

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at [www.epa.gov/ttn/chief/ap42/](http://www.epa.gov/ttn/chief/ap42/)

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02\_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

DCN: 90-275-026-26-06

MEDICAL WASTE INCINERATION  
EMISSION TEST REPORT

VOLUME 1

Central Carolina Hospital  
Sanford, North Carolina

EMB Project No. 90-MWI-05  
Work Assignment 26  
Contract No. 68-D-90054

Prepared for:

Waste Characterization Branch  
Office of Solid Waste  
U.S. Environmental Protection Agency  
Washington, D.C. 20460

Prepared by:

Radian Corporation  
3200 Nelson Highway/Chapel Hill Road  
Post Office Box 13000  
Research Triangle Park, North Carolina 27709

December 1991

## CONTENTS

| <u>Section</u>            |                                                                                 | <u>Page</u> |
|---------------------------|---------------------------------------------------------------------------------|-------------|
| List of Figures . . . . . |                                                                                 | v           |
| List of Tables . . . . .  |                                                                                 | vii         |
| <b>Volume I</b>           |                                                                                 |             |
| 1.0                       | INTRODUCTION . . . . .                                                          | 1-1         |
| 1.1                       | Test Objectives . . . . .                                                       | 1-1         |
| 1.2                       | Brief Site Description . . . . .                                                | 1-4         |
| 1.3                       | Emission Measurement Program . . . . .                                          | 1-6         |
| 1.4                       | Quality Assurance/Quality Control (QA/QC) . . . . .                             | 1-11        |
| 1.5                       | Description of Report Contents . . . . .                                        | 1-12        |
| 2.0                       | SUMMARY OF RESULTS . . . . .                                                    | 2-1         |
| 2.1                       | Emissions Test Log . . . . .                                                    | 2-1         |
| 2.2                       | CDD/CDF Results . . . . .                                                       | 2-1         |
| 2.3                       | Toxic Metals Results . . . . .                                                  | 2-18        |
| 2.4                       | Particulate Matter/Visible Emissions . . . . .                                  | 2-28        |
| 2.5                       | Halogen Gas Emissions . . . . .                                                 | 2-32        |
| 2.6                       | CEM Results . . . . .                                                           | 2-39        |
| 2.7                       | CEM Burn Down Results . . . . .                                                 | 2-42        |
| 2.8                       | Ash Loss-on-Ignition and Carbon Content Results . . . . .                       | 2-44        |
| 2.9                       | Microbial Survivability Results . . . . .                                       | 2-46        |
| 2.10                      | Particle Size Distribution Results . . . . .                                    | 2-58        |
| 2.11                      | CDD/CDF Emission Values Incorporating the<br>Toluene Recovery Results . . . . . |             |
| 3.0                       | PROCESS DESCRIPTION . . . . .                                                   | 3-1         |
| 3.1                       | Facility Description . . . . .                                                  | 3-1         |
| 3.2                       | Pre-Test Activities . . . . .                                                   | 3-3         |
| 3.3                       | Process Conditions During Testing . . . . .                                     | 3-10        |
| 4.0                       | SAMPLE LOCATIONS . . . . .                                                      | 4-1         |

## CONTENTS, continued

| <u>Section</u>                                                       | <u>Page</u> |
|----------------------------------------------------------------------|-------------|
| 5.0 SAMPLING AND ANALYTICAL PROCEDURES BY ANALYTE . . . . .          | 5-1         |
| 5.1 CDD/CDF Emissions Testing Method . . . . .                       | 5-1         |
| 5.2 Particulate Matter and Metals Emissions Testing Method . . . . . | 5-22        |
| 5.3 Microbial Survivability Testing . . . . .                        | 5-35        |
| 5.4 HCl/HBr/HF Emissions Testing by EPA Method 26 . . . . .          | 5-49        |
| 5.5 EPA Methods 1-4 . . . . .                                        | 5-55        |
| 5.6 Continuous Emissions Monitoring (CEM) Methods . . . . .          | 5-56        |
| 5.7 Visible Emissions . . . . .                                      | 5-66        |
| 5.8 Process Sampling Procedure . . . . .                             | 5-66        |
| 5.9 Particle Size Distribution Sampling Methods . . . . .            | 5-66        |
| 6.0 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC) . . . . .          | 6-1         |
| 6.1 QA/QC Definitions and Objectives . . . . .                       | 6-1         |
| 6.2 Manual Flue Gas Sampling and Recovery Parameters . . . . .       | 6-4         |
| 6.3 QC Procedures for Ash and Pipe Sampling . . . . .                | 6-19        |
| 6.4 Analytical Quality Assurance . . . . .                           | 6-21        |
| 6.5 CEMs Quality Assurance . . . . .                                 | 6-35        |
| 6.6 PSD Quality Assurance . . . . .                                  | 6-42        |
| 6.7 Data Variability . . . . .                                       | 6-48        |
| 7.0 REFERENCES . . . . .                                             | 7-1         |

## Volume II

### APPENDICES

|                                                                    |  |
|--------------------------------------------------------------------|--|
| A EMISSIONS TESTING FIELD DATA SHEETS                              |  |
| A.1 CDD/CDF Run Sheets                                             |  |
| A.2 PM/Metals Run Sheets                                           |  |
| A.3 Microbial Run Sheets                                           |  |
| A.4 HCl/HBr/HF Run Sheets                                          |  |
| A.5 Opacity Data                                                   |  |
| A.6 Miscellaneous Field Data                                       |  |
| B PROCESS DATA SHEETS                                              |  |
| B.1 Waste Charge Quantification and Incinerator Temperature Sheets |  |
| B.2 Microbial Spiking Data Sheets                                  |  |
| B.3 Ash and Pipe Recovery Sheets                                   |  |
| B.4 Field Data                                                     |  |

## Volume III

### APPENDICES

- C SAMPLE PARAMETER CALCULATION SHEETS
  - C.1 CDD/CDF
  - C.2 PM/Metals
  - C.3 Microbial
  - C.4 HCl/HBr/HF
- D CEM DATA
  - D.1 CEM Plots
  - D.2 CEM Tables
  - D.3 Burn Down CEM Tables and Plots
- E ANALYTICAL DATA
  - E.1 CDD/CDF
  - E.2 PM/Metals
  - E.3 Microbial
  - E.4 HCl/HBr/HF
  - E.5 Sample Identification Log
- F MICROBIAL SURVIVABILITY DATA REDUCTION
- G CALIBRATION DATA SHEETS
- H SAMPLE EQUATIONS
- I PARTICIPANTS
- J VISIBLE EMISSIONS OBSERVATIONS PLOTS
- K SAMPLING AND ANALYTICAL PROTOCOLS
  - K.1 EPA Proposed Method 23 - Determination of CDDs and CDFs from Stationary Sources
  - K.2 Methodology for the Determination of Metals Emissions in Exhaust Gases from Incineration Processes
  - K.3 Microbial Survivability Test for Medical Waste Incinerator Emissions
  - K.4 Microbial Survivability Test for Medical Waste Incinerator Ash
  - K.5 Determination of HCl Emissions from Stationary Sources
- L ON-SITE EXTERNAL QA/QC DAILY REPORTS

## FIGURES

|                                                                                                      | Page |
|------------------------------------------------------------------------------------------------------|------|
| 1-1 Central Carolina Hospital Incinerator . . . . .                                                  | 1-2  |
| 1-2 Sampling Locations . . . . .                                                                     | 1-8  |
| 2-1 Run 3 (Test 7) PSD Results - Log Particle vs Mass Fraction Less than<br>Particle Size . . . . .  | 2-64 |
| 2-2 Run 4 (Test 7) PSD Results - Log Particle vs Mass Fraction Less than<br>Particle Size . . . . .  | 2-65 |
| 2-3 Run 5 (Test 9) PSD Results - Log Particle vs Mass Fraction Less than<br>Particle Size . . . . .  | 2-66 |
| 2-4 Run 6 (Test 10) PSD Results - Log Particle vs Mass Fraction Less than<br>Particle Size . . . . . | 2-67 |
| 3-1 Temperature Profile for Run 1 . . . . .                                                          | 3-12 |
| 3-2 Temperature Profile for Run 2 . . . . .                                                          | 3-13 |
| 3-3 Temperature Profile for Run 3 . . . . .                                                          | 3-14 |
| 3-4 Temperature Profile for Run 4 . . . . .                                                          | 3-15 |
| 3-5 Temperature Profile for Run 5 . . . . .                                                          | 3-16 |
| 3-6 Temperature Profile for Run 6 . . . . .                                                          | 3-17 |
| 3-7 Temperature Profile for Run 7 . . . . .                                                          | 3-18 |
| 3-8 Temperature Profile for Run 8 . . . . .                                                          | 3-19 |
| 3-9 Temperature Profile for Run 9 . . . . .                                                          | 3-20 |
| 3-10 Temperature Profile for Run 10 . . . . .                                                        | 3-21 |
| 4-1 Stack Extension Specifications . . . . .                                                         | 4-2  |
| 4-2 Traverse Point Layout at the Exhaust Stack . . . . .                                             | 4-3  |
| 5-1 CDD/CDF Sampling Train Configuration . . . . .                                                   | 5-4  |
| 5-2 Impinger Configuration for CDD/CDF Sampling . . . . .                                            | 5-9  |
| 5-3 CDD/CDF Field Recovery Scheme . . . . .                                                          | 5-16 |
| 5-4 Extraction and Analysis Schematic for CDD/CDF Samples . . . . .                                  | 5-19 |
| 5-5 Schematic of Multiple Metals Sampling Train . . . . .                                            | 5-24 |
| 5-6 Impinger Configuration for PM/Metals Sampling . . . . .                                          | 5-25 |
| 5-7 Metals Sample Recovery Scheme . . . . .                                                          | 5-28 |
| 5-8 Metals Sample Preparation and Analysis Scheme . . . . .                                          | 5-33 |
| 5-9 Indicator Spore Spiking Scheme for Combustion Gas Destruction<br>Efficiency Testing . . . . .    | 5-37 |
| 5-10 Sampling Train for Determination of Indicator Spore Emissions . . . . .                         | 5-39 |
| 5-11 Sample Recovery Scheme for Microbial Viability Testing . . . . .                                | 5-41 |
| 5-12 Ash Quality Pipe Sample Assembly . . . . .                                                      | 5-43 |

## FIGURES (continued)

|                                                                                   | Page |
|-----------------------------------------------------------------------------------|------|
| 5-13 Sample Preparation and Analysis Scheme for Microbial Testing of Ash Samples  | 5-46 |
| 5-14 Analysis Scheme for Pipe Sample Microbial Viability Testing                  | 5-47 |
| 5-15 Sample and Analysis Scheme for Microbial Testing                             | 5-48 |
| 5-16 HCl Sample Train Configuration                                               | 5-51 |
| 5-17 HCl/HBr/HF Sample Recovery Scheme                                            | 5-54 |
| 5-18 Schematic of CEM System                                                      | 5-57 |
| 5-19 Anderson MK III In-Stack Impactor with Particle Pre-Separator Sampling Train | 5-67 |

## TABLES

|                                                                                                                                                 | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1-1 Central Carolina Hospital MWI Test Matrix . . . . .                                                                                         | 1-7  |
| 2-1 Emissions Test Log . . . . .                                                                                                                | 2-2  |
| 2-2 Average CDD/CDF Stack Gas Concentrations for Each Test Condition . . . . .                                                                  | 2-4  |
| 2-3 CDD/CDF Stack Gas Concentrations Adjusted to 7% O <sub>2</sub> for Each Test Condition . . . . .                                            | 2-5  |
| 2-4 Average CDD/CDF Stack Gas Emissions for Each Test Condition . . . . .                                                                       | 2-6  |
| 2-5 Average CDD/CDF 2378 Toxic Equivalent Stack Gas Concentrations Adjusted to 7% O <sub>2</sub> for Each Test Condition . . . . .              | 2-7  |
| 2-6 CDD/CDF Stack Gas Concentrations and Emissions Rates at Condition 1 . . . . .                                                               | 2-8  |
| 2-7 CDD/CDF Stack Gas Concentrations and Emissions Rates at Condition 2 . . . . .                                                               | 2-9  |
| 2-8 CDD/CDF Stack Gas Concentrations and Emissions Rates at Condition 3 . . . . .                                                               | 2-10 |
| 2-9 CDD/CDF Stack Gas Concentrations and 2378 Toxic Equivalent Stack Gas Concentration Adjusted to 7% O <sub>2</sub> for Condition 1 . . . . .  | 2-11 |
| 2-10 CDD/CDF Stack Gas Concentrations and 2378 Toxic Equivalent Stack Gas Concentration Adjusted to 7% O <sub>2</sub> for Condition 2 . . . . . | 2-12 |
| 2-11 CDD/CDF Stack Gas Concentrations and 2378 Toxic Equivalent Stack Gas Concentration Adjusted to 7% O <sub>2</sub> for Condition 3 . . . . . | 2-13 |
| 2-12 CDD/CDF Emissions Sampling and Flue Gas Parameters . . . . .                                                                               | 2-14 |
| 2-13 CDD/CDF Average Ash Results for Each Condition . . . . .                                                                                   | 2-17 |
| 2-14 Average Metals Stack Gas Concentrations and Emission Rates at Each Condition . . . . .                                                     | 2-19 |
| 2-15 Metals Stack Gas Concentrations and Emission Rates for Condition 1 . . . . .                                                               | 2-20 |
| 2-16 Metals Stack Gas Concentrations and Emission Rates for Condition 2 . . . . .                                                               | 2-21 |
| 2-17 Metals Stack Gas Concentrations and Emission Rates for Condition 3 . . . . .                                                               | 2-22 |
| 2-18 Ratio of Metals to Particulate Matter . . . . .                                                                                            | 2-25 |
| 2-19 Metals Amounts in Flue Gas Samples by Sample Fractions . . . . .                                                                           | 2-26 |
| 2-20 Metals and PM Emissions Sampling and Flue Gas Parameters . . . . .                                                                         | 2-27 |
| 2-21 Metal and Ash Concentrations . . . . .                                                                                                     | 2-29 |
| 2-22 Particulate Matter Concentrations and Emissions Results . . . . .                                                                          | 2-30 |
| 2-23 Percent Opacity Observations Summary . . . . .                                                                                             | 2-31 |

TABLES, continued

|                                                                                                                                                                                                    | Page |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2-24 Summary of Halogen Acid Testing Results . . . . .                                                                                                                                             | 2-33 |
| 2-25 Summary of HCl Results for Each Run . . . . .                                                                                                                                                 | 2-34 |
| 2-26 Summary of HF Results for Each Run . . . . .                                                                                                                                                  | 2-35 |
| 2-27 Summary of HBr Results at Each Run . . . . .                                                                                                                                                  | 2-37 |
| 2-28 Comparison of Manual and CEM HCl Results . . . . .                                                                                                                                            | 2-38 |
| 2-29 Continuous Emissions Monitoring Daily Test Run Averages; O <sub>2</sub> , CO, CO <sub>2</sub> and HCl . . . . .                                                                               | 2-40 |
| 2-30 Continuous Emissions Monitoring Daily Test Run Averages; O <sub>2</sub> , SO <sub>2</sub> , NO <sub>x</sub> and THC . . . . .                                                                 | 2-41 |
| 2-31 CEM Burn Down Averages . . . . .                                                                                                                                                              | 2-43 |
| 2-32 Summary of Ash Carbon Content, LOI and Moisture Results . . . . .                                                                                                                             | 2-45 |
| 2-33 Summary of Incinerator Feed Amounts and Ash Generation Per Run . . . . .                                                                                                                      | 2-48 |
| 2-34 Overall Microbial Survivability . . . . .                                                                                                                                                     | 2-51 |
| 2-35 Viable Spore Emissions . . . . .                                                                                                                                                              | 2-53 |
| 2-36 Indicator Spore Emissions Sampling and Flue Gas Parameter . . . . .                                                                                                                           | 2-54 |
| 2-37 Viable Spores in Ash . . . . .                                                                                                                                                                | 2-55 |
| 2-38 Viable Spores in Pipes . . . . .                                                                                                                                                              | 2-56 |
| 2-39 PSD Run 3 Results (Test 7) . . . . .                                                                                                                                                          | 2-59 |
| 2-40 PSD Run 4 Results (Test 7) . . . . .                                                                                                                                                          | 2-60 |
| 2-41 PSD Run 5 Results (Test 9) . . . . .                                                                                                                                                          | 2-62 |
| 2-42 PSD Run 6 Results (Test 10) . . . . .                                                                                                                                                         | 2-63 |
| 2-43 CDD/CDF Stack Gas Concentrations and 2378 Toxic Equivalent Stack Gas Concentrations Adjusted to 7 Percent O <sub>2</sub> for Condition 1 Incorporating the Toluene Recovery Results . . . . . | 2-64 |
| 2-44 CDD/CDF Stack Gas Concentrations and 2378 Toxic Equivalent Stack Gas Concentrations Adjusted to 7 Percent O <sub>2</sub> for Condition 2 Incorporating the Toluene Recovery Results . . . . . | 2-65 |
| 2-45 CDD/CDF Stack Gas Concentrations and 2378 Toxic Equivalent Stack Gas Concentrations Adjusted to 7 Percent O <sub>2</sub> for Condition 3 Incorporating the Toluene Recovery Results . . . . . | 2-66 |
| 3-1 Process Data Summary . . . . .                                                                                                                                                                 | 3-11 |
| 5-1 Test Methods for the Central Carolina Hospital MWI . . . . .                                                                                                                                   | 5-2  |
| 5-2 Sampling Times, Minimum Sampling Volumes and Detection Limits for the Central Carolina Hospital MWI Tests . . . . .                                                                            | 5-3  |
| 5-3 CDD/CDF Glassware Cleaning Procedure . . . . .                                                                                                                                                 | 5-6  |
| 5-4 CDD/CDF Sampling Checklist . . . . .                                                                                                                                                           | 5-11 |
| 5-5 CDD/CDF Sample Fractions Shipped to Analytical Laboratory . . . . .                                                                                                                            | 5-17 |
| 5-6 CDD/CDF Cogeners Analyzed . . . . .                                                                                                                                                            | 5-18 |

TABLES, continued

|                                                                                                                          | Page |
|--------------------------------------------------------------------------------------------------------------------------|------|
| 5-7 CDD/CDF Blanks Collected .....                                                                                       | 5-21 |
| 5-8 Approximate Detection Limits for Metals of Interest<br>Using EMB Draft Method .....                                  | 5-31 |
| 5-9 Indicator Spore Testing QA/QC Checks .....                                                                           | 5-50 |
| 5-10 CEM Operating Ranges and Calibration Gases .....                                                                    | 5-62 |
| 6-1 Summary of Precision, Accuracy, and Completeness Objectives .....                                                    | 6-3  |
| 6-2 Leak Check Results for CDD/CDF Emissions Tests .....                                                                 | 6-5  |
| 6-3 Isokinetic Sampling Rates for CDD/CDF, Metals and<br>Microorganisms Test Runs .....                                  | 6-6  |
| 6-4 Dry Gas Meter Post-Test Calibration Results .....                                                                    | 6-7  |
| 6-5 CDD/CDF Field Blank Results .....                                                                                    | 6-8  |
| 6-6 CDD/CDF Toluene Rinse Full Screen Analytical Results Compared<br>to MM5 Analytical Results for Condition 1 .....     | 6-10 |
| 6-7 CDD/CDF Toluene Rinse Full Screen Analytical Results Compared<br>to MM5 Analytical Results for Condition 2 .....     | 6-11 |
| 6-8 CDD/CDF Toluene Rinse Full Screen Analytical Results Compared<br>to MM5 Analytical Results for Condition 3 .....     | 6-12 |
| 6-9 CDD/CDF Toluene Rinse Confirmation Analytical Results<br>Compared to MM5 Analytical Results for All Conditions ..... | 6-13 |
| 6-10 CDD/CDF Toluene Field Blank Results .....                                                                           | 6-14 |
| 6-11 Leak Check Results for Toxic Metals .....                                                                           | 6-16 |
| 6-12 Metals Field Blank Results Compared to Average Amounts Collected<br>During the Test Runs .....                      | 6-17 |
| 6-13 Leak Check Results for Microbial Survivability in Emissions Sampling<br>Runs .....                                  | 6-18 |
| 6-14 Halogen Laboratory Proof Blank Results Compared to Run Results .....                                                | 6-20 |
| 6-15 Method Blank and Field Blank Results for the MM5 and Toluene<br>Flue Gas Samples .....                              | 6-24 |
| 6-16 Standards Recovery Results for CDD/CDF Analyses; Test Run Samples .....                                             | 6-25 |
| 6-17 Standards Recovery Results for CDD/CDF Analyses; Blank Samples .....                                                | 6-26 |
| 6-18 Standards Recovery Results for the CDD/CDF Toluene Analyses;<br>Test Run Samples .....                              | 6-27 |
| 6-19 Standards Recovery Results for the CDD/CDF Toluene Analyses;<br>Blank Samples .....                                 | 6-28 |
| 6-20 Standards Recovery Results for the CDD/CDF Ash Analyses .....                                                       | 6-30 |
| 6-21 Metals Ash and Flue Gas Method Blank Results .....                                                                  | 6-31 |
| 6-22 Metals Method Blank Spike Results .....                                                                             | 6-32 |
| 6-23 Halogen Method Blank, XAD Proof Blank, Reagent Blank and Matrix<br>Spike Recovery .....                             | 6-33 |

TABLES, continued

|                                                                              | Page |
|------------------------------------------------------------------------------|------|
| 6-24 Wet Spore Spike Solution Confirmation Analysis .....                    | 6-34 |
| 6-25 Dry Spore Spike Material Confirmation Analysis .....                    | 6-36 |
| 6-26 CEM Internal QA/QC Checks .....                                         | 6-38 |
| 6-27 Daily Calibration Drifts .....                                          | 6-39 |
| 6-28 QC Gas Responses .....                                                  | 6-43 |
| 6-29 Linearity Results .....                                                 | 6-46 |
| 6-30 Coefficients of Variation for the CDD/CDF Flue Gas Concentrations ..... | 6-50 |
| 6-31 Coefficients of Variation of the Flue Gas Metals Concentrations .....   | 6-51 |
| 6-32 Coefficients of Variation for the Halogen Flue Gas Concentrations ..... | 6-52 |
| 6-33 Coefficients of Variation of CEM Gas Concentrations .....               | 6-53 |

## 1. INTRODUCTION

Under Section 11008 of the Medical Waste Tracking Act of 1988 (MWTA), the United States Environmental Protection Agency (EPA) must prepare a series of reports to Congress that provide information concerning the characterization of medical wastes, treatment and disposal technologies, and an assessment of the impact of medical waste on human health and the environment. The MWTA specifically requires that incineration methods be evaluated to determine their advantages and disadvantages, including their ability to render a medical waste non-infectious or less infectious, and unrecognizable.

The Office of Solid Waste (OSW) is responsible for implementation of the MWTA and for managing the various studies that are required to prepare the report to Congress. One of the basic needs in the evaluation of incineration as a treatment technology is a characterization of emissions and ash from existing MWI's. These data are required to assess the actual potential impacts on health and the environment from existing sources that do not have advanced combustion controls or air pollution control devices.

Therefore, OSW and the Office of Air Quality Planning and Standards (OAQPS) are working jointly to perform additional studies at typical existing medical waste incinerator (MWI) facilities. The emission test program described in this report is one of the studies.

The MWI facility at Central Carolina Hospital in Sanford, North Carolina, was selected for emissions testing because it is typical of many existing units in which pathological wastes are burned with a secondary chamber gas retention time of 0.3 to 0.4 seconds, and with no add-on emission control equipment (see Figure 1-1). Other factors in the selection were that the proximity to Research Triangle Park (RTP), North Carolina minimized travel expenditures and because the hospital administration had expressed an interest in cooperating with the EPA in the emission test program.

### 1.1 TEST OBJECTIVES

The objectives of the testing program at the Central Carolina Hospital MWI were:

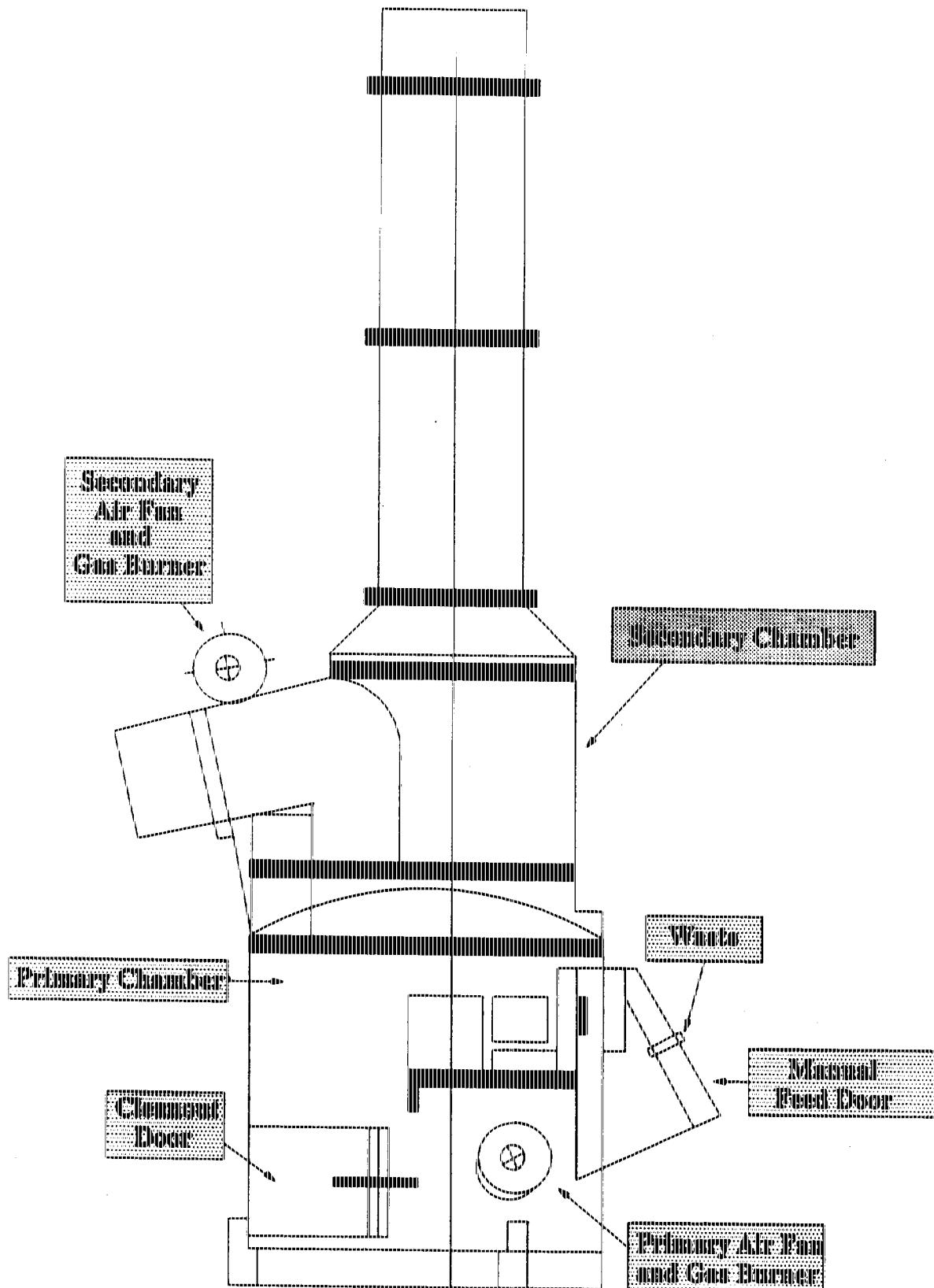



Figure 1-1. AMI Central Carolina Hospital Incinerator

- To obtain emission data from a facility that is not equipped with air pollution control devices and is typical of the existing population of medical waste incinerators.
- To collect data and evaluate the impact of incinerator operation variations on the emissions and ash as a factor in the overall effectiveness of incineration as a treatment method.

The measurements that were performed at this facility provided data to:

- Determine the mass emission rates of particulate matter (PM), selected metals, carbon monoxide (CO), total hydrocarbons (THC), sulfur dioxide (SO<sub>2</sub>), nitrogen oxides (NO<sub>x</sub>), hydrogen chloride (HCl), and polychlorinated dibenzo-p-dioxins (CDD) and polychlorinated dibenzofurans (CDF).
- Determine, if possible, the microorganism destruction efficiencies based on a surrogate indicator organism that is spiked into the incinerator feed during each test run.
- Determine the degree of combustion (burnout) of the wastes based on residual carbon, or loss on ignition (LOI), of the bottom ash that is collected for each test day.
- Determine the relationship, if any, between visible emissions and other emissions, such as PM.

The measurements described above were repeated at three operating conditions while the incinerator was burning hospital wastes (including red bag waste) to evaluate the effect of waste feed rate, charging frequency, and secondary chamber temperature on the emissions. These conditions were:

- Condition 1 - 100 percent pathological wastes at a charge rate of 100 pounds per hour (lb/hr) with a 15 minute charge cycle (25 lb/charge) and a secondary chamber temperature setpoint between 1800°F and 1900°F.
- Condition 2 - A mix of pathological and red bag waste typically burned at this facility (between 5 and 10 percent pathological waste) at a charge rate of 250 lb/hr (manufacturer's rating) with a 15 minute charge cycle and a 1600°F secondary chamber temperature setpoint.

- Condition 3 - 100 percent pathological wastes at a charge rate of 160 lb/hr with a 15 minute charge cycle (40 lb/charge) and a 1600°F secondary chamber temperature setpoint.

(These conditions were revised from those listed in the final test plan.)

Key process operating variables including flue gas oxygen ( $O_2$ ), carbon dioxide ( $CO_2$ ), primary and secondary chamber temperatures, and the amount and frequency of waste charging were monitored and recorded to document the operating conditions during each test.

The test program included an internal quality control program. The goal of the quality assurance/quality control (QA/QC) activities was to ensure that the results are of known precision and accuracy, and that they are complete, representative and comparable.

## 1.2 BRIEF SITE DESCRIPTION

AMI Central Carolina Hospital is located in Sanford, North Carolina. The MWI at this facility is a Consumat Model C-7SP. It has a rated capacity of 175 lb/hr of Type IV (pathological) waste. A plan view of the facility is shown in Figure 1-1. Two natural gas-fired auxiliary burners in the primary chamber are used to maintain a preset minimum combustion temperature. Primary chamber temperatures normally vary between 1200°F and 1600°F. The unit is charged manually by operating a large refractory-lined charging door that opens at the front of the primary chamber. It is designed for 8 to 12 hours of operation each day, and ashes must be removed manually after cooldown.

The secondary chamber on this unit is sized for a design gas retention time of about 0.3 to 0.4 seconds. A gas-fired auxiliary burner in the secondary chamber is activated automatically when the temperature falls below a preset level, normally 1600°F. Setpoint and actual temperatures in each chamber are displayed on a dial in the control panel. There is no add-on air pollution control device on this MWI. The stack is about 16 to 18 feet high and has no sampling ports. The unit is located outside, at the rear of the hospital.

There is a full time operator for the AMI Central Carolina Hospital MWI. The typical hours of operation are from 7:00 a.m. to 3:00 p.m. A burn down period of

5 hours on gas-firing is timed by the control panel. The gas is then extinguished and the incinerator is allowed to cool. The ash is typically removed from the incinerator from 7:00 a.m. to 8:00 a.m., and stored in 30 gallon metal cans. Two to five cans are filled each day.

Waste materials are collected by the hospital housekeeping staff. Waste is collected from all patient contact areas, including patient rooms, examination rooms, operating and recovery rooms, and laboratories. Included in the waste stream are waste drugs and chemicals; patient contact items such as disposable garments, dressings, disposable surgical tools and sharps and diagnostic devices; and human and animal tissue. Pathological waste is generally from 5 to 10 percent of the total waste weight.

Non-red bag wastes are collected by the housekeeping staff and placed in standard 30 gallon plastic trash bags, which are twist tied. The bags are transported via plastic bin type carts from the collection area to the incinerator area. Red bag wastes bags can be and are mixed with the other bags. The hospital incinerator operator hand feeds the bags through the incinerator feed door.

The combustion process utilized to incinerate wastes in this type of incinerator is known as controlled or "starved" air incineration. The unit is designed with two separate chambers (a primary chamber and a secondary chamber) in which controlled amounts of combustion air and combustible material are admitted. The lower chamber, known as the primary air ignition chamber, is operated at below stoichiometric or air starved conditions when operating on mixed medical waste (dry mode). Excess air conditions exist when the unit is operated on pathological waste (wet mode). A gas-fired pilot burner is used to drive moisture and volatiles from the wastes, and initiate the ignition of the fixed carbon portion of the waste material. Limited amounts of underfire air are admitted through ports in the lower chamber so that combustion of the fixed carbon matter can be sustained. Heat input from the gas burner is modulated to keep the lower chamber temperature within a certain range and to maintain the oxidation of fixed carbon at varying levels of waste moisture only when burning pathological waste (wet mode).

The volatile matter is vaporized in the lower chamber and passes into the secondary combustion chamber. A second gas-fired burner is used to ignite the

combustible gases and maintain secondary chamber temperatures within a specified temperature range. In the secondary chamber, excess air is supplied to achieve more complete combustion of the volatile matter and entrained solids by providing an adequate oxygen supply and turbulent mixing.

Detailed descriptions of the MWI facility, its operation, the waste and waste handling procedures are given in Section 3.

### 1.3 EMISSIONS MEASUREMENT PROGRAM

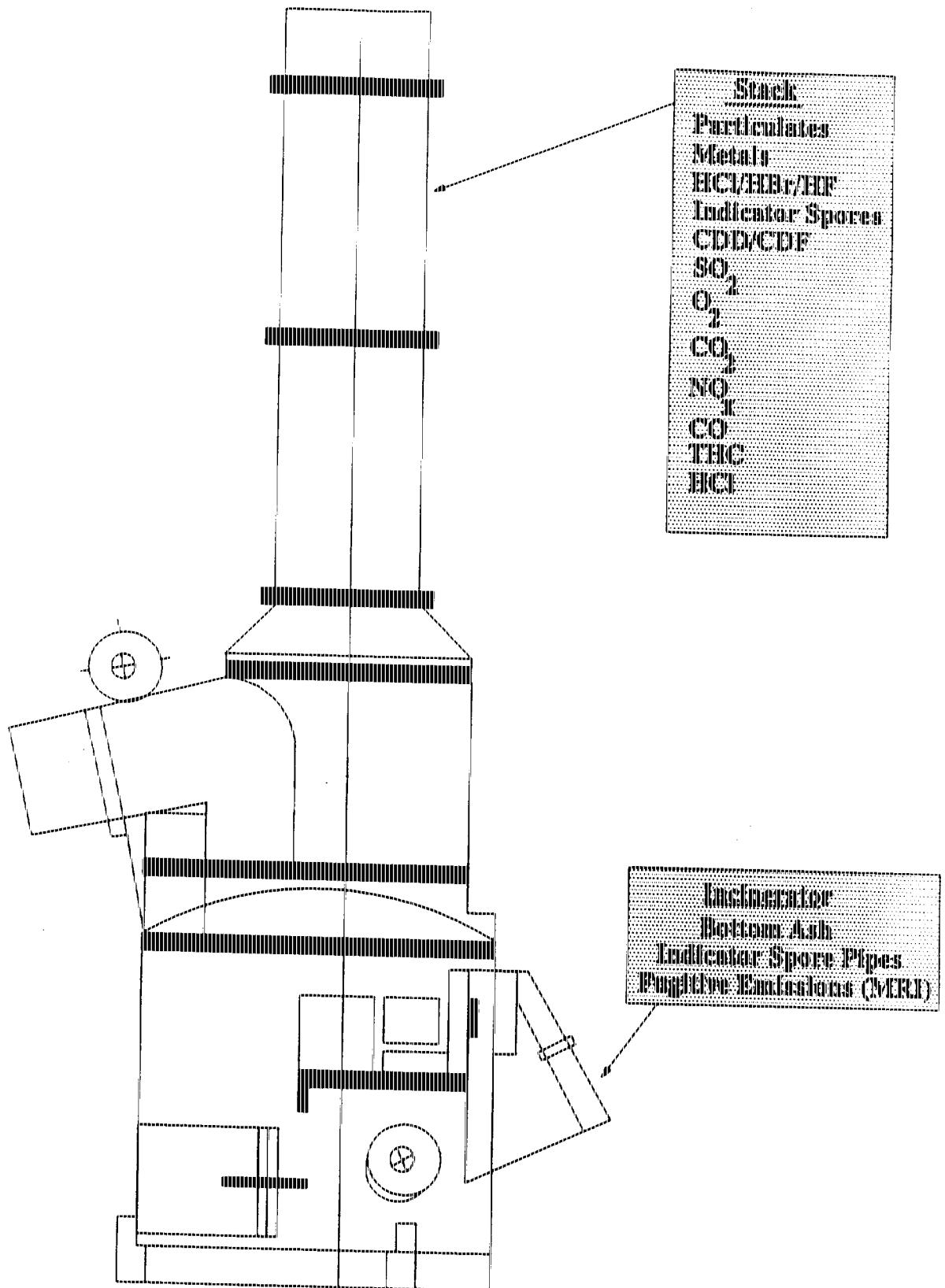
This section provides an overview of the emissions measurement program conducted at Central Carolina Hospital. Included in this section are summaries of the test matrix, sampling locations, sampling methods, and laboratory analysis. Greater detail on these topics is provided in the sections that follow.

#### 1.3.1 Test Matrix

The sampling and analytical matrix for this test program is presented in Table 1-1. Sampling locations are shown in Figure 1-2. Both manual emissions tests and continuous emission monitors (CEM) were employed for the Central Carolina Hospital MWI test program. In addition to flue gas sampling, incinerator bottom ash and ash quality pipe samples were also taken. Each of the tests are briefly described in Sections 1.3.3 and 1.3.4.

#### 1.3.2 Sampling Locations

The stack gas sampling was conducted at a series of three sets of double ports in the stack wall. The double ports were located 90° from each other. The top-most ports were used for microbial survivability emission tests. The middle set of ports was used for PM/metals tests as well as CDD/CDF tests. The bottom set of ports was used for halogen emission tests and for the CEM probes. Incinerator ash was sampled every day. Ash was completely removed from the incinerator every day, screened through 1/2" mesh, and placed in the bulk ash containers where it was sampled to obtain a representative sample.


#### 1.3.3 Sampling Methods

Total PM emissions along with a series of 11 toxic metals [lead (Pb), chromium (Cr), cadmium (Cd), mercury (Hg), nickel (Ni), arsenic (As), beryllium (Be), antimony

TABLE I-1. AMI CENTRAL CAROLINA HOSPITAL MWI TEST MATRIX

| Sample Location | Number of Runs  | Sample Type                                                      | Sample Method                       | Sample Duration         | Analysis Method                                      | Laboratory          |
|-----------------|-----------------|------------------------------------------------------------------|-------------------------------------|-------------------------|------------------------------------------------------|---------------------|
| Stack           | 9               | Particulates/Metals (Pb, Cr, Cd, Be, Hg, Ni, As, Sb, Ag, Ba, Ti) | EPA Method 5/Combined Metals Train  | 4 hours                 | Gravimetric Atomic Adsorption/ICAP                   | Radian              |
| Stack           | 9               | CDD/CDF                                                          | EPA Method 23 and GC/MS Method 8290 | 4 hours                 | Mass Spectrometry and High Resolution MS for CDD/CDF | Triangle Labs, Inc. |
| Stack           | 25 <sup>a</sup> | HCl/HBr/HF                                                       | EPA Method 26                       | 1 hour <sup>a</sup>     | Ion Chromatography                                   | Radian              |
| Stack           | 16 <sup>b</sup> | Indicator Spores                                                 | Draft EPA Method                    | 2 hours <sup>b</sup>    | Microbial Draft Method                               | RTI                 |
| Stack           | 9 <sup>c</sup>  | SO <sub>2</sub>                                                  | EPA Method 6C                       | Continuous <sup>c</sup> | UV Analyzer CEM                                      | Radian              |
| Stack           | 9 <sup>c</sup>  | O <sub>2</sub> /CO <sub>2</sub>                                  | EPA Method 3A                       | Continuous <sup>c</sup> | Zirconium Oxide Cell/ NDIR CEM                       | Radian              |
| Stack           | 9 <sup>c</sup>  | NO <sub>x</sub>                                                  | EPA Method 7E                       | Continuous <sup>c</sup> | Chemiluminescence CEM                                | Radian              |
| Stack           | 9 <sup>c</sup>  | CO                                                               | EPA Method 10                       | Continuous <sup>c</sup> | NDIR CEM                                             | Radian              |
| Stack           | 9 <sup>c</sup>  | THC                                                              | EPA Method 25A                      | Continuous <sup>c</sup> | FID CEM                                              | Radian              |
| Stack           | 9 <sup>c</sup>  | HCl                                                              | CEM                                 | Continuous <sup>c</sup> | NDIR CEM                                             | Radian              |
| Stack           | 9 <sup>d</sup>  | Opacity                                                          | EPA Method 9                        | 4 hour <sup>d</sup>     | Visual                                               | Radian              |
| Incinerator     | 9               | Incinerator Ash                                                  | Representative Composite Sample     | 1 day                   | LOI, Carbon, Metals                                  | Radian              |
| Incinerator     | 9               | Representative Composite Sample                                  | Representative Composite Sample     | 1 day                   | Dioxins                                              | Triangle Labs, Inc. |
| Incinerator     | 54              | Indicator Spore Pipes                                            | Manual                              | 1 day                   | Microbial Draft Method                               | RTI                 |
|                 |                 |                                                                  |                                     |                         | Microbial Draft Method                               | RTI                 |

<sup>a</sup>3 one-hour runs per test day (2 runs out of 27 planned were not completed).<sup>b</sup>2 one-hour 45 minute runs per test day.<sup>c</sup>Continuous during test periods.<sup>d</sup>Four-hour run concurrent with particulate/metals run.



**Figure 1-2. Sampling Locations at the AMI Central Carolina Hospital MWI**

(Sb), barium (Ba), silver (Ag), and thallium (Tl)], were determined using a single sample train. Particulate loading on the filter and front half (nozzle/probe, filter holder) rinse was determined gravimetrically. Metals analyses were then completed on the filter front half rinses and back half impinger catches using atomic absorption (AA) and inductively coupled argon plasma (ICAP) techniques. Flue gas samples for CDD/CDF were collected using EPA Method 23. Flue gas was extracted isokinetically and CDD/CDF was collected on the filter, on a chilled adsorbent trap, and in the impingers. The analysis was completed using High Resolution Gas Chromatography (HRGC) coupled with High Resolution Mass Spectrometry (HRMS) detection.

Hydrogen chloride, hydrogen bromide (HBr), and hydrogen fluoride (HF) concentrations in the stack gas were determined using EPA Method 26. Gas was extracted from the stack and passed through a acidified collection solution which stabilized the respective halogen ions (Cl<sup>-</sup>, Br<sup>-</sup>, F<sup>-</sup>). The quantity of ions collected was then determined using ion chromatography (IC) analyses.

Three types of microbial survivability tests were completed on the incinerator. These tests were intended to evaluate the effectiveness of the MWI in destroying indicator organisms in the waste. This was achieved by direct ash sampling and by spiking the incinerator with surrogate indicator spores encased in insulated double-pipe containers. Indicator spore spikes were loaded onto material commonly found in the medical waste stream and then charged into the incinerator to determine the ability of the indicator organisms to survive in the combustion gases and the incinerator bottom ash. Flue gas testing for spore emissions was conducted simultaneously with the other emissions testing. The next day following the daily burn cycle, ash samples and pipe samples were recovered and subsequently analyzed for spore viability. Direct ash sampling and pipe sampling was conducted daily when the ash was removed manually from the incinerator. Flue gas samples were collected isokinetically and passed through a circulating phosphate buffer solution. Following the test, the buffer solution samples were analyzed for viable spores using culturing, identification, and quantification techniques outlined in the EPA draft method "Microbial Survivability Test for Medical Waste Incinerator Emissions." Ash samples and pipe samples were analyzed as outlined

in the EPA draft method "Microbial Survivability Test for Medical Waste Incinerator Ash."

Visual opacity measurements were also taken continuously during the particulate test periods. A certified observer documented incinerator stack gas opacity by following EPA Method 9 protocol.

Gaseous emissions ( $\text{NO}_x$ , CO,  $\text{SO}_2$ , THC, and HCl) were measured using CEMs continuously during the day. The diluent gases ( $\text{O}_2$ ,  $\text{CO}_2$ ) were measured using CEMs at all times when tests were being performed so that the emission results could be normalized to a reference  $\text{O}_2$  or  $\text{CO}_2$  basis. The  $\text{O}_2$  and  $\text{CO}_2$  results were also used for flue gas molecular weight calculations for stack gas flow rate calculations.

Ash was sampled manually and mixed to provide a representative composite sample. Samples were taken for analysis as follows: LOI, carbon, toxic metals, dioxins, and microbial analysis. An archive sample was also saved for each test condition. Indicator spore pipes were charged at regular intervals into the incinerator and recovered manually for microbial analysis. Detailed descriptions of the sampling and analytical procedures are provided in Section 5.

#### 1.3.4 Laboratory Analyses

All manual flue gas tests were sent out for extensive laboratory analyses. Samples from CDD/CDF emission tests were analyzed for tetra-octa CDD/CDF isomers by Triangle Laboratories, Inc (Triangle). Ash samples were also analyzed by Triangle for these analytes. Analytical procedures followed EPA Method 23 protocols (Analytical Method 8290X). This technique incorporates High Resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS) analytical procedures.

Samples from particulate matter/metals emission tests were analyzed by Radian's Perimeter Park (PPK) laboratory. Analytical procedures were completed using Inductively Coupled Argon Plasma Spectroscopy (ICAPS), Graphite Furnace Atomic Absorption Spectroscopy (GFAAS), and Cold Vapor Atomic Absorption Spectroscopy (CVAAAS). Incinerator ash was also analyzed for metals content using these techniques. Particulate matter was analyzed using gravimetric techniques following EPA Method 5 guidelines. Samples from halogen emission tests were analyzed by Radian's PPK

laboratory. Quantities of chloride, bromide, and fluoride ions in the impinger solutions were determined using IC techniques.

Microbial survivability samples from the emissions tests and the ash and pipe tests were analyzed for viable spores of *Bacillus stearothermophilus* (*B. stearothermophilus*) by Research Triangle Institute (RTI). Impinger samples (emissions), ash, and pipe samples were cultured and enumerated using analytical techniques recently developed specific for this test method. This protocol is given in the EPA draft methods "Microbial Survivability Test for Medical Waste Incinerator Emissions" and "Microbial Survivability Test for Medical Waste Incinerator Ash."

The incinerator ash was analyzed by McCoy Labs for volatile matter (LOI) by Standard Methods of Water and Wastes, Method 209G, and for carbon content by ASTM Method D 3178-84.

#### **1.4 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)**

All flue gas testing procedures followed comprehensive QA/QC procedures as outlined in the Central Carolina MWI test plan and EPA reference methods. A full description of the resulting QA parameters is given in Section 6.

All post-test leak check criteria were met for all four manual sampling trains. The allowable isokinetic QC range of  $\pm 10$  percent of 100 percent was met for all CDD/CDF, PM/Metals and Microbial emissions test runs. All post-test dry gas meter calibration checks were within 5 percent of the full calibration factor. Field blanks (FB) results showed no contamination in the CDD/CDF MMS; sample however, the toluene FB had relatively high concentrations. The halogen FB showed virtually no contamination; however, the PM/metals FB had high levels of arsenic, chromium, and nickel. Also the front half analysis for metals Run 10 has not been completed at this time. Final toluene rinses of the CDD/CDF samples collected only a small portion of the total MMS catch.

From an analytical QA perspective, all analyses were completed under a strict QA/QC regimen. The CDD/CDF MMS analytical protocol was varied to accommodate the expected high organic loading of the Runs 2, 4, and 8 (Condition 2) MMS samples.

The manual flue gas test data reflected variation from run to run as indicated by the coefficient of variation (CV) analyses. Overall pooled CVs ranged from 64.4 percent for CDD/CDF flue gas concentrations to 65.0 percent for metals flue gas concentrations. The overall pooled CV for the CEM data was 159 percent. These values reflect a strong variability in process operation.

## 1.5 DESCRIPTION OF REPORT CONTENTS

Section 1 of this report provides an introduction to the medical waste testing program conducted at Central Carolina Hospital in Sanford, North Carolina. This section includes the test objective, a brief site description, an overview of the emissions measurement program, a brief overview of the QA/QC program, and this description of the report contents.

Section 2 gives a summary of the test results. Included in the contents of this section are the emissions test log, CDD/CDF results, toxic metals results, PM/visible emissions results, halogen results, CEM results, ash LOI and carbon results, and microbial survivability results.

Section 3 details the process and operation of the Central Carolina incinerator and gives process results. Included in the process results are the waste feed rates and incineration chamber temperatures.

Section 4 provides a detailed description and drawings of the sample locations.

Section 5 presents detailed descriptions of sampling and analytical procedures. The descriptions that are covered in this section are the CDD/CDF testing method, the PM and toxic metals testing method, microbial survivability testing methods, the manual halogen emissions testing method, EPA Methods 1 through 4, CEM methods, the visible emissions method, particle size distribution tests, and process sampling procedures.

Section 6 provides details of the QA/QC procedures used on this program and the QC results. Included in this section is a summary of QA/QC objectives, QC procedures for the manual flue gas sampling methods, QC procedures for the ash and

pipe (microbial) sampling, analytical QC procedures and QA parameters, and CEM QC procedure and QA parameters.

Appendices containing the actual field data sheets and computer data listings are contained in a separate volume.

## 2. SUMMARY OF RESULTS

This section provides results of the emissions test program conducted at the Central Carolina Hospital MWI from September 20 to October 2, 1990. Included in this section are results of manual tests conducted for CDD/CDF, toxic metals, PM, visible emissions, halogens, and microbial survivability. This section also contains the results of continuous emissions monitoring for O<sub>2</sub>, CO<sub>2</sub>, CO, NO<sub>x</sub>, SO<sub>2</sub>, THC, and HCl gases as well as particle size distribution (PSD) results.

### 2.1 EMISSIONS TEST LOG

Ten tests were conducted over a 13 day period. A probe liner for the CDD/CDF sampling train broke during Run 7 and the entire run was invalidated and repeated (samples from other sampling trains for Run 7 were not analyzed). Table 2-1 presents the emissions test log. This table shows the test date, run number, test type, run times and port change times for all the stack testing conducted during this program.

### 2.2 CDD/CDF RESULTS

#### 2.2.1 Overview

Nine 4-hour CDD/CDF emission test runs were completed at Central Carolina Hospital during the September 1990 test program. Three runs were completed under each of three test conditions. Testing protocol followed EPA Method 23 which requires a final sample recovery rinse with toluene to be analyzed separately from the rest of the sample. Because this data was not incorporated into the final emission results, it will be presented with the sampling QA parameters in Section 6.2.1.

As well as flue gas samples, daily ash samples were also taken. Each ash sample was also analyzed for tetra through octa CDD/CDF isomers.

The following sections report CDD/CDF emissions test results in Section 2.2.2 and incinerator ash CDD/CDF concentrations in Section 2.2.3.

#### 2.2.2 CDD/CDF Emission Results

Tables 2-2 through 2-5 present the average emission parameters for each of the three test conditions. Data from each individual test run are presented in Tables 2-6 through 2-12. Emission tests analyses were targeted for the tetra through octa 2378

TABLE 2-1. EMISSIONS TEST LOG;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE    | LOCATION | RUN NUMBER | OPERATING CONDITION | TEST TYPE    | RUN TIME    | PORT CHANGES |
|---------|----------|------------|---------------------|--------------|-------------|--------------|
| 9/20/90 | Stack    | 1          | 1                   | Toxic Metals | 14:00-18:18 | 16:10-16:18  |
| 9/20/90 | Stack    | 1          | 1                   | CDD/CDF      | 14:00-18:18 | 16:10-16:18  |
| 9/20/90 | Stack    | 1A         | 1                   | HCl          | 14:09-15:09 |              |
| 9/20/90 | Stack    | 1B         | 1                   | HCl          | 15:21-16:21 |              |
| 9/20/90 | Stack    | 1C         | 1                   | HCl          | 16:35-17:35 |              |
| 9/20/90 | Stack    | 1A         | 1                   | Spore        | 13:58-15:58 |              |
| 9/20/90 | Stack    | 1B         | 1                   | Spore        | 15:58-17:58 |              |
| 9/21/90 | Stack    | 2          | 2                   | Toxic Metals | 09:46-13:57 | 11:47-11:58  |
| 9/21/90 | Stack    | 2          | 2                   | CDD/CDF      | 09:45-13:57 | 11:45-11:57  |
| 9/21/90 | Stack    | 2A         | 2                   | HCl          | 09:53-11:43 |              |
| 9/21/90 | Stack    | 2B         | 2                   | HCl          | 12:23-14:36 |              |
| 9/21/90 | Stack    | 2A         | 2                   | Spore        | 09:43-11:28 |              |
| 9/21/90 | Stack    | 2B         | 2                   | Spore        | 11:28-13:43 |              |
| 9/22/90 | Stack    | 3          | 1                   | Toxic Metals | 09:47-14:00 | 11:47-12:00  |
| 9/22/90 | Stack    | 3          | 1                   | CDD/CDF      | 09:45-14:00 | 11:45-12:00  |
| 9/22/90 | Stack    | 3A         | 1                   | HCl          | 09:53-11:53 |              |
| 9/22/90 | Stack    | 3B         | 1                   | HCl          | 12:22-13:22 |              |
| 9/22/90 | Stack    | 3C         | 1                   | HCl          | 13:35-14:35 |              |
| 9/22/90 | Stack    | 3A         | 1                   | Spore        | 09:43-11:43 |              |
| 9/22/90 | Stack    | 3B         | 1                   | Spore        | 11:43-13:43 |              |
| 9/23/90 | Stack    | 4          | 2                   | Toxic Metals | 11:40-15:47 | 13:40-13:47  |
| 9/23/90 | Stack    | 4          | 2                   | CDD/CDF      | 11:40-15:47 | 13:40-13:47  |
| 9/23/90 | Stack    | 4A         | 2                   | HCl          | 11:42-12:42 |              |
| 9/23/90 | Stack    | 4B         | 2                   | HCl          | 12:52-13:52 |              |
| 9/23/90 | Stack    | 4C         | 2                   | HCl          | 14:03-15:03 |              |
| 9/23/90 | Stack    | 4A         | 2                   | Spore        | 11:38-13:40 |              |
| 9/23/90 | Stack    | 4B         | 2                   | Spore        | 13:40-15:40 |              |
| 9/24/90 | Stack    | 5          | 3                   | Toxic Metals | 11:45-15:52 | 13:45-13:52  |
| 9/24/90 | Stack    | 5          | 3                   | CDD/CDF      | 11:45-15:52 | 13:45-13:52  |
| 9/24/90 | Stack    | 5A         | 3                   | HCl          | 11:54-12:54 |              |
| 9/24/90 | Stack    | 5B         | 3                   | HCl          | 13:17-14:17 |              |
| 9/24/90 | Stack    | 5C         | 3                   | HCl          | 14:29-15:29 |              |
| 9/24/90 | Stack    | 5A         | 3                   | Spore        | 11:44-13:44 |              |
| 9/24/90 | Stack    | 5B         | 3                   | Spore        | 13:44-15:44 |              |

a. Condition 1: 100 percent pathological wastes (100 lb/hr, 15 min. cycle, 1800-1900°F)

Condition 2: Pathological/red bag waste mix (250 lb/hr, 15 min. cycle, 1600°F)

Condition 3: 100 percent pathological wastes (160 lb/hr, 15 min. cycle, 1600°F)

TABLE 2-1. EMISSIONS TEST LOG (continued):  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | LOCATION | RUN NUMBER | OPERATING CONDITION <sup>a</sup> | TEST TYPE    | RUN TIME    | PORT CHANGES |
|----------|----------|------------|----------------------------------|--------------|-------------|--------------|
| 9/25/90  | Stack    | 6          | 3                                | Toxic Metals | 10:10-14:15 | T2:T0-T2:T5  |
| 9/25/90  | Stack    | 6          | 3                                | CDD/CDF      | 10:10-14:15 | 12:10-12:15  |
| 9/25/90  | Stack    | 6A         | 3                                | HCl          | 10:22-11:22 |              |
| 9/25/90  | Stack    | 6B         | 3                                | HCl          | 11:33-12:33 |              |
| 9/25/90  | Stack    | 6C         | 3                                | HCl          | 12:41-13:41 |              |
| 9/25/90  | Stack    | 6A         | 3                                | Spore        | 10:08-12:08 |              |
| 9/25/90  | Stack    | 6B         | 3                                | Spore        | 12:08-14:08 |              |
| 9/26/90  | Stack    | 7 b        | 1                                | Toxic Metals | 10:00-14:06 | 12:00-12:06  |
| 9/26/90  | Stack    | 7 b        | 1                                | CDD/CDF      | 10:00-14:06 | 12:00-12:06  |
| 9/26/90  | Stack    | 7A b       | 1                                | HCl          | 10:06-11:06 |              |
| 9/26/90  | Stack    | 7B b       | 1                                | HCl          | 11:17-12:17 |              |
| 9/26/90  | Stack    | 7C b       | 1                                | HCl          | 12:27-13:27 |              |
| 9/26/90  | Stack    | 7A b       | 1                                | Spore        | 09:58-11:58 |              |
| 9/26/90  | Stack    | 7B b       | 1                                | Spore        | 11:58-13:58 |              |
| 9/27/90  | Stack    | 8          | 2                                | Toxic Metals | 13:45-17:50 | 15:45-15:50  |
| 9/27/90  | Stack    | 8          | 2                                | CDD/CDF      | 13:45-17:50 | 15:45-15:50  |
| 9/27/90  | Stack    | 8A         | 2                                | HCl          | 13:51-14:51 |              |
| 9/27/90  | Stack    | 8B         | 2                                | HCl          | 15:01-16:01 |              |
| 9/27/90  | Stack    | 8C         | 2                                | HCl          | 16:12-17:12 |              |
| 9/27/90  | Stack    | 8A         | 2                                | Spore        | 13:43-15:44 |              |
| 9/27/90  | Stack    | 8B         | 2                                | Spore        | 15:44-17:56 |              |
| 9/28/90  | Stack    | 9          | 3                                | Toxic Metals | 11:00-15:05 | 13:00-13:05  |
| 9/28/90  | Stack    | 9          | 3                                | CDD/CDF      | 11:00-15:05 | 13:00-13:05  |
| 9/28/90  | Stack    | 9A         | 3                                | HCl          | 11:11-12:11 |              |
| 9/28/90  | Stack    | 9B         | 3                                | HCl          | 12:22-13:22 |              |
| 9/28/90  | Stack    | 9C         | 3                                | HCl          | 13:32-14:32 |              |
| 9/28/90  | Stack    | 9A         | 3                                | Spore        | 10:58-12:58 |              |
| 9/28/90  | Stack    | 9B         | 3                                | Spore        | 12:58-14:58 |              |
| 10/02/90 | Stack    | 10         | 1                                | Toxic Metals | 10:15-14:21 | 12:15-12:21  |
| 10/02/90 | Stack    | 10         | 1                                | CDD/CDF      | 10:15-14:21 | 12:15-12:21  |
| 10/02/90 | Stack    | 10A        | 1                                | HCl          | 10:26-11:26 |              |
| 10/02/90 | Stack    | 10B        | 1                                | HCl          | 11:38-12:38 |              |
| 10/02/90 | Stack    | 10C        | 1                                | HCl          | 12:47-13:47 |              |
| 10/02/90 | Stack    | 10A        | 1                                | Spore        | 10:13-12:13 |              |
| 10/02/90 | Stack    | 10B        | 1                                | Spore        | 12:13-14:13 |              |

a Condition 1: 100 percent pathological wastes (100 lb/hr, 15 min. cycle, 1800-1900°F)

Condition 2: Pathological/red bag waste mix (250 lb/hr, 15 min. cycle, 1600°F)

Condition 3: 100 percent pathological wastes (160 lb/hr, 15 min. cycle, 1600°F)

b Run 7 data were invalidated due to an incomplete data set (CDD/CDF sampling probe broke during run)

TABLE 2-2. AVERAGE CDD/CDF STACK GAS CONCENTRATIONS FOR EACH TEST CONDITION; CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | CONCENTRATION <sup>a</sup><br>(ug/dscm, as measured) |                |                |
|----------------------|------------------------------------------------------|----------------|----------------|
|                      | CONDITION<br>1                                       | CONDITION<br>2 | CONDITION<br>3 |
| <b>DIOXINS</b>       |                                                      |                |                |
| 2378 TCDD            | 0.26                                                 | 11.7           | 0.38           |
| Other TCDD           | 22.5                                                 | 242            | 23.9           |
| 12378 PCDD           | 0.85                                                 | 47.01          | 0.94           |
| Other PCDD           | 19.1                                                 | 311            | 18.2           |
| 123478 HxCDD         | 0.80                                                 | 45.5           | 0.58           |
| 123678 HxCDD         | 1.35                                                 | 53.4           | 0.89           |
| 123789 HxCDD         | 2.49                                                 | 98.6           | 1.58           |
| Other HxCDD          | 16.6                                                 | 410            | 10.8           |
| 1234678-HpCDD        | 8.27                                                 | 249            | 4.75           |
| Other HpCDD          | 9.89                                                 | 270            | 5.51           |
| Octa-CDD             | 10.4                                                 | 259            | 6.21           |
| <b>Total CDD</b>     | <b>92.5</b>                                          | <b>2,000</b>   | <b>73.8</b>    |
| <b>FURANS</b>        |                                                      |                |                |
| 2378 TCDF            | 1.43                                                 | 32.2           | 1.75           |
| Other TCDF           | 73.6                                                 | 934            | 67.2           |
| 12378 PCDF           | 2.14                                                 | 149            | 2.03           |
| 23478 PCDF           | 5.27                                                 | 184            | 3.28           |
| Other PCDF           | 58.7                                                 | 2367           | 38.1           |
| 123478 HxCDF         | 8.44                                                 | 474            | 4.26           |
| 123678 HxCDF         | 3.74                                                 | 294            | 2.21           |
| 234678 HxCDF         | 7.33                                                 | 233            | 3.03           |
| 123789 HxCDF         | 0.24                                                 | 18.4           | 0.15           |
| Other HxCDF          | 25.0                                                 | 1614           | 13.5           |
| 1234678-HpCDF        | 13.4                                                 | 681            | 6.71           |
| 1234789-HpCDF        | 2.23                                                 | 86.9           | 0.94           |
| Other HpCDF          | 12.0                                                 | 500            | 5.15           |
| Octa-CDF             | 14.6                                                 | 205            | 5.82           |
| <b>Total CDF</b>     | <b>228</b>                                           | <b>7,890</b>   | <b>154</b>     |
| <b>Total CDD+CDF</b> | <b>321</b>                                           | <b>9,090</b>   | <b>228</b>     |

<sup>a</sup> dscm = dry standard cubic meter. Standard conditions are defined as 1 atm and 68°F.

TABLE 2-3. CDD/CDF STACK GAS CONCENTRATIONS ADJUSTED TO 7% OXYGEN  
FOR EACH TEST CONDITION; CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | CONCENTRATION<br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |                |                |
|----------------------|-------------------------------------------------------------------|----------------|----------------|
|                      | CONDITION<br>1                                                    | CONDITION<br>2 | CONDITION<br>3 |
| <b>DIOXINS</b>       |                                                                   |                |                |
| 2378 TCDD            | 0.72                                                              | 29.35          | 0.97           |
| Other TCDD           | 64.6                                                              | 613            | 60.3           |
| 12378 PCDD           | 2.41                                                              | 118            | 2.37           |
| Other PCDD           | 54.6                                                              | 782            | 46.0           |
| 123478 HxCDD         | 2.27                                                              | 115            | 1.46           |
| 123678 HxCDD         | 3.83                                                              | 135            | 2.25           |
| 123789 HxCDD         | 7.07                                                              | 248            | 4.01           |
| Other HxCDD          | 47.4                                                              | 1034           | 27.4           |
| 1234678-HpCDD        | 23.3                                                              | 631            | 12.1           |
| Other HpCDD          | 27.9                                                              | 683            | 14.0           |
| Octa-CDD             | 29.4                                                              | 661            | 15.8           |
| <b>Total CDD</b>     | <b>266</b>                                                        | <b>5,050</b>   | <b>187</b>     |
| <b>FURANS</b>        |                                                                   |                |                |
| 2378 TCDF            | 4.06                                                              | 80.1           | 4.40           |
| Other TCDF           | 210                                                               | 2324           | 169            |
| 12378 PCDF           | 6.06                                                              | 373            | 5.13           |
| 23478 PCDF           | 14.9                                                              | 461            | 8.29           |
| Other PCDF           | 167                                                               | 5906           | 96.0           |
| 123478 HxCDF         | 24.0                                                              | 1189           | 10.8           |
| 123678 HxCDF         | 10.6                                                              | 736            | 5.61           |
| 234678 HxCDF         | 20.9                                                              | 585            | 7.70           |
| 123789 HxCDF         | 0.67                                                              | 46.1           | 0.38           |
| Other HxCDF          | 71.0                                                              | 4045           | 34.2           |
| 1234678-HpCDF        | 38.2                                                              | 1716           | 17.1           |
| 1234789-HpCDF        | 6.32                                                              | 219            | 2.41           |
| Other HpCDF          | 34.2                                                              | 1262           | 13.1           |
| Octa-CDF             | 41.5                                                              | 728            | 14.9           |
| <b>Total CDF</b>     | <b>650</b>                                                        | <b>19,700</b>  | <b>389</b>     |
| <b>Total CDD+CDF</b> | <b>914</b>                                                        | <b>24,700</b>  | <b>576</b>     |

a. dscm = dry standard cubic meter. Standard conditions are defined as 1 atm and 68°F.

TABLE 2-4. AVERAGE CDD/CDF STACK GAS EMISSIONS FOR EACH TEST CONDITION; CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | EMISSIONS<br>(ng/hr) |                |                |
|----------------------|----------------------|----------------|----------------|
|                      | CONDITION<br>1       | CONDITION<br>2 | CONDITION<br>3 |
| <b>DIOXINS</b>       |                      |                |                |
| 2378 TCDD            | 0.41                 | 18.6           | 0.64           |
| Other TCDD           | 36.7                 | 387            | 39.7           |
| 12378 PCDD           | 1.38                 | 75.6           | 1.56           |
| Other PCDD           | 31.1                 | 499            | 30.3           |
| 123478 HxCDD         | 1.30                 | 73.3           | 0.96           |
| 123678 HxCDD         | 2.20                 | 85.9           | 1.48           |
| 123789 HxCDD         | 4.05                 | 159            | 2.63           |
| Other HxCDD          | 27.1                 | 658            | 18.0           |
| 1234678-HpCDD        | 13.4                 | 402            | 7.90           |
| Other HpCDD          | 16.1                 | 435            | 9.18           |
| Octa-CDD             | 16.9                 | 416            | 10.3           |
| <b>Total CDD</b>     | <b>151</b>           | <b>3,210</b>   | <b>123</b>     |
| <b>FURANS</b>        |                      |                |                |
| 2378 TCDF            | 2.32                 | 51.2           | 2.91           |
| Other TCDF           | 120                  | 1481           | 112            |
| 12378 PCDF           | 3.48                 | 240            | 3.38           |
| 23478 PCDF           | 8.56                 | 296            | 5.45           |
| Other PCDF           | 95.5                 | 3,799          | 63.44          |
| 123478 HxCDF         | 13.7                 | 764            | 7.09           |
| 123678 HxCDF         | 6.08                 | 473            | 3.69           |
| 234678 HxCDF         | 11.9                 | 374            | 5.05           |
| 123789 HxCDF         | 0.39                 | 29.6           | 0.25           |
| Other HxCDF          | 40.6                 | 2,598          | 22.5           |
| 1234678-HpCDF        | 21.8                 | 1,097          | 11.2           |
| 1234789-HpCDF        | 3.63                 | 140            | 1.57           |
| Other HpCDF          | 19.6                 | 805            | 8.57           |
| Octa-CDF             | 23.8                 | 457            | 9.71           |
| <b>Total CDF</b>     | <b>371</b>           | <b>12,600</b>  | <b>256</b>     |
| <b>Total CDD+CDF</b> | <b>522</b>           | <b>15,800</b>  | <b>379</b>     |

TABLE 2-5. AVERAGE CDD/CDF 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS  
ADJUSTED TO 7 PERCENT O<sub>2</sub> FOR EACH TEST CONDITION;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | 2378-TCDD a<br>TOXIC EQUIV.<br>FACTOR | 2378 TOXIC EQUIVALENCIES<br>(ng/decim, @ 7 percent O <sub>2</sub> ) b |                |                |
|----------------------|---------------------------------------|-----------------------------------------------------------------------|----------------|----------------|
|                      |                                       | CONDITION<br>1                                                        | CONDITION<br>2 | CONDITION<br>3 |
| <b>DIOXINS</b>       |                                       |                                                                       |                |                |
| 2378 TCDD            | 1.000                                 | 0.719                                                                 | 29.348         | 0.967          |
| Other TCDD           | 0.000                                 | 0.000                                                                 | 0.000          | 0.000          |
| 12378 PCDD           | 0.500                                 | 1.203                                                                 | 59.161         | 1.183          |
| Other PCDD           | 0.000                                 | 0.000                                                                 | 0.000          | 0.000          |
| 123478 HxCDD         | 0.100                                 | 0.227                                                                 | 11.505         | 0.146          |
| 123678 HxCDD         | 0.100                                 | 0.383                                                                 | 13.457         | 0.225          |
| 123789 HxCDD         | 0.100                                 | 0.707                                                                 | 24.807         | 0.401          |
| Other HxCDD          | 0.000                                 | 0.000                                                                 | 0.000          | 0.000          |
| 1234678-HpCDD        | 0.010                                 | 0.233                                                                 | 6.310          | 0.121          |
| Other HpCDD          | 0.000                                 | 0.000                                                                 | 0.000          | 0.000          |
| Octa-CDD             | 0.001                                 | 0.029                                                                 | 0.661          | 0.016          |
| <b>Total CDD</b>     |                                       | <b>3.50</b>                                                           | <b>145</b>     | <b>3.06</b>    |
| <b>FURANS</b>        |                                       |                                                                       |                |                |
| 2378 TCDF            | 0.100                                 | 0.406                                                                 | 8.014          | 0.440          |
| Other TCDF           | 0.000                                 | 0.000                                                                 | 0.000          | 0.000          |
| 12378 PCDF           | 0.050                                 | 0.303                                                                 | 18.642         | 0.257          |
| 23478 PCDF           | 0.500                                 | 7.471                                                                 | 230.514        | 4.143          |
| Other PCDF           | 0.000                                 | 0.000                                                                 | 0.000          | 0.000          |
| 123478 HxCDF         | 0.100                                 | 2.405                                                                 | 118.859        | 1.081          |
| 123678 HxCDF         | 0.100                                 | 1.063                                                                 | 73.562         | 0.561          |
| 234678 HxCDF         | 0.100                                 | 2.089                                                                 | 58.528         | 0.770          |
| 123789 HxCDF         | 0.100                                 | 0.067                                                                 | 4.612          | 0.038          |
| Other HxCDF          | 0.000                                 | 0.000                                                                 | 0.000          | 0.000          |
| 1234678-HpCDF        | 0.010                                 | 0.382                                                                 | 17.155         | 0.171          |
| 1234789-HpCDF        | 0.010                                 | 0.063                                                                 | 2.195          | 0.024          |
| Other HpCDF          | 0.000                                 | 0.000                                                                 | 0.000          | 0.000          |
| Octa-CDF             | 0.001                                 | 0.041                                                                 | 0.728          | 0.015          |
| <b>Total CDF</b>     |                                       | <b>14.3</b>                                                           | <b>533</b>     | <b>7.50</b>    |
| <b>Total CDD+CDF</b> |                                       | <b>17.8</b>                                                           | <b>678</b>     | <b>10.6</b>    |

a North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot Study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

b ng/dscm = nanogram per dry standard cubic meter. Standard conditions defined as 1 atm. and 68°F.

