF	123.80	10		0.610	
123478-HxCDF	109.35			1.233	34.45
123678-HxCDF	57.02			1.242	34.53
234678-HxCDF	55.21			1.240	35.37
123789-HxCDF	5.77			1.325	36.50
TOTAL HxCDF	502.26	10		1.219	
1234678-HpCDF	477.92			0.965	41.17
1234789-HpCDF	43.12			0.973	43.15
TOTAL HpCDF	1020.46 C	4		0.967	
OCDF	437.88			0.896	48.42

SURROGATE RESULTS SUMMARY

NAME	CONC(ng/g)	% RECOVERY	RATIO	RT
13C12-TCDF	2.07	104.33	0.797	24.34
37C1-TCDD	2.29	115.81		25.15
13C12-HxCDF I	3.69	186.49	0.664	34.46

INTERNAL STANDARDS RECOVERY RESULTS

NAME	CONC(ng/g)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	1.99	100.68	0.762	25.14
13C12-PCDD	2.29	115.55	0.619	31.14
13C12-HxCDD	1.90	96.08	1.221	35.54
13C12-HpCDD	1.34	67.68	0.951	42.43
13C12-OCDD E	2.25	56.92	1.000	48.37

C - beyond Calib.

I - interference ; E - estimated (interference) ; range

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DB FILE NAME M1861905
 DATE 10/24/86 SAMPLE ID RFA-41 #17
 SAMPLE WT 10.5 CONCAL # M1861901
 FRACT. INJ. 0.05 TLI # 8601181

NAME	CONC(ng/g)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.001	1.000	
TOTAL DCDD	1.53	2		1.460	
TOTAL TRICDD	9.24	5		0.993	
2378-TCDD	2.78			0.804	25.14
TOTAL TCDD	34.07	13		0.791	
12378-PCDD	8.98			0.597	31.13
TOTAL PCDD	50.01	11		0.599	
123478-HxCDD	16.38			1.248	35.42
123678-HxCDD	18.52			1.244	35.51
123789-HxCDD	44.75			1.269	36.19
TOTAL HxCDD	217.07	7		1.263	
1234678-HpCDD	214.72			1.017	42.36
TOTAL HpCDD	402.29	2		1.015	
OCDD	1498.65			0.911	48.22
TOTAL MCDF	ND	0	0.001	1.000	
TOTAL DCDF <i>I</i>	ND	0	0.260	0.002	
TOTAL TRICDF	10.22	10		0.985	
2378-TCDF	4.89			0.756	24.36
TOTAL TCDF	34.60	15		0.762	
12378-PCDF	2.95			0.600	29.56
23478-PCDF	5.34			0.618	30.49
TOTAL PCDF	26.51	9		0.622	
123478-HxCDF	23.18			1.240	34.39
123678-HxCDF	11.21			1.249	34.48
234678-HxCDF	11.53			1.215	35.33
123789-HxCDF	ND		0.003	1.000	0.00
TOTAL HxCDF	104.12	8		1.241	
1234678-HpCDF	113.00			0.985	41.08
1234789-HpCDF	4.33			0.915	43.08
TOTAL HpCDF	151.48	4		0.982	
OCDF	116.42			0.911	48.24

SURROGATE RESULTS SUMMARY

NAME	CONC(ng/g)	% RECOVERY	RATIO	RT
13C12-TCDF	2.15	113.02	0.770	24.34
37C1-TCDD	2.27	119.29		25.14
13C12-HxCDF <i>I</i>	2.65	139.35	0.970	34.39

INTERNAL STANDARDS RECOVERY RESULTS

NAME	CONC(ng/g)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	1.88	98.51	0.803	25.13
13C12-PCDD	2.22	116.50	0.622	31.13
13C12-HxCDD	2.00	104.95	1.252	35.49
13C12-HpCDD	2.98	156.67	1.104	42.36
13C12-OCDD	2.89	75.77	0.909	48.21

