

ENVISAGE ENVIRONMENTAL INCORPORATED

P. O. Box 152, Richfield, Ohio 44286

Phone (216) 526-0990

STAPPA/ALAPCO

REPORT NO.

85-9110 53

COMPANY

NEORSD

TITLE

Particulate & C

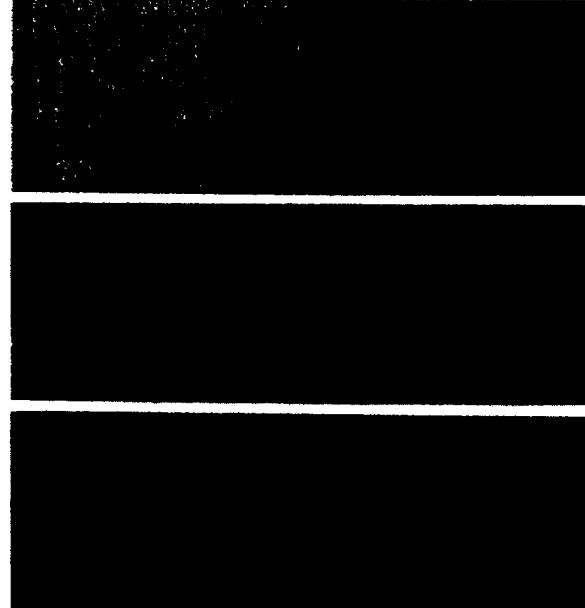
DATE

5-22-86

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

#124 11/12/86


SOUTHERLY WASTEWATER TREATMENT

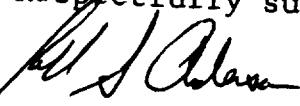
PLANT

CLEVELAND, OHIO

INCINERATOR #3

EPA METHODS 1-5 & 101A
PARTICULATE & MERCURY COMPLIANCE TEST
CONDUCTED - MAY 22, 1985

June 3, 1985


Mr. Robert Dominak, P.E.
Northeast Ohio Regional Sewer District
1127 Euclid Avenue
Cleveland, Ohio 44115

Dear Mr. Dominak:

The following report is the result of the E.P.A. Method 1-5 and 101A Compliance Stack Test conducted on May 22, 1985. The test for Particulate and Mercury Emissions was conducted at the Southerly Sewage Treatment Plant, Incinerator #3, Cleveland, Ohio.

The results are true and accurate to the degree specified in the pertinent sections of the Federal Register, in force at the time of testing concerning Source Sampling for Particulate and Mercury Emissions.

Respectfully submitted,

Robert S. Anderson
President
ENVISAGE ENVIRONMENTAL INC.

TABLE OF CONTENTS

	PAGE
Introduction	3
Description of Program	5 - 6
Test Results	
Summary	8
Detailed	10
Operational Parameters	12 - 13
Sample Point Location Diagram	15
Sample Train Diagram	17
Equipment Specifications	19
Laboratory Section	21 - 25
Calibration Section	27 - 29
Field Data Sheets	31 - 33
Particulate Sampling Nomenclature	35 - 36
Sample Calculations	38 - 48

INTRODUCTION

*MH/I
per Harry Mied 1/8/87*

3

INTRODUCTION

On May 22, 1985, Envisage Environmental Inc. conducted a Particulate Emission Compliance test at the Northeast Ohio Regional Sewer District, Southerly Sewage Treatment Plant, Cleveland, Ohio. The testing consisted of three (3) test runs of EPA Methods 1-5 to determine the particulate emission rate into which was incorporated EPA Method 101A to determine the Mercury emission rate. The purpose of this test was to determine the emission rates from the exhaust stack venting the Sludge Incinerator #3 in order to ascertain compliance with EPA regulations.

The incinerator was monitored throughout the test by Northeast Ohio Regional Sewer District personnel. Ohio Environmental Protection Agency representatives were present during testing. The signature on the field data sheets of Mr. Jim Krause of the Cleveland Division of Air Pollution Control shows his approval of the on-site procedures.

The results contained in this report represent the particulate and mercury emission rates for the three test runs and the various temperature, volumetric, and velocity measurements taken with these tests.

DESCRIPTION OF PROGRAM

DESCRIPTION OF PROGRAM

This testing was conducted in the exhaust stack through two (2) sample ports located approximately twenty-five (25) feet above the roof level. Twelve sample points were utilized in each sample port making a total of twenty-four (24) sample points per test run. The sample was drawn for two and one-half (2.5) minutes at each sample point for a total test time of sixty (60) minutes per test run. A diagram of the sample point locations is included in this report.

The samples were drawn from the gas stream iso-kinetically through a one quarter (0.25) inch diameter nozzle and a three foot Pyrex lined probe. This probe was heated its entire length and was attached to a Modified EPA Method Five Sample Train. The sample box was heated to a 250 degrees Fahrenheit and was monitored throughout each test to ensure that no condensation formed in the sample train before the impingers. The impingers were set up for Mercury Collection according to EPA Method 101A. Impinger #1 & 2 contained 100 ml of Potassium Permanganate and were analyzed for Mercury content after the measurements for moisture collection.

Flue gas analysis was conducted by drawing an integrated air bag sample and was analyzed with a Hays Republic Model 621A "Orsat" Portable Gas Analyzer. The average of these readings for each test run were used in calculating the emission rates.

Calibration of equipment used, to include the dry gas meter, orifice meter, and the "S" type pitot tube was conducted April 2, 1985. Calibration data is included in this report.

Description of Program - con't

All analytical procedures were performed in accordance with the methods specified in the Federal Register, Title 40, Part 60, Volume 43, as published March 3, 1978 and its amendments. During the laboratory analysis, a blank was performed on the residue left from the acetone and distilled water used in the evaluation. The acetone blank was recorded and incorporated into the results. The distilled water blank was less than could be measured on a 0.1 milligram analytical balance and therefore was considered to be zero.

A set of sample stack testing equations used for data reduction and evaluation are included in this report for convenience and to aid in understanding the presented data. Figures included as sample calculations are from Test Run #1.