TABLE 2-6. CDD/CDF STACK GAS CONCENTRATIONS AND EMISSIONS RATES AT CONDITION 1;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER       | CONCENTRATION <sup>a</sup><br>(ng/dscm, as measured) |         |         |         | EMISSIONS<br>(ug/hr) |         |         |         |
|----------------|------------------------------------------------------|---------|---------|---------|----------------------|---------|---------|---------|
|                | RUN 1                                                | RUN 3   | RUN 10  | AVERAGE | RUN 1                | RUN 3   | RUN 10  | AVERAGE |
| <b>DIOXINS</b> |                                                      |         |         |         |                      |         |         |         |
| 2378 TCDD      | 0.22                                                 | (0.419) | (0.130) | 0.26    | 0.34                 | (0.688) | (0.208) | 0.41    |
| Other TCDD     | 6.17                                                 | 54.5    | 6.77    | 22.5    | 9.73                 | 89.5    | 10.8    | 36.7    |
| 12378 PCDD     | 0.52                                                 | 1.61    | 0.42    | 0.85    | 0.82                 | 2.64    | 0.68    | 1.38    |
| Other PCDD     | 5.45                                                 | 44.9    | 6.84    | 19.1    | 8.61                 | 73.7    | 11.0    | 31.1    |
| 123478 HxCDD   | 0.34                                                 | 1.57    | 0.49    | 0.80    | 0.53                 | 2.58    | 0.79    | 1.30    |
| 123678 HxCDD   | 0.52                                                 | 2.55    | 0.99    | 1.35    | 0.82                 | 4.19    | 1.58    | 2.20    |
| 123789 HxCDD   | 1.10                                                 | 4.89    | 1.48    | 2.49    | 1.74                 | 8.03    | 2.37    | 4.05    |
| Other HxCDD    | 5.12                                                 | 35.4    | 9.45    | 16.6    | 8.07                 | 58.1    | 15.1    | 27.1    |
| 1234678-HpCDD  | 2.93                                                 | 14.6    | 7.30    | 8.27    | 4.63                 | 23.9    | 11.7    | 13.4    |
| Other HpCDD    | 3.52                                                 | 17.9    | 8.21    | 9.89    | 5.56                 | 29.4    | 13.2    | 16.1    |
| Octa-CDD       | 3.45                                                 | 18.7    | 9.13    | 10.4    | 5.45                 | 30.6    | 14.6    | 16.9    |
| Total CDD      | 29.3                                                 | 197     | 51.2    | 92.5    | 46.3                 | 323     | 82.1    | 151     |
| <b>FURANS</b>  |                                                      |         |         |         |                      |         |         |         |
| 2378 TCDF      | 0.72                                                 | 2.73    | 0.85    | 1.43    | 1.14                 | 4.47    | 1.36    | 2.32    |
| Other TCDF     | 24.7                                                 | 165     | 30.9    | 73.6    | 38.9                 | 271     | 49.5    | 120     |
| 12378 PCDF     | 1.10                                                 | 3.95    | 1.37    | 2.14    | 1.74                 | 6.48    | 2.20    | 3.48    |
| 23478 PCDF     | 2.11                                                 | 10.4    | 3.31    | 5.27    | 3.32                 | 17.0    | 5.31    | 8.56    |
| Other PCDF     | 23.5                                                 | 125     | 27.4    | 58.7    | 37.1                 | 205     | 44.0    | 95.5    |
| 123478 HxCDF   | 2.59                                                 | 18.2    | 4.55    | 8.44    | 4.08                 | 29.8    | 7.29    | 13.7    |
| 123678 HxCDF   | 1.35                                                 | 7.55    | 2.33    | 3.74    | 2.12                 | 12.39   | 3.73    | 6.08    |
| 234678 HxCDF   | 1.66                                                 | 15.65   | 4.69    | 7.33    | 2.61                 | 25.7    | 7.51    | 11.9    |
| 123789 HxCDF   | 0.06                                                 | 0.45    | 0.20    | 0.24    | 0.10                 | 0.75    | 0.32    | 0.39    |
| Other HxCDF    | 7.98                                                 | 51.5    | 15.4    | 25.0    | 12.6                 | 84.5    | 24.7    | 40.6    |
| 1234678-HpCDF  | 3.31                                                 | 28.4    | 8.49    | 13.4    | 5.23                 | 46.6    | 13.6    | 21.8    |
| 1234789-HpCDF  | 0.41                                                 | 4.40    | 1.87    | 2.23    | 0.65                 | 7.23    | 2.99    | 3.63    |
| Other HpCDF    | 2.38                                                 | 24.8    | 8.81    | 12.0    | 3.76                 | 40.8    | 14.1    | 19.6    |
| Octa-CDF       | 2.00                                                 | 29.0    | 12.9    | 14.6    | 3.16                 | 47.6    | 20.6    | 23.8    |
| TOTAL CDF      | 73.9                                                 | 407     | 123     | 220     | 117                  | 800     | 197     | 371     |
| TOTAL CDD+CDF  | 103                                                  | 604     | 174     | 321     | 163                  | 1,120   | 279     | 522     |

<sup>a</sup> ng/dscm = nanogram per dry standard cubic meter. Standard conditions are defined as 1 atm and 68° F.

( ) = estimated maximum possible concentration. [ ] = minimum detection limit

TABLE 2-7. CDD/CDF STACK GAS CONCENTRATIONS AND EMISSIONS RATES AT CONDITION 2;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | CONCENTRATION <sup>a</sup><br>(ng/dscm, as measured) |               |              |              | EMISSIONS<br>(ng/hr) |               |               |               |
|----------------------|------------------------------------------------------|---------------|--------------|--------------|----------------------|---------------|---------------|---------------|
|                      | RUN 2                                                | RUN 4         | RUN 8        | AVERAGE      | RUN 2                | RUN 4         | RUN 8         | AVERAGE       |
| <b>DIOXINS</b>       |                                                      |               |              |              |                      |               |               |               |
| 2378 TCDD            | 7.27                                                 | 19.2          | 8.54         | 11.7         | 10.8                 | 30.9          | 14.2          | 18.6          |
| Other TCDD           | 171                                                  | 341           | 215          | 242          | 254                  | 549           | 357           | 387           |
| 12378 PCDD           | 22.6                                                 | 75.1          | 43.4         | 47.0         | 33.6                 | 121           | 72.0          | 75.6          |
| Other PCDD           | 150                                                  | 503           | 280          | 311          | 223                  | 810           | 465           | 499           |
| 123478 HxCDD         | 21.5                                                 | 64.6          | 50.5         | 45.5         | 32.0                 | 104           | 83.8          | 73.3          |
| 123678 HxCDD         | 25.4                                                 | 82.3          | 52.5         | 53.4         | 37.8                 | 133           | 87.2          | 85.9          |
| 123789 HxCDD         | 45.1                                                 | 156.4         | 94.2         | 98.6         | 67.3                 | 252           | 156           | 159           |
| Other HxCDD          | 209                                                  | 614           | 406          | 410          | 312                  | 990           | 674           | 658           |
| 1234678-HpCDD        | 120                                                  | 335           | 292          | 249          | 180                  | 540           | 485           | 402           |
| Other HpCDD          | 126                                                  | 365           | 318          | 270          | 188                  | 589           | 528           | 435           |
| Octa-CDD             | 156                                                  | 254           | 366          | 259          | 233                  | 409           | 608           | 416           |
| <b>Total CDD</b>     | <b>1,090</b>                                         | <b>2,810</b>  | <b>2,130</b> | <b>2,000</b> | <b>1,570</b>         | <b>4,530</b>  | <b>3,530</b>  | <b>3,210</b>  |
| <b>FURANS</b>        |                                                      |               |              |              |                      |               |               |               |
| 2378 TCDF            | 22.1                                                 | 70.8          | 3.86         | 32.2         | 32.9                 | 114           | 6.41          | 51.2          |
| Other TCDF           | 659                                                  | 1991          | 151          | 934          | 982                  | 3210          | 250           | 1481          |
| 12378 PCDF           | 63.5                                                 | 288           | 96.5         | 149          | 94.6                 | 465           | 160           | 240           |
| 23478 PCDF           | 88.3                                                 | 341           | 123          | 184          | 132                  | 550           | 205           | 296           |
| Other PCDF           | 1015                                                 | 4596          | 1491         | 2367         | 1512                 | 7409          | 2476          | 3799          |
| 123478 HxCDF         | 189                                                  | 831           | 403          | 474          | 282                  | 1339          | 670           | 764           |
| 123678 HxCDF         | 114                                                  | 524           | 244          | 294          | 169                  | 844           | 406           | 473           |
| 234678 HxCDF         | 111                                                  | 372           | 214          | 233          | 166                  | 600           | 356           | 374           |
| 123789 HxCDF         | 7.88                                                 | 32.5          | 14.8         | 18.4         | 11.7                 | 52.5          | 24.6          | 29.6          |
| Other HxCDF          | 649                                                  | 2809.6        | 1382.9       | 1613.8       | 967                  | 4529          | 2297          | 2598          |
| 1234678-HpCDF        | 301                                                  | 1058          | 684          | 681          | 449                  | 1706          | 1137          | 1097          |
| 1234789-HpCDF        | 45.5                                                 | 128           | 87.4         | 86.9         | 67.8                 | 206           | 145           | 140           |
| Other HpCDF          | 242                                                  | 743           | 516          | 500          | 361                  | 1197          | 856           | 805           |
| Octa-CDF             | 210                                                  | 324           | 322          | 285          | 313                  | 523           | 535           | 457           |
| <b>TOTAL CDF</b>     | <b>3,720</b>                                         | <b>14,100</b> | <b>5,730</b> | <b>7,850</b> | <b>5,560</b>         | <b>22,700</b> | <b>9,520</b>  | <b>12,600</b> |
| <b>TOTAL CDD+CDF</b> | <b>4,770</b>                                         | <b>16,900</b> | <b>7,860</b> | <b>9,850</b> | <b>7,110</b>         | <b>27,300</b> | <b>13,100</b> | <b>15,800</b> |

<sup>a</sup> ng/dscm = nanogram per dry standard cubic meter. Standard conditions are defined as 1 atm and 68° F.

( ) = estimated maximum possible concentration

TABLE 2-8. CDD/CDF STACK GAS CONCENTRATIONS AND EMISSIONS RATES AT CONDITION 3;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | CONCENTRATION <sup>a</sup><br>(ng/dscm, as measured) |             |            |             | EMISSIONS<br>(ug/hr) |             |            |            |
|----------------------|------------------------------------------------------|-------------|------------|-------------|----------------------|-------------|------------|------------|
|                      | RUN 5                                                | RUN 6       | RUN 9      | AVERAGE     | RUN 5                | RUN 6       | RUN 9      | AVERAGE    |
| <b>DIOXINS</b>       |                                                      |             |            |             |                      |             |            |            |
| 2378 TCDD            | 0.25                                                 | (0.074)     | 0.83       | 0.38        | 0.41                 | (0.125)     | 1.37       | 0.64       |
| Other TCDD           | 19.7                                                 | 3.77        | 48.1       | 23.9        | 32.6                 | 6.38        | 80.0       | 39.7       |
| 12378 PCDD           | 0.66                                                 | 0.23        | 1.92       | 0.94        | 1.09                 | 0.39        | 3.19       | 1.56       |
| Other PCDD           | 12.4                                                 | 3.87        | 38.4       | 18.2        | 20.5                 | 6.56        | 63.9       | 30.3       |
| 123478 HxCDD         | 0.42                                                 | 0.19        | 1.12       | 0.58        | 0.69                 | 0.32        | 1.87       | 0.96       |
| 123678 HxCDD         | 0.63                                                 | 0.32        | 1.72       | 0.89        | 1.04                 | 0.55        | 2.86       | 1.48       |
| 123789 HxCDD         | 1.29                                                 | 0.61        | 2.84       | 1.58        | 2.13                 | 1.03        | 4.73       | 2.63       |
| Other HxCDD          | 8.25                                                 | 3.93        | 20.3       | 10.8        | 13.6                 | 6.65        | 33.8       | 18.0       |
| 1234678-HpCDD        | 4.31                                                 | 2.12        | 7.80       | 4.75        | 7.14                 | 3.59        | 13.0       | 7.90       |
| Other HpCDD          | 4.66                                                 | 2.49        | 9.39       | 5.51        | 7.71                 | 4.22        | 15.6       | 9.18       |
| Octa-CDD             | 5.98                                                 | 2.56        | 10.1       | 6.21        | 9.90                 | 4.33        | 16.8       | 10.3       |
| <b>Total CDD</b>     | <b>58.6</b>                                          | <b>20.2</b> | <b>143</b> | <b>73.8</b> | <b>96.9</b>          | <b>34.1</b> | <b>237</b> | <b>123</b> |
| <b>FURANS</b>        |                                                      |             |            |             |                      |             |            |            |
| 2378 TCDF            | 1.18                                                 | 0.29        | 3.77       | 1.75        | 1.96                 | 0.49        | 6.27       | 2.91       |
| Other TCDF           | 44.7                                                 | 9.77        | 147        | 67.2        | 74.0                 | 16.6        | 245        | 112        |
| 12378 PCDF           | 1.43                                                 | 0.54        | 4.13       | 2.03        | 2.36                 | 0.91        | 6.87       | 3.38       |
| 23478 PCDF           | 2.44                                                 | 0.94        | 6.45       | 3.28        | 4.03                 | 1.60        | 10.72      | 5.45       |
| Other PCDF           | 22.1                                                 | 8.31        | 84.0       | 38.1        | 36.6                 | 14.1        | 140        | 63.4       |
| 123478 HxCDF         | 3.17                                                 | 1.62        | 8.00       | 4.26        | 5.24                 | 2.74        | 13.3       | 7.09       |
| 123678 HxCDF         | 1.64                                                 | 0.81        | 4.20       | 2.21        | 2.71                 | 1.37        | 6.98       | 3.69       |
| 234678 HxCDF         | 2.26                                                 | 1.28        | 5.56       | 3.03        | 3.74                 | 2.17        | 9.24       | 5.05       |
| 123789 HxCDF         | 0.11                                                 | 0.06        | 0.27       | 0.15        | 0.19                 | 0.10        | 0.45       | 0.25       |
| Other HxCDF          | 9.28                                                 | 4.62        | 26.6       | 13.5        | 15.4                 | 7.82        | 44.3       | 22.5       |
| 1234678-HpCDF        | 6.19                                                 | 2.86        | 11.08      | 6.71        | 10.2                 | 4.84        | 18.4       | 11.2       |
| 1234789-HpCDF        | 0.80                                                 | 0.57        | 1.46       | 0.94        | 1.32                 | 0.97        | 2.42       | 1.57       |
| Other HpCDF          | 4.63                                                 | 2.32        | 8.50       | 5.15        | 7.66                 | 3.93        | 14.1       | 8.57       |
| Octa-CDF             | 4.18                                                 | 4.51        | 8.76       | 5.82        | 6.91                 | 7.64        | 14.6       | 9.71       |
| <b>TOTAL CDF</b>     | <b>104</b>                                           | <b>30.5</b> | <b>320</b> | <b>154</b>  | <b>172</b>           | <b>65.2</b> | <b>332</b> | <b>256</b> |
| <b>TOTAL CDD+CDF</b> | <b>163</b>                                           | <b>50.7</b> | <b>462</b> | <b>228</b>  | <b>269</b>           | <b>99.3</b> | <b>769</b> | <b>379</b> |

<sup>a</sup> ng/dscm = nanogram per dry standard cubic meter. Standard conditions are defined as 1 atm and 68° F.

0 = estimated maximum possible concentration

TABLE 2-9. CDD/CDF STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT O<sub>2</sub> FOR CONDITION 1;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | CONCENTRATION <sup>a</sup><br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |              |            |            | 2378-TCDD <sup>b</sup><br>TOXIC EQUIV.<br>FACTOR | 2378 TOXIC EQUIVALENCES<br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |             |             |             |
|----------------------|--------------------------------------------------------------------------------|--------------|------------|------------|--------------------------------------------------|-----------------------------------------------------------------------------|-------------|-------------|-------------|
|                      | RUN 1                                                                          | RUN 3        | RUN 10     | AVERAGE    |                                                  | RUN 1                                                                       | RUN 3       | RUN 10      | AVERAGE     |
| <b>DIOXINS</b>       |                                                                                |              |            |            |                                                  |                                                                             |             |             |             |
| 2378 TCDD            | 0.59                                                                           | (1.221)      | (0.349)    | 0.72       | 1.000                                            | 0.588                                                                       | (1.221)     | (0.349)     | 0.719       |
| Other TCDD           | 16.7                                                                           | 159          | 18.2       | 64.6       | 0.000                                            | 0.000                                                                       | 0.000       | 0.000       | 0.000       |
| 12378 PCDD           | 1.40                                                                           | 4.68         | 1.14       | 2.41       | 0.500                                            | 0.700                                                                       | 2.342       | 0.568       | 1.203       |
| Other PCDD           | 14.7                                                                           | 131          | 18.3       | 54.6       | 0.000                                            | 0.000                                                                       | 0.000       | 0.000       | 0.000       |
| 123478 HxCDD         | 0.91                                                                           | 4.58         | 1.32       | 2.27       | 0.100                                            | 0.091                                                                       | 0.458       | 0.132       | 0.227       |
| 123678 HxCDD         | 1.40                                                                           | 7.43         | 2.65       | 3.83       | 0.100                                            | 0.140                                                                       | 0.743       | 0.265       | 0.383       |
| 123789 HxCDD         | 2.99                                                                           | 14.3         | 3.97       | 7.07       | 0.100                                            | 0.299                                                                       | 1.425       | 0.397       | 0.707       |
| Other HxCDD          | 13.8                                                                           | 103          | 25.3       | 47.4       | 0.000                                            | 0.000                                                                       | 0.000       | 0.000       | 0.000       |
| 1234678-HpCDD        | 7.93                                                                           | 42.5         | 19.6       | 23.3       | 0.010                                            | 0.079                                                                       | 0.425       | 0.196       | 0.233       |
| Other HpCDD          | 9.52                                                                           | 52.2         | 22.0       | 27.9       | 0.000                                            | 0.000                                                                       | 0.000       | 0.000       | 0.000       |
| Octa-CDD             | 9.33                                                                           | 54.4         | 24.5       | 29.4       | 0.001                                            | 0.009                                                                       | 0.054       | 0.024       | 0.029       |
| <b>Total CDD</b>     | <b>79.3</b>                                                                    | <b>574</b>   | <b>137</b> | <b>264</b> |                                                  | <b>1.91</b>                                                                 | <b>6.67</b> | <b>1.93</b> | <b>3.50</b> |
| <b>FURANS</b>        |                                                                                |              |            |            |                                                  |                                                                             |             |             |             |
| 2378 TCDF            | 1.96                                                                           | 7.94         | 2.27       | 4.06       | 0.100                                            | 0.196                                                                       | 0.794       | 0.227       | 0.406       |
| Other TCDF           | 66.7                                                                           | 482          | 82.9       | 210        | 0.000                                            | 0.000                                                                       | 0.000       | 0.000       | 0.000       |
| 12378 PCDF           | 2.99                                                                           | 11.51        | 3.69       | 6.06       | 0.050                                            | 0.149                                                                       | 0.575       | 0.184       | 0.303       |
| 23478 PCDF           | 5.69                                                                           | 30.2         | 8.89       | 14.9       | 0.500                                            | 2.847                                                                       | 15.120      | 4.446       | 7.471       |
| Other PCDF           | 63.6                                                                           | 365          | 73.6       | 167        | 0.000                                            | 0.000                                                                       | 0.000       | 0.000       | 0.000       |
| 123478 HxCDF         | 7.00                                                                           | 52.9         | 12.2       | 24.0       | 0.100                                            | 0.700                                                                       | 5.295       | 1.220       | 2.405       |
| 123678 HxCDF         | 3.64                                                                           | 21.99        | 6.24       | 10.6       | 0.100                                            | 0.364                                                                       | 2.199       | 0.624       | 1.063       |
| 234678 HxCDF         | 4.48                                                                           | 45.6         | 12.6       | 20.9       | 0.100                                            | 0.448                                                                       | 4.561       | 1.258       | 2.089       |
| 123789 HxCDF         | 0.17                                                                           | 1.32         | 0.53       | 0.67       | 0.100                                            | 0.017                                                                       | 0.132       | 0.053       | 0.067       |
| Other HxCDF          | 21.6                                                                           | 150          | 41.4       | 71.0       | 0.000                                            | 0.000                                                                       | 0.000       | 0.000       | 0.000       |
| 1234678-HpCDF        | 8.96                                                                           | 82.8         | 22.8       | 38.2       | 0.010                                            | 0.090                                                                       | 0.828       | 0.228       | 0.382       |
| 1234789-HpCDF        | 1.12                                                                           | 12.8         | 5.01       | 6.32       | 0.010                                            | 0.011                                                                       | 0.128       | 0.050       | 0.063       |
| Other HpCDF          | 6.44                                                                           | 72.4         | 23.6       | 34.2       | 0.000                                            | 0.000                                                                       | 0.000       | 0.000       | 0.000       |
| Octa-CDF             | 5.41                                                                           | 64.5         | 34.5       | 41.5       | 0.001                                            | 0.005                                                                       | 0.085       | 0.035       | 0.041       |
| <b>Total CDF</b>     | <b>209</b>                                                                     | <b>1,420</b> | <b>330</b> | <b>650</b> |                                                  | <b>4.03</b>                                                                 | <b>29.7</b> | <b>8.32</b> | <b>14.3</b> |
| <b>Total CDD+CDF</b> | <b>279</b>                                                                     | <b>1,990</b> | <b>468</b> | <b>914</b> |                                                  | <b>6.73</b>                                                                 | <b>36.4</b> | <b>10.3</b> | <b>17.8</b> |

<sup>a</sup> ng/dscm = nanogram per dry standard cubic meter. Standard conditions are defined as 1 atm and 68° F.

<sup>b</sup> North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot Study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

[ ] = minimum detection limit. ( ) = estimated maximum possible concentration.

TABLE 2-10. CDD/CDF STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT O<sub>2</sub> FOR CONDITION 2;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | CONCENTRATION <sup>a</sup><br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |               |               |               | 2378-TCDD <sup>b</sup><br>TOXIC EQUIV.<br>FACTOR | 2378 TOXIC EQUIVALENCIES<br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |             |            |            |
|----------------------|--------------------------------------------------------------------------------|---------------|---------------|---------------|--------------------------------------------------|------------------------------------------------------------------------------|-------------|------------|------------|
|                      | RUN 2                                                                          | RUN 4         | RUN 8         | AVERAGE       |                                                  | RUN 2                                                                        | RUN 4       | RUN 8      | AVERAGE    |
| <b>DIOXINS</b>       |                                                                                |               |               |               |                                                  |                                                                              |             |            |            |
| 2378 TCDD            | 19.4                                                                           | 46.4          | 22.2          | 29.3          | 1.000                                            | 19.385                                                                       | 46.438      | 22.221     | 29.348     |
| Other TCDD           | 455                                                                            | 825           | 560           | 613           | 1.000                                            | 0.000                                                                        | 0.000       | 0.000      | 0.000      |
| 12378 PCDD           | 60.2                                                                           | 182           | 113           | 118           | 0.500                                            | 30.097                                                                       | 90.952      | 56.434     | 59.161     |
| Other PCDD           | 399                                                                            | 1,217         | 728           | 782           | 0.000                                            | 0.000                                                                        | 0.000       | 0.000      | 0.000      |
| 123478 HxCDD         | 57.2                                                                           | 157           | 131           | 115           | 0.100                                            | 5.724                                                                        | 15.654      | 13.138     | 11.505     |
| 123678 HxCDD         | 67.6                                                                           | 199           | 137           | 135           | 0.100                                            | 6.764                                                                        | 19.940      | 13.667     | 13.457     |
| 123789 HxCDD         | 120                                                                            | 379           | 245           | 248           | 0.100                                            | 12.039                                                                       | 37.868      | 24.513     | 24.807     |
| Other HxCDD          | 558                                                                            | 1,487         | 1,056         | 1,034         | 0.000                                            | 0.000                                                                        | 0.000       | 0.000      | 0.000      |
| 1234678-HpCDD        | 321                                                                            | 812           | 760           | 631           | 0.010                                            | 3.214                                                                        | 8.116       | 7.601      | 6.310      |
| Other HpCDD          | 337                                                                            | 885           | 827           | 683           | 0.000                                            | 0.000                                                                        | 0.000       | 0.000      | 0.000      |
| Octa-CDD             | 417                                                                            | 614           | 952           | 661           | 0.001                                            | 0.417                                                                        | 0.614       | 0.952      | 0.661      |
| <b>Total CDD</b>     | <b>2,810</b>                                                                   | <b>6,900</b>  | <b>5,530</b>  | <b>5,050</b>  |                                                  | <b>77.6</b>                                                                  | <b>220</b>  | <b>139</b> | <b>145</b> |
| <b>FURANS</b>        |                                                                                |               |               |               |                                                  |                                                                              |             |            |            |
| 2378 TCDF            | 59.0                                                                           | 171           | 10.1          | 80.1          | 0.100                                            | 5.897                                                                        | 17.141      | 1.005      | 8.014      |
| Other TCDF           | 1,757                                                                          | 4,822         | 392           | 2,324         | 0.000                                            | 0.000                                                                        | 0.000       | 0.000      | 0.000      |
| 12378 PCDF           | 169                                                                            | 698           | 251           | 373           | 0.050                                            | 8.468                                                                        | 34.894      | 12.565     | 18.642     |
| 23478 PCDF           | 236                                                                            | 826           | 321           | 461           | 0.500                                            | 117.839                                                                      | 413.220     | 160.483    | 230.514    |
| Other PCDF           | 2,707                                                                          | 11,130        | 3,881         | 5,906         | 0.000                                            | 0.000                                                                        | 0.000       | 0.000      | 0.000      |
| 123478 HxCDF         | 505                                                                            | 2,011         | 1,049         | 1,189         | 0.100                                            | 50.502                                                                       | 201.144     | 104.931    | 118.859    |
| 123678 HxCDF         | 303                                                                            | 1,268         | 636           | 736           | 0.100                                            | 30.301                                                                       | 126.808     | 63.576     | 73.562     |
| 234678 HxCDF         | 297                                                                            | 901           | 558           | 585           | 0.100                                            | 29.689                                                                       | 90.078      | 55.816     | 58.528     |
| 123789 HxCDF         | 21.0                                                                           | 78.8          | 38.5          | 46.1          | 0.100                                            | 2.102                                                                        | 7.880       | 3.853      | 4.612      |
| Other HxCDF          | 1,731                                                                          | 6,804         | 3,600         | 4,045         | 0.000                                            | 0.000                                                                        | 0.000       | 0.000      | 0.000      |
| 1234678-HpCDF        | 803                                                                            | 2,562         | 1,781         | 1,716         | 0.010                                            | 8.029                                                                        | 25.624      | 17.812     | 17.155     |
| 1234789-HpCDF        | 121                                                                            | 310           | 227           | 219           | 0.010                                            | 1.214                                                                        | 3.096       | 2.275      | 2.195      |
| Other HpCDF          | 647                                                                            | 1,798         | 1,342         | 1,262         | 0.000                                            | 0.000                                                                        | 0.000       | 0.000      | 0.000      |
| Octa-CDF             | 560                                                                            | 785           | 838           | 728           | 0.001                                            | 0.560                                                                        | 0.785       | 0.838      | 0.728      |
| <b>Total CDF</b>     | <b>9,920</b>                                                                   | <b>34,200</b> | <b>14,900</b> | <b>19,700</b> |                                                  | <b>255</b>                                                                   | <b>921</b>  | <b>423</b> | <b>533</b> |
| <b>Total CDD+CDF</b> | <b>12,700</b>                                                                  | <b>41,000</b> | <b>20,500</b> | <b>24,700</b> |                                                  | <b>132</b>                                                                   | <b>1140</b> | <b>562</b> | <b>678</b> |

a ng/dscm = nanogram per dry standard cubic meter. Standard conditions are defined as 1 atm and 68° F.

b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot Study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

[ ] = minimum detection limit. ( ) = estimated maximum possible concentration.

TABLE 2-11. CDD/CDF STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT O<sub>2</sub> FOR CONDITION 3;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER       | CONCENTRATION a<br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |         |       |         | 2378-TCDD b<br>TOXIC EQUIV.<br>FACTOR | 2378 TOXIC EQUIVALENCES<br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |         |       |         |
|----------------|---------------------------------------------------------------------|---------|-------|---------|---------------------------------------|-----------------------------------------------------------------------------|---------|-------|---------|
|                | RUN 5                                                               | RUN 6   | RUN 9 | AVERAGE |                                       | RUN 5                                                                       | RUN 6   | RUN 9 | AVERAGE |
| <b>DIOXINS</b> |                                                                     |         |       |         |                                       |                                                                             |         |       |         |
| 2378 TCDD      | 0.66                                                                | (0.198) | 2.04  | 0.97    | 1.000                                 | 0.657                                                                       | (0.198) | 2.045 | 0.967   |
| Other TCDD     | 51.7                                                                | 10.1    | 119   | 60.3    | 0.000                                 | 0.000                                                                       | 0.000   | 0.000 | 0.000   |
| 1,2378 PCDD    | 1.73                                                                | 0.62    | 4.74  | 2.37    | 0.500                                 | 0.867                                                                       | 0.310   | 2.372 | 1.183   |
| Other PCDD     | 32.5                                                                | 10.4    | 95.0  | 46.0    | 0.000                                 | 0.000                                                                       | 0.000   | 0.000 | 0.000   |
| 1,23478 HxCDD  | 1.10                                                                | 0.51    | 2.78  | 1.46    | 0.100                                 | 0.110                                                                       | 0.051   | 0.278 | 0.146   |
| 1,23678 HxCDD  | 1.64                                                                | 0.86    | 4.25  | 2.25    | 0.100                                 | 0.164                                                                       | 0.086   | 0.425 | 0.225   |
| 1,23789 HxCDD  | 3.38                                                                | 1.62    | 7.03  | 4.01    | 0.100                                 | 0.338                                                                       | 0.162   | 0.703 | 0.401   |
| Other HxCDD    | 21.6                                                                | 10.5    | 50.2  | 27.4    | 0.000                                 | 0.000                                                                       | 0.000   | 0.000 | 0.000   |
| 1,234678-HpCDD | 11.3                                                                | 5.67    | 19.3  | 12.1    | 0.010                                 | 0.113                                                                       | 0.057   | 0.193 | 0.121   |
| Other HpCDD    | 12.2                                                                | 6.66    | 23.2  | 14.0    | 0.000                                 | 0.000                                                                       | 0.000   | 0.000 | 0.000   |
| Octa-CDD       | 15.7                                                                | 6.84    | 24.9  | 15.8    | 0.001                                 | 0.016                                                                       | 0.007   | 0.025 | 0.016   |
| Total CDD      | 154                                                                 | 54      | 353   | 187     |                                       | 2.26                                                                        | 0.87    | 6.04  | 3.06    |
| <b>FURANS</b>  |                                                                     |         |       |         |                                       |                                                                             |         |       |         |
| 2378 TCDF      | 3.10                                                                | 0.77    | 9.32  | 4.40    | 0.100                                 | 0.310                                                                       | 0.077   | 0.932 | 0.440   |
| Other TCDF     | 117                                                                 | 26.1    | 364   | 169     | 0.000                                 | 0.000                                                                       | 0.000   | 0.000 | 0.000   |
| 1,2378 PCDF    | 3.74                                                                | 1.44    | 10.2  | 5.13    | 0.050                                 | 0.187                                                                       | 0.072   | 0.511 | 0.257   |
| 2,3478 PCDF    | 6.39                                                                | 2.52    | 15.9  | 8.29    | 0.500                                 | 3.194                                                                       | 1.260   | 7.974 | 4.143   |
| Other PCDF     | 57.9                                                                | 22.2    | 207.7 | 96.0    | 0.000                                 | 0.000                                                                       | 0.000   | 0.000 | 0.000   |
| 1,23478 HxCDF  | 8.30                                                                | 4.32    | 19.8  | 10.8    | 0.100                                 | 0.830                                                                       | 0.432   | 1.979 | 1.081   |
| 1,23678 HxCDF  | 4.29                                                                | 2.16    | 10.4  | 5.61    | 0.100                                 | 0.429                                                                       | 0.216   | 1.039 | 0.561   |
| 2,34678 HxCDF  | 5.93                                                                | 3.42    | 13.7  | 7.70    | 0.100                                 | 0.593                                                                       | 0.342   | 1.374 | 0.770   |
| 1,23789 HxCDF  | 0.30                                                                | 0.16    | 0.67  | 0.38    | 0.100                                 | 0.030                                                                       | 0.016   | 0.067 | 0.038   |
| Other HxCDF    | 24.3                                                                | 12.3    | 65.8  | 34.2    | 0.000                                 | 0.000                                                                       | 0.000   | 0.000 | 0.000   |
| 1,234678-HpCDF | 16.2                                                                | 7.65    | 27.4  | 17.1    | 0.010                                 | 0.162                                                                       | 0.076   | 0.274 | 0.171   |
| 1,234789-HpCDF | 2.10                                                                | 1.53    | 3.60  | 2.41    | 0.010                                 | 0.021                                                                       | 0.015   | 0.036 | 0.024   |
| Other HpCDF    | 12.1                                                                | 6.21    | 21.0  | 13.1    | 0.000                                 | 0.000                                                                       | 0.000   | 0.000 | 0.000   |
| Octa-CDF       | 11.0                                                                | 12.1    | 21.7  | 14.9    | 0.001                                 | 0.011                                                                       | 0.012   | 0.022 | 0.015   |
| Total CDF      | 273                                                                 | 103     | 791   | 389     |                                       | 5.77                                                                        | 2.52    | 16.2  | 7.50    |
| Total CDD+CDF  | 427                                                                 | 197     | 1,140 | 576     |                                       | 8.03                                                                        | 3.39    | 20.3  | 10.6    |

a ng/dscm = nanogram per dry standard cubic meter. Standard conditions are defined as 1 atm and 68° F.

b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society, Pilot Study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1989.

[ ] = minimum detection limit. ( ) = estimated maximum possible concentration.

TABLE 2-12. CDD/CDF EMISSIONS SAMPLING AND FLUE GAS PARAMETERS;  
CENTRAL CAROLINA HOSPITAL (1990)

| Run No.                             | Date | Test Condition 1 |              |                |         |
|-------------------------------------|------|------------------|--------------|----------------|---------|
|                                     |      | 1<br>9/20/90     | 3<br>9/22/90 | 10<br>10/02/90 | Average |
| Total Sampling Time (min.)          |      | 240              | 240          | 240            | NA      |
| Average Stack Temperature (°F)      |      | 753              | 734          | 697            | 728     |
| Carbon Dioxide Concentration (% V)  |      | 3.14             | 3.07         | 3.37           | 3.19    |
| Oxygen Concentration (% V)          |      | 15.8             | 16.1         | 15.7           | 15.9    |
| Average Sampling Rate (dscfm)       |      | 0.426            | 0.421        | 0.417          | 0.422   |
| Standard Metered Volume, Vm (dscfm) |      | 2.897            | 2.862        | 2.837          | 2.87    |
| Stack Moisture (% V)                |      | 9.42             | 9.24         | 7.61           | 8.76    |
| Volumetric Flow Rate (acfmin)       |      | 2359             | 2431         | 2311           | 2367.28 |
| Volumetric Flow Rate (dscfm)        |      | 929              | 966          | 943            | 946.07  |
| Volumetric Flow Rate (dscmm)        |      | 26.3             | 27.4         | 26.7           | 26.8    |
| Percent Isokinetic                  |      | 101              | 95.7         | 97.2           | NA      |
| Run No.                             | Date | Test Condition 2 |              |                |         |
|                                     |      | 2<br>9/21/90     | 4<br>9/23/90 | 8<br>9/27/90   | Average |
| Total Sampling Time (min.)          |      | 240              | 240          | 240            | NA      |
| Average Stack Temperature (°F)      |      | 813              | 773          | 750            | 779     |
| Carbon Dioxide Concentration (% V)  |      | 3.76             | 4.01         | 3.86           | 3.88    |
| Oxygen Concentration (% V)          |      | 15.7             | 15.2         | 15.6           | 15.5    |
| Average Sampling Rate (dscfm)       |      | 0.385            | 0.407        | 0.434          | 0.409   |
| Standard Metered Volume, Vm (dscfm) |      | 2.61             | 2.77         | 2.95           | 2.78    |
| Stack Moisture (% V)                |      | 7.60             | 6.93         | 6.71           | 7.08    |
| Volumetric Flow Rate (acfmin)       |      | 2293             | 2405         | 2404           | 2367    |
| Volumetric Flow Rate (dscfm)        |      | 877              | 949          | 978            | 934     |
| Volumetric Flow Rate (dscmm)        |      | 24.8             | 26.9         | 27.7           | 26.5    |
| Percent Isokinetic                  |      | 96.3             | 94.3         | 97.6           | NA      |
| Run No.                             | Date | Test Condition 3 |              |                |         |
|                                     |      | 5<br>9/24/90     | 6<br>9/25/90 | 9<br>9/28/90   | Average |
| Total Sampling Time (min.)          |      | 240              | 240          | 240            | NA      |
| Average Stack Temperature (F)       |      | 748              | 727          | 735            | 736     |
| Carbon Dioxide Concentration (% V)  |      | 3.46             | 3.4          | 3.67           | 3.51    |
| Oxygen Concentration (% V)          |      | 15.6             | 15.7         | 15.3           | 15.5    |
| Average Sampling Rate (dscfm)       |      | 0.423            | 0.437        | 0.445          | 0.435   |
| Standard Metered Volume, Vm (dscfm) |      | 2.87             | 2.97         | 3.02           | 2.96    |
| Stack Moisture (% V)                |      | 7.60             | 8.08         | 8.83           | 8.17    |
| Volumetric Flow Rate (acfmin)       |      | 2415             | 2424         | 2432           | 2424    |
| Volumetric Flow Rate (dscfm)        |      | 974              | 997          | 979            | 983     |
| Volumetric Flow Rate (dscmm)        |      | 27.6             | 28.2         | 27.7           | 27.8    |
| Percent Isokinetic                  |      | 95.4             | 96.9         | 99.9           | NA      |

NA = Not Applicable

substituted CDD/CDF isomers. Results are presented for each isomer as well as for each tetra octa homologue total (Total CDD, Total CDF). All CDD/CDF results have been formatted to three significant figures.

Average CDD/CDF stack gas concentrations for each test condition are presented in Table 2-2. Stack gas concentrations of all target CDD/CDF congeners were detected during each test condition throughout the program. However, flue gas concentrations from Condition 2 (250 lbs/hr-medical waste) were substantially higher than for either of the other conditions. The average 2378 TCDD concentration for Condition 2 was 11.7 ng/dscm compared to 0.26 and 0.38 for Conditions 1 and 3, respectively. The Total CDD/CDF concentrations for Condition 2 was 9,850 ng/dscm compared to 321 and 228 ng/dscm for Conditions 1 and 3, respectively.

Average oxygen concentrations for the 3 conditions varied by only 0.9 percent by volume (see Section 2.7). Therefore, relative corrected flue gas concentrations for each condition are proportionately similar to the uncorrected values. Corrected 2378 TCDD flue gas concentrations for Conditions 1, 2, and 3 were 0.72, 29.35, and 0.97 ng/dscm at 7 percent O<sub>2</sub>, respectively. Total CDD/CDF corrected concentrations for the above conditions were 914, 24,700, and 576 ng/dscm at 7 percent O<sub>2</sub>, respectively.

Average CDD/CDF emission rates for each condition are shown in Table 2-4. Average emissions of 2378 TCDD for Conditions 1, 2, and 3 were 0.41, 18.6, and 0.64 ug/hr, respectively. Average Total CDD/CDF emissions for Conditions 1, 2, and 3 were 522, 15,800, and 379  $\mu$ g/hr, respectively.

Table 2-5 presents average corrected CDD/CDF gas concentrations in 2378 Toxic Equivalents. The concentration of each congener corrected to 7 percent O<sub>2</sub> was multiplied by its respective Toxic Equivalency Factor (TEF) to determine 2378 Toxic Equivalents. The TEF's used in this report are the international TEF (I-TEF) developed by the North Atlantic Treaty Organization Committee of the Challenges of Modern Society (NATO/CCMS(1)).were developed by EPA.(1) The average 2378 Toxic Equivalent Concentrations for Total CDD/CDF for Conditions 1, 2, and 3 were 17.8, 678, and 10.6 ng/dscm at 7 percent O<sub>2</sub>, respectively.

Table 2-6 gives both the CDD/CDF stack gas concentrations and emission rates for each test run in Condition 1. Tables 2-7 and 2-8 give similar information for Conditions 2 and 3, respectively. Non-detected results are presented in brackets (i.e., [1.023]) and other values classified as estimated maximum possible concentration (EMPC) are presented in parenthesis. The EMPCs represent analytical results which have a signal to noise ratio above 2.5:1, but do not meet all of the qualitative identification criteria. These values are included in all averages and summations. Non-detected values are considered to be zero in calculating averages and summations. Condition 1 was made up of Runs 1, 3, and 10, whereas Conditions 2 and 3 were made up of Runs 2, 4, and 8 and Runs 5, 6, and 9, respectively.

Table 2-9 presents both the CDD/CDF stack gas concentration corrected to 7 percent O<sub>2</sub> and the 2378 Toxic Equivalent Concentrations for each run in Condition 1. Tables 2-10 and 2-11 give similar information for Conditions 2 and 3, respectively.

The CDD/CDF sampling and flue gas parameters for each run are shown in Table 2-12. Information on sample rates, sample gas volumes, O<sub>2</sub>/CO<sub>2</sub> concentrations, moisture content, stack gas flow, and other parameters are given.

### 2.2.3 CDD/CDF Ash Results

Incinerator ash was completely removed from the incinerator every morning following a test day. The ash was passed through a one-half inch mesh sieve to remove large pieces of glass, metal, or other large objects. The sifted ash was stored in a pre-cleaned stainless steel drum and allowed to cool. Daily composite ash samples were then taken using a 4 foot sample thief. Three daily ash samples from each run from a given condition were composite into a single ash sample per Condition.

Ash samples were analyzed for the same CDD/CDF isomers that the flue gas samples were analyzed for. Average ash CDD/CDF concentrations for each condition are presented in Table 2-13.

Average ash CDD/CDF concentrations are given in units of parts-per-billion by weight (ppb.wt). Ash 2378 TCDD Toxic Equivalencies are also presented. As was the case with CDD/CDF flue gas emissions, ash from Condition 2 had the highest concentration of congeners. The 2378 TCDD concentration for Conditions 1, 2, and 3

TABLE 2-13. CDD/CDF AVERAGE ASH RESULTS FOR EACH CONDITION;  
CENTRAL CAROLINA HOSPITAL HOSPITAL (1990)

| CONGENER             | COND 1           | COND 2           | COND 3          | 2378-TCDD b<br>TOXIC EQUIV.<br>FACTOR | COND 4          | COND 5          | COND 6          |
|----------------------|------------------|------------------|-----------------|---------------------------------------|-----------------|-----------------|-----------------|
|                      | ASEL<br>(ppb.wt) | ASEL<br>(ppb.wt) | ASH<br>(ppb.wt) |                                       | TEF<br>(ppb.wt) | TEF<br>(ppb.wt) | TEF<br>(ppb.wt) |
| <b>DIOXINS</b>       |                  |                  |                 |                                       |                 |                 |                 |
| 2378 TCDD            | 0.030            | 0.120            | (0.010)         | 1.00000                               | 0.030           | 0.120           | (0.0100)        |
| Other TCDD           | 1.070            | 13.080           | 0.350           | 0.00000                               | 0.000           | 0.000           | 0.000           |
| 12378 PCDD           | 0.110            | 0.630            | 0.030           | 0.50000                               | 0.055           | 0.315           | 0.015           |
| Other PCDD           | 1.190            | 18.970           | 0.550           | 0.00000                               | 0.000           | 0.000           | 0.000           |
| 123478 HxCDD         | 0.120            | 0.810            | 0.040           | 0.10000                               | 0.012           | 0.081           | 0.004           |
| 123678 HxCDD         | 0.110            | 1.400            | 0.050           | 0.10000                               | 0.011           | 0.140           | 0.005           |
| 123789 HxCDD         | 0.350            | 2.500            | 0.100           | 0.10000                               | 0.035           | 0.250           | 0.010           |
| Other HxCDD          | 1.120            | 26.090           | 0.490           | 0.00000                               | 0.000           | 0.000           | 0.000           |
| 1234678-HpCDD        | 0.620            | 10.800           | 0.270           | 0.01000                               | 0.006           | 0.108           | 0.003           |
| Other HpCDD          | 0.780            | 14.900           | 0.380           | 0.00000                               | 0.000           | 0.000           | 0.000           |
| Octa-CDD             | 0.830            | 12.500           | 0.360           | 0.00100                               | 0.001           | 0.013           | 0.000           |
| <b>Total CDD</b>     | <b>6.330</b>     | <b>101.800</b>   | <b>2.690</b>    |                                       | <b>0.150</b>    | <b>1.027</b>    | <b>0.067</b>    |
| <b>FURANS</b>        |                  |                  |                 |                                       |                 |                 |                 |
| 2378 TCDF            | 7.100            | 9.900            | 1.700           | 0.10000                               | 0.710           | 0.990           | 0.170           |
| Other TCDF           | 22.700           | 32.900           | 4.100           | 0.00000                               | 0.000           | 0.000           | 0.000           |
| 12378 PCDF           | 0.830            | 1.400            | 0.160           | 0.05000                               | 0.042           | 0.070           | 0.008           |
| 23478 PCDF           | 2.500            | 4.000            | 0.650           | 0.50000                               | 1.250           | 2.000           | 0.325           |
| Other PCDF           | 24.570           | 37.800           | 5.890           | 0.00000                               | 0.000           | 0.000           | 0.000           |
| 123478 HxCDF         | 6.000            | 10.300           | 1.700           | 0.10000                               | 0.600           | 1.030           | 0.170           |
| 123678 HxCDF         | 1.200            | 3.200            | 0.360           | 0.10000                               | 0.120           | 0.320           | 0.036           |
| 234678 HxCDF         | 3.300            | 7.500            | 1.200           | 0.10000                               | 0.330           | 0.750           | 0.120           |
| 123789 HxCDF         | 0.030            | (0.180)          | 0.010           | 0.10000                               | 0.003           | (0.0180)        | 0.001           |
| Other HxCDF          | 8.570            | 19.800           | 2.430           | 0.00000                               | 0.000           | 0.000           | 0.000           |
| 1234678-HpCDF        | 6.000            | 15.600           | 2.100           | 0.01000                               | 0.060           | 0.156           | 0.021           |
| 1234789-HpCDF        | 0.210            | 1.300            | 0.090           | 0.01000                               | 0.002           | 0.013           | 0.001           |
| Other HpCDF          | 2.590            | 8.400            | 1.010           | 0.00000                               | 0.000           | 0.000           | 0.000           |
| Octa-CDF             | 1.300            | 8.000            | 0.550           | 0.00100                               | 0.001           | 0.008           | 0.001           |
| <b>Total CDF</b>     | <b>86.9</b>      | <b>160</b>       | <b>22.0</b>     |                                       | <b>3.118</b>    | <b>5.355</b>    | <b>0.852</b>    |
| <b>Total CDD+CDF</b> | <b>93.2</b>      | <b>262</b>       | <b>26.6</b>     |                                       | <b>3.268</b>    | <b>6.382</b>    | <b>0.900</b>    |

a [ ] = minimum detection limit

( ) = estimated maximum possible concentration

b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society, Pilot Study on International Information Exchange on Dioxin and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

were 0.03, 0.12 and 0.010 ppb, respectively. Total CDD/CDF concentrations for the three conditions were 93.2, 262, and 24.6 ppb, respectively. The total CDD/CDF TEF concentrations for the three conditions were 3.27, 6.38, and 0.90 ppb wt., respectively.

## 2.3 TOXIC METALS RESULTS

### 2.3.1 Data Reduction Overview

A single sampling train was used to determine emission rates of a series of 11 metals (Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Ag, and Tl) and PM. Three sampling runs were performed under each of the three test conditions in order to assure representative test results. Sampling locations, methods, and QA/QC are discussed in Sections 4, 5, and 6, respectively. The average metals concentrations and emission rates for each test condition are summarized in Table 2-14. The results for each individual run are presented in Tables 2-15 through 2-17. Concentrations at dry, standard conditions, and concentrations adjusted to 7 percent O<sub>2</sub> are shown.

The values reported in Tables 2-14 through 2-17 include the respective detection limits for metals which were not detected in the samples. Since the samples were analyzed in three separate fractions (see Section 5 for details), guidelines for mathematically handling detection limits were required. The guidelines used for this report are:

- If a metal was detected in one or more fractions of the sample train but not in all fractions, only the detected values were used to determine total sample mass (non detects = zero).
- If a metal was not detected in any fractions of a sample train, the lowest detection limit reported for an individual fraction was used as the overall sample detection limit.

For the purpose of calculating average results:

- If a metal was detected in one or more of the test runs but not in all, only those runs for which a detected result was obtained were used in calculating the average. Runs where the metal was not detected were not included for averaging.

TABLE 2-14. AVERAGE METALS STACK GAS CONCENTRATIONS AND EMISSION RATES AT EACH CONDITION; CENTRAL CAROLINA HOSPITAL (1990)

| TEST CONDITION | RUN NUMBERS                   | 1 a      | 2       | 3        |
|----------------|-------------------------------|----------|---------|----------|
|                |                               | 1,3,10   | 2,4,8   | 5,6,9    |
| Antimony       | (ug/dscm)                     | 51.9     | 237     | 22.8     |
|                | (ug/dscm @7% O <sub>2</sub> ) | 142      | 612     | 59.0     |
|                | (g/hr)                        | 0.078    | 0.368   | 0.037    |
| Arsenic        | (ug/dscm)                     | 16.1     | 4.29    | 33.5     |
|                | (ug/dscm @7% O <sub>2</sub> ) | 43.9     | 11.1    | 83.3     |
|                | (g/hr)                        | 0.026    | 0.007   | 0.056    |
| Barium         | (ug/dscm)                     | 8.43     | 33.5    | 11.5     |
|                | (ug/dscm @7% O <sub>2</sub> ) | 23.9     | 86.2    | 29.7     |
|                | (g/hr)                        | 0.013    | 0.052   | 0.019    |
| Beryllium      | (ug/dscm)                     | [0.080]  | 0.442   | [0.075]  |
|                | (ug/dscm @7% O <sub>2</sub> ) | [0.222]  | 1.11    | [0.196]  |
|                | (g/hr)                        | [0.0001] | 0.001   | [0.0001] |
| Cadmium        | (ug/dscm)                     | 89.5     | 21.3    | 7.91     |
|                | (ug/dscm @7% O <sub>2</sub> ) | 260      | 55.0    | 20.5     |
|                | (g/hr)                        | 0.130    | 0.033   | 0.013    |
| Chromium       | (ug/dscm)                     | 8.74     | 14.1    | 71.61    |
|                | (ug/dscm @7% O <sub>2</sub> ) | 25.0     | 36.3    | 190      |
|                | (g/hr)                        | 0.013    | 0.022   | 0.112    |
| Lead           | (ug/dscm)                     | 234      | 726     | 119      |
|                | (ug/dscm @7% O <sub>2</sub> ) | 663      | 1878    | 307      |
|                | (g/hr)                        | 0.356    | 1.12    | 0.197    |
| Mercury        | (ug/dscm)                     | 22.5     | 3.08    | 69.6     |
|                | (ug/dscm @7% O <sub>2</sub> ) | 60.3     | 7.96    | 182      |
|                | (g/hr)                        | 0.034    | 0.005   | 0.115    |
| Nickel         | (ug/dscm)                     | 10.0     | 10.0    | 112      |
|                | (ug/dscm @7% O <sub>2</sub> ) | 29.2     | 25.8    | 298      |
|                | (g/hr)                        | 0.014    | 0.016   | 0.177    |
| Silver         | (ug/dscm)                     | [1.312]  | 5.516   | [1.230]  |
|                | (ug/dscm @7% O <sub>2</sub> ) | [3.634]  | 14.233  | [3.189]  |
|                | (g/hr)                        | [0.002]  | 0.008   | [0.002]  |
| Thallium       | (ug/dscm)                     | 2.34     | [2.116] | [2.005]  |
|                | (ug/dscm @7% O <sub>2</sub> ) | 6.34     | [5.428] | [5.196]  |
|                | (g/hr)                        | 0.004    | [0.003] | [0.003]  |

a. Condition 1 averages do not include Run 10, front half, and therefore are biased low.

NOTE: Values enclosed in brackets represent the minimum detection limits for compounds not detected in the samples. Detection limits are only presented if the compound was not detected in any of the three test runs.

TABLE 2-15. METALS STACK GAS CONCENTRATIONS AND EMISSION RATES FOR  
CONDITION 1;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE                  | 09/20/90    | 09/22/90    | 10/02/90    |          |
|-----------------------|-------------|-------------|-------------|----------|
| TIME                  | 14:00-18:18 | 09:47-14:00 | 10:15-14:21 |          |
| RUN NUMBER            | RUN 1       | RUN 3       | RUN 10      |          |
| O2 CONCENTRATION (%V) | 15.8        | 16.1        | 15.7        |          |
| FLOW RATE (dscm)      | 27.1        | 24.1        | 25.0        | AVERAGE  |
| Antimony (ug/dscm)    | 20.8        | 32.3        | 103         | 51.9     |
| (ug/dscm @7% O2)      | 56.3        | 94.1        | 275         | 142      |
| (g/hr)                | 0.034       | 0.047       | 0.154       | 0.078    |
| Arsenic (ug/dscm)     | 43.7        | 4.20        | 0.48        | 16.1     |
| (ug/dscm @7% O2)      | 118         | 12.2        | 1.30        | 43.9     |
| (g/hr)                | 0.071       | 0.006       | 0.001       | 0.026    |
| Barium (ug/dscm)      | 8.82        | 16.2        | 0.275       | 8.43     |
| (ug/dscm @7% O2)      | 23.9        | 47.2        | 0.737       | 23.9     |
| (g/hr)                | 0.014       | 0.023       | 0.000       | 0.013    |
| Beryllium (ug/dscm)   | [0.076]     | [0.084]     | [0.080]     | [0.080]  |
| (ug/dscm @7% O2)      | [0.206]     | [0.245]     | [0.215]     | [0.222]  |
| (g/hr)                | [0.0001]    | [0.0001]    | [0.0001]    | [0.0001] |
| Cadmium (ug/dscm)     | 5.94        | 173         | [0.197]     | 89.5     |
| (ug/dscm @7% O2)      | 16.1        | 504         | [0.529]     | 260      |
| (g/hr)                | 0.010       | 0.250       | [0.000]     | 0.130    |
| Chromium (ug/dscm)    | 5.87        | 19.84       | 0.509       | 8.74     |
| (ug/dscm @7% O2)      | 15.9        | 57.8        | 1.37        | 25.0     |
| (g/hr)                | 0.010       | 0.029       | 0.001       | 0.013    |
| Lead (ug/dscm)        | 189         | 279         | [0.116]     | 234      |
| (ug/dscm @7% O2)      | 512         | 814         | [0.311]     | 663      |
| (g/hr)                | 0.308       | 0.404       | [0.000]     | 0.356    |
| Mercury (ug/dscm)     | 1.60        | [0.316]     | 43.3        | 22.5     |
| (ug/dscm @7% O2)      | 4.32        | [0.921]     | 116         | 60.3     |
| (g/hr)                | 0.003       | [0.000]     | 0.065       | 0.034    |
| Nickel (ug/dscm)      | [0.763]     | 10.0        | [0.801]     | 10.0     |
| (ug/dscm @7% O2)      | [2.063]     | 29.2        | [2.149]     | 29.2     |
| (g/hr)                | [0.001]     | 0.014       | [0.001]     | 0.014    |
| Silver (ug/dscm)      | [1.249]     | [1.376]     | [1.310]     | [1.312]  |
| (ug/dscm @7% O2)      | [3.378]     | [4.010]     | [3.515]     | [3.634]  |
| (g/hr)                | [0.002]     | [0.002]     | [0.002]     | [0.002]  |
| Thallium (ug/dscm)    | 2.34        | [2.254]     | [2.111]     | 2.34     |
| (ug/dscm @7% O2)      | 6.34        | [6.568]     | [5.665]     | 6.34     |
| (g/hr)                | 0.004       | [0.003]     | [0.003]     | 0.004    |

Note: Run 10 Values do not include the front half catch and therefore are biased low

Values enclosed in brackets represent the maximum detection limits for compounds not detected in the samples. Detection limits are included in the averages unless otherwise indicated.

TABLE 2-16. METALS STACK GAS CONCENTRATIONS AND EMISSION RATES FOR  
CONDITION 2;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE                  | 09/21/90    | 09/23/90    | 09/27/90    |         |
|-----------------------|-------------|-------------|-------------|---------|
| TIME                  | 09:46-13:57 | 11:40-15:47 | 13:45-17:50 |         |
| RUN NUMBER            | 2           | 4           | 8           |         |
| O2 CONCENTRATION (%V) | 15.69       | 15.16       | 15.56       |         |
| FLOW RATE (dscm)      | 24.45       | 26.26       | 27.04       | AVERAGE |
| Antimony (ug/dscm)    | 265         | 164         | 282         | 237     |
| (ug/dscm @7% O2)      | 706         | 398         | 733         | 612     |
| (g/hr)                | 0.388       | 0.259       | 0.457       | 0.368   |
| Arsenic (ug/dscm)     | 6.40        | 3.81        | 2.65        | 4.29    |
| (ug/dscm @7% O2)      | 17.1        | 9.23        | 6.90        | 11.1    |
| (g/hr)                | 0.009       | 0.006       | 0.004       | 0.007   |
| Barium (ug/dscm)      | 40.3        | 31.4        | 28.9        | 33.5    |
| (ug/dscm @7% O2)      | 108         | 76.1        | 75.1        | 86.2    |
| (g/hr)                | 0.059       | 0.049       | 0.047       | 0.052   |
| Beryllium (ug/dscm)   | [0.083]     | 0.446       | 0.437       | 0.442   |
| (ug/dscm @7% O2)      | [0.221]     | 1.08        | 1.14        | 1.11    |
| (g/hr)                | [0.0001]    | 0.001       | 0.001       | 0.001   |
| Cadmium (ug/dscm)     | 20.8        | 17.5        | 25.8        | 21.3    |
| (ug/dscm @7% O2)      | 55.4        | 42.4        | 67.1        | 55.0    |
| (g/hr)                | 0.030       | 0.028       | 0.042       | 0.033   |
| Chromium (ug/dscm)    | 16.3        | 12.9        | 13.1        | 14.1    |
| (ug/dscm @7% O2)      | 43.6        | 31.2        | 34.1        | 36.3    |
| (g/hr)                | 0.024       | 0.020       | 0.021       | 0.022   |
| Lead (ug/dscm)        | 891         | 500         | 786         | 726     |
| (ug/dscm @7% O2)      | 2380        | 1210        | 2050        | 1880    |
| (g/hr)                | 1.31        | 0.787       | 1.28        | 1.12    |
| Mercury (ug/dscm)     | 4.02        | 2.14        | [0.266]     | 3.08    |
| (ug/dscm @7% O2)      | 10.7        | 5.19        | [0.692]     | 7.96    |
| (g/hr)                | 0.006       | 0.003       | [0.0004]    | 0.005   |
| Nickel (ug/dscm)      | 5.34        | 5.28        | 19.4        | 10.0    |
| (ug/dscm @7% O2)      | 14.2        | 12.8        | 50.5        | 25.8    |
| (g/hr)                | 0.008       | 0.008       | 0.031       | 0.016   |
| Silver (ug/dscm)      | 7.11        | 3.93        | [1.258]     | 5.52    |
| (ug/dscm @7% O2)      | 19.0        | 9.51        | [3.275]     | 14.2    |
| (g/hr)                | 0.010       | 0.006       | [0.002]     | 0.008   |
| Thallium (ug/dscm)    | [2.180]     | [2.106]     | [2.062]     | [2.116] |
| (ug/dscm @7% O2)      | [5.816]     | [5.100]     | [5.367]     | [5.428] |
| (g/hr)                | [0.003]     | [0.003]     | [0.003]     | [0.003] |

Note:

Values enclosed in brackets represent the minimum detection limits for compounds not detected in the samples. Detection limits are not included in the averages unless otherwise indicated.

TABLE 2-17. METALS STACK GAS CONCENTRATIONS AND EMISSION RATES FOR  
CONDITION 3;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE                  | 09/24/90    | 09/25/90    | 09/28/90    |          |
|-----------------------|-------------|-------------|-------------|----------|
| TIME                  | 11:45-15:52 | 10:10-14:15 | 11:00-15:05 |          |
| RUN NUMBER            | 5           | 6           | 9           |          |
| O2 CONCENTRATION (%V) | 15.60       | 15.70       | 15.28       |          |
| FLOW RATE (dscfm)     | 27.49       | 25.90       | 28.21       | AVERAGE  |
| Antimony (ug/dscfm)   | 22.0        | 21.0        | 25.6        | 22.8     |
| (ug/dscfm @7% O2)     | 57.6        | 56.1        | 63.3        | 59.0     |
| (g/hr)                | 0.036       | 0.033       | 0.043       | 0.037    |
| Arsenic (ug/dscfm)    | 3.78        | 4.90        | 91.7        | 33.5     |
| (ug/dscfm @7% O2)     | 9.92        | 13.1        | 227         | 83.3     |
| (g/hr)                | 0.006       | 0.008       | 0.155       | 0.056    |
| Barium (ug/dscfm)     | 9.00        | 13.5        | 11.9        | 11.5     |
| (ug/dscfm @7% O2)     | 23.6        | 36.0        | 29.4        | 29.7     |
| (g/hr)                | 0.015       | 0.021       | 0.020       | 0.019    |
| Beryllium (ug/dscfm)  | [0.075]     | [0.078]     | [0.073]     | [0.075]  |
| (ug/dscfm @7% O2)     | [0.197]     | [0.209]     | [0.181]     | [0.196]  |
| (g/hr)                | [0.0001]    | [0.0001]    | [0.0001]    | [0.0001] |
| Cadmium (ug/dscfm)    | 5.11        | 9.72        | 8.91        | 7.91     |
| (ug/dscfm @7% O2)     | 13.4        | 26.0        | 22.0        | 20.5     |
| (g/hr)                | 0.008       | 0.015       | 0.015       | 0.013    |
| Chromium (ug/dscfm)   | 14.1        | 189         | 11.5        | 71.6     |
| (ug/dscfm @7% O2)     | 37.1        | 506         | 28.4        | 190      |
| (g/hr)                | 0.023       | 0.294       | 0.019       | 0.112    |
| Lead (ug/dscfm)       | 125         | 75.6        | 157         | 119      |
| (ug/dscfm @7% O2)     | 329         | 202         | 389         | 307      |
| (g/hr)                | 0.207       | 0.117       | 0.266       | 0.197    |
| Mercury (ug/dscfm)    | 69.6        | [0.273]     | [0.215]     | 69.6     |
| (ug/dscfm @7% O2)     | 182         | [0.730]     | [0.532]     | 182      |
| (g/hr)                | 0.115       | [0.0004]    | [0.0004]    | 0.115    |
| Nickel (ug/dscfm)     | 12.2        | 292         | 33.3        | 112      |
| (ug/dscfm @7% O2)     | 32.0        | 780         | 82.4        | 298      |
| (g/hr)                | 0.020       | 0.454       | 0.056       | 0.177    |
| Silver (ug/dscfm)     | [1.226]     | [1.277]     | [1.188]     | [1.230]  |
| (ug/dscfm @7% O2)     | [3.215]     | [3.414]     | [2.938]     | [3.189]  |
| (g/hr)                | [0.002]     | [0.002]     | [0.002]     | [0.002]  |
| Thallium (ug/dscfm)   | [2.010]     | [2.057]     | [1.947]     | [2.005]  |
| (ug/dscfm @7% O2)     | [5.272]     | [5.499]     | [4.816]     | [5.196]  |
| (g/hr)                | [0.003]     | [0.003]     | [0.003]     | [0.003]  |

Note:

Values enclosed in brackets represent the minimum detection limits for compounds not detected in the samples. Detection limits are not included in the averages unless otherwise indicated.

- If the metal was not detected in any of the three runs, then the average results was reported as not detected at the average detection limit.

This approach assumes that it is most likely that an element would be found in the train fraction with the lowest detection limit; therefore, the minimum detection limit for the entire train is based on the lowest fraction detection limit.

The ash samples were analyzed for the same series of metals as were the emissions test sample. These results will be reported in Section 2.3.3.

### 2.3.2 Metals Emission Results

Table 2-14 presents the metals emission parameters averaged for each condition. Concentrations at standard conditions, concentrations corrected to 7 percent O<sub>2</sub>, and emission rates are shown. No condition consistently had higher emission rates of all metals. Average emissions of antimony, barium, beryllium, lead, and silver were highest for Condition 2. Emissions of cadmium and thallium were highest during Condition 1 and emissions of arsenic, chromium, mercury, and nickel were highest during Condition 3. Lead had the highest emission rates of all metals under each condition at 0.356, 1.12, and 0.197 g/hr for Conditions 1, 2, and 3, respectively. Beryllium, silver, and thallium were not detected in two out of the three test conditions.

Table 2-15 presents the metals emission results for Condition 1 (100 lb/hr pathological waste, 15 minute cycle, 1800-1900°F secondary setpoint). The results for Run 10 do not include the front half catch (probe rinses, filter). The results for this run should therefore be considered suspect low. Lead had the highest emission rates during Runs 1 and 3 at 0.308 and 0.404 g/hr, respectively. Arsenic emissions during run 1 were substantially higher than those from run 3 with values of 0.071 and 0.006 g/hr, respectively.

The metals emission results for Condition 2 (250 lb/hr-medical waste, 15 minute cycle) are presented in Table 2-16. Lead showed the highest metals flue gas concentrations of 891, 500, and 786  $\mu\text{g}/\text{dscm}$  (1.31, 0.787, and 1.28 g/hr) for Runs 2, 4, and 8, respectively.

Table 2-17 presents the metals emission results for Condition 3 (160 lb/hr pathological waste, 15 minute cycle). Emission rates of nickel during Run 6 at 0.454 g/hr were higher than any other metals. Arsenic emissions during Run 9 at 0.155 g/hr were substantially higher than for Runs 5 and 6 (0.006 and 0.008 g/hr), respectively.

A summary of the ratio by weight of metals to PM is presented in Table 2-18. Metals to PM ratios are given in units of milligrams of metal to grams of PM collected by the sampling train. The range of values were 0.001 mg beryllium per gram of PM during run 4 to 8.092 mg lead per gram of PM during Run 3.

Table 2-19 presents a summary of the amounts of metals collected in each of the sample fractions from each run. The front half fraction includes the acetone probe/filter holder rinse, nitric acid ( $HNO_3$ ) probe/filter holder rinse, and the filter itself. The back half fraction included the  $HNO_3$ /hydrogen peroxide ( $H_2O_2$ ) impinger contents (Impingers 1 and 2), and the third fraction consisted of the potassium permanganate ( $KMnO_4$ ) impinger contents analyzed only for mercury. Except for thallium (Run 1), silver (Runs 2 and 4) and mercury, (Run 5), the higher proportion of most metals was collected in the front half fractions. The above metals had higher catches in the Impingers 1 and 2 fractions. Laboratory analytical results for each sample fraction are presented in detail in Appendix E.2.

Sampling and flue gas parameters for the metals and PM runs are shown in Table 2-20. Total sampling times, sample volumes, and isokinetic results for each sampling run are presented. Appendix C.2 contains a complete listing of these and additional sampling and flue gas parameters for each run. The field data sheets are contained in Appendix A.2.