I - interference

TRIANGLE LABORATORIES, INC.
MONO - OCTA CHLORO DIOXIN/FURAN ANALYSIS

ANALYST DB FILE NAME M1861908
 DATE 10/21/86 SAMPLE ID TLI BLANK #19
 CONCAL # M1361906
 FRACT. INJ. 0.05 TLI # 8601181

NAME	AMT (ng)	NUMBER	DL	RATIO	RT
TOTAL MCDD	ND	0	0.008	1.000	
TOTAL DCDD	ND	0	0.012	1.000	
TOTAL TRICDD	ND	0	0.017	1.000	
2378-TCDD	ND		0.017	1.000	0.00
TOTAL TCDD	ND	0	0.017	1.000	
12378-PCDD	ND		0.020	1.000	0.00
TOTAL PCDD	ND	0	0.020	1.000	
123478-HxCDD	ND		0.034	1.000	0.00
123678-HxCDD	ND		0.033	1.000	0.00
123789-HxCDD	ND		0.039	1.000	0.00
TOTAL HxCDD	ND	0	0.035	1.000	
1234678-HpCDD	ND		0.037	1.000	0.00
TOTAL HpCDD	ND	0	0.037	1.000	
OCDD	ND		0.065	1.000	0.00
TOTAL MCDF	ND	0	0.006	1.000	
TOTAL DCDF	ND	0	0.009	1.000	
TOTAL TRICDF	ND	0	0.013	1.000	
2378-TCDF	ND		0.012	1.000	0.00
TOTAL TCDF	ND	0	0.012	1.000	
12378-PCDF	ND		0.010	1.000	0.00
23478-PCDF	ND		0.015	1.000	0.00
TOTAL PCDF	ND	0	0.012	1.000	
123478-HxCDF	ND		0.017	1.000	0.00
123678-HxCDF	ND		0.017	1.000	0.00
234678-HxCDF	ND		0.022	1.000	0.00
123789-HxCDF	ND		0.025	1.000	0.00
TOTAL HxCDF	ND	0	0.020	1.000	
1234678-HpCDF	ND		0.021	1.000	0.00
1234789-HpCDF	ND		0.029	1.000	0.00
TOTAL HpCDF	ND	0	0.024	1.000	
OCDF	ND		0.057	1.000	0.00

SURROGATE RESULTS SUMMARY

NAME	AMT (ng)	% RECOVERY	RATIO	RT
13C12-TCDF	21.13	105.66	0.797	24.36
37C1-TCDD	21.79	108.97		25.17
13C12-HxCDF	20.65	103.27	1.305	34.41

INTERNAL STANDARDS RECOVERY RESULTS

NAME	AMT (ng)	% RECOVERY	RATIO	RT
2378-13C12-TCDD	20.12	100.58	0.750	25.16
13C12-PCDD	19.83	99.17	0.670	31.16
13C12-HxCDD	17.38	86.90	1.285	35.53
13C12-HpCDD	19.44	97.21	1.016	42.33
13C12-OCDD	30.92	77.29	0.946	48.05

APPENDIX G

Radian/RTP Total Ash Discharge Moisture Analytical Report

RADIAN LABORATORIES (RTP, N.C.)
TOTAL ASH DISCHARGE MOISTURE ANALYSIS

Radian ID	13747	13748	13749
Field ID	RFA-23	RFA-39	RFA-31
Reported Total Wt., g (Sample Wt, g)	1827.2 (1435.0)	1901.5 (1506.5)	2001.0 (1607.9)
Condition	Good	Leaky	Leaky
Experimental Total Wt., g , g	1826.7 -0.5	1842.0 -59.5	1996.6 -4.4
Wt. Filtered, g Liquid Phase Recovered	383.2 18.6	236.7 27.4	Not filtered NA
Wt. before drying, g Liquid phase evaporated at 135°C, g	1801.7	1810.4	1996.6
-- Overnight	278.1	295.8	282.9
-- End of 10-3-86	<u>12.2</u>	<u>9.5</u>	<u>31.7</u>
-- Total	290.3	305.3	314.7
Final Results			
Percent Moisture	21.5	22.1	19.6

APPENDIX H
Calibration Data

Date: 9/8/86 Operator Initials: PL
Pitot Tube I.D. No.: 10-2 Length: 10
Pitot tube assembly level? ✓ yes no
Pitot tube openings damaged? yes (explain below) ✓ no
Quick connects attached, leak free? ✓ yes no

$$a_1 = \underline{\hspace{2cm}}$$

$$a_2 = \underline{\hspace{2cm}}$$

$$b_1 = \underline{\hspace{2cm}}$$

$$b_2 = \underline{\hspace{2cm}}$$

$$\gamma = \underline{\hspace{2cm}}^\circ, \theta = \underline{\hspace{2cm}}^\circ, \Delta = \underline{\hspace{2cm}} \text{ cm (in.)}$$