TEST RESULTS

SUMMARY

TEST RESULTS SUMMARY

8

North East Ohio Regional Sewer District

Southerly Sewage Treatment Plant

Sludge Incinerator # 3

EPA Methods 1-5

Particulate Emissions

Compliance Test

Conducted - May 22, 1985

PARAMETER	Run # 1	Run # 2	Run # 3
-----------	---------	---------	---------

Particulate Emissions

Pounds/hour	3.44	3.15	3.20
Grains/dscf	0.0176	0.0160	0.0160 *

System Flow Rates

Feet/second	61.89	61.77	63.18
ACFM	26,248	26,196	26,797
SCFM	22,828	22,937	23,274

Moisture Content

Volume percent	3.13	2.83	3.33
----------------	------	------	------

Sample Location Temperature

Degrees Fahrenheit	122	120	121
--------------------	-----	-----	-----

* dry, per p. 46

TEST RESULTS

DETAILED

TEST RESULTS

10

North East Ohio Regional Sewer District

Southerly Sewage Treatment Plant

Sludge Incinerator # 3

Date: May 22, 1985		Units	RUN # 1	RUN # 2	RUN # 3
	Time of Day		9:30am- 11:01am	11:19am- 12:21pm	12:40pm- 1:43pm
1	Gas Volume-dry, std.	Vmstd	cu. ft.	64.34	64.43
2	Condensate Vapor Vol.	Vwstd	cu. ft.	2.08	1.87
3	Gas Stream Moisture	Bws	vol.dec	0.0313	0.0283
4	Mol.Wt-flue gas (dry)	Msd	lb/lb mo.	29.18	29.38
5	Mol.Wt-flue gas (wet)	Ms	lb/lb mo.	28.83	29.05
6	Flue Gas Velocity	Vs	ft/sec	61.89	61.77
7	Flue Gas Volume-Actual	ACFM	cu. ft.	26,248	26,196
8	Flue Gas Volume-Std.	SCFM	cu. ft.	22,828	22,937
9	Particulate Conc.	Cs			
	- Probe		gr/scf	0.0017	0.0010
	- Filter		gr/scf	0.0159	0.0151
	- Impinger(Mercury)	C Hg	gr/scf	0.000028	0.000027
	- Total *		gr/scf	0.0176	0.0160
10	Emission Rate	E			
	- Probe		lb/hr	0.33	0.19
	- Filter		lb/hr	3.10	2.96
	- Impinger(Mercury)	E Hg	lb/hr	0.0055	0.0053
	- Total *		lb/hr	3.44	3.15
11	Isokinetic Rate	I	%	97.4	97.1
					92.2

* Totals DO NOT include impinger Mercury weights.

OPERATIONAL PARAMETERS

12

NORTHEAST OHIO REGIONAL SEWER DISTRICT

5-24-85

May 23, 1985

Envisage Environmental, Inc.
8055 Broadview Road
Broadview Heights, Ohio 44147

Attn: Mr. Tom E. Holder

Re: Southerly Incinerator No. 3
Emission Test

Dear Mr. Holder:

Transmitted herewith is a copy of the scale reading taken during the emission test of the No. 3 Incinerator at the Southerly W.W.T.C. on Wednesday May 22, 1985.

If you have any questions, please contact me.

