

STAPPA/ALAPCO
2.5
American Services Associates
Consultants in Air, Water, Energy, Hygiene & Management

#108

10/28/86

BR 2.2 #55

Bill MacL
4.0

May 24, 1984

Mr. J. Kris Warren
ANCHORAGE WATER & WASTEWATER UTILITY
P.O. Box 5285
Anchorage, Alaska 99502-2085

Dear Kris,

Re: Clarifications-4/84 Pt Woronzof Sludge Incinerator Test

Our conference call conversation with Bill MacClarence Department of Environmental Conservation (ADEC) brought clarification of the following elements on the subject report that the subject report requires these clarification comments

1. How the atmospheric emissions were corrected to a concentration of 12% less the contribution from auxiliary fuel (i.e. natural gas in the case of Pt. Woronzof Sewage Sludge Incinerator).
2. How the flowrate of shaft cooling air was determined.
3. How to determine if carbon dioxide is being absorbed in the scrubber which thereby increases the reported particulate emissions.

Particulate Emission Corrections to 12% Carbon Dioxide

Particulate emissions on combustion sources can be diluted with air to meet emission standards based upon concentration bases. The correction to 12% carbon dioxide was developed to prevent air dilution as a means to get combustion sources to dilute with ambient air as a means to meet the particulate emission standard (i.e. "Dilution is NOT the Solution to Pollution").

The correction of particulate emissions from combustion sources to 12% carbon dioxide is based upon burning bituminous coal with 50% more air than is required for theoretically perfect combustion (Theoretically perfect burning of bituminous coal will produce 18% carbon dioxide in the exhaust gas). At the time the 12% carbon dioxide standard was developed, 50% excess air was an acceptable quantity of excess air to satisfactorily burn bituminous coal. The particulate emissions from combustion sources are measured and no correction is made if the carbon dioxide in the exhaust stack is 12%. If the exhaust gas concentration of the stack is 6% carbon dioxide, the combustion source burning bituminous coal is diluting with air (i.e. 100% excess air) so the particulate emissions are "corrected" to 12% carbon dioxide by a factor (i.e. 12/measured % carbon dioxide in the exhaust gas stack) to correct the exhaust gas back to 12% carbon dioxide and 50% excess air.

Combustion sources burn with supplemental fuel (i.e. auxiliary fuel) to perform special operations such as ignite the material being burned, raise the temperature in an afterburner to maintain a high temperature for combustion to be completed. Auxiliary water to the material will burn. The auxiliary fuel contributes carbon dioxide to the exhaust gas. Because the auxiliary fuel used in afterburners or in the burners of incinerators is assumed to burn efficiently and completely, but contributes carbon dioxide to the exhaust gases, the quantity of carbon dioxide in the exhaust gases must be known and

RECEIVED

JUN 29 1984

COPIA
ENVIRONMENTAL CONSERVATION
SECTION II

dup.

Ch (w)
Ref # 30 to
see if new
info

with the two equations listed below, the quantity of dilution air was determined.

EQ 1. Incin Air + Dil Air = Stack Air = I + D = 5012 dscfm

EQ 2, Incin O₂ + Dil O₂ = Stack O₂ = (0.1588)(5012) = 795.9

(I)(0.1365) + (D)(0.21) = 795.9 with D = 5012 - I

Therefore, D = 1521 dscfm

The effect of dilution air on the emissions is accounted for in the correction to 12% carbon dioxide. Therefore the dilution air was not utilized to calculate an adjusted particulate emission concentration.

Carbon Dioxide Scrubber Absorption Effects on Emissions

Carbon dioxide can be absorbed in scrubber water which reduces the measured carbon dioxide concentration at the stack and therefore the 12% carbon dioxide correction factor is larger and the calculated particulate emission is larger. Mr. MacClarence of ADEC provided a reference (i.e. Reference No. 2 enclosed) to account for the absorption of carbon dioxide by the scrubber. Airflow and carbon dioxide before the scrubber were not measured on this project and because the particulate emissions were exceptionally low, the calculation of an adjusted carbon dioxide concentration was not performed. Mr. MacClarence's interest in accuracy in particulate emission concentration and opacity is to be commended in finding and providing the enclosed Reference No.2. The measurement of carbon dioxide will be made simultaneously at the scrubber inlet and the stack on the next particulate emission sample to determine the significance of the scrubber absorption of carbon dioxide.

The above observations have been made to clarify the subject report. I apologize that the subject report was not clear enough for the layman to understand and will endeavor to make future reports more clear. What specific report improvements would make the subject report more clear to the layman?

Yours truly,
AMERICAN SERVICES ASSOCIATES
dba ASA CONSULTANTS

Wesley D. Snowden, P.E.

enclosures:

cc: Mr. Bill MacClarence ✓
ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION
437 E Street
Anchorage, Alaska 99501

(3) The minimum data requirements have or have not been met; or, the minimum data requirements have not been met for errors that were unavoidable.

(4) Compliance with the standards has or has not been achieved during the reporting period.

(h) For the purposes of the reports required under § 60.7, periods of excess emissions are defined as all 6-minute periods during which the average opacity exceeds the applicable opacity standards under § 60.42a(b). Opacity levels in excess of the applicable opacity standard and the date of such excesses are to be submitted to the Administrator each calendar quarter.

(i) The owner or operator of an affected facility shall submit the written reports required under this section and subpart A to the Administrator for every calendar quarter. All quarterly reports shall be postmarked by the 30th day following the end of each calendar quarter.

(Sec. 114. Clean Air Act as amended (42 U.S.C. 7414).)

Subpart E - Standards of Performance for Incinerators

§ 60.50 Applicability and designation of affected facility.

[42 FR 37936, July 25, 1977]

(a) The provisions of this subpart are applicable to each incinerator of more than 45 metric tons per day charging rate (50 tons/day), which is the affected facility.

(b) Any facility under paragraph (a) of this section that commences construction or modification after August 17, 1971, is subject to the requirements of this subpart.

§ 60.51 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in Subpart A of this part.

(a) "Incinerator" means any furnace used in the process of burning solid waste

for the purpose of reducing the volume of the waste by removing combustible matter.