$$z = \Delta \sin \gamma = \underline{\hspace{2cm}} \text{ cm (in.)};$$

$$w = \Delta \sin \theta = \underline{\hspace{2cm}} \text{ cm (in.)};$$

$$P_A = \underline{\hspace{2cm}} \text{ cm (in.)};$$

$$P_B = \underline{\hspace{2cm}} \text{ cm (in.)};$$

$$D_C = \underline{\hspace{2cm}} \text{ cm (in.)}$$

Acceptance Criteria:

a_1 and $a_2 < 10^\circ$ yes no

b_1 and $b_2 < 5^\circ$ yes no

$z < 0.32 \text{ cm (1/8 in.)}$ yes no

$w < 0.08 \text{ cm (1/32 in.)}$ yes no

P_A and $P_B, 1.03 D_C < P < 1.50 D_C$ yes no

$D_C, 0.48 \text{ cm (3/16 in.)} \leq D_C \leq 0.95 \text{ cm (3/8 in.)}$ yes no

Pitot Tube Acceptable? ✓ yes no

Comments: no physical damage

Figure 5-1. Pitot tube inspection sheet.

Date: 9/8/86 Operator Initials: PL
Pitot Tube I.D. No.: 10-3 Length: 10'
Pitot tube assembly level? ✓ yes no
Pitot tube openings damaged? yes (explain below) ✓ no
Quick connects attached, leak free? ✓ yes no

$$\alpha_1 = \underline{\hspace{2cm}}$$

$$\alpha_2 = \underline{\hspace{2cm}}$$

$$\beta_1 = \underline{\hspace{2cm}}$$

$$\beta_2 = \underline{\hspace{2cm}}$$

$$\gamma = \underline{\hspace{2cm}}^\circ, \theta = \underline{\hspace{2cm}}^\circ, A = \underline{\hspace{2cm}} \text{ cm (in.)}$$

$$z = A \sin \gamma = \underline{\hspace{2cm}} \text{ cm (in.)};$$

$$v = A \sin \theta = \underline{\hspace{2cm}} \text{ cm (in.)};$$

$$P_A = \underline{\hspace{2cm}} \text{ cm (in.)};$$

$$P_b = \underline{\hspace{2cm}} \text{ cm (in.)};$$

$$D_c = \underline{\hspace{2cm}} \text{ cm (in.)}$$

Acceptance Criteria:

α_1 and $\alpha_2 < 10^\circ$ yes no

β_1 and $\beta_2 < 5^\circ$ yes no

$z < 0.32 \text{ cm (1/8 in.)}$ yes no

$v < 0.08 \text{ cm (1/32 in.)}$ yes no

P_A and $P_b, 1.05 D_c < P < 1.90 D_c$ yes no

$D_c, 0.48 \text{ cm (3/16 in.)} \leq D_c \leq 0.95 \text{ cm (3/8 in.)}$ yes no

Pitot Tube Acceptable? ✓ yes no

Comments: no physical damage

Figure 5-1. Pitot tube inspection sheet.

Saucus Re-test Post-call

DRY GAS METER CALIBRATION DATA

(English Units)

Pre-test Post Test

Calibration Meter # 6837014 + .9989

Barometric Pressure, $P_0 = 29.82$

Dry Gas Meter # 4

Date 9/3/86
Motor Box # 4

Vacuum = 5"

Orifice Manometer Setting in. in. H ₂ O	Manometer Pressure Cal. Meter in. Hg	Gas Volume Calibration Meter in. ft ³	Gas Volume Dry Gas Meter in. ft ³	Temperature				Time 0 min. .00	?
				Calibration Meter In	Out	Dry Gas Meter In	Out		
.85	-.03	initial 102.639 initial 197.547 total 5.092	initial 26.503 initial 21.502 total 5.203	initial 74 mid. final	74 mid. 74	initial 83 mid. final 94.77	75 mid. 82.3		
.85	-.03	initial 7.772 initial 26.39 total 5.133	initial 31.787 initial 26.502 total 5.284	initial 73 mid. final 73	74 mid. 74	initial 94.77 mid. final 102.80	77 mid. 88.3		.9908
.85	-.03	initial 12.875 initial 7.772 total 5.103	initial 22.051 initial 31.787 total 5.264	initial 73 mid. final 73	74 mid. 74	initial 102.80 mid. final 103.82	80 mid. 91.8		.9953
		initial initial total	initial initial total	initial mid. final	initial mid. final	initial mid. final	initial mid. final		

$$\frac{V_0 (P_0 - 13.4)}{V_0 (P_0 + 460)} \frac{(T_0 + 460)}{(T_0 + 460)}$$

$$\frac{0.0037 \text{ ft}}{P_0 73 + 460} \frac{[T_0 + 460]^2}{V_0}$$

PH

$$\frac{5.092 \times 29.82 \times 540.3 \times .9989}{5.203 \times 29.88 \times 534} = .9908$$

$$\frac{5.133 \times 29.82 \times 548.3 \times .9989}{5.284 \times 29.88 \times 533.5} = .9953$$

$$\frac{5.103 \times 29.82 \times 551.8 \times .9989}{5.264 \times 29.88 \times 533.5} = .9996$$