### 2.3.3 Metals In Ash

A sample of the incinerator bottom ash was collected after each sampling run (the following day) to determine metals concentrations in the ash. The metals of interest were the same as those sampled for in the flue gas. Concentrations of the metals in the ash were determined by extracting the metals from 1 gram of ash in 100 ml of extraction fluid. The analyses were then completed as discussed in Section 5.

TABLE 2-18. RATIO OF METALS TO PARTICULATE MATTER,  
CENTRAL CAROLINA HOSPITAL (1970)

| TEST CONDITION | CONDITION 1 |       |       |       |       | CONDITION 2 |       |       |       |         | CONDITION 3 |       |   |         |  |
|----------------|-------------|-------|-------|-------|-------|-------------|-------|-------|-------|---------|-------------|-------|---|---------|--|
|                | RUN NUMBER  | 1     | 2     | 3     | 10    | AVERAGE     | 2     | 4     | 6     | AVERAGE | 5           | 6     | 9 | AVERAGE |  |
| Antimony       | 0.592       | 0.936 | 2.896 | 1.475 | 1.769 | 0.187       | 1.320 | 1.072 | 0.657 | 0.401   | 0.579       | 0.546 |   |         |  |
| Arsenic        | 1.244       | 0.122 | 0.014 | 0.460 | 0.041 | 0.034       | 0.012 | 0.019 | 0.113 | 0.093   | 2.075       | 0.761 |   |         |  |
| Barium         | 0.251       | 0.469 | 0.006 | 0.243 | 0.260 | 0.036       | 0.135 | 0.144 | 0.269 | 0.257   | 0.269       | 0.265 |   |         |  |
| Beryllium      | ND          | ND    | ND    | ND    | ND    | ND          | ND    | ND    | ND    | ND      | ND          | ND    |   |         |  |
| Cadmium        | 0.169       | 5.013 | ND    | 2.591 | 0.134 | 0.020       | 0.121 | 0.092 | 0.153 | 0.186   | 0.202       | 0.180 |   |         |  |
| Chromium       | 0.167       | 0.575 | 0.014 | 0.252 | 0.105 | 0.015       | 0.061 | 0.061 | 0.423 | 3.612   | 0.260       | 1.432 |   |         |  |
| Lead           | 5.392       | 6.092 | ND    | 6.742 | 5.755 | 0.568       | 3.686 | 3.336 | 3.749 | 1.442   | 3.561       | 2.918 |   |         |  |
| Mercury        | 0.046       | 0.009 | 1.222 | 0.422 | 0.026 | 0.002       | ND    | 0.014 | 2.082 | ND      | ND          | 2.082 |   |         |  |
| Nickel         | ND          | 0.290 | ND    | 0.290 | 0.034 | 0.006       | 0.091 | 0.044 | 0.365 | 5.573   | 0.754       | 2.231 |   |         |  |
| Silver         | ND          | ND    | ND    | ND    | 0.046 | 0.004       | ND    | 0.025 | ND    | ND      | ND          | ND    |   |         |  |
| Thallium       | 0.067       | ND    | ND    | 0.067 | ND    | ND          | ND    | ND    | ND    | ND      | ND          | ND    |   |         |  |

ND = Metal not detected in the flue gas.

TABLE 2-19. METALS AMOUNTS IN FLUE GAS SAMPLES BY SAMPLE FRACTION;  
CENTRAL CAROLINA HOSPITAL (1990)

| METAL       | CONDITION 1   |                  |                   |               |                  |                   |               |                  |                   |
|-------------|---------------|------------------|-------------------|---------------|------------------|-------------------|---------------|------------------|-------------------|
|             | RUN 1         |                  |                   | RUN 3         |                  |                   | RUN 10        |                  |                   |
|             | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGER<br>3,4 b | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGER<br>3,4 b | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGER<br>3,4 b |
| Antimony    | 60            | [6.900]          |                   | 76.5          | 8.05             |                   | NC            | 282              |                   |
| Arsenic     | 126           | [0.430]          |                   | 11.0          | [0.440]          |                   | NC            | 1.33             |                   |
| Barium      | 25.0          | 0.433            |                   | 41.8          | 0.544            |                   | NC            | 0.755            |                   |
| Beryllium   | [0.500]       | [0.220]          |                   | [0.500]       | [0.220]          |                   | NC            | [0.220]          |                   |
| Cadmium     | 16.2          | 0.92             |                   | 452           | 0.871            |                   | NC            | [0.540]          |                   |
| Chromium    | 14.6          | 2.33             |                   | 48.0          | 3.92             |                   | NC            | 1.4              |                   |
| Lead        | 546           | [3.200]          |                   | 731           | [3.300]          |                   | NC            | [0.320]          |                   |
| Mercury     | [2.400]       | [6.500]          | 4.61              | [2.400]       | [6.000]          | [0.826]           | NC            | 119              | [0.550]           |
| Nickel      | [5.000]       | [2.200]          |                   | 26.2          | [2.200]          |                   | NC            | [2.200]          |                   |
| Silver      | [8.200]       | [3.600]          |                   | [8.200]       | [3.600]          |                   | NC            | [3.600]          |                   |
| Thallium    | [14.00]       | 6.76             |                   | [14.00]       | [5.900]          |                   | NC            | [5.800]          |                   |
| CONDITION 2 |               |                  |                   |               |                  |                   |               |                  |                   |
| METAL       | RUN 2         |                  |                   | RUN 4         |                  |                   | RUN 8         |                  |                   |
|             | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGER<br>3,4 b | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGER<br>3,4 b | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGER<br>3,4 b |
|             | 655           | 49.0             |                   | 412           | 47.8             |                   | 748           | 58.0             |                   |
| Antimony    | 15.8          | 1.23             |                   | 8.93          | 1.75             |                   | 6.80          | 0.780            |                   |
| Arsenic     | 106.0         | 1.19             |                   | 85.8          | 2.18             |                   | 80.2          | 2.39             |                   |
| Barium      | [0.500]       | [0.220]          |                   | 1.25          | [0.220]          |                   | 1.25          | [0.220]          |                   |
| Beryllium   | 55.2          | [0.540]          |                   | 49.0          | [0.540]          |                   | 73.8          | [0.540]          |                   |
| Cadmium     | 40.0          | 3.45             |                   | 27.0          | 9.05             |                   | 32.8          | 4.68             |                   |
| Chromium    | 2370          | [3.200]          |                   | 1400          | [3.300]          |                   | 2250          | [3.300]          |                   |
| Lead        | [2.400]       | [6.700]          | 10.7              | 6.00          | [5.900]          | [0.670]           | [2.400]       | [6.100]          | [0.760]           |
| Mercury     | 14.2          | [2.200]          |                   | 14.8          | [2.200]          |                   | 55.5          | [2.200]          |                   |
| Nickel      | [8.200]       | 18.9             |                   | [8.200]       | 11.0             |                   | [8.200]       | [3.600]          |                   |
| Silver      | [14.00]       | [5.900]          |                   | [14.00]       | [5.900]          |                   | [14.00]       | [5.500]          |                   |
| CONDITION 3 |               |                  |                   |               |                  |                   |               |                  |                   |
| METAL       | RUN 5         |                  |                   | RUN 6         |                  |                   | RUN 9         |                  |                   |
|             | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGER<br>3,4 b | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGER<br>3,4 b | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGER<br>3,4 b |
|             | 64.5          | [7.000]          |                   | 59.2          | [6.900]          |                   | 77.5          | [7.000]          |                   |
| Antimony    | 11.1          | [0.440]          |                   | 13.8          | [0.430]          |                   | 278           | [0.440]          |                   |
| Arsenic     | 26.0          | 0.435            |                   | 33.2          | 4.76             |                   | 34.8          | 1.20             |                   |
| Barium      | [0.500]       | [0.220]          |                   | [0.500]       | [0.220]          |                   | [0.500]       | [0.220]          |                   |
| Beryllium   | 15.0          | [0.540]          |                   | 26.0          | 1.41             |                   | 27.0          | [0.540]          |                   |
| Cadmium     | 41.5          | [1.100]          |                   | 532.0         | 1.41             |                   | 33.5          | 1.30             |                   |
| Chromium    | 368           | [3.300]          |                   | 213           | [3.200]          |                   | 477           | [3.300]          |                   |
| Lead        | 4.80          | 113              | 86.5              | [2.400]       | [6.400]          | [0.770]           | [2.400]       | [6.100]          | [0.650]           |
| Mercury     | 35.8          | [2.200]          |                   | 823           | [2.200]          |                   | 101           | [2.200]          |                   |
| Nickel      | [8.200]       | [3.600]          |                   | [8.200]       | [3.600]          |                   | [8.200]       | [3.600]          |                   |
| Silver      | [14.00]       | [5.900]          |                   | [14.00]       | [5.900]          |                   | [14.00]       | [5.900]          |                   |

a. Values enclosed in brackets represent minimum detection limits for elements not detected in the samples.

b. Impingers 3 & 4 analyzed for mercury content only.

NC = Analysis not completed at this time.

TABLE 2-20. METALS AND PM EMISSIONS SAMPLING AND FLUE GAS PARAMETERS  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER<br>DATE             | TEST CONDITION 1 |               |                |         |
|--------------------------------|------------------|---------------|----------------|---------|
|                                | 1<br>09/20/90    | 3<br>09/22/90 | 10<br>10/02/90 | AVERAGE |
| Total Sampling Time (min.)     | 240              | 240           | 240            | NA      |
| Average Sampling Rate (dscfm)  | 0.42             | 0.39          | 0.40           | 0.40    |
| Metered Volume (dscf)          | 101.81           | 92.41         | 97.02          | 97.08   |
| Metered Volume (dscm)          | 2.883            | 2.617         | 2.748          | 2.749   |
| Average Stack Temperature (°F) | 751.5            | 759.0         | 749.4          | 753.3   |
| O2 Concentration (% V)         | 15.8             | 16.1          | 15.7           | 15.9    |
| CO2 Concentration (% V)        | 3.1              | 3.1           | 3.4            | 3.2     |
| Stack Gas Moisture (% V)       | 9.4              | 9.9           | 8.1            | 9.1     |
| Volumetric Flow Rate (dscfm)   | 956.00           | 850.54        | 882.08         | 896.21  |
| Volumetric Flow Rate (dscmm)   | 27.07            | 24.09         | 24.98          | 25.38   |
| Percent Isokinetic             | 97.0             | 98.9          | 100            | NA      |
| RUN NUMBER<br>DATE             | TEST CONDITION 2 |               |                |         |
|                                | 2<br>09/21/90    | 4<br>09/23/90 | 8<br>09/27/90  | AVERAGE |
| Total Sampling Time (min.)     | 240              | 240           | 240            | NA      |
| Average Sampling Rate (dscfm)  | 0.39             | 0.41          | 0.42           | 0.41    |
| Metered Volume (dscf)          | 93.92            | 98.89         | 101.01         | 97.94   |
| Metered Volume (dscm)          | 2.660            | 2.801         | 2.861          | 2.774   |
| Average Stack Temperature (°F) | 809.4            | 778.9         | 766.3          | 784.9   |
| O2 Concentration (% V)         | 15.7             | 15.2          | 15.6           | 15.5    |
| CO2 Concentration (% V)        | 3.76             | 4.0           | 3.9            | 3.9     |
| Stack Gas Moisture (% V)       | 8.4              | 7.8           | 6.8            | 7.7     |
| Volumetric Flow Rate (dscfm)   | 863.34           | 927.14        | 954.69         | 915.05  |
| Volumetric Flow Rate (dscmm)   | 24.45            | 26.26         | 27.04          | 25.91   |
| Percent Isokinetic             | 99.1             | 97.1          | 96.3           | NA      |
| RUN NUMBER<br>DATE             | TEST CONDITION 3 |               |                |         |
|                                | 5<br>09/24/90    | 6<br>09/25/90 | 9<br>09/28/90  | AVERAGE |
| Total Sampling Time (min.)     | 240              | 240           | 240            | NA      |
| Average Sampling Rate (dscfm)  | 0.43             | 0.42          | 0.45           | 0.43    |
| Metered Volume (dscf)          | 103.67           | 99.55         | 106.98         | 103.40  |
| Metered Volume (dscm)          | 2.936            | 2.819         | 3.030          | 2.928   |
| Average Stack Temperature (°F) | 746.4            | 724.6         | 770.9          | 747.3   |
| O2 Concentration (% V)         | 15.6             | 15.7          | 15.3           | 15.5    |
| CO2 Concentration (% V)        | 3.5              | 3.4           | 3.7            | 3.5     |
| Stack Gas Moisture (% V)       | 8.3              | 8.6           | 9.0            | 8.6     |
| Volumetric Flow Rate (dscfm)   | 970.52           | 914.65        | 996.12         | 960.43  |
| Volumetric Flow Rate (dscmm)   | 27.49            | 25.90         | 28.21          | 27.20   |
| Percent Isokinetic             | 97.3             | 99.1          | 97.8           | NA      |

NA = Not Applicable

The metals in ash results are shown in Table 2-21 for each test condition. Barium was the most prevalent metal found in the ash from all test conditions at 2,630, 7,260, and 245 mg/kg for Conditions 1, 2, and 3, respectively. All metals except silver were detected in at least 1 of the samples. Analytical results of the ash analyses are contained in Appendix E.2.

## 2.4 PARTICULATE MATTER/VISIBLE EMISSIONS

### 2.4.1 Particulate Matter Results

Particulate matter emissions were determined from the same sampling train used for metals analysis. Before metals analysis, PM collected on the filter and in the front half acetone rinse (probe, nozzle, filter holder) was analyzed gravimetrically. The PM stack gas concentrations and emission rates for each sampling run, as well as averages for each test condition are presented in Table 2-22. Uncorrected concentrations and concentrations adjusted to 7 percent O<sub>2</sub> are shown. Test Condition 2 had the highest concentrations and emission rates (0.182 gr/dscf and 1.439 lb/hr) while Test Condition 1 had the lowest (0.015 gr/dscf and 0.118 lb/hr). A brief summary of the sampling and flue gas parameters for the PM runs is given in Table 2-20 and Appendix C.2 presents a detailed listing of the parameters for each sampling run. The results of the gravimetric analyses are presented in Appendix E.2.

### 2.4.2 Visible Emissions

The opacity of emissions from the stack were determined visually by a qualified observer following EPA Method 9 protocol. Observations were recorded during the full duration of each PM/metals sampling run.

Opacity observations were recorded at 15 second intervals to the nearest 5 percent. Opacity for each run was determined by grouping the 15-second field observations into set of 24 (6 minutes) consecutive observations and then calculating the average percent opacity of each set. An average percent opacity for each run was also calculated as well as a test condition average. A summary of the observations is presented in Table 2-23. Test Conditions 1 and 3 both had an average percent opacity of 0 and Test Condition 2 had an average percent opacity of 13.

TABLE 2-21. METALS IN ASH CONCENTRATIONS;  
CENTRAL CAROLINA HOSPITAL (1990)

| Test Condition<br>Run No.'s | 1       | 2       | 3       |
|-----------------------------|---------|---------|---------|
|                             | (mg/kg) | (mg/kg) | (mg/kg) |
| Antimony                    | 9.60    | 19.2    | [6.4]   |
| Arsenic                     | 11.7    | 45.5    | [4.0]   |
| Barium                      | 2630    | 7260    | 245     |
| Beryllium                   | 1.60    | 4.10    | 1.00    |
| Cadmium                     | 3.30    | 1.20    | [0.50]  |
| Chromium                    | 30.4    | 26.7    | 8.30    |
| Lead                        | 78.4    | 232     | [15.7]  |
| Mercury                     | [0.039] | 0.0450  | [0.039] |
| Nickel                      | 7.20    | 15.1    | [2.0]   |
| Silver                      | [3.3]   | [3.3]   | [3.3]   |
| Thallium                    | 72.7    | 1820    | 410     |

a Values enclosed in brackets represent minimum detection limits  
for elements not detected in the samples.

TABLE 2-22. PARTICULATE MATTER CONCENTRATIONS AND EMISSIONS RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | SAMPLING CONDITION | RUN NUMBER | TIME        | FLUE GAS CONCENTRATION |                                      |                                       | FLUE GAS EMISSION RATE<br>(lb/hr) |
|----------|--------------------|------------|-------------|------------------------|--------------------------------------|---------------------------------------|-----------------------------------|
|          |                    |            |             | (grains/decf)          | (grains/decf<br>@7% O <sub>2</sub> ) | (grams/decim)<br>@7% O <sub>2</sub> ) |                                   |
| 09/20/90 | 1                  | 1          | 14:00-18:18 | 0.015                  | 0.042                                | 0.035                                 | 0.126                             |
| 09/22/90 | 1                  | 3          | 09:47-14:00 | 0.015                  | 0.044                                | 0.035                                 | 0.110                             |
| 10/02/90 | 1                  | 10         | 10:15-14:21 | 0.015                  | 0.042                                | 0.035                                 | 0.117                             |
|          |                    | AVERAGES:  |             | 0.015                  | 0.043                                | 0.035                                 | 0.097                             |
| 09/21/90 | 2                  | 2          | 09:46-13:57 | 0.068                  | 0.181                                | 0.155                                 | 0.413                             |
| 09/23/90 | 2                  | 4          | 11:40-15:47 | 0.384                  | 0.931                                | 0.879                                 | 2.129                             |
| 09/27/90 | 2                  | 8          | 13:45-17:50 | 0.093                  | 0.243                                | 0.213                                 | 0.555                             |
|          |                    | AVERAGES:  |             | 0.182                  | 0.451                                | 0.416                                 | 1.033                             |
| 09/24/90 | 3                  | 5          | 11:45-15:52 | 0.015                  | 0.038                                | 0.033                                 | 0.088                             |
| 09/25/90 | 3                  | 6          | 10:10-14:15 | 0.023                  | 0.061                                | 0.052                                 | 0.140                             |
| 09/28/90 | 3                  | 9          | 11:00-15:05 | 0.019                  | 0.048                                | 0.044                                 | 0.109                             |
|          |                    | AVERAGES:  |             | 0.019                  | 0.049                                | 0.043                                 | 0.112                             |
|          |                    |            |             |                        |                                      |                                       | 0.155                             |
|          |                    |            |             |                        |                                      |                                       | 0.070                             |

TABLE 2-23. PERCENT OPACITY OBSERVATIONS SUMMARY;  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER                                       | TEST CONDITION 1 |             |             |
|--------------------------------------------------|------------------|-------------|-------------|
|                                                  | 1                | 3           | 10          |
|                                                  | 09/20/90         | 09/22/90    | 10/02/90    |
|                                                  | 14:00-18:18      | 09:47-14:00 | 10:15-14:21 |
| Range of Individual Observations (% opacity) (a) | 0-5              | 0-5         | 0-10        |
| Range of Set Averages (% opacity) (b)            | 0                | 0-1         | 0-1         |
| Run Average (% opacity) (c)                      | 0                | 0           | 0           |
| Test Conditions Average (% opacity)              |                  | 0           |             |
| RUN NUMBER                                       | TEST CONDITION 2 |             |             |
|                                                  | 2                | 4           | 8           |
|                                                  | 09/21/90         | 09/23/90    | 09/27/90    |
|                                                  | 09:46-13:57      | 11:40-15:47 | 13:45-17:50 |
| Range of Individual Observations (% opacity)     | 0-100            | 0-100       | 0-80        |
| Range of Set Averages (% opacity)                | 0-23             | 0-71        | 0-21        |
| Run Average (% opacity)                          | 5                | 28          | 6           |
| Test Conditions Average (% opacity)              |                  | 13          |             |
| RUN NUMBER                                       | TEST CONDITION 3 |             |             |
|                                                  | 5                | 6           | 9           |
|                                                  | 09/24/90         | 09/25/90    | 09/28/90    |
|                                                  | 11:45-15:52      | 10:10-14:15 | 11:00-15:05 |
| Range of Individual Observations (% opacity)     | 0-25             | 0-25        | 0-25        |
| Range of Set Averages (% opacity)                | 0-1              | 0-3         | 0-2         |
| Run Average (% opacity)                          | 0                | 0           | 0           |
| Test Conditions Average (% opacity)              |                  | 0           |             |

a Individual observations recorded at 15 second intervals, to the nearest five percent

b A set is composed of 24 consecutive individual observations.

c The run average is calculated by averaging the set averages  
in a run, or averaging all the individual observations.

## 2.5 HALOGEN GAS EMISSIONS

Hydrogen chloride (HCl), HF, and HBr, incinerator stack gas concentrations were manually sampled following EPA Method 26 procedures. In this method, flue gas was extracted from the stack and passed through acidified water. The HCl solubilizes and forms chloride (Cl<sup>-</sup>) ions in acidified water. Ion chromatography was used to detect the Cl<sup>-</sup>, bromide (Br<sup>-</sup>), and fluoride (F<sup>-</sup>) ions present in the sample. Three test runs were performed at each of the three operating conditions described previously.

### 2.5.1 Halogen Gas Emissions Results

Table 2-24 presents a summary of the average HCl, HF, and HBr test results with concentrations reported on a ppmV and ppmV corrected to 7 percent O<sub>2</sub> basis. Conditions 1 and 3 had similar average HCl concentrations at 45.1 and 43.7 ppmV, respectively. The Condition 2 average was 593 ppmV HCl. When compared to the HCl gas concentrations, substantially lower amounts of HF and HBr were found. Average HF concentrations for Conditions 1, 2, and 3 were 2.15, 9.96, and 1.28 ppmV, respectively. Average HBr concentrations were 0.20, 0.55, and 0.16 ppmV for the above conditions, respectively.

Table 2-25 presents the HCl results for each run performed under each condition. Three "sub-runs" were conducted during each day's overall test interval (i.e., 1A, 1B, and 1C). Concentrations as well as emission rates are presented. Emission rates used an average of the stack gas flows determined from the PM/Metals and CDD/CDF sampling trains. The HCl concentrations ranged from 19.4 ppmV for Run 1A to 943 ppmV for Run 8C. The corresponding HCl emission rates were 47.1 and 2,347 g/hr, respectively.

Table 2-26 presents the HF emissions results for all test runs. Certain values in this table are enclosed in parenthesis, denoting them as "maximum estimated concentration." These numbers were flagged by the analytical laboratory as estimates because they were less than five times the detection limit. These values are included in all averages. Run 2B had a concentration substantially higher than the rest of the runs at 23.7 ppmV, respectively. The range of concentrations for the other runs was 0.755 to 10.7 ppmV for Runs 1A and 8A, respectively. Emissions rates ranged from 1.006 to 29.1 g/hr.

TABLE 2-24. SUMMARY OF HALOGEN ACID TESTING RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| TEST<br>RUN<br>NUMBER         | HCl CONCENTRATION<br>(ppmv)<br>@7% O2) | HF CONCENTRATION<br>(ppmv)<br>@7% O2) | HBr CONCENTRATION<br>(ppmv)<br>@7% O2) |
|-------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|
| AVERAGE 1                     | 32.1                                   | 84.1<br>(1.17)                        | (3.07)<br>0.21                         |
| AVERAGE 3                     | 65.3                                   | 186<br>3.11                           | 8.96<br>0.21                           |
| AVERAGE 10                    | 38.1                                   | 99.0<br>2.16                          | 5.64<br>0.19                           |
| AVERAGE COND 1                | 45.1                                   | 123<br>1.76                           | 4.87<br>0.20                           |
| AVERAGE 2                     | 487                                    | 1,277<br>1,583                        | 16.2<br>5.75                           |
| AVERAGE 4                     | 647                                    | 1,753                                 | 13.44<br>7.95                          |
| AVERAGE 8                     | 644                                    |                                       | 20.06<br>0.71                          |
| AVERAGE COND 2                | 593                                    | 1,537<br>9.96                         | 26.7<br>0.55                           |
| AVERAGE 5                     | 37.6                                   | 100<br>(1.43)                         | (3.77)<br>1.37                         |
| AVERAGE 6                     | 31.1                                   | 81.2<br>153                           | (0.942)<br>(1.456)                     |
| AVERAGE 9                     | 62.3                                   |                                       | (2.46)<br>(3.58)                       |
| AVERAGE COND 3                | 43.7                                   | 111<br>0.00                           | 0.00<br>0.16                           |
| [ ] = Minimum Detection Limit |                                        |                                       |                                        |

TABLE 2-25. SUMMARY OF HCI RESULTS FOR EACH CONDITION;  
CENTRAL CAROLINA HOSPITAL (1990)

| TEST<br>RUN<br>NUMBER | MEASURED CONCENTRATIONS |                                  |             |                               | EMISSION<br>RATE<br>(g/hr) |
|-----------------------|-------------------------|----------------------------------|-------------|-------------------------------|----------------------------|
|                       | (mg/dscm)               | (mg/dscm<br>@7% O <sub>2</sub> ) | (ppmv)      | (ppmv<br>@7% O <sub>2</sub> ) |                            |
| RUN 1A                | 29.4                    | 79.3                             | 19.4        | 52.3                          | 47.1                       |
| RUN 1B                | 54.1                    | 135                              | 35.7        | 88.9                          | 86.6                       |
| RUN 1C                | 62.3                    | 169                              | 41.1        | 111                           | 99.8                       |
| <b>AVERAGE</b>        | <b>48.6</b>             | <b>128</b>                       | <b>32.1</b> | <b>84.1</b>                   | <b>77.8</b>                |
| RUN 2A                | 802                     | 1,764                            | 529         | 1,164                         | 1,186                      |
| RUN 2B                | 674                     | 2,109                            | 444         | 1,391                         | 996                        |
| RUN 2C                | NA                      | NA                               | NA          | NA                            | NA                         |
| <b>AVERAGE</b>        | <b>738</b>              | <b>1,936</b>                     | <b>487</b>  | <b>1,277</b>                  | <b>1,091</b>               |
| RUN 3A                | 101                     | 278                              | 66.8        | 184                           | 156                        |
| RUN 3B                | 96.7                    | 285                              | 63.8        | 188                           | 149                        |
| RUN 3C                | NA                      | NA                               | NA          | NA                            | NA                         |
| <b>AVERAGE</b>        | <b>99.0</b>             | <b>282</b>                       | <b>65.3</b> | <b>186</b>                    | <b>153</b>                 |
| RUN 4A                | 327                     | 715                              | 216         | 471                           | 521                        |
| RUN 4B                | 1,276                   | 3,068                            | 841         | 2,024                         | 2,033                      |
| RUN 4C                | 1,342                   | 3,415                            | 885         | 2,253                         | 2,138                      |
| <b>AVERAGE</b>        | <b>981</b>              | <b>2,399</b>                     | <b>647</b>  | <b>1,583</b>                  | <b>1,564</b>               |
| RUN 5A                | 49.7                    | 131                              | 32.8        | 86.4                          | 82.0                       |
| RUN 5B                | 48.1                    | 117                              | 31.7        | 77.1                          | 79.4                       |
| RUN 5C                | 73.1                    | 206                              | 48.2        | 136                           | 121                        |
| <b>AVERAGE</b>        | <b>57.0</b>             | <b>151</b>                       | <b>37.6</b> | <b>100</b>                    | <b>94.1</b>                |
| RUN 6A                | 47.8                    | 125                              | 31.5        | 82.2                          | 77.6                       |
| RUN 6B                | 43.3                    | 111                              | 28.6        | 73.1                          | 70.3                       |
| RUN 6C                | 50.5                    | 134                              | 33.3        | 88.2                          | 82.0                       |
| <b>AVERAGE</b>        | <b>47.2</b>             | <b>123</b>                       | <b>31.1</b> | <b>81.2</b>                   | <b>76.6</b>                |
| RUN 8A                | 630                     | 1,334                            | 416         | 880                           | 1,035                      |
| RUN 8B                | 868                     | 2,436                            | 572         | 1,607                         | 1,424                      |
| RUN 8C                | 1,430                   | 4,201                            | 943         | 2,771                         | 2,347                      |
| <b>AVERAGE</b>        | <b>976</b>              | <b>2,657</b>                     | <b>644</b>  | <b>1,753</b>                  | <b>1,602</b>               |
| RUN 9A                | 120                     | 283                              | 79.1        | 187                           | 201                        |
| RUN 9B                | 60.0                    | 141                              | 39.6        | 93.0                          | 101                        |
| RUN 9C                | 104                     | 271                              | 68.4        | 179                           | 174                        |
| <b>AVERAGE</b>        | <b>94.5</b>             | <b>232</b>                       | <b>62.3</b> | <b>153</b>                    | <b>159</b>                 |
| RUN 10A               | 97.0                    | 252                              | 64.0        | 166                           | 150                        |
| RUN 10B               | 40.0                    | 97.9                             | 26.4        | 64.6                          | 62.0                       |
| RUN 10C               | 36.1                    | 100.5                            | 23.8        | 66.3                          | 56.0                       |
| <b>AVERAGE</b>        | <b>57.7</b>             | <b>150.1</b>                     | <b>38.1</b> | <b>99.0</b>                   | <b>89.5</b>                |

NA = Not Applicable (Runs not completed)

TABLE 2-26. SUMMARY OF HF RESULTS FOR EACH CONDITION;  
CENTRAL CAROLINA HOSPITAL (1990)

| TEST<br>RUN<br>NUMBER | MEASURED CONCENTRATIONS |                                  |             |                               | EMISSION<br>RATE<br>(g/hr) |
|-----------------------|-------------------------|----------------------------------|-------------|-------------------------------|----------------------------|
|                       | (mg/dscm)               | (mg/dscm<br>@7% O <sub>2</sub> ) | (ppmv)      | (ppmv<br>@7% O <sub>2</sub> ) |                            |
| RUN 1A                | (0.628)                 | (1.695)                          | (0.755)     | (2.038)                       | (1.006)                    |
| RUN 1B                | (1.075)                 | (2.678)                          | (1.292)     | (3.218)                       | (1.721)                    |
| RUN 1C                | (1.216)                 | (3.288)                          | (1.462)     | (3.954)                       | (1.947)                    |
| <b>AVERAGE</b>        | <b>0.97</b>             | <b>2.55</b>                      | <b>1.17</b> | <b>3.07</b>                   | <b>1.56</b>                |
| RUN 2A                | 7.23                    | 15.9                             | 8.69        | 19.1                          | 10.7                       |
| RUN 2B                | 19.7                    | 61.7                             | 23.7        | 74.2                          | 29.1                       |
| RUN 2C                | NA                      | NA                               | NA          | NA                            | NA                         |
| <b>AVERAGE</b>        | <b>13.5</b>             | <b>38.8</b>                      | <b>16.2</b> | <b>46.6</b>                   | <b>19.9</b>                |
| RUN 3A                | (1.825)                 | (5.013)                          | (2.194)     | (6.027)                       | (2.817)                    |
| RUN 3B                | 3.35                    | 9.90                             | 4.03        | 11.9                          | 5.18                       |
| RUN 3C                | NA                      | NA                               | NA          | NA                            | NA                         |
| <b>AVERAGE</b>        | <b>2.59</b>             | <b>7.45</b>                      | <b>3.11</b> | <b>8.96</b>                   | <b>4.00</b>                |
| RUN 4A                | 7.17                    | 15.7                             | 8.61        | 18.8                          | 11.4                       |
| RUN 4B                | 2.98                    | 7.17                             | 3.58        | 8.62                          | 4.75                       |
| RUN 4C                | 4.21                    | 10.7                             | 5.06        | 12.9                          | 6.71                       |
| <b>AVERAGE</b>        | <b>4.79</b>             | <b>11.2</b>                      | <b>5.75</b> | <b>13.4</b>                   | <b>7.63</b>                |
| RUN 5A                | (0.835)                 | (2.202)                          | (1.004)     | (2.648)                       | (1.379)                    |
| RUN 5B                | (1.296)                 | (3.149)                          | (1.558)     | (3.786)                       | (2.141)                    |
| RUN 5C                | (1.439)                 | (4.057)                          | (1.730)     | (4.878)                       | (2.377)                    |
| <b>AVERAGE</b>        | <b>1.19</b>             | <b>3.14</b>                      | <b>1.43</b> | <b>3.77</b>                   | <b>1.97</b>                |
| RUN 6A                | (0.734)                 | (1.914)                          | (0.882)     | (2.300)                       | (1.192)                    |
| RUN 6B                | (0.670)                 | (1.715)                          | (0.805)     | (2.061)                       | (1.088)                    |
| RUN 6C                | (0.948)                 | (2.510)                          | (1.140)     | (3.018)                       | (1.539)                    |
| <b>AVERAGE</b>        | <b>0.78</b>             | <b>2.05</b>                      | <b>0.94</b> | <b>2.46</b>                   | <b>1.27</b>                |
| RUN 8A                | 8.89                    | 18.8                             | 10.7        | 22.6                          | 14.6                       |
| RUN 8B                | 6.96                    | 19.5                             | 8.37        | 23.5                          | 11.4                       |
| RUN 8C                | 3.99                    | 11.7                             | 4.79        | 14.1                          | 6.54                       |
| <b>AVERAGE</b>        | <b>6.61</b>             | <b>16.7</b>                      | <b>7.95</b> | <b>20.1</b>                   | <b>10.9</b>                |
| RUN 9A                | (0.939)                 | (2.220)                          | (1.129)     | (2.669)                       | (1.576)                    |
| RUN 9B                | (1.279)                 | (3.008)                          | (1.538)     | (3.617)                       | (2.146)                    |
| RUN 9C                | (1.416)                 | (3.707)                          | (1.702)     | (4.455)                       | (2.376)                    |
| <b>AVERAGE</b>        | <b>1.21</b>             | <b>2.98</b>                      | <b>1.46</b> | <b>3.58</b>                   | <b>2.03</b>                |
| RUN 10A               | 3.32                    | 8.63                             | 3.99        | 10.4                          | 5.15                       |
| RUN 10B               | (0.955)                 | (2.337)                          | (1.148)     | (2.809)                       | (1.481)                    |
| RUN 10C               | (1.117)                 | (3.111)                          | (1.343)     | (3.741)                       | (1.732)                    |
| <b>AVERAGE</b>        | <b>1.80</b>             | <b>4.69</b>                      | <b>2.16</b> | <b>5.64</b>                   | <b>2.79</b>                |

NA = Not Applicable (runs not completed)

( ) = Maximum estimated concentration

Table 2-27 presents the HBr emission results for all test runs. Hydrogen bromide was detected in the flue gas in 19 out of 25 test runs. Detected concentrations ranged from 0.18 to 0.76 ppmV for Runs 10A and 8C, respectively. Corresponding emission rates were 0.96 to 4.21 g/hr.

### 2.5.2 HCl CEM-Manual Comparison

Continuous emissions monitoring was performed to measure HCl in addition to other gas concentrations. The average HCl CEM concentrations calculated over the duration of the PM/Metals, CDD/CDF, and Microbial Survivability emissions test runs are presented in Section 2.7. The following paragraphs and Table 2-28 present HCl CEM data averaged over the same time period as each manual halogen "sub-run." A direct comparison can then be made between the CEM HCl data and the manual HCl data.

The results show generally good agreement between the manual and CEM concentrations. The CEM values in 7 out of 18 runs were within 30 percent of the manual values. Eleven out of 18 runs were within 40 percent. Only did Run 10 exhibit deviations greater than 100 percent. Recent state-of-the art HCl CEM sampling and instrument methods were employed during this test program. Especially important hardware developments included the use of a high temperature in-stack probe which allowed for fast, accurate responses to extreme and quick changes in stack gas HCl concentrations.

Additional agreement may have been gained if more post-test HCl calibrations could have been performed. The HCl CEM calibrations needed to be completed at the same stack gas temperature as during the test. However, following several tests, the incinerator went into a burn down mode (decrease in temperature) before final calibrations could be performed. Post-test calibrations may have revealed slight calibration drift which could be incorporated into data drift corrections for more accurate data.

For the purpose of determining the most accurate HCl flue gas concentrations, data generated by the EPA test protocol (EPA Method 26) should be used.

TABLE 2-27. SUMMARY OF HBr RESULTS AT EACH CONDITION;  
CENTRAL CAROLINA HOSPITAL (1990)

| TEST<br>RUN<br>NUMBER | MEASURED CONCENTRATIONS |                                  |                |                               | EMISSION<br>RATE<br>( $\mu$ /hr) |
|-----------------------|-------------------------|----------------------------------|----------------|-------------------------------|----------------------------------|
|                       | (mg/dscm)               | (mg/dscm<br>@7% O <sub>2</sub> ) | (ppmv)         | (ppmv<br>@7% O <sub>2</sub> ) |                                  |
| RUN 1A                | 0.69                    | 1.85                             | 0.20           | 0.55                          | 1.10                             |
| RUN 1B                | 0.73                    | 1.82                             | 0.22           | 0.54                          | 1.17                             |
| RUN 1C                | 0.66                    | 1.78                             | 0.20           | 0.53                          | 1.05                             |
| <b>AVERAGE</b>        | <b>0.69</b>             | <b>1.82</b>                      | <b>0.21</b>    | <b>0.54</b>                   | <b>1.11</b>                      |
| RUN 2A                | 2.32                    | 5.11                             | 0.69           | 1.52                          | 3.43                             |
| RUN 2B                | 0.85                    | 2.65                             | 0.25           | 0.79                          | 1.25                             |
| RUN 2C                | NA                      | NA                               | NA             | NA                            | NA                               |
| <b>AVERAGE</b>        | <b>1.58</b>             | <b>3.88</b>                      | <b>0.47</b>    | <b>1.15</b>                   | <b>2.34</b>                      |
| RUN 3A                | 0.66                    | 1.82                             | 0.20           | 0.54                          | 1.02                             |
| RUN 3B                | 0.74                    | 2.20                             | 0.22           | 0.65                          | 1.15                             |
| RUN 3C                | NA                      | NA                               | NA             | NA                            | NA                               |
| <b>AVERAGE</b>        | <b>0.70</b>             | <b>2.01</b>                      | <b>0.21</b>    | <b>0.60</b>                   | <b>1.09</b>                      |
| RUN 4A                | 1.80                    | 3.93                             | 0.53           | 1.17                          | 2.86                             |
| RUN 4B                | 2.02                    | 4.85                             | 0.60           | 1.44                          | 3.22                             |
| RUN 4C                | 0.89                    | 2.26                             | 0.26           | 0.67                          | 1.41                             |
| <b>AVERAGE</b>        | <b>1.57</b>             | <b>3.68</b>                      | <b>0.47</b>    | <b>1.09</b>                   | <b>2.50</b>                      |
| RUN 5A                | [0.108]                 | [0.285]                          | [0.032]        | [0.084]                       | [0.178]                          |
| RUN 5B                | [0.109]                 | [0.265]                          | [0.032]        | [0.078]                       | [0.180]                          |
| RUN 5C                | [0.108]                 | [0.305]                          | [0.032]        | [0.090]                       | [0.178]                          |
| <b>AVERAGE</b>        | <b>[0.108]</b>          | <b>[0.285]</b>                   | <b>[0.032]</b> | <b>[0.084]</b>                | <b>[0.179]</b>                   |
| RUN 6A                | (0.530)                 | (1.382)                          | (0.158)        | (0.412)                       | (0.861)                          |
| RUN 6B                | [0.109]                 | [0.279]                          | [0.032]        | [0.082]                       | [0.177]                          |
| RUN 6C                | [0.111]                 | [0.294]                          | [0.033]        | [0.087]                       | [0.180]                          |
| <b>AVERAGE</b>        | <b>0.53</b>             | <b>1.38</b>                      | <b>0.16</b>    | <b>0.41</b>                   | <b>0.86</b>                      |
| RUN 8A                | 2.10                    | 4.43                             | 0.62           | 1.32                          | 3.44                             |
| RUN 8B                | 2.48                    | 6.96                             | 0.74           | 2.07                          | 4.07                             |
| RUN 8C                | 2.57                    | 7.54                             | 0.76           | 2.24                          | 4.21                             |
| <b>AVERAGE</b>        | <b>2.38</b>             | <b>6.31</b>                      | <b>0.71</b>    | <b>1.88</b>                   | <b>3.91</b>                      |
| RUN 9A                | 0.63                    | 1.49                             | 0.19           | 0.44                          | 1.06                             |
| RUN 9B                | [0.113]                 | [0.266]                          | [0.034]        | [0.080]                       | [0.190]                          |
| RUN 9C                | (0.521)                 | (1.364)                          | (0.155)        | (0.406)                       | (0.874)                          |
| <b>AVERAGE</b>        | <b>0.58</b>             | <b>1.43</b>                      | <b>0.17</b>    | <b>0.42</b>                   | <b>0.96</b>                      |
| RUN 10A               | 0.62                    | 1.60                             | 0.18           | 0.48                          | 0.96                             |
| RUN 10B               | 0.73                    | 1.80                             | 0.22           | 0.53                          | 1.14                             |
| RUN 10C               | (0.541)                 | (1.507)                          | (0.161)        | (0.448)                       | (0.839)                          |
| <b>AVERAGE</b>        | <b>0.63</b>             | <b>1.64</b>                      | <b>0.19</b>    | <b>0.49</b>                   | <b>0.98</b>                      |

NA = Not applicable (runs not completed)

[ ] = Minimum detection limit; ( ) = maximum estimated concentration

TABLE 2-28. COMPARISON OF MANUAL AND CEM HCI RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| TEST<br>RUN<br>NUMBER | MANUAL HCI RESULTS |                               | CEM HCI RESULTS |                                            |
|-----------------------|--------------------|-------------------------------|-----------------|--------------------------------------------|
|                       | (ppmV/<br>dry)     | (ppmV<br>@7% O <sub>2</sub> ) | (ppmV/<br>dry)  | (ppmV<br>@7% O <sub>2</sub> ) <sup>a</sup> |
| RUN 1A                | 19.4               | 52.3                          | NC              | NC                                         |
| RUN 1B                | 35.7               | 88.9                          | NC              | NC                                         |
| RUN 1C                | 41.1               | 111                           | 42.7            | 120                                        |
| <b>AVERAGE</b>        | <b>32.1</b>        | <b>84.1</b>                   | <b>NA</b>       | <b>NA</b>                                  |
| RUN 2A                | 529                | 1164                          | 548             | 1279                                       |
| RUN 2B                | 444                | 1391                          | 397             | 1253                                       |
| RUN 2C                | NC                 | NC                            | NC              | NC                                         |
| <b>AVERAGE</b>        | <b>487</b>         | <b>1277</b>                   | <b>473</b>      | <b>1266</b>                                |
| RUN 3A                | 66.8               | 184                           | 93.8            | 284                                        |
| RUN 3B                | 63.8               | 188                           | 18.6            | 60.0                                       |
| RUN 3C                | NC                 | NC                            | 32.7            | 123                                        |
| <b>AVERAGE</b>        | <b>65.3</b>        | <b>186</b>                    | <b>NA</b>       | <b>NA</b>                                  |
| RUN 4A                | 216                | 471                           | NC              | NC                                         |
| RUN 4B                | 841                | 2024                          | 625             | 1441                                       |
| RUN 4C                | 885                | 2253                          | 659             | 1633                                       |
| <b>AVERAGE</b>        | <b>647</b>         | <b>1583</b>                   | <b>NA</b>       | <b>NA</b>                                  |
| RUN 5A                | 32.8               | 86.4                          | NC              | NC                                         |
| RUN 5B                | 31.7               | 77.1                          | 39.9            | 89.3                                       |
| RUN 5C                | 48.2               | 136                           | 31.0            | 81.0                                       |
| <b>AVERAGE</b>        | <b>37.6</b>        | <b>99.8</b>                   | <b>NA</b>       | <b>NA</b>                                  |
| RUN 6A                | 31.5               | 82.2                          | NC              | NC                                         |
| RUN 6B                | 28.6               | 73.1                          | 41.5            | 107                                        |
| RUN 6C                | 33.3               | 88.2                          | 55.2            | 148                                        |
| <b>AVERAGE</b>        | <b>31.1</b>        | <b>81.2</b>                   | <b>NA</b>       | <b>NA</b>                                  |
| RUN 8A                | 416                | 880                           | NC              | NC                                         |
| RUN 8B                | 572                | 1607                          | 351             | 1006                                       |
| RUN 8C                | 943                | 2771                          | 594             | 1737                                       |
| <b>AVERAGE</b>        | <b>644</b>         | <b>1753</b>                   | <b>NA</b>       | <b>NA</b>                                  |
| RUN 9A                | 79.1               | 187                           | NC              | NC                                         |
| RUN 9B                | 39.6               | 93.0                          | 74.2            | 179                                        |
| RUN 9C                | 68.4               | 179                           | 65.1            | 185                                        |
| <b>AVERAGE</b>        | <b>62.3</b>        | <b>153</b>                    | <b>NA</b>       | <b>NA</b>                                  |
| RUN 10A               | 64.0               | 166                           | NC              | NC                                         |
| RUN 10B               | 26.4               | 64.6                          | 84.9            | 225                                        |
| RUN 10C               | 23.8               | 66.3                          | 55.2            | 181                                        |
| <b>AVERAGE</b>        | <b>38.1</b>        | <b>99.0</b>                   | <b>NA</b>       | <b>NA</b>                                  |

<sup>a</sup> Averages of corrected 30 second readings

NC = Run not completed.

NA = Averages not valid for comparisons.

## 2.6 CEM RESULTS

Three test runs were performed at each of three operating conditions while the incinerator was burning hospital waste. Continuous emissions monitoring was performed using an extractive sample system and instrument methods to measure  $\text{NO}_x$ , CO,  $\text{SO}_2$ , THC, and HCl concentrations. The diluent gases ( $\text{O}_2$ ,  $\text{CO}_2$ ) were measured using CEMs at all times so that the emission results could be normalized to a reference 7 percent  $\text{O}_2$ . Concentrations of  $\text{NO}_x$ ,  $\text{SO}_2$ , CO,  $\text{CO}_2$ , and  $\text{O}_2$  were measured on a dry basis with the sample stream conditioned as shown in Figure 5-16. Concentrations of HCl using a separate monitor were measured using a dilution probe system and were on a wet basis. The THC concentrations were also monitored on a wet basis, but did not employ the dilution probe system. All CEM data were recorded as 30-second averages over each sampling interval, a copy of which are included in Appendix D.

The 30-second CEM values were averaged over the sampling interval for each test run. Both actual and values corrected to 7 percent  $\text{O}_2$  are summarized in Tables 2-29 and 2-30. Actual concentrations are presented as they were measured ( $\text{NO}_x$ ,  $\text{SO}_2$ , CO,  $\text{CO}_2$ , and  $\text{O}_2$ -dry; THC and HCl-wet). All values corrected to 7 percent  $\text{O}_2$  are presented on a dry basis. Each 30-second CEM reading was corrected to 7 percent  $\text{O}_2$  based on the corresponding  $\text{O}_2$  value. Averages of the corrected values were then calculated. For HCl and THC, stack gas moisture determined from the average of the PM/Metals and CDD/CDF sampling trains was used for the corrections. Overall averages are presented for each CEM parameter under each of the three incinerator operating conditions.

Average  $\text{O}_2$  concentrations varied by only 0.9 percent by volume during the 9 test runs, ranging from 15.2 to 16.1 percent/dry. The average percent  $\text{O}_2$  values for each set of tests was 15.9 (Condition 1), 15.5 (Condition 2), and 15.5 (Condition 3). The  $\text{CO}_2$  concentrations varied inversely with the  $\text{O}_2$  concentrations at 3.19, 3.88, and 3.51 percent by volume (%V) for Conditions 1 through 3, respectively. The  $\text{CO}_2$  run averages ranged from 3.07 to 4.01 percent by volume over the nine test runs.

Average CO concentrations ranged from 14.9 ppmV to 42.1 ppmV under Condition 1, with the overall average concentration at 29.2 ppmV. For the second

TABLE 2-29. CONTINUOUS EMISSIONS MONITORING TEST AVERAGES FOR O<sub>2</sub>, CO<sub>2</sub>, CO, and HCl;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | RUN NUMBER/<br>MANUAL<br>TEST TYPE | CONDITION | TEST<br>TIME <sup>a</sup> | MOISTURE    | OXYGEN<br>(% vol,dry) | CO <sub>2</sub><br>(% vol,dry) | CO<br>actual<br>(ppm V,dry) | CO<br>corrected <sup>b</sup><br>(ppm V,dry)<br>@7% O <sub>2</sub> | HCl <sup>c</sup><br>actual<br>(ppm V,wet) | HCl <sup>c</sup><br>corrected <sup>d</sup><br>(ppm V,dry)<br>@7% O <sub>2</sub> |
|----------|------------------------------------|-----------|---------------------------|-------------|-----------------------|--------------------------------|-----------------------------|-------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|
| 09/20/90 | 1                                  | 1         | 14:00 - 18:18             | 9.39        | 15.8                  | 3.14                           | 42.1                        | 119                                                               | 107                                       | 305                                                                             |
| 09/22/90 | 3                                  | 1         | 9:47 - 14:00              | 9.57        | 16.1                  | 3.07                           | 14.9                        | 40.6                                                              | 33.6                                      | 110                                                                             |
| 10/02/90 | 10                                 | 1         | 10:15-14:21               | 7.88        | 15.7                  | 3.37                           | 30.6                        | 81                                                                | 64.6                                      | 143                                                                             |
|          | <b>AVERAGE</b>                     |           |                           | <b>8.95</b> | <b>15.9</b>           | <b>3.19</b>                    | <b>29.2</b>                 | <b>80.2</b>                                                       | <b>68.4</b>                               | <b>186</b>                                                                      |
| 09/21/90 | 2                                  | 2         | 9:45 - 13:57              | 7.98        | 15.7                  | 3.76                           | 132                         | 407                                                               | 413                                       | 1273                                                                            |
| 09/23/90 | 4                                  | 2         | 11:43 - 15:47             | 7.35        | 15.2                  | 4.01                           | 1187                        | 2780                                                              | 568                                       | 1480                                                                            |
| 09/27/90 | 8                                  | 2         | 13:45 - 17:50             | 6.78        | 15.6                  | 3.87                           | 181                         | 453                                                               | 445                                       | 1350                                                                            |
|          | <b>AVERAGE</b>                     |           |                           | <b>7.37</b> | <b>15.3</b>           | <b>3.88</b>                    | <b>500</b>                  | <b>1213</b>                                                       | <b>475</b>                                | <b>1368</b>                                                                     |
| 09/24/90 | 5                                  | 3         | 11:45 - 15:52             | 7.96        | 15.6                  | 3.46                           | 37.6                        | 104                                                               | 33.9                                      | 90.3                                                                            |
| 09/25/90 | 6                                  | 3         | 10:10 - 14:15             | 8.29        | 15.7                  | 3.40                           | 65.3                        | 196                                                               | 45.8                                      | 138                                                                             |
| 09/28/90 | 9                                  | 3         | 11:00 - 15:05             | 8.93        | 15.3                  | 3.67                           | 36.1                        | 107                                                               | 55.6                                      | 164                                                                             |
|          | <b>AVERAGE</b>                     |           |                           | <b>8.39</b> | <b>15.5</b>           | <b>3.51</b>                    | <b>46.3</b>                 | <b>136</b>                                                        | <b>45.1</b>                               | <b>131</b>                                                                      |

<sup>a</sup> For metals/CDD/CDF runs.

<sup>b</sup> Averages are corrected to 7% oxygen (corrected value = actual \* (13.9 / (20.9 - O<sub>2</sub>))). 30 second values were corrected and then averaged.

<sup>c</sup> HCl concentrations were determined by manual methods as well. A comparison of CEM vs. manual results is presented in Section 2.6.

<sup>d</sup> Averages are corrected to 7% oxygen and for moisture, where the corrected value = actual \* 13.9/(20.9 - O<sub>2</sub>) \* (1/(1 - moist)). Thirty second values were corrected and then averaged.

TABLE 2-30. CONTINUOUS EMISSIONS MONITORING TEST AVERAGES FOR O<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, and THC;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | RUN NUMBER | CONDITION | TEST TIME <sup>a</sup> | MOISTURE (% volume) | OXYGEN (% vol,dry) | SO <sub>2</sub> actual (ppm V,dry) | SO <sub>2</sub> corrected <sup>b</sup> (ppm V,dry) | NOX actual (mV,d) | NOX corrected <sup>b</sup> (ppm V,dry) | THC actual (ppm C,wet) | THC corrected <sup>c</sup> (ppm C,dry) |
|----------|------------|-----------|------------------------|---------------------|--------------------|------------------------------------|----------------------------------------------------|-------------------|----------------------------------------|------------------------|----------------------------------------|
| 09/20/90 | 1          | 1         | 14:00-18:18            | 9.39                | 15.8               | 40.2                               | 106                                                | 132               | 340                                    | 7.15                   | 23.0                                   |
| 09/22/90 | 3          | 1         | 9:47-14:00             | 9.57                | 16.1               | 42.1                               | 119                                                | 109               | 289                                    | 9.84                   | 32.3                                   |
| 10/02/90 | 10         | 1         | 10:15-14:21            | 7.88                | 15.7               | 31.4                               | 80.7                                               | 125               | 313                                    | 2.52                   | 7.74                                   |
|          | AVERAGE:   |           |                        | 8.95                | 15.9               | 37.9                               | 102                                                | 122               | 314                                    | 6.50                   | 21.0                                   |
| 09/21/90 | 2          | 2         | 9:45-13:57             | 7.98                | 15.7               | 15.0                               | 37.2                                               | 79.9              | 208                                    | 23.0                   | 82.7                                   |
| 09/23/90 | 4          | 2         | 11:40-15:47            | 7.35                | 15.2               | 18.2                               | 44.2                                               | 62.9              | 143                                    | 60.2                   | 183                                    |
| 09/27/90 | 8          | 2         | 13:45-17:50            | 6.78                | 15.6               | 19.0                               | 47.0                                               | 73.7              | 195                                    | 30.0                   | 91.3                                   |
|          | AVERAGE:   |           |                        | 7.37                | 15.5               | 17.4                               | 42.8                                               | 72.2              | 182                                    | 37.7                   | 119                                    |
| 09/24/90 | 5          | 3         | 11:45-15:52            | 7.96                | 15.6               | 51.5                               | 134                                                | 150               | 384                                    | 3.79                   | 11.7                                   |
| 09/25/90 | 6          | 3         | 10:10-14:15            | 8.29                | 15.7               | 51.1                               | 135                                                | 153               | 402                                    | 5.63                   | 17.9                                   |
| 09/28/90 | 9          | 3         | 11:00-15:05            | 8.93                | 15.3               | 43.1                               | 108                                                | 165               | 397                                    | 3.62                   | 11.7                                   |
|          | AVERAGE:   |           |                        | 8.39                | 15.5               | 48.6                               | 126                                                | 156               | 394                                    | 4.35                   | 13.8                                   |

<sup>a</sup> Time is for metals and CDD/CDF runs.

<sup>b</sup> SO<sub>2</sub> and NO<sub>x</sub> are corrected to 7.0% oxygen, where the corrected value = actual \* 13.9/(20.9 - O<sub>2</sub>).

<sup>c</sup> THC is corrected to 7.0% oxygen and corrected for moisture where the corrected value = actual \* 13.9/(20.9 - O<sub>2</sub>) \* 1/(1 - moist).

NOTE: For all CEM Data, 30 second values were corrected and then averaged.

condition, the CO run averages ranged from 132 ppmV to 1187 ppmV, with an overall average CO concentration of 500 ppmV. For the third condition, the CO run averages ranged from 36.1 ppmV to 65.3 ppmV, with the overall average for this condition being 46.3 ppmV.

The average NO<sub>x</sub> concentrations varied from 62.9 ppmV to 165 ppmV over the nine test runs. Averages for Condition 1 ranged from 109 to 132 ppmV, with an overall average of 122 ppmV. Averages for Condition 2 ranged from 62.9 to 79.9 ppmV, with an overall average of 72.2 ppmV, and the Condition 3 range was 150 to 165 ppmV, with the average value being 156 ppmV.

The SO<sub>2</sub> run averages for each condition ranged from 31.4 to 42.1 ppmV for Condition 1, 15.0 to 19.0 ppmV for Condition 2, and 43.1 to 51.5 ppmV for Condition 3. The condition averages were 37.9 ppmV, 17.4 ppmV, and 48.6 ppmV SO<sub>2</sub> for Conditions 1 through 3, respectively.

Average THC concentrations varied from 2.52 to 60.2 ppmV-wet over the nine runs. The average THC for each condition ranged from 2.52 to 9.84 ppmV for Condition 1, 23.0 to 60.2 ppmV for Condition 2, and 3.62 to 5.63 ppmV for Condition 3. The Condition 1 average was 6.50 ppmV, the Condition 2 average was 37.7 ppmV, and the Condition 3 average was 4.35 ppmV.

## 2.7 CEM BURN DOWN RESULTS

After the daily test run was completed, combustion gas concentrations were continuously analyzed and recorded during a "burn down" period by the CEMS. At this time no waste was fed to the incinerator. The primary and secondary chambers operated under burn down set point routines. Two days of burn down conditions were monitored with all CEM analyzers operational. Concentrations of O<sub>2</sub>, CO<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, CO, HCl, and THC were monitored. The 30-second CEM averages were reported in ppm or percent by volume as measured and also corrected to 7 percent O<sub>2</sub>.

Table 2-31 reports the burn down CEM data. Burn down parameters were measured after test Run 6 (9/25/90) and Run 10 (10/2/90). Oxygen values were 17.5 and 17.7 percent by volume for these two runs. Carbon dioxide values were 2.14 and 1.92, respectively. The CO concentrations were 8.5 and 6.2 ppmV dry and NO<sub>x</sub> values

TABLE 2-31. CEM BURN DOWN AVERAGES  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | RUN NUMBER | COND. | BURNDOWN TEST TIME | OXYGEN (% vol,dry) | SO2 (ppmV,dry)       | NOX (ppmV,dry)       | NOX corrected b (ppmV,dry) | SO2 corrected b (ppmV,dry) | THC (ppmC,wet) @7% O2 | THC (ppmC,dry) @7% O2 | THC corrected c (ppmC,dry) @7% O2 |
|----------|------------|-------|--------------------|--------------------|----------------------|----------------------|----------------------------|----------------------------|-----------------------|-----------------------|-----------------------------------|
|          |            |       |                    |                    |                      |                      |                            |                            |                       |                       |                                   |
| 09/25/90 | 6          | 3     | 14:15-17:28        | 17.5               | 26.1                 | 92.6                 | 62.8                       | 217                        | 1.1                   | 3.1                   |                                   |
| 10/02/90 | 10         | 1     | 14:22-17:35        | 17.7               | 7.10                 | 24.6                 | 38.5                       | 154                        | 0.0                   | 0.0                   |                                   |
|          |            |       |                    |                    |                      |                      |                            |                            |                       |                       |                                   |
|          |            |       |                    |                    | CO (ppmV,dry) @7% O2 | CO (ppmV,dry) @7% O2 | HCL c,d (ppmV,dry) @7% O2  | HCL c,d (ppmV,dry) @7% O2  |                       |                       |                                   |
|          |            |       |                    |                    | actual               | actual               | actual                     | actual                     |                       |                       |                                   |
| 09/25/90 | 6          | 3     | 14:15-17:28        |                    | 2.14                 | 8.5                  | 31.4                       | 16.6                       | 67.9                  |                       |                                   |
| 10/02/90 | 10         | 1     | 14:22-17:35        |                    | 1.92                 | 6.2                  | 24.5                       | 31.1                       | 141                   |                       |                                   |

a Time is for a more or less **bottom-down** period.

b Thirty-second CEM averages were corrected to 7% oxygen (corrected value = actual  $\times$  113.9 / (20.9 - 0.21)).

- THC and HCl is corrected to 7% oxygen and corrected for moisture where the corrected value =  $\text{actual} * \frac{13.9}{(20.9 - \text{O}_2)}$ . Moisture is to be dry basis (corrected value =  $\text{actual} * \frac{13.9}{(20.9 - \text{O}_2)}$ ).

assured to be same as writing the test I will conduct on the same day.

HCl concentrations were determined by manual methods as well. A comparison of CEM vs. manual results is presented in Section 3. HCl calibrations were performed at different stack gas temperatures than the burnout stack temperatures thereby affecting the sampling rate/dilution ratio which may have affected the HCl accuracy.

were 62.8 and 38.5 ppmV dry, respectively. The THC average concentrations were below 2 ppm for both runs.

## 2.8 ASH LOSS-ON-IGNITION AND CARBON CONTENT RESULTS

This section presents results of laboratory analyses of ash samples collected daily. During the test period, ash was removed manually from the incinerator each morning, screened through 1/2-inch mesh, weighed and placed in 35-gallon metal cans. After the ash was allowed to cool, samples were taken manually and composited to obtain a representative sample. Portions were taken from the composite sample for the various analyses, including one sample which was analyzed for moisture content, LOI, and carbon content.

Samples were collected for three replicate tests at the three different incinerator operating conditions (total of 9 runs).

Table 2-32 presents a summary of the ash analysis results. The moisture content of the samples ranged from 0.27 percent for Run 10 (Test Condition 1) to 44.26 percent for Run 8 (Test Condition 2). The average moisture values for each test condition are shown. The lowest value shown was for Condition 1 (0.33 percent) and the highest value for Condition 2 (27.10 percent). The ash from Runs 4, 8, and 6 were cooled down in the incinerator using a water spray. This was done in order to allow the ash to be removed and the next test run to be started. Ash moisture values for these runs reflect the presence of this additional water.

Loss-on-ignition results varied from 17.8 percent for Run 10 (Condition 1) to 78.0 percent for Run 8 (Condition 2). Average values for each test condition ranged from 22.2 percent for Condition 1 to 53.2 percent for Condition 2.

Carbon content in the ash samples varied from 9.77 percent for Run 10 (Condition 1) to 35.7 percent for Run 8 (Condition 2). Average values for each test condition showed a low value of 14.2 percent for Condition 1 and a high value of 27.4 percent for Condition 2.

TABLE 2-32. SUMMARY OF ASH CARBON CONTENT, LOI AND MOISTURE RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONDITION <sup>a</sup> | TEST DATE | TEST NUMBER | SAMPLE DATE | MOISTURE (%) | L.O.I. (%) | TOTAL LOSS (%) | CARBON (%) |
|------------------------|-----------|-------------|-------------|--------------|------------|----------------|------------|
| PRE TEST 1             | 9/20/90   | NA          | 9/20/90     | 28.55        | 62.68      | 73.34          | 18.12      |
| PRE TEST 2             | 9/20/90   | NA          | 9/20/90     | 15.83        | 58.88      | 65.39          | 28.25      |
|                        |           | AVERAGE     | 22.19       |              | 60.78      | 69.37          | 23.19      |
| 1                      | 9/21/90   | 1           | 9/21/90     | 0.41         | 29.66      | 24.17          | 15.03      |
| 1                      | 9/22/90   | 3           | 9/23/90     | 0.30         | 19.19      | 19.48          | 17.87      |
| 1                      | 10/02/90  | 10          | 10/03/90    | 0.27         | 17.80      | 18.02          | 9.77       |
|                        |           | AVERAGE     | 0.33        |              | 22.22      | 20.56          | 14.22      |
| 2                      | 9/21/90   | 2           | 9/22/90     | 2.12         | 45.72      | 46.87          | 30.17      |
| 2                      | 9/23/90   | 4           | 9/24/90     | 34.92 b      | 35.90      | 58.28          | 16.39      |
| 2                      | 9/27/90   | 8           | 9/25/90     | 44.26 b      | 78.02      | 87.75          | 35.70      |
|                        |           | AVERAGE     | 27.10       |              | 53.21      | 64.30          | 27.42      |
| 3                      | 9/24/90   | 5-MC c      | 9/25/90     | 3.16         | 23.64      | 26.05          | 20.36      |
| 3                      | 9/24/90   | 5-MF        | 9/25/90     | 0.64         | 23.79      | 24.28          | 22.80      |
| 3                      | 9/25/90   | 6-MC        | 9/26/90     | 30.03 b      | 40.39      | 50.29          | 21.85      |
| 3                      | 9/25/90   | 6-MF        | 9/26/90     | 0.47         | 32.45      | 32.77          | 16.66      |
| 3                      | 9/28/90   | 9           | 9/29/90     | 1.13         | 27.63      | 28.45          | 20.41      |
|                        |           | AVERAGE     | 7.09        |              | 29.58      | 32.37          | 20.42      |

• CONDITIONS:

- (1) 100 lb/hr., 1800-1900° F, 25 lb/15 min.
- (2) 250 lb/hr., 1600° F, 62.5 lb/15 min.
- (3) 160 lb/hr., 1600° F, 40 lb/15 min.

b For these runs, a water spray was used to extinguish the fire in order to allow ash to be removed.

c MF = Fine Ash (sifted through 1/2" mesh) MC = Course Ash (would not pass through 1/2" mesh). Course and fine ash comparison was only completed during Runs 5 and 6 to examine any relative differences in properties.

## 2.9 MICROBIAL SURVIVABILITY RESULTS

This section provides the background and test matrix for microbial survivability testing and presents the test results for microbial survivability in emissions, in ash and in ash quality pipes.

### 2.9.1 Background and Test Matrix

One of the objectives of this test program was to further develop testing methods to determine microbial survivability in incinerator processes. As part of the MWI test program at Central Carolina Hospital, testing was conducted to determine microbial survivability based on a surrogate indicator organism that was spiked into the incinerator feed during each test run. The surrogate indicator organism used was a type of soil spore known as Bacillus stearothermophilus. This organism was chosen because it survives at high temperatures and it is easy to culture and identify. Also, it is non-pathogenic and is not commonly found in medical waste streams.

Two types of testing were performed. The first test method was aimed at determining microbial survivability in the combustion gases (emissions) and the bottom ash. For these tests, a known quantity of B. stearothermophilus in solution was absorbed onto materials commonly found in the medical waste stream (i.e., gauze, paper, bandages, etc.) and introduced into the incinerator at regular intervals. Simultaneous emissions testing was conducted at the incinerator stack following the EPA draft method "Microbial Survivability Test for Medical Waste Incinerator Emissions." This testing was performed concurrently with other emissions testing (PM/Metals, CDD/CDF, halogens, and CEMs). Spiked waste was charged into the incinerator four times during a 4-hour test run (essentially once per hour). Ash samples were taken daily each morning following the previous days' test run when the incinerator was cleaned manually. The ash was sampled and analyzed as described in the EPA Draft Method "Microbial Survivability Test for Medical Waste Incinerator Ash" (Appendix K).

The second Microbial Survivability test method utilized freeze dried spores encased in double pipes which were insulated. These tests were performed as a comparison to the direct ash method. Two sizes of pipes were used during this test program to determine if pipe size was a determining factor in microbial survivability.

Large pipes samples (6 in. x 2.0 in. diameter) were compared to small pipes (6 in. x 1.25 in. diameter). Three spiked pipes sets (1 large, 1 small) were charged daily at nearly even intervals: (1) the first charge of the day, (2) midday, and (3) last charge of the day.

Complete details of the microbial spiking, recovery and analysis procedures are given in Section 5.3.

Three triplicate runs were performed at the three different incinerator operating conditions for a total of nine runs. Four medical waste (wet spore) spikes and three pipe samples (dry spore) spikes were added during each run. One run was performed daily.

Table 2-33 summarizes the spore spiking times and quantities as well as waste feed and total ash quantities.