(b) "Solid waste" means refuse, more than 50 percent of which is municipal type waste consisting of a mixture of paper, wood, yard wastes, food wastes, plastics, leather, rubber, and other combustibles, and noncombustible materials such as glass and rock.

(c) "Day" means 24 hours.

§ 60.52 Standard for particulate matter.

(a) On and after the date on which the performance test required to be conducted by § 60.8 is completed, no owner or operator subject to the provisions of this part shall cause to be discharged into the atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm (0.08 gr/dscf) corrected to 12 percent CO₂.

[39 FR 20790, June 14, 1974]

§ 60.53 Monitoring of operations.

(a) The owner or operator of any incinerator subject to the provisions of this part shall record the daily charging rates and hours of operation.

[39 FR 20790, June 14, 1974]

(Sec. 114 of the Clean Air Act as amended (42 U.S.C. 7414).)

§ 60.54 Test methods and procedures.

(a) The reference methods in Appendix A to this part, except as provided for in § 60.8(b), shall be used to determine compliance with the standard prescribed in § 60.52 as follows:

(1) Method 5 for the concentration of particulate matter and the associated moisture content;

(2) Method 1 for sample and velocity traverses;

(3) Method 2 for velocity and volumetric flow rate; and

(4) Method 3 for gas analysis and calculation of excess air, using the integrated sample technique.

(b) For Method 5, the sampling time for each run shall be at least 60 minutes and the minimum sample volume shall be 0.85 dscm (30.0 dscf) except that smaller sampling times or sample volumes, when necessitated by process variables or other factors, may be approved by the Administrator.

(c) If a wet scrubber is used, the gas analysis sample shall reflect flue gas conditions after the scrubber, allowing for carbon dioxide absorption by sampling the gas on the scrubber inlet and outlet sides according to either the procedure under paragraphs (c) (1) through (c) (5) of this section or the procedure under paragraphs (c) (1), (c) (2) and (c) (6) of this section as follows:

(1) The outlet sampling site shall be the same as for the particulate matter measurement. The inlet site shall be selected according to Method 1, or as specified by the Administrator.

(2) Randomly select 9 sampling points within the cross-section at both the inlet and outlet sampling sites. Use the first set of three for the first run, the second set for the second run, and the third set for the third run.

(3) Simultaneously with each particulate matter run, extract and analyze for CO₂ an integrated gas sample according to Method 3, traversing the three sample points and sampling at each point for equal increments of time. Conduct the runs at both inlet and outlet sampling sites.

(4) Measure the volumetric flow rate at the inlet during each particulate matter run according to Method 2, using the full number of traverse points. For the inlet make two full velocity traverses approximately one hour apart during each run and average the results. The outlet volumetric flow rate may be determined from the particulate matter run (Method 5).

(5) Calculate the adjusted CO₂ percentage using the following equation:

$$(\% \text{ CO}_2)_{\text{adj}} = (\% \text{ CO}_2)_{\text{in}} \left(\frac{Q_{\text{in}}}{Q_{\text{out}}} \right)$$

where:

(% CO₂)_{in} is the adjusted CO₂ percentage which removes the effect of CO₂ absorption and dilution air.

(% CO₂)_{in} is the percentage of CO₂ measured before the scrubber, dry basis.

Q_{in} is the volumetric flow rate before the scrubber, average of two runs, dscf/min (using Method 2), and

Q_{out} is the volumetric flow rate after the scrubber, dscf/min (using Methods 2 and 5).

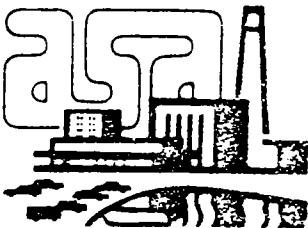
(6) Alternatively, the following procedures may be substituted for the procedures under paragraphs (c) (3), (4), and (5) of this section:

(i) Simultaneously with each particulate matter run, extract and analyze for CO₂, O₂, and N₂ an integrated gas sample according to Method 3, traversing the three sample points and sampling for

Note: For 100% CO₂ + 3.7% O₂
 RECEIVED before scrubber 5.0% CO₂

ATMOSPHERIC EMISSION EVALUATION

RECEIVED


MAY 14 1984

ENVIRONMENTAL CONSERVATION
REGION II

ANCHORAGE WATER & WASTEWATER UTILITY
SEWAGE SLUDGE INCINERATOR
APRIL 1984

ASA CONSULTANTS

15049 Bel-Red Road, Bellevue, WA 98007 (206)641-5130

DISCUSSION

The incinerator at the Point Woronzof Treatment Plant of the Anchorage Water and Wastewater Utility is a continuous feed, continuous ash removal incinerator. The incinerator is identified as Furnace No. 71343 built by BSP-Envirotech in Belmont, California. A log of incinerator operation was maintained during the times the samples were collected and is available from J. Kris Warren of the Anchorage Water & Wastewater Utility (907)243-2151.

Over five (5.68) diameters were available ahead and more than two (2) diameters of straight unobstructed duct were available behind the two (2) sample ports at 90 degrees apart so sixteen (16) traverse points on each of two (2) diameters were selected for collecting the first sample. The first sample revealed a uniform velocity and resulted in collecting over 80 cubic feet of sample requiring 96 minutes to complete using three (3) minutes per sample traverse point. Samples two and three were collected with the same three (3) minutes per sample traverse point however the sample points were reduced to ten (10) per traverse for a sixty (60) minute sample period. Sample one was collected over the first half of the test assuming a fifteen percent (15%) moisture in the stack which accounts why the nozzle velocity was less than the desired minimum of 90%. Corrections were made for nonisokinetic nozzle velocities in the report. The first and second samples were collected assuming the nozzle diameter was 0.25 inches which upon checking after the second sample was found to be 0.265 inches. The assumed less than actual nozzle diameter accounts for the less than desirable nozzle velocity on Run #1 and why the Run #2 nozzle velocity was less than Run #3.

leaks by pinching the flexible hose connected to the Method 5 sample train outlet tap and the pump and was considered leak tight if the stack gas bubbling through the leveling bulb of the Orsat stopped after a short period of time (e.g. 30 seconds).