Very truly yours,

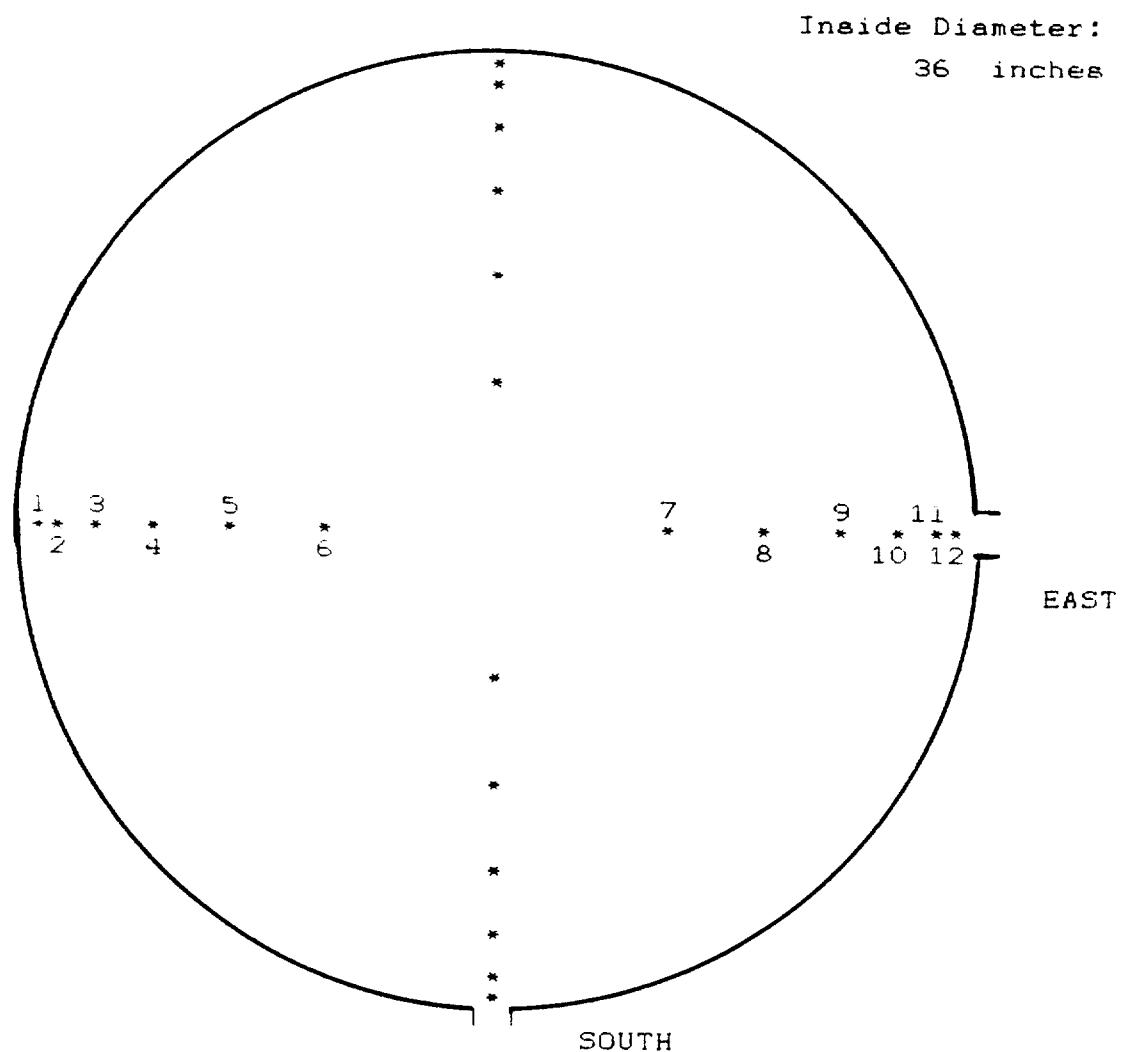
Robert P. Dominak, P.E.
Project Manager

RPD/amr

cc: File No. 2052

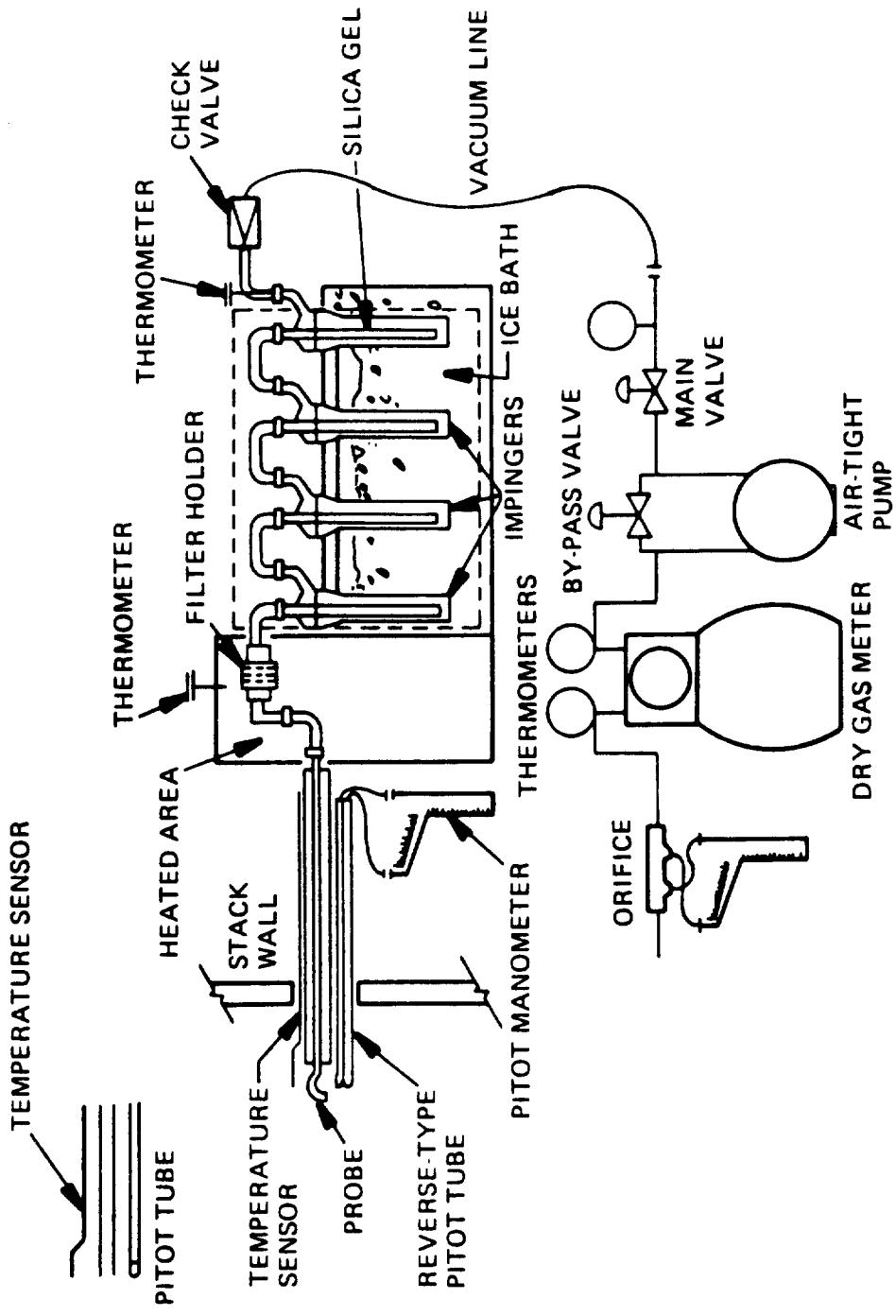
Stack test - #3 incinerator

850522


time	Scale reading	TPH	Comments
0930	534234		
030	534885	6.49	start of 1 st run
1055	535082		interruption of test - lost I.D. fans
1101	535161	.79	resumed 1 st test
			end of 1 st test
		7.28	tons during first test
1119	535344		
1220	536044	7.0	start of 2 nd test
			end of " "
		7.0	tons during the 2 nd test
1240	536259		
	536962	7.03	start of 3 rd test
			end of 3 rd test
		7.03	tons during test #3

**SAMPLE POINT
LOCATION DIAGRAM**

SAMPLE POINT LOCATIONS


15

Northeast Ohio Regional Sewer District
Southerly Sewage Treatment Plant
Sludge Incinerator # 3
Exhaust Stack

Point #	Distance From Inside Wall	Point #	Distance From Inside Wall
1	35.0 inches	7	12.8 inches
2	33.6 inches	8	9.0 inches
3	31.8 inches	9	6.4 inches
4	29.6 inches	10	4.2 inches
5	27.0 inches	11	2.4 inches
6	23.2 inches	12	1.0 inches

SAMPLING TRAIN DIAGRAM

EPA METHOD 5 PARTICULATE SAMPLE APPARATUS

STACK TESTING
EQUIPMENT SPECIFICATIONS

Control Unit (Meter box)

Envisage Environmental Inc. (E.E.I.)
Andersen Samplers
Remanufactured R.A.C.

Equipment designation

Control Unit #'s MB-01 & 02
Control Unit # MB-03
Control Unit #'s MB-04 - 08

Sample Box

E.E.I.
Remanufactured R.A.C.
E.E.I. (special design)

SB-01, 02 & 05 - 07
SB-03 & 04
SB-08 - 11

Impingers - per sample train (each set changed for each test run)

E.E.I.
E.E.I.

3 Modified Smith-Greenburg type
1 Smith-Greenburg type

Probes

Length

Lining types

E.E.I. 3 foot
E.E.I. 5 foot
E.E.I. 3 foot
E.E.I. 7 foot
E.E.I. 10 foot
E.E.I. 12 foot
E.E.I. 15 foot
E.E.I. 24 foot

SS, Pyrex, Quartz, Teflon
SS, Pyrex, Quartz, Teflon
SS, Pyrex, Teflon
SS, Pyrex, Teflon
SS, Pyrex, Teflon
Pyrex, Teflon
SS, Pyrex, Teflon
SS, Teflon

Temperature Sensors

Omega Engineering (K type thermocouple)
Thermo Electric (K type thermocouple)
Fisher Scientific
Fisher Scientific

Equipment designation - Type

PY-01 & 02
PY-03 - 08
Mercury Thermometer
Bimetalic Thermometer

Pressure Gages

Type

Dwyer Incline Manometer
Dwyer Magnehelic
Dwyer Magnehelic
Dwyer "U" Tube Manometer
Dwyer "U" Tube Manometer
Dwyer Microtector (Micro-manometer)

Oil, 0 - 10 inch water
Magnetic/Mechanical 0 - 1 inch water
Magnetic/Mechanical 0 - 10 inch water
Mercury, 36 inch
Water, 72 inch
Water, 0 - 1 inch water

Chemicals & Reagents

Water
Acetone
Silica Gel
Stopcock Grease

Deionized/distilled
Reagent grade (< 0.001 % residue)
6 - 16 mesh
Acetone-insoluble & Heat stable