### 2.9.2 Overall Microbial Survivability

By comparing the number of spores spiked to the incinerator with the number of viable spores exiting in both the stack gas and incinerator ash, an overall microbial survivability value can be determined as follows:

$$MS = \left( \frac{S_e + A_e}{S_s} \right) \times 100$$

MS = spore microbial survivability (wet)

$S_e$  = Number of viable spores exiting the stack

$A_e$  = Number of viable spores detected in the incinerator ash

$S_s$  = Number of viable spores spiked in the waste feed

This is an adaptation of the destruction efficiency (DE) calculation presented in the reference test protocol which calculates DE based only on stack emissions and a separate DE based on spores in ash. By combining the two DE estimates a more complete estimate of Microbial Survivability (1 - DE) is obtained. The total number of spores in the ash was calculated by multiplying the number of spores found in 1 gram of ash by the total weight of ash removed from the incinerator per day. The values presented in

TABLE 2-33. SUMMARY OF INCINERATOR FEED AMOUNTS AND ASH GENERATION PER RUN:  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER | DATE     | CONDITION | WET SPORE SPIKES * |         |                | DRY SPORE (PIPE) SPIKES * |              |                | TOTAL WASTE FEED (lbs) | TOTAL ASH WEIGHT (lbs) |  |  |  |
|------------|----------|-----------|--------------------|---------|----------------|---------------------------|--------------|----------------|------------------------|------------------------|--|--|--|
|            |          |           | TIME               | AMOUNTS | (TOTAL SPORES) | TIME                      | AMOUNTS      | (TOTAL SPORES) |                        |                        |  |  |  |
| 1          | 09/20/90 | 1         | 14:00              | 1.5E+12 | 14:00          | 5.2E+06                   | 21.2         | 503.4          |                        |                        |  |  |  |
|            |          |           | 15:15              | 1.5E+12 | 16:15          | 5.2E+06                   | PATHOLOGICAL |                |                        |                        |  |  |  |
|            |          |           | 16:00              | 1.5E+12 | 16:00          | 5.2E+06                   |              |                |                        |                        |  |  |  |
|            |          |           | 17:00              | 1.5E+12 |                |                           |              |                |                        |                        |  |  |  |
| 2          | 09/21/90 | 2         | 09:45              | 1.5E+12 | 09:45          | 5.2E+06                   | 139          | 1015.8         |                        |                        |  |  |  |
|            |          |           | 11:00              | 1.5E+12 | 12:03          | 5.2E+06                   | MEDICAL      |                |                        |                        |  |  |  |
|            |          |           | 12:03              | 1.5E+12 | 15:45          | 5.2E+06                   |              |                |                        |                        |  |  |  |
|            |          |           | 12:45              | 1.5E+12 |                |                           |              |                |                        |                        |  |  |  |
| 3          | 09/22/90 | 1         | 09:45              | 1.5E+12 | 09:45          | 5.2E+06                   | 22.4         | 649.5          |                        |                        |  |  |  |
|            |          |           | 11:00              | 1.5E+12 | 12:15          | 5.2E+06                   | PATHOLOGICAL |                |                        |                        |  |  |  |
|            |          |           | 12:00              | 1.5E+12 | 14:30          | 5.2E+06                   |              |                |                        |                        |  |  |  |
|            |          |           | 13:00              | 1.5E+12 |                |                           |              |                |                        |                        |  |  |  |
| 4          | 09/23/90 | 2         | 11:40              | 1.5E+12 | 11:40          | 5.2E+06                   | 172.7        | 905.3          |                        |                        |  |  |  |
|            |          |           | 12:45              | 1.5E+12 | 14:15          | 5.2E+06                   | MEDICAL      |                |                        |                        |  |  |  |
|            |          |           | 13:45              | 1.5E+12 | 17:15          | 5.2E+06                   |              |                |                        |                        |  |  |  |
|            |          |           | 14:45              | 1.5E+12 |                |                           |              |                |                        |                        |  |  |  |
| 5          | 09/24/90 | 3         | 11:45              | 1.5E+12 | 11:45          | 5.2E+06                   | 45.1         | 674.6          |                        |                        |  |  |  |
|            |          |           | 12:40              | 1.5E+12 | 13:45          | 5.2E+06                   | PATHOLOGICAL |                |                        |                        |  |  |  |
|            |          |           | 13:45              | 1.5E+12 | 15:50          | 5.2E+06                   |              |                |                        |                        |  |  |  |
|            |          |           | 14:40              | 1.5E+12 |                |                           |              |                |                        |                        |  |  |  |

TABLE 2-33. SUMMARY OF INCINERATOR FEED AMOUNTS AND ASH GENERATION PER RUN; (continued)  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER | DATE     | CONDITION | WET SPORE SPIKES <sup>a</sup><br>(PIPE) TIMES | AMOUNTS<br>(TOTAL SPORES)                | DRY SPORE<br>(PIPE) SPIKES <sup>a</sup><br>FEED (lbs) TIMES | AMOUNTS<br>(TOTAL SPORES)     | TOTAL WASTE FEED (lbs) AND TYPE | TOTAL ASH WEIGHT (lbs) |
|------------|----------|-----------|-----------------------------------------------|------------------------------------------|-------------------------------------------------------------|-------------------------------|---------------------------------|------------------------|
| 6          | 09/25/90 | 3         | 10:10<br>11:15<br>12:10<br>13:15              | 1.5E+12<br>1.5E+12<br>1.5E+12<br>1.5E+12 | 10:10<br>12:10<br>14:15                                     | 5.2E+06<br>5.2E+06<br>5.2E+06 | 411.4<br>PATHOLOGICAL           | 697.2                  |
| 8          | 09/27/90 | 2         | 13:45<br>14:45<br>15:56<br>16:45              | 1.5E+12<br>1.5E+12<br>1.5E+12<br>1.5E+12 | 13:45<br>16:15<br>18:00                                     | 5.2E+06<br>5.2E+06<br>5.2E+06 | 137.3<br>MEDICAL                | 727.3                  |
| 9          | 09/29/90 | 3         | 11:00<br>12:00<br>13:00<br>14:00              | 1.5E+12<br>1.5E+12<br>1.5E+12<br>1.5E+12 | 11:00<br>13:15<br>15:53                                     | 5.2E+06<br>5.2E+06<br>5.2E+06 | 77<br>PATHOLOGICAL              | 867.2                  |
| 10         | 10/02/90 | 1         | 10:15<br>11:15<br>12:15<br>13:15              | 1.5E+12<br>1.5E+12<br>1.5E+12<br>1.5E+12 | 10:15<br>12:15<br>14:30                                     | 5.2E+06<br>5.2E+06<br>5.2E+06 | 17.2<br>PATHOLOGICAL            | 453.5                  |

NOTE:

Condition 1 = 100 lb/hr; 1800-1900°F; 25 lb/15 min

Condition 2 = 250 lb/hr; 1600°F; 62.5 lb/15 min

Condition 3 = 160 lb/hr; 1600°F; 40 lb/15 min

<sup>a</sup> Spike amounts were taken from the confirmation analysis results (see Tables 6-24 and 6-25).

this section were taken from a "quantitative summary" performed on the raw analytical data by the analytical laboratory. These results are included in the analytical results shown in Appendix E.3, and calculations are shown in Appendix F.

Table 2-34 presents the overall survivability of the indicator spores. Four test run results had viable spores found in the stack gas. Spores were found in several isolated ash aliquots; however, definitive quantitative results could not be provided and all test run results were assigned no spores detected. For those runs in which positive Microbial Survivability values could be calculated, the numbers ranged from survivability for  $3.1 \times 10^{-5}$  percent Run 6 to  $>2.6 \times 10^{-4}$  percent for Run 8. Flue gas microbial survivability and ash microbial survivability are further discussed in the following sections. All microbial survivability calculations are shown in Appendix F.

### 2.9.3 Microbial Survivability in Emissions

Microbial Survivability in emission tests were conducted to quantify the number of viable spores exiting the stack during the test run. The formulas used for calculating the number of viable spores existing in the stack,  $S_e$  is calculated as shown in Appendix F, and in the EPA draft method in Appendix K.

Each test run for viable spore emissions was actually made up of 2 "sub-runs" (A and B). Each sub-run sample was collected for 120 minutes through one of the 2 sample ports. An approximate 1.5 liter sample of impinger collection solution was generated for each sub-run. These sub-run samples were recovered in a disinfected mobile laboratory, sealed and sent to the analytical laboratory where they were combined into one sample for each test run.

For each run performed, 9 aliquots were prepared for analysis: three 10 ml aliquots, three 100 ml aliquots, and 3 equal aliquots of a remaining filterable amount of sample. Both a first and second count on each aliquot were performed. The first count was conducted after approximately 24 hours incubation, and the second after approximately a 48 hour incubation period. Additional research showed that the spore count did not increase after the 48-hour count incubation period. Therefore, all values presented here are from the second (typically a 48-hour) count.

TABLE 2-34. OVERALL MICROBIAL SURVIVABILITY;  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NO. | FEED RATE/<br>FREQUENCY/TYPE<br>(lb/hr/min) | TOTAL NUMBER OF<br>WET SPORES SPIKED<br>TO INCINERATOR <sup>a</sup> | NUMBER INDICATOR<br>SPORES EXITING<br>THE STACK <sup>b</sup> | NUMBER INDICATOR SPORES<br>IN ASH <sup>c</sup> | SPORE SURVIVABILITY<br>(%) <sup>d</sup> | MICROBIAL LOG<br>REDUCTION <sup>f</sup> |
|---------|---------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|
| 1       | 100/15-P                                    | 6.0E+12                                                             | <3.84E+04                                                    | <9.6E+05                                       | <1.7E-05                                | >6.8                                    |
| 3       | 100/15-P                                    | 6.0E+12                                                             | ~13.8E+06                                                    | <1.0E+06                                       | ~2.3E-04                                | ~5.7                                    |
| 10      | 100/15-P                                    | 6.0E+12                                                             | <3.22E+04                                                    | <3.9E+03                                       | <6.0E-07                                | >8.2                                    |
| 2       | 250/15-M                                    | 6.0E+12                                                             | <4.36E+04                                                    | <6.3E+06                                       | <1.1E-04                                | >6.0                                    |
| 4       | 250/15-M                                    | 6.0E+12                                                             | <4.31E+04                                                    | <7.8E+06                                       | <1.3E-04                                | >5.9                                    |
| 8       | 250/15-M                                    | 6.0E+12                                                             | >15.5E+06 <sup>e</sup>                                       | <6.2E+06                                       | >2.6E-04                                | <5.6                                    |
| 5       | 160/15-P                                    | 6.0E+12                                                             | <13.5E+06                                                    | <1.0E+04                                       | <2.3E-04                                | >5.6                                    |
| 6       | 160/15-P                                    | 6.0E+12                                                             | ~18.5E+05                                                    | <1.9E+06                                       | ~3.1E-05                                | ~6.5                                    |
| 9       | 160/15-P                                    | 6.0E+12                                                             | ~6.94E+06                                                    | <1.8E+04                                       | ~1.2E-04                                | ~5.9                                    |

<sup>a</sup> Four 500 ml wet spore aliquots were spiked during each test run. This value represents the total spores spiked/test run as determined by the confirmation count (see Table 6-24).

<sup>b</sup> Values taken from repetitive analytical runs as detailed in Appendix E.3. Detection limits are presented in Table 2-35.

<sup>c</sup> Detection limits are presented in Table 2-37.

<sup>d</sup> Calculated using (number spores in flue gas + number of spores in ash/number wet spores spiked) x 100. If spores were not detected in either fraction, the non-detected values were used in calculation. Otherwise non-detects were considered zero.

<sup>e</sup> Maximum value could not be determined for this flue gas sample (see Appendix E.3).

<sup>f</sup> MLR = log(spiked spores) - log(stack spores + ash spores)

P = Pathological Waste

M = Medical Waste

Table 2-35 presents the Microbial Survivability in Emissions test results. There were four test runs where viable spores were determined to be present in the flue gas (Runs 3, 8, 6, and 9).

The Microbial Survivability sampling and flue gas parameters are shown in Table 2-36.

#### 2.9.4 Microbial Survivability in Ash

Incinerator ash was completely removed from the incinerator every day and stored in a pre-cleaned, disinfected stainless steel drum. A composite ash sample was then taken from the drum using a sample thief and deposited in a sterilized, amber glass sample bottles. The composite samples were then submitted to the laboratory for filtering culturing, and enumeration of B. stearothermophilus.

Microbial Survivability in ash for the Central Carolina MWI tests are presented in Table 2-37. Three ash aliquots of approximately one gram were prepared from each sample. Six serial dilutions were prepared on each ash aliquot and triple plated.

B. stearothermophilus colonies were found in several of the cultures. However, because repetitive analyses of these aliquots did not consistently reveal B. stearothermophilus colonies, the final values were determined to be <100 spores per gram of ash. (Several samples had no spores detected at all, ND, and were assigned <0.5 spores per gram of ash). A quantitative summary of the analytical data used to compile this data is shown in Appendix E.3.

#### 2.9.5 Microbial Survivability in Pipes

Three pipe samples were loaded into the incinerator during each test day. The pipes were recovered the following morning during ash removal. After allowing the pipes to cool, the inner containers were removed from the outer containers and sent to the laboratory for analysis. The entire contents of the pipe were rinsed, filtered, and cultured.

Microbial Survivability in pipes is presented in Table 2-38. Results ranged from not-detected to too numerous to count (TNTC). The TNTC results were assigned a value of greater than 200 spores (>200). All runs except Run 6 showed some spore survivability in the pipe samples.

TABLE 2-35. VIALABLE SPORE EMISSIONS;  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER | FREQUENCY/TYPE (bpm/min) | NUMBER OF INDICATOR SPORES IN ALIQUOT (spores/100 ml) | INDICATOR SPORES IN SAMPLE (spores) | CONCENTRATION OF INDICATOR SPORES IN FLUE GAS (spores/dscm) | NUMBER OF INDICATOR SPORES EXITING STACK DURING TEST PERIOD (spores) |
|------------|--------------------------|-------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|
| 1          | 100/15-P                 | ND                                                    | ND                                  | ND                                                          | <3.84E+04                                                            |
| 3          | 100/15-P                 | ~200                                                  | ~8785                               | ~2183                                                       | ~13.8E+06                                                            |
| 10         | 100/15-P                 | ND                                                    | ND                                  | ND                                                          | <3.22E+04                                                            |
| 2          | 250/15-M                 | ND                                                    | ND                                  | ND                                                          | <4.36E+04                                                            |
| 4          | 250/15-M                 | ND                                                    | ND                                  | ND                                                          | <4.31E+04                                                            |
| 8          | 250/15-M                 | >200 <sup>a</sup>                                     | >9761                               | >2572                                                       | >15.5E+06                                                            |
| 5          | 160/15-P                 | <200 b                                                | <8378                               | <2289                                                       | <13.5E+06                                                            |
| 6          | 160/15-P                 | ~30                                                   | ~1166                               | ~271                                                        | ~18.5E+05                                                            |
| 9          | 160/15-P                 | ~100                                                  | ~4567                               | ~1120                                                       | ~6.94E+06                                                            |

NOTE: Values taken from averages of repetitive analytical runs as presented in the analytical quantitative summary in Appendix E.3

All calculations are shown in Appendix F.

ND = Not Detected. Detection limits were determined to be 0.5 spores/100ml (1 spore/100 ml aliquot / 2).

<sup>a</sup> Maximum value could not be determined for this flue gas sample (see Appendix E.3).

<sup>b</sup> One aliquot out of nine repetitions resulted in "Too Numerous To Count" (TNTC), and, therefore, was assigned the above detection limit.

TABLE 2-36. INDICATOR SPORE EMISSIONS SAMPLING AND FLUE GAS PARAMETERS;  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER:                              |  | 1A    | 1B    | AVERAGE | 3A    | 3B    | AVERAGE | 10A   | 10B   | AVERAGE |
|------------------------------------------|--|-------|-------|---------|-------|-------|---------|-------|-------|---------|
| Total Sampling Time (min.)               |  | 120   | 120   | NA      | 120   | 120   | NA      | 120   | 120   | NA      |
| Average Stack Temperature (°F)           |  | 644   | 796   | 720     | 688   | 741   | 714     | 693   | 745   | 719     |
| Carbon Dioxide Concentration (% V)       |  | 3.08  | 3.26  | 3.17    | 3.25  | 3.1   | 3.175   | 3.51  | 3.28  | 3.395   |
| Oxygen Concentration (% V)               |  | 15.7  | 15.6  | 15.7    | 15.8  | 16.2  | 16.0    | 15.4  | 16.0  | 15.7    |
| Average Sampling Rate (dscfm)            |  | 0.592 | 0.600 | 0.596   | 0.589 | 0.596 | 0.592   | 0.611 | 0.594 | 0.603   |
| Standard Metered Volume, Vm(std) (dscfm) |  | 2.011 | 2.039 | 2.025   | 2.000 | 2.025 | 2.012   | 2.077 | 2.019 | 2.048   |
| Stack Moisture (% V)                     |  | 9.39  | 9.39  | 9.39    | 9.57  | 9.57  | 9.57    | 7.88  | 7.88  | 7.88    |
| Volumetric Flow Rate (acfmin)            |  | 2180  | 2472  | 2326    | 2279  | 2349  | 2314    | 2381  | 2358  | 2370    |
| Volumetric Flow Rate (dscmm)             |  | 26.7  | 26.6  | 26.7    | 26.6  | 26.2  | 26.4    | 27.5  | 26.1  | 26.8    |
| Percent Isokinetic                       |  | 95.2  | 96.9  | NA      | 95.1  | 96.1  | NA      | 95.4  | 96.3  | NA      |
| RUN NUMBER:                              |  | 2A    | 2B    | AVERAGE | 4A    | 4B    | AVERAGE | 8A    | 8B    | AVERAGE |
| Total Sampling Time (min.)               |  | 105   | 135   | NA      | 120   | 120   | NA      | 120   | 120   | NA      |
| Average Stack Temperature (°F)           |  | 848   | 757   | 802     | 707   | 706   | 706     | 770   | 708   | 739     |
| Carbon Dioxide Concentration (% V)       |  | 4.40  | 3.41  | 3.91    | 4.22  | 4.01  | 4.12    | 4.17  | 3.59  | 3.88    |
| Oxygen Concentration (% V)               |  | 14.5  | 16.3  | 15.4    | 14.85 | 15.16 | 15.005  | 15.09 | 15.98 | 15.535  |
| Average Sampling Rate (dscfm)            |  | 0.592 | 0.544 | 0.568   | 0.555 | 0.574 | 0.565   | 0.560 | 0.557 | 0.558   |
| Standard Metered Volume, Vm(std) (dscfm) |  | 1.760 | 2.081 | 1.921   | 1.885 | 1.952 | 1.919   | 1.904 | 1.891 | 1.897   |
| Stack Moisture (% V)                     |  | 7.98  | 7.98  | 7.98    | 7.35  | 7.35  | 7.35    | 6.78  | 6.78  | 6.78    |
| Volumetric Flow Rate (acfmin)            |  | 2604  | 2177  | 2391    | 2141  | 2238  | 2190    | 2268  | 2056  | 2162    |
| Volumetric Flow Rate (dscmm)             |  | 27.3  | 24.6  | 26.0    | 25.2  | 26.3  | 25.7    | 25.7  | 24.5  | 25.1    |
| Percent Isokinetic                       |  | 93.1  | 93.6  | NA      | 94.8  | 92.2  | NA      | 93.8  | 95.9  | NA      |
| RUN NUMBER:                              |  | 5A    | 5B    | AVERAGE | 6A    | 6B    | AVERAGE | 9A    | 9B    | AVERAGE |
| Total Sampling Time (min.)               |  | 120   | 120   | NA      | 120   | 120   | NA      | 120   | 120   | NA      |
| Average Stack Temperature (°F)           |  | 687   | 761   | 724     | 672   | 796   | 734     | 729   | 764   | 746     |
| Carbon Dioxide Concentration (% V)       |  | 3.48  | 3.44  | 3.46    | 3.34  | 3.5   | 3.42    | 3.79  | 3.58  | 3.685   |
| Oxygen Concentration (% V)               |  | 15.5  | 15.7  | 15.6    | 15.6  | 15.7  | 15.7    | 15.0  | 15.5  | 15.3    |
| Average Sampling Rate (dscfm)            |  | 0.580 | 0.500 | 0.540   | 0.648 | 0.620 | 0.634   | 0.611 | 0.589 | 0.600   |
| Standard Metered Volume, Vm(std) (dscfm) |  | 1.965 | 1.695 | 1.830   | 2.202 | 2.107 | 2.154   | 2.076 | 2.001 | 2.038   |
| Stack Moisture (% V)                     |  | 7.96  | 7.96  | 7.96    | 8.29  | 8.29  | 8.29    | 8.93  | 8.93  | 8.93    |
| Volumetric Flow Rate (acfmin)            |  | 2186  | 2024  | 2105    | 2414  | 2507  | 2461    | 2345  | 2232  | 2289    |
| Volumetric Flow Rate (dscmm)             |  | 26.2  | 22.8  | 24.5    | 29.4  | 27.5  | 28.4    | 26.8  | 24.8  | 25.8    |
| Percent Isokinetic                       |  | 95.0  | 92.6  | NA      | 94.7  | 95.2  | NA      | 97.9  | 100.3 | NA      |

NA = Not applicable.

TABLE 2-37. VIABLE SPORES IN ASH;  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER | CONCENTRATION OF INDICATOR SPORES IN ASH (spores/g ash) | NUMBER OF INDICATOR SPORES EXITING INCINERATOR IN ASH |
|------------|---------------------------------------------------------|-------------------------------------------------------|
| 1          | <100                                                    | <9.6E+05                                              |
| 3          | <100                                                    | <1.0E+06                                              |
| 10         | ND                                                      | <3.9+03                                               |
| 2          | <100                                                    | <6.3E+06                                              |
| 4          | <100                                                    | <7.8E+06                                              |
| 8          | <100                                                    | <6.2E+06                                              |
| 5          | ND                                                      | <1.02E+04                                             |
| 6          | <100                                                    | <1.9E+06                                              |
| 9          | ND                                                      | <1.75E+04                                             |

Note: Values were taken from the average of replicate analyses as presented in the analytical quantitative summary in Appendix E.3.

ND = Not Detected. Detection limits for these samples were determined to be 0.5 spores / gram ash(1 spore/g ash/2). All calculations are shown in Appendix F.

Detection limits for all other samples were determined to be 1 spore/1 ml filtration or 100 spores/g ash.

TABLE 2-38. VIABLE SPORES IN PIPES;  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER | SAMPLE ID | LOADING ORDER | PIPE SIZE | APPROXIMATE TEMPERATURE RANGE (deg F) | NUMBER OF INDICATOR SPORES DETECTED (spores) |
|------------|-----------|---------------|-----------|---------------------------------------|----------------------------------------------|
| 1          | CCH-085   | 2             | L         | 1750 - 2000                           | 14                                           |
|            | CCH-086   | 3             | L         | 1750 - 2000                           | 3                                            |
|            | CCH-087   | 2             | S         | 2000 - 2200                           | 0                                            |
|            | CCH-088   | 3             | S         | 2000 - 2200                           | 1                                            |
|            | CCH-089   | 1             | L         | 1750 - 2000                           | 20                                           |
|            | CCH-090   | 1             | S         | 1500 - 1750                           | >200                                         |
| 2          | CCH-096   | 3             | S         | 1750 - 2000                           | >1                                           |
|            | CCH-097   | 2             | S         | 750 - 1000                            | >32                                          |
|            | CCH-098   | 1             | S         | 750 - 1000                            | 20                                           |
|            | CCH-099   | 3             | L         | 750 - 1000                            | >20                                          |
|            | CCH-100   | 2             | L         | 1250 - 1500                           | 3                                            |
|            | CCH-101   | 1             | L         | 750 - 1000                            | 7                                            |
| 3          | CCH-154   | 3             | L         | 1750 - 2000                           | 0                                            |
|            | CCH-155   | 3             | S         | 1750 - 2000                           | >1                                           |
|            | CCH-156   | 2             | L         | 1500 - 1750                           | 0                                            |
|            | CCH-157   | 2             | S         | 1750 - 2000                           | 1                                            |
|            | CCH-158   | 1             | S         | 1750 - 2000                           | 4                                            |
|            | CCH-159   | 1             | L         | 1750 - 2000                           | 5                                            |
| 4          | CCH-175   | 1             | L         | 1500 - 1750                           | 0                                            |
|            | CCH-176   | 3             | S         | 1750 - 2000                           | 2                                            |
|            | CCH-177   | 3             | L         | 1500 - 1750                           | 4                                            |
|            | CCH-178   | 2             | S         | 1250 - 1500                           | 3                                            |
|            | CCH-179   | 2             | L         | 1000 - 1250                           | 0                                            |
|            | CCH-180   | 1             | S         | 750 - 1000                            | 0                                            |
| 5          | CCH-193   | 3             | L         | 1500 - 1750                           | >200                                         |
|            | CCH-194   | 3             | S         | 750 - 1000                            | 0                                            |
|            | CCH-195   | 2             | L         | 750 - 1000                            | >200                                         |
|            | CCH-196   | 1             | L         | 750 - 1000                            | >166                                         |
|            | CCH-197   | 2             | S         | 1250 - 1500                           | 79                                           |
|            | CCH-198   | 1             | S         | 750 - 1000                            | 0                                            |

NA = Not available at this time

L = Large (2.25" diameter); S = Small (1.5 " diameter)

TABLE 2-38. VIABLE SPORES IN PIPES (continued);  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER | SAMPLE ID | LOADING ORDER | PIPE SIZE | APPROXIMATE TEMPERATURE RANGE (deg F) | NUMBER OF INDICATOR SPORES DETECTED (spores) |
|------------|-----------|---------------|-----------|---------------------------------------|----------------------------------------------|
| 6          | CCH-280   | NA            | L         | NA                                    | 0                                            |
|            | CCH-281   | NA            | S         | NA                                    | 0                                            |
|            | CCH-282   | NA            | L         | NA                                    | 0                                            |
|            | CCH-283   | NA            | S         | NA                                    | 0                                            |
|            | CCH-284   | NA            | L         | NA                                    | 0                                            |
|            | CCH-285   | NA            | S         | NA                                    | 0                                            |
| 8          | CCH-292   | NA            | S         | NA                                    | 1                                            |
|            | CCH-293   | NA            | L         | NA                                    | 17                                           |
|            | CCH-294   | NA            | L         | NA                                    | 0                                            |
|            | CCH-295   | NA            | L         | NA                                    | 2                                            |
|            | CCH-296   | NA            | S         | NA                                    | 0                                            |
|            | CCH-297   | NA            | S         | NA                                    | 0                                            |
| 9          | CCH-304   | NA            | L         | NA                                    | 0                                            |
|            | CCH-305   | NA            | S         | NA                                    | 1                                            |
|            | CCH-306   | NA            | L         | NA                                    | 0                                            |
|            | CCH-307   | NA            | L         | NA                                    | 0                                            |
|            | CCH-308   | NA            | S         | NA                                    | 1                                            |
|            | CCH-309   | NA            | S         | NA                                    | 0                                            |
| 10         | CCH-378   | NA            | L         | NA                                    | 0                                            |
|            | CCH-379   | NA            | L         | NA                                    | 1                                            |
|            | CCH-380   | NA            | S         | NA                                    | 0                                            |
|            | CCH-381   | NA            | L         | NA                                    | 0                                            |
|            | CCH-382   | NA            | S         | NA                                    | 0                                            |
|            | CCH-383   | NA            | S         | NA                                    | 0                                            |

NA = Not available at this time

L = Large (2.25" diameter); S = Small (1.5 " diameter)

As part of the microbial survivability in pipes method development, a single pipe's temperature was measured and recorded during four test runs (Runs 7 through 10). A large pipe (2 in. ID) containing no spores was configured with a thermocouple placed through a hole drilled in one of the capped ends. The pipe was placed in the incinerator and internal pipe temperatures were measured and manually recorded. Temperatures varied considerably. A general range was from 500 to 1500°F. However, no data analysis has been completed (averages, standard deviation, etc.). All pipe temperature data is listed in Appendix B.4.

## 2.10 PARTICLE SIZE DISTRIBUTION RESULTS

Six PSD test runs were conducted during the Central Carolina Hospital MWI test program. An eight stage MK III cascade impactor sampling device was used (See Section 5.9 for PSD Method). Following a test, the impactor was inspected to determine if there was adequate particle loading on each of the filter stages. A properly loaded impactor has distinct particulate "piles" under each stage's acceleration jets (holes). An underloaded impactor is evidenced by clean, undisturbed filters while an over-loaded impactor has particulate piles which overlap and appear to have "broken-up" (re-entrainment). An assessment of the quality of particulate loading was made by the recovery technician with observations noted on the PSD field data sheets (See Appendix A.6). Of those six PSD runs, the first two did not meet recovery QC objectives and therefore are not included in these results (Raw Field Data and Analytical data are shown in Appendix A.6 and E.5). The test results for PSD Runs 3 through 6 will be reported in the following section.

The PSD Runs 3 and 4 were conducted on September 26, 1990 during test No. 7. Other results from this test No. were not reported due to an invalidated CDD/CDF run (See Section 2.2). Test No. 7 was conducted during Condition 2 (250 lbs/hr, 15 minute long cycle, 1600°F). The PSD Runs 5 and 6 were conducted on September 28, 1990 and October 2, 1990 under Conditions 3 and 1, respectively.

Tables 2-39 and 2-40 report the results from PSD Runs 3 and 4 (Condition 2), respectively. Approximately 70 percent of the particulate was less than 8.8 um.

TABLE 2-39. PSD RUN 3 RESULTS (TEST NO 7);  
CENTRAL CAROLINA HOSPITAL (1990)

| FLUE GAS AND SAMPLING PARAMETERS            |                              |                       |                               |                               |                                   |                            |
|---------------------------------------------|------------------------------|-----------------------|-------------------------------|-------------------------------|-----------------------------------|----------------------------|
| Total Sampling Time (min.)                  |                              |                       |                               |                               |                                   | 2.5                        |
| Average Stack Temperature (°F)              |                              |                       |                               |                               |                                   | 1122.00                    |
| Average Sampling Rate (dscfm)               |                              |                       |                               |                               |                                   | 0.2960                     |
| Standard Metered Volume, $V_m$ (std) (dscf) |                              |                       |                               |                               |                                   | 0.7320                     |
| Standard Metered Volume, $V_m$ (std) (dscm) |                              |                       |                               |                               |                                   | 0.021                      |
| Stack Moisture (% V)                        |                              |                       |                               |                               |                                   | 6.8100                     |
| Percent Isokinetic                          |                              |                       |                               |                               |                                   | 111.0                      |
| Date                                        |                              |                       |                               |                               |                                   | 09/26/90                   |
| INTERVAL                                    |                              |                       |                               |                               |                                   |                            |
| STAGE                                       | D <sub>p50</sub><br>(micron) | NET WEIGHT<br>(grams) | MASS<br>FRACTION<br>LESS THAN | MASS<br>FRACTION<br>LESS THAN | GEOMETRIC<br>MIDPOINT<br>(micron) | CONCENTRATION<br>(gr/dscf) |
| Prelim & 1                                  | 13.2                         | 0.06236               | 0.1978                        | 0.8022*                       | 25.7                              | 2.1019                     |
| 2                                           | 8.65                         | 0.03040               | 0.0964                        | 0.7057                        | 10.7                              | 3.2332                     |
| 3                                           | 5.65                         | 0.03014               | 0.0956                        | 0.6101                        | 6.99                              | 3.1749                     |
| 4                                           | 3.99                         | 0.03238               | 0.1027                        | 0.5074                        | 4.75                              | 4.1935                     |
| 5                                           | 2.37                         | 0.03334               | 0.1058                        | 0.4016                        | 3.08                              | 2.8803                     |
| 6                                           | 1.37                         | 0.02838               | 0.0900                        | 0.3116                        | 1.80                              | 2.3096                     |
| 7                                           | 0.866                        | 0.03056               | 0.0970                        | 0.2146                        | 1.09                              | 3.0046                     |
| 8                                           | 0.588                        | 0.03127               | 0.0992                        | 0.1154                        | 0.714                             | 3.6283                     |
| Back-up                                     |                              | 0.03639               | 0.1154                        | 0.0000*                       | 0.054                             | 0.3426                     |
| Total                                       |                              | 0.31521               | 1.0000                        |                               |                                   | 0.7095                     |

\* These values assume top end and bottom end dp50s of 50 and .005 um.

TABLE 2-40. PSD RUN 4 RESULTS (TEST NO 7);  
CENTRAL CAROLINA HOSPITAL (1990)

| FLUE GAS AND SAMPLING PARAMETERS                    |                               |                                   |                               |        |       |        |
|-----------------------------------------------------|-------------------------------|-----------------------------------|-------------------------------|--------|-------|--------|
| Total Sampling Time (min.)                          |                               | 15                                |                               |        |       |        |
| Average Stack Temperature (°F)                      |                               | 773                               |                               |        |       |        |
| Average Sampling Rate (dscfm)                       |                               | 0.305                             |                               |        |       |        |
| Standard Metered Volume, $V_m(\text{std})$ (dscf)   |                               | 4.57                              |                               |        |       |        |
| Standard Metered Volume, $V_m(\text{std})$ (dscm)   |                               | 0.129                             |                               |        |       |        |
| Stack Moisture (%V)                                 |                               | 6.81                              |                               |        |       |        |
| Percent Isokinetic                                  |                               | 111                               |                               |        |       |        |
| Date                                                |                               | 9/26/90                           |                               |        |       |        |
| MASS INTERVAL<br>GEOMETRIC<br>MIDPOINT<br>(microns) |                               |                                   |                               |        |       |        |
| STAGE                                               | D <sub>p50</sub><br>(microns) | NET WEIGHT<br>FRACTION<br>(grams) | MASS<br>FRACTION<br>LESS THAN |        |       |        |
| Prelim & 1                                          | 13.7                          | 0.07749                           | 0.2050                        | 0.795* | 26.2  | 0.4654 |
| 2                                                   | 8.97                          | 0.03221                           | 0.0852                        | 0.710  | 11.1  | 0.5932 |
| 3                                                   | 5.86                          | 0.03592                           | 0.0950                        | 0.615  | 7.25  | 0.6547 |
| 4                                                   | 4.14                          | 0.03533                           | 0.0935                        | 0.521  | 4.92  | 0.7908 |
| 5                                                   | 2.45                          | 0.03725                           | 0.0985                        | 0.423  | 3.19  | 0.5540 |
| 6                                                   | 1.40                          | 0.03849                           | 0.1018                        | 0.321  | 1.85  | 0.5329 |
| 7                                                   | 0.865                         | 0.03986                           | 0.1055                        | 0.215  | 1.10  | 0.6458 |
| 8                                                   | 0.559                         | 0.03836                           | 0.1015                        | 0.114  | 0.696 | 0.6841 |
| Back-up                                             |                               | 0.04310                           | 0.1140                        | 0.000* | 0.053 | 0.0711 |
| Total                                               |                               | 0.37799                           | 1.0000                        |        |       |        |

\* These values assume top end and bottom end dp50s of 50 and .005 um.

Table 2-41 reports the results for PSD Run 5 (Condition 3). Again, approximately 70 percent of the particulate was less than 9 um. Grainloading (concentration-grains/dry standard cubic foot) was much lower during this condition than it was during Condition 2 (0.04 gr/dscf total PM for Condition 3 versus 0.7 and 0.1 gr/dscf for total PM for Condition 2).

Table 2-42 reports the results from PSD Run 6 (Condition 1). Again, approximately 70 percent of the particulate is less than 9 um. Grainloading is comparable to that observed during Condition 3.

Figures 2-1 through 2-4 show the log-normal plots of PSD Runs 3 through 6, respectively. The log of Particle cut size (Dp50) at each impactor stage is plotted against mass fraction of particulate less than that Dp50, on a probability (normal) scale. Linear regressions analyses were conducted and the correlation coefficients ( $R^2$ ) are shown on each figure.

## 2.11 CDD/CDF EMISSION VALUES INCORPORATING THE TOLUIENE RECOVERY RESULTS

In accordance with EPA Method 23, a final toluene rinse was completed on the CDD/CDF sampling train after the methylene chloride ( $MeCl_2$ ) rinse procedure. This was done to determine how well the  $MeCl_2$  was collecting all of the CDD/CDF material. As prescribed in the method, these values were to be used only as a QA indicator and are not to be incorporated into the emission values. Therefore, a full presentation of the data is given in Section 6. However, to gain perspective into how these values effect the gas phase CDD/CDF concentrations, stack gas CDD/CDF concentrations incorporating the toluene recovery amounts are given in Tables 2-43 through 2-45. Concentrations are given corrected to 7 percent  $O_2$  as well as in 2378 TCDD Toxic Equivalents. Results for each test run as well as the overall condition averages are given. These values can be directly compared to the non-toluene CDD/CDF gas concentrations shown in Tables 2-9, 2-10, and 2-11.

TABLE 2-41. PSD RUN 5 RESULTS (TEST NO 9);  
CENTRAL CAROLINA HOSPITAL (1990)

| FLUE GAS AND SAMPLING PARAMETERS                     |                              |                                   |                               |                                                |                         |                            |
|------------------------------------------------------|------------------------------|-----------------------------------|-------------------------------|------------------------------------------------|-------------------------|----------------------------|
| Total Sampling Time (min.)                           | 45                           |                                   |                               |                                                |                         |                            |
| Average Stack Temperature (°F)                       | 789                          |                                   |                               |                                                |                         |                            |
| Average Sampling Rate (dscfm)                        | 0.299                        |                                   |                               |                                                |                         |                            |
| Standard Metered Volume, V <sub>m</sub> (std) (dscf) | 13.5                         |                                   |                               |                                                |                         |                            |
| Standard Metered Volume, V <sub>m</sub> (std) (dscm) | 0.382                        |                                   |                               |                                                |                         |                            |
| Stack Moisture (% V)                                 | 6.78                         |                                   |                               |                                                |                         |                            |
| Percent Isokinetic                                   | 85.6                         |                                   |                               |                                                |                         |                            |
| Date                                                 | 9/28/90                      |                                   |                               |                                                |                         |                            |
| STAGE                                                | D <sub>50</sub><br>(microns) | NET WEIGHT<br>FRACTION<br>(grams) | MASS<br>FRACTION<br>LESS THAN | INTERVAL<br>GEOMETRIC<br>MIDPOINT<br>(microns) | dM/dlog DP<br>(gr/dscf) | CONCENTRATION<br>(gr/dscf) |
| Prelim & 1                                           | 13.8                         | 0.05878                           | 0.1821                        | 0.8179*                                        | 26.3                    | 0.1207                     |
| 2                                                    | 9.07                         | 0.03241                           | 0.1004                        | 0.7175                                         | 11.2                    | 0.2024                     |
| 3                                                    | 5.92                         | 0.03293                           | 0.1020                        | 0.6155                                         | 7.33                    | 0.2035                     |
| 4                                                    | 4.18                         | 0.03372                           | 0.1045                        | 0.5111                                         | 4.98                    | 0.2559                     |
| 5                                                    | 2.48                         | 0.03763                           | 0.1165                        | 0.3945                                         | 3.22                    | 0.1898                     |
| 6                                                    | 1.41                         | 0.01637                           | 0.0507                        | 0.3438                                         | 1.87                    | 0.0769                     |
| 7                                                    | 0.875                        | 0.03404                           | 0.1054                        | 0.2384                                         | 1.11                    | 0.1871                     |
| 8                                                    | 0.566                        | 0.03203                           | 0.0992                        | 0.1392                                         | 0.704                   | 0.1939                     |
| Back-up                                              |                              | 0.04493                           | 0.1392                        | 0.0000*                                        | 0.053                   | 0.0251                     |
| Total                                                |                              | 0.32283                           | 1.0000                        |                                                | 0.0515                  |                            |

\* These values assume top end and bottom end dp50s of 50 and .005 um.

TABLE 2-42. PSD RUN 6 RESULTS (TEST NO 10);  
CENTRAL CAROLINA HOSPITAL (1990)

| FLUE GAS AND SAMPLING PARAMETERS                     |                               |                       |                               |                                                        |                            |
|------------------------------------------------------|-------------------------------|-----------------------|-------------------------------|--------------------------------------------------------|----------------------------|
| Total Sampling Time (min.)                           |                               | 60                    |                               |                                                        |                            |
| Average Stack Temperature (°F)                       |                               | 723                   |                               |                                                        |                            |
| Average Sampling Rate (dscfm)                        |                               | 0.293                 |                               |                                                        |                            |
| Standard Metered Volume, V <sub>m</sub> (std) (dscf) |                               | 17.6                  |                               |                                                        |                            |
| Standard Metered Volume, V <sub>m</sub> (std) (decm) |                               | 0.498                 |                               |                                                        |                            |
| Stack Moisture (% V)                                 |                               | 7.88                  |                               |                                                        |                            |
| Percent Kinetic                                      |                               | 88.8                  |                               |                                                        |                            |
| Date                                                 |                               | 10/02/90              |                               |                                                        |                            |
| STAGE                                                | D <sub>p50</sub><br>(microns) | Net Weight<br>(grams) | MASS<br>FRACTION<br>LESS THAN | MASS<br>INTERVAL<br>GEOMETRIC<br>MIDPOINT<br>(microns) | CONCENTRATION<br>(gr/dscf) |
| Prelim & 1                                           | 13.7870                       | 0.05572               | 0.1796                        | 0.8204                                                 | 26.2555                    |
| 2                                                    | 9.0369                        | 0.02918               | 0.0941                        | 0.7263                                                 | 8.406E-02                  |
| 3                                                    | 5.8974                        | 0.02817               | 0.0908                        | 0.6356                                                 | 11.1620                    |
| 4                                                    | 4.1655                        | 0.03175               | 0.1023                        | 0.5332                                                 | 1.343E-01                  |
| 5                                                    | 2.4684                        | 0.02752               | 0.0887                        | 0.4445                                                 | 7.3002                     |
| 6                                                    | 1.4060                        | 0.03336               | 0.1075                        | 0.3370                                                 | 1.283E-01                  |
| 7                                                    | 0.8677                        | 0.02659               | 0.0857                        | 0.2513                                                 | 4.9564                     |
| 8                                                    | 0.5579                        | 0.02842               | 0.0916                        | 0.1597                                                 | 3.2066                     |
| Back-up                                              |                               | 0.04955               | 0.1597                        | 0.0000                                                 | 1.022E-01                  |
| Total                                                |                               | 0.31023               | 1.0000                        |                                                        | 1.152E-01                  |
|                                                      |                               |                       |                               |                                                        | 0.028160                   |
|                                                      |                               |                       |                               |                                                        | 0.022445                   |
|                                                      |                               |                       |                               |                                                        | 0.023986                   |
|                                                      |                               |                       |                               |                                                        | 0.041822                   |

\* These values assume top end and bottom end dp50s of 50 and .005 um.

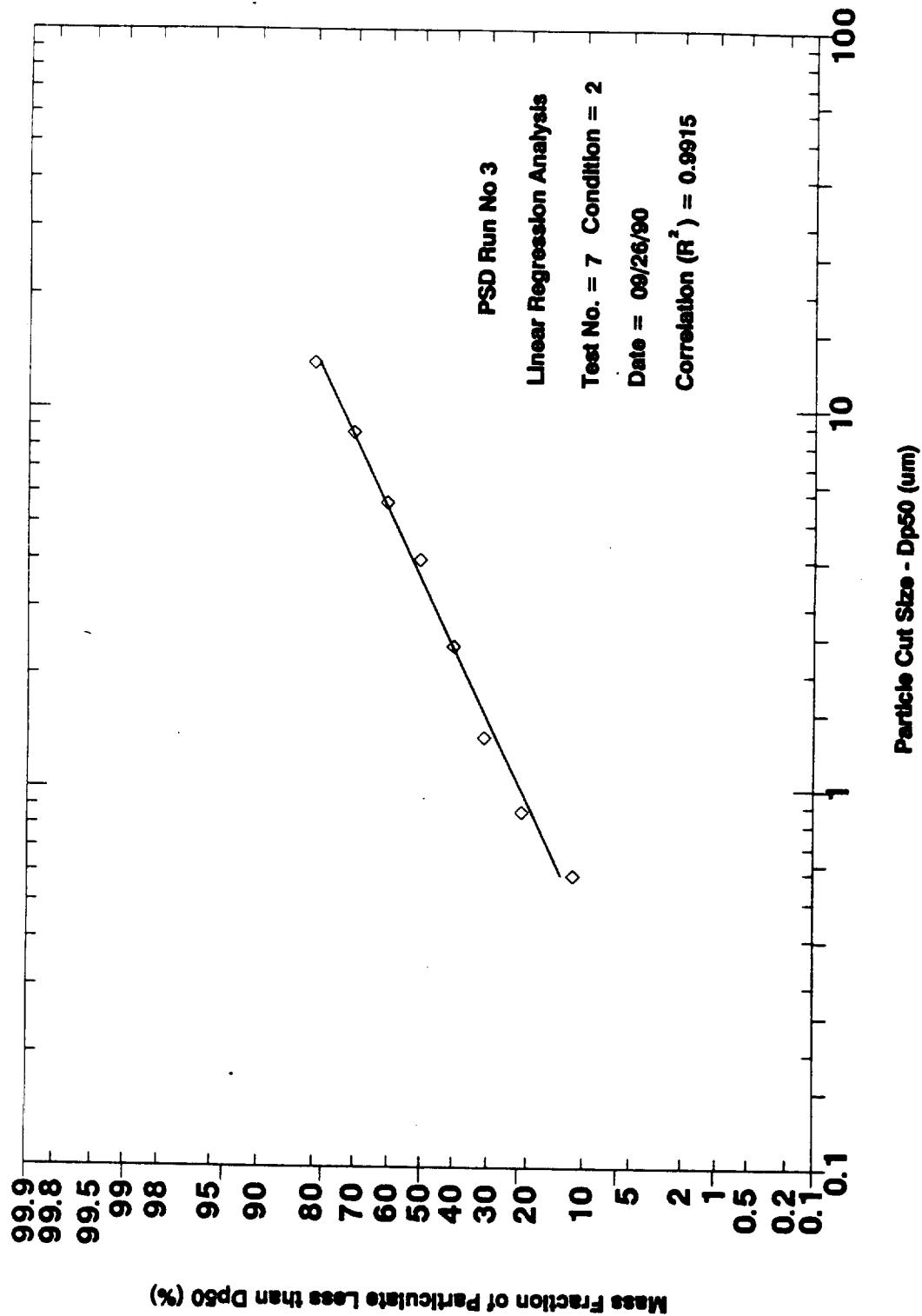



FIGURE 2-1. Run 3 (Test No 7) PSD Results - Log Particle Size vs Mass Fraction Less Than Particle Size. Central Carolina Hospital (1990)

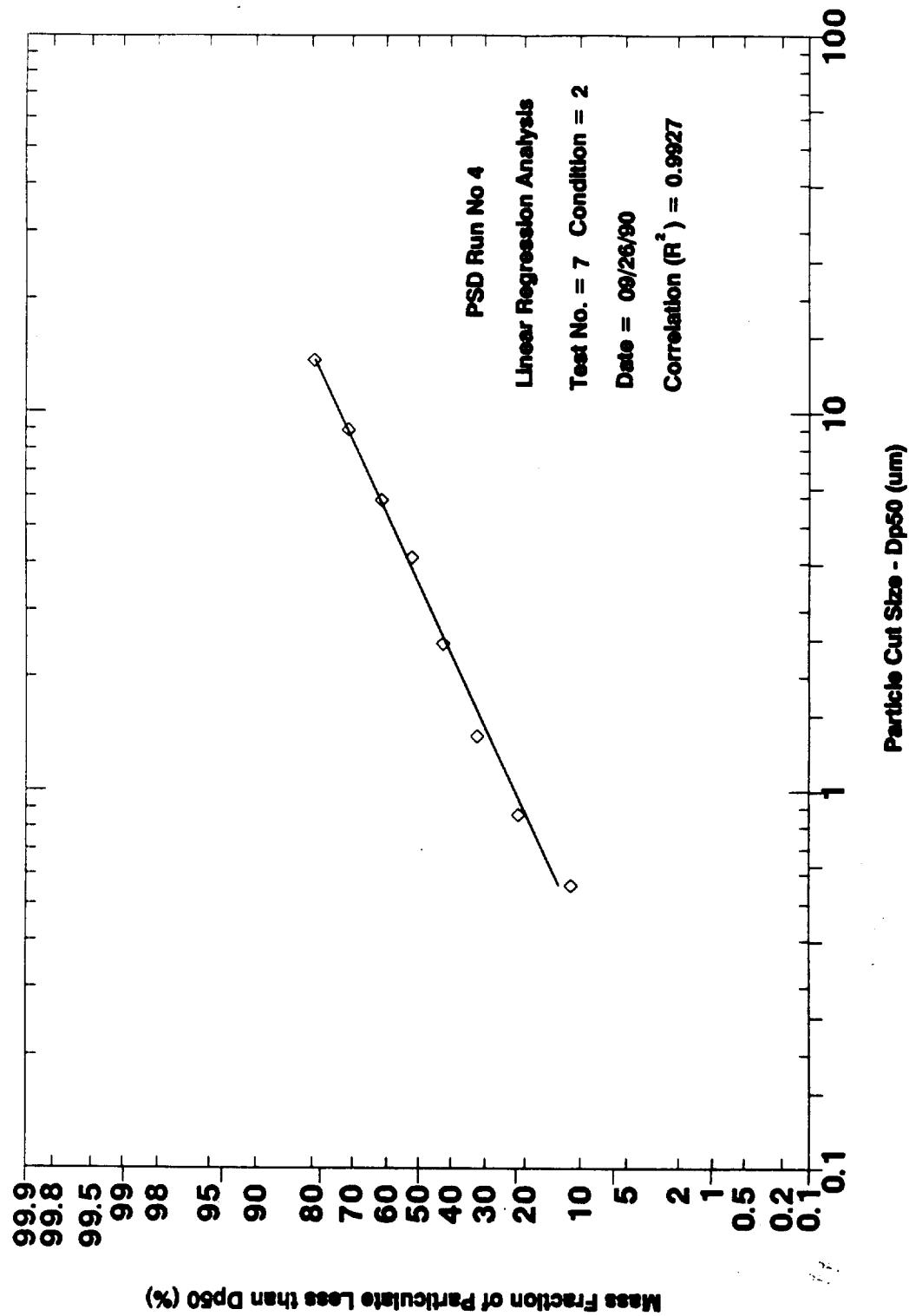



FIGURE 2-2. Run 4 (Test No 7) PSD Results - Log Particle Size vs Mass Fraction Less Than Particle Size. Central Carolina Hospital (1990)

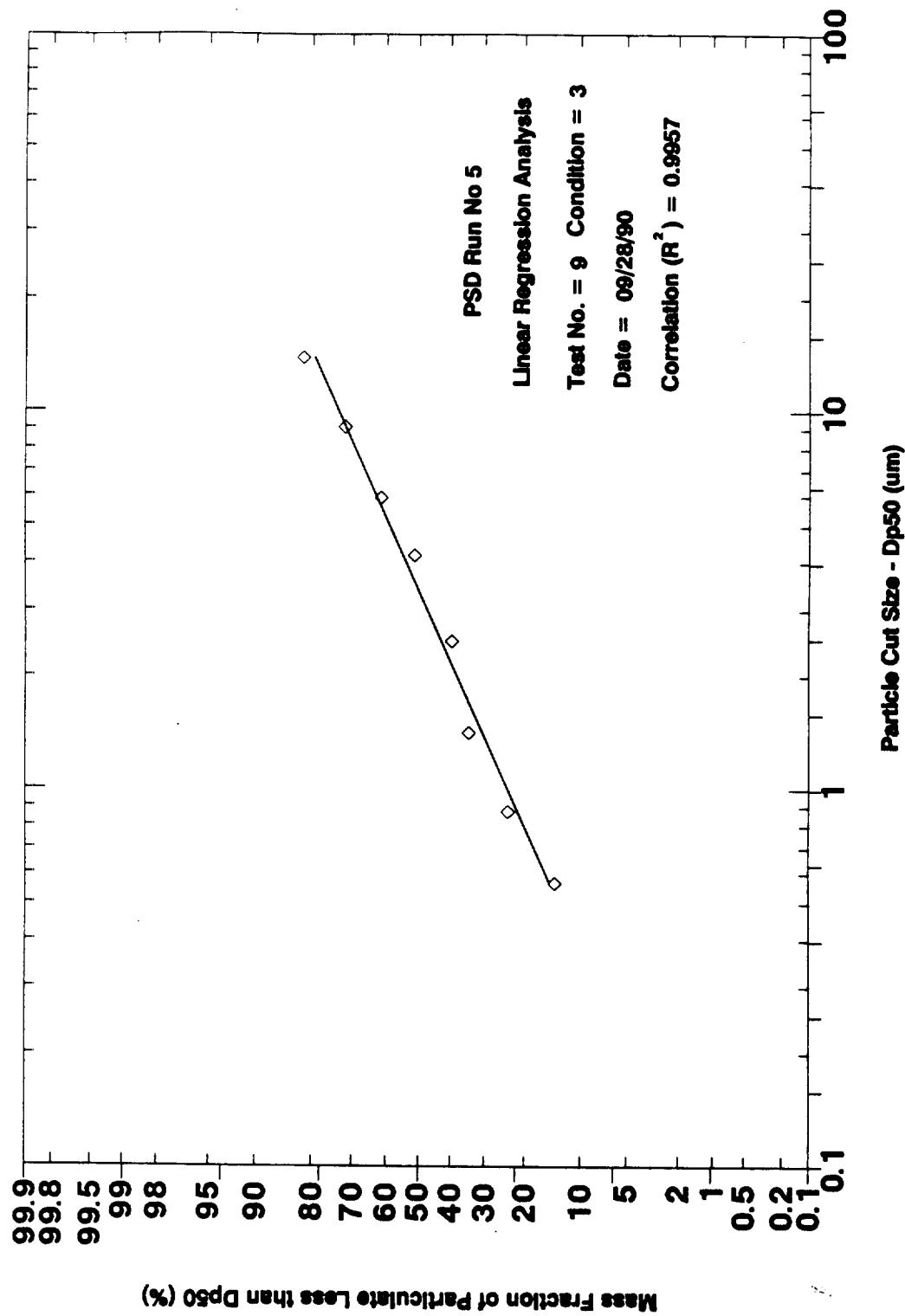
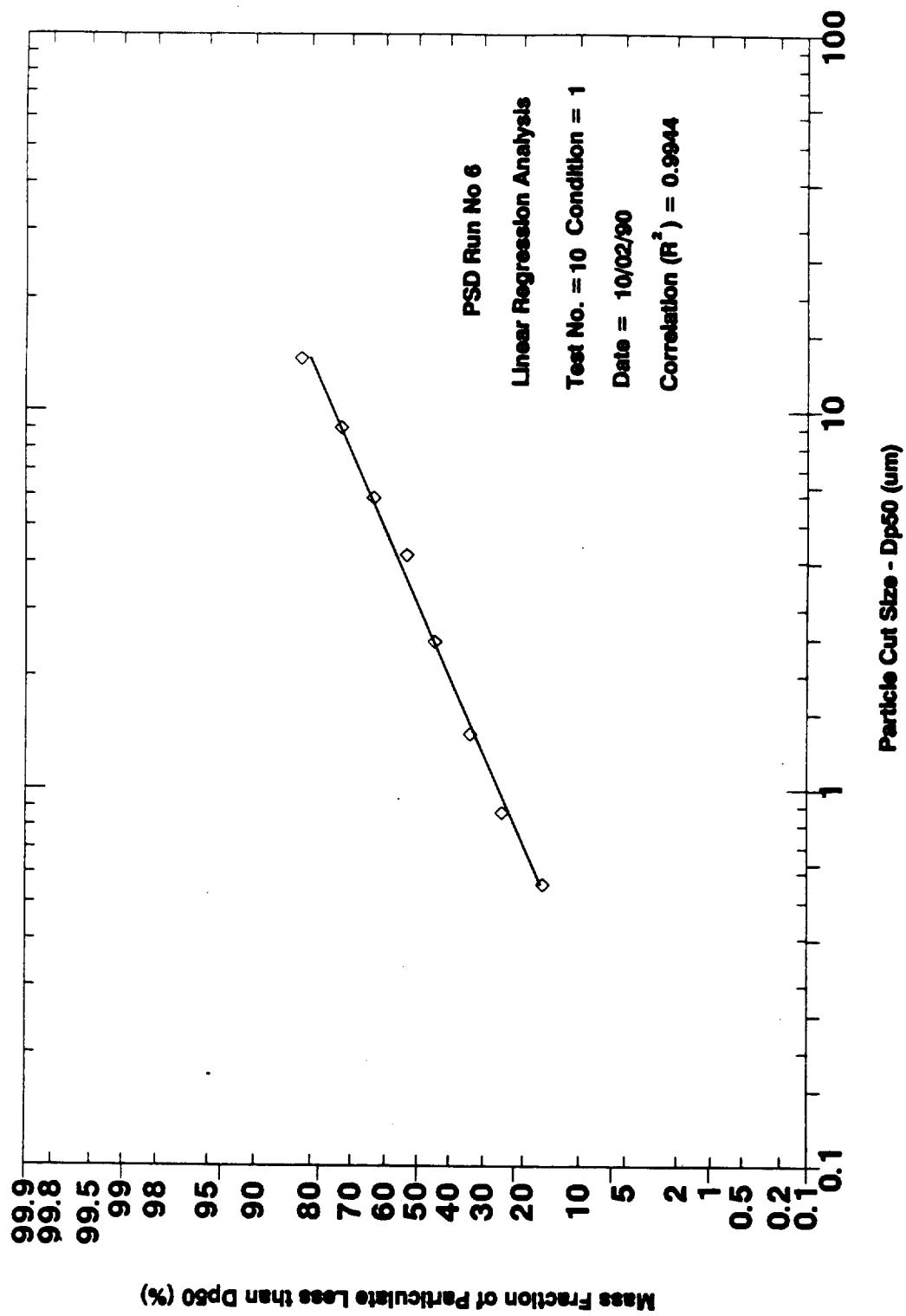




FIGURE 2-3. Run 5 (Test No 9) PSD Results - Log Particle Size vs Mass Fraction Less Than Particle Size. Central Carolina Hospital (1990)



**FIGURE 2-4. Run 6 (Test No 10) PSD Results - Log Particle Size vs Mass Fraction Less Than Particle Size. Central Carolina Hospital (1990)**

TABLE 2-43. CDD/CDF STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT O<sub>2</sub> FOR CONDITION 1 INCORPORATING THE TOLUENE RECOVERY RESULTS; CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | CONCENTRATION <sup>a</sup><br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |              |            |            | 2378-TCDD <sup>b</sup><br>TOXIC EQUIV.<br>FACTOR | 2378 TOXIC EQUIVALENCIES<br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |              |              |              |
|----------------------|--------------------------------------------------------------------------------|--------------|------------|------------|--------------------------------------------------|------------------------------------------------------------------------------|--------------|--------------|--------------|
|                      | RUN 1                                                                          | RUN 3        | RUN 10     | AVERAGE    |                                                  | RUN 1                                                                        | RUN 3        | RUN 10       | AVERAGE      |
| <b>DIOXINS</b>       |                                                                                |              |            |            |                                                  |                                                                              |              |              |              |
| 2378 TCDD            | 0.59                                                                           | (1.221)      | (0.349)    | 0.72       | 1.00000                                          | 0.588                                                                        | (1.221)      | (0.349)      | 0.719        |
| Other TCDD           | 16.68                                                                          | 159.08       | 18.25      | 64.67      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 12378 PCDD           | 1.40                                                                           | 4.69         | 1.14       | 2.41       | 0.50000                                          | 0.700                                                                        | 2.347        | 0.568        | 1.205        |
| Other PCDD           | 14.76                                                                          | 130.98       | 18.47      | 54.73      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 123478 HxCDD         | 0.91                                                                           | 4.59         | 1.37       | 2.29       | 0.10000                                          | 0.091                                                                        | 0.459        | 0.137        | 0.229        |
| 123678 HxCDD         | 1.41                                                                           | 7.45         | 2.72       | 3.86       | 0.10000                                          | 0.141                                                                        | 0.745        | 0.272        | 0.386        |
| 123789 HxCDD         | 2.99                                                                           | 14.28        | 4.05       | 7.11       | 0.10000                                          | 0.299                                                                        | 1.428        | 0.405        | 0.711        |
| Other HxCDD          | 13.83                                                                          | 103.21       | 25.43      | 47.49      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 1234678-HpCDD        | 8.02                                                                           | 42.62        | 20.06      | 23.56      | 0.01000                                          | 0.080                                                                        | 0.426        | 0.201        | 0.236        |
| Other HpCDD          | 9.60                                                                           | 52.43        | 22.47      | 28.17      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| Octa-CDD             | 9.62                                                                           | 54.75        | 25.57      | 29.98      | 0.00100                                          | 0.010                                                                        | 0.055        | 0.026        | 0.030        |
| <b>Total CDD</b>     | <b>79.8</b>                                                                    | <b>575</b>   | <b>140</b> | <b>265</b> |                                                  | <b>1.909</b>                                                                 | <b>6.681</b> | <b>1.957</b> | <b>3.516</b> |
| <b>FURANS</b>        |                                                                                |              |            |            |                                                  |                                                                              |              |              |              |
| 2378 TCDF            | 1.97                                                                           | 8.21         | 2.47       | 4.22       | 0.10000                                          | 0.197                                                                        | 0.821        | 0.247        | 0.422        |
| Other TCDF           | 66.75                                                                          | 482.41       | 83.37      | 210.84     | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 12378 PCDF           | 2.99                                                                           | 11.53        | 3.74       | 6.09       | 0.05000                                          | 0.149                                                                        | 0.577        | 0.187        | 0.304        |
| 23478 PCDF           | 5.70                                                                           | 30.31        | 9.02       | 15.01      | 0.50000                                          | 2.852                                                                        | 15.156       | 4.511        | 7.506        |
| Other PCDF           | 63.59                                                                          | 365.18       | 74.40      | 167.73     | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 123478 HxCDF         | 7.01                                                                           | 53.07        | 12.46      | 24.18      | 0.10000                                          | 0.701                                                                        | 5.307        | 1.246        | 2.418        |
| 123678 HxCDF         | 3.64                                                                           | 22.05        | 6.36       | 10.68      | 0.10000                                          | 0.364                                                                        | 2.205        | 0.636        | 1.068        |
| 234678 HxCDF         | 4.48                                                                           | 45.72        | 12.82      | 21.01      | 0.10000                                          | 0.448                                                                        | 4.572        | 1.282        | 2.101        |
| 123789 HxCDF         | 0.17                                                                           | 1.35         | 0.60       | 0.71       | 0.10000                                          | 0.017                                                                        | 0.135        | 0.060        | 0.071        |
| Other HxCDF          | 21.60                                                                          | 150.10       | 41.92      | 71.21      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 1234678-HpCDF        | 8.99                                                                           | 83.02        | 23.44      | 38.48      | 0.01000                                          | 0.090                                                                        | 0.830        | 0.234        | 0.385        |
| 1234789-HpCDF        | 1.12                                                                           | 12.85        | 5.17       | 6.38       | 0.01000                                          | 0.011                                                                        | 0.129        | 0.052        | 0.064        |
| Other HpCDF          | 6.46                                                                           | 72.60        | 23.32      | 34.13      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| Octa-CDF             | 5.41                                                                           | 84.72        | 36.81      | 42.31      | 0.00100                                          | 0.005                                                                        | 0.085        | 0.037        | 0.042        |
| <b>Total CDF</b>     | <b>200</b>                                                                     | <b>1,420</b> | <b>336</b> | <b>653</b> |                                                  | <b>4.84</b>                                                                  | <b>29.8</b>  | <b>8.49</b>  | <b>14.4</b>  |
| <b>Total CDD+CDF</b> | <b>280</b>                                                                     | <b>2,000</b> | <b>476</b> | <b>918</b> |                                                  | <b>6.74</b>                                                                  | <b>36.5</b>  | <b>10.4</b>  | <b>17.9</b>  |

a ng/dscm = nanogram per dry standard cubic meter. Standard conditions are defined as 1 atm and 68° F.

b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot Study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

[ ] = minimum detection limit. ( ) = estimated maximum possible concentration.

TABLE 2-44. CDD/CDF STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT O<sub>2</sub> FOR CONDITION 2 INCORPORATING THE TOLUENE RECOVERY RESULTS; CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | CONCENTRATION <sup>a</sup><br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |               |               |               | 2378-TCDD <sup>b</sup><br>TOXIC EQUIV.<br>FACTOR | 2378 TOXIC EQUIVALENCIES<br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |              |            |            |
|----------------------|--------------------------------------------------------------------------------|---------------|---------------|---------------|--------------------------------------------------|------------------------------------------------------------------------------|--------------|------------|------------|
|                      | RUN 2                                                                          | RUN 4         | RUN 8         | AVERAGE       |                                                  | RUN 2                                                                        | RUN 4        | RUN 8      | AVERAGE    |
| <b>DIOXINS</b>       |                                                                                |               |               |               |                                                  |                                                                              |              |            |            |
| 2378 TCDD            | 19.38                                                                          | 46.44         | 22.24         | 29.35         | 1.00000                                          | 19.385                                                                       | 46.442       | 22.237     | 29.355     |
| Other TCDD           | 455.05                                                                         | 824.60        | 560.19        | 613.28        | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000      | 0.000      |
| 12378 PCDD           | 60.21                                                                          | 181.92        | 112.93        | 118.35        | 0.50000                                          | 30.106                                                                       | 90.962       | 56.463     | 59.177     |
| Other PCDD           | 398.94                                                                         | 1217.39       | 728.62        | 781.65        | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000      | 0.000      |
| 123478 HxCDD         | 57.25                                                                          | 156.57        | 131.43        | 115.08        | 0.10000                                          | 5.725                                                                        | 15.657       | 13.143     | 11.508     |
| 123678 HxCDD         | 67.67                                                                          | 199.42        | 136.73        | 134.61        | 0.10000                                          | 6.767                                                                        | 19.942       | 13.673     | 13.461     |
| 123789 HxCDD         | 120.43                                                                         | 378.72        | 245.24        | 248.13        | 0.10000                                          | 12.043                                                                       | 37.872       | 24.524     | 24.813     |
| Other HxCDD          | 557.79                                                                         | 1486.85       | 1056.77       | 1033.80       | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000      | 0.000      |
| 1234678-HpCDD        | 321.62                                                                         | 811.76        | 760.44        | 631.27        | 0.01000                                          | 3.216                                                                        | 8.118        | 7.604      | 6.313      |
| Other HpCDD          | 336.68                                                                         | 885.18        | 827.45        | 683.10        | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000      | 0.000      |
| Octa-CDD             | 417.74                                                                         | 614.12        | 952.82        | 661.56        | 0.00100                                          | 0.418                                                                        | 0.614        | 0.953      | 0.662      |
| <b>Total CDD</b>     | <b>2,810</b>                                                                   | <b>6,800</b>  | <b>5,530</b>  | <b>5,050</b>  |                                                  | <b>77.7</b>                                                                  | <b>220</b>   | <b>139</b> | <b>145</b> |
| <b>FURANS</b>        |                                                                                |               |               |               |                                                  |                                                                              |              |            |            |
| 2378 TCDF            | 59.03                                                                          | 171.50        | 10.49         | 80.34         | 0.10000                                          | 5.903                                                                        | 17.150       | 1.049      | 8.034      |
| Other TCDF           | 1757.26                                                                        | 4822.55       | 394.11        | 2324.64       | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000      | 0.000      |
| 12378 PCDF           | 169.40                                                                         | 697.96        | 251.50        | 372.95        | 0.05000                                          | 8.470                                                                        | 34.898       | 12.575     | 18.648     |
| 23478 PCDF           | 235.72                                                                         | 826.53        | 321.24        | 461.16        | 0.50000                                          | 117.862                                                                      | 413.265      | 160.620    | 230.582    |
| Other PCDF           | 2706.91                                                                        | 11130.98      | 3882.92       | 5906.94       | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000      | 0.000      |
| 123478 HxCDF         | 505.16                                                                         | 2011.66       | 1049.81       | 1188.88       | 0.10000                                          | 50.516                                                                       | 201.166      | 104.981    | 118.888    |
| 123678 HxCDF         | 303.09                                                                         | 1268.23       | 636.07        | 735.80        | 0.10000                                          | 30.309                                                                       | 126.823      | 63.607     | 73.580     |
| 234678 HxCDF         | 296.98                                                                         | 900.89        | 558.40        | 585.42        | 0.10000                                          | 29.698                                                                       | 90.089       | 55.840     | 58.542     |
| 123789 HxCDF         | 21.02                                                                          | 78.82         | 38.56         | 46.13         | 0.10000                                          | 2.102                                                                        | 7.882        | 3.856      | 4.613      |
| Other HxCDF          | 1730.97                                                                        | 6804.35       | 3601.04       | 4045.45       | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000      | 0.000      |
| 1234678-HpCDF        | 803.30                                                                         | 2562.79       | 1782.03       | 1716.04       | 0.01000                                          | 8.033                                                                        | 25.628       | 17.820     | 17.160     |
| 1234789-HpCDF        | 121.46                                                                         | 309.63        | 227.63        | 219.57        | 0.01000                                          | 1.215                                                                        | 3.096        | 2.276      | 2.196      |
| Other HpCDF          | 647.03                                                                         | 1798.33       | 1342.50       | 1262.62       | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000      | 0.000      |
| Octa-CDF             | 560.44                                                                         | 785.47        | 838.12        | 728.01        | 0.00100                                          | 0.560                                                                        | 0.785        | 0.838      | 0.728      |
| <b>Total CDF</b>     | <b>9,920</b>                                                                   | <b>34,200</b> | <b>14,900</b> | <b>19,700</b> |                                                  | <b>255</b>                                                                   | <b>921</b>   | <b>423</b> | <b>533</b> |
| <b>Total CDD+CDF</b> | <b>12,700</b>                                                                  | <b>41,000</b> | <b>20,500</b> | <b>24,700</b> |                                                  | <b>332</b>                                                                   | <b>1,140</b> | <b>562</b> | <b>678</b> |

<sup>a</sup> ng/dscm = nanogram per dry standard cubic meter. Standard conditions are defined as 1 atm and 68° F.

<sup>b</sup> North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot Study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

[ ] = minimum detection limit. ( ) = estimated maximum possible concentration.