The quantity of auxiliary fuel burned during the day of sampling was 24,500 cubic feet or 17 cubic feet per minute. One cubic foot of natural gas produces one cubic foot of carbon dioxide in the combustion process. The percent carbon dioxide produced in the stack which consists of an average of 5012 dscfm from burning the auxiliary fuel is therefore 0.34% carbon dioxide which was subtracted from the measured carbon dioxide before making the correction to 12% carbon dioxide.

Dilution air (i.e from cooling of the incinerator shaft) was entering the stack at a position just after the incinerator exhaust fan and just below the roof. Oxygen readings were taken at the exhaust fan outlet (i.e. just below the dilution air inlet) and in the exhaust stack where the samples were collected. Knowing that the oxygen concentration of the dilution air is 21%, the total airflow is 5012 dscfm, the average oxygen at the incinerator exhaust fan outlet was 13.65%, the average oxygen concentration at the stack was 15.88% and balancing the oxygen and air with the two equations listed below, the quantity of dilution air was determined.

$$\text{EQ 1. Incin Air} + \text{Dil Air} = \text{Stack Air} = I + D = 5012 \text{ dscfm}$$

$$\text{EQ 2, Incin O}_2 + \text{Dil O}_2 = \text{Stack O}_2 = (0.1588)(5012) = 795.9$$

$$(I)(0.1365) + (D)(0.21) = 795.9 \text{ with } D = 5012 - I$$

$$\text{Therefore, } D = 1521 \text{ dscfm}$$

The effect of dilution air on the emissions is accounted for in the correction

CLIENT: ANCHORAGE WATER & WASTEWATER UTILITY PT WORONZOF TREATMENT PLANT

SAMPLING LOCATION: SEWAGE SLUDGE INCINERATOR STACK EMISSIONS - APRIL 1984

	RUN # 1 4/13/84	RUN # 2 4/13/84	RUN # 3 4/13/84
LAB NUMBER	27-4	28-4	29-4
24 HOUR START TIME	930	1335	1559
24 HOUR STOP TIME	1117	1437	1702
ELAPSED SAMPLING TIME, MIN	96.2	60	60
VOLUME SAMPLED, CU FT	81.636	56.192	64.894
VOLUME SAMPLED STANDARD, CU FT	78.9862	53.2465	61.9348
MOISTURE CONTENT OF STACK GAS, %	1.78421	1.75912	1.81087
MOLEC. WT OF STACK GAS, LB/LB MOLE	29.23	29.2223	29.2116
STACK PRESSURE, IN HG	29.6669	29.6869	29.7469
PITOT COEFFICIENT	.822	.822	.822
VELOCITY OF STACK GAS, FT/SEC	49.1617	48.2209	50.4552
STACK AREA, SQR FT	1.96895	1.96895	1.96895
STACK GAS FLOW RATE, ACTUAL CU FT/MIN, WET	5807.81	5696.67	5940.52
TEMPERATURE OF STACK, DEG F	142.313	132.9	138.4
STACK GAS FLOW RATE, STD CU FT/MIN, DRY	4958.11	4945.03	5134.26
DIAMETER OF NOZZLE, INCHES	.265	.265	.265
PERCENT ISOKINETIC OF TEST, %	85.1286	92.2543	100.353
WEIGHT PARTICULATE COLLECTED, MG	32.4	23.3	24.4
PARTICULATE CONCENTRATION, GRAINS/STD CU FT -0.3	6.31705E-03	6.73884E-03	1.1676E-03
PERCENT CO2 CONTENT OF STACK GAS	5.32	5.23	5.23
PART. CONC AT 100% CO2, GR/STD CU FT	.014249	.015462	.015462
POLLUTANT MASS RATE (COEF. METHOD), LB/HR	.268449	.285613	.285613
POLLUTANT MASS RATE (AREA RATE, METHOD), LB/HR	.228539	.263508	.263508
POLLUTANT MASS RATE (AVERAGE OF 48.0%), LB/HR	.248494	.274562	.274562
PARTICULATE CONCENTRATION (CORRECTED)	.0131891	.0148626	.43795

PARTICULATE CONCENTRATION AND PMR CALCULATION TERMINOLOGY

(Page 2)

γ (γ)	= Dry gas meter calibration factor
Q_s, Q_{os} (Q_{SD})	= Stack flow rate at standard conditions - scfm (dry)
T (Θ)	= Time over which sample was collected - minutes
V_n, V_s ($V_{S(std)}$)	= Velocity of gases inside nozzle during sampling, at STP - fpm
I (I)	= % Isokinetic ($\pm 10\%$ desirable)
C_0, C_o (C_s)	= Particulate concentration - grains/scf
N (% CO_2)	= % CO_2 by volume in stack (12 indicates no % CO_2 correction is to be made)
T_s, T_{si} (T_{si})	= Temperature of stack gas at each sampling point - $^{\circ}$ F (Use $^{\circ}$ R = $460 + 0^{\circ}$ F in equations)
C (*)	= Particulate concentration corrected to 12% CO_2
$PMRC, PMR_c$ (*)	= Pollutant mass rate - "concentration method" - lb/hr
$PMRR, PMR_r$ (*)	= Pollutant mass rate - "area ratio method" - lb/hr
$PMRAVG, \overline{PMR}$ (*)	= Average pollutant mass rate - lb/hr
$C'PRIME, C'$ (*)	= Particulate concentration corrected for non-isokinetic sampling condition - grains/scf
P_T, P_T (M_n)	= Total particulate collected by sampling train - mg
A_1, A_2, A_s (A)	= Area of stack - FT^2 $A_2 = 0$ if round stack
A_n (A_n)	= Area of nozzle - FT^2
DN (*)	= Diameter of nozzle in IN^2
C_p, C_p (C_p)	= Velocity correction coefficient for type pitot tube used - dimensionless, normally 0.80 to 0.90 for "S" type pitot tube and 1.0 for "P" type pitot tube
K_A, K_a (*)	= Average $\sqrt{VH \times T_s}$

†Notation in parenthesis to the right of the ASA nomenclature is the equivalent EPA 40 CFR 60 Method 5 notation

* Notation used by ASA for calculations not required by 40 CFR 50 Method 5

PROCEDURE

EPA METHOD 5 PARTICULATE SAMPLING TRAIN

Sampling Train Preparation:

A tared and labeled glass fiber filter was placed in a glass filter holder. The filter (MSA1106BH) was desiccated and weighed to a constant weight to the nearest 0.5 mg. The condenser section consisted of four glass containers in series: one hundred milliliters of distilled-deionized water in a bubbler; one hundred milliliters in an impinger; a dry bubbler; and, a bubbler filled with approximately 500 grams of silica gel. All of the containers were weighed to the nearest 0.1 gram. The sampling train was assembled with connecting glassware so that sample gas would pass through the filter, the bubbler, impinger, the dry bubbler and the silica gel respectively.