LABORATORY SECTION

LABORATORY SUMMARY SHEET

21

North East Ohio Regional Sewer District

Southerly Sewage Treatment Plant

Sludge Incinerator # 3

Date: May 22, 1985	Symbol	Units	RUN # 1	RUN # 2	RUN # 3
1 Sampling Time	t	minutes	60.0	60.0	60.0
2 Barometric Pressure	Pb	in. Hg	29.66	29.64	29.63
3 Static Pressure	Pg	in. H2O	-0.55	-0.55	-0.55
Stack Pressure	Ps	in. Hg	29.62	29.60	29.59
4 Gas Meter Volume	Vm	cu. ft.	65.73	66.99	64.48
5 Stack Area	A	sq. ft.	7.07	7.07	7.07
6 Nozzle Diameter	Dn	dec. in.	0.25	0.25	0.25
7 Meter Temperature		degrees F	80.2	89.4	88.7
8 Stack Temperature	Tm	degrees R	540.2	549.4	548.7
	Ts	degrees R	582.2	579.7	581.2
9 Velocity Head	^P	in. H2O	1.096	1.100	1.121
10 Orifice Pressure	^H	in. H2O	4.12	4.14	4.30
11 Carbon dioxide	CO2	%	3.4	5.0	4.5
12 Oxygen	O2	%	16.0	14.4	14.4
13 Carbon monoxide	CO	%	0.0	0.0	0.0
14 Nitrogen	N2	%	80.6	80.6	81.1
15 Pitot Coefficient	Cp		0.80	0.80	0.80
16 Water Collected	Vlc	ml	44.1	39.8	45.4
Sample Weight:	Mn				
17 - Probe		g	0.0071	0.0040	0.0031
18 - Filter		g	0.0661	0.0629	0.0614
19 - Impinger (Mercury)	M Hg	g	0.000118	0.000112	0.000115

**Envisage
Environmental
Incorporated**

P.O. Box 152 Richfield, Ohio 44286
Phone (216) 526-0990

22

PLANT Southerly Sewage
DATE May 22, 1985
RUN NO. 1
CASE NO. 2

CONTAINER NUMBER	WEIGHT OF PARTICULATE COLLECTED			FILTER IMPINGERS PROBE *
	FINAL WEIGHT	TARE WEIGHT	WEIGHT GAIN	
913	6929	6268	.0661	
				FILTER
				IMPINGERS
920	100.4306	100.4235	.0071	
TOTAL				PROBE *

* Corrected for Acetone Blank

	VOLUME OF LIQUID WATER COLLECTED	
	IMPIINGER VOLUME, ml	SILICA GEL WEIGHT, g
FINAL	226.	2530
INITIAL	200.	234.9
LIQUID COLLECTED	26.	18.1
TOTAL VOLUME COLLECTED	44.1	g* ml

*Convert weight of water to volume by dividing total weight increase by density of water. (1 g/ml):

$$\frac{\text{Increase g}}{(1 \text{ g/ml})} = \text{Volume Water, ml}$$

**Envisage
Environmental
Incorporated**

P.O. Box 152 Richfield, Ohio 44286
Phone (216) 526-0990

23

PLANT Southwerv Sewage
DATE May 22, 1985
RUN NO. 2
CASE NO. 3

CONTAINER NUMBER	WEIGHT OF PARTICULATE COLLECTED		
	FINAL WEIGHT	TARE WEIGHT	WEIGHT GAIN
867	6927	6298	.0629
			FILTER
			IMPINGERS
925	97.3684	97.3644	.0040
TOTAL			PROBE *

* Corrected for Acetone Blank

	VOLUME OF LIQUID WATER COLLECTED	
	IMPIINGER VOLUME, ml	SILICA GEL WEIGHT, g
FINAL	215.	259.7
INITIAL	200.	234.9
LIQUID COLLECTED	15.	24.8
TOTAL VOLUME COLLECTED	398	g* ml

*Convert weight of water to volume by dividing total weight increase by density of water. (1 g/ml):

Increase g = Volume Water, ml
(1 g/ml)

**Envisage
Environmental
Incorporated**

24

P.O. Box 152 Richfield, Ohio 44286
Phone (216) 526-0990

PLANT Southerly Sewage
DATE 5-22-85
RUN NO. 3
CASE NO. 4

CONTAINER NUMBER	WEIGHT OF PARTICULATE COLLECTED			FILTER IMPINGERS PROBE *
	FINAL WEIGHT	TARE WEIGHT	WEIGHT GAIN	
927	.6777	.6163	.0614	
				FILTER
				IMPINGERS
926	99.3289	99.3258	.0031	
TOTAL				PROBE *

* Corrected for Acetone Blank

	VOLUME OF LIQUID WATER COLLECTED	
	IMPIINGER VOLUME, ml	SILICA GEL WEIGHT, g
FINAL	221	259.3
INITIAL	200	234.9
LIQUID COLLECTED	21	24.4
TOTAL VOLUME COLLECTED	45.4	g* ml

*Convert weight of water to volume by dividing total weight increase by density of water. (1 g/ml):

$$\frac{\text{Increase g}}{(1 \text{ g/ml})} = \text{Volume Water, ml}$$

National Spectrographic Laboratories

DIVISION OF REXHAM CORPORATION #13-2694421
7650 HUB PARKWAY, CLEVELAND, OHIO 44125 • P.O. BOX 31480, CLEVELAND, OHIO 44131
TELEPHONE: 216-447-1550

25

Rexham

TO Envisage Environmental Inc.
PO Box 152
Richfield, OH 44286

Attn: Tom Holder

5-28-85

Lab No.

11945-11948

We certify the above analysis to be the true results on the designated samples.

NATIONAL SPECTROGRAPHIC LABORATORIES

E. A. Montanile Reporting Officer

Sworn to and subscribed before me a Notary Public in and for
the County of Cuyahoga, State of Ohio, this

DAY OF

19

The information and data in this report are rendered under the conditions outlined in "Service Terms & Conditions" previously submitted. NSL assumes no liability of any kind with respect to the use by the customer or any third person of any information contained in this service. If erroneous results were originally reported, NSL's only liability shall be limited to repeating the analysis without charge to customer or making a refund. No part of this report is to be reproduced for advertising without our consent in writing.