TABLE 2-45. CDD/CDF STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT O<sub>2</sub> FOR CONDITION 3 INCORPORATING THE TOLUENE RECOVERY RESULTS; CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | CONCENTRATION <sup>a</sup><br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |             |              |            | 2378-TCDD <sup>b</sup><br>TOXIC EQUIV.<br>FACTOR | 2378 TOXIC EQUIVALENCIES<br>(ng/dscm, adjusted to 7 percent O <sub>2</sub> ) |              |              |              |
|----------------------|--------------------------------------------------------------------------------|-------------|--------------|------------|--------------------------------------------------|------------------------------------------------------------------------------|--------------|--------------|--------------|
|                      | RUN 5                                                                          | RUN 6       | RUN 9        | AVERAGE    |                                                  | RUN 5                                                                        | RUN 6        | RUN 9        | AVERAGE      |
| <b>DIOXINS</b>       |                                                                                |             |              |            |                                                  |                                                                              |              |              |              |
| 2378 TCDD            | 0.66                                                                           | (0.198)     | 2.05         | 0.97       | 1.00000                                          | 0.657                                                                        | (0.198)      | 2.048        | 0.968        |
| Other TCDD           | 51.72                                                                          | 10.08       | 119.00       | 60.27      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 12378 PCDD           | 1.73                                                                           | 0.62        | 4.75         | 2.37       | 0.50000                                          | 0.867                                                                        | 0.310        | 2.375        | 1.184        |
| Other PCDD           | 32.51                                                                          | 10.38       | 95.08        | 45.99      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 123478 HxCDD         | 1.10                                                                           | 0.51        | 2.79         | 1.47       | 0.10000                                          | 0.110                                                                        | 0.051        | 0.279        | 0.147        |
| 123678 HxCDD         | 1.64                                                                           | 0.86        | 4.26         | 2.26       | 0.10000                                          | 0.164                                                                        | 0.086        | 0.426        | 0.226        |
| 123789 HxCDD         | 3.38                                                                           | 1.62        | 7.05         | 4.02       | 0.10000                                          | 0.338                                                                        | 0.162        | 0.705        | 0.402        |
| Other HxCDD          | 21.63                                                                          | 10.50       | 50.28        | 27.47      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 1234678-HpCDD        | 11.32                                                                          | 5.69        | 19.30        | 12.10      | 0.01000                                          | 0.113                                                                        | 0.057        | 0.193        | 0.121        |
| Other HpCDD          | 12.23                                                                          | 6.66        | 23.28        | 14.06      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| Octa-CDD             | 15.70                                                                          | 7.15        | 25.06        | 15.97      | 0.00100                                          | 0.016                                                                        | 0.007        | 0.025        | 0.016        |
| <b>Total CDD</b>     | <b>154</b>                                                                     | <b>54.3</b> | <b>353</b>   | <b>187</b> |                                                  | <b>2.264</b>                                                                 | <b>0.872</b> | <b>6.051</b> | <b>3.062</b> |
| <b>FURANS</b>        |                                                                                |             |              |            |                                                  |                                                                              |              |              |              |
| 2378 TCDF            | 3.12                                                                           | 0.78        | 9.41         | 4.44       | 0.10000                                          | 0.312                                                                        | 0.078        | 0.941        | 0.444        |
| Other TCDF           | 117.35                                                                         | 26.13       | 363.91       | 169.13     | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 12378 PCDF           | 3.74                                                                           | 1.44        | 10.25        | 5.14       | 0.05000                                          | 0.187                                                                        | 0.072        | 0.513        | 0.257        |
| 23478 PCDF           | 6.39                                                                           | 2.52        | 15.99        | 8.30       | 0.50000                                          | 3.194                                                                        | 1.260        | 7.995        | 4.150        |
| Other PCDF           | 57.97                                                                          | 22.23       | 208.09       | 96.10      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 123478 HxCDF         | 8.30                                                                           | 4.32        | 19.85        | 10.83      | 0.10000                                          | 0.830                                                                        | 0.432        | 1.985        | 1.083        |
| 123678 HxCDF         | 4.29                                                                           | 2.16        | 10.42        | 5.62       | 0.10000                                          | 0.429                                                                        | 0.216        | 1.042        | 0.562        |
| 234678 HxCDF         | 5.93                                                                           | 3.42        | 13.78        | 7.71       | 0.10000                                          | 0.593                                                                        | 0.342        | 1.378        | 0.771        |
| 123789 HxCDF         | 0.30                                                                           | 0.16        | 0.67         | 0.38       | 0.10000                                          | 0.030                                                                        | 0.016        | 0.067        | 0.038        |
| Other HxCDF          | 24.36                                                                          | 12.35       | 65.93        | 34.21      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| 1234678-HpCDF        | 16.27                                                                          | 7.66        | 27.48        | 17.14      | 0.01000                                          | 0.163                                                                        | 0.077        | 0.275        | 0.171        |
| 1234789-HpCDF        | 2.10                                                                           | 1.53        | 3.61         | 2.41       | 0.01000                                          | 0.021                                                                        | 0.015        | 0.036        | 0.024        |
| Other HpCDF          | 12.14                                                                          | 6.21        | 21.08        | 13.14      | 0.00000                                          | 0.000                                                                        | 0.000        | 0.000        | 0.000        |
| Octa-CDF             | 10.95                                                                          | 12.09       | 21.74        | 14.93      | 0.00100                                          | 0.011                                                                        | 0.012        | 0.022        | 0.015        |
| <b>Total CDF</b>     | <b>273</b>                                                                     | <b>103</b>  | <b>792</b>   | <b>389</b> |                                                  | <b>5.77</b>                                                                  | <b>2.52</b>  | <b>14.3</b>  | <b>7.51</b>  |
| <b>Total CDD+CDF</b> | <b>427</b>                                                                     | <b>157</b>  | <b>1,150</b> | <b>576</b> |                                                  | <b>8.03</b>                                                                  | <b>3.39</b>  | <b>20.3</b>  | <b>10.6</b>  |

a ng/dscm = nanogram per dry standard cubic meter. Standard conditions are defined as 1 atm and 68° F.

b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot Study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

[ ] = minimum detection limit. ( ) = estimated maximum possible concentration.

## 3.0 PROCESS DESCRIPTION AND OPERATION

### 3.1 FACILITY DESCRIPTION

Central Carolina Hospital is a 137-bed hospital located in Sanford, North Carolina. The medical waste incinerator (MWI) at this facility is a Consumat C-75-P with a design capacity of 176 pounds per hour (lb/hr) of Type IV (pathological) waste. The unit is also designed to burn general medical (nonpathological) waste at a rate of about 250 lb/hr. Two natural-gas-fired auxiliary burners in the primary chamber are used to maintain a pre-set minimum combustion temperature. Primary chamber temperatures normally range between 1200 and 1600°F. The hospital burns red bag waste, sharps containers, and a small amount of waste from nearby doctors' offices. Cafeteria waste, cardboard boxes, and general waste is compacted and landfilled.

The MWI is charged manually by opening a large refractory-lined charging door that opens at the front of the primary chamber. As a safety feature, the primary burners and blowers switch off automatically when the charging door is opened. The MWI is designed for 8 to 12 hours of operation each day, with ashes removed manually after cooldown.

The secondary chamber on this unit is sized for a design gas retention time of about 0.3 to 0.4 second. A gas-fired auxiliary burner in the secondary chamber is activated automatically when the temperature falls below a preset level, normally about 1600°F. Setpoint and actual temperatures in each chamber are displayed on a dial in the control panel.

Combustion air is supplied to the unit by two combustion air blowers, one for the primary chamber and one for the secondary chamber. The primary chamber blower supplies air to a plenum to which three separate air ducts are attached. One of these ducts supplies air to the combustion air ports inside the primary chamber. The 20 primary chamber air ports are equally spaced around the wall of the chamber, about 8 inches off the floor. The other two ducts supply air to the primary chamber burners. All three of these air ducts have manually adjustable dampers that are set at about

45 degrees (half way between totally open and totally closed) and were not moved during the test program.

The secondary chamber combustion air blower supplies air to the secondary burner and to the secondary chamber flameport area. The distribution of the airflow is controlled by a manual damper that was set at about 45 degrees and not adjusted during testing. The secondary chamber blower is on during operation of the MWI; there is no modulation of the airflow.

The Consumat "P"-designated MWI's are dual-mode units that are designed to burn either wet (pathological) or dry (general medical) waste. This is accomplished through the use of a "wet waste"- "dry waste" switch on the control panel door. The switch controls the operation of the primary chamber burners and the combustion air blowers. Testing was conducted with the unit operating in the "wet waste" mode for both types of waste. Burndown was set at 4 hours. The unit operates in the following manner while on the "dry waste" setting. During the initial warmup period, the primary chamber burners and blower are controlled by a timer that was set at 1.5 hours (adjustable up to 3 hours) and the temperature setpoint. If the temperature setpoint is reached before the timer has cut off, burners and blower shut off until the temperature falls to about 50°F below the setpoint, where both cut on again. Once the preset warmup time has elapsed, the burners shut off, but the blower operation is controlled by the temperature setpoint. If after 4 hours of operation, for example, the temperature falls 50°F below the setpoint, the blower (but not the burners) comes on until the setpoint is reached. The unit operates in this manner until burndown is completed. The secondary chamber blower runs continuously while the unit is in operation, and the burner cycles off and on based on the secondary chamber temperature setpoint.

The warmup timer is not operative in the "wet waste" mode. In this mode the primary chamber burners and blower always operate simultaneously. When started cold, the burners and blower run until the temperature setpoint is reached, then both cutoff. When the primary chamber temperature falls to 50°F below the setpoint, the burners and blower come back on. The unit operates in this manner until burndown is completed. The time for burndown is set by the burndown timer and is the same for both wet and

dry settings. The secondary chamber blower is always on and the burner cycles off and on based on the secondary chamber temperature setpoint.

There is no add-on air pollution control device on this MWI. Because of the inadequate length of the original stack, a stack extension with sampling ports was added for the test.

The general medical waste burned during the test program was red bag waste generated by the hospital. Because the hospital does not generate sufficient pathological waste to charge at the target test condition, pathological waste was obtained from two research labs located in Research Triangle Park, North Carolina. This pathological waste, comprised of animal carcasses, was transported to the site in double plastic bags inside cardboard boxes.

### 3.2 PRETEST ACTIVITIES

The proposed test program at this MWI included operating the unit under three different operating conditions. Condition I was a reduced rate of pathological waste (about 100 lb/hr, 15 minute charges, 1900°F secondary chamber setpoint). Condition II was the design rate for general medical waste (about 250 lb/hr, 15 minute charges, 1600°F secondary chamber setpoint). Condition III was the design rate for pathological waste (about 160 to 170 lb/hr, 15 minute charges, 1600°F secondary chamber setpoint). A pretest trial burn was conducted for the two design conditions (Conditions II and III) to determine the operational readiness of the incinerator and the ability of the incinerator to operate successfully at the desired operating conditions. Because Condition I was defined as a "reduced" rate, it was decided that a pretest at this condition was not necessary if Condition III could be achieved.

#### 3.2.1 Pretests--General Medical Waste

September 11, 1990

The purpose of this pretest was to investigate the operating procedures of the MWI and to verify that it could be successfully operated for a period of at least 4 to 5 hours at the waste charging rate specified for the test period. During this pretest, general medical waste was to be charged at a rate of about 240 to 250 lb/hr (60 lb/charge, 15 minute charging frequency). The secondary burner setpoint was 1600°F.

When Radian and MRI personnel arrived at the hospital at 9:00 am, the MWI was not operating and, when opened, it was obvious that the unit was cold and had not been operated for several days. Most of the loose ashes had been removed, exposing a 6- to 10-inch thick layer of solid, clinker-like material (slag) that had accumulated on the hearth.

Hospital personnel explained that, although Consumat representatives indicated that combustion capability of the unit would be improved if the air ports were routinely cleaned, the hospital employees were not familiar with the proper cleaning procedures. Loose ash was routinely cleaned out after each burn but the air ports were not cleaned.

At the request of EPA, removal of the slag was undertaken. By around 2 p.m. the slag had been removed from the hearth and 19 of the 20 air ports had been located and drilled out with a masonry drill bit. This was considered sufficient to allow the pretest activities to continue.

Soon after completing the cleaning activities, an attempt was made to fire up the unit to begin the preheat period. When the unit was switched on, the secondary burner and primary chamber blower came on, but the primary burners did not ignite. After some investigation, an engineering services employee from the hospital manually adjusted the reset timer, and one of the primary burners came on. Hospital personnel indicated earlier in the day that the second burner had not been functioning recently. This burner would not ignite despite repeated attempts. Further efforts to identify the problem with the second burner indicated that the relay that opens the main gas valve might be malfunctioning.

At about 3:30, the decision was made to proceed with the burning of some waste with only one burner on because the primary burners are not generally needed after the initial few charges have brought the temperature up in the primary. Sixty-pound charges were fed to the MWI every 15 minutes for the next 1.5 hours. At about 4:25, the incinerator operator had to leave, and a decision was made to load only 1 or 2 more charges and stop rather than locate another operator. The last charge was loaded at 4:52, and the last temperature was recorded at 5:07.

While a complete pretest was not performed during this visit, several important observations were made. It was agreed that a service technician (from Consumat, if possible) needed to be brought in to correct the problems with the inoperative primary burner and the reset timer and to calibrate the thermocouples. The accuracy of the thermocouples was questioned because the highest recorded secondary temperature was only about 1400°F. This is essentially the lowest that the gauge will read when the setpoint is 1600°F. The temperature gauge was, therefore, pegged at the bottom of the scale during the burn period. The primary chamber temperature went up to about 1500°F once during the burn. Based on previous experience and the fact that the MWI was burning exclusively high-plastic, red bag waste, this indicated that the recorded secondary chamber temperature seemed too low.

The unit operated reasonably well during the 1.5-hour burn. On the second charge, dense black smoke was emitted from the door seals, burner port assemblies, thermocouple wire conduits, and stack for a period of about 90 seconds. The smoke then gradually ceased. Subsequent charges did not cause a repeat of this heavy smoke, although while the charging door was open, there was a significant amount of smoke emitted from the door. When the door was closed, the unit operated without visible emissions.

The following actions were planned as a result of this pretest: (1) the hospital would attempt to arrange for a service technician to visit the site as soon as possible, (2) a tentative schedule of test-related activities for the next 2 weeks would be prepared for the hospital so that they could schedule the operators and the storage and burning of their waste, and (3) if possible, a complete pretest on medical waste would be conducted on Friday, September 14.

#### September 14, 1990

On Friday, September 14, 1990, a followup pretest was conducted at the hospital. The purpose of this pretest was to observe the repairs made to the MWI as a result of the problems that arose during the September 11, 1990, pretest visit. Southern Electronic Controls, Inc., had been contracted by Consumat to service and repair the unit.

The inspection and servicing of the MWI began by removing and checking the secondary chamber burner assembly. This unit was basically in good condition. A minor adjustment was made to the burner igniter so that a better spark would be produced. The burner assembly was then returned to the secondary chamber burner housing.

Each of the primary burners was then removed, inspected, and returned, with only minor adjustments to the igniters being required. The "flame rods," which detect the presence of a flame from the burner and keep the gas valve open, were also removed and cleaned.

The unit was then switched on and, as occurred on September 11, 1990, the secondary burner ignited, but the primary burners did not. A check of the switches and relays that control the operation of the burners followed. It was discovered that two of the lead wires in the control box were cross-wired. This error prevented the correct operation of the primary chamber burner timer. After the wiring problem was corrected, one primary burner ignited, but the other did not. The relay boxes for each burner were then inspected and a faulty relay was found that prevented the gas valve from opening on the inoperative burner. The relay was removed and cleaned, the contact points were realigned, and the unit was replaced. Upon restarting the unit, all burners ignited.

Although the equipment necessary to check the accuracy of the thermocouples was not available, the upper and lower thermocouple assemblies were removed and inspected. It was found that the upper unit was wired backwards and that some of the insulation had chipped off. The result of these problems was that the secondary chamber thermocouple did not work at all. After the unit was rewired, the indicated temperature fluctuated drastically because of the damage to the insulation. Therefore, a new thermocouple was installed. The lower unit appeared to operate properly.

After these repairs had been completed, the unit was restarted and appeared to operate as designed. Red bag waste was charged to the MWI at a rate of 200 to 240 lb/hr (50 to 60 lb/charge, with a 15-minute charging frequency) for about 4 hours. All of the MWI systems (burners, thermocouples, timers, and temperature displays) seemed to be operating properly; however, an accumulation of material in the primary chamber indicated that the charging rate might be too high.

The extent of the repairs that were required for this MWI were unexpected. The problems at this unit appear to have been compounded by a lack of routine maintenance, recent changes in hospital personnel, and the fact that the operation of the unit and the maintenance of the unit are under two different departments in the hospital administration. It became apparent during the September 11, 1990, pretest that certain basic repairs to the unit would be necessary prior to operating the unit in a manner that would be considered "typical" of 6- to 10-year-old units.

The current Director of Engineering at the facility was aware that the MWI was not in good working condition and was anxious for the unit to be repaired. Other hospital personnel appeared to be interested in learning about the proper operation and maintenance of the unit. It appears that the operating condition of this unit was poor, but that most of the problems were easily corrected and that proper attention by hospital staff is needed.

September 18, 1990

The target charge rate was revised based on observations made during the September 14, 1990, pretest. The purpose of this pretest was to confirm that the MWI could be operated at this revised target test condition (200 lb/hr; 50 lb every 15 minutes; secondary chamber setpoint of 1600°F) for at least 5 hours. Red bag medical waste generated at the hospital was charged to the unit during this pretest.

The MWI was cleaned out and allowed to preheat for about 15 minutes prior to loading the first charge. At 11:15 am, the first charge of the day was placed in the incinerator. Temperature readings were taken immediately after the loading door was closed and at 5-minute intervals thereafter. Between 11:15 am and 4:15 pm, 19 charges ranging from 45.3 to 56.7 lb were loaded into the MWI at 15-minute intervals.

The following observations were made during the pretest burn:

1. The temperature in the primary chamber climbed to about 1300°F (the setpoint) in about 30 minutes, and after about 1 hour it had reached 1500°F. The temperature stayed between 1400° and 1500°F for the remainder of the burn period.
2. The secondary chamber temperature was very erratic and was influenced greatly by the charging cycle and the condition of the primary burners/blowers. When the

primary burners are on, the secondary chamber temperature peaks are much higher than if the primary burners are off. The secondary chamber temperature peaks about 5 minutes after each charge, and the peaks tended to get higher after the unit had been operating for several hours. Very high peaks also occurred during the first hour while the primary burners were operating.

3. Near the end of the burn period, the ash bed in the unit had become so high that it was causing some difficulty in loading additional waste. Flames and dense black smoke came out when the charging door was opened, and large bags were difficult to load because the ash bed restricted access to the interior of the unit.

4. The unit appeared to operate well during the pretest; there was very little smoke from the stack, the temperatures were fairly stable within the expected range, and the burners/blowers cycled off and on as expected. The most obvious problem observed during the pretest was the continuing accumulation of material in the primary chamber. It was apparent that the unit was not capable of burning the waste completely at the charge rate being used. By the end of the burn period, the primary chamber was so full that it was difficult to charge.

When the incinerator was opened the following morning a large accumulation of hot, smoldering material was found in the primary chamber. Burnout was poor in terms of quality and quantity. The material flamed up immediately when efforts to remove it began. As was the case with other MWI's tested, this unit appears to be significantly overrated in terms of the quantity of red bag waste that can be burned per hour. Therefore, the charge rate for actual testing was further reduced to 160 lb/hr.

### 3.2.2 Pretests--Pathological Waste

September 19, 1990

The purpose of this pretest was to determine if the MWI could be operated at the target test condition (160 lb/hr; 40 lb every 15 minutes; 1600°F secondary chamber setpoint) for at least 4 hours. Pathological waste was charged to the unit during this pretest.

After the ash had been removed, the unit was allowed to preheat for about 40 minutes before charging began. The first charge was loaded into the unit at 1:20 pm.

The first few boxes ranged from 43 to 57 lb in weight. It was decided that 20-minute charging cycles would be used because the boxes were somewhat heavier than expected and no one believed that the boxes should be opened. The target feed rate was changed to about 55 lb every 20 minutes.

Because of the size of the large boxes, it was very difficult to load two in the same charge. The first box ignited and flamed out the door before the second could be pushed through the charging door. (The boxes are 16 in. x 16 in. x 30 in., generally weigh 25 to 50 lb, and must be placed through a waist-high opening about 24 in. x 24 in.) After the first charge, the loads consisted of one large box and two to six smaller boxes to total near the target weight. The smaller boxes could be tossed far enough into the unit to allow charging of the one large box.

After about an hour, the temperatures leveled out around the setpoints. Deviations occurred with each charge but were generally small and brief. After about 3 hours, the primary burners cycled off and on occasionally but the temperature stayed between 1475° and 1525°F. Each time the primary burners cut off, the secondary temperature fell sharply to the 1400° to 1450°F range. Within a few minutes, the primary burners came back on, and the increased airflow caused the secondary chamber temperature to return to the 1600° to 1625°F range.

The unit operated in this pattern until charging was completed at 5:20 (out of waste). There do not appear to be any temperature limitations that would affect the duration of the burn period. The waste bed inside the unit appeared to have good burnout; only a moderate amount of buildup from the 608 lb of waste charged remained. The other possible limitation is the size/weight of the boxes. The amount of variation in the weight of the boxes may cause the individual charges to vary, but attempts were made to maintain the target rate on a per hour basis.

During the period from 1:20 to 5:20 pm, 608 lb of waste were burned (three charges per hour for 4 hours) at an average rate of about 152 lb/hr. During the actual test period, the maximum target rate will be slightly higher. The "reduced rate" test will be conducted with a target rate of about 100 lb/hr. Neither of the pathological waste conditions are believed to present an operational problem.

### 3.3 PROCESS CONDITIONS DURING TESTING

The primary purpose of this source test was to characterize the uncontrolled emissions from a pathological MWI when both pathological waste and general medical waste are burned. Therefore, all testing was conducted with the unit operating in the "wet-waste" (pathological) mode. Also, this facility is typical of the size and design of many existing units in which pathological wastes are burned.

The incinerator appeared to operate properly throughout all the test runs for all three test conditions. The burnout, however, was visibly good only for the 100 lb/hr pathological waste condition and was very poor for the 160 lb/hr pathological waste condition and the 160 lb/hr medical waste condition.

The incinerator operating parameters monitored during each test run were the charge weight, charge frequency, type of waste, primary and secondary chamber temperatures, actual times the burners and blowers were on, and ash weights. A data logger was used to record all the above parameters except for the charge weight, type of waste, and ash weight, which were manually recorded. Averages for the recorded operating parameters are presented in Table 3-1, and the data sheets documenting the recorded parameters are presented in Appendix B. Figures 3-1 through 3-10 show the temperature profiles for each run. A summary of each test run is given below.

#### 3.3.1 Condition I, Run 1 (Test Run 1)

For this condition, the target operating parameters were a charge of 100 lb/hr of pathological waste in 25-lb charges every 15 minutes and a secondary chamber temperature setpoint of 1900°F. The controller setpoints for the three runs at this condition were: primary chamber burner on/off temperature, 1500°F; primary chamber blower on/off temperature, 1500°F; secondary chamber burner on/off temperature, 1900°F; burndown time, 3 hours.

Thursday, September 20, 1990: The hearth was cleaned and the air ports cleared in preparation for the test. Preheat began at 1:40 p.m., and testing began when the first charge was introduced at 2:00, in keeping with the typical warmup time of this facility. This was also the recommended minimum warmup time by Consumat.

TABLE 3-1. PROCESS DATA SUMMARY FOR EMISSIONS TESTING AT AMI CENTRAL CAROLINA HOSPITAL

| Test Run No. | Test Date | Target Test Conditions |                 |                                     |                    | Daily Operation (a)        |                          |                         |                   | Actual Test Conditions (b) |                      |                      |                  |                     |                                 |      |      |     |      |
|--------------|-----------|------------------------|-----------------|-------------------------------------|--------------------|----------------------------|--------------------------|-------------------------|-------------------|----------------------------|----------------------|----------------------|------------------|---------------------|---------------------------------|------|------|-----|------|
|              |           | Charge Rate (lb/hr)    | Charge Type (c) | Secondary Chamber Setpoint Temp (F) | Preheat time (min) | Total Waste Charged (lb/d) | Ash (% of Waste Charged) | Avg Charge Rate (lb/hr) | Charge Freq (min) | Avg Sec. Chamber Temp (F)  | Stack Gas Conditions | Avg Flow Rate (acfm) | Avg Gas Temp (F) | Avg Gas Flow (acfm) | Re. time In Sec Chamb (d) (sec) |      |      |     |      |
|              |           |                        |                 |                                     |                    |                            |                          |                         |                   |                            |                      |                      |                  |                     |                                 |      |      |     |      |
| 1            | 8/20/90   | 100                    | 25              | P                                   | 16                 | 1600                       | 20                       | 0                       | 4.3               | 503                        | 4.2                  | 106                  | 30               | 20                  | 1418                            | 1485 | 2426 | 762 | 0.12 |
| 2            | 8/21/90   | 160                    | 40              | H                                   | 16                 | 1600                       | 20                       | 0                       | 6                 | 1016                       | 13.7 (e)             | 163                  | 41               | 15                  | 1397                            | 1734 | 2270 | 606 | 0.11 |
| 3            | 8/22/90   | 100                    | 25              | P                                   | 16                 | 1600                       | 20                       | 0                       | 4.5               | 684                        | 3.8                  | 118                  | 45               | 23                  | 1499                            | 1499 | 2201 | 759 | 0.13 |
| 4            | 8/23/90   | 160                    | 40              | H                                   | 16                 | 1600                       | 20                       | 0                       | 6.1               | 805                        | 19.1 (e)             | 153                  | 30               | 15                  | 1555                            | 1576 | 2383 | 779 | 0.11 |
| 5            | 8/24/90   | 160                    | 40              | P                                   | 16                 | 1600                       | 20                       | 0                       | 4.1               | 676                        | 6.7 (e)              | 169                  | 48               | 17                  | 1444                            | 1481 | 2423 | 746 | 0.12 |
| 6            | 8/25/90   | 160                    | 40              | P                                   | 16                 | 1600                       | 20                       | 0                       | 4.1               | 697                        | 5.9                  | 144                  | 46               | 19                  | 1421                            | 1462 | 2233 | 725 | 0.12 |
| 7            | 8/26/90   | 160                    | 40              | H                                   | 16                 | 1600                       | 20                       | 0                       | 4.6               | 709                        | 19.1 (e)             | 163                  | 41               | 15                  | 1297                            | 1699 | (f)  | (f) | (f)  |
| 8            | 8/27/90   | 160                    | 40              | H                                   | 16                 | 1600                       | 20                       | 0                       | 4.3               | 727                        | 18.9 (e)             | 161                  | 40               | 16                  | 1458                            | 1691 | 2383 | 766 | 0.11 |
| 9            | 8/28/90   | 160                    | 40              | P                                   | 15                 | 1600                       | 20                       | 0                       | 4.8               | 867                        | 8.9                  | 166                  | 42               | 16                  | 1445                            | 1623 | 2666 | 771 | 0.11 |
| 10           | 10/2/90   | 100                    | 25              | P                                   | 15                 | 1600                       | 20                       | 0                       | 4.3               | 454                        | 3.8                  | 100                  | 28               | 17                  | 1445                            | 1474 | 2272 | 749 | 0.12 |

(a) From start-up until burn-down is initiated.  
 (b) Includes port changes and times for all trains; not just the method 6 trains.  
 (c) P = Pathological waste and H = Hospital waste.  
 (d) Residence time is based on the secondary chamber volume of 0.21 m<sup>3</sup> (7.5 ft<sup>3</sup>) and is calculated as follows for Run 1:  

$$\text{Res. time, sec} = \frac{[7.5 \text{ ft}^3](600 \text{ min})}{(2426 \text{ acfm})(1485 \text{ F})}$$

(e) Ash was wet due to quenching.  
 (f) Not reported because Run 7 was invalidated.

TEMPERATURE PROFILE  
RUN 1 (9-20-90)

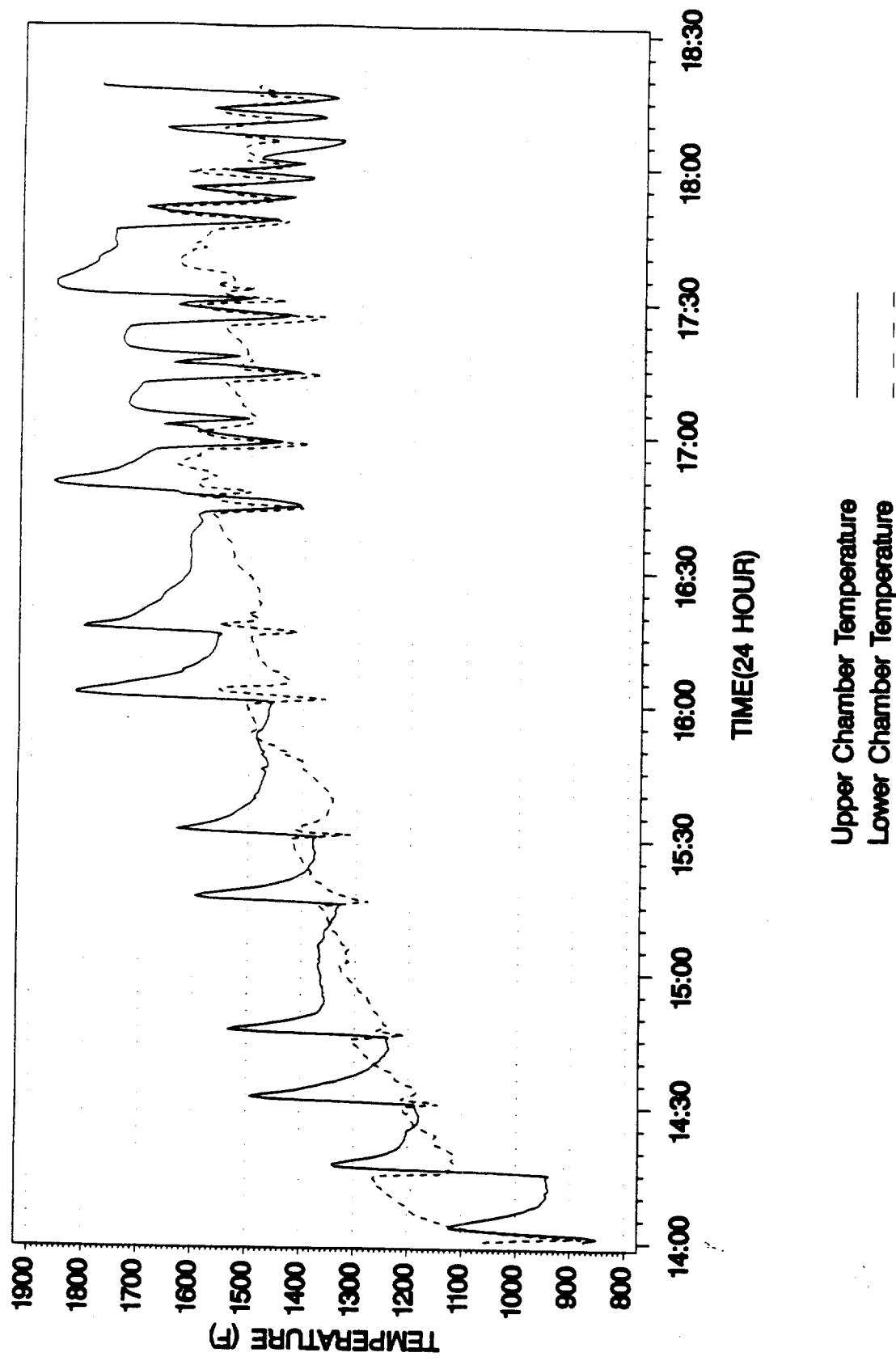



Figure 3-1. Temperature Profile for Run 1

TEMPERATURE PROFILE  
RUN 2 (9-21-90)

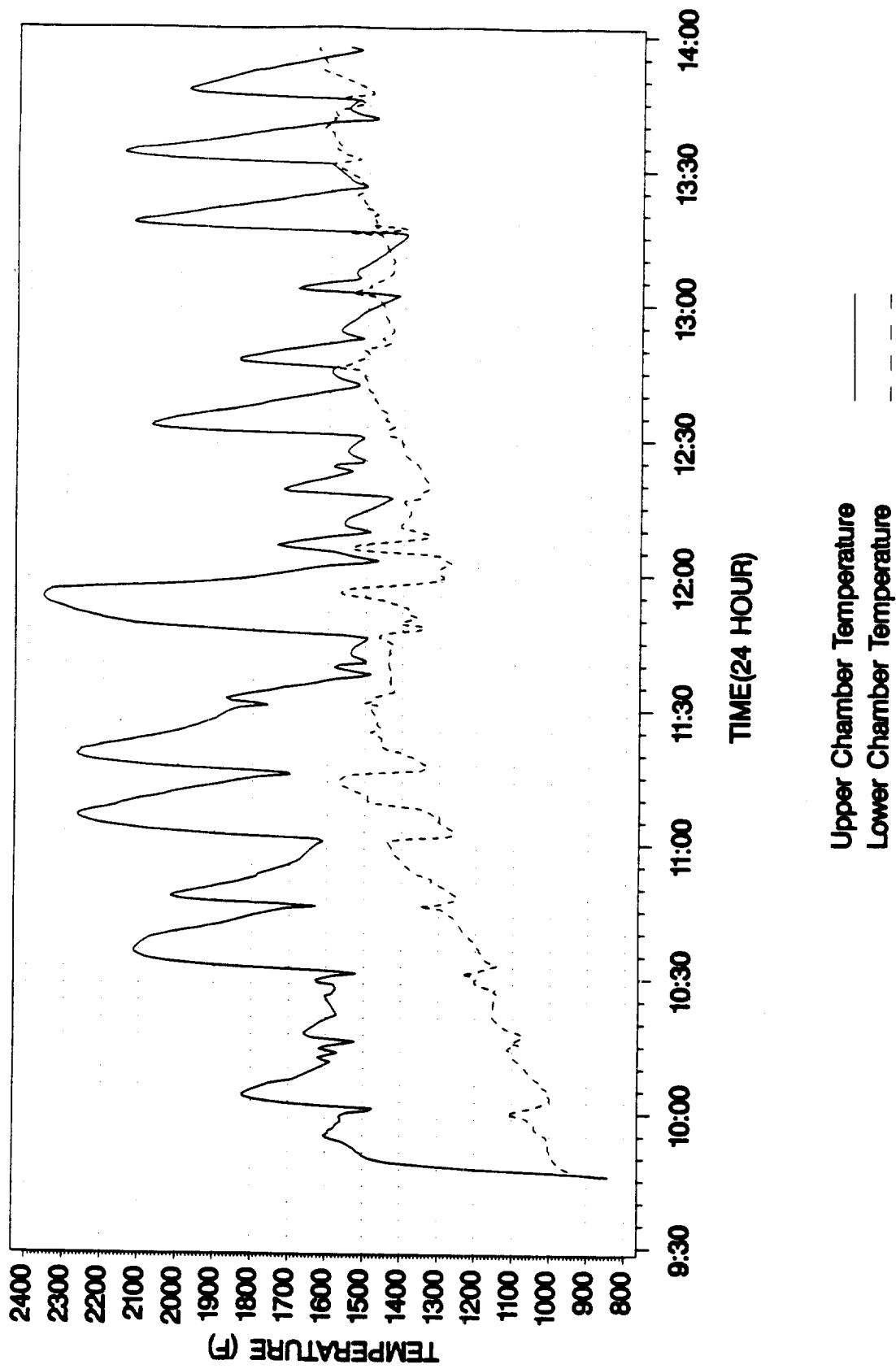



Figure 3-2. Temperature Profile for Run 2

TEMPERATURE PROFILE  
RUN 3 (9-22-90)

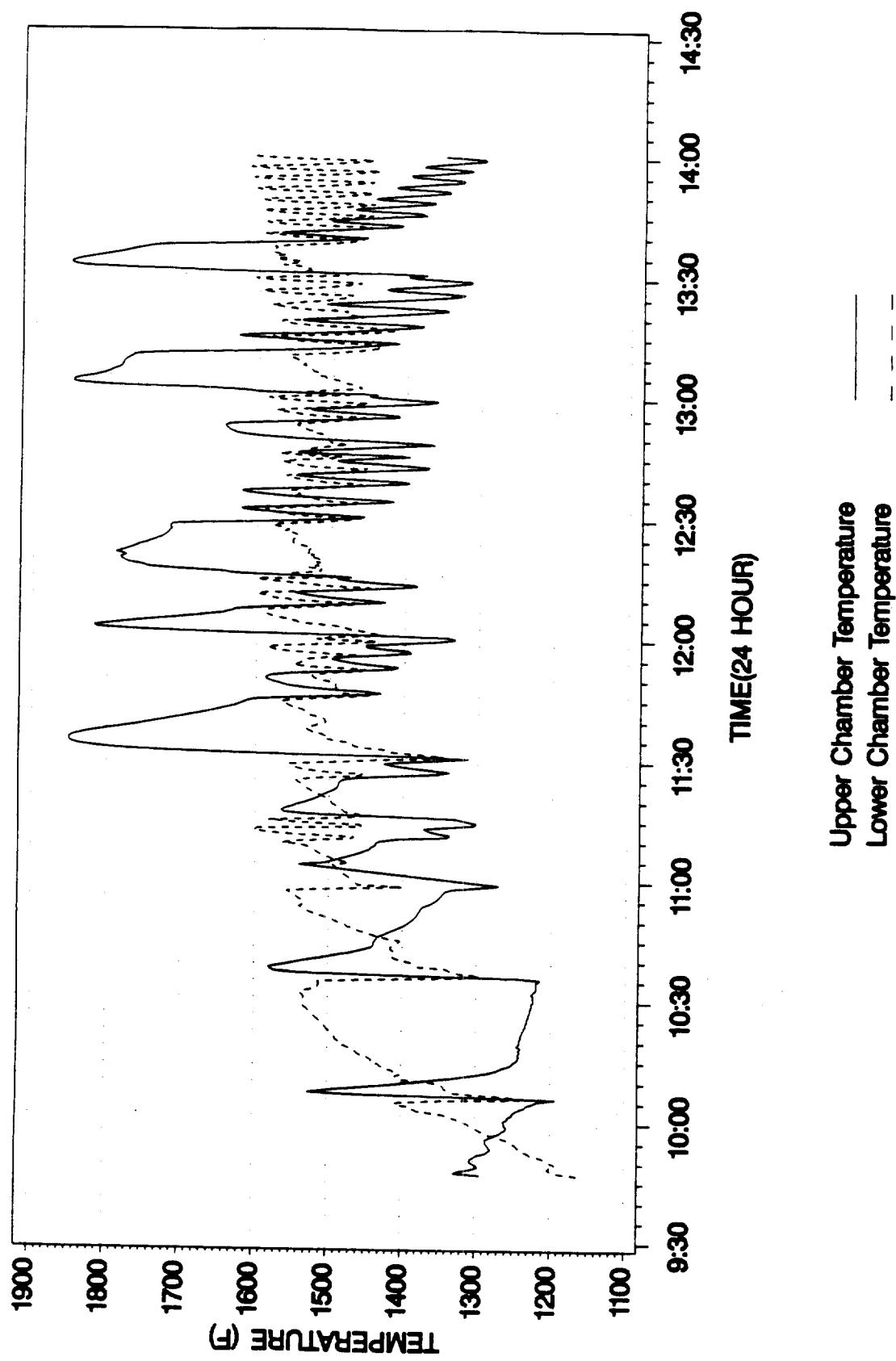



Figure 3-3. Temperature Profile for Run 3

TEMPERATURE PROFILE  
RUN 4 (9-23-80)

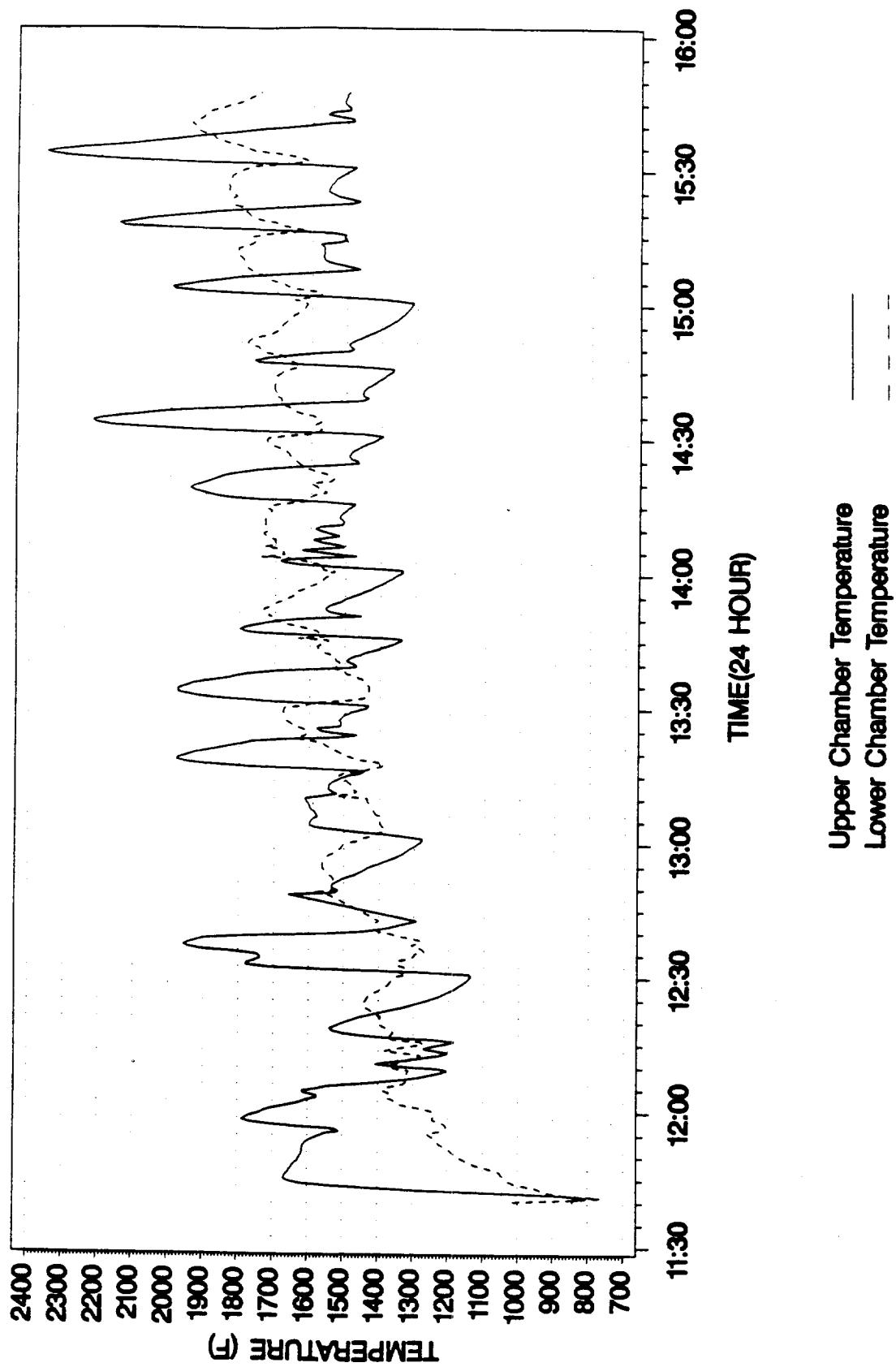



Figure 3-4. Temperature Profile for Run 4

TEMPERATURE PROFILE  
RUN 5 (9-24-90)

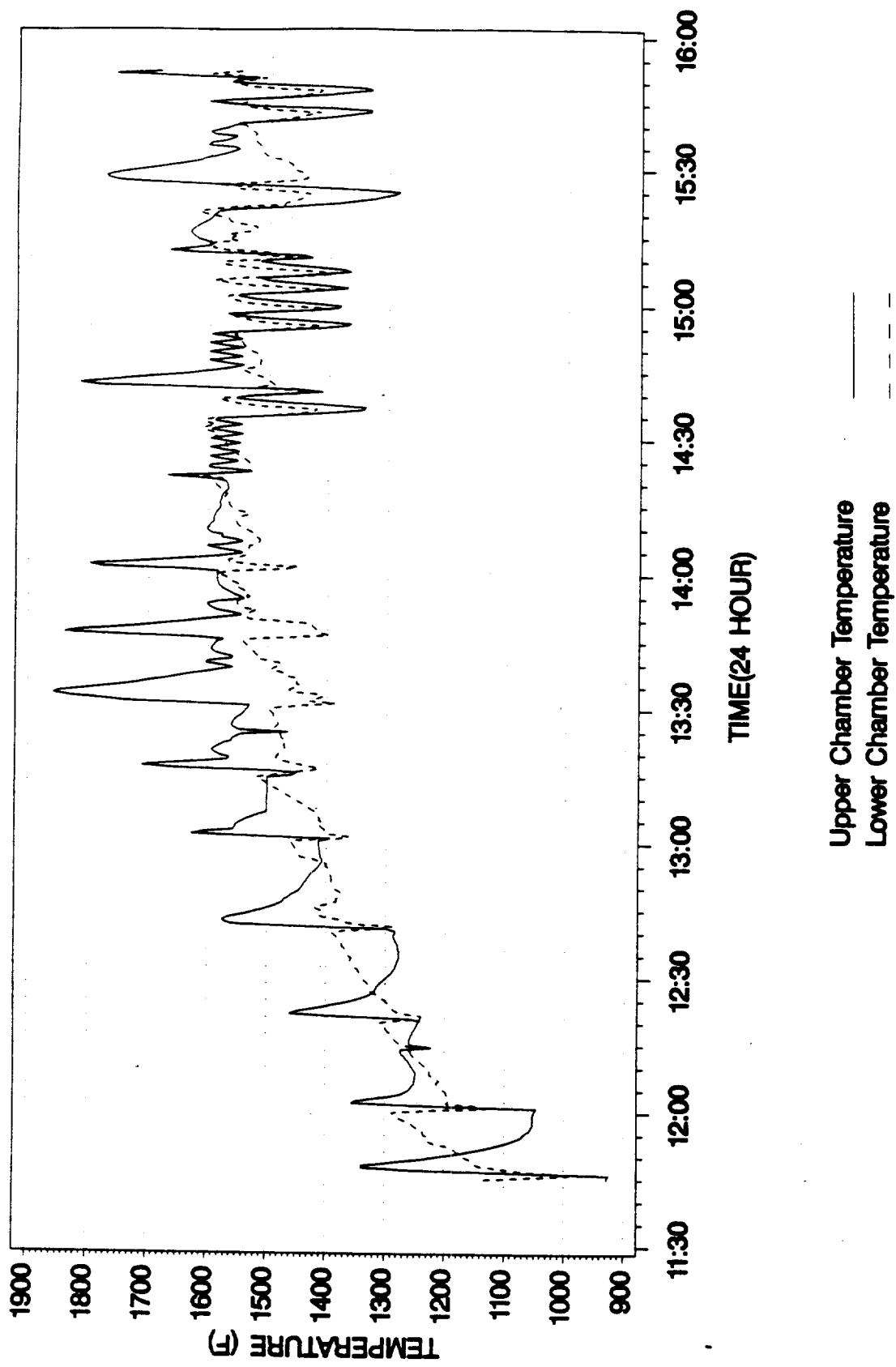



Figure 3-5. Temperature Profile for Run 5

TEMPERATURE PROFILE  
RUN 6 (9-25-90)

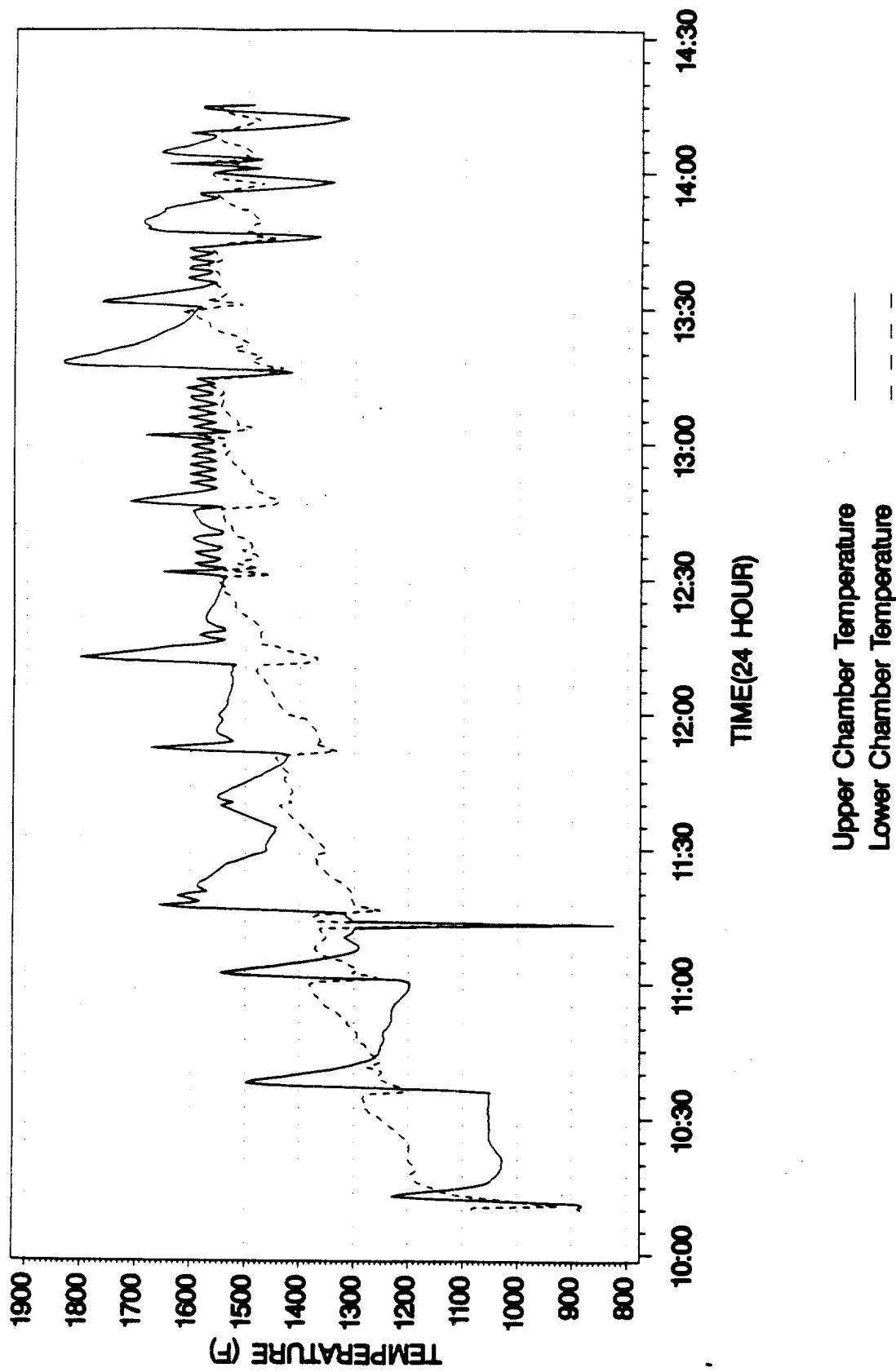



Figure 3-6. Temperature Profile for Run 6

TEMPERATURE PROFILE  
RUN 7 (9-26-90)

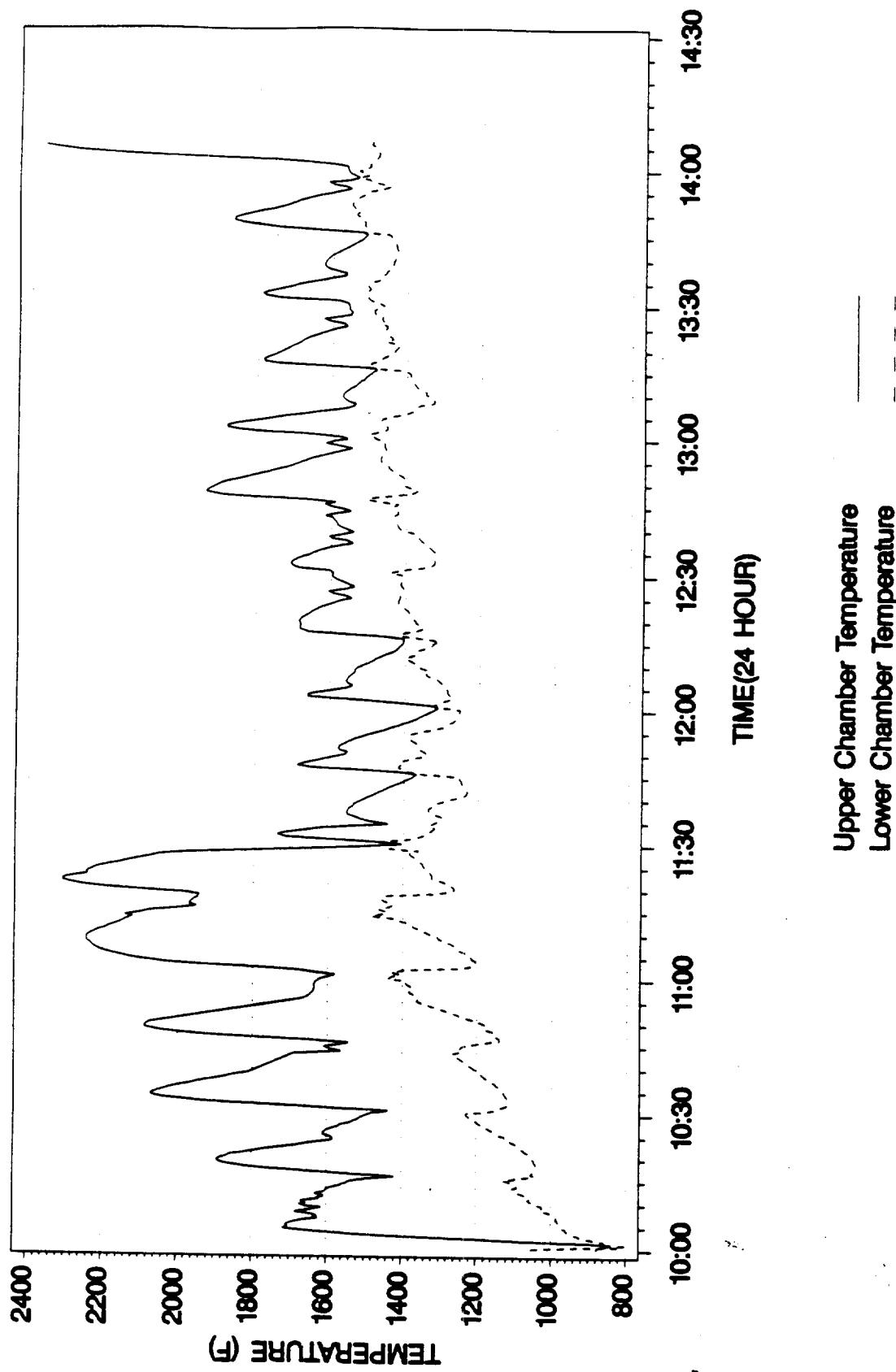



Figure 3-7. Temperature Profile for Run 7

TEMPERATURE PROFILE  
RUN 8 (9-27-90)

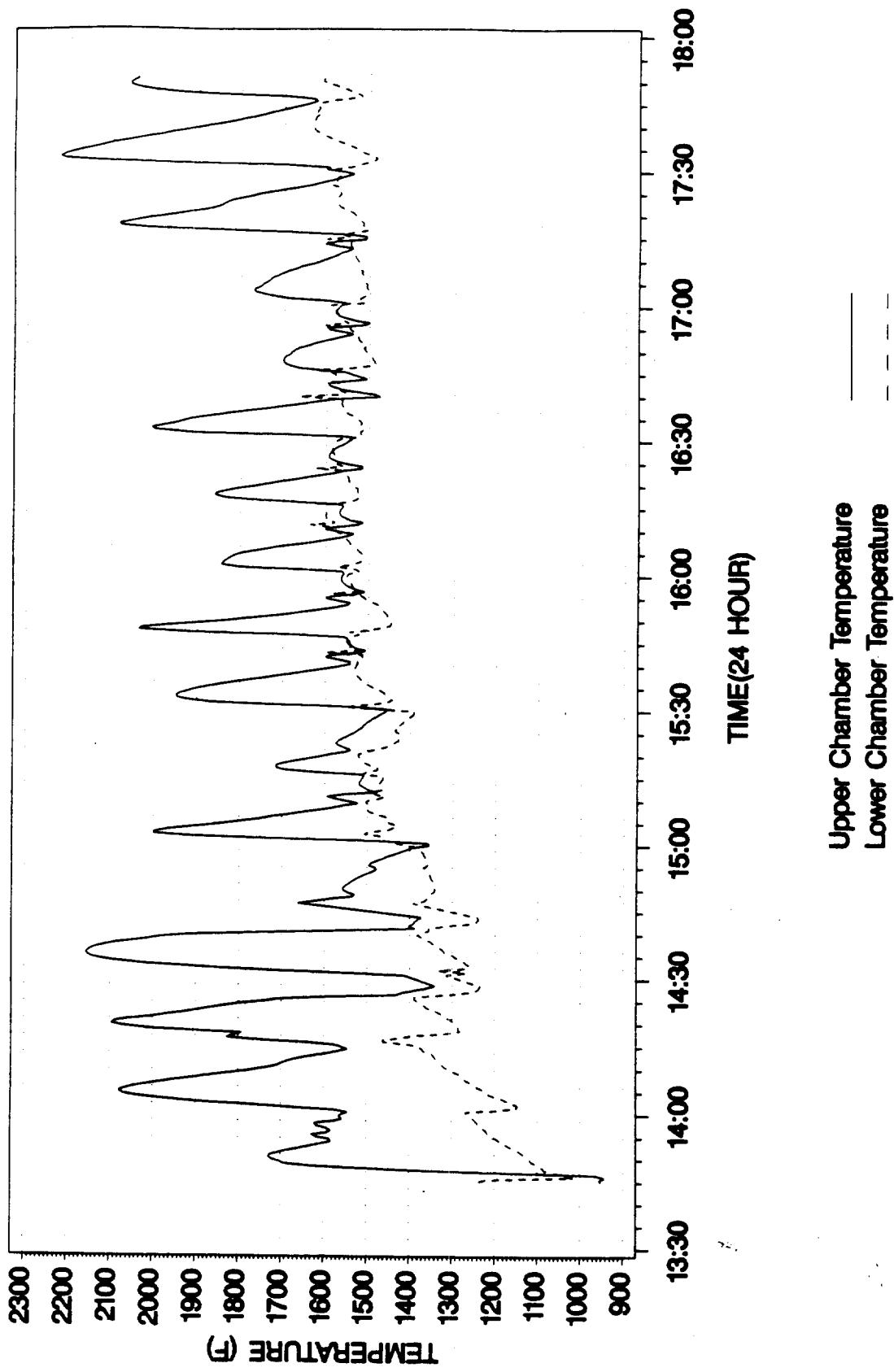



Figure 3-8. Temperature Profile for Run 8

TEMPERATURE PROFILE  
RUN 9 (9-28-90)

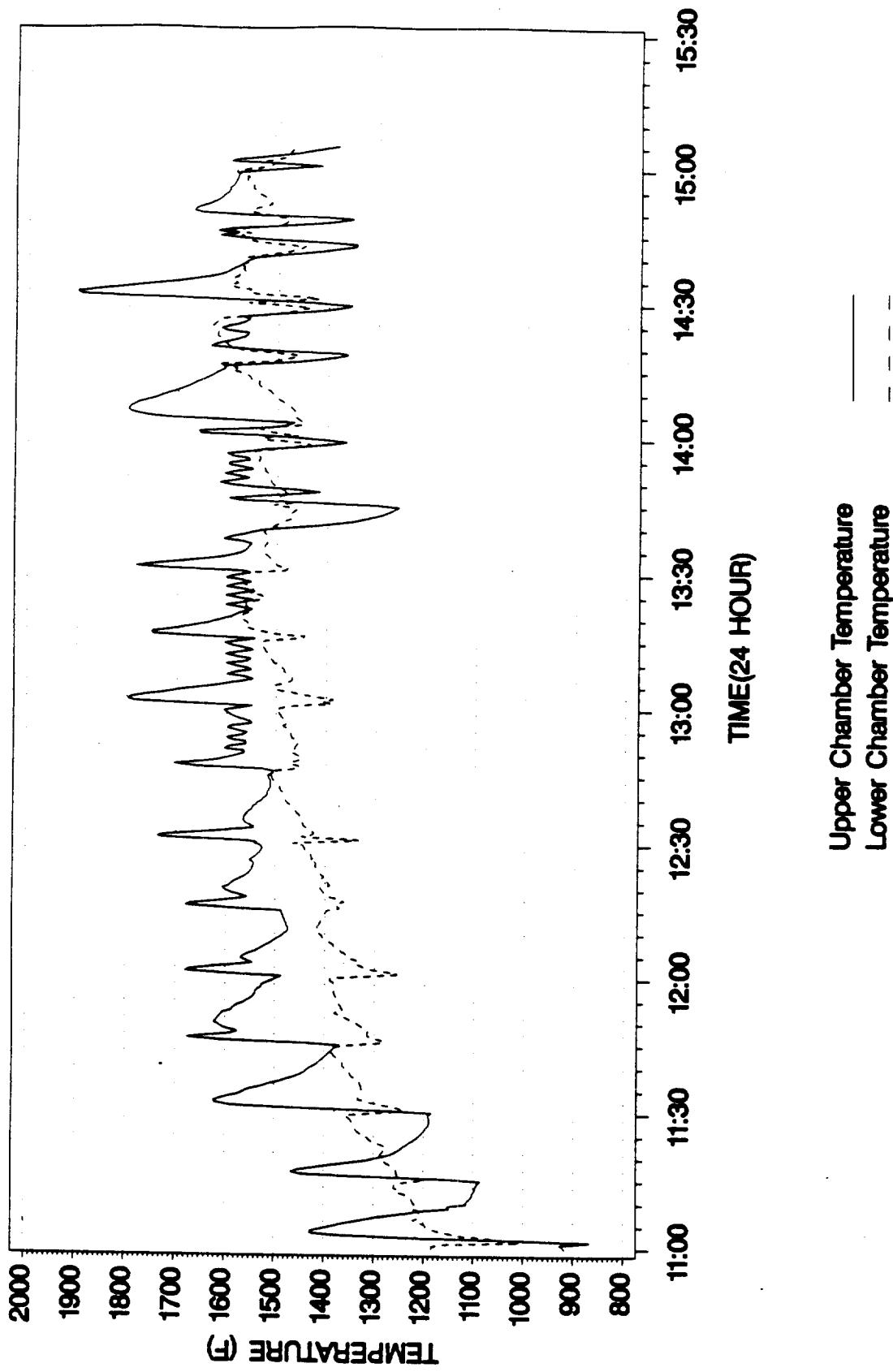



Figure 3-9. Temperature Profile for Run 9

**TEMPERATURE PROFILE**  
**RUN 10 (10-2-90)**

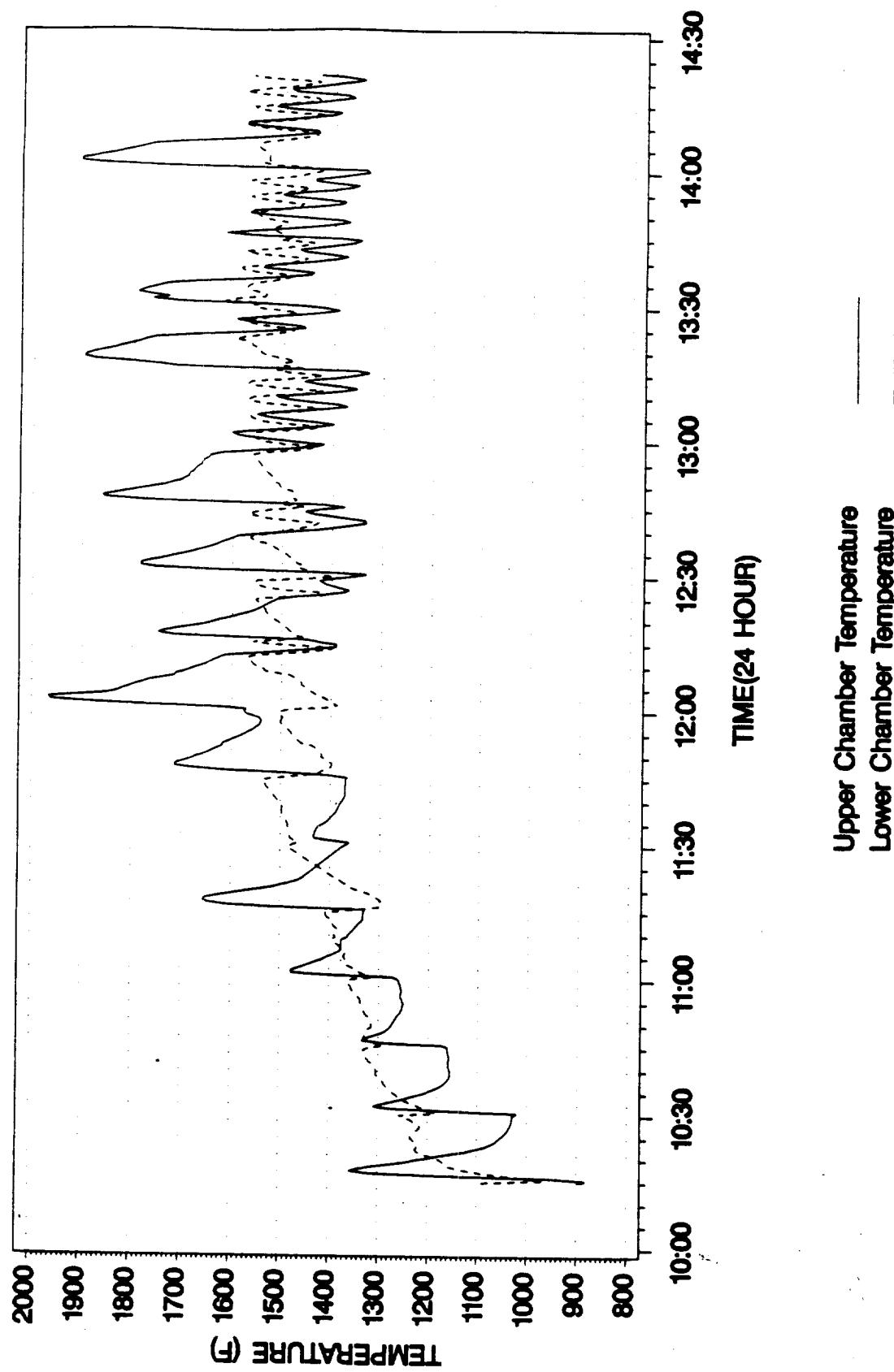



Figure 3-10. Temperature Profile for Run 10

The incinerator ran smoothly with no problems. Because of the weight of the large boxes of pathological waste, the charging frequency had to be varied in order to maintain a charge rate of approximately 100 lb/hr. The primary chamber temperature leveled out at approximately 1500°F at 4:15. After approximately 1 hour of operation, the secondary chamber had reached a temperature of 1500°F and then cycled between a temperature of 1500°F and 1800°F for the remainder of the test. The incinerator secondary chamber temperature approached the setpoint temperature of 1900°F only once, at 5:33, when the temperature reached 1898°F.

The secondary chamber burner appears to be too small to consistently maintain a temperature greater than the primary chamber temperature while burning a low-Btu, high-moisture waste.

The last charge was introduced at 6:15, and testing was completed at 6:20.

The incinerator was opened the following morning (September 21, 1990) at 7:15, with ash cleanout beginning at 8:08 and being completed at 9:05. There was fairly good burnout of the waste, with only a few clumps of smoldering, unburned material. All of the ash was removed.

The total waste charged was 503.4 lb, and the total ash weight was 21.2 lb. The actual feed rate was 106 lb/hr, and the percent burndown was 95.8.

### 3.3.2 Condition II, Run 1 (Test Run 2)

For this condition, the target operating parameters were a charge of 160 lb/hr of general medical waste (red bag) in 40-lb charges every 15 minutes, with a secondary chamber temperature setpoint of 1600°F. The controller setpoints for these three runs at this condition were: primary chamber burner on/off temperature, 1500°F; primary chamber blower on/off temperature, 1500°F; secondary chamber burner on/off temperature, 1600°F; burndown time, 3 hours.

Friday, September 21, 1990: The hearth was cleaned and the air ports cleared before testing began. Preheat began at 9:25, and testing began with the first charge at 9:45. The incinerator ran smoothly with no major problems. At 11:25, the primary chamber temperature setpoint was changed from 1500°F to 1400°F in order to limit the temperature increase in the secondary chamber just after the charging cycle. With the

primary chamber burners and blower still on just after the charging cycle, the secondary chamber temperature was climbing above 2300°F. At 11:56, the primary chamber temperature setpoint was changed again to 1300°F. After this change, the primary chamber burner remained off for the remainder of the test, and the secondary chamber temperature remained between 1300°F and 2100°F.

Testing was completed at 2:37 pm, and the last charge was introduced at 3:45.

The incinerator was opened the following morning (September 22, 1990) at 6:45, with ash being removed starting at 7:33. There was a large amount of unburned, smoldering material remaining in the incinerator; this material burst into flame upon agitation. The ash bed had to be quenched with water in order to complete the ash removal. Ash removal was completed at 9:12.

The total waste charged was 1,015.8 lb, and the total wet ash weight was 139 lb. The actual feedrate was 162.5 lb/hr.

### **3.3.3 Condition I, Run 2 (Test Run 3)**

The target operating parameters were a charge rate of 100 lb/hr pathological waste in 25-lb charges every 15 minutes and a secondary chamber temperature setpoint of 1900°F.

Saturday, September 22, 1990: The hearth was cleaned and the air ports cleared before testing began. The incinerator was started at 9:25 am and charging as well as testing began at 9:45. The charging periods varied from 15 to 30 minutes because of the weight of the large boxes of pathological waste.

The incinerator ran smoothly with no problems. The primary chamber temperature leveled out at 1500°F, and the secondary chamber temperature remained fairly low, only climbing above 1900°F twice at 2:05 and 2:35 pm. The last charge was introduced at 2:30 and testing was completed at 2:40.

The incinerator was opened the following morning (Sunday, September 23, 1990) at 9:20, and there was a small amount of unburned material in the ash bed. Ash removal started at 10:01 and was completed at 11:07. All of the ash was removed.

The total waste charged was 588.3 lb, and the total ash weight was 22.4 lb. The actual feed rate was 112.1 lb/hr, with a 96.2 percent burndown.

### **3.3.4 Condition II, Run 2 (Test Run 4)**

The target operating parameters were a charge rate of 160 lb/hr of general medical waste (red bag) in 40-lb charges every 15 minutes, with a secondary chamber temperature setpoint of 1600°F.

Sunday, September 23, 1990: The ash removal door handle was broken during the ash removal. It had broken during ash removal several times in the past, according to the operator, and another handle latch pin had been welded on. The maintenance crew was not working that day, so the ash door was closed and a wedge was driven into the latching mechanism to hold the door closed tightly. The incinerator was started at 11:20 am, and charging as well as testing began at 11:40. The incinerator appeared to operate smoothly throughout the test, with the exception of the smoking from the stack. There was a constant stream of brown smoke, occasionally changing to dense, black smoke, coming from the stack throughout the test. Because there appeared to be much more smoke than in the previous medical waste test, the incinerator was inspected to determine if everything was operating properly. Everything appeared normal, and the wedge on the ash door was driven in tighter, but the smoking continued. The temperature in the primary chamber during this test run climbed to over 1900°F before the test was completed. During the other medical waste test runs, the primary chamber only reached a temperature of between 1500°F and 1600°F. The testing was completed at 3:54 pm, and the last charge was introduced at 5:45. It was decided to continue burning red bag waste after the testing had been completed in order to dispose of some of the red bag waste in the storage room. The process conditions were maintained during this time.