A nozzle of a size that would allow for isokinetic sampling was selected and cleaned. A probe and liner of appropriate length to traverse the stack was chosen and the liner cleaned with acetone and a brush. The nozzle was connected with a cleaned union to the probe and liner. The probe was connected in front of the filter. A schematic of the sampling equipment is included in this report.

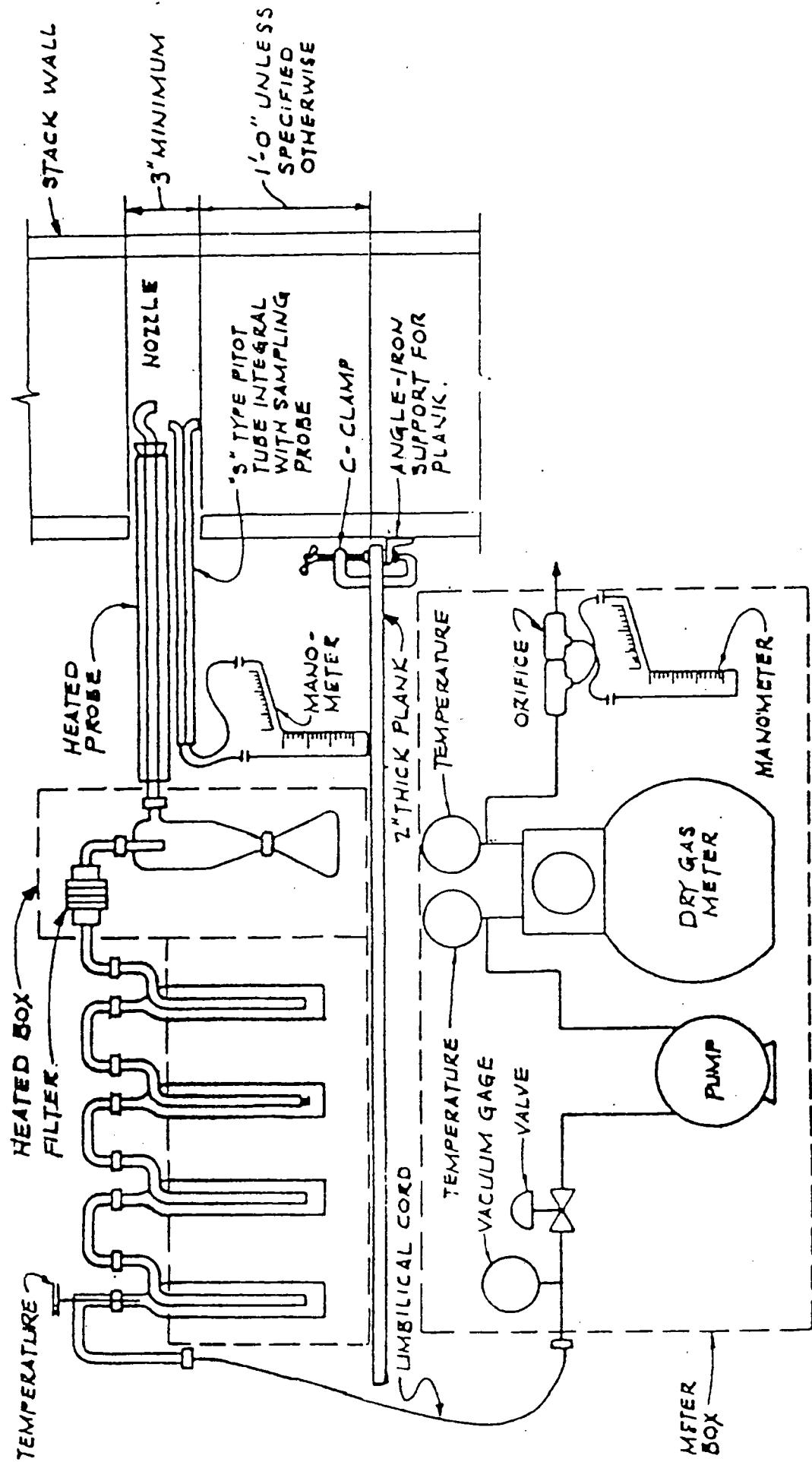
A leak test was performed on the assembled sampling train. The leak rate did not exceed 0.02 cfm at a vacuum of 10 inches Hg. The probe was heated and maintained at or above 250 degrees plus or minus 25 degrees F. The filter was heated and maintained at 250 degrees plus or minus 25 degrees F to avoid condensation of moisture on the filter. Crushed ice was placed around the condenser at the beginning of the test with new ice being added as required to keep the gases leaving the sampling train below 70 degrees F.

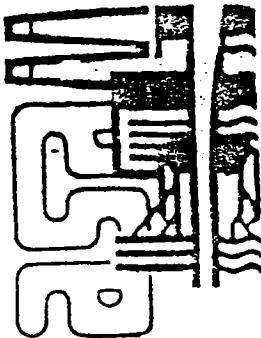
Sample Collection:

Sampling ports were selected and installed. The number of sampling points was determined based on the number of stack diameters from any flow disturbance to the port(s). The location of each sampling point was based on equal areas within the stack.

The time at each point was dependent on the stack velocity and the desired volume to be sampled.

The probe was inserted into the stack to the first traverse point with the nozzle tip pointing directly into the gas stream. The pump was started and immediately adjusted to sample at isokinetic velocities. Equal time was spent at each time interval. The EPA designed nomograph or equivalent was used to maintain isokinetic sampling throughout the sampling period. At the conclusion of the run the pump was turned off, and a final leak test was performed at the maximum vacuum incurred during sampling. If the post-test leak rate was found to be over 0.02 cfm the actual leak rate was recorded.