CALIBRATION SECTION

METER BOX CALIBRATION

27

Meter Box Number: MB - 03

Calibration Date: April 2, 1985

$$Y = \frac{V_t P_b (T_m + 460)}{V_m \left[P_b + \frac{\Delta H}{13.6} \right] (T + 460)}$$

$$\Delta H_g = \frac{0.0317 \Delta H}{P_b (T_m + 460)} \left[\frac{(T_t + 460) t}{V_t} \right]$$

Delta H (ΔH)	in. H2O	0.5	1.0	3.0	5.0	7.0
Pres. Barometer (P_b)	in. Hg	29.87	29.87	29.87	29.87	29.87
Vol. Meter Box (V_m)	cu. ft.	4.135	5.890	10.275	13.235	15.560
Vol. Test Meter (V_t)	cu. ft.	4.050	5.610	9.650	12.300	14.530
Temp. Meter Box (T_m)	$^{\circ}$ F	79.5	89.2	93.3	99.2	99.7
	$^{\circ}$ R	539.5	549.2	553.3	559.2	559.7
Temp. Test Meter (T_t)	$^{\circ}$ F	64.0	64.0	64.0	64.0	64.0
	$^{\circ}$ R	524.0	524.0	524.0	524.0	524.0
Time (t)	minutes	10.0	10.0	10.0	10.0	10.0
METER FACTOR (Y)		1.007	0.996	0.984	0.980	0.981
- Average				0.99		
METER COEFFICIENT (ΔH_g)		1.646	1.686	1.697	1.722	1.726
- Average				1.70		

"S" TYPE PITOT TUBE CALIBRATION

28

"S" Type Pitot Tube (Probe) # 3 foot Probe # 3

Calibration Date: April 2, 1985

$$C_p = \frac{C_{std}}{\sqrt{\frac{\hat{P}_{std}}{\hat{P}_p}}}$$

(EPA Equation 2-2)

where:

C_p = Coefficient of Type S pitot tube, dimensionless

C_{std} = Coefficient of Standard Pitot Tube (0.99), dimensionless

\hat{P}_{std} = Velocity head measured by standard pitot tube, inches H_2O

\hat{P}_p = Velocity head measured by Type S pitot tube, inches H_2O

Velocity Head Readings

	\hat{P}_{std}	\hat{P}_p	C_p
Side A	0.20	0.31	0.795
Side B	0.20	0.31	0.795
Side A	0.50	0.76	0.803
Side B	0.50	0.76	0.803
Side A	1.00	1.48	0.814
Side B	1.00	1.48	0.814

Average - 0.80

NOZZLE DIAMETER CALIBRATION

I.D. of nozzles are checked periodically by inside micrometer on at least 12 different diameters. If deviation exceeds +0.001" on an average or 0.002" maximum, nozzle is reworked. Sharpening occurs after each test.

CALIBRATION FREQUENCY

The frequency of calibration is dictated by the Federal Register, Volume 42, Number 160, August 18, 1977. The regulations state that you must "use methods and equipment which have been approved by the Administrator to calibrate the orifice meter, pitot tube, dry gas meter, and probe heater. Recalibrate after each test".

The methods of calibration are determined from "Maintenance, Calibration, and Operation of Isokinetic Source Sampling Equipment," published by the U.S. EPA Office of Air Program Publications APTD-0576. Per the above listed regulations, the equipment was checked after the stack test and the values of Y, Cp (Test) and nozzle diameter had not appreciably changed from the acceptable tolerances.

FIELD DATA SHEETS

FIELD DATA

PLANT Southerly Tunn #3
 DATE May 22, 1986
 SAMPLING LOCATION Exhaust Stack
 SAMPLE TYPE EPA/Met 1-5
 OPERATOR DO BF
 AMBIENT TEMPERATURE 50's
 BAROMETRIC PRESSURE -55
 STATIC PRESSURE -
 HEATER BOX SETTING 250°

PROBE LENGTH & TYPE 3' PyrexNOZZLE I.D. .25ASSUMED MOISTURE % 60METER BOX NUMBER 03METER AH @ 1.7

C FACTOR

PILOT CORRECTION FACTOR .82PRE-TEST LEAK CHECK 0 CFM @ 15 "HgPOST-TEST LEAK CHECK 0 CFM @ 10 "Hg

SCHEMATIC OF TRAVERSE POINT LAYOUT

READ AND RECORD ALL DATA EVERY 2 1/2 MINUTESPAGE 1 OF 1

TRAVERSE POINT NUMBER	ELAPSED SAMPLING TIME min.	GAS METER READING	VELOCITY HEAD	ORIFICE PRESSURE DIFFERENTIAL	STACK TEMPERATURE	GAS METER TEMPERATURE	OUTLET	PUMP VACUUM	FILTER HOLDER	IMPINGER TEMP.
1	0/9:30	191.00	.96	.980	3.3	121	60	57	6	234
2	2.5	183.4	1.1	1.049	3.8	122	76	57	6	236
3	5	196.0	1.1	1.049	3.3	124	78	58	6	235
4	7.5	198.6	1.1	1.049	3.3	122	84	59	6	241
5	10	201.2	1.2	1.095	4.0	121	89	61	7	237
6	12.5	204.1	1.3	1.140	4.4	122	92	63	8	244
7	15	206.6	1.4	1.183	4.8	126	94	64	8	240
8	17.5	209.6	1.4	1.183	4.8	125	96	66	8	242
9	20	212.7	1.5	1.225	5.1	123	97	66	8	246
10	22.5	215.7	1.5	1.225	5.1	122	99	67	9	245
11	25	218.7	1.5	1.225	5.1	122	100	69	9	249
12	27.5	221.7	1.1	1.049	3.8	121	102	70	9	253
13	30/10:03	224.49	.86	.927	2.9	115	90	71	6	255
14	32.5	226.9	1.0	1.080	3.4	113	93	71	7	256
15	35	229.3	1.1	1.049	3.8	113	97	72	7	260
16	37.5	232.0	1.1	1.049	3.8	115	99	72	7	251
17	40	234.6	1.2	1.015	4.0	117	100	73	7	259
18	42.5	237.2	1.2	1.095	4.0	121	101	74	7	247
19	45	240.0	1.3	1.140	4.4	122	101	75	8	253
20	47.5	242.9	1.4	1.083	4.8	129	103	76	9	250
21	50	245.9	1.5	1.225	5.1	127	104	76	9	246
22	52.5	248.1	1.4	1.183	4.8	127	105	76	9	261
23	55	251.7	1.0	1.000	3.4	132	77	68	8	244
24	57.5	254.4	.80	.894	2.7	130	86	69	8	249
25	60/11:01	256.73								