Motor leak check front ✓ back ↴

Pitot leak check ↴ ↴

Electrical check ↴ ↴

Calibrating technician flay

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (312) 953 9300

DIVISION MANAGER
ERPLEASE ADDRESS ALL CORRESPONDENCE TO
1627 EAST 25th ST., CLEVELAND, OH 44114
OFFICE TEL. (216) 241-0971

Babcock & Wilcox
82 Strausser St. NW
North Canton, OH 44720

January 24, 1985

Sample identification
by Babcock & Wilcox

Sample ID to us: RDF
Received at: XXXXX
Received by: Submitted
Impaled: XXXXX
Received: 12/27/84

IDENT: Test #4 1300 Hours
12/21/84
P.O. NO: 073991FL
RELEASE: 016

Analysis report no. 81-7838

ULTIMATE ANALYSIS

	<u>As Received</u>	<u>Dry</u>
% Moisture	19.93	XXXXX
% Carbon	37.85	47.27
% Hydrogen	5.09	6.36
% Nitrogen	0.35	0.44
% Chlorine	0.37	0.46
% Sulfur	0.24	0.30
% Ash	10.99	13.73
% Oxygen (diff.)	25.18	31.44
	100.00	100.00

Respectfully submitted,
COMMERCIAL TESTING & ENGINEERING CO.

Joseph M. Montach
Manager, Cleveland Laboratory

STERMARKED
RECEIPT

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS,
TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES

RFA - Post -est

DRY GAS METER CALIBRATION DATA

(English Units)

Protest Post Test

Calibration Meter # 6837014 + .9989

Barometric Pressure, B_p = 29.67

Dry Gas Meter # 4

Date 10/6/86

Motor Box # 4

Vacuum = -

Orifice Manometer Setting in. in. H ₂ O	Manometer Pressure Cal. Motor atm	Gas Volume Calibration Motor V ₀ ft ³	Gas Volume Dry Gas Motor V ₀ ft ³	Temperature				Time 0 Min. .00	T	dH
				Calibration Motor In	Out	Dry Gas Motor In	Out			
.95	-.02	final -9.518 initial 24.221 total 5.297	final 75.002 initial 69.616 total 5.386	initial 74 73	initial 80 74	final 92 76	final 96 78			.9924
				mid.	mid.	mid.	mid.			
.95	-.02	final 84.573 initial 29.518 total 5.055	final 80.152 initial 75.002 total 5.150	initial 74 74	initial 92 76	final 96 78	final 98 80			1.0001
				mid.	mid.	mid.	mid.			
.95	-.02	final 39.683 initial 34.573 total 5.11	final 85.380 initial 80.152 total 5.228	initial 74 74	initial 94 78	final 101 80	final 103 82			1.0014
				mid.	mid.	mid.	mid.			
		final	final	initial	initial	final	final			
		initial	initial	mid.	mid.	final	final			
		total	total	final	final					

$$\frac{V_0 (P_b - 29.6)}{V_0 (P_b + 29.6)} \left[\frac{T_b + 460}{T_0 + 460} \right]$$

$$\frac{0.9927 \text{ atm}}{P_b + 29 + 460} \left[\frac{T_b + 460}{T_0 + 460} \right]^2$$

PH

.95	$\frac{5.297 \times 29.67 + 5.105 \times .9989}{5.386 \times 29.74 \times 533.8} = .9924$	
.95	$\frac{5.055 \times 29.67 + 5.46 \times .9989}{5.15 \times 29.74 \times 534} = 1.0001$	
.95	$\frac{5.11 \times 29.67 + 5.48 \times .9989}{5.228 \times 29.74 \times 533.8} = 1.0014$	

Motor leak check front back

Pitot leak check

Electrical check

Calibrating technician fly

APPENDIX I
Sample Shipment Letters

9/23, 1986

Triangle Laboratories, Inc.
Post Office Box 13485
Research Triangle Park, NC 27709

Attention: Ron Hass

Subject: Dioxin/Furan Analysis Instructions

Dear Sir:

The objective of this letter is to clarify instructions for individual dioxin/furan samples collected by Radian at ~~Refuse Fuel Associates~~. The sample shipment consists of 2 boxes containing 34 samples. The samples include three sets of MM5 train samples, one set of MM5 field blanks, one set of MM5 laboratory proof blanks, three ESP ash samples and three combined ash samples.