FIGURE 1.

EPA METHOD 5 PARTICULATE SAMPLING TRAIN

Bellevue, WA

DOWN	RSC
CHUCKED	W/S
BATT	
9/10/14	

ASA CONSULTANTS

PARTICULATE CALCULATION

CLIENT: ANCHORAGE WATER & WASTEWATER UTILITY WORONZOF TREATMENT PLANT

LOCATION: SEWAGE SLUDGE INCINERATOR STACK EMISSIONS

SAMPLE DATE: 4/13/84

ANALYSIS DATE: 4/16-24/84

RUN # 1

LAB # 27-4

I. EVAPORATION OF 75 ml OF ACETONE RINSE AND (B)
BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE FILTER.

FINAL 79723.7 mg - TARE 79721.5 mg
- BLANK ((5E-03 mg/ml) (75 ml) = .375 mg) = 1.825 mg

II. FILTER CATCH - FILTER MSA1106BH - NUMBER 9-4 (A)

FINAL 424.5 mg - TARE 393.9 mg = 30.6 mg

VII. TOTAL PARTICULATE = SUM OF ABOVE = 32.425 mg

BLANKS

ACETONE (FINAL 80883.9 mg - TARE 80883.4 mg = .5 mg)
/ 100 ml = 5E-03 mg/ml

ASA CONSULTANTS

PARTICULATE CALCULATION

CLIENT: ANCHORAGE WATER & WASTEWATER UTILITY TREATMENT PLANT

LOCATION: SEWAGE SLUDGE INCINERATOR STACK EMISSIONS

SAMPLE DATE: 4/13/84

ANALYSIS DATE: 4/16-24/84

RUN # 2

LAB # 28-4

I. EVAPORATION OF 95 ml OF ACETONE RINSE AND (B)
BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE FILTER.

FINAL 77867.4 ms - TARE 77861.3 ms
- BLANK ((5E-03 ms/ml) (95 ml) = .475 ms) = 5.625 ms

II. FILTER CATCH - FILTER MSA1106BH - NUMBER 7-4 (A)

FINAL 406.1 ms - TARE 388.4 ms = 17.7 ms

VII. TOTAL PARTICULATE = SUM OF ABOVE = 23.325 ms

BLANKS

ACETONE (FINAL 80883.9 ms - TARE 80883.4 ms = .5 ms)
/ 100 ml = 5E-03 ms/ml

ASA CONSULTANTS

PARTICULATE CALCULATION

CLIENT: ANCHORAGE WATER & WASTEWATER UTILITY TREATMENT PLANT

LOCATION: SEWAGE SLUDGE INCINERATOR STACK EMISSIONS

SAMPLE DATE: 4/13/84

ANALYSIS DATE: 4/16-24/84

RUN # 3

LAB # 29-4

I. EVAPORATION OF 130 ml OF ACETONE RINSE AND (B)
BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE FILTER.

FINAL 80699.75 mg - TARE 80699.10000000001 mg
- BLANK ((5E-03 mg/ml) (130 ml) = .65 mg) = 2.38397E-08 mg

II. FILTER CATCH - FILTER MSA1106BH - NUMBER 11-4 (A)

FINAL 419.4 mg - TARE 394.8 mg = 24.6 mg

VII. TOTAL PARTICULATE = SUM OF ABOVE = 24.6 mg

BLANKS

ACETONE (FINAL 80883.9 mg - TARE 80883.4 mg = .5 mg)
/ 100 ml = 5E-03 mg/ml

CLIENT: Auchindoun Util. DATE: 1/2/84

PORT LOCATION: Sluice & Inlet for Stack
RUN NO. 27-4

OPERATOR/S: S. DOWDEN
SAMPLE BOX NO. 3 BLACK METER BOX #182
FILTER NO. 9-4 TAN

INITIAL WT. gm NET WT. gm
428.5 931.7 = 503.2

1 BUBBLER
2 IMPINGER
3 COUNTER
4 SILICATE

100.4 = 20.3
TOTAL WATER VOLUME: 190 ml = 30.4

ASA CONSULTANTS:

TRAVERSE SAMPLING DATA SHEET

UPSTREAM & DOWNSTREAM FROM OBSTRUCTION
BFR. DIL = 13.1 3.2 CH
AFTER DIL = 16.0 9.0 CH

BEFORE DIL = 18.75 % OR 3 11.10
BFR. DIL = 12.5

INSTANTANEOUS READINGS: RECORDED @ BEGINNING OF TIME INTERVAL

CLOCK TIME (24 HRS.)	FLUID (ml.)	DRY GAS METER (CUBIC FEET)		DRY GAS TEMP. (°F)		BOX TEMP. (°F)	IMPIINGER TEMP. (°F)	PILOT VH ("H ₂ O)	ORIFICE VH ("H ₂ O)	PUMP VACUUM ("Hg. G)	STACK TEMP. (°F)	OPACITY OR XCO ₂
		INLET	OUTLET	INLET	OUTLET							
9:30	53	16.477	55	55	54	244	43	0.15	1.5	15	15	5.0 / 10.0
		16.60	50	49	48	245	42	0.15	1.5	15	15	5.0 / 10.0
		16.90	49	48	47	246	42	0.15	1.5	15	15	5.0 / 10.0
		17.14	48	47	46	247	42	0.15	1.5	15	15	5.0 / 10.0
		17.25	47	46	45	248	42	0.15	1.5	15	15	5.0 / 10.0
		17.30	46	45	44	249	42	0.15	1.5	15	15	5.0 / 10.0
		17.32	45	44	43	250	42	0.15	1.5	15	15	5.0 / 10.0
		17.34	44	43	42	251	42	0.15	1.5	15	15	5.0 / 10.0
		17.35	43	42	41	252	42	0.15	1.5	15	15	5.0 / 10.0
		17.36	42	41	40	253	42	0.15	1.5	15	15	5.0 / 10.0
		17.37	41	40	39	254	42	0.15	1.5	15	15	5.0 / 10.0
		17.38	40	39	38	255	42	0.15	1.5	15	15	5.0 / 10.0
		17.39	39	38	37	256	42	0.15	1.5	15	15	5.0 / 10.0
		17.40	38	37	36	257	42	0.15	1.5	15	15	5.0 / 10.0
		17.41	37	36	35	258	42	0.15	1.5	15	15	5.0 / 10.0
		17.42	36	35	34	259	42	0.15	1.5	15	15	5.0 / 10.0
		17.43	35	34	33	260	42	0.15	1.5	15	15	5.0 / 10.0
		17.44	34	33	32	261	42	0.15	1.5	15	15	5.0 / 10.0
		17.45	33	32	31	262	42	0.15	1.5	15	15	5.0 / 10.0
		17.46	32	31	30	263	42	0.15	1.5	15	15	5.0 / 10.0
		17.47	31	30	29	264	42	0.15	1.5	15	15	5.0 / 10.0
		17.48	30	29	28	265	42	0.15	1.5	15	15	5.0 / 10.0
		17.49	29	28	27	266	42	0.15	1.5	15	15	5.0 / 10.0
		17.50	28	27	26	267	42	0.15	1.5	15	15	5.0 / 10.0
		17.51	27	26	25	268	42	0.15	1.5	15	15	5.0 / 10.0
		17.52	26	25	24	269	42	0.15	1.5	15	15	5.0 / 10.0
		17.53	25	24	23	270	42	0.15	1.5	15	15	5.0 / 10.0
		17.54	24	23	22	271	42	0.15	1.5	15	15	5.0 / 10.0
		17.55	23	22	21	272	42	0.15	1.5	15	15	5.0 / 10.0
		17.56	22	21	20	273	42	0.15	1.5	15	15	5.0 / 10.0
		17.57	21	20	19	274	42	0.15	1.5	15	15	5.0 / 10.0
		17.58	20	19	18	275	42	0.15	1.5	15	15	5.0 / 10.0
		17.59	19	18	17	276	42	0.15	1.5	15	15	5.0 / 10.0
		17.60	18	17	16	277	42	0.15	1.5	15	15	5.0 / 10.0
		17.61	17	16	15	278	42	0.15	1.5	15	15	5.0 / 10.0
		17.62	16	15	14	279	42	0.15	1.5	15	15	5.0 / 10.0
		17.63	15	14	13	280	42	0.15	1.5	15	15	5.0 / 10.0
		17.64	14	13	12	281	42	0.15	1.5	15	15	5.0 / 10.0
		17.65	13	12	11	282	42	0.15	1.5	15	15	5.0 / 10.0
		17.66	12	11	10	283	42	0.15	1.5	15	15	5.0 / 10.0
		17.67	11	10	9	284	42	0.15	1.5	15	15	5.0 / 10.0
		17.68	10	9	8	285	42	0.15	1.5	15	15	5.0 / 10.0
		17.69	9	8	7	286	42	0.15	1.5	15	15	5.0 / 10.0
		17.70	8	7	6	287	42	0.15	1.5	15	15	5.0 / 10.0
		17.71	7	6	5	288	42	0.15	1.5	15	15	5.0 / 10.0
		17.72	6	5	4	289	42	0.15	1.5	15	15	5.0 / 10.0
		17.73	5	4	3	290	42	0.15	1.5	15	15	5.0 / 10.0
		17.74	4	3	2	291	42	0.15	1.5	15	15	5.0 / 10.0
		17.75	3	2	1	292	42	0.15	1.5	15	15	5.0 / 10.0
		17.76	2	1	0	293	42	0.15	1.5	15	15	5.0 / 10.0
		17.77	1	0	-1	294	42	0.15	1.5	15	15	5.0 / 10.0
		17.78	0	-1	-2	295	42	0.15	1.5	15	15	5.0 / 10.0
		17.79	-1	-2	-3	296	42	0.15	1.5	15	15	5.0 / 10.0
		17.80	-2	-3	-4	297	42	0.15	1.5	15	15	5.0 / 10.0
		17.81	-3	-4	-5	298	42	0.15	1.5	15	15	5.0 / 10.0
		17.82	-4	-5	-6	299	42	0.15	1.5	15	15	5.0 / 10.0
		17.83	-5	-6	-7	300	42	0.15	1.5	15	15	5.0 / 10.0
		17.84	-6	-7	-8	301	42	0.15	1.5	15	15	5.0 / 10.0
		17.85	-7	-8	-9	302	42	0.15	1.5	15	15	5.0 / 10.0
		17.86	-8	-9	-10	303	42	0.15	1.5	15	15	5.0 / 10.0
		17.87	-9	-10	-11	304	42	0.15	1.5	15	15	5.0 / 10.0
		17.88	-10	-11	-12	305	42	0.15	1.5	15	15	5.0 / 10.0
		17.89	-11	-12	-13	306	42	0.15	1.5	15	15	5.0 / 10.0
		17.90	-12	-13	-14	307	42	0.15	1.5	15	15	5.0 / 10.0
		17.91	-13	-14	-15	308	42	0.15	1.5	15	15	5.0 / 10.0
		17.92	-14	-15	-16	309	42	0.15	1.5	15	15	5.0 / 10.0
		17.93	-15	-16	-17	310	42	0.15	1.5	15	15	5.0 / 10.0
		17.94	-16	-17	-18	311	42	0.15	1.5	15	15	5.0 / 10.0
		17.95	-17	-18	-19	312	42	0.15	1.5	15	15	5.0 / 10.0
		17.96	-18	-19	-20	313	42	0.15	1.5	15	15	5.0 / 10.0
		17.97	-19	-20	-21	314	42	0.15	1.5	15	15	5.0 / 10.0
		17.98	-20	-21	-22	315	42	0.15	1.5	15	15	5.0 / 10.0
		17.99	-21	-22	-23	316	42	0.15	1.5	15	15	5.0 / 10.0
		18.00	-22	-23	-24	317	42	0.15	1.5	15	15	5.0 / 10.0
		18.01	-23	-24	-25	318	42	0.15	1.5	15	15	5.0 / 10.0
		18.02	-24	-25	-26	319	42	0.15	1.5	15	15	5.0 / 10.0
		18.03	-25	-26	-27	320	42	0.15	1.5	15	15	5.0 / 10.0
		18.04	-26	-27	-28	321	42	0.15	1.5	15	15	5.0 / 10.0
		18.05	-27	-28	-29	322	42	0.15	1.5	15	15	5.0 / 10.0
		18.06	-28	-29	-30	323	42	0.15	1.5	15	15	5.0 / 10.0
		18.07	-29	-30	-31	324	42	0.15	1.5	15	15	5.0 / 10.0
		18.08	-30	-31	-32	325	42	0.15	1.5	15	15	5.0 / 10.0
		18.09	-31	-32	-33	326	42	0.15	1.5	15	15	5.0 / 10.0
		18.10	-32	-33	-34	327	42	0.15	1.5	15	15	5.0 / 10.0
		18.11	-33	-34	-35	328	42	0.15	1.5	15	15	5.0 / 10.0
		18.12	-34	-35	-36	329	42	0.15	1.5	15	15	5.0 / 10.0
		18.13	-35	-36	-37	330	42	0.15	1.5	15	15	5.0 / 10.0
		18.14	-36	-37	-38	331	42	0.15	1.5	15	15	5.0 / 10.0
		18.15	-37	-38	-39	332	42	0.15	1.5	15	15	5.0 / 10.0
		18.16	-38	-39	-40	333	42	0.15	1.5	15	15	5.0 / 10.0
		18.17	-39	-40	-41	334	42	0.15	1.5	15	15	5.0 / 10.0
		18.18	-40	-41	-42	335	42	0.15	1.5	15	15	5.0 / 10.0
		18.19	-41	-42	-43	336	42	0.15	1.5	15	15	5.0 / 10.0
		18.20	-42	-43	-44	337	42	0.15	1.5	15	15	5.0 / 10.0
		18.21	-43	-44	-45	338	42	0.15	1.5	15	15	5.0 / 10.0
		18.22	-44	-45	-46	339	42	0.15	1.5	15	15	5.0 / 10.0
		18.2										