31

65.73 1.096 4.12 172.2 80.2

PLANT Southerly TAN # 3 DATE May 22/98'S LEAK CHECK O CFM@ 16 "Hg PAGE 2 OF 2

TRAVERSE POINT NUMBER	ELAPSED SAMPLING TIME min.	GAS METER READING	VELOCITY HEAD	ORIFICE PRESSURE DIFFERENTIAL	STACK TEMPERATURE	GAS METER TEMPERATURE	PUMP VACUUM	FILTER HOLDER TEMP.	IMPINGER TEMP.
1	07/11/91	257.30	.80	394	2.7	110	74	70	3
2	2.6	259.8	.92	159	3.1	112	87	71	3
3	5	262.1	1.2	105	4.1	114	93	71	4
4	7.1	264.9	1.3	1140	4.4	122	96	72	5
5	10	267.8	1.3	1140	4.4	120	99	72	5
6	12.5	270.7	1.4	183	4.8	121	102	74	5
7	15	273.5	1.4	183	4.8	125	104	74	5
8	17.5	276.7	1.4	183	4.8	123	105	76	5
9	20	279.7	1.3	1140	4.4	123	106	77	5
10	22.5	282.6	1.3	1140	4.4	120	106	77	5
11	25	285.6	1.2	1085	4.1	116	107	78	5
12	27.5	288.4	1.1	1049	3.7	113	106	79	5
13	30	291.04	80	894	2.7	112	95	78	5
14	32.5	293.5	.90	949	3.0	114	100	79	5
15	35	295.9	.46	980	3.2	115	102	79	5
16	37.5	298.3	1.0	102	3.4	118	103	79	5
17	40	300.8	1.1	1049	3.7	122	104	79	5
18	42.5	303.7	1.3	1140	4.4	124	105	79	5
19	45	306.2	1.4	183	4.8	126	107	80	5
20	47.5	309.2	1.5	1225	5.1	124	108	80	5
21	50	312.3	1.5	1225	5.1	124	108	80	5
22	52.5	315.3	1.5	1225	5.1	123	109	80	5
23	55	318.4	1.4	183	4.8	125	109	80	5
24	57.5	321.4	1.3	140	4.4	124	111	80	5
25	60/12.21	324.29							
		66.99							
		1100	4.14			119.7		89.4	

PLANT Southerly TRAVERSE #3

DATE May 22, 1985 LEAK CHECK 0 CFM @ 15 "Hg

PAGE 3 OF 3

33

TRAVERSE POINT NUMBER	ELAPSED TIME min.	GAS METER READING	VELOCITY HEAD	ORIFICE PRESSURE DIFFERENTIAL	STACK TEMPERATURE	GAS METER INLET	PUMP VACUUM	FILTER HOLDER TEMP.	IMPINGER TEMP.
1	0/12:40	324.50	.86	.927	2.9	115	74	7.2	5
2	2	326.6	.94	.970	3.1	116	84	7.2	5
3	5	329.1	1.1	1.049	3.7	121	91	7.1	5
4	7	331.7	1	1.049	3.7	124	96	7.2	5
5	10	334.3	1.2	1.095	4.1	126	98	7.2	5
6	12.5	336.1	1.2	1.015	4.1	124	91	7.3	5
7	15	339.4	1.3	1.140	4.4	123	101	7.4	5
8	17.5	342.0	1.4	1.183	4.8	122	102	7.4	5
9	20	344.6	1.5	1.225	5.1	122	103	7.5	5
10	22.3	347.3	1.5	1.225	5.1	123	105	7.6	5
11	25	350.3	1.5	1.225	5.1	121	107	7.7	5
12	27.5	353.4	1.5	1.225	5.1	121	107	7.6	5
13	30	356.4	1.96	180	3.2	111	94	7.8	5
14	32.5	358.5	1.1	1.049	3.7	112	98	7.8	5
15	35	361.0	1.1	1.049	3.7	115	101	7.8	5
16	37.5	363.1	1.2	1.095	4.1	117	102	7.9	5
17	40	366.1	1.3	1.140	4.4	117	104	7.9	5
18	42.5	369.0	1.3	1.140	4.4	120	105	7.9	5
19	45	371.8	1.4	1.183	4.8	122	107	8.0	5
20	47.5	374.7	1.4	1.183	4.8	123	107	8.1	5
21	50	377.6	1.5	1.225	5.1	127	108	8.1	5
22	52.5	380.7	1.4	183	4.8	128	108	8.1	5
23	55	383.4	1.4	1.03	4.8	131	108	8.1	5
24	57.5	386.2	1.2	1.05	4.1	128	108	8.1	5
25	60/143	388.98							2.58
		6448							
		1121							
		4.30							
									388.7

11/15
5/15

PARTICULATE SAMPLING

NOMENCLATURE

A = Cross sectional area of stack or duct, ft².

A_n = Cross sectional area of nozzle, ft².

B_{ws} = Water vapor in gas stream, proportion by volume.

C = Nomograph correction factor, dimensionless.

C_p = Pitot tube coefficient, dimensionless.

C_s = Concentration of particulate matter in gas stream, dry basis-corrected to standard conditions, gr/dscf.

D_n = Nominal diameter of probe nozzle tip, inches.

E = Particulate Emission Rate, lb/hr.

ΔH = Average pressure differential across orifice, in. H₂O.

$\Delta H_{\text{@}}$ = Orifice meter calibration factor, in. H₂O.

I = Percent of Isokinetic sampling, %.

K_p = Pitot tube constant, 85.49 $\frac{\text{ft}}{\text{sec}} \left[\frac{(\text{lb/lb-mole})(\text{in.Hg})}{(\text{R})(\text{in.H}_2\text{O})^2} \right]$

M_d = Molecular weight of gas, dry basis, lb/lb-mole.

M_n = Total amount of particulate matter collected in probe wash and on filter, g.

M_s = Molecular weight of gas, wet basis, lb/lb-mole.

M_w = Molecular weight of water, 18 lb/lb-mole.

P_{bar} = Barometric Pressure, in. Hg.

P_g = Pressure differential from gas stream to atmosphere, (static pressure) in. H₂O.

P_s = Absolute gas stream pressure, $(P_{\text{bar}} + P_g / 13.6)$ in. Hg.

P_{std} = Absolute pressure at standard conditions, 29.92 in. Hg.
 P_w = Density of water, 0.0022 lb/ml.
 \bar{P}_{avg} = Average of the square roots of the velocity head readings, ($\sqrt{\frac{1}{2}p}$) (in.H₂O).
 Q = Volumetric flow rate at gas stream conditions, A.C.F.M.
 Q_{sd} = Dry volumetric gas flow rate corrected to standard conditions, S.C.F.M.
 R = Ideal gas constant, 21.85 in. Hg-ft³/°R-lb-mole.
 t = Total sampling time, minutes.
 T_m = Average dry gas meter temperature, °R.
 T_s = Average absolute gas stream temperature, °R.
 T_{std} = Standard absolute temperature, 528° Rankine.
 V_{lc} = Volume of water collected in impingers & silica gel, ml.
 V_m = Volume of gas sample measured at meter box (meter conditions), ft³.
 $V_{m(std)}$ = Volume of gas sample measured at meter box (corrected to standard conditions), ft³.
 V_s = Average gas stream velocity, ft/sec.
 $V_{w(std)}$ = Volume of water vapor in gas sample (standard conditions) ft³.
13.6 = Specific gravity of mercury (Hg).
% CO₂ = Percent by volume of CO₂ in gas stream (dry basis).
% O₂ = Percent by volume of O₂ in gas stream (dry basis).
% CO = Percent by volume of CO in gas stream (dry basis).
% N₂ = Percent by volume of N₂ in gas stream (dry basis).