The incinerator was opened the following morning (September 24, 1990) at 8:28, and there were flaming and smoldering patches of unburned waste in the ash bed. Ash removal started at 8:58 and was completed at 9:31. The waste bed had to be quenched with water in order to complete the ash cleanout.

The total waste charged was 905.3 lb, and the total wet ash weight was 172.7 lb. The actual charge rate was 142.9 lb/hr.

### **3.3.5 Condition III, Run 1 (Test Run 5)**

The target operating parameters were a charge feed rate of 160 lb/hr of pathological waste in 40-lb charges every 15 minutes, with a secondary chamber temperature setpoint of 1600°F. The controller setpoints for the three runs at this condition were: primary chamber burner on/off temperature, 1500°F; primary chamber burner on/off temperature, 1500°F; secondary chamber burner on/off temperature, 1600°F; burndown time, 3 hours.

Monday, September 24, 1990: After the hearth was cleaned and the air ports cleared, the maintenance personnel attempted to fix the ash door handle. They were not able to fix the door handle until a latch pin could be obtained, so a large C-clamp was used to clamp the door closed tightly. This method, which was more effective at sealing the ash door than the original handle, was used for the remainder of the tests.

The incinerator was started at 11:25, and charging as well as testing was started at 11:45. The incinerator ran smoothly with no problems throughout the test. The primary chamber temperature leveled out at around 1500°F, and the secondary chamber temperature alternated between 1400°F and 1700°F. The secondary chamber reached a temperature greater than 1800°F only twice during the test, at 1:47 and at 2:02. Testing was completed at 3:45, and the last charge was introduced at 3:50.

The incinerator was opened the following morning (September 25, 1990) at 8:38, and a large mound of smoldering, unburned waste remained. Cleanout was started at 8:18 and completed at 9:41. There were recognizable remnants of the pathological waste in the center of the waste bed. Burnout, which was fairly good on the 100 lb/hr pathological waste condition, appeared to be very poor on the 160 lb/hr pathological waste condition. Upon agitation, some of the waste burst into flame and had to be quenched with water.

The total waste charged was 674.6 lb, and the total wet ash weight was 45.1 lb. The actual charge rate was 150 lb/hr.

### 3.3.6 Condition III, Run 2 (Test Run 6)

The target operating parameters were a charge rate of 160 lb/hr of pathological waste in 40-lb charges every 15 minutes, with a secondary chamber temperature setpoint of 1600°F.

Tuesday, September 25, 1990: After the hearth was cleaned and the air ports cleared, the incinerator was started at 9:50 am. Charging as well as testing began at 10:10. The incinerator operated properly with no problems throughout the test. Testing was completed at 2:15, and the last charge was introduced at that time.

The incinerator was opened the following morning (September 26, 1990) and a large amount of smoldering, unburned waste remained. Cleanout was started at 8:54 and completed at 9:27. There were, again, recognizable remnants of the pathological waste in the center of the waste bed. Burnout was very poor.

The total waste charged was 697.2 lb, and the total ash weight was 41.4 lb. The actual charge rate was 156.7 lb/hr, with a 94.1 percent burndown.

### 3.3.7 Condition II, Run 3 (Test Run 7)

The target operating parameters were a charge rate of 160 lb/hr of hospital waste in 40-lb charges every 15 minutes and a secondary chamber temperature setpoint of 1600°F.

Wednesday, September 26, 1990: The hearth was cleaned and the air ports cleared before testing began. The incinerator was started at 9:40 am, and charging as well as testing began at 10:00. The incinerator operated smoothly throughout the test with no apparent problems. There was occasionally some smoke from the stack, while Run 2 at this condition smoked almost constantly. There was, however, during this run a 7-minute period when heavy smoke emerged from the stack after a large bag of plastic sharps containers had been charged.

A thermocouple sealed inside a pipe was placed in the suspected cold spot of the incinerator to give a continuous readout of the temperature inside the waste bed. The temperature within the pipe climbed from 119°F to 1245°F in approximately 1.5 hours and then started to decline. Within 1 hour, the temperature had dropped to 424°F and within another hour stabilized around 220°F. The temperature in the primary chamber at this time was approximately 1400°F.

Testing was completed at 2:06, and the last charge was introduced at 2:30. At the end of the test, it was discovered that the dioxin sampling probe had broken.

The incinerator was opened the following morning (September 27, 1990) and a large amount of burning waste remained. Ash cleanout started at 9:56 and was completed at 11:45. The waste bed had to be quenched with water in order to complete the cleanout.

The total waste charged was 769.4 lb, and the total wet ash weight was 146.7 lb. The actual charge rate was 162 lb/hr.

### 3.3.8 Condition II, Run 4 (Test Run 8)

The target operating parameters were a charge rate of 160 lb/hr of hospital waste in 40-lb charges every 15 minutes and a secondary chamber temperature setpoint of 1600°F.

Thursday, September 27, 1990: The hearth was cleaned and the air ports cleared before testing began. The incinerator was started at 11:20, but the secondary chamber burner was flaming out every few seconds. The igniter and the pilot were taken out and cleaned, and the unit was started again at 1:25. Everything appeared to be working properly, so charging as well as testing began at 1:45. The pipe with the thermocouple was placed in the center of the hearth in the line of fire of the primary burners. The pipe heated to 1500°F very quickly and then started to cool as the height of the waste bed was slowly increasing. At the end of the test, the pipe temperature was approximately 440°F, and the primary chamber temperature was approximately 1500°F. The incinerator ran properly throughout the test with no problems. Testing was completed at 5:56, and the last charge was introduced at 6:00.

The incinerator was opened the following morning (September 28, 1990) at 9:03, and a large smoldering and burning mound of ashes and unburned waste remained. Ash removal started at 9:30 and was completed at 10:30. The waste bed had to be quenched with water in order to complete the cleanout.

The total waste charged was 727.3 lb, and the total wet ash weight was 137.3 lb. The actual charge rate was 161.6 lb/hr.

### 3.3.9 Condition III, Run 3 (Test Run 9)

The target operating parameters were a charge rate of 160 lb/hr of pathological waste in 40-lb charges every 15 minutes and a secondary chamber temperature setpoint of 1600°F.

Friday, September 28, 1990: The hearth was cleaned and the air ports cleared before testing began. The incinerator was started at 10:40, and charging as well as testing began at 11:00. The incinerator operated smoothly with no apparent problems throughout the test. The pipe thermocouple temperature climbed rapidly to 1400°F and then dropped slowly throughout the test as the waste bed depth increased. At the end of the test, the pipe temperature was 685°F, while the primary chamber temperature was 1500°F. Testing was completed at 3:05, and the last charge was introduced at 3:55.

The incinerator was opened the following morning (September 29, 1990) at 9:20, and there was a large mound of black, smoldering, unburned waste. Cleanout began at 9:45 and was completed at 10:56. Once again, many recognizable unburned items were found.

The total waste charged was 867 lb, and the total ash weight was 77 lb. The actual charge rate was 165.1 lb/hr, with a 91.1 percent burndown.

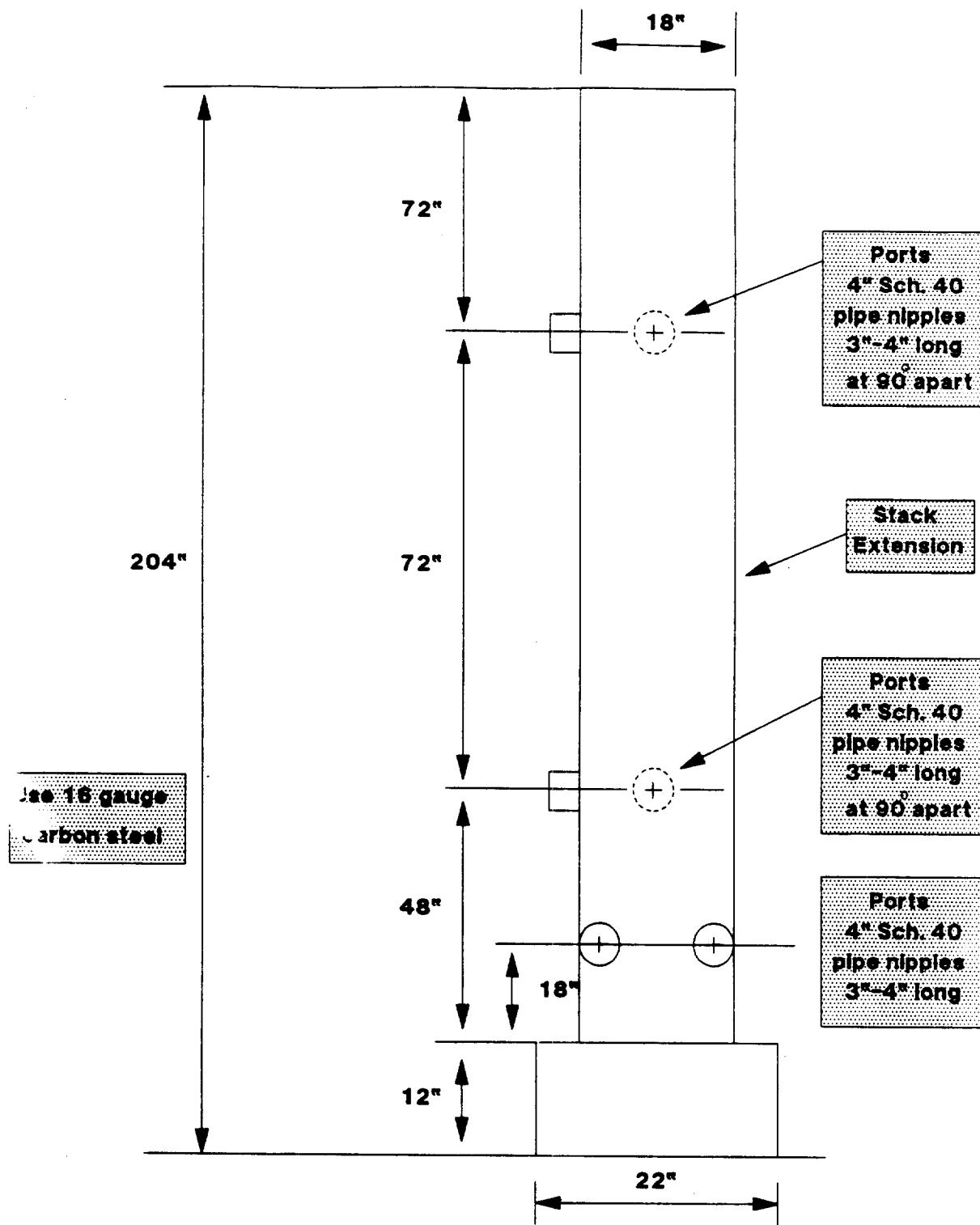
### 3.3.10 Condition I, Run 3 (Test Run 10)

The target operating parameters were a charge rate of 100 lb/hr of pathological waste in 25-lb charges every 15 minutes and a secondary chamber temperature setpoint of 1900°F.

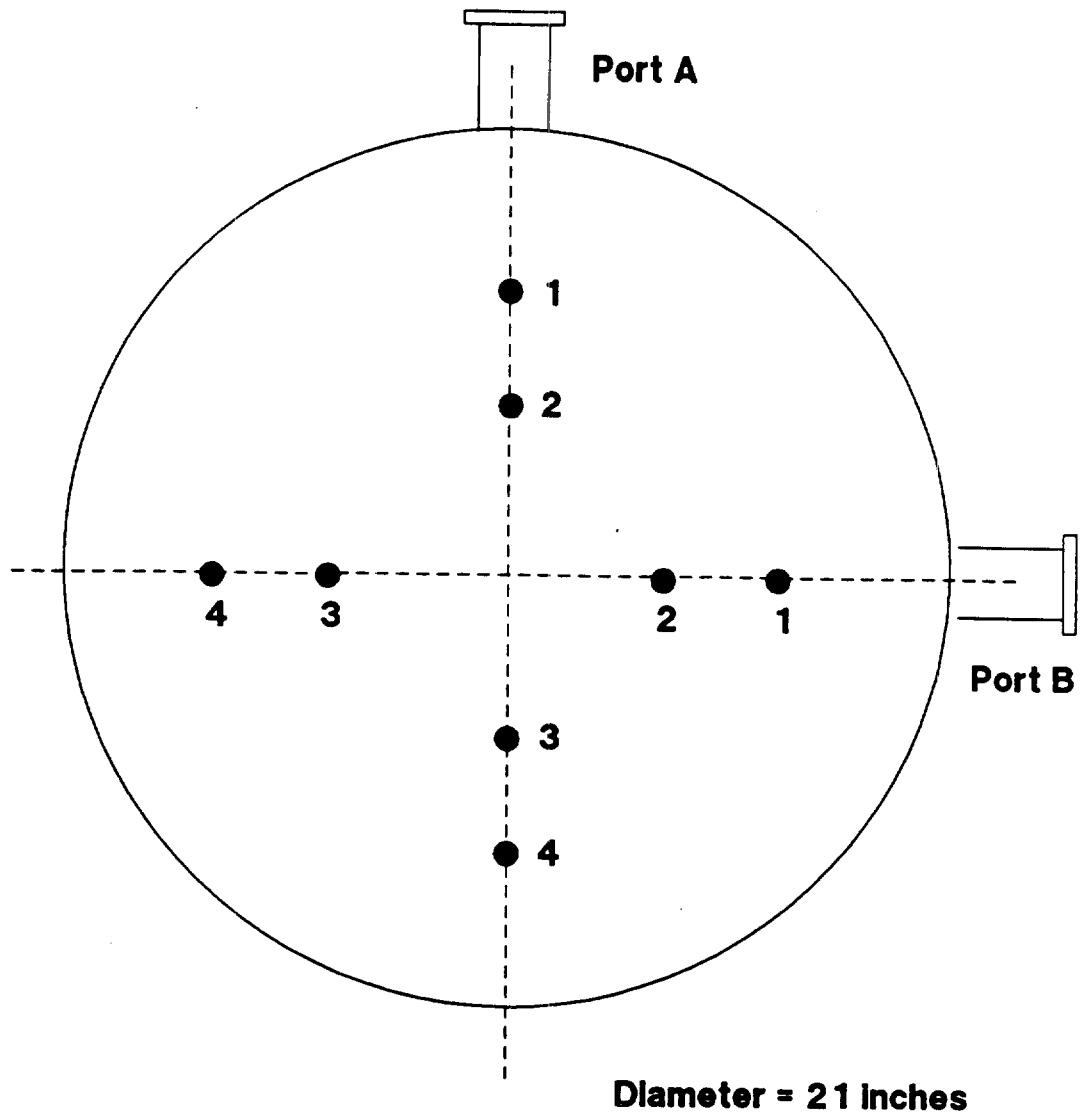
Tuesday, October 2, 1990: The hearth was cleaned and the air ports cleared before testing began. The incinerator was started at 9:55, and then it was discovered that the temperature indicator pipe had not been placed in the incinerator. The incinerator was shut down at 10:01, the pipe was placed on the hearth, and the incinerator was restarted at 10:03. The first charge was introduced at 10:15, and testing began. The indicator pipe temperature climbed rapidly to 1600°F and then fell slowly to approximately 800°F at the end of the test. The primary chamber temperature was approximately 1500°F at the end of the test. The incinerator ran smoothly with no apparent problems throughout the test. Testing was completed at 2:21, and the last charge was introduced at 2:30.

The incinerator was opened the following morning (October 3, 1990) at 9:25, and there was one small smoldering mass of unburned material in the ash bed. Burnout appeared to be very good.

The total waste charged was 453.3 lb, and the total ash weight was 17.2 lb. The actual charge rate was 100.8 lb/hr, with a 96.2 percent burndown.


#### 4. SAMPLE LOCATIONS

The sampling locations used during the emission testing program at the AMI Central Carolina Hospital MWI are described in this section. Flue gas samples are collected at the exhaust stack using three sets of ports.


The exhaust stack at this facility has a 22-inch steel shell with refractory lining. The inside diameter of the refractory lining is about 18 inches. The existing stack is approximately 8 feet in height above the secondary chamber.

An unlined steel stack extension was fabricated for temporary installation at the top of the existing stack. The extension was 18 inches in diameter and 16 feet high. Three sets of test ports were provided as shown in Figure 4-1. The lower set of ports were used for the CEM, HCl/CEM, and manual HCl tests. The center set of ports were used for CDD/CDF and PM/Metals testing. The upper ports were used for microorganism sampling. The two upper sets of ports were aligned with each other in the vertical plane, while the lowest set was offset by 45° to prevent flow disturbances. The test ports were located in an ideal location according to EPA Method 1. There are at least two stack diameters of undisturbed flow downstream of the ports, and greater than eight diameters of undisturbed flow upstream of the ports. (NOTE: CDD/CDF and metals sampling probes are not treated as upstream disturbances for the upper set of ports.)

The number of traverse points required for CDD/CDF, PM/metals, and Microbial sampling is eight. Four points on each of two diameters were used as shown in Figure 4-2.



**Figure 4-1. AMI Central Carolina Hospital  
Stack Extension Specifications**



| Point | Percent<br>of Diameter | Inches from<br>Inside Wall |
|-------|------------------------|----------------------------|
| 1     | 6.7                    | 1.2                        |
| 2     | 25.0                   | 4.5                        |
| 3     | 75.0                   | 13.5                       |
| 4     | 93.3                   | 16.8                       |

**Figure 4-2. Traverse Point Layout at the Exhaust Stack**

## 5. SAMPLING AND ANALYTICAL PROCEDURES BY ANALYTE

The sampling and analytical procedures used for the Central Carolina Hospital MWI test program are the most recent revisions of the published EPA methods. Where published methods are not available, state-of-the-art sampling and analytical methods are used. In this section, descriptions of each sampling and analytical method by analyte are provided.

A summary of the sampling methods that are used is included in Table 5-1. Sampling times, minimum sampling volumes, and detection limits are summarized for the manual sampling methods in Table 5-2.

### 5.1 CDD/CDF EMISSIONS TESTING METHOD

The sampling and analytical method for determining flue gas emissions of CDD/CDF is EPA Proposed Method 23. This methodology is a combination of the American Society of Mechanical Engineers (ASME) 1984 draft protocol and the EPA Method 8290. The analytical method is designated as Method 8290X by Triangle Laboratories, Inc., Research Triangle Park, North Carolina, who performed the analyses. (Because of proprietary reasons, Triangle Laboratories has requested that a copy of their standard operating procedures not be included in this test plan.)

#### 5.1.1 CDD/CDF Sampling Equipment

The CDD/CDF sampling method uses the sampling train shown in Figure 5-1. Basically, the sampling system is similar to a Method 5 train with the exception of the following:

- Uses all components (quartz probe/nozzle liner, all other glassware, filters) which are pre-cleaned using solvent rinses and extraction techniques; and
- Uses a condensing coil and XAD-II<sup>®</sup> resin absorption module located between the filter and impinger train.

All sampling equipment specifications are detailed in the reference method shown in Appendix A.1 of the test plan.

TABLE 5-1. PROPOSED TEST METHODS AMI CENTRAL CAROLINA HOSPITAL MWI

| Analyte                                         | Method                                                             |
|-------------------------------------------------|--------------------------------------------------------------------|
| CDD/CDF                                         | EPA Proposed Method 23 with GC/MS Method 8290                      |
| Particulates                                    | EPA/EMSL Multimetals Train                                         |
| Lead                                            |                                                                    |
| Mercury                                         |                                                                    |
| Arsenic                                         |                                                                    |
| Nickel                                          |                                                                    |
| Cadmium                                         |                                                                    |
| Chromium                                        |                                                                    |
| Beryllium                                       |                                                                    |
| Antimony                                        |                                                                    |
| Barium                                          |                                                                    |
| Silver                                          |                                                                    |
| Thallium                                        |                                                                    |
| SO <sub>2</sub>                                 | EPA Instrument Methods 6C                                          |
| O <sub>2</sub> /CO <sub>2</sub>                 | 3A                                                                 |
| CO                                              | 10                                                                 |
| NO <sub>x</sub>                                 | 7E                                                                 |
| THC                                             | 25A/18                                                             |
| HCl                                             | NDIR CEM Analyzer                                                  |
| HCl                                             | EPA Draft Method 26                                                |
| HBr                                             | EPA Draft Method 26                                                |
| HF                                              | EPA Draft Method 26                                                |
| Microorganisms in Emissions                     | EPA Draft Method "Microbial Survivability Tests for MWI Emissions" |
| Microorganisms in Pipe Test and Direct Ash Test | EPA Draft Method "Microbial Survivability Tests for MWI Ash"       |
| Opacity                                         | EPA Method 9                                                       |
| Loss On Ignition                                | Standard Methods of Water & Wastes 209G                            |
| Carbon                                          | ASTM D 3178-84                                                     |

TABLE 5-2. PROPOSED SAMPLING TIMES, MINIMUM SAMPLING VOLUMES AND DETECTION LIMITS FOR THE AMI CENTRAL CAROLINA HOSPITAL MWI TESTS

| Sampling Train | Sampling Time (hours) | Minimum Sample Volume (dscf) | Analyte                                                                           | Detection Limit                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                    |
|----------------|-----------------------|------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                       |                              |                                                                                   | Flue Gas                                                                                                                                                                                                                                  | Analytical                                                                                                                                                                                                                                         |
| CDD/CDF        | 4 <sup>a</sup>        | 120                          | CDD/CDF                                                                           | 0.3 ng/dscm                                                                                                                                                                                                                               | 0.01 ng                                                                                                                                                                                                                                            |
| PM/Metals      | 4 <sup>a</sup>        | 120                          | PM<br>As<br>Cd<br>Cr<br>Pb<br>Hg <sup>b</sup><br>Ni<br>Be<br>Ba<br>Sb<br>Ag<br>Tl | 0.006 gr/dscf<br>0.3 $\mu$ g/dscm<br>0.6 $\mu$ g/dscm<br>1.6 $\mu$ g/dscm<br>0.2 $\mu$ g/dscm<br>25 $\mu$ g/dscm<br>1.6 $\mu$ g/dscm<br>0.3 $\mu$ g/dscm<br>0.2 $\mu$ g/dscm<br>3.3 $\mu$ g/dscm<br>0.71 $\mu$ g/dscm<br>4.2 $\mu$ g/dscm | 50-100 mg <sup>e</sup><br>0.002 $\mu$ g/ml<br>0.006 $\mu$ g/ml<br>0.015 $\mu$ g/ml<br>0.002 $\mu$ g/ml<br>0.25 $\mu$ g/ml<br>0.015 $\mu$ g/ml<br>0.0003 $\mu$ g/ml<br>0.002 $\mu$ g/ml<br>0.032 $\mu$ g/ml<br>0.007 $\mu$ g/ml<br>0.040 $\mu$ g/ml |
| HCl/HBr/HF     | 1.0                   | 120 liters <sup>b</sup>      | Cl <sup>c</sup><br>Br <sup>c</sup><br>F <sup>c</sup>                              | 28 $\mu$ g/dscm<br>32 $\mu$ g/dscm<br>100 $\mu$ g/dscm                                                                                                                                                                                    | 0.11 $\mu$ g/ml<br>0.127 $\mu$ g/ml<br>0.40 <sup>c</sup> $\mu$ g/ml                                                                                                                                                                                |
| Microorganisms | 3.2                   | 30                           | Indicator spores <sup>d</sup>                                                     | 30 <u>viable spores</u> <sup>c</sup><br>dscm                                                                                                                                                                                              | 1 <u>viable spores</u><br>aliquot                                                                                                                                                                                                                  |

<sup>a</sup> An average sampling rate of 0.5 ft<sup>3</sup>/min was used to calculate sampling time.

<sup>b</sup> An average sampling rate of 2 liters/min was used to calculate the sample volume.

<sup>c</sup> Detection limit based on 100 ml aliquot. Method is still under development. Actual limit may vary.

<sup>d</sup> The indicator spore will be *Bacillus stearothermophilus*. (only 1!)

<sup>e</sup> Based on average detection limits for tetra-octa CDD/CDF congeners.

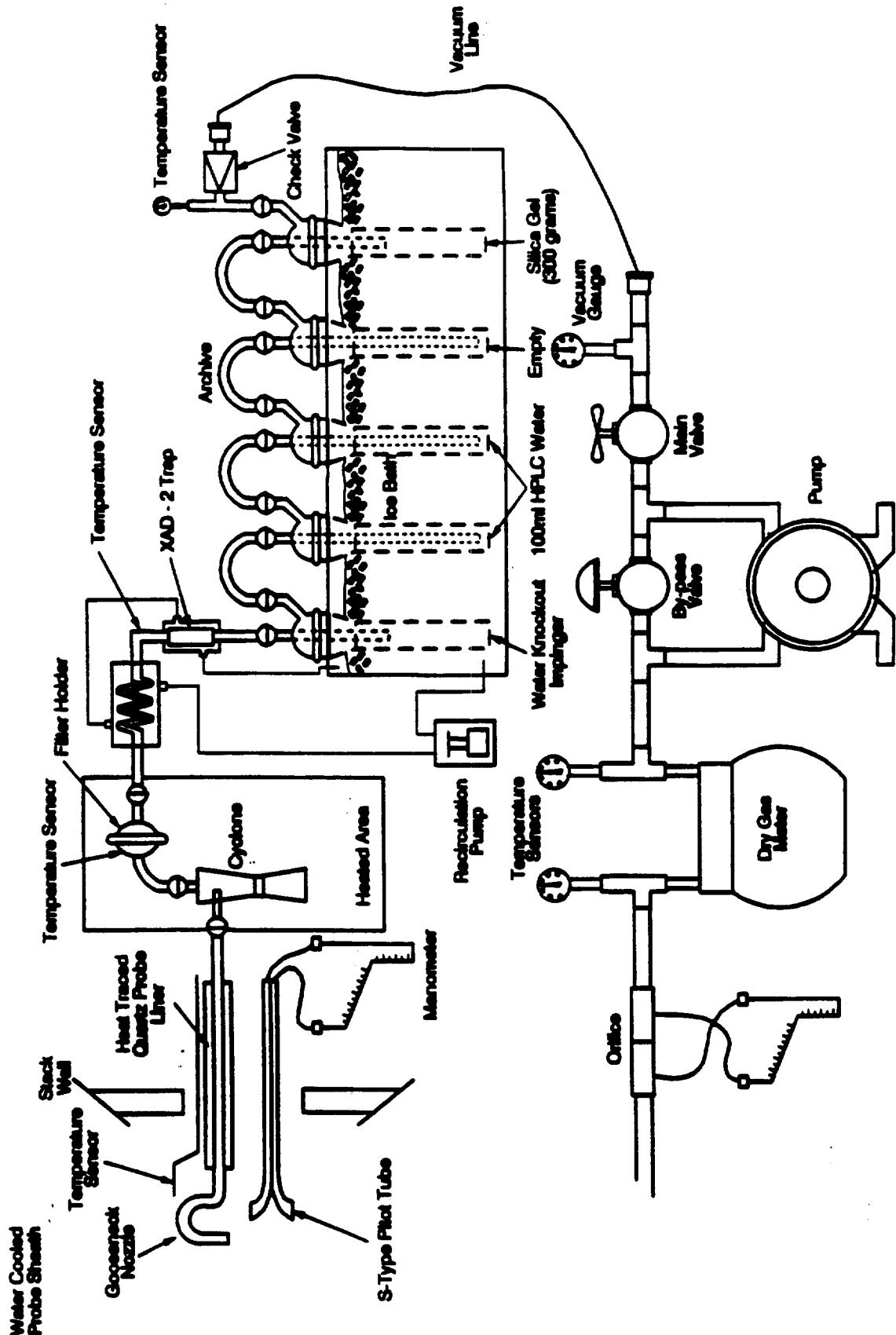



Figure 5-1. CDD/CDF Sampling Train Configuration

### 5.1.2 CDD/CDF Equipment Preparation

In addition to the standard EPA Method 5 requirements, the CDD/CDF sampling method includes several unique preparation steps which ensure that the sampling train components are not contaminated with organics that may interfere with analysis. The glassware, glass fiber filters, and absorbing resin are cleaned and the filters and resin are checked for residuals before they are packed.

#### 5.1.2.1 Glassware Preparation. Glassware is cleaned as shown in Table 5-3.

Glassware is washed in soapy water, rinsed with distilled water, baked, and then rinsed with acetone followed by methylene chloride. Clean glassware is allowed to dry under a hood loosely covered with foil to prevent laboratory contamination. Once the glassware is dry, the air-exposed ends are sealed with methylene chloride-rinsed aluminum foil. All the glass components of the sampling train (including the glass nozzles) plus any sample bottles, flasks, petri dishes, graduated cylinders, and pipets that are used during sampling and recovery will be cleaned according to this procedure. Non-glass components (such as the Teflon®-coated filter screens and seals, tweezers, Teflon® squeeze bottles, nylon probe brushes, and nylon nozzle brushes) are cleaned following the same procedure except that no baking is performed.

This cleaning procedure deviates from the EPA proposed method; however, past experience has shown that the use of chromic acid solution may cause analytical interferences with the compounds of interest.

#### 5.1.2.2 XAD-II® Resin and Filters Preparation. The XAD-II® absorbing resin and glass fiber filters are pre-cleaned by separate procedures according to the specified method. Only pesticide-grade solvents and HPLC-grade water are used to prepare for organic sampling and to recover these samples. The lot number, manufacturer, and grade of each reagent used is recorded in the laboratory notebook.

To prepare the filters, a batch of 50 is placed in a soxhlet pre-cleaned by extraction with toluene. The soxhlet is charged with fresh toluene and refluxed for 16 hours. After the extraction, the toluene is analyzed as described in Sections 5.2 and 5.3 of the reference method for the presence of Tetrachloro Dibenzo-p-Dioxins (TCDD) or Tetrachloro Dibenzofurans (TCDF). If these analytes are found, the filters are re-extracted until no TCDD or TCDF is detected. The filters are then dried completely

TABLE 5-3. CDD/CDF GLASSWARE CLEANING PROCEDURE  
(Train Components, Sample Containers and  
Laboratory Glassware)

---

NOTE: USE VITON® GLOVES AND ADEQUATE VENTILATION WHEN RINSING WITH SOLVENTS

1. Soak all glassware in hot soapy water (Alconox®).
2. Tap water rinse to remove soap.
3. Distilled/deionized H<sub>2</sub>O rinse (X3).<sup>a</sup>
4. Bake at 450°F for 2 hours.<sup>b</sup>
5. Acetone rinse (X3), (pesticide grade).
6. Methylene chloride (X3), (pesticide grade)
7. Cap glassware with clean glass plugs or methylene chloride rinsed aluminum foil.
8. Mark cleaned glassware with color-coded identification sticker.
9. Glassware is rinsed immediately before using with acetone and methylene chloride (laboratory proof).

---

<sup>a</sup> (X3) = three times.

<sup>b</sup> Step (4) has been added to the cleanup procedure to replace the dichromate soak specified in the reference method. Radian has demonstrated in the past that it sufficiently removes organic artifacts. It is not used for probe liners and non-glass components of the train that cannot withstand 450°F (i.e., teflon-coated filter screen and seals, tweezers, teflon squeeze bottles, nylon probe and nozzle brushes).

under a clean nitrogen ( $N_2$ ) stream. Each filter is individually checked for holes, tears, creases, or discoloration, and if found, is discarded. Acceptable filters are stored in a pre-cleaned petri dish, labeled by date of inspection, and sealed with Teflon® tape.

To prepare the absorbing resin, the XAD-II® resin is cleaned in the following sequential order:

- Rinse with HPLC-grade water, discard water;
- Soak in HPLC-grade water overnight, discard water;
- Extract in soxhlet with HPLC-grade water for 8 hours, discard water;
- Extract with methanol for 22 hours, discard solvent;
- Extract with methylene chloride for 22 hours, discard solvent;
- Extract with methylene chloride for 22 hours, retain an aliquot of solvent for gas chromatography analysis of TCDDs and TCDFs; and
- Dry resin under a clean  $N_2$  stream.

Once the resin is completely dry, it is checked for the presence of methylene chloride, TCDDs, and TCDFs as described in Section 3.1.2.3.1 of the reference method. If TCDDs or TCDFs are found, the resin is re-extracted. If methylene chloride is found, the resin is dried until the excess solvent is removed. The absorbent is to be used within four weeks of cleaning.

The cleaned XAD-II® resin is spiked with five CDD/CDF internal standards. Due to the special handling considerations required for the CDD/CDF internal standards, the spiking is performed by Triangle Laboratories. For convenience and to minimize contamination, Triangle Laboratories also performs the resin and filter cleanup procedures and loads the resin into the glass traps.

**5.1.2.3 CDD/CDF Method 5 Equipment Preparation.** The remaining preparation includes calibration and leak checking of all sampling train equipment. This includes: meterboxes, thermocouples, nozzles, pitot tubes, and umbilicals. Referenced calibration procedures are followed when available. The results are properly documented in a laboratory notebook or project file and retained. If a referenced calibration technique for a particular piece of apparatus is not available, then a

state-of-the-art technique is used. A discussion of the techniques used to calibrate this equipment is presented in Section 7.2.7.

### 5.1.3 CDD/CDF Sampling Operations

5.1.3.1 Preliminary Measurements. Prior to sampling, preliminary measurements are required to ensure isokinetic sampling. These include determining the traverse point locations, performing a preliminary velocity traverse, cyclonic flow check, and moisture determination. These measurements are used to calculate a "K factor." The K factor is used to determine an isokinetic sampling rate from stack gas flow readings taken during sampling.

Measurements are then made of the duct inside diameter, port nozzle length, and the distances to the nearest upstream and downstream flow disturbances. These measurements are then used to determine sampling point locations by following EPA Reference Method 1 guidelines. The distances are then marked on the sampling probe using an indelible marker.

5.1.3.2 Assembling the Train. Assembling the CDD/CDF sampling train components is completed in the recovery trailer and final train assembly is performed at the stack location. First, the empty, clean impingers are assembled and laid out in the proper order in the recovery trailer. Each ground glass joint is carefully inspected for hairline cracks. The first impinger is a knockout impinger which has a short tip. The purpose of this impinger is to collect condensate which forms in the coil and XAD-II® resin trap. The next two impingers are modified tip impingers which each contain 100 ml of HPLC-grade water. The fourth impinger is empty, and the fifth impinger contains 200 to 300 grams of blue indicating silica gel. After the impingers are loaded, each impinger is weighed, and the initial weight and contents of each impinger are recorded on a recovery data sheet. The impingers are connected together using clean glass U-tube connectors and arranged in the impinger bucket as shown in Figure 5-2. The height of all the impingers is approximately the same to obtain a leak free seal. The open ends of the train are sealed with methylene chloride-rinsed aluminum foil or clean ground glass caps.

The second step is to load the filter into the filter holder in the recovery trailer. The filter holder is then capped off and placed with the resin trap and condenser coil

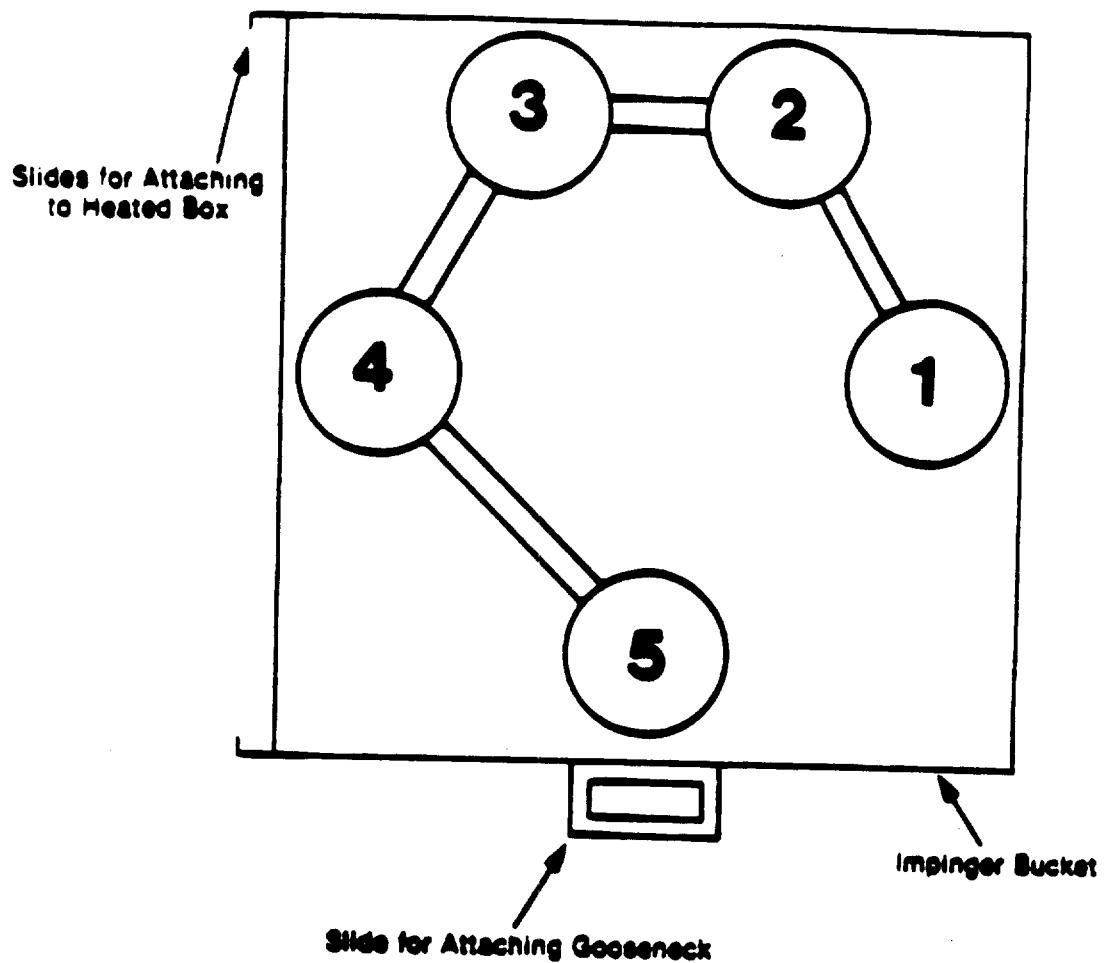



Figure 5-2. Impinger Configuration for CDD/CDF Sampling

(capped) into the impinger bucket. A supply of pre-cleaned foil and socket joints is also placed in the bucket in a clean plastic bag for the convenience of the samplers. To avoid contamination of the sample, sealing greases are not used. The train components are transferred to the sampling location and assembled as previously shown in Figure 5-1.

**5.1.3.3 Sampling Procedures.** After the train is assembled, the heaters are turned on for the probe liner and heated filter box and the sorbent module/condensor coil recirculating pump is turned on. When the system reaches the appropriate temperatures, the sampling train is ready for pre-test leakchecking. The temperature of the sorbent module resin must not exceed 50°C (120°F) at any time and during testing it must not exceed 20°C (68°F). The filter skin temperature is maintained at  $120 \pm 14^{\circ}\text{F}$  (248  $\pm 25^{\circ}\text{F}$ ). The probe temperature is maintained above 100°C (212°F).

The sampling trains are leak checked at the start and finish of sampling. (Method 5/23 protocol only requires post-test leakchecks and recommends pre-test leakchecks.) Radian protocol also incorporates leak checks before and after every port change. An acceptable pre-test leak rate is less than 0.02 acfm ( $\text{ft}^3/\text{min}$ ) at approximately 15 inches of mercury (in. Hg). If during testing, a piece of glassware needs to be emptied or replaced, a leak check is performed before the glassware piece is removed, and after the train is re-assembled.

To leak check the assembled train, the nozzle end is capped off and a vacuum of 15 in. Hg is pulled in the system. When the system is evacuated, the volume of gas flowing through the system is timed for 60 seconds. After the leak rate is determined, the cap is slowly removed from the nozzle end until the vacuum drops off, and then the pump is turned off. If the leak rate requirement is not met, the train is systematically checked by first capping the train at the filter, at the first impinger, etc., until the leak is located and corrected.

After a successful pre-test leak check has been conducted, all train components are at their specified temperatures, initial data is recorded [dry gas meter (DGM) reading], the test can be initiated. Sampling train data are recorded periodically on standard data forms. A checklist for CDD/CDF sampling is included in Table 5-4. A sampling operation that is unique to CDD/CDF sampling is that the gas temperature

TABLE 5-4. CDD/CDF SAMPLING CHECKLIST

---

Before test starts:

1. Check impinger set to verify the correct order, orientation and number of impingers. Verify probe markings, and remark if necessary.
2. Check that you have all the correct pieces of glassware. Have a spare probe liner, probe sheath, meter box and filter ready to go at location.
3. Check for data sheets and barometric pressure.
4. Bag sampling equipment for CO<sub>2</sub>/O<sub>2</sub> needs to be ready except when using CEMs for CO<sub>2</sub>/O<sub>2</sub> determinations.
5. Examine meter box - level it, zero the manometers and comfirm that the pump is operational.
6. Verify the filter is loaded correctly and as tight as possible; place filter in line with the train and leak check at 15 inches Hg.
7. Add probe to train.
8. Check thermocouples - make sure they are reading correctly.
9. Conduct pitot leak check, recheck manometer zero.
10. Do final leak check; record leak rate and vacuum on sampling log.
11. Turn on variacs and check to see that the heat is increasing.
12. Check that cooling water is flowing and on. Add ice to impinger buckets.
13. Check isokinetic K-factor - make sure it is correct. (Refer to previous results to confirm assumptions). (Two people should calculate this independently to double check it.)

During Test:

1. Notify crew chief of any sampling problems ASAP. Train operator should fill in sampling log and document any abnormalities.
2. Perform simultaneous/concurrent testing with other locations (if applicable). Maintain filter temperature between 248°F ±25°F. Keep temperature as steady as possible. Maintain the resin trap and impinger temperatures below 68°F. Maintain probe temperature above 212°F.

---

TABLE 5-4. CDD/CDF SAMPLING CHECKLIST, continued

---

3. Leak check between ports and record on data sheet. Leak check if the test is stopped to change silica gel, to decant condensate, or to change filters.
4. Record sampling times, rate, and location for the fixed gas bag sampling (CO, CO<sub>2</sub>, O<sub>2</sub>), if applicable.
5. Blow back pitot tubes periodically to prevent moisture entrapment.
6. Change filter if vacuum suddenly increases or exceeds 15 inches Hg.
7. Check impinger solutions every 1/2 hour; if the knockout impinger is approaching full, stop test and empty it into a pre-weighed bottle and replace it in the train.
8. Check impinger silica gel every 1/2 hour; if indicator color begins to fade, request a prefilled, preweighed impinger from the recovery trailer.
9. Check the ice in the impinger bucket frequently. If the stack gas temperatures are high, the ice will melt at the bottom rapidly. Maintain condenser coil and silica gel impinger gas temperatures below 68°F.

After test is completed:

1. Record final meter reading.
2. Do final leak check of sampling train at maximum vacuum during test.
3. Do final pitot leak check.
4. Check completeness of data sheet. Verify the impinger bucket identification is recorded on the data sheets. Note any abnormal conditions.
5. Leak check function (level, zero, etc.) of pitot tubes and inspect for tip damage.
6. Disassemble train, cap sections, and take each section and all data sheets down to recovery trailer.
7. Probe recovery (use 950 ml bottles)
  - a) Bring probes into recovery trailer (or other enclosed area).
  - b) Wipe the exterior of the probe to remove any loose material that could contaminate the sample.

---

TABLE 5-4. CDD/CDF SAMPLING CHECKLIST, continued

---

- c) Carefully remove the nozzle/probe liner and cap it off with prerinsed aluminum foil.
- d) For acetone rinses (all trains)
  - Attach precleaned cyclone flask to probe to catch rinses
  - Wet all sides of probe interior with acetone
  - While holding the probe in an inclined position, put precleaned probe brush down into probe and brush it in and out
  - Rinse the brush, while in the probe, with acetone
  - Do this at least 3 times until all the particulate has been recovered.
  - Recover acetone into a preweighed, prelabeled sample container
- e) Follow the procedure outlined in (d) using methylene chloride. Recover the solvent into the same acetone recovery bottle.
- f) Follow the procedure outlined in (d) using toluene. Recover this solvent into a separate preweighed prelabelled sample container.

7. Cap both ends of nozzle/probe liner for the next day, and store in dry safe place.

8. Make sure data sheets are completely filled out, legible, and give them to the Crew Chief.

---

entering the resin trap must be below 20°C (68°F). The gas is cooled by a water jacket condenser through which ice water is circulated.

The leak rates and sampling start and stop times are recorded on the sampling task log. Also, any other events that occur during sampling are recorded on the task log, such as sorbent module heat excursions, pitot cleaning, thermocouple malfunctions, heater malfunctions, or any other unusual occurrences.

If the probe liner breaks while the DGM is not running (i.e., during port changes or after the run is completed), the probe liner is replaced, the run is completed, and sample recovery done on both the broken sections of the glass liner and the replacement liner. If the break occurs while the DGM is running and the exact time of the break is noted, the test is stopped so that the probe liner can be replaced. The run is then completed and sample recovery done on all liner sections. If the recovered sample appears unusual, the sample is discarded and an additional run is performed later. If the recovered sample appears normal, the run is tentatively acceptable.

At the conclusion of the test run, the sample pump (or flow) is turned off, the probe is removed from the duct, a final DGM reading is taken, and a post-test leak check is completed. The procedure is identical to the pre-test procedure; however, the vacuum should be at least one inch Hg higher than the highest vacuum attained during sampling. An acceptable leak rate is less than 4 percent of the average sample rate or 0.02 acfm (whichever is lower). If a final leak rate does not meet the acceptable criterion, the test run may still be accepted upon approval of the test administrator. If so, the measured leak rate is reduced by subtracting the allowable leak rate from it and then multiplied for the period of time in which the leak occurred. This "leaked volume" is then subtracted from the measured gas volume in order to determine the final gas sample volume.

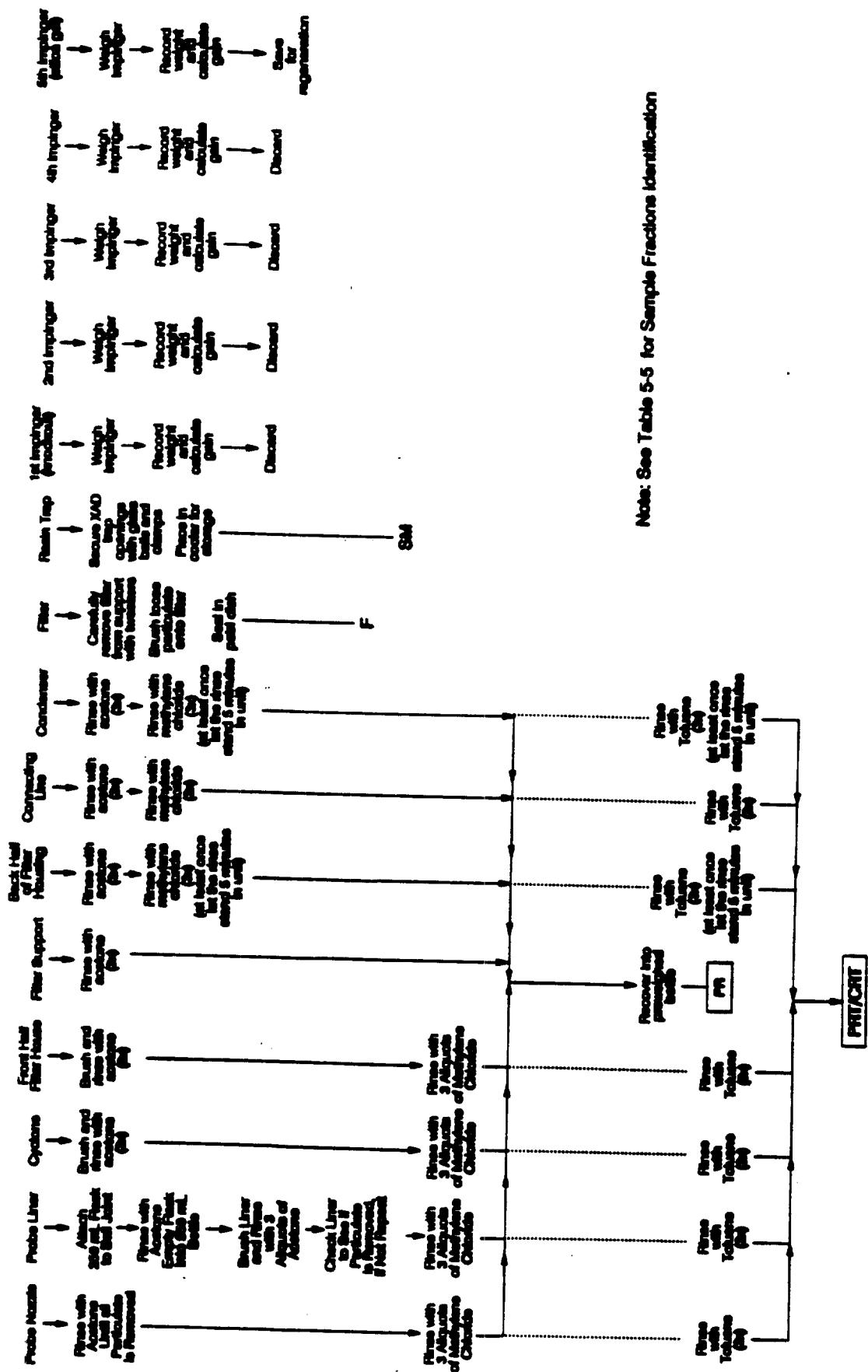
#### 5.1.4 CDD/CDF Sample Recovery

To facilitate transfer from the sampling location to the recovery trailer, the sampling train is disassembled into the following sections: the probe liner, filter holder, filter to condenser glassware, condenser sorbent module, and the impingers in their bucket. Each of these sections is capped with methylene chloride-rinsed aluminum foil or ground glass caps before removal to the recovery trailer. Once in the trailer, field

recovery follows the scheme shown in Figure 5-3. The samples are recovered and stored in cleaned amber glass bottles to prevent light degradation.

The solvents used for train recovery are all pesticide grade. The use of the highest grade reagents for train recovery is essential to prevent the introduction of chemical impurities which interfere with the quantitative analytical determinations.

Field recovery results in the sample components listed in Table 5-5. The sorbent module is stored in a cooler on ice at all times. The samples are shipped to the analytical laboratory by truck accompanied by written information designating target analyses.


#### **5.1.5 CDD/CDF Analytical Procedures**

The analytical procedure used to obtain CDD/CDF concentrations from a single flue gas sample is by HRGC and HRMS (resolution from 8000-10000 m/e). The target CDD/CDF congeners are listed in Table 5-6. The analyses are performed by Triangle Laboratories, Inc., by Method 8290X.

The flue gas samples are analyzed in two fractions according to the scheme in Figure 5-4. One fraction is the total train methylene chloride and acetone rinses, filter(s), and sorbent module; the other fraction is comprised of the toluene rinse of applicable portions of the sampling train. For the CDD/CDF analysis, isotopically-labeled surrogate compounds and internal standards are added to the samples before the extraction process is initiated. The internal standards and surrogates that are used are described in detail in EPA Method 23.

Data from the mass spectrometer are recorded and stored on a computer file as well as printed on paper. Results such as amount detected, detection limit, retention time, and internal standard and surrogate standard recoveries are calculated by computer. The chromatograms are retained by the analytical laboratory and also included in the analytical report delivered to Radian Corporation.

**5.1.5.1 Preparation of Samples for Extraction.** Upon receiving the sample shipment, the samples are checked against the Chain-of-Custody forms and then assigned an analytical laboratory sample number. Each sample component is reweighed to determine if leakage occurred during travel. Color, appearance, and other particulars of the samples are noted. Samples are extracted within 21 days of collection.



**Figure 5-3.** PCB/CDD/CDF/TCO Field Recovery Scheme

TABLE 5-5. CDD/CDF SAMPLE FRACTIONS SHIPPED  
TO ANALYTICAL LABORATORY

| Container/<br>Component | Code                                 | Fraction                                                                                                                                                     |
|-------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                       | F                                    | Filter(s)                                                                                                                                                    |
| 2                       | PR <sup>a</sup>                      | Acetone and methylene chloride rinses of<br>nozzle/probe, cyclone, front half/back half<br>filter holder, filter support, connecting<br>glassware, condensor |
| 3                       | PRT <sup>b</sup><br>CRT <sup>b</sup> | Toluene rinse of nozzle/probe, cyclone, front<br>half/back half filter holder, filter support,<br>connecting line and condensor                              |
| 4                       | SM                                   | XAD-II® resin trap (sorbent module)                                                                                                                          |

<sup>a</sup> Rinses include acetone and methylene chloride recovered into the same sample bottle.

<sup>b</sup> Rinses of toluene recovered into separate sample bottle (sometimes toluene probe  
rinse (PRT) and coil rinse (CRT) are recovered separately).

TABLE 5-6. CDD/CDF CONGENERS TO BE ANALYZED

---

DIOXINS:

2,3,7,8 tetrachlorodibenzo-p-dioxin (2,3,7,8 TCDD)  
Total tetrachlorinated dibenzo-p-dioxins (TCDD)  
1,2,3,7,8 pentachlorodibenzo-p-dioxin (1,2,3,7,8 PeCDD)  
Total pentachlorinated dibenzo-p-dioxins (PeCDD)  
1,2,3,4,7,8 hexachlorodibenzo-p-dioxin (1,2,3,4,7,8 HxCDD)  
1,2,3,6,7,8 hexachlorodibenzo-p-dioxin (1,2,3,6,7,8 HxCDD)  
1,2,3,7,8,9 hexachlorodibenzo-p-dioxin (1,2,3,7,8,9 HxCDD)  
Total hexachlorinated dibenzo-p-dioxins (HxCDD)  
1,2,3,4,6,7,8 heptachlorodibenzo-p-dioxin (1,2,3,4,6,7,8 HpCDD)  
Total heptachlorinated dibenzo-p-dioxins (HpCDD)  
Total octachlorinated dibenzo-p-dioxins (OCDD)

FURANS:

2,3,7,8 tetrachlorodibenzofurans (2,3,7,8 TCDF)  
Total tetrachlorinated dibenzofurans (TCDF)  
1,2,3,7,8 pentachlorodibenzofuran (1,2,3,7,8 PeCDF)  
2,3,4,7,8 pentachlorodibenzofuran (2,3,4,7,8 PeCDF)  
Total pentachlorinated dibenzofurans (PeCDF)  
1,2,3,4,7,8 hexachlorodibenzofuran (1,2,3,4,7,8 HxCDF)  
1,2,3,6,7,8 hexachlorodibenzofuran (1,2,3,6,7,8 HxCDF)  
2,3,4,6,7,8 hexachlorodibenzofuran (2,3,4,6,7,8 HxCDF)  
1,2,3,7,8,9 hexachlorodibenzofuran (1,2,3,7,8,9 HxCDF)  
Total hexachlorinated dibenzofurans (HxCDF)  
1,2,3,4,6,7,8 heptachlorodibenzofuran (1,2,3,4,6,7,8 HpCDF)  
1',2,3,4,7,8,9 heptachlorodibenzofuran (1',2,3,4,7,8,9 HpCDF)  
Total heptachlorinated dibenzofurans (HpCDF)  
Total octachlorinated dibenzofurans (OCDF)

---

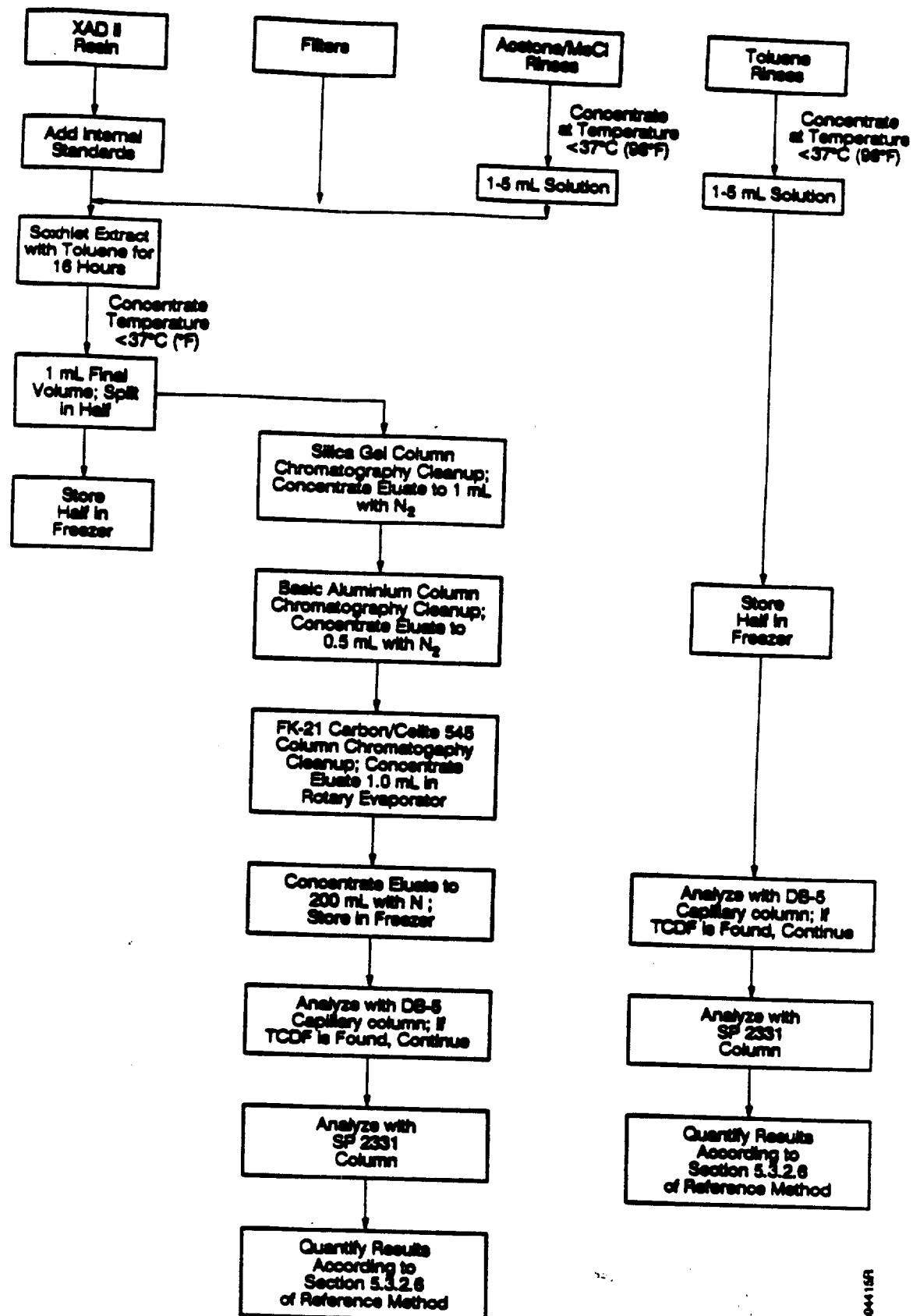



Figure 5-4. Extraction and Analysis Schematic for CDD/CDF Samples

5.1.5.2 Calibration of GC/MS System. A five-point calibration of the GC/MS system is performed to demonstrate instrument linearity over the concentration range of interest. Relative response factors are calculated for each congener or compound of interest. The response factors are verified on a daily basis using a continuing calibration standard consisting of a mid-level mixed isomer standard. The instrument performance is acceptable only if the measured response factors for the labeled and unlabeled compounds and the ion-abundance ratios are within the allowable limits specified in the method (52200, 52201 FR 891220).

#### 5.1.6 CDD/CDF Analytical Quality Control

All quality control procedures specified in the test method are followed. Blanks are used to determine analytical contamination, calibration standards are used for instrument calibration and linearity checks, internal standards are used to determine isomer recoveries and adjust response factors for matrix effects, surrogate standards are used to measure the collection efficiency of the sampling methodology, and an alternate standard is used as a column efficiency check.

5.1.6.1 CDD/CDF Quality Control Blanks. Three different types of sample blanks are collected for CDD/CDF analysis. The type of blanks that are required are shown in Table 5-7.

Reagent blanks of 1000 ml of each reagent used at the test site are saved for potential analysis. Each reagent blank is of the same lot as was used during the sampling program. Each lot number and reagent grade is recorded on the field blank label and in the laboratory notebook.

A glassware blank (proof blank) is recovered from each set of sample train glassware that is used to collect the organic samples. The precleaned glassware, which consists of a probe liner, filter holder, condensor coil, and impinger set, is loaded as if for sampling and then quantitatively recovered exactly as the samples are. Analysis of the generated fractions is used to check the effectiveness of the glassware cleaning procedure only if sample analysis indicates a potential contamination problem.

A field blank is collected from a set of CDD/CDF glassware that has been used to collect at least one sample and has been recovered. The train is re-loaded and left at a sampling location during a test run. The train is then recovered. The purpose of the

TABLE 5-7. CDD/CDF BLANKS COLLECTED

| Blank                 | Collection                                                                              | Analysis                                               |
|-----------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|
| Field Blanks          | One run collected and analyzed for each sampling location.                              | Analyze with flue gas samples.                         |
| Glassware Proof Blank | Each train to be used (2) will be loaded and quantitatively recovered prior to sampling | Archive for potential analysis                         |
| Method Blank          | At least one for each analytical batch                                                  | Analyze with each analytical batch of flue gas samples |
| Reagent Blanks        | One 1000 ml sample for each reagent and lot.                                            | Archive for potential analysis.                        |

field blank is to measure the level of contamination that occurs from handling, loading, recovering, and transporting the sampling train. The field blanks are analyzed with the flue gas samples. If they are unsatisfactory in terms of contamination, reagent blanks may be analyzed to determine the specific source of contamination.

To verify the flue gas sample was quantitatively recovered, toluene rinses are also analyzed separately from the other fractions. These results are not incorporated into the final emission values; however, they are used as QA/QC indicators.

In addition to the three types of blanks that are required for the sampling program, the analytical laboratory analyzes a method blank with each set of flue gas samples. This consists of prepping and analyzing reagent water by the exact procedure used for the samples analysis. The purpose of this is to verify that there is no laboratory contamination of the field samples.

**5.1.6.2 Quality Control Standards and Duplicates.** Recoveries of the internal standards must be between 40 to 130 percent for the tetra- through hexachlorinated compounds and between 25 to 130 percent for the hepta- and octachlorinated homologues. If these requirements are not met, the data is acceptable if the signal to noise ratio is greater than or equal to ten. If these requirements are met, the results for the native (sampled) species are adjusted according to the internal standard recoveries.

Surrogate standard recoveries must be between 70 to 130 percent. If the recoveries of all standards are less than 70 percent, the project director is notified immediately to determine if the surrogate results can be used to adjust the results of the native species.

Duplicate analysis is performed for every ten samples. The purpose of this is to evaluate the precision of the combined sample preparation and analytical methodology.

A summary of the acceptance, criteria, control limits, and corrective action for the procedures described in this section is shown in Table 7-1.

## **5.2 PARTICULATE MATTER AND METALS EMISSIONS TESTING METHOD**

Sampling for PM and metals is performed according to an EPA Emission Measurement Branch (EMB) draft protocol entitled "Methodology for the Determination of Metals Emissions in Exhaust Gases from Incineration Processes." The protocol is presented in Appendix A. This method is applicable for the determination of

particulates and Pb, Ni, zinc (Zn), phosphorus (P), Cr, copper (Cu), manganese (Mn), selenium (Se), Be, Tl, Ag, Sb, Ba, Cd, As, and Hg emissions from various types of incinerators. Analyses of the Central Carolina Hospital MWI test samples will be performed for As, Cd, Cr, Hg, Ni, Pb, Sb, Ag, Ba, Be, and Tl.

The PM emissions are also determined from this sampling train. Particulate concentrations are based on the weight gain of the filter and the front half acetone rinses (probe, nozzle, and filter holder). After the gravimetric analyses have been completed, the sample fractions are then analyzed for the target metals as discussed in Section 5.2.5.

### **5.2.1 PM/Metals Sampling Equipment**

The methodology uses the sampling train shown in Figure 5-5. The 5-impinger train consists of a quartz nozzle/probe liner followed by a heated filter assembly with a Teflon® filter support, a series of impingers, and the usual EPA Method 5 meterbox and vacuum pump. The sample is not exposed to any metal surfaces in this train. The contents of the sequential impingers are: two impingers with a 5 percent  $\text{HNO}_3$ /10 percent  $\text{H}_2\text{O}_2$  solution, two impingers with a 4 percent  $\text{KMnO}_4$ /10 percent sulfuric acid ( $\text{H}_2\text{SO}_4$ ) solution, and an impinger containing silica gel. An optional empty knockout impinger may be added if the moisture content of the flue gas is high. The second impinger containing  $\text{HNO}_3/\text{H}_2\text{O}_2$  shall be of the Greenburg-Smith design; the other impingers shall have straight tubes. The impingers are connected together with clean glass U-tube connectors and are arranged in an impinger bucket as shown in Figure 5-6. Sampling train components are recovered and analyzed in separate front and back half fractions according to the described method.

### **5.2.2 PM/Metals Sampling Equipment Preparation**

#### **5.2.2.1 Glassware Preparation.**

Glassware is washed in hot soapy water, rinsed with tap water (3X), and then rinsed with deionized distilled water (3X). The glassware is then subjected to the following series of soaks and rinses:

- Soak in a 10 percent  $\text{HNO}_3$  solution for a minimum of 4 hours;
- Rinse with deionized distilled water (3X); and
- Rinse with acetone (3X).

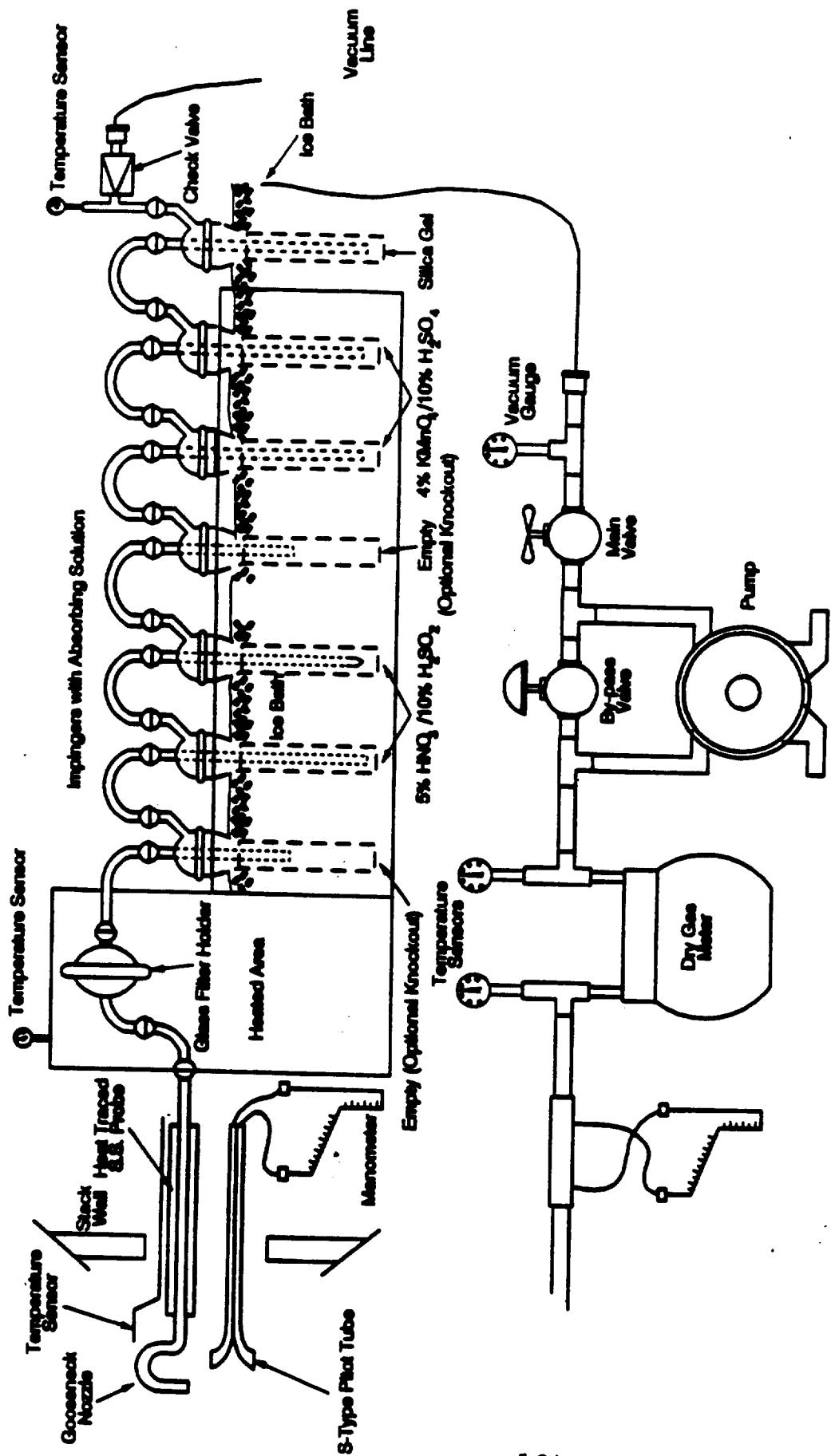
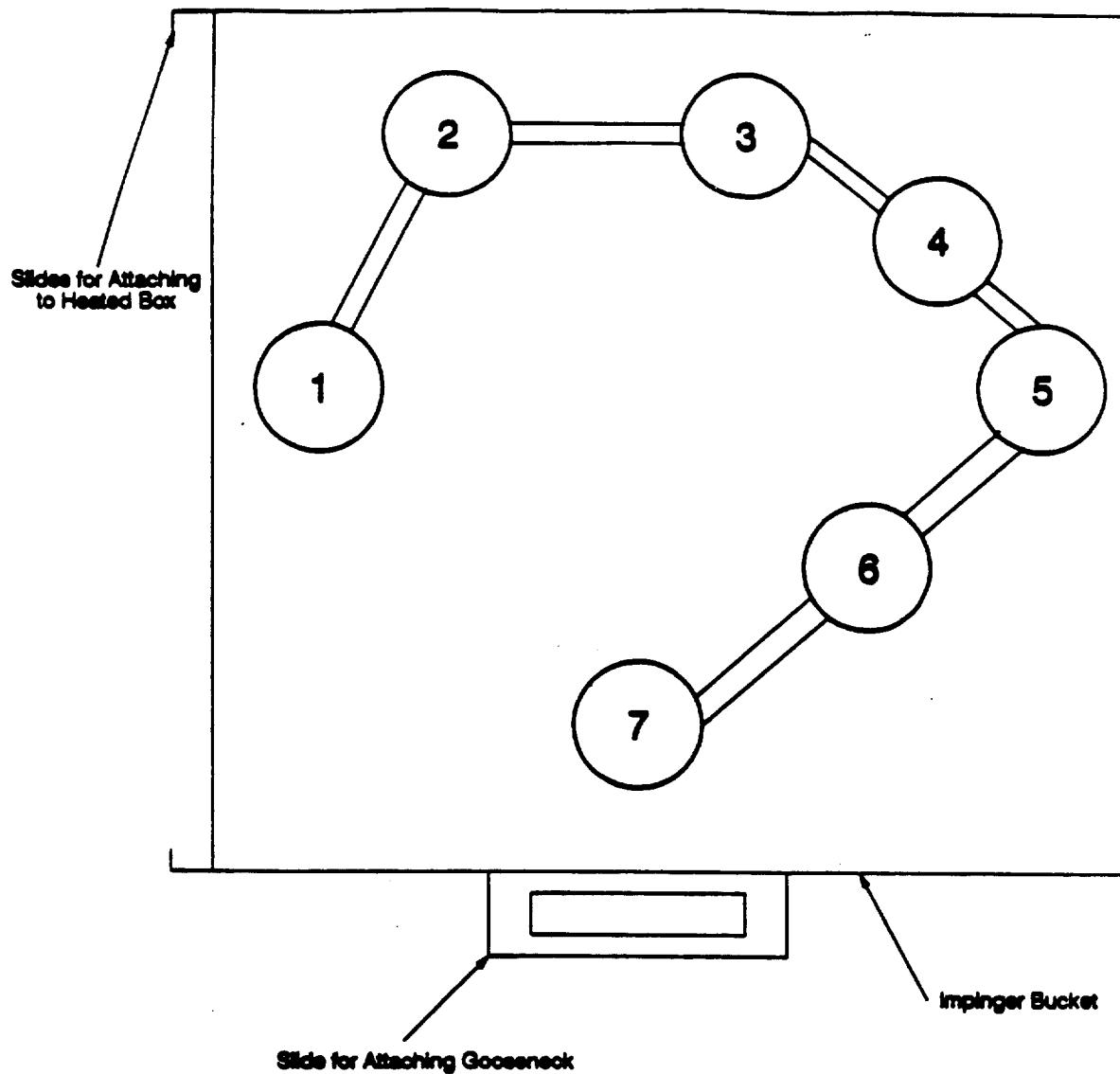




Figure 5-5. Schematic of Multiple Metals Sampling Train



**Figure 5-8. Impinger Configuration for PM/Metals Sampling  
(optional knock out impinger not shown)**

The cleaned glassware is allowed to air dry in a contamination-free environment. The ends are then covered with parafilm. All glass components of the sampling train plus any sample bottles, pipets, Erlenmeyer flasks, petri dishes, graduated cylinders, and other laboratory glassware used during sample preparation, recovery, and analysis are cleaned according to this procedure.