RFA has requested front half and back half analysis of the dioxin/furan samples. The MM5 dioxin/furan sampling trains are recovered as six components. The six components are (1) the probe rinses and front half of the filter housing rinses (acetone and methylene chloride), (2) filterable solids from the gas stream collected on filter paper, (3) the XAD module, (4) the back half of the filter housing and coil condenser rinses (acetone and methylene chloride), and (5) the condensate from the first condenser and rinses (water, acetone and methylene chloride) and (6) the impinger solutions of the last three condensers with rinses (water, acetone and methylene chloride). Each component should be extracted separately. The XAD module and the condensate and impinger solution samples which contain water will need to be extracted by 10/86 (14 days from the end of the test). The front half is defined as components (1) and (2) and the back half as components (3), (4), (5) and (6). The results of the analyses for each test run should be described as front half, back half and total of each dioxin/furan species. Each sample will need to be analyzed for the dioxin/furan species listed in Table 1. In addition, one duplicate analyses will be required. A duplicate analysis should be done for one of the front half samples from the MM5 trains. The individual samples are listed on the following pages.

Radian Run # MMS-03
(Total of 6 train components)

Front RFA-34 _____
Half RFA-32 _____

- (1) Front Half/Probe Rinse (PR)
- (2) Filter (F)

Back RFA-33 _____
Half RFA-35 _____
RFA-36 _____
RFA-37 _____

- (3) XAD Module (SM)
- (4) Back Half/Coil Rinse (CR)
- (5) Condensate (CD)
- (6) Impinger Solution (IM)

MMS FIELD BLANK

Radian Run # FIELD BLANK
(Total of 6 train components)

Front RFA-12 _____
Half RFA-10 _____

Fraction

- (1) Front Half/Probe Rinse (PR)
- (2) Filter (F)

Back RFA-11 _____
Half RFA-13 _____
RFA-14 _____
RFA-15 _____

- (3) XAD Module (SM)
- (4) Back Half/Coil Rinse (CR)
- (5) Condensate (CD)
- (6) Impinger Solution (IM)

TABLE 1. LIST OF CHLORINATED ORGANIC COMPOUNDS FOR ANALYSIS

1. Total Trichlorinated dibenzo dioxins (TrCDD)
2. 2,3,7,8 Tetrachloro dibenzo-p-dioxin (2,3,7,8 TCC)
3. Total Tetrachlorinated dibenzo dioxins (TCDD)
4. 1,2,3,7,8, Pentachloro dibenzo dioxin (1,2,3,7,8 PeCDD)
5. Total Pentachlorinated dibenzo dioxins (PeCDD)
6. 1,2,3,4,7,8, Hexachloro dibenzo dioxin (1,2,3,4,7,8, HxCDD)
7. 1,2,3,6,7,8 Hexachloro dibenzo dioxin (1,2,3,6,7,8, HxCDD)
8. 1,2,3,7,8,9 Hexachloro dibenzo dioxin (1,2,3,7,8,9, HxCDD)
9. Total Hexachlorinated dibenzo dioxins (HxCDD)
10. Total Heptachlorinated dibenzo dioxins (HpCDD)
11. Total Octachlorinated dibenzo dioxins (OCDD)
12. Total Trichlorinated dibenzo furans (TrCDF)
13. 2,3,7,8 Tetrachloro dibenzo furans (2,3,7,8 TCDF)
14. Total Tetrachlorinated dibenzo furans (TCDF)
15. 1,2,3,7,8 Pentachloro dibenzo furan (1,2,3,7,8, PeCDF)
16. 2,3,4,7,8 Pentachloro dibenzo furan (2,3,4,7,8, PeCDF)
17. Total Pentachlorinated dibenzo furans (PeCDF)
18. 1,2,3,4,7,8 Hexachloro dibenzo furan (1,2,3,4,7,8, HxCDF)
19. 1,2,3,7,8,9 Hexachloro dibenzo furan (1,2,3,7,8,9, HxCDF)
20. 2,3,4,6,7,8 Hexachloro dibenzo furan (2,3,4,6,7,8 HxCDF)
21. Total Hexachlorinated dibenzo furans (HxCDF)
22. Total Heptachlorinated dibenzo furans (HpCDF)
23. Total Octachlorinated dibenzo furans (OCDF)
24. Monochlorinated dibenzo dioxin (MCDD)
25. Total dichlorinated dibenzo dioxins (DCDD)
26. Monochlorinated dibenzo furan (MCDF)
27. Total dichlorinated dibenzo furan (DCDF)