**SAMPLE STACK
TESTING EQUATIONS**

1) Volume of dry gas sampled through meter box at standard conditions.

$$V_{m(\text{std})} = V_m \frac{T_{\text{std}}}{T_m} \left[P_b + \frac{\Delta H}{13.6} \right]$$

(EPA Equation 5-1)

Where:

$V_{m(\text{std})}$ = Volume of gas sample measured at meter box (corrected to standard conditions), ft^3 .

V_m = Volume of gas sample measured at meter box (meter conditions), ft^3 .

T_{std} = Standard absolute temperature, 528° Rankine.

T_m = Average dry gas meter temperature, $^{\circ}$ R.

P_{bar} = Barometric Pressure, in. Hg.

ΔH = Average pressure differential across orifice, in. H_2O .

13.6 = Specific gravity of mercury (Hg).

P_{std} = Absolute pressure at standard conditions, 29.92 in. Hg.

Example: Run 1

V_m = 65.73 ft^3

T_m = 540.2° R

ΔH = 4.12 in. H_2O

P_{bar} = 29.66 in. Hg

$$V_{m(\text{std})} = 65.73 \frac{528.0}{540.2} \left[29.66 + \frac{4.12}{13.6} \right] 29.92$$

$$= 65.73 (0.9774) (1.0014)$$

$$= 64.34 \text{ ft}^3$$

2) Volume of water vapor collected at standard conditions.

$$V_{w(\text{std})} = V_{lc} \left[\frac{P_w}{M_w} \right] \left[\frac{(R)(T_{\text{std}})}{P_{\text{std}}} \right]$$

(EPA Equation 5-2)

Where:

$V_{w(\text{std})}$ = Volume of water vapor in gas sample (standard conditions) ft^3 .
 V_{lc} = Volume of water collected in impingers & silica gel, ml.
 P_w = Density of water, 0.0022 lb/ml.
 M_w = Molecular weight of water, 18 lb/lb-mole.
 R = Ideal gas constant, 21.83 in. Hg- ft^3 / $^{\circ}\text{R}$ -lb-mole.
 T_{std} = Standard absolute temperature, 528 $^{\circ}$ Rankine.
 P_{std} = Absolute pressure at standard conditions, 29.92 in. Hg.

Example: Run 1

$$V_{lc} = 44.1 \text{ ml}$$

$$V_{w(\text{std})} = 44.1 \left[\frac{0.0022}{18.0} \right] \left[\frac{(21.83)}{29.92} \right] \left[\frac{(528.0)}{} \right]$$

$$= 2.08 \text{ ft}^3$$

Moisture content of gas stream.

$$B_{ws} = \frac{V_{w(std)}}{V_{m(std)} + V_{w(std)}}$$

(EPA Equation 5-3)

Where:

B_{ws} = Water vapor in gas stream, proportion by volume.

$V_{w(std)}$ = Volume of water vapor in gas sample (standard conditions) ft^3 .

$V_{m(std)}$ = Volume of gas sample measured at meter box (corrected to standard conditions), ft^3 .

Example: Run 1

$$V_{w(std)} = 2.08 \text{ } ft^3$$

$$V_{m(std)} = 64.34 \text{ } ft^3$$

$$B_{ws} = \frac{2.08}{64.34 + 2.08}$$

$$= 0.0313$$

4) Dry Molecular Weight of gas in gas stream,

$$M_d = 0.440 (\%CO_2) + 0.320 (\%O_2) + 0.280 (\%N_2 + \%CO)$$

(EPA Equation 3-2)

Where:

M_d = Molecular weight of gas, dry basis, lb/lb-mole.

0.440 = Molecular weight of CO_2 divided by 100.

0.320 = Molecular weight of O_2 divided by 100.

0.280 = Molecular weight of N_2 or CO (same for both compounds) divided by 100.

$\% CO_2$ = Percent by volume of CO_2 in gas stream (dry basis).

$\% O_2$ = Percent by volume of O_2 in gas stream (dry basis).

$\% CO$ = Percent by volume of CO in gas stream (dry basis).

$\% N_2$ = Percent by volume of N_2 in gas stream (dry basis).

Example: Run 1

$$\% CO_2 = 3.4$$

$$\% O_2 = 16.0$$

$$\% CO = 0.0$$

$$\% N_2 = 80.6$$

$$M_d = 0.440 (3.4) + 0.320 (16.0) + 0.280 (80.6)$$

$$= 1.496 + 5.120 + 22.568$$

$$= 29.18 \text{ lb/lb-mole}$$

5) Molecular Weight of gas in gas stream.

$$M_s = M_d (1 - B_{ws}) + M_w (B_{ws})$$

(EPA Equation 2-5)

Where:

 M_s = Molecular weight of gas, wet basis, lb/lb-mole.

 M_d = Molecular weight of gas, dry basis, lb/lb-mole.

 B_{ws} = Water vapor in gas stream, proportion by volume.

 M_w = Molecular weight of water, 18 lb/lb-mole.

Example: Run 1

$$M_d = 29.18 \text{ lb/lb-mole}$$

$$B_{ws} = 0.0313$$

$$M_s = 29.18 (1 - 0.0313) + 18 (0.0313)$$

$$= 28.272 + 0.563$$

$$= 28.83 \text{ lb/lb-mole}$$

6) Average Gas Stream Velocity.

$$V_s = \frac{K_p C_p \sqrt{P_{avg}}}{\frac{T_s}{P_s M_s}}$$

(EPA Equation 2-9)

Where:

V_s = Average gas stream velocity, ft/sec.

K_p = Pitot tube constant, 85.49 $\frac{\text{ft}}{\text{sec}}$ $\left[\frac{(\text{lb/lb-mole})(\text{in.Hg})}{(\text{R})(\text{in.H}_2\text{O})} \right]^{1/2}$

C_p = Pitot tube coefficient, dimensionless.

$\sqrt{P_{avg}}$ = Average of the square roots of the velocity head readings, $(\sqrt{P_p})$ (in.H₂O).

T_s = Average absolute gas stream temperature, $^{\circ}\text{R}$.

P_s = Absolute gas stream pressure, $(P_{bar} + P_g/13.6)$ in.Hg.

P_{bar} = Barometric Pressure, in. Hg.

P_g = Pressure differential from gas stream to atmosphere, (static pressure) in.H₂O.

M_s = Molecular weight of gas, wet basis, lb/lb-mole.