**5.2.2.2 Reagent Preparation.** The sample train filters are Pallflex Tissuequartz 2500QAS filters. The acids and  $H_2O_2$  peroxide are Baker "Instra-analyzed" grade or equivalent. The peroxide is purchased specifically for this test site and is kept cold until it is opened.

The reagent water is Baker "Analyzed HPLC" grade or equivalent. The lot number, manufacturer, and grade of each reagent that is used is recorded in the laboratory notebook.

The  $HNO_3/H_2O_2$  absorbing solution and the acidic  $KMnO_4$  absorbing solution is prepared fresh daily according to Sections 4.2.1 and 4.2.2 of the reference method. The analyst wears both safety glasses and protective gloves when the reagents are mixed and handled. Each reagent has its own designated transfer and dilution glassware. This glassware is marked for identification with a felt tip glass marking pen and used only for the reagent for which it is designated.

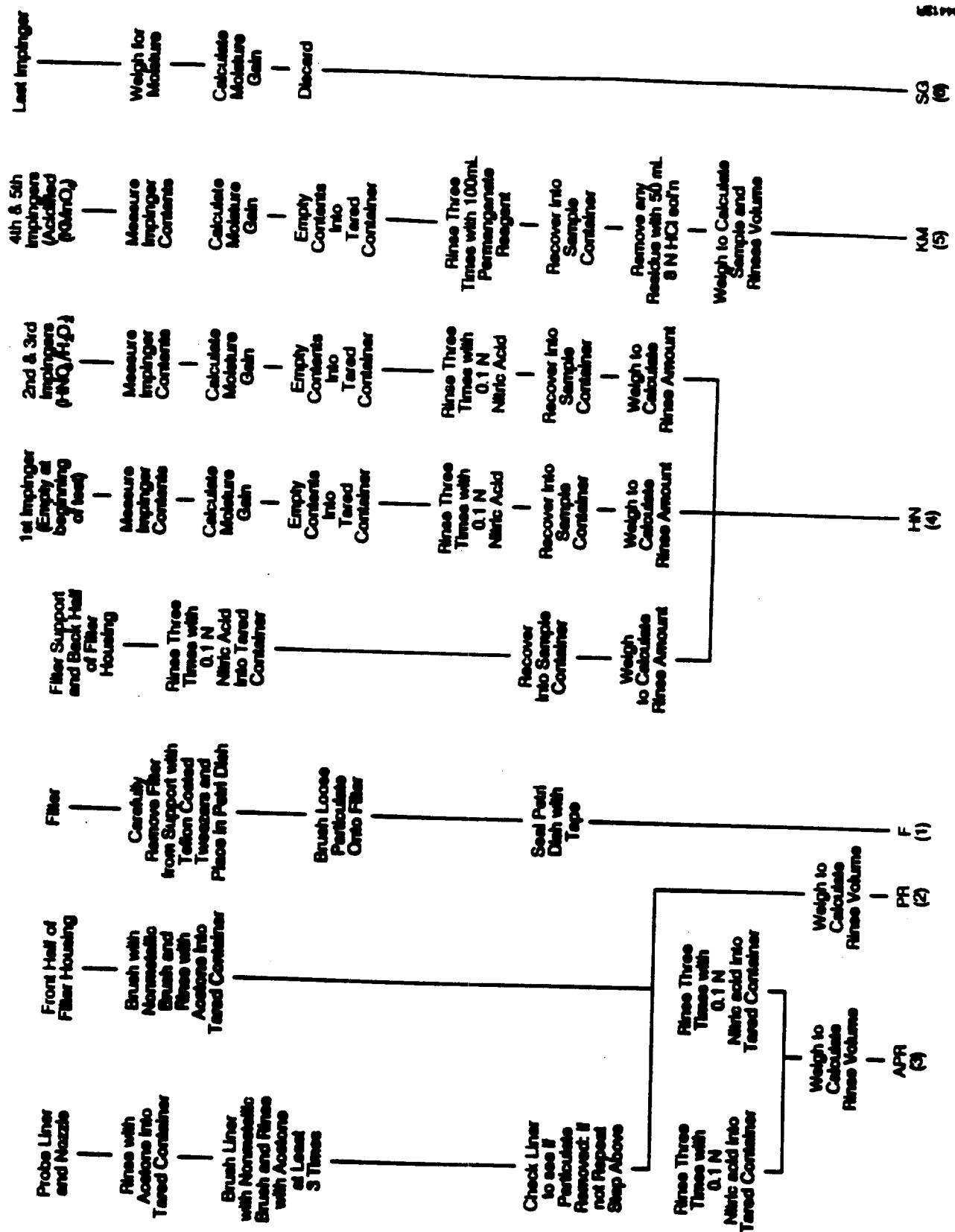
The analyst may save time preparing the acidic  $KMnO_4$  solution each day by observing the following procedure, beginning at least one day before the reagent is needed.

- Quantitatively remove 400 ml from a 4 liter bottle of Baker "Analyzed HPLC" water. Label this bottle 4.4 percent  $KMnO_4$  in water.
- Quantitatively add 160 g of potassium permanganate crystals to the bottle; stir with a Teflon® stirring bar and stirring plate as thoroughly as possible. This reagent will be stored on the counter in a plastic tub at all times.
- Each morning the acidic reagent is needed, decant 900 ml of  $KMnO_4$  solution into a 1000 ml volumetric flask. Carefully add 100 ml of concentrated  $H_2SO_4$  and mix. This reagent is volatile and must be mixed cautiously. Hold the flask cap on the flask, mix once, vent quickly. Complete the mixing slowly until the mixture is homogenous. Allow the solution to cool and bring the final volume to 1000 ml with  $H_2O$ .

- Carefully filter this reagent through Wattman 541 filter paper into another volumetric flask or 2 liter amber bottle. Label this bottle 4 percent acidic KMnO<sub>4</sub> absorbing solution. Vent the top and store the reagent in a plastic tub at all times.

**5.2.2.3 Equipment Preparation**. The remaining preparation includes calibration and leak checking of all train equipment as specified in EPA Method 5. This equipment includes the probe nozzles, pitot tubes, metering system, probe heater, temperature gauges, leakcheck metering system, and barometer. A laboratory field notebook is maintained to record these calibration values.

#### **5.2.3 PM/Metals Sampling Operations**


The sampling operations used for PM/Metals testing are virtually the same as those for the CDD/CDF tests as discussed in Section 5.1.2. The only differences are that there is no condensor coil so coil temperatures are not recorded and glass caps, Teflon® tape, or parafilm is used to seal off the sample train components rather than foil. Detailed instructions for assembling the metals sampling train are found beginning on page 14 of the reference method.

#### **5.2.4 PM/Metals Sample Recovery**

Begin recovery procedures as soon as the probe is removed from the stack and the post-test leakcheck is completed.

To facilitate transfer from the sampling location to the recovery trailer, the sampling train is disassembled into three sections: the nozzle/probe liner, filter holder, and impingers in their bucket. Each of these sections is capped with Teflon® tape or parafilm before removal to the recovery trailer.

Once in the trailers, the sampling train is recovered as separate front and back half fractions. A diagram illustrating front half and back half sample recovery procedures is shown in Figure 5-7. No equipment with exposed metal surfaces is used in the sample recovery procedures. The weight gain in each of the impingers is recorded to determine the moisture content in the flue gas. Following weighing of the impingers, the front half of the train is recovered, which includes the filter and all sample-exposed surfaces forward of the filter. The probe liner is rinsed with acetone by tilting and rotating the probe while squirting acetone into its upper end so that all inside surfaces are wetted. The acetone will be quantitatively collected into the appropriate bottle.



**Figure 5-7.** Metals Sample Recovery Scheme

This rinse is followed by additional brush/rinse procedures using a non-metallic brush; the probe is held in an inclined position and acetone is squirted into the upper end as the brush is pushed through with a twisting action. All of the acetone and particulate is caught in the sample container. This procedure is repeated until no visible particulate remains and finished with a final acetone rinse of the probe and brush. The front half of the filter is also rinsed with acetone until all visible particulate is removed. After all front half acetone washes are collected, the cap is tightened, the liquid level marked, and the bottle weighed to determine the acetone rinse volume. The method specifies a total of 100 ml of acetone may be used for rinsing these components. However, Radian feels that a thorough rinse requires more reagent. An acetone reagent blank of approximately the same volume as the acetone rinses is analyzed with the samples.

The nozzle/probe liner, and front half of the filter holder is rinsed three times with 0.1N HNO<sub>3</sub> and placed into a separate amber bottle. The bottle is capped tightly, the weight of the combined rinse recorded, and the liquid level marked. The filter is placed in a clean, well-marked glass petri dish and sealed with Teflon® tape.

Prior to recovering the back half impingers, the contents are weighed for moisture control determinations. Any unusual appearance of the filter or impinger contents are noted. Pictures may be taken to further document any abnormality.

The contents in the knockout impinger (if used) is recovered into a preweighed, prelabeled bottle with the contents from the HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> impingers. These impingers and connecting glassware are rinsed thoroughly with 0.1N HNO<sub>3</sub>, the rinse is captured in the impinger contents bottle, and a final weight is taken. Again, the method specifies a total of 100 ml of 0.1N HNO<sub>3</sub> be used to rinse these components. A HNO<sub>3</sub> reagent blank of approximately the same volume as the rinse volume is analyzed with the samples.

The impingers that contain the acidified KMnO<sub>4</sub> solution are poured together into a preweighed, prelabeled bottle. The impingers and connecting glassware are rinsed with at least 100 ml of the acidified KMnO<sub>4</sub> solution (from the same batch used for sampling) a minimum of three times. Rinses are added to the sample recovery bottle. A final 50 ml 8N hydrochloric acid (HCl) rinse is conducted and placed into the sample recovery

bottle. A final weight is recorded and the liquid level is marked on the bottle. The bottle cap is loosely tightened to allow venting.

After final weighing, the silica gel from the train is saved in a bag for regeneration after the job has been completed. The ground glass fittings on the silica gel impinger are wiped off after sample recovery to assure a leak tight fit for the next test.

A reagent blank is recovered in the field for each of the following reagents:

- Acetone blank - 100 ml sample size;
- 0.1N  $\text{HNO}_3$  blank - 1000 ml sample size;
- 5 percent  $\text{HNO}_3$ /10 percent  $\text{H}_2\text{O}_2$  blank - 200 ml sample size;
- Acidified  $\text{KMnO}_4$  blank - 1000 ml sample size; this blank should have a vented cap;
- 8N  $\text{HCl}$  blank - 50 ml sample size;
- Dilution water; and
- Filter blank - one each.

Each reagent blank is of the same lot as was used during the sampling program. Each lot number and reagent grade is recorded on the field blank label.

The liquid level of each sample container is marked on the bottle in order to determine if any sample loss occurred during shipment. If sample loss has occurred, the sample may be voided or a method may be used to incorporate a correction factor to scale the final results depending on the volume of the loss.

Approximate detection limits for the various metals of interest are summarized in Table 5-8.

#### 5.2.5 Particulate Analysis

The same general gravimetric procedure described in Method 5, Section 4.3 is followed. Both filters and precleaned beakers are weighed to a constant weight before use in the field. The same balance used for taring is used for weighing the samples.

TABLE 5.8 APPROXIMATE DETECTION LIMITS FOR METALS OF INTEREST USING EMB DRAFT METHOD

| Metal                | Method <sup>a</sup> | Analytical Detection Limits (µg/ml) | Instack Method Detection Limits <sup>b</sup>                      |                                                                  |
|----------------------|---------------------|-------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|
|                      |                     |                                     | Front Half (300 ml sample size) <sup>b</sup> (µg/m <sup>3</sup> ) | Back Half (150 ml sample size) <sup>b</sup> (µg/m <sup>3</sup> ) |
| Chromium             | ICAP                | 0.007                               | 1.7                                                               | 0.8                                                              |
| Cadmium              | ICAP                | 0.004                               | 1.0                                                               | 0.5                                                              |
| Arsenic <sup>d</sup> | GFAAS               | 0.001                               | 0.3                                                               | 0.1                                                              |
| Lead <sup>d</sup>    | GFAAS               | 0.001                               | 0.2                                                               | 0.1                                                              |
| Mercury              | CVAAS               | 0.0002                              | 0.05                                                              | 0.03 <sup>c</sup>                                                |
| Nickel               | ICAP                | 0.015                               | 3.6                                                               | 1.8                                                              |
| Barium               | ICAP                | 0.002                               | 0.5                                                               | 0.3                                                              |
| Beryllium            | ICAP                | 0.0003                              | 0.07                                                              | 0.04                                                             |
| Silver               | ICAP                | 0.007                               | 1.7                                                               | 0.9                                                              |
| Antimony             | ICAP                | 0.032                               | 7.7                                                               | 3.8                                                              |
| Thallium             | ICAP                | 0.040                               | 9.6                                                               | 4.8                                                              |

<sup>a</sup> ICAP = Inductively Coupled Argon Plasma

GFAAS = Graphite Furnace Atomic Absorption Spectroscopy

CVAAS = Cold Vapor Atomic Absorption Spectroscopy

<sup>b</sup> These detection limits are based on a stack gas sample volume of 1.25 m<sup>3</sup>. If 5 m<sup>3</sup> are collected, the instack method detection limits are 1/4 of the values indicated.

<sup>c</sup> The detection limit for mercury is the same in the HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> fraction as it is in the KMnO<sub>4</sub> fraction.

<sup>d</sup> If Fe and Al are present, samples will be diluted which may raise analytical detection limits.

The acetone rinses are evaporated under a clear hood at 20°C (68°F) in a tared beaker temperature silica gel. The filter is also desiccated under the same conditions to a constant weight. Weight gain is reported to the nearest 0.1 mg. Each replicate weighing must agree to within 0.5 mg or 1 percent of total weight less tare weight, whichever is greater, between two consecutive weighings, and must be at least 6 hours apart.

#### 5.2.6 Metals Analytical Procedures

A diagram illustrating the sample preparation and analytical procedure for the target metals is shown in Figure 5-8.

The front half fractions basically are digested with concentrated  $\text{HNO}_3$  and hydrofluoric (HF) acid in either a microwave pressure vessel or a Parr® bomb. The microwave digestion takes place over a period of approximately 10 to 12 minutes in intervals of 1 to 2 minutes at 600 watts; the Parr® bomb digestion is for 6 hours at 140°C (285°F). Both the digested filter and the digested probe rinses are combined to yield the front half sample fraction. The fraction is diluted to a specified volume with water and divided for analysis by applicable instrumentation.

The absorbing solutions from the  $\text{HNO}_3/\text{H}_2\text{O}_2$  impingers are combined. An aliquot is removed for the analysis of mercury by CVAAS and the remainder is acidified and reduced to near dryness. The sample is then digested in either a microwave or by conventional digestion, with 50 percent  $\text{HNO}_3$  and 3 percent  $\text{H}_2\text{O}_2$ . After the fraction has cooled, it is filtered and diluted to a specified volume with water.

Each sample fraction is analyzed by ICAPS using EPA Method 200.7. All target metals except mercury, iron, and aluminum, are quantified. If iron and aluminum are present, the samples are diluted to reduce their interferences on arsenic and lead. If arsenic or lead levels are less than 2 ppm, GFAAS is used to analyze for these elements by EPA Methods 7060 and 7421. Matrix modifiers such as specific buffering agents may be added to these aliquots to react with and tie up interfering agents. The total volume of the absorbing solutions and rinses for the various fractions are measured and recorded in the field notebook.

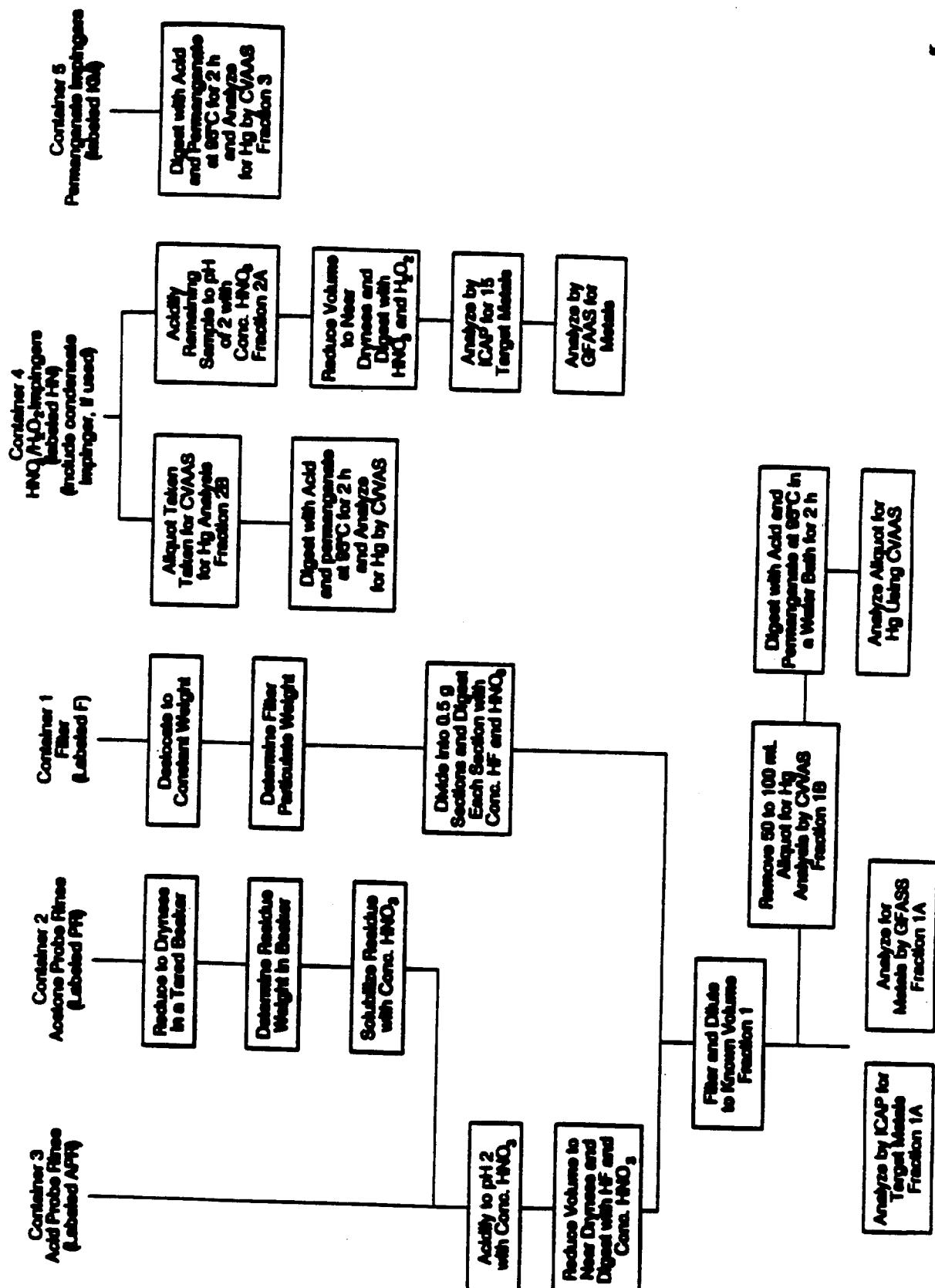



Figure 5-8. Metals Sample Preparation and Analysis Scheme

To prepare for mercury analysis by CVAAS, an aliquot from the  $\text{KMnO}_4$  impingers,  $\text{HNO}_3/\text{H}_2\text{O}_2$  impingers, filter digestion, and front half rinses are digested with acidic reagents at 95°C in capped BOD bottles for approximately 3 hours.

Hydroxylamine hydrochloride solution and stannous chloride is added immediately before analysis. Cold vapor AAS analysis for mercury follows the procedure outlined in EPA Method 7470 or in Standard Methods for Water and Wastewater Analysis, Method 303F.

#### **5.2.7 Quality Control for Metals Analytical Procedures**

All quality control procedures specified in the test method are followed. All field reagent blanks are processed, digested, and analyzed as specified in the test method. To ensure optimum sensitivity in measurements, the concentrations of target metals in the solutions are at least 10 times the analytical detection limits.

**5.2.7.1 ICAP Standards and Quality Control Samples**. The quality control procedures include running two standards for instrument checks (or frequency of 10 percent), two calibration blank runs (or frequency of 10 percent), one interference check sample at the beginning of the analysis (must be within 10 percent or analyze by standard addition), one quality control sample to check the accuracy of the calibration standards (must be within 10 percent of calibration), one duplicate analysis and one standard addition for every 10 samples (must be within 5 percent of average or repeat all analysis).

Standards less than 1  $\mu\text{g}/\text{ml}$  of a metal are prepared daily; those with concentrations greater than this are made weekly or bi-monthly.

**5.2.7.2 Graphite Furnace Standards and Quality Control Samples**. Standards used for GFAAS analysis must be matrix matched with the samples analyzed and the matrix modifiers that were added. Standards less than 1  $\mu\text{g}/\text{ml}$  of a metal are prepared daily; those with concentrations greater than this are made weekly or bi-monthly. A minimum of five standards make the standard curve. Quality control samples are

prepared from a separate 10  $\mu\text{g}/\text{ml}$  standard by diluting it into the range of the samples.

All samples are analyzed in duplicate. A matrix spike on one front half sample and one back half sample for each 10 field samples is analyzed. If recoveries of less than 75 percent or greater than 120 percent are obtained for the matrix spike, each sample is analyzed by the method of additions. One quality control sample is analyzed to check the accuracy of the calibration standards. The results must be within 10 percent or the calibration repeated.

**5.2.7.3 Mercury Standards and Quality Control.** An intermediate mercury standard is prepared weekly; working standards are prepared daily. The calibration curve is made with at least six points. Quality Control samples are prepared from a separate 10  $\mu\text{g}/\text{ml}$  standard by diluting it into the range of the samples.

A quality control sample must agree within 10 percent of the calibration, or the calibration repeated. A matrix spike on one of every 10 samples from the  $\text{HNO}_3/\text{H}_2\text{O}_2$  back half sample fraction must be within 20 percent or the samples are analyzed by the method of standard addition.

### **5.3 MICROBIAL SURVIVABILITY TESTING**

The Central Carolina Hospital MWI was loaded with waste containing indicator spores which measure the ability of microbes to survive the incineration process. This directly reflects microbial destruction efficiency for that incinerator. The first test method is aimed at determining microbial survivability in the combustion gases and the ash. This method involves inoculating a known quantity of spores in solution onto materials normally found in the medical waste stream (i.e., petri dishes, gauze, etc.). Direct ash sampling and flue gas testing are conducted in order to determine the destruction efficiency. Test procedures follow guidelines set forth by the EPA draft methods located in Appendix A.3 and A.4 of the test plan.

The second test method utilizes spiked spore samples encased in insulated metal containers charged to the incinerator with the waste stream. These tests are aimed at comparing this method with the direct ash sampling method and should provide a general assessment of microbial survivability and destruction efficiency. Three sets of samples (two different diameters) are periodically charged into the incinerator through out the test day. Following the test, the viability of the indicator spores in each sample

is checked to assess the destruction efficiency of spores that remain in the ash. Testing procedures used here follow an EPA draft method entitled "Microbial Survivability Test for Medical Waste Incinerator Ash." The following sections detail both spiking procedures (emissions/ash and pipe) as well as the spore flue gas sampling and analytical techniques.

### **5.3.1 Spiking Procedure for Emissions and Ash Microbial Loading**

In addition to the pipe samples, a second series of waste materials inoculated with indicator spores are charged into the incinerator. A known quantity of *B. stearothermophilus* wet spores are inoculated onto or in materials normally found in the medical waste stream such as petri dishes, test tubes, gauze, etc. The waste is loaded into the incinerator to coincide with the emission tests conducted at the incinerator outlet. Direct ash samples are collected after the ash has cooled sufficiently.

**5.3.1.1 Equipment**. A "wet spore" culture solution is prepared by the University of Alabama. The culture inoculum is divided between the nine sampling runs as shown in Figure 5-9. The spore solution is prepared as a frozen slurry in 1-liter amounts. Inoculation quantities are approximately 600 to 700 mls. The culture inoculum is added to various materials using sterile syringes or other implements as required.

**5.3.1.2 Spiking Preparation and Procedure**. The spiked waste sample is prepared so that about  $1 \times 10^{11}$  to  $1 \times 10^{12}$  spores are charged into the incinerator per sample run (the exact quantity is recorded). The total charge is separated into four culture batches. Each bag of spiked waste is loaded into the ram feeder at equal time intervals over the course of the emissions test run. For the proposed 4-hour test, spiked bags are loaded at sampling times of 0, 1, 2, and 3 hours from the start of testing.

### **5.3.2 Indicator Spore Flue Gas Sampling**

Flue gas is extracted from the incinerator stack during the burn cycle to determine spore emissions. The testing procedure follows the previously mentioned, draft EPA method. Flue gas samples are collected isokinetically in a buffered solution in impingers (no filter). The recovered samples are divided into different volume aliquots. These samples are cultured and colonies are identified using gram stains to establish cellular morphology, and possibly other biochemical tests as needed.

| Fermentation Batch 1 |       |       | Fermentation Batch 2                             |       |       | Fermentation Batch 3 |       |       |
|----------------------|-------|-------|--------------------------------------------------|-------|-------|----------------------|-------|-------|
| Run 1                | Run 2 | Run 3 | Run 4                                            | Run 5 | Run 6 | Run 7                | Run 8 | Run 9 |
| Fraction a           | a     | a     | a                                                | a     | a     | a                    | a     | a     |
| Fraction b           | b     | b     | b                                                | b     | b     | b                    | b     | b     |
| Fraction c           | c     | c     | c                                                | c     | c     | c                    | c     | c     |
| Fraction d           | d     | d     | d                                                | d     | d     | d                    | d     | d     |
| Fraction e           | e     | e     | - If required to get $1 \times 10^{12}$ spores - |       |       | e                    | e     | e     |

**Notes:** Each fraction will be loaded into the incinerator at equally spaced intervals over the duration of the test run during normal charge periods.

At least twelve fractions or doses per test condition. Additional fractions will be added from Batch 4 (Fraction e) if necessary to achieve  $1 \times 10^{12}$  spores per run.

**Figure 5-9. Indicator Spore Spiking Scheme for Combustion Gas Destruction Efficiency Testing**

The colonies are then enumerated. The following sections describe the flue gas sampling techniques to be used.

**5.3.2.1 Equipment.** A schematic of the spore sampling train is shown in Figure 5-10. Flue gas samples are extracted isokinetically through a quartz nozzle/probe system housed in a water-cooled sheath. A smaller tube is located inside the sampling probe to deliver a buffered solution at the nozzle end of the probe. This allows the gas sample stream to be immediately buffered, preventing acid condensate from killing viable spores. From the probe, the sample stream is delivered to a series of chilled impingers. The first two contain 200 ml and 100 ml, respectively, of phosphate-buffered solution to collect indicator spores. The third impinger serves as a knock-out (empty) and the fourth contains silica gel. In between the third and fourth impinger, a small amount of quartz wool was placed to collect PM. This material was rinsed into the impinger catch during recovery operations. The remainder of the sampling train is identical to a Method 5 system. (Meter box containing pump, meter, velocity and sampling pressure manometers, etc.)

A Peristaltic pump is used to deliver the buffer solution to the probe tip. The pump is capable of accurately metering a 10 to 20 ml/minute flow rate.

**5.3.2.2 Sampling Preparation.** All equipment used for sampling and sample recovery, which come into contact with the sample, is  $H_2O_2$ /alcohol disinfected and washed before each run. The nozzle/probe liner, impingers, impinger connections, and the nozzle/probe brush are first washed using the same procedure as discussed in Section 5.3.4.2. Following washing, all components are disinfected with  $H_2O_2$ /alcohol. After completing this procedure, all components are sealed with Parafilm® to prevent contamination. Additional sample containers, recovery items, and analytical equipment are sterilized by autoclaving or another equivalent method. Some of the items which need to be sterilized are wash bottles, two liter glass sample storage bottles, incubation tubes, petri dishes, filter units, reagent water (sterile deionized), and buffering reagent.

The train is assembled by first antiseptically adding the buffer solution to the first two impingers. Silica gel is added to the fourth impinger and the impinger train is connected to the meter box via an umbilical line. A pre-test leakcheck on the impinger

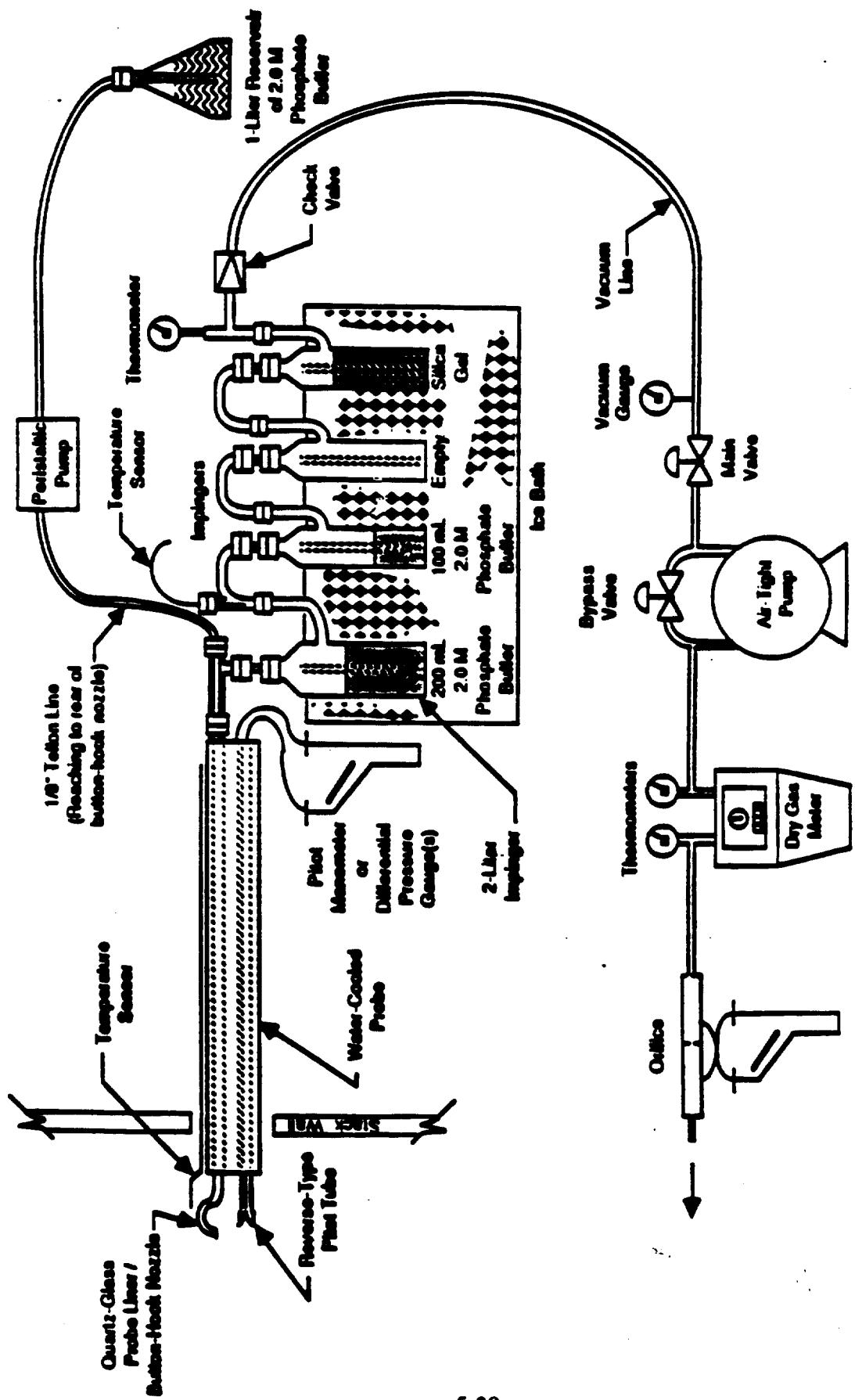



Figure 5-10. Sampling Train for Determination of Indicator Spore Emissions

train is completed at approximately 15 in. Hg. Leakage rates in excess of 4 percent of the average sampling rate or 0.02 cfm, whichever is less, are unacceptable.

5.3.2.3 Flue Gas Sampling. Before inserting the probe into the stack, the nozzle cap is removed and alignment of the nozzle and pitot tube are checked. The probe cooling water flow is started and adjusted. The buffering system pump is then started making sure that the probe is slightly inclined so that the buffer solution drains into the first impinger. The probe is inserted into the duct and located at the first sampling traverse point. Isokinetic sampling commences in accordance with Method 5 guidelines. All sampling parameters ( $\Delta P$ , gas meter readings, stack temperature, meter temperatures, meter  $\Delta H$ , meter vacuum, first impinger temperature, and silica gel impinger temperature) are periodically monitored, adjusted, and recorded throughout the test run.

Two different trains are used. When the first traverse is completed, the second traverse is immediately started with the second train.

After completion of the test run, the probe is removed from the stack and the flow of buffering solution turned off. The final meter reading is recorded and the sample train is leak checked. Post-test leakchecks are completed at a vacuum equal to or greater than the maximum vacuum reached during the sampling run. Acceptable post-test leakcheck criterion is the same as was previously mentioned for the pre-test leakchecks.

5.3.2.4 Sample Recovery. Sample recovery procedures are summarized in Figure 5-11. After the probe has cooled, the probe cooling water is turned off. The nozzle tip is inspected for port scrapings or any external matter near the tip and removed if found. The probe is disconnected from the impinger train and along with the probe buffer delivery tube, are rinsed and brushed with sterile buffer solution. All rinses are collected in a sterile sample bottle.

The impingers are weighed and the contents are antiseptically transferred to the sample bottle containing the nozzle/probe rinsings. The pH of the sample is adjusted if necessary to 6.0 to 7.5 with 1.0 N NaOH. The level of liquid in the sample bottle is marked to determine later if leakage occurred during transport. The bottle is then packed in ice so that sample temperatures are maintained at or below 4°C (39°F), for shipment to the laboratory.

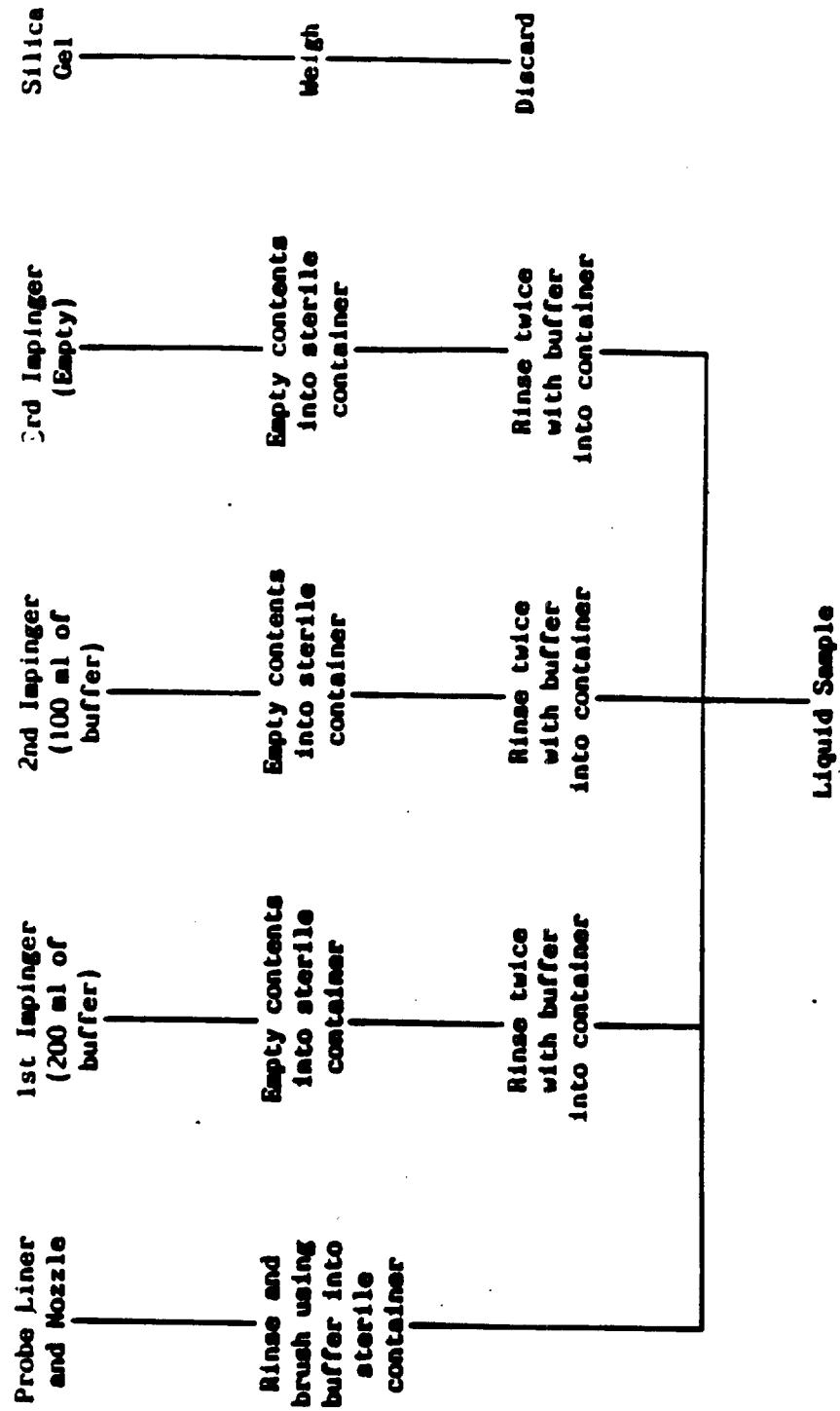
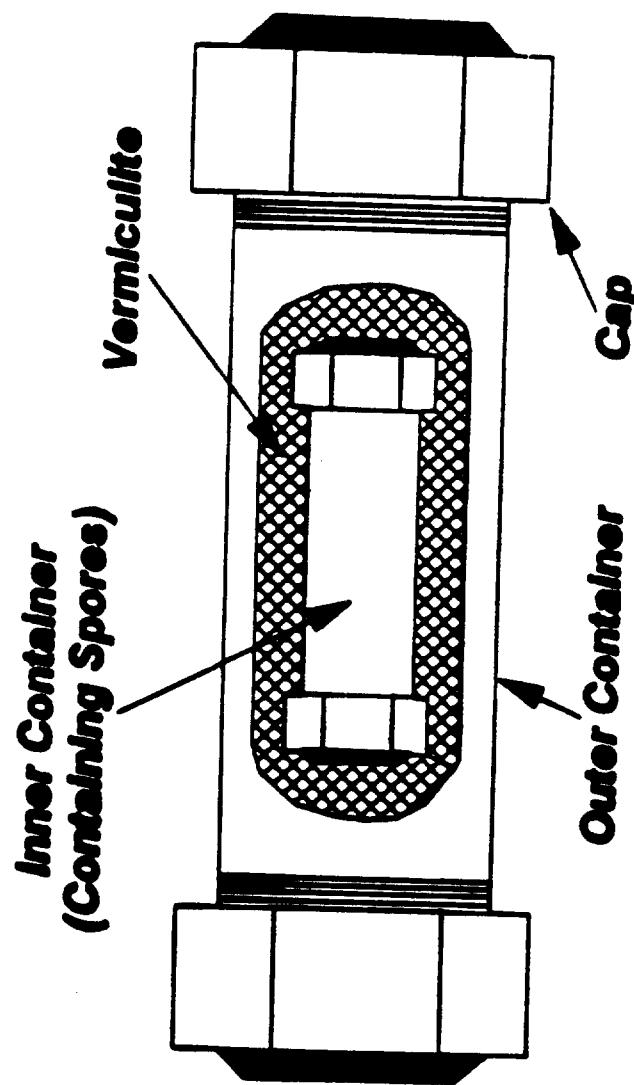



Figure 5-11. Sample Recovery Scheme for Microbial Viability Testing

### **5.3.3 Direct Ash Sampling for Indicator Spores**

Direct ash sampling provides an indication of the ability of the indicator organism to survive the incinerator process under various conditions. An outline of the proposed ash sampling protocol can be found in Appendix A of the test plan. Ash samples are recovered from the ash when it has cooled sufficiently. Ash samples are taken using a sampling thief. During each sampling run, three samples are taken. Two are transported to the laboratory to culture and identify and the third sample is used to determine the pH of the material. Laboratory samples are tested in accordance with proposed Draft Method found in Appendix A of the test plan.


**5.3.3.1 Equipment**. Ash samples are taken using a precleaned plastic scoop and placed in sample containers for transport to the laboratory. These samples are stored on ice. The pH of the ash is determined by adding a known amount of deionized water to a weighed aliquot of ash and measuring the pH by specific ion electrode.

### **5.3.4 Pipe Spiking Procedures**

The waste is charged into the incinerator with known quantities of Bacillus stearothermophilus (B. stearothermophilus) contained in insulated pipes. Samples are cultured according to the Draft Method found in Appendix A.4 of the test plan. Colonies of B. stearothermophilus are then gram stained to ensure correct cellular morphology and further identified using biochemical tests as needed. Enumeration of B. stearothermophilus is then completed.

**5.3.4.1 Spiking Equipment**. A diagram of the pipe sample assembly used for the pipe test is shown in Figure 5-12. The indicator organisms are freeze-dried spores (lyophilized) that were prepared by American Type Culture Collection in Rockville, Maryland. A small amount of lyophilized material equalling approximately  $10^6$  spores is prepared and placed in a small glass vial. Each pipe sample uses the contents of 1 spore vial.

The sample is placed in a short piece (2-4 inch) of 3/8 stainless steel tubing capped on both ends with Swagelock™ caps. This "inner container" is then placed in an "outer container" which is a 1½ inch or 2 inch diameter steel pipe nipple about 4 to 6 inches long. Each outer container is identified with a unique identification number for tracking of feed time and location. Enough vermiculite or other thermal insulation



Two sizes will be used:  
2" diameter x 6" long and 1 1/2" diameter x long

Figure 5-12. Ash Quality Pipe Assemblies

surrounds the inner container to maintain its position in the center of the outer container and to protect it from thermal shock. Both ends of the outer container are capped.

**5.3.4.2 Spiking Preparation.** The inner container and caps are cleaned and disinfected before use. This procedure consists of soaking the containers for at least one hour in 1.0 N HNO<sub>3</sub>, washing with laboratory detergent, rinsing 3 times with tap water, 3 times with sterilized deionized water, and finally, rinsing with 90 percent alcohol.

The spiked sample is prepared by placing a known amount of spores (targeted at 10<sup>6</sup>) inside the inner container and then sealed using the end caps. The inner container is placed in the outer container with enough vermiculite to position it in the center. Additional vermiculite is added and tapped down gently. Finally, the outer container is sealed by securing the other end cap.

**5.3.4.3 Spiking Procedure.** The incinerator spike varies according to the loading procedure. The Central Carolina Hospital MWI is a ram-loading, continuous-burning incinerator, which operates from approximately 7:00 a.m. to 3:00 p.m. each day. A single pipe spike is charged to the incinerator at the beginning, middle, and end of each day's operation. The first pipe is fed in the first load of the day at about 7:00 a.m. The second pipe is added to a load approximately at noon. The last pipe is added with the last load of the day (about 3:00 p.m.). The exact times for charging the spikes are coordinated with hospital personnel.

The pipe sample is placed in the charging hopper at random locations that correspond to where the MWI bags are placed in the hopper.

**5.3.4.4 Sample Recovery.** The pipes are recovered from the incinerator following a cool down period the morning following the test run. The ash cleanout door is opened at about 7:00 a.m. During this period, the location of the samples on the grate is recorded to the extent possible. The samples are recovered and the hot ashes removed from the ignition chamber. Excess debris is removed from the outer container and each pipe is placed in a plastic bag. The pipe samples are maintained at or below 4°C (39°F) in an ice cooler with care to protect them from contamination from melting ice.

### **5.3.5 Microbial Analysis**

The quantity of viable spores are determined from the pipe samples, flue gas samples, and the direct ash samples. Sample preparation for the three sample types is discussed below.

**5.3.5.1 Pipe Sample and Ash Analytical Preparation Procedure.** The sample preparation and analysis scheme for the pipe and ash samples are presented in Figures 5-13 and 5-14. The analysis is performed within 96 hours after sample recovery. The contents of the inner container of the pipe and the direct ash samples are transferred to separate sterile incubation tubes. The inside of the sample containers are rinsed with sterile phosphate buffer solution into the respective incubation tube. Any glassware used for this transfer procedure is rinsed with sterile deionized water into the respective incubation tubes. The direct ash samples are mixed and aseptically added to 100 mls of sterile deionized water before further processing.

**5.3.5.2 Flue Gas Sample Analytical Preparation Procedure.** The sample preparation and analysis scheme is presented in Figures 5-15. The level of each sample is checked to determine if leakage during shipment occurred. Each sample contains approximately 1.5 to 2.0 liters of sample. The sample is then aliquoted and prepared as shown in Figure 5-15. Three 10 ml aliquots, three 100 ml aliquots, and three equal volume of the remaining solution is prepared. The aliquots are placed in sterile incubation tubes, one set is processed without heat-treatment, the other with heat-treatment. Each aliquot is then filtered and placed onto agar plates as discussed in the following sections.

**5.3.5.3 Colonial Enumeration and Identification Procedure.** Agar plates are prepared by pouring the molten trypticase soy agar into a sufficient number of petri dishes for both sample and field blanks. The media is then allowed to harden. Each sample is then filtered through a separate vacuum filter unit employing a sterile cellulose nitrate filter (0.2  $\mu\text{m}$ ). The incubation tube is rinsed with sterile deionized water and poured through the filter as well. Each filter is removed from the filtering unit using sterile forceps and placed face up on an agar plate. The plates are incubated in an air convection incubator at 65°C (49°F) for 18 to 24 hours prior to colonial examination.

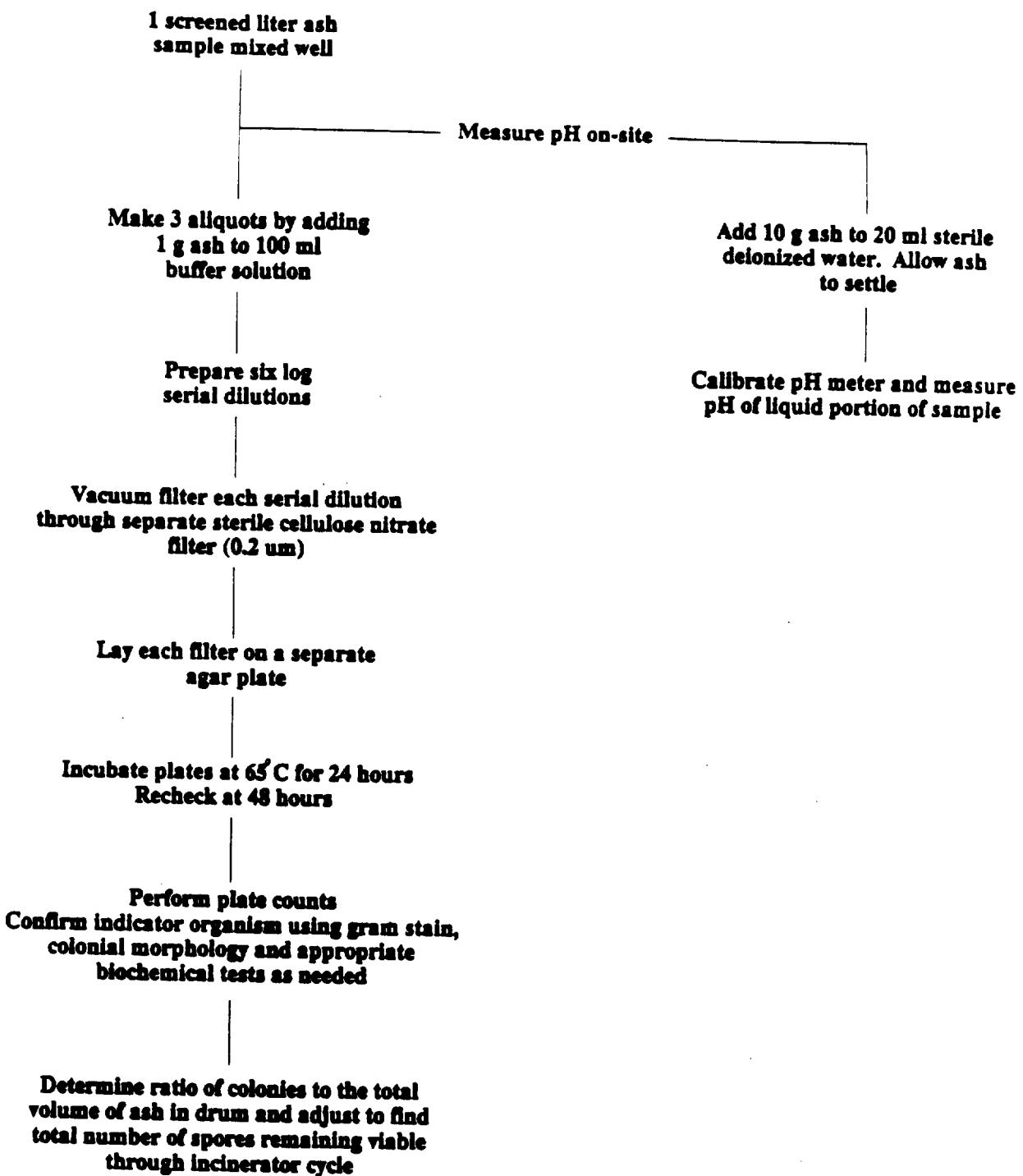



Figure 5-13. Sample and Analysis Scheme for Microbial Testing of Ash Samples

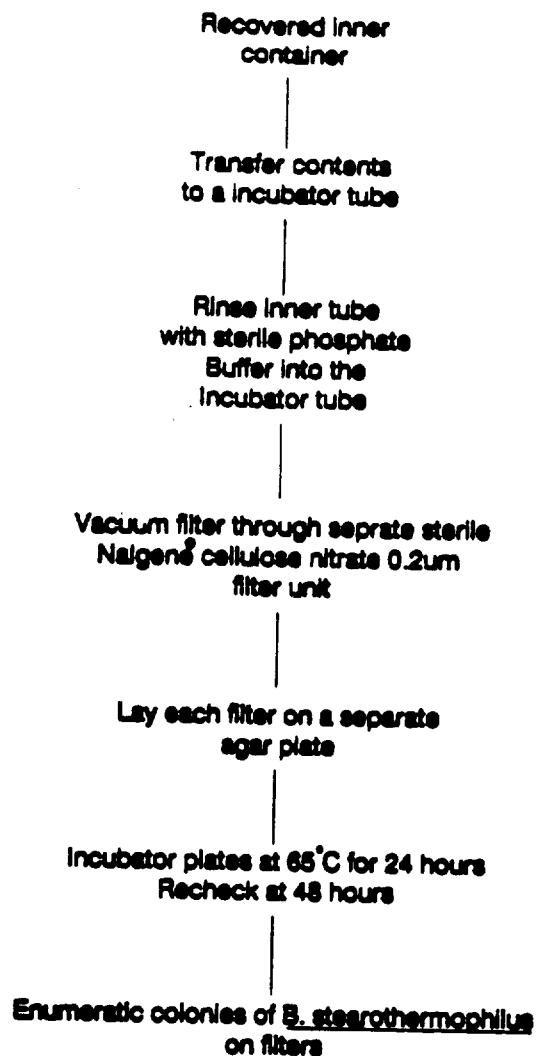



Figure 5-14. Analysis Scheme for Pipe Sample Microbial Viability Tests

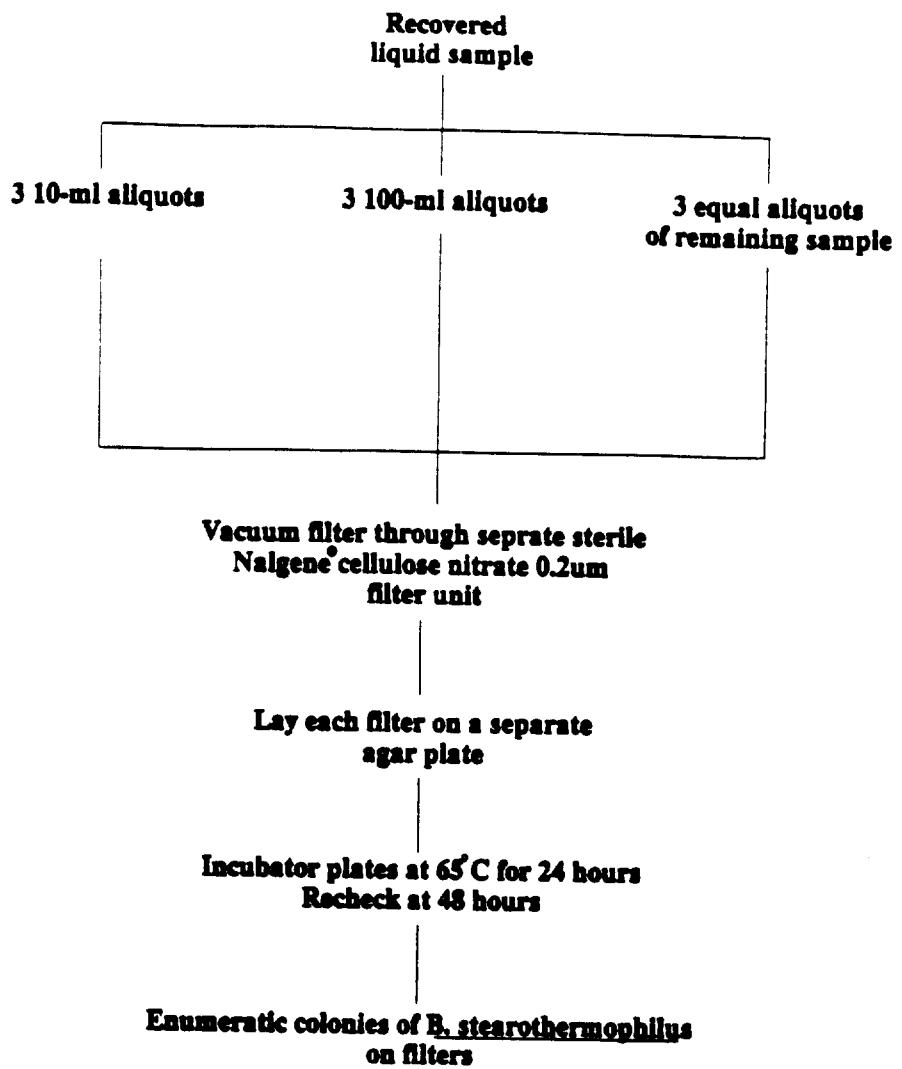



Figure 5-15. Sample Preparation and Analysis Scheme for Microbial Testing

The plates are removed from the incubator and colonies of B. stearothermophilus are quantified. A variety of tests including a gram stain and biochemicals may be used to confirm that the colonies are B. stearothermophilus.

**5.3.5.4 Indicator Spore Analytical Quality Control.** The QA/QC procedures followed during spore enumeration and verification procedures (analysis) are documented in Table 5-9. An aliquot from one batch of the wet spore spiking slurry is sent to RTI to verify the manufacturer's count.

Field blanks from a flue gas (impinger) sample as well as a non-charged pipe sample, are analyzed to check for contamination during preparation or recovery procedures. Duplicates are analyzed for impinger samples from two test runs.

A blank ash sample is collected prior to the test program to check for the presence of indicator spores prior to any spiking.

#### **5.4 HYDROGEN CHLORIDE/HYDROGEN BROMIDE/HYDROGEN FLUORIDE EMISSIONS TESTING BY EPA METHOD 26**

Hydrogen chloride HBr, and HF sampling is accomplished using a single sampling train. The procedure follows the EPA Method 26 draft protocol entitled "The Determination of HCl Emissions from Municipal and Hazardous Waste Incinerators." In this method, an integrated gas sample is extracted from the stack and passed through acidified water. In acidified water, HCl solubilizes and forms Cl<sup>-</sup> ions. Ion chromatography is used to detect the Cl<sup>-</sup> ions present in the sample. For this test program, the presence of Br<sup>-</sup> and F<sup>-</sup> ions are also be detected by IC. The method is included in Appendix A.

##### **5.4.1 HCl/HBr/HF Sampling Equipment**

A diagram of the HCl/HBr/HF sampling train is shown in Figure 5-16. The sampling train consists of a quartz probe with a pallflex Teflon/glass filter to remove PM, and a series of chilled midget impingers and a DGM system. A small amount of quartz glass wool was placed in the front half of the filter holder to help remove excessive PM found in this gas stream. Because the high temperatures of the stack and the shortness of the sampling probe keep sample gas in the probe above the acid dewpoint, the probe is not heated. The train consists of an optional knockout impinger followed by two impingers containing 0.1 N sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) to collect HCl, HBr,

TABLE 5-9. INDICATOR SPORE TESTING QA/QC CHECKS

| Sample Type                     | Number | QA/QC Check                                                                                       |
|---------------------------------|--------|---------------------------------------------------------------------------------------------------|
| Wet Spores                      | 1      | Verify manufacturer's wet spore count by sending an aliquot from one slurry to RTI for count.     |
| Field Blank - Impinger Sample   | 1      | Prepare train through leakcheck, run buffer solution for 2 hours, collect 1 field blank sample    |
| Field Blank - Pipe Sample       | 2      | Fully prepare pipe sample without placing spore charge inside to check for handling contamination |
| Duplicates - Impinger Sample    | 2      | Complete duplicate analyses on 2 impinger samples from 2 test runs                                |
| Field Duplicates - Pipe Samples | 3      | Load duplicate pipe samples on 3 separate occasions into incinerator and analyze                  |
| Pre-Test Ash Blank              | 1      | Collect ash samples using the test procedures prior to any spiking of indicator spores            |

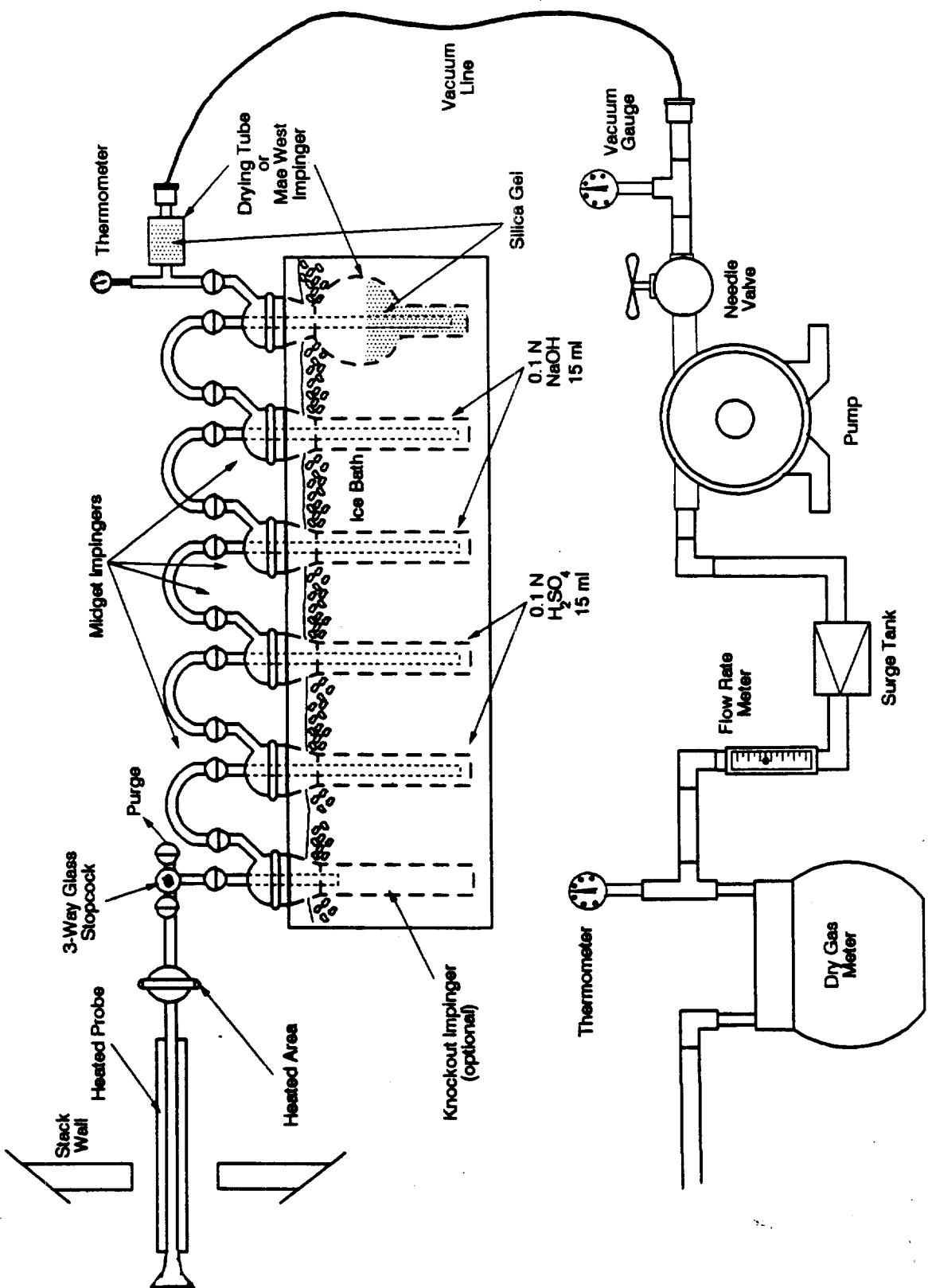



Figure 5-16. HCl Sample Train Configuration

and HF; two impingers containing 0.1 N NaOH to capture any pollutants present in the flue gas that might cause DGM damage; and finally one silica gel impinger.

#### **5.4.2 HCl/HBr/HF Sampling Preparation**

**5.4.2.1 Equipment Preparation**. Sampling preparation includes calibration and leak checking of all train equipment. This includes meterboxes, thermocouples, and umbilicals. Referenced calibration procedures are followed when available, and the results properly documented and retained. If a referenced calibration technique for a particular piece of apparatus is not available, then a state-of-the-art technique is used.

**5.4.2.2 Assembling the Train**. Assembly of the sampling train is done both in the recovery trailer and at the stack location. First, the empty clean impingers are assembled and laid out in the proper order. The optimal knockout impinger was not used for testing at this facility. The first two impingers contained 15 to 20 ml 0.1 N H<sub>2</sub>SO<sub>4</sub> each, followed by two impingers filled with 15 to 20 ml each of 0.1 N NaOH, and finally an impinger containing 20 to 30 grams of silica gel. When the impingers are loaded, they may be wrapped with Teflon® tape to secure the two sections of the impinger. The impingers are connected together using U-tube connectors and arranged in the impinger bucket. The height of all the impingers should be approximately the same to easily obtain a leak-free seal. The open ends of the train are sealed with aluminum foil.

#### **5.4.3 HCl/HBr/HF Sampling Operations**

Prior to sampling, the HCl/HBr/HF train is leakchecked as required by Method 26 protocol. The leak checking procedure is the same as that discussed in Section 5.1. The leak rate, sampling start and stop times, and any other events are be recorded on the sampling task log. Upon completion of a sampling run, repeat the leakcheck procedure. Sampling train data are recorded every five minutes, and include readings of the DGM, DGM temperature, flow rate meter, and vacuum gauge.

#### **5.4.4 HCl/HBr/HF Sample Recovery**

The impingers are disconnected from the probe and filter and moved to the recovery trailer. Once in the trailer, the contents of the two acidified impingers are quantitatively recovered with deionized distilled water and placed into a clean sample bottle. The sample bottle should be sealed, mixed and labeled, and the fluid level marked. The contents of the second set of impingers (containing the 0.1 N NaOH) are discarded for every triplicate series except for one. These will be archived for possible future analyses. The sample recovery scheme is shown in Figure 5-17.

#### **5.4.5 HCl/HBr/HF Analytical Procedures**

Before analysis, the samples are checked against the chain-of-custody forms and then given an analytical laboratory sample number. Then, each sample is examined to determine if any leakage occurred and any color or other particulars of the samples are noted.

The IC conditions are described by the type of analytical column and whether suppressed or nonsuppressed IC is used. Prior to sample analysis, a stable baseline is established and water samples are injected until no  $\text{Cl}^-$ ,  $\text{Br}^-$ , or  $\text{F}^-$  appears in the chromatogram. Then, the IC is calibrated using standards spanning the appropriate concentration range, starting with the lowest concentration standard. Next, a QC check sample is injected in duplicate, followed by a water blank and the field samples. The calibration standards are re-injected at the end of the analysis to allow compensation for any drift in the instrument response during analysis of the field samples. The  $\text{Cl}^-$ ,  $\text{Br}^-$ , and  $\text{F}^-$  sample concentrations are calculated from either the respective ion peak area or peak height and the calibration curve.

#### **5.4.6 HCl/HBr/HF Analytical Quality Control**

The IC is calibrated with a minimum of three concentrations, not including zero. A correlation coefficient of greater than or equal to 0.995 must be achieved to have an acceptable calibration. At least 10 percent of the total number of samples are analyzed in duplicate. Ion concentrations in the duplicates must agree to within  $\pm 20$  percent.