DRY GAS METER AND ORIFICE CALIBRATION LOG

Meter Box No. #1

Dry Gas Meter Identification Meter Box #1

Date 4/17/84

Barometric Pressure, Pb 29.8 In. HG

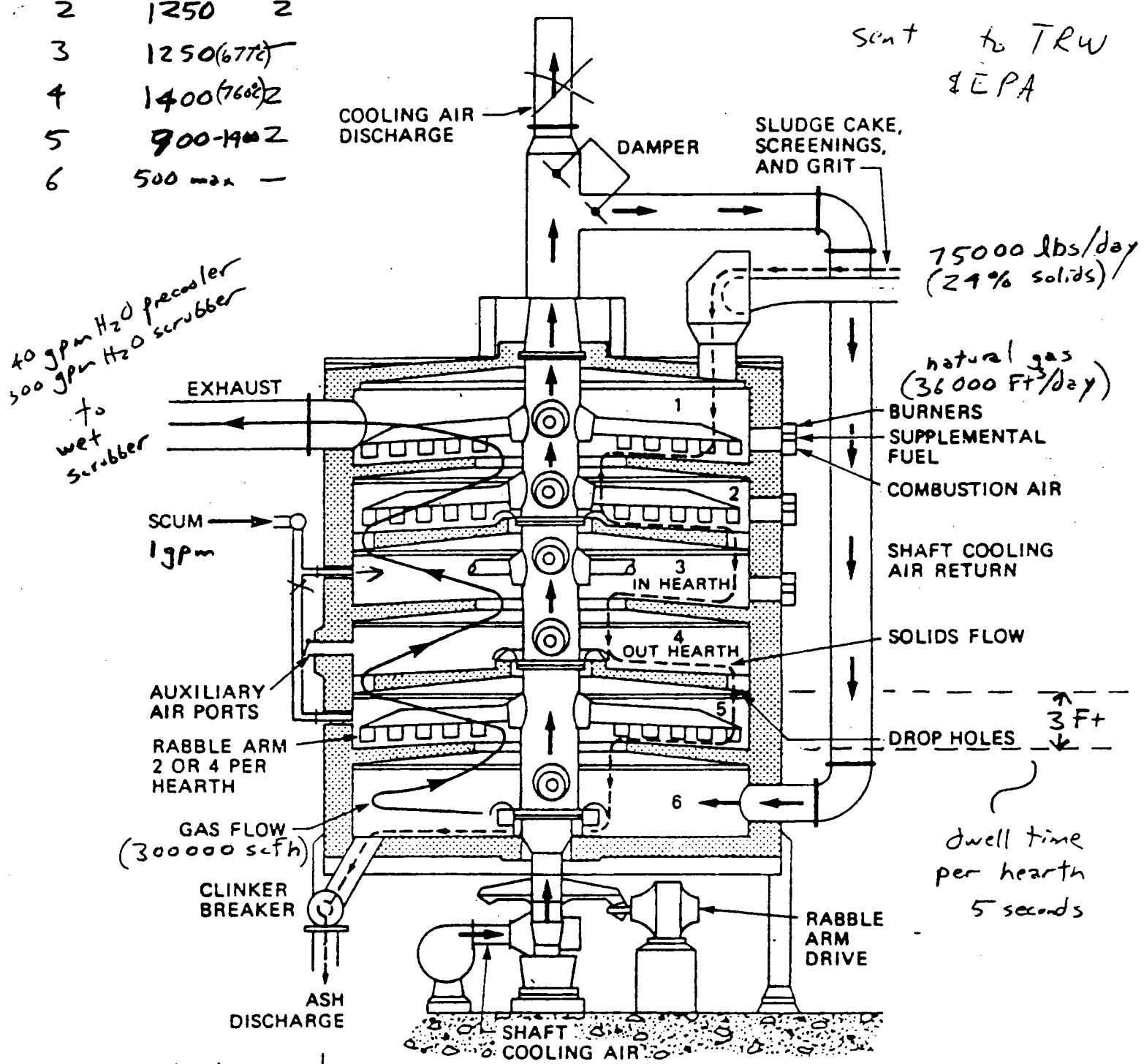
Technician W. D. Snowden

Orifice Manometer Setting, ΔH , in H_2O	Gas Volume Wet Test Meter V_w , ft^3	Gas Volume Dry Gas Meter V_d , ft^3	Temperature				Time θ min.	γ	$\Delta H\theta$		
			Wet Test	Dry Gas Meter							
				Meter t_w °F	Inlet t_{di} °F	Outlet t_{do} °F	Average t_d °F				
0.5	5	514	64.5	87.5	76.5	82	13.6	1.004	2.041		
1.0	5	5.272	64	96.5	84	90.25	9.3	0.993	1.852		
2.0	10	10.628	63.5	108	89.5	97.5	12.8	0.997	1.733		
4.0	10	10.738	63.5	119	95.5	107.25	9.1	0.999	1.733		
6.0	10	10.757	63.5	125.5	99.5	112.5	7.5	1.002	1.753		
	10										
								Average			
								0.999			
								1,8164			