Example: Run 1

C_p = 0.80

$\sqrt{P_{avg}}$ = 1.096 in.H₂O

T_s = 582.2 $^{\circ}\text{R}$

P_s = $P_{bar} + P_g/13.6 = 29.66 + -0.55/13.6 = 29.62$ in.Hg

M_s = 28.83 lb/lb-mole

$$V_s = \frac{(85.49)(0.80)(1.096)}{\sqrt{(29.62)(28.83)}} \frac{582.2}{}$$

$$= (74.958)(0.8256)$$

$$= 61.89 \text{ ft/sec}$$

Volumetric Flow Rate at Gas Stream Conditions.

$$Q = A \times V_s \times 60$$

Where:

Q = Volumetric flow rate at gas stream conditions, A.C.F.M.

A = Cross sectional area of stack or duct, ft^2 .

V_s = Average gas stream velocity, ft/sec .

60 = Conversion factor from seconds to minutes.

Example: Run 1

$$A = 7.07 \text{ ft}^2$$

$$V_s = 61.89 \text{ ft/sec}$$

$$Q = (7.07) (61.89) 60$$

$$= 26,248 \text{ ACFM}$$

8) Volumetric Flow Rate at Standard Conditions.

$$Q_{sd} = 60 \left(1 - B_{ws} \right) V_s A \frac{\left[\frac{T_{std}}{T_s} \right]}{\left[\frac{P_s}{P_{std}} \right]}$$

(EPA Equation 2-10)

Where:

Q_{sd} = Dry volumetric gas flow rate corrected to standard conditions, S.C.F.M.

60 = Conversion factor from seconds to minutes.

B_{ws} = Water vapor in gas stream, proportion by volume.

V_s = Average gas stream velocity, ft/sec.

A = Cross sectional area of stack or duct, ft².

T_{std} = Standard absolute temperature, 528 ° Rankine.

T_s = Average absolute gas stream temperature, °R.

P_s = Absolute gas stream pressure, $(P_{bar} + P_g / 13.6)$ in.Hg.

P_{bar} = Barometric Pressure, in. Hg.

P_g = Pressure differential from gas stream to atmosphere, (static pressure) in.H₂O.

P_{std} = Absolute pressure at standard conditions, 29.92 in. Hg.

Example: Run 1

$$B_{ws} = 0.0313$$

$$V_s = 61.89 \text{ ft/sec}$$

$$A = 7.07 \text{ ft}^2$$

$$T_s = 582.2 \text{ °R}$$

$$P_s = P_{bar} + P_g / 13.6 = 29.66 + -0.55 / 13.6 = 29.62 \text{ in.Hg}$$

$$Q_{sd} = 60 \left(1 - 0.0313 \right) \left(61.89 \right) \left(7.07 \right) \frac{528.0}{582.2} \frac{29.62}{29.92}$$

$$= 22.829 \text{ SCFM}$$

Gas Stream Particulate Concentration,

$$C_s = 15.43 \text{ gr./a} \quad \left[\frac{M_n}{V_{m(\text{std})}} \right]$$

(EPA Equation 5-6)

Where:

C_s = Concentration of particulate matter in gas stream, dry basis-corrected to standard conditions, gr/dscf.

M_n = Total amount of particulate matter collected in probe wash and on filter, a.

$V_{m(\text{std})}$ = Volume of gas sample measured at meter box (corrected to standard conditions), ft^3 .

Example: Run 1

$$M_n = 0.0071 + 0.0661 = 0.0732 \text{ a}$$

$$V_{m(\text{std})} = 64.34 \text{ ft}^3$$

$$C_s = 15.43 \quad \left[\frac{0.0732}{64.34} \right]$$

$$= 0.0176 \text{ gr/dscf}$$

Q) Particulate Emission Rate.

$$E = Q_{sd} C_s \left[\frac{1 \text{ pound}}{7000 \text{ grains}} \right] \left[\frac{60 \text{ minutes}}{1 \text{ hour}} \right]$$

Where:

E = Particulate Emission Rate, lb/hr.

 Q_{sd} = Dry volumetric gas flow rate corrected to standard conditions, S.C.F.M. C_s = Concentration of particulate matter in gas stream, dry basis-corrected to standard conditions, gr/dscf.

Example: Run 1

$$Q_{sd} = 22.829 \text{ ft}^3$$

$$C_s = 0.0176 \text{ gr/dscf}$$

$$E = (22.829) (0.0176) \left[\frac{60}{7000} \right]$$

$$= 3.44 \text{ lb/hr}$$

III) Percent of Isokinetic Sampling.

48

$$I = \frac{100}{60} \frac{T_s}{T_m} \left[K_3 \frac{V_{ic}}{V_m} + \frac{V_m}{T_m} \right] \frac{P_{bar}}{P_{bar} + \frac{\Delta H}{13.6}} \quad (EPA Equation 5-7)$$

Where:

I = Percent of Isokinetic sampling, %.
 T_s = Average absolute gas stream temperature, $^{\circ}$ R.
 K_3 = Constant, 0.002669 $\text{in.Hg}\cdot\text{ft}^3/\text{ml}\cdot^{\circ}\text{R}$.
 V_{ic} = Volume of water collected in impingers & silica gel, ml.
 V_m = Gas sample volume measured at meter box (meter conditions), ft^3 .
 T_m = Average dry gas meter temperature, $^{\circ}$ R.
 P_{bar} = Barometric Pressure, in. Hg.
 ΔH = Average pressure differential across orifice, in. H_2O .
 t = Total sampling time, minutes.
 V_s = Average gas stream velocity, ft/sec .
 P_s = Absolute gas stream pressure, in.Hg.
 D_n = Nominal diameter of probe nozzle tip, inches.
 A_n = Cross sectional area of nozzle, ft^2 .

Example: Run 1

$$\begin{aligned}
 T_s &= 582.2 \text{ }^{\circ}\text{R} & \Delta H &= 4.12 \text{ in.} \text{H}_2\text{O} \\
 V_{ic} &= 44.1 \text{ ml} & t &= 60.0 \text{ min.} \\
 V_m &= 65.73 \text{ ft}^3 & V_s &= 61.89 \text{ ft/sec} \\
 T_m &= 540.2 \text{ }^{\circ}\text{R} & P_s &= 29.62 \text{ in.Hg} \\
 A_n &= 0.0003408 \text{ ft}^2 & P_{bar} &= 29.66 \text{ in.Hg}
 \end{aligned}$$

$$\begin{aligned}
 I &= \frac{582.2 (100)}{60 (0.0003408)} \left[0.002669 (44.1) + \frac{65.73}{540.2} \right] \frac{29.66 + \frac{-0.55}{13.6}}{29.66 + \frac{4.12}{13.6}} \\
 &= 97.4 \%
 \end{aligned}$$