APPENDIX J

**Ultimate and Proximate Analysis
of a Representative RDF Sample**

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (312) 953-9300

LAKES DIVISION MANAGER
D. L. MEIER

PLEASE ADDRESS ALL CORRESPONDENCE TO
1627 EAST 25th ST., CLEVELAND, OH 44114
OFFICE TEL. (216) 241-0971

► Babcock & Wilcox
4282 Strausser St. NW
North Canton, OH 44720

January 24, 1985

Kind of sample reported to us RDF
Sample taken at XXXXX
Sample taken by Submitted
Date sampled XXXXX
Date received 12/27/84

Sample identification
by Babcock & Wilcox

IDENT: Test #4 0900 Hours
12/21/84
P.O. NO: 073991FL
RELEASE: 016

Analysis report no. 81-7836

ULTIMATE ANALYSIS

	<u>As Received</u>	<u>Dry</u>
% Moisture	21.83	xxxxx
% Carbon	38.98	49.87
% Hydrogen	5.03	6.43
% Nitrogen	1.32	1.69
% Chlorine	1.40	1.79
% Sulfur	0.30	0.38
% Ash	9.72	12.44
% Oxygen (diff.)	21.42 100.00	27.40 100.00

Respectfully submitted,
COMMERCIAL TESTING & ENGINEERING CO.

Manager, Cleveland Laboratory

CC
Final Copy Watermarked
For Your Protection

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS,
TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (312) 953 9300

DIVISION MANAGER
ERPLEASE ADDRESS ALL CORRESPONDENCE TO
1627 EAST 25th ST., CLEVELAND, OH 44114
OFFICE TEL. (216) 241-0971

Babcock & Wilcox
82 Strausser St. NW
North Canton, OH 44720

January 24, 1985

Sample identification
by Babcock & Wilcox

Sample ID to us: RDF
Received at: XXXXX
Received by: Submitted
Impaled: XXXXX
Received: 12/27/84

IDENT: Test #4 1300 Hours
12/21/84
P.O. NO: 073991FL
RELEASE: 016

Analysis report no. 81-7838

ULTIMATE ANALYSIS

	<u>As Received</u>	<u>Dry</u>
% Moisture	19.93	XXXXX
% Carbon	37.85	47.27
% Hydrogen	5.09	6.36
% Nitrogen	0.35	0.44
% Chlorine	0.37	0.46
% Sulfur	0.24	0.30
% Ash	10.99	13.73
% Oxygen (diff.)	25.18	31.44
	100.00	100.00

Respectfully submitted,
COMMERCIAL TESTING & ENGINEERING CO.

Manager, Cleveland Laboratory

STERMARKED
RECEIPT

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS,
TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES

Babcock & Wilcox

EFFICIENCY TEST

12/13/84

AVERAGE FUEL ANALYSIS*
AS RECEIVED

HHV	6837 BTU/LB
H ₂ O	23.94%
C	37.32%
H	5.16%
N	0.34%
C1	0.52%
S	0.29%
Ash	8.4%
O ₂	24.03%

* Average of nine (9)
hourly composite samples

EXHIBIT B

Ultimate analysis by weight (based on actual field test data)

<u>Elements</u>	<u>% of Average</u>	<u>Elements</u>	<u>% of Range</u>
Ash	12.00	Ash	9.0 - 18.00
S	.3	S	.25 - .45
H	5.1	H	4.50 - 5.5
C	37.0	C	37.00 - 40.00
C1	0.4	C1	0.25 - 1.25
H ₂ O	22.0	H ₂ O	18.00 - 27.00
N ₂	0.4	N ₂	0.35 - 0.50
O ₂	22.8	O ₂	21.00 - 26.00

EXHIBIT D

RDF Composition:

Heating Value 5,000 - 7,500 BTU
Ash 20% Maximum
Moisture 10% - 35%
Ferrous 0.5% Average

Note: Please delete aluminum and other nonferrous metal.