Calculations

ΔH	$\frac{\Delta H}{13.6}$	γ		$\Delta H\theta$	
		$\frac{V_w Pb(t_d + 460)}{V_d (Pb + \Delta H/13.6)(t_w + 460)}$		$\frac{0.0317 \Delta H}{Pb(t_d + 460)}$	$\frac{(t_w + 460)\theta}{V_w}^2$
		$\frac{(\)(\)(\)}{(\)()(\)} =$		$\frac{0.0317 (\)}{(\)()} [\]^2 =$	
		$\frac{(\)()(\)(\)}{(\)()(\)} =$		$\frac{0.0317 (\)}{(\)()} [\]^2 =$	
		$\frac{(\)()(\)(\)}{(\)()(\)} =$		$\frac{0.0317 (\)}{(\)()} [\]^2 =$	
		$\frac{(\)()(\)(\)}{(\)()(\)} =$		$\frac{0.0317 (\)}{(\)()} [\]^2 =$	
		$\frac{(\)()(\)(\)}{(\)()(\)} =$		$\frac{0.0317 (\)}{(\)()} [\]^2 =$	
		$\frac{(\)()(\)(\)}{(\)()(\)} =$		$\frac{0.0317 (\)}{(\)()} [\]^2 =$	
		$\frac{(\)()(\)(\)}{(\)()(\)} =$		$\frac{0.0317 (\)}{(\)()} [\]^2 =$	
		$\frac{(\)()(\)(\)}{(\)()(\)} =$		$\frac{0.0317 (\)}{(\)()} [\]^2 =$	

γ = Ratio of accuracy of wet test meter to dry test meter. Tolerance = ± 0.01


ΔH = Orifice pressure differential that gives 0.75 cfm of air at 70°F and 29.92 inches of mercury in H_2O . Tolerance = ± 0.15

SOURCE NAME Pt. Waukegan STP Incinerator			SOURCE ID NUMBER 0321-AA-07	OBSERVATION DATE 4/13/84
ADDRESS 3200 H. T. Dr.			OBSERVER'S NAME INT B. J. Mac Clarence	ORGANIZATION AK Dept. of Env. Conserv.
STATE IL	ZIP 94503	PHONE 243-2151	CERTIFIED BY Arch. Air Pollution Agency	
			DATE 10/27/84	
PROCESS Sludge Incinerator	OPERATING MODE	START TIME 1608	STOP TIME 1627	
CONTROL EQUIPMENT wet scrubber	OPERATING MODE	0 15 30 45	0 15 30 45	
DESCRIBE EMISSION POINT Stack exit after dilution air	EMISSION POINT HEIGHT ABOVE GROUND LEVEL 35'	1 5 5 5 5	31	
DISTANCE TO EMISSION POINT 180'	EMISSION POINT HEIGHT RELATIVE TO OBSERVER 45'	2 10 5 0 5	32	
DESCRIBE EMISSIONS straight well defined plume	COLOR OF EMISSIONS brown/yellow	3 5 5 5 5	33	
WATER VAPOR PRESENT NO <input checked="" type="checkbox"/> YES <input type="checkbox"/>	IF YES, IS PLUME ATTACHED <input type="checkbox"/> N/A <input type="checkbox"/> DETACHED	4 0 5 0 5	34	
AT WHAT POINT WAS OPACITY DETERMINED Stack exit	COLOR OF BACKGROUND white	5 5 5 0 10	35	
DESCRIBE BACKGROUND overcast sky	SKY CONDITIONS overcast	6 5 5 0 0	36	
WIND SPEED 0-5	WIND DIRECTION E	7 0 5 5 0	37	
AMBIENT TEMPERATURE 50	RELATIVE HUMIDITY	8 5 5 0 0	38	
COMMENTS during run No. 3 source test transmissometer reading 9%	AVERAGE OPACITY 2.1%	9 0 0 5 5	39	
SOURCE LAYOUT SKETCH	RANGE OF OPACITY READINGS FROM 0 TO 10	10 5 10 0 5	40	
	DRAW NORTH ARROW	11 0 5 0 5	41	
		12 5 5 0 0	42	
		13 0 0 0 0	43	
		14 0 0 0 5	44	
		15 0 0 0 5	45	
		16 5 0 0 10	46	
		17 5 0 0 0	47	
		18 0 0 5 5	48	
		19 0 0 5 5	49	
		20 5 0 0 0	50	
		21	51	
		22	52	
		23	53	
		24	54	
		25	55	
		26	56	
		27	57	
		28	58	
		29	59	
		30	60	
	AVERAGE OPACITY 2.1%	NUMBER OF READINGS ABOVE 20 % WERE none		
	RANGE OF OPACITY READINGS FROM 0 TO 10			
	DRAW NORTH ARROW			
1 VERIFIED BY	DATE 4/13/84	I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS. SIGNATURE TITLE	DATE //	

Hearth	Temp (°F)	No. of Gas Burners
1	1000 (538°C)	2
2	1250	2
3	1250 (677°C)	
4	1400 (760°C)	2
5	900-1400	2
6	500 max	-

rec'd @ plant
4/13/83

sent to TRW
& EPA

BSP-Envirotech
Furnace No. 71343

Job No. 5737

Contract #12, phase 2

Lurgi (Parent Co.)

Berkeley, Calif.

FIGURE 11-6

CROSS SECTION OF A MULTIPLE-HEARTH FURNACE