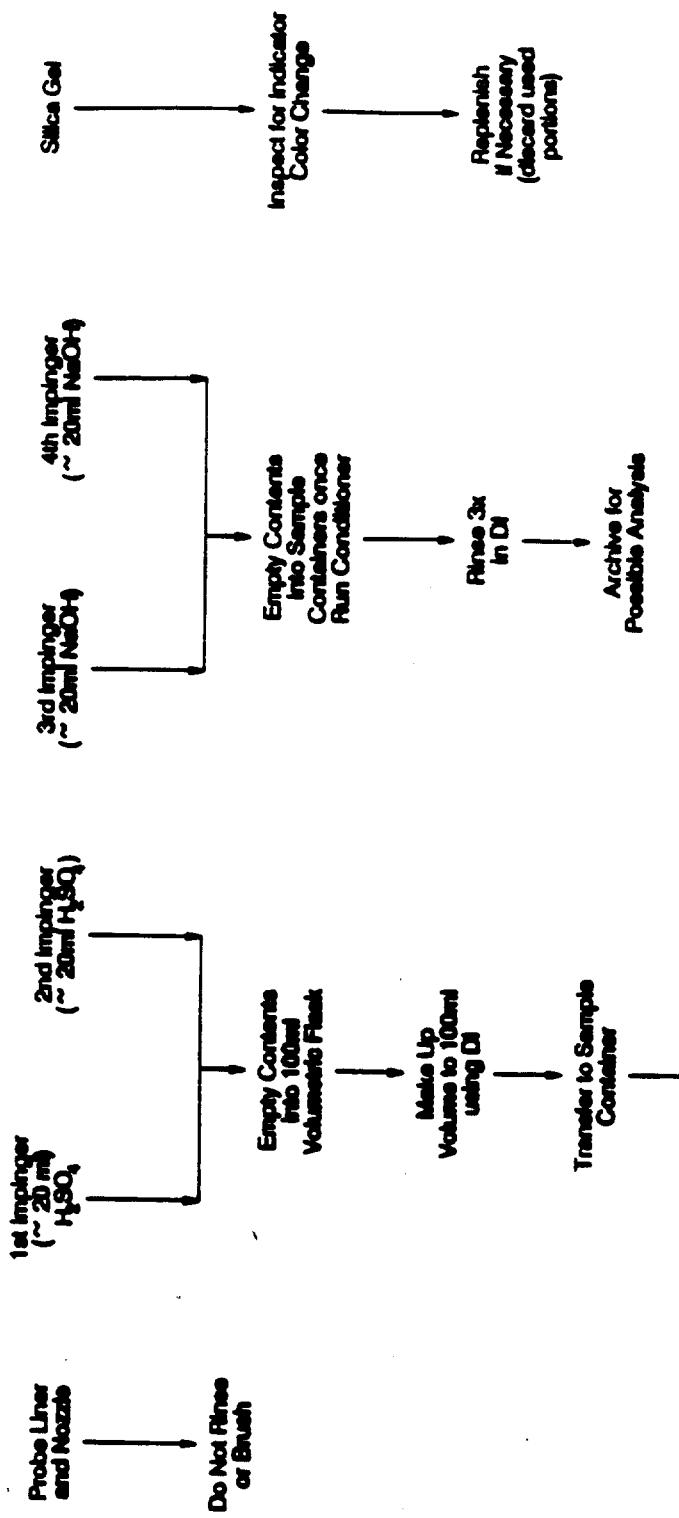



Figure 5-17. HCl/HBr/HF Sample Recovery Scheme

## 5.5 EPA METHODS 1-4

### 5.5.1 Traverse Point Location By EPA Method 1

The number and location of sampling traverse points necessary for isokinetic and flow sampling will be dictated by EPA Method 1 protocol. These parameters are based upon how much duct distance separates the sampling ports from the closest downstream and upstream flow disturbances. The minimum number of traverse points for a circular duct less than 24 inches is 4 (8 total sample points). Several sets of perpendicular sampling ports are established in the incinerator outlet. Traverse point locations are determined for each port depending on the distances to duct disturbances (see Section 4).

### 5.5.2 Volumetric Flow Rate Determination by EPA Method 2

Volumetric flow rate is measured according to EPA Method 2. A Type K thermocouple and S-type pitot tube are used to measure flue gas temperature and velocity, respectively. All of the isokinetically sampled methods that are used incorporate Method 2 (CDD/CDF, PM/Metals, Microorganisms).

5.5.2.1 Sampling and Equipment Preparation. For EPA Method 2, the pitot tubes are calibrated before use following the directions in the method. Also, the pitots are leak checked before and after each run.

5.5.2.2 Sampling Operations. The parameters that are measured include the pressure drop across the pitots, stack temperature, and stack static and ambient pressure. These parameters are measured at each traverse point, as applicable. A computer program is used to calculate the average velocity during the sampling period.

### 5.5.3 O<sub>2</sub> and CO<sub>2</sub> Concentrations by EPA Method 3A

The O<sub>2</sub> and CO<sub>2</sub> concentrations are determined by CEMs following EPA Method 3A. Flue gas is extracted from the duct and delivered to the CEM system through heated Teflon® tubing. The sample stream is then conditioned (particulate and moisture removed) and is directed to the analyzers. The O<sub>2</sub> and CO<sub>2</sub> concentrations are, therefore, determined on a dry basis. Average concentrations are calculated to coincide with each respective time period of interest. More information on the CEM system will be given in Section 5.6.

#### 5.5.4 Average Moisture Determination by EPA Method 4

The average flue gas moisture content is determined according to EPA Method 4. Before sampling, the initial weight of the impingers is recorded. When sampling is completed, the final weights of the impingers are recorded, and the weight gain is calculated. The weight gain and the volume of gas sampled are used to calculate the average moisture content (percent) of the flue gas. The calculations are performed by computer. Method 4 is incorporated in the techniques used for all of the manual sampling methods that are used during the test.

### 5.6 CONTINUOUS EMISSIONS MONITORING (CEM) METHODS

EPA Methods 3A, 7E, 6C, and 10 are continuous monitoring methods for measuring CO<sub>2</sub>, O<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, and CO concentrations. Total hydrocarbons are analyzed by EPA Method 25A. Flue gas HCl concentrations are also monitored using CEM procedures using state-of-the-art equipment and procedures. A diagram of the CEM system is shown in Figure 5-18.

Two extractive systems are used to obtain flue gas samples for the CEM systems. One system is for HCl monitoring and the other system is for all other CEMs. For the main CEM extraction system, samples are withdrawn continuously at a single point from the incinerator outlet duct and transferred to the CEM trailer through heat-traced Teflon® line. The flue gas is conditioned (temperature lowered and moisture removed) before the flue gas stream is split using a manifold to the various analyzers. Hydrocarbon measurements are made on a wet basis; therefore, its sample stream bypasses the gas conditioner.

#### 5.6.1 CEM Sampling Equipment

5.6.1.1 Sample Probes. The main CEM probe consists of a black iron pipe mounted to a Swagelok® reducing union which is attached directly to the heat trace tubing. The probe is placed approximately at a point of average velocity in the stack determined by a prior velocity traverse.

5.6.1.2 Heated Lines. Heated sample lines are used to transfer the flue gas samples to the instrument trailer for O<sub>2</sub>, CO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, CO, and THC analyses. These lines are heated in order to prevent condensation. Condensate could clog sample lines or provide a medium for the flue gas sample to react and change composition.

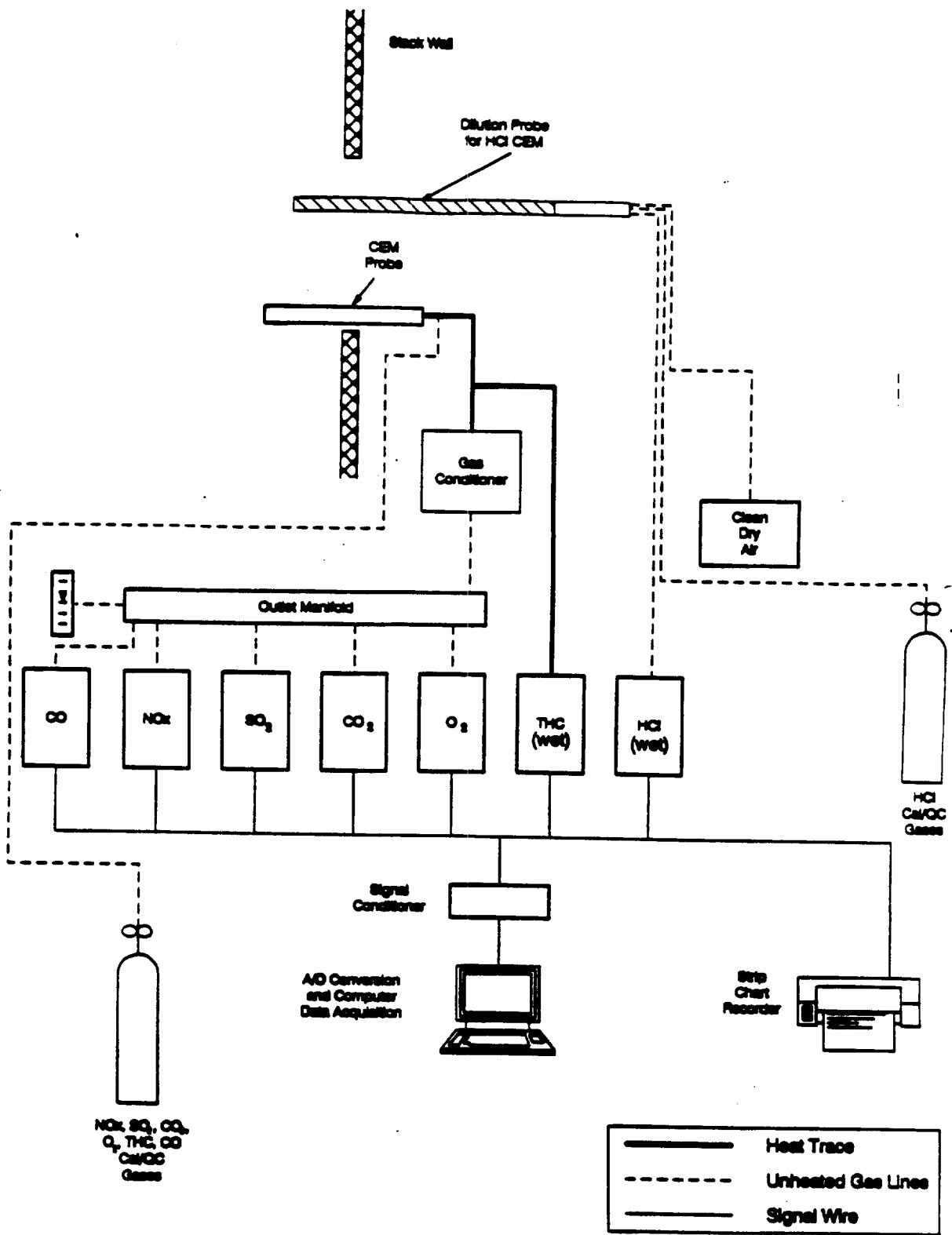



Figure 5-18. Schematic of CEM System

All heat trace lines contain three 3/8 inch Teflon® tubes. One tube carries the sample, one tube is used for calibration and QC gases, and the other is available as a backup. These gases can then be directed up to the sampling probe and through the entire sampling/conditioning system.

**5.6.1.3 Gas Conditioning.** Exemplar PEL 3 and PEL 4-Special gas conditioners are used to reduce the moisture content of the flue gas. The Exemplar systems use thermoelectric cooling plates to lower the temperature of the gas and condense any moisture in the sample. Condensate is immediately removed from the sample path by a dried sample slipstream that blows across the plates, greatly reducing the potential for sample bias. Additionally, the systems operate under positive pressure eliminating the possibility of a leak. The gas conditioner may be located in the CEM trailer or at the sampling location depending on site conditions.

**5.6.1.4 HCl CEM Sample System.** The HCl flue gas concentrations are monitored using a CEM analyzer as well as by manual test runs. The HCl CEM sampling system uses a GMD Model 797 dilution probe. This probe cannot be used at the expected flue gas temperature ranges (approximately 1600-1900°F). Therefore, a slip-stream of flue gas is extracted from the stack and allowed to cool to approximately 400 to 500°F as it passes through a length of smaller pipe (i.e., 1 inch ID). The dilution probe is placed in a sampling well in the slipstream pipe for HCl CEM gas extraction. A thermocouple is located adjacent to the probe to monitor gas temperatures (see Figure 5-16). A nominal dilution ratio of 200:1 is used.

## **5.6.2 CEM Principles of Operation**

**5.6.2.1 SO<sub>2</sub> Analysis.** The Western 721A SO<sub>2</sub> analyzer is essentially a continuous spectrophotometer in the ultraviolet (UV) range. The SO<sub>2</sub> selectively absorbs UV light at a wavelength of 202.5 nm. To take advantage of this property of SO<sub>2</sub>, the analyzer emits UV light at 202.5 nm and measures the absorbance (A) of the radiation through the sample cell by the decrease in intensity. Beer's law,  $A = abc$ , is used to convert the absorbance into SO<sub>2</sub> concentration ( $A$  = absorbance,  $a$  = absorbitivity,  $b$  = path length,  $c$  = concentration). The SO<sub>2</sub> measurements are performed using EPA Method 6C.

**5.6.2.2 NO<sub>x</sub> Analysis.** The principle of operation of this instrument is a chemiluminescent reaction in which ozone (O<sub>3</sub>) reacts with nitric oxide (NO) to form

oxygen ( $O_2$ ) and nitrogen dioxide ( $NO_2$ ). During this reaction, a photon is emitted which is detected by a photomultiplier tube. The instrument is capable of analyzing total oxides of nitrogen ( $NO + NO_2$ ) by thermally converting  $NO_2$  to  $NO$  in a separate reaction chamber prior to the photomultiplier tube, if desired. The  $NO_x$  measurements are performed using EPA Method 7E.

**5.6.2.3  $O_2$  Analysis.** Oxygen analysis is completed using one of the instruments discussed below.

The Thermox WDG III measures  $O_2$  using an electrochemical cell. Porous platinum electrodes are attached to the inside and outside of the cell which provide the instrument voltage response. Zirconium oxide contained in the cell conducts electrons when it is hot due to the mobility of  $O_2$  ions in its crystal structure. A difference in  $O_2$  concentration between the sample side of the cell and the reference (outside) side of the cell produces a voltage. This response voltage is proportional to the logarithm of the  $O_2$  concentration ratio. A linearizer circuit board is used to make the response linear. Reference gas is ambient air at 20.9 percent  $O_2$  by volume.

The Beckman 755  $O_2$  analyzer uses electron paramagnetic resonance to detect  $O_2$  molecules. Unlike most substances,  $O_2$  has a triplet electron ground state which leaves one electron unpaired, making it a paramagnetic molecule. This electron may have one of two spin quantum states ( $m_s = \pm 1/2$ ). By applying an alternating electromagnetic field of the proper frequency, the Beckman 755  $O_2$  analyzer induces resonance between the two spin quantum states. In effect, the  $O_2$  analyzer measures the electromagnetic energy absorbed by  $O_2$  molecules at the resonant frequency. Oxygen measurements are performed using EPA Method 3A.

**5.6.2.4  $CO_2$  Analysis.** Non-dispersive infrared (NDIR)  $CO_2$  analyzers emit a specific wavelength of infrared (IR) radiation through the sample cell which is selectively absorbed by  $CO_2$  molecules. The intensity of radiation which reaches the end of the sample cell is compared to the intensity of radiation through a  $CO_2$ -free reference cell. A reference cell is used to determine background absorbance which is subtracted from the sample absorbance. The detector uses two chambers filled with  $CO_2$  which are connected by a deflective metallic diaphragm. One side receives radiation from the sample cell and the other side receives radiation from the reference cell. Since more

radiation is absorbed in the sample cell than in the reference cell, less radiation reaches the sample side of the detector. This causes a deflection of the diaphragm due to increased heat from radiation absorption on the reference side. Deflection of the diaphragm creates an electrical potential which is proportional to absorbance. Absorbance is directly proportional to CO<sub>2</sub> concentration in the gas. Carbon dioxide measurements are performed using EPA Method 3A.

5.6.2.5 CO Analysis. Either a TECO Model 48 or a Model 48H analyzer will be used to monitor CO emissions. Both TECO analyzers measure CO using the same principle of operation as CO<sub>2</sub> analysis. The instruments are identical except that a different wavelength of infrared radiation is used; 5 nm is selective for CO. Carbon monoxide measurements are performed using EPA Method 10.

5.6.2.6 Total Hydrocarbon Analysis. Either a Beckman Model 400, 402 or 404 will be used to monitor Total Hydrocarbon (THC) emissions. By allowing the THC sample stream to bypass the gas conditioners, concentrations will be determined on a wet basis. All analyses employ Flame Ionization Detectors (FID). As the flue gas enters the detector the hydrocarbons are combusted in a hydrogen flame. The ions and electrons formed in the flame enter an electrode gap, decrease the gas resistance, and permit a current flow in an external circuit. The resulting current is proportional to the instantaneous concentration of the total hydrocarbons. This method is not selective between species. EPA Method 25A applies to the continuous measurement of total gaseous organic concentrations of primarily alkanes, alkenes, and/or arenes (aromatic hydrocarbons). The results are reported on a methane basis and methane is used as the calibration gas.

5.6.2.7 HCl CEM Analysis. HCl flue gas concentrations are continuously monitored using an NDIR/GFC instrument manufactured by Thermo Electron Corporation (TECO). Detection of HCl is achieved by alternately passing an infrared (IR) beam between reference HCl gas and reference HCl free gas contained in the filter wheel. The "chopped" beam passes through the sample cell to the detector. The difference in IR beam strength caused by the absorption of the IR beam is proportional to the HCl concentration.

### 5.6.3 CEM Calibration

All the CEM instruments are calibrated once during the test program (and linearized, if necessary) using a minimum of three certified calibration gases (zero and two upscale points). Radian performs the multipoint calibrations with four general categories of certified gases: zero gas (generally N<sub>2</sub>), a low scale gas concentration, a midrange concentration, and a high scale concentration (span gas). The criterion for acceptable linearity is a correlation coefficient (R<sup>2</sup>) of greater than or equal to 0.998, where the independent variable is cylinder gas concentration and the dependent variable is instrument response. If an instrument does not meet these requirements, it is linearized by adjusting potentiometers on the linearity card within the instrument or by other adjustments, if necessary.

The CEM analyzers are calibrated before and after each test run (test day) on a two point basis: zero gas (generally N<sub>2</sub>), and a high-range span gas. These calibrations are used to calculate response factors used for sample gas concentration determinations. Instrument drift as a percent of span is also determined using these calibrating for each test run.

After each initial calibration, midrange gases for all instruments are analyzed, with no adjustment permitted, as a quality control (QC) check. If the QC midrange gas concentration observed is within  $\pm 2$  percent of full scale, the calibration is accepted and the operator may begin sampling. If the QC check does not fulfill this requirement, another calibration is performed and linearization may be performed if deemed necessary. Calibration procedures are further detailed in the daily operating procedure (Section 5.6.5).

Table 5-10 lists the concentration of all calibration and QC gases to be used on this test program.

### 5.6.4 Data Acquisition

The data acquisition system used for AMI Central Carolina Hospital MWI test program consists of an Omega signal conditioner, a Tecmar A/D converter and a COMPAQ 286 computer. All instrument outputs are connected in parallel to stripchart recorders and the Omega signal conditioner. The stripchart recorders are a back-up system to the computer data acquisition system data. The signal conditioner adjusts the

TABLE 5-10. CEM OPERATING RANGES AND CALIBRATION GASES

| Analyte                | Gas Concentration                     |
|------------------------|---------------------------------------|
| <u>CO<sub>2</sub></u>  |                                       |
| Instrument Range       | Beckman 865 0-20%                     |
| Span Gas Value         | 18% N <sub>2</sub>                    |
| Zero Gas               | 10% N <sub>2</sub>                    |
| Midrange QC Gas Value  | 5%                                    |
| Low Range QC Gas Value |                                       |
| <u>CO - dry</u>        |                                       |
| Instrument Range       | TECO 48H 0-50,000 ppm                 |
| Span Gas Value         | 1000, 9000 or 19,000 ppm <sup>a</sup> |
| Zero Gas               | N <sub>2</sub>                        |
| Midrange QC Gas Value  | 1000 or 9000 ppm                      |
| Low Range QC Gas Value | 2100 ppm                              |
| <u>CO - wet</u>        |                                       |
| Instrument Range       | TECO 48 0-100, 0-200, 0-5000 ppm      |
| Span Gas Value         | 1000, 180 or 90 ppm <sup>a</sup>      |
| Zero Gas               | N <sub>2</sub>                        |
| Midrange QC Gas Value  | 180 ppm                               |
| Low Range QC Gas Value | 90 ppm                                |
| <u>O<sub>2</sub></u>   |                                       |
| Instrument Range       | Thermox WDG III 0-25%                 |
| Span Gas Value         | 20%                                   |
| Zero Gas               | 0.2% O <sub>2</sub>                   |
| Midrange QC Gas Value  | 10%                                   |
| Low Range QC Gas Value | 5%                                    |
| <u>SO<sub>2</sub></u>  |                                       |
| Instrument Range       | Western 721A 0-500 or 0-5000 ppm      |
| Span Gas Value         | 200 or 50 ppm                         |
| Zero Gas               | N <sub>2</sub>                        |
| Midrange QC Gas        | 100 ppm                               |
| Low Range QC Gas       | 30 ppm                                |

TABLE 5-10. CEM OPERATING RANGES AND CALIBRATION GASES, continued

| Analyte                | Gas Concentration  |
|------------------------|--------------------|
| <u>NO<sub>x</sub></u>  |                    |
| Instrument Range       | TECO 10AR          |
| Span Gas Value         | 0-250 ppm          |
| Zero Gas               | 200 ppm            |
| Midrange QC Gas Value  | N <sub>2</sub>     |
| Low Range QC Gas Value | 100 ppm            |
|                        | 50 ppm             |
| <u>THC</u>             |                    |
| Instrument Range       | Beckman 402        |
| ppm                    | 0-10, 0-50, 0-100  |
| Span Gas Value         | 100 ppm as methane |
| Zero Gas               | N <sub>2</sub>     |
| Midrange QC Gas Value  | 45 ppm as methane  |
| Low Range QC Gas Value | 25 ppm as methane  |
| <u>HCl</u>             |                    |
| Instrument Range       | TECO Model 15      |
| Span Gas Value         | 0-2000 ppm         |
| Zero Gas               | 1800 ppm           |
| Midrange QC Gas Value  | N <sub>2</sub>     |
| Low Range QC Gas Value | 900 ppm            |
|                        | 100 ppm            |

\* Several sets of calibration/QC gases were acquired in order to closely approximate stack gas concentrations.

voltage response range from the output range of the instrument (typically 0-100 mV or 0-10 mV) to 0-5 volts. The A/D converter then digitizes the analog inputs for use by the computer. A Radian computer program translates the digitized voltages into relevant concentrations in engineering units (ppmV, %V, etc.). The computer program has several modes of operation: calibration, data acquisition, data reduction, data view, data edit, and data import. The import function is used to combine other data files for comparison and correlation. On-line color graphics and data manipulation are included in the data acquisition portion of the program so that the operator and on-site engineers may monitor trends in the process.

#### 5.6.5 Daily Operating Procedure

The following is a detailed standard operating procedure for calibrating and operating the CEMS:

1. Turn on COMPAQ computer and EPSON printer, put printer on-line, and load the CEM.EXE program. Be sure that the CEM instruments have been on for at least 20 hours.
2. Synchronize watch with sample location leaders.
3. Turn on strip chart recorders (SCR) and make appropriate notes on charts and in logbook (write down all procedures and observations in logbook and on SCRs as the day progresses).
4. Turn on the gas conditioners and blow back compressor. Blow back the system.
5. Open all calibration gas cylinders so that they may be introduced to the instruments via control panel valves.
6. Perform daily pre-test leak check on CEMs by introducing ultra high purity nitrogen to the system. Zero all instruments except the Thermox O<sub>2</sub> analyzers. Make adjustments to the zero potentiometers as required to zero the instruments. Be sure to check and maintain all flows throughout calibration and operation.
7. Record the zero values in the computer calibration routine.
8. Introduce 0.2 percent O<sub>2</sub> to set the low scale response for the Thermox O<sub>2</sub> analyzers and repeat Step 7 for these instruments.
9. Introduce the mixed span gases for O<sub>2</sub>, CO<sub>2</sub>, and CO. Make adjustments as required to these instruments.

10. Enter these values in the computer calibration routine.
11. Introduce the NO<sub>x</sub> span gas.
12. Make adjustments to the NO<sub>x</sub> instruments as required and enter the value into the computer calibration routine.
13. Introduce the SO<sub>2</sub> span gas for the SO<sub>2</sub> analyzer, repeat Step 12 for the SO<sub>2</sub> analyzer. (Note that all calibration gases are passed through the entire sampling system.)
14. Switch the Western SO<sub>2</sub> analyzer range to 0-500 ppm introduce the span gas for this range and repeat Step 12 for this instrument.
15. Introduce the HCl span gas to the HCl dilution probe/CEM analyzer. Repeat Step 12 for this system.
16. Check the calibration table on the computer, and make a hardcopy. Put the computer in the standby mode.
17. Introduce QC gases to instruments in the same sequence as the calibration gases. Record three minutes of data for each, once the responses have stabilized. If the QC gas response is not within  $\pm 2$  percent of the instrument range the operator should recalibrate the instrument, or perform other corrective actions.
18. Begin sampling routine, with the computer on stand by.
19. Start the data acquisition system when signaled by radio that system is in stack.
20. Carefully check all flows and pressures during the operation of the instruments and watch for apparent problems in any of the instruments, such as unusual readings or unreasonable fluctuations. Check the gas conditioning system periodically and drain the traps.
21. Stop the data acquisition system at the end of the test when signaled.
22. Perform final leakcheck of system.
23. Perform the final calibration (Repeat steps 6-17) except make no adjustments to the system.
24. Check for drift on each channel.

## 5.7 VISIBLE EMISSIONS

The opacity of emissions are determined visually by a qualified observer following EPA Method 9. The observer is certified within 6 months before the test, as required by the method. Opacity observations are recorded to the nearest 5 percent at 15-second intervals. Twenty-four observations are recorded and averaged per each data set. Observation will continue throughout the 4-hour test run each day.

## 5.8 PROCESS SAMPLING PROCEDURE

Incinerator ash is composited each test day into a cleaned, 55 gallon plastic drum after initial cooling in 30 gallon cans that are used by the facility. After testing is completed for that day, approximately 1 gallon of ash is taken from the composited sample using a sample thief. This composite is then quartered. The quarters are sent to respective laboratories for analyses of LOI/carbon, metals, and CDD/CDF. The fourth quarter is archived or used as needed.

## 5.9 PARTICLE SIZE DISTRIBUTION SAMPLING METHODS

Results from the PSD tests characterized particulate mass into ranges separated by the PSD sampler's 50 percent effective cut points (D<sub>p50</sub>) for each stage. The D<sub>p50</sub> represents the aerodynamic diameter of a particle that has been collected by that respective PSD stage with 50 percent collection efficiency.

Particle size distribution measurements were obtained with Anderson Mark III in-stack cascade impactor employing a pre-separator. A schematic of the sampling train is shown in Figure 5-19. The impactor consists of eight stages plus a final filter. Each stage has a number of concentric round jets offset on each succeeding stage such that the one plate serves both as jet and impaction surface. The Anderson MK III is operated in the range from 0.3 to 0.7 acfm and the flue gas is sampled isokinetically (100  $\pm$  20 percent) with a recommended weight gain of 50 mg.

The impactor was prepared by loading the substrates into the impactor and recording the identification number and tare weight. The stage order was checked for correctness as the stages were assembled. The impinger train was prepared according to EPA Method 5. Then, the impactor and preseparator/nozzle were attached to the probe and the probe attached to the impinger train. Once assembled, the sampling train was leak checked at 15 in. Hg. The leakrate had to be below 0.02 cfm.

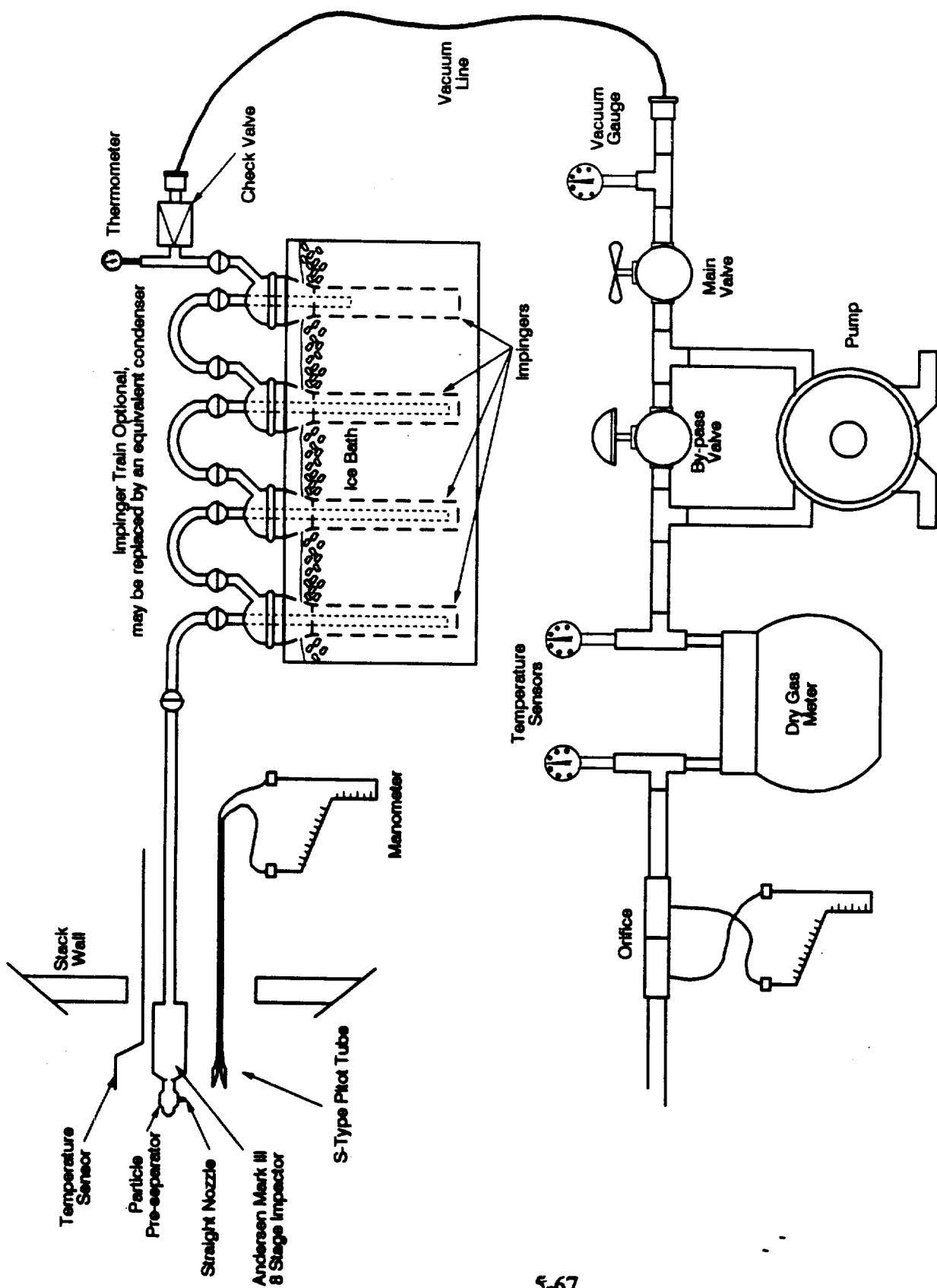



Figure 5-19. Anderson MK III In-Stack Impactor with Particle Pre-Separator Sampling Train

Prior to sampling, a preliminary velocity tranverse was conducted to determine a point of average velocity. The nozzle was then selected to ensure both isokinetic sampling as well as to give the desired particle separation. The impactor was preheated to approximately stack temperature prior to placing it inside the duct. Sampling was then conducted at a single point of average velocity at a fixed sampling rate. The sampling rate was not adjusted during the run.

After sampling was completed, the impactor was cooled and each stage was carefully recovered. Particles from the nozzle, pre-separator, and rinse were added to the first stage catch. Each substrate was examined for particle bounce, overloading, and re-entrainment. The substrates were weighted to a constant weight as detailed in Section 5.2.

## 6. QUALITY ASSURANCE/QUALITY CONTROL

Specific Quality Assurance/Quality Control (QA/QC) procedures were strictly adhered to during this test program to ensure the production of useful and valid data throughout the course of the project. A detailed presentation of QC procedures for all manual flue gas sampling, process sample collection, and CEM operations can be found in the Central Carolina Test Plan. This section will report the test program QA parameters so that the degree of data quality may be ascertained.

In summary, a high degree of data quality was maintained throughout the project. All sampling train leak checks met the QC criteria. Isokinetic sampling rates were kept within 10 percent of 100 percent for all the PM/Metals, CDD/CDF, and Microbial emission test runs. Metals analytical QA results revealed good spike recovery data. However, substantial field blank contamination of arsenic and nickel were present. Dioxins analytical procedures for Runs 2, 4, and 8 were modified because of unexpected heavy sample loading. This is further discussed in Section 6.4.1. The CEM data incorporated a variety of QC checks and QA procedures such as QC gas responses, daily drift, and others. The HCl CEM data agreed fairly well with manual HCl data. CEM quality assurance is presented in Section 6.5. Microbial indicator spore analyses were completed using a high number of enumerations per sample. Microbial Survivability Quality Assurance is further discussed in Sections 6.2.3, 6.3, and 6.4.4. Six Particle Size Distributions (PSD) tests were conducted and the following on-site recovery assessment, results from four test runs were reported.

Section 6.1 presents the QA/QC definitions and data quality objectives. Section 6.2 presents manual flue gas sampling and recovery QA parameters. Section 6.3 discusses the QC procedures for ash and pipe sampling and Section 6.4 presents method-specific analytical QA parameters. Section 6.5 discusses the CEM QA parameters. Section 6.6 presents a QA discussion on the PSD tests. Section 6.7 presents a discussion on data variability.

### 6.1 QA/QC DEFINITIONS AND OBJECTIVES

The overall QA/QC objective is to ensure precision, accuracy, completeness, comparability, and representativeness for each major measurement parameter called for

in this test program. For this test program, quality control and quality assurance can be defined as follows:

- **Quality Control**: The overall system of activities whose purpose is to provide a quality product or service. QC procedures are routinely followed to ensure high data quality.
- **Quality Assurance**: A system of activities whose purpose is to provide assurance that the overall quality control is being done effectively. Assessments can be made from QA parameters on what degree of data quality was achieved.
- **Data Quality**: The characteristics of a product (measurement data) that bear on its ability to satisfy a given purpose. These characteristics are defined as follows:
  - **Precision** - A measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions. Precision is best expressed in terms of the standard deviation and in this report will be expressed as the relative standard deviation or coefficient of variation.
  - **Accuracy** - The degree of agreement of a measurement (or an average of measurements of the same thing), X, with an accepted reference or true value, T, can be expressed as the difference between two values, X-T, the ratio X/T, or the difference as a percentage of the reference or true value, 100 (X-T)/T.
  - **Completeness** - A measure of the amount of valid data obtained from a measurement system compared with the amount that was expected to be obtained under prescribed test conditions.
  - **Comparability** - A measure of the confidence with which one data set can be compared with another.
  - **Representativeness** - The degree to which data accurately and precisely represent a characteristic of a population, variations of a parameter at a sampling point, or an environmental condition.

A summary of the estimated precision, accuracy, and completeness objectives is presented in Table 6-1.

TABLE 6-1. SUMMARY OF PRECISION, ACCURACY,  
AND COMPLETENESS OBJECTIVES<sup>a</sup>

| Parameter                     | Precision<br>(RSD) | Accuracy <sup>b</sup><br>(%) | Completeness <sup>c</sup><br>(%) |
|-------------------------------|--------------------|------------------------------|----------------------------------|
| Dioxins/Furans Emissions      | ± 40 <sup>d</sup>  | ± 50                         | 100                              |
| Metals Emissions              | ± 15 <sup>d</sup>  | ± 30                         | 100                              |
| Particulate Matter Emissions  | ± 12               | ± 10                         | 100                              |
| HCl/HBr/HF Concentrations     | ± 10 <sup>d</sup>  | ± 15                         | 95                               |
| Indicator Spore Emissions     | ND                 | ND                           | 100                              |
| CEM Concentrations            | ± 20               | ± 15                         | 95                               |
| Velocity/Volumetric Flow Rate | ± 6                | ± 10                         | 95                               |
| Fixed Gases/Molecular Weight  | ± 0.3%V            | ± 0.5%V                      | 100                              |
| Flue Gas Moisture             | ± 20               | ± 10                         | 95                               |
| Flue Gas Temperature          | ± 2°F              | ± 5°F                        | 100                              |

RSD = Relative Standard Deviation. Uses worst case assumption that variation amongst run results is not due to process variation.

ND = Not Determined at this time.

<sup>a</sup> Precision and accuracy estimated based on results of EPA collaborative tests. All values stated represent worst case values. All values are absolute percentages unless otherwise indicated.

<sup>b</sup> Relative error (%) derived from audit analyses, where:

$$\text{Percent Relative Error} = \frac{\text{Measured Value} - \text{Actual Value}}{\text{Actual Value}} \times 100$$

<sup>c</sup> Minimum valid data as a percentage of total tests conducted.

<sup>d</sup> Analytical phase only. Percent difference for duplicate analyses, where:

$$\text{Percent Relative Error} = \frac{\text{First Value} - \text{Second Value}}{0.5 (\text{First} + \text{Second Values})} \times 100$$

<sup>e</sup> Minimum requirements of EPA Method 6C, based on percent of full scale.

<sup>f</sup> No measureable bias has been detected in the available literature.

## 6.2 MANUAL FLUE GAS SAMPLING AND RECOVERY PARAMETERS

The following section will report method-specific sampling QA parameters so that insight can be gained at the quality of emissions test data produced from manual tests during the test program.

### 6.2.1 CDD/CDF Sampling Quality Assurance

Table 6-2 lists both the pre-test and post-test leak checks completed on the CDD/CDF sampling trains. The acceptance criterion is that all post-test leak checks must be less than 0.02 cfm or 4 percent of the average sampling rate (whichever is less). All CDD/CDF post-test leak checks met the acceptance criterion.

Table 6-3 presents the isokinetic sampling rates for CDD/CDF, PM/Metals, and Microbial Survivability sampling trains. The acceptance criterion is that the average sampling rate must be within 10 percent of 100 percent isokinetic. All CDD/CDF test runs deviated by no more than 6 percent of 100 percent, thereby meeting the isokinetic criterion.

All dry gas meters are fully calibrated every six months against an EPA approved intermediate standard. The full calibration factor or meter Y is used to correct actual metered sample to true sample volume. To verify the full calibration, a post-test calibration is performed. The full and post-test calibration coefficients must be within 5 percent to meet Radian's internal QA/QC acceptance criterion. As can be seen from Table 6-4, the post-test calibration factor for the meter box used for CDD/CDF was well within the 5 percent criterion of the full calibration factor at -0.08 percent.

Field blanks are collected to verify the absence of any sample contamination. The CDD/CDF sampling train was fully prepared, leakchecked, and then recovered. Table 6-5 compares the CDD/CDF analytical results for the MM5 field blank versus average MM5 catches for the test runs (toluene field blank results are presented in the following section). No 2378 TCDD was detected in the MM5 field blank. The confirmation analysis reported a much lower 2378 TCDF value than the full screen at 0.070 ng versus 0.35 ng. Other CDD/CDF congeners were detected in the MM5 field blank but at much lower amounts than in any of the test runs. Because the amount of contamination was so low and the consistency of contamination throughout the test

TABLE 6-2. LEAK CHECK RESULTS FOR CDD/CDF EMISSIONS TESTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | RUN NUMBER | PRE-TEST LEAK RATE (cfm) | MAXIMUM VACUUM DURING TEST | AVG. SAMPLE RATE (dscfm) | 4% SAMPLE RATE (dscfm) <sup>a</sup> | ACCEPTABLE LEAK LEVEL (acfm) | MEASUREMENTS POST-TEST LEAK RATE | INCHES FOR SECOND CHECK |
|----------|------------|--------------------------|----------------------------|--------------------------|-------------------------------------|------------------------------|----------------------------------|-------------------------|
| 09/20/90 | 1          | 0.011                    | 6                          | 0.43                     | 0.017                               | 0.017                        | 0.012 b                          | 10 b                    |
| 09/21/90 | 2          | 0.005                    | 6                          | 0.38                     | 0.015                               | 0.015                        | 0.012                            | 10                      |
| 09/22/90 | 3          | 0.009                    | 6                          | 0.42                     | 0.017                               | 0.017                        | 0.004                            | 8                       |
| 09/23/90 | 4          | 0.012                    | 15                         | 0.41                     | 0.016                               | 0.016                        | 0.015                            | 18                      |
| 09/24/90 | 5          | 0.010                    | 4                          | 0.42                     | 0.017                               | 0.017                        | 0.018                            | 9                       |
| 09/25/90 | 6          | 0.012                    | 6                          | 0.44                     | 0.018                               | 0.018                        | 0.008                            | 10                      |
| 09/26/90 | 7          | 0.014                    | 5                          | 0.42                     | 0.017                               | 0.017                        | 0.005                            | 10                      |
| 09/27/90 | 8          | 0.010                    | 8                          | 0.43                     | 0.017                               | 0.017                        | 0.008                            | 12                      |
| 09/28/90 | 9          | 0.012                    | 6                          | 0.44                     | 0.018                               | 0.018                        | 0.008                            | 10                      |
| 10/02/90 | 10         | 0.008                    | 6                          | 0.42                     | 0.017                               | 0.017                        | 0.008                            | 9                       |

<sup>a</sup> This value is in dry standard cubic feet per minute (dscfm) and may be slightly different than actual cfm (acf m).

<sup>b</sup> This value represents pre-port change leak change. Final value not recorded.

**TABLE 6-3. ISOKINETIC SAMPLING RATES FOR CDD/CDF, METALS, AND MICROORGANISMS TEST RUNS;  
CENTRAL CAROLINA HOSPITAL (1990)**

| DATE     | RUN NUMBER | CDD/CDF ISOKINETIC SAMPLE RATE (%) | TOXIC METALS ISOKINETIC SAMPLE RATE (%) | MICROORGANISMS ISOKINETIC SAMPLE RATE (%) |
|----------|------------|------------------------------------|-----------------------------------------|-------------------------------------------|
| 09/20/90 | 1A         | 101                                | 97                                      | 95.2                                      |
|          | 1B         |                                    |                                         | 96.9                                      |
| 09/21/90 | 2A         | 96.3                               | 99.1                                    | 93.1                                      |
|          | 2B         |                                    |                                         | 93.6                                      |
| 09/22/90 | 3A         | 95.7                               | 98.9                                    | 95.1                                      |
|          | 3B         |                                    |                                         | 96.1                                      |
| 09/23/90 | 4A         | 94.3                               | 97.3                                    | 94.8                                      |
|          | 4B         |                                    |                                         | 92.2                                      |
| 09/24/90 | 5A         | 95.4                               | 99.1                                    | 95                                        |
|          | 5B         |                                    |                                         | 92.2                                      |
| 09/25/90 | 6A         | 96.9                               | 97.9                                    | 95                                        |
|          | 6B         |                                    |                                         | 92.6                                      |
| 09/27/90 | 8A         | 97.6                               | 96.3                                    | 94.8                                      |
|          | 8B         |                                    |                                         | 95.2                                      |
| 09/28/90 | 9A         | 99.9                               | 97.8                                    | 93.8                                      |
|          | 9B         |                                    |                                         | 95.9                                      |
| 10/02/90 | 10A        | 97.2                               | 100                                     | 97.9                                      |
|          | 10B        |                                    |                                         | 100                                       |

TABLE 6-4. DRY GAS METER POST-TEST CALIBRATION RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| SAMPLING TRAIN          | METER BOX NUMBER | FULL CALIBRATION FACTOR | POST-TEST CALIBRATION FACTOR | POST-TEST DEVIATION (%) <sup>a</sup> |
|-------------------------|------------------|-------------------------|------------------------------|--------------------------------------|
| CDD/CDF                 | N-30             | 0.989                   | 0.9882                       | -0.08                                |
| PM/Metal                | N-31             | 0.9992                  | 0.9900                       | -0.92                                |
| Microorganisms (Runs A) | N-32             | 1.0002                  | 0.9971                       | -0.31                                |
| Microorganisms (Runs B) | 9                | 1.007                   | NC                           | NC                                   |
| Halogens                | V5               | 1.0104                  | NC                           | NC                                   |

<sup>a</sup>  $\frac{(\text{Post-Test}) - (\text{Full})}{(\text{Full})} \times 100$

NC = Not Conducted

TABLE 6-5. CDD/CDF FIELD BLANK RESULTS COMPARED  
TO AVERAGE RUN RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| FULL SCREEN ANALYSES          | MMS<br>FIELD<br>BLANK<br>(total ng) | MMS<br>CONDITION 1<br>AVERAGE<br>(total ng) | MMS<br>CONDITION 2<br>AVERAGE<br>(total ng) | MMS<br>CONDITION 3<br>AVERAGE<br>(total ng) |
|-------------------------------|-------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| <b>DIOXINS</b>                |                                     |                                             |                                             |                                             |
| 2378 TCDD                     | [0.060]                             | 0.2                                         | 32.4                                        | 1.1                                         |
| TOTAL TCDD                    | (0.070)                             | 64.6                                        | 707.0                                       | 72.2                                        |
| 12378 PCDD                    | [0.080]                             | 2.4                                         | 131.7                                       | 2.8                                         |
| TOTAL PCDD                    | 0.29                                | 57.0                                        | 1001.3                                      | 57.2                                        |
| 123478 HxCDD                  | [0.100]                             | 2.3                                         | 128.0                                       | 1.7                                         |
| 123678 HxCDD                  | [0.100]                             | 3.9                                         | 149.8                                       | 2.7                                         |
| 123789 HxCDD                  | (0.180)                             | 7.1                                         | 276.3                                       | 4.7                                         |
| TOTAL HxCDD                   | 0.85                                | 60.9                                        | 1702.3                                      | 41.3                                        |
| 1234678-HpCDD                 | 0.58                                | 23.6                                        | 701.7                                       | 14.1                                        |
| TOTAL HpCDD                   | 0.58                                | 51.9                                        | 1461.7                                      | 30.5                                        |
| Octa-CDD                      | (0.950)                             | 29.8                                        | 730.3                                       | 18.4                                        |
| <b>FURANS</b>                 |                                     |                                             |                                             |                                             |
| 2378 TCDF                     | 0.35                                | 48.1                                        | 715.7                                       | 35.1                                        |
| TOTAL TCDF                    | 0.63                                | 241.0                                       | 4716.7                                      | 237.3                                       |
| 12378 PCDF                    | 0.14                                | 6.1                                         | 416.3                                       | 6.1                                         |
| 23478 PCDF                    | 0.23                                | 15.1                                        | 513.3                                       | 9.8                                         |
| TOTAL PCDF                    | 1.9                                 | 189.2                                       | 7523.3                                      | 129.9                                       |
| 123478 HxCDF                  | (0.680)                             | 24.1                                        | 1328.3                                      | 12.7                                        |
| 123678 HxCDF                  | 0.38                                | 10.7                                        | 822.7                                       | 6.6                                         |
| 234678 HxCDF                  | (0.460)                             | 21.0                                        | 651.3                                       | 9.0                                         |
| 123789 HxCDF                  | [0.100]                             | 0.7                                         | 51.5                                        | 0.4                                         |
| TOTAL HxCDF                   | 0.72                                | 127.9                                       | 7373.3                                      | 69.1                                        |
| 1234678-HpCDF                 | 1.60                                | 38.3                                        | 1912.3                                      | 19.9                                        |
| 1234789-HpCDF                 | [0.200]                             | 6.4                                         | 243.7                                       | 2.8                                         |
| TOTAL HpCDF                   | 3.00                                | 79.0                                        | 3560.0                                      | 38.0                                        |
| Octa-CDF                      | 0.91                                | 41.8                                        | 799.0                                       | 17.3                                        |
| <b>CONFIRMATION ANALYSES:</b> |                                     |                                             |                                             |                                             |
| 2378-TCDD                     | [0.040]                             | 3.4                                         | 64.7                                        | 4.2                                         |
| 2378-TCDF                     | (0.070)                             | 4.1                                         | 111.5                                       | 5.2                                         |
| TOTAL TCDD                    | 0.05                                | 74.7                                        | 769.7                                       | 80.4                                        |
| TOTAL TCDF                    | 0.84                                | 214.9                                       | 3286.7                                      | 206.0                                       |

[ ] = minimum detection limit

( ) = estimated maximum possible concentration

program could not be determined, no field blank corrections were made on the emissions results. Analytical blank results are further discussed in Section 6.4.1.

**6.2.1.1 CDD/CDF Toluene Recovery Results.** As a newly developed step in EPA CDD/CDF sample recovery protocol, a final toluene rinse was completed on the sample train glassware. Following the test, the nozzle/probe, filter housing, and condenser coil were recovered using methylene chloride. This sample fraction was analyzed along with the filter and XAD trap to determine total CDD/CDF collected in the sample. A final toluene rinse of all the above components was completed and analyzed separately as a part of EPA Method 23 QA protocol. The following discussion and tables present those results.

Tables 6-6, 6-7, and 6-8 compares the toluene recovery amounts of CDD/CDF congeners to the respective MM5 amounts from full screen analyses for each run in Conditions 1, 2, and 3, respectively (all units in picograms). The ratio of the toluene catch to the MM5 expressed as a percentage ( $T/M \times 100$ ), is also given. The results reveal a relatively small amount of CDD/CDF isomers present in the toluene samples. For Condition 1 (Runs 1, 3, and 10),  $T/M$  ratios range from 0 to 6.63 percent (Octa-CDF - Run 10). Condition 2 values range from 0 to 0.111 percent. The Condition 2 toluene amounts are similar to Condition 1; however, the MM5 catches for Condition 2 are much higher resulting in overall lower  $T/M$  ratios. Condition 3  $T/M$  ratios ranged from 0 to 4.55 percent (Octa-CDD - Run 6).

The confirmation toluene analytical results are compared to the confirmation MM5 values in Table 6-9. The  $T/M$  ratios presented here are also very low.  $T/M$  values ranged from 0 to 1.03 percent (Run 10).

The toluene field blank analytical results are compared to the toluene test run analytical results in Table 6-10. The field blank appears to have higher concentrations of all congeners than the average run catches. The laboratory method blank results listed in Section 6.4 did not show any contamination. Therefore, the toluene test results may have been even lower than shown in the previous tables if this sample prep/recovery contamination as revealed by the field blank was consistent throughout the test program.

TABLE 6-6. CDD/CDF TOLUENE RINSE FULL SCREEN ANALYTICAL RESULTS COMPARED TO MMS  
ANALYTICAL RESULTS FOR CONDITION 1 (total pg); CENTRAL CAROLINA HOSPITAL (1990)

| CONCERNS      | RUN 1       |                 |                 | RUN 3       |                 |                 | RUN 10      |                 |                 | AVERAGE     |                 |                 |
|---------------|-------------|-----------------|-----------------|-------------|-----------------|-----------------|-------------|-----------------|-----------------|-------------|-----------------|-----------------|
|               | MMS<br>(pg) | TOLUENE<br>(pg) | TOLUENE<br>(pg) |
| DIOXINS       |             |                 |                 |             |                 |                 |             |                 |                 |             |                 |                 |
| 2378 TCDD     | 630         | [10.90]         | 0.000           | (1200.)     | [7.900]         | 0.000           | (370.0)     | [24.30]         | 0.000           | 733         | [14.367]        | 0.000           |
| Other TCDD    | 17,870      | [10.90]         | 0.000           | 156,000     | 235.0           | 0.151           | 19,200      | 97.1            | 0.506           | 64,357      | 166.1           | 0.258           |
| 12378 PCDD    | 1,500       | [11.10]         | 0.000           | 4,600       | (9,700)         | 0.211           | 1,200       | [48.30]         | 0.000           | 2,433       | 9.7             | 0.399           |
| Other PCDD    | 15,800      | 11.3            | 0.072           | 128,400     | 247.0           | 0.192           | 19,400      | 123.0           | 0.634           | 54,533      | 127.1           | 0.233           |
| 123478 HxCDD  | 980         | [13.30]         | 0.000           | 4,500       | (9,400)         | 0.209           | 1,400       | (45.40)         | 3,243           | 2,293       | 27.4            | 1.195           |
| 123678 HxCDD  | 1,500       | 7.80            | 0.520           | 7,300       | (9.70)          | 0.270           | 2,800       | (79.00)         | 2,821           | 3,867       | 35.5            | 0.918           |
| 123789 HxCDD  | 3,200       | [14.70]         | 0.000           | 14,000      | 25.0            | 0.179           | 4,200       | (85.40)         | 2,033           | 7,133       | 55.2            | 0.774           |
| Other HxCDD   | 14,820      | 0.40            | 0.003           | 101,200     | 193.0           | 0.191           | 26,800      | 295.0           | 1,101           | 47,607      | 162.8           | 0.342           |
| 1234678-HpCDD | 8,500       | 87.2            | 1.026           | 41,700      | 155.0           | 0.372           | 20,700      | 506.0           | 2,444           | 23,633      | 249.4           | 1.055           |
| Other HpCDD   | 10,200      | 88.8            | 0.871           | 51,300      | 189.0           | 0.368           | 23,300      | 453.0           | 1,944           | 28,267      | 243.6           | 0.862           |
| Octa-CDD      | 10,000      | 304.0           | 3.040           | 53,400      | 376.0           | 0.704           | 25,900      | (1130.)         | 4,363           | 29,767      | 603.3           | 2.027           |
| Total CDD     | 85,000      | 560             | 0.588           | 563,600     | 1,459           | 0.259           | 145,270     | 2,814           | 1,937           | 264,623     | 1,591           | 0.601           |
| FURANS        |             |                 |                 |             |                 |                 |             |                 |                 |             |                 |                 |
| 2378 TCDF     | 18,500      | 14.5            | 0.078           | 104,000     | 267.0           | 0.257           | 21,700      | 209.0           | 0.963           | 48,067      | 163.5           | 0.340           |
| Other TCDF    | 89,500      | 11.7            | 0.013           | 388,000     | 594.0           | 0.153           | 101,300     | 540.0           | 0.533           | 192,933     | 381.9           | 0.198           |
| 12378 PCDF    | 3,200       | [9,800]         | 0.000           | 11,300      | 28.0            | 0.248           | 3,900       | 51.1            | 1,310           | 6,133       | 39.6            | 0.645           |
| 23478 PCDF    | 6,100       | 9.50            | 0.156           | 29,700      | 71.0            | 0.239           | 9,400       | 138.0           | 1,468           | 15,067      | 72.8            | 0.483           |
| Other PCDF    | 68,100      | 24.5            | 0.036           | 358,000     | 659.0           | 0.184           | 77,800      | 860.9           | 1,107           | 167,967     | 514.8           | 0.306           |
| 123478 HxCDF  | 7,500       | 13.3            | 0.177           | 52,000      | 122.0           | 0.235           | 12,900      | 271.0           | 2,101           | 24,133      | 135.4           | 0.561           |
| 123678 HxCDF  | 3,900       | [9,300]         | 0.000           | 21,600      | (55.50)         | 0.257           | 6,600       | 128.0           | 1,939           | 10,700      | 91.8            | 0.857           |
| 234678 HxCDF  | 4,800       | [12.80]         | 0.000           | 44,800      | 104.0           | 0.232           | 13,300      | 252.0           | 1,895           | 20,967      | 178.0           | 0.849           |
| 123789 HxCDF  | 180         | [16.30]         | 0.000           | 1,300       | (25.10)         | 1,931           | 560         | [76.40]         | 0.000           | 680         | 25.1            | 3.690           |
| Other HxCDF   | 23,120      | 17.5            | 0.076           | 147,300     | 204.0           | 0.138           | 43,740      | 659.0           | 1,507           | 71,387      | 293.5           | 0.411           |
| 1234678-HpCDF | 9,600       | 27.2            | 0.283           | 81,300      | 241.0           | 0.296           | 24,100      | (685.0)         | 2,842           | 38,333      | 317.7           | 0.829           |
| 1234789-HpCDF | 1,200       | [25.50]         | 0.000           | 12,600      | 24.7            | 0.196           | 5,300       | (169.0)         | 3,189           | 6,367       | 96.9            | 1.521           |
| Other HpCDF   | 6,900       | 23.1            | 0.335           | 71,100      | 207.3           | 0.292           | 25,000      | 510.0           | 2,040           | 34,333      | 246.8           | 0.719           |
| Octa-CDF      | 5,800       | [71.10]         | 0.000           | 83,000      | 203.0           | 0.245           | 36,500      | 2420.0          | 6,630           | 41,767      | 1311.5          | 3.140           |
| Total CDF     | 248,400     | 141             | 0.057           | 1,406,000   | 2806            | 0.200           | 382,100     | 6,969           | 1,824           | 678,833     | 3,305           | 0.487           |
| Total CDD+CDF | 323,400     | 641             | 0.192           | 1,969,600   | 4264            | 0.217           | 527,370     | 9,783           | 1,855           | 943,457     | 4,306           | 0.519           |

[ ] = minimum detection limit (not used in the averages or summations)

( ) = estimated maximum possible concentration (included in averages and summations)

TABLE 6-7. CDD/CDF TOLUENE RINSE FULL SCREEN ANALYTICAL RESULTS COMPARED TO MMS  
ANALYTICAL RESULTS FOR CONDITION 2 (total pg); CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER             | RUN 2             |                 |                 | RUN 4             |                 |                 | RUN 8             |                 |                 | AVERAGE           |                 |                 |
|----------------------|-------------------|-----------------|-----------------|-------------------|-----------------|-----------------|-------------------|-----------------|-----------------|-------------------|-----------------|-----------------|
|                      | MMS<br>(pg)       | TOLUENE<br>(pg) | TOLUAMS<br>(pg) |
| <b>DIOXINS</b>       |                   |                 |                 |                   |                 |                 |                   |                 |                 |                   |                 |                 |
| 2378 TCDD            | 19,000            | [9,100]         | 0.000           | 53,100            | 4.6             | 0.009           | 25,200            | 18.6            | 0.074           | 32,433            | 11.6            | 0.036           |
| Other TCDD           | 446,000           | 19.9            | 0.004           | 996,000           | 0.0             | 0.000           | 660,000           | 497.4           | 0.075           | 700,667           | 258.7           | 0.037           |
| 12378 PCDD           | 59,000            | 16.4            | 0.028           | 208,000           | (22.30)         | 0.011           | 128,000           | 67.8            | 0.053           | 131,667           | 35.5            | 0.027           |
| Other PCDD           | 391,000           | 20.1            | 0.005           | 1,392,000         | 52.6            | 0.004           | 826,000           | 312.2           | 0.038           | 869,667           | 128.3           | 0.015           |
| 123478 HxCDD         | 56,100            | 16.4            | 0.029           | 179,000           | 25.5            | 0.014           | 149,000           | 54.9            | 0.037           | 128,033           | 32.3            | 0.025           |
| 123678 HxCDD         | 66,300            | 24.8            | 0.037           | 228,000           | 26.4            | 0.012           | 155,000           | 68.0            | 0.044           | 149,767           | 39.7            | 0.027           |
| 123789 HxCDD         | 118,000           | 40.6            | 0.034           | 433,000           | 49.4            | 0.011           | 278,000           | 125.0           | 0.045           | 276,333           | 71.7            | 0.026           |
| Other HxCDD          | 546,600           | 122.2           | 0.022           | 1,700,000         | 149.7           | 0.009           | 1,198,000         | 457.1           | 0.038           | 1,148,200         | 243.0           | 0.021           |
| 1234678-HpCDD        | 315,000           | (233.0)         | 0.074           | 928,000           | 210.0           | 0.023           | 862,000           | 398.0           | 0.046           | 701,667           | 280.3           | 0.040           |
| Other HpCDD          | 330,000           | 195.0           | 0.059           | 1,012,000         | 162.0           | 0.016           | 938,000           | 391.0           | 0.042           | 760,000           | 249.3           | 0.033           |
| Octa-CDD             | 409,000           | 454.0           | 0.111           | 702,000           | 216.0           | 0.031           | 1,080,000         | 574.0           | 0.053           | 730,333           | 414.7           | 0.057           |
| <b>Total CDD</b>     | <b>2,756,000</b>  | <b>1142</b>     | <b>0.041</b>    | <b>7,778,000</b>  | <b>919</b>      | <b>0.012</b>    | <b>6,274,000</b>  | <b>2964</b>     | <b>0.047</b>    | <b>5,602,667</b>  | <b>1675.0</b>   | <b>0.030</b>    |
| <b>FURANS</b>        |                   |                 |                 |                   |                 |                 |                   |                 |                 |                   |                 |                 |
| 2378 TCDF            | 409,000           | 57.7            | 0.014           | 1,130,000         | 107.0           | 0.009           | 608,000           | 491.0           | 0.081           | 715,667           | 218.6           | 0.031           |
| Other TCDF           | 2,171,000         | 185.3           | 0.009           | 6,810,000         | 386.0           | 0.006           | 3,022,000         | 2349.0          | 0.078           | 4,001,000         | 973.4           | 0.024           |
| 12378 PCDF           | 166,000           | 36.5            | 0.022           | 798,000           | 90.7            | 0.011           | 285,000           | 222.0           | 0.078           | 416,333           | 116.4           | 0.028           |
| 23478 PCDF           | 231,000           | 45.3            | 0.020           | 945,000           | 101.0           | 0.011           | 364,000           | 310.0           | 0.085           | 513,333           | 152.1           | 0.030           |
| Other PCDF           | 2,653,000         | 188.2           | 0.007           | 12,727,000        | 808.3           | 0.006           | 4,401,000         | 2328.0          | 0.057           | 6,593,667         | 1174.8          | 0.018           |
| 123478 HxCDF         | 495,000           | 134.0           | 0.027           | 2,300,000         | 251.0           | 0.011           | 1,190,000         | 571.0           | 0.048           | 1,328,333         | 318.7           | 0.024           |
| 12378 HxCDF          | 297,000           | 76.3            | 0.026           | 1,450,000         | 164.0           | 0.011           | 721,000           | 352.0           | 0.049           | 822,667           | 197.4           | 0.024           |
| 234678 HxCDF         | 291,000           | 82.5            | 0.028           | 1,030,000         | 130.0           | 0.013           | 633,000           | 267.0           | 0.042           | 651,333           | 159.8           | 0.025           |
| 123789 HxCDF         | 20,600            | [13.40]         | 0.000           | 90,100            | (24.00)         | 0.027           | 43,700            | 25.0            | 0.057           | 51,467            | 24.5            | 0.048           |
| Other HxCDF          | 1,696,400         | 219.2           | 0.013           | 7,779,900         | 615.0           | 0.008           | 4,082,300         | 1555.0          | 0.038           | 4,519,533         | 796.4           | 0.018           |
| 1234678-HpCDF        | 787,000           | 360.0           | 0.046           | 2,930,000         | 442.0           | 0.015           | 2,020,000         | 962.0           | 0.048           | 1,912,333         | 588.0           | 0.031           |
| 1234789-HpCDF        | 119,000           | 48.7            | 0.041           | 354,000           | 50.4            | 0.014           | 258,000           | 146.0           | 0.057           | 243,667           | 81.7            | 0.034           |
| Other HpCDF          | 634,000           | 186.3           | 0.029           | 2,056,000         | 308.6           | 0.015           | 1,522,000         | 502.0           | 0.033           | 1,404,000         | 332.3           | 0.024           |
| Octa-CDF             | 549,000           | 315.0           | 0.057           | 898,000           | 155.0           | 0.017           | 950,000           | 489.0           | 0.051           | 799,000           | 319.7           | 0.040           |
| <b>Total CDF</b>     | <b>10,519,000</b> | <b>1,935</b>    | <b>0.018</b>    | <b>41,298,000</b> | <b>3,633</b>    | <b>0.009</b>    | <b>20,100,000</b> | <b>10,769</b>   | <b>0.054</b>    | <b>23,972,333</b> | <b>5,446</b>    | <b>0.023</b>    |
| <b>Total CDD+CDF</b> | <b>13,275,000</b> | <b>3,077</b>    | <b>0.023</b>    | <b>49,076,000</b> | <b>4,352</b>    | <b>0.009</b>    | <b>26,374,000</b> | <b>13,733</b>   | <b>0.052</b>    | <b>29,575,000</b> | <b>7,121</b>    | <b>0.024</b>    |

[ ] = minimum detection limit (not used in the averages or summations)

( ) = estimated maximum possible concentration (included in averages and summations)

TABLE 6-8. CDD/CDF TOLUENE RINSE FULL SCREEN ANALYTICAL RESULTS COMPARED TO MMS  
ANALYTICAL RESULTS FOR CONDITION 3 (real pt); CENTRAL CAROLINA HOSPITAL (1990)

| CONCEN        | RUN 5        |                  |                 | RUN 6        |                  |                 | RUN 9        |                  |                 | AVERAGE      |                  |                 |
|---------------|--------------|------------------|-----------------|--------------|------------------|-----------------|--------------|------------------|-----------------|--------------|------------------|-----------------|
|               | MMS<br>(ppb) | TOLUENE<br>(ppb) | TOLMMS<br>(ppb) |
| DIOXINS       |              |                  |                 |              |                  |                 |              |                  |                 |              |                  |                 |
| 2378 TCDD     | 720          | [24.30]          | 0.000           | (220.0)      | [5.900]          | 0.000           | 2,500        | (3,300)          | 0.152           | 1,147        | 3.80             | 0.331           |
| Other TCDD    | 56,680       | [24.30]          | 0.000           | 11,200       | [5.900]          | 0.000           | 148,000      | [21.6]           | 0.000           | 71,980       | [17.3]           | 0.000           |
| 12378 PCDD    | 1,900        | [23.70]          | 0.000           | 690          | [7.200]          | 0.000           | 5,800        | 8.5              | 0.147           | 2,797        | 8.50             | 0.304           |
| Other PCDD    | 35,600       | [24.70]          | 0.061           | 11,510       | (22.70)          | 0.197           | 116,200      | 47.3             | 0.041           | 54,437       | 32.9             | 0.060           |
| 123478 HxCDD  | 1,200        | [20.80]          | 0.000           | 570          | [6.100]          | 0.000           | 3,400        | (8,200)          | 0.241           | 1,723        | 8.20             | 0.476           |
| 123678 HxCDD  | 1,800        | [20.30]          | 0.000           | 960          | [6.000]          | 0.000           | 5,200        | 10.2             | 0.196           | 2,653        | 10.2             | 0.384           |
| 123789 HxCDD  | 3,700        | [23.10]          | 0.000           | 1,800        | [6.800]          | 0.000           | 8,600        | 19.7             | 0.229           | 4,700        | 19.7             | 0.419           |
| Other HxCDD   | 23,700       | [21.30]          | 0.000           | 11,670       | [6.300]          | 0.000           | 61,400       | 77.1             | 0.126           | 32,257       | 77.1             | 0.239           |
| 1234678-HpCDD | 12,400       | [75.60]          | 0.000           | 6,300        | 29.0             | 0.460           | 23,600       | [70.30]          | 0.000           | 14,100       | 29.0             | 0.206           |
| Other HpCDD   | 13,400       | [75.60]          | 0.000           | 7,400        | 0.0              | 0.000           | 28,400       | 68.5             | 0.241           | 16,400       | 68.5             | 0.418           |
| Oca-CDD       | 17,200       | [280.0]          | 0.000           | 7,600        | 346.0            | 4,553           | 30,500       | 143.0            | 0.469           | 18,433       | 245              | 1.326           |
| Total CDD     | 168,300      | 24.7             | 0.017           | 59,920       | 398              | 0.664           | 431,100      | 386              | 0.900           | 219,773      | 271              | 0.123           |
| FURANS        |              |                  |                 |              |                  |                 |              |                  |                 |              |                  |                 |
| 2378 TCDF     | 28,000       | 20.9             | 0.075           | 8,000        | (7.300)          | 0.091           | 69,200       | 106.0            | 0.153           | 35,067       | 44.7             | 0.128           |
| Other TCDF    | 162,000      | 0.0              | 0.000           | 35,800       | (7.300)          | 0.020           | 408,800      | 337.0            | 0.082           | 202,200      | 172.2            | 0.085           |
| 12378 PCDF    | 4,100        | [21.20]          | 0.000           | 1,600        | [6.500]          | 0.000           | 12,500       | (34.30)          | 0.274           | 6,067        | 34.3             | 0.565           |
| 23478 PCDF    | 7,000        | [22.00]          | 0.000           | 2,800        | [6.700]          | 0.000           | 19,500       | 51.2             | 0.263           | 9,767        | 51.2             | 0.524           |
| Other PCDF    | 63,500       | (25.10)          | 0.040           | 24,700       | 9.8              | 0.040           | 254,000      | 457.8            | 0.180           | 114,067      | 164.2            | 0.144           |
| 123478 HxCDF  | 9,100        | [12.70]          | 0.000           | 4,800        | 6.7              | 0.140           | 24,200       | 66.3             | 0.274           | 12,700       | 36.5             | 0.287           |
| 123678 HxCDF  | 4,700        | [12.20]          | 0.000           | 2,400        | [4.000]          | 0.000           | 12,700       | 40.3             | 0.317           | 6,600        | 40.3             | 0.611           |
| 234678 HxCDF  | 6,500        | [16.80]          | 0.000           | 3,800        | [5.500]          | 0.000           | 16,800       | 42.9             | 0.255           | 9,033        | 42.9             | 0.475           |
| 123789 HxCDF  | 390          | [21.50]          | 0.000           | 180          | [7.000]          | 0.000           | 820          | [4,000]          | 0.000           | 443          | [10.833]         | 0.000           |
| Other HxCDF   | 26,670       | (27.20)          | 0.102           | 13,720       | 1.3              | 0.009           | 80,480       | 130.5            | 0.162           | 40,290       | 53.0             | 0.132           |
| 1234678-HpCDF | 17,800       | 32.9             | 0.185           | 8,500        | 15.4             | 0.181           | 33,500       | 95.3             | 0.284           | 19,933       | 47.9             | 0.240           |
| 1234789-HpCDF | 2,300        | [31.50]          | 0.000           | 1,700        | [9.500]          | 0.000           | 4,400        | 13.7             | 0.311           | 2,800        | 13.7             | 0.489           |
| Other HpCDF   | 13,300       | 8.2              | 0.062           | 6,900        | 3.8              | 0.055           | 25,700       | 71.0             | 0.276           | 15,300       | 27.7             | 0.181           |
| Oca-CDF       | 12,000       | [237.0]          | 0.000           | 13,400       | (39.20)          | 0.293           | 26,500       | 75.3             | 0.284           | 17,300       | 57.3             | 0.331           |
| Total CDF     | 357,300      | 114              | 0.032           | 128,300      | 90.8             | 0.071           | 989,100      | 1522             | 0.154           | 491,567      | 576              | 0.117           |
| Total CDD+CDF | 525,600      | 143              | 0.027           | 188,220      | 489              | 0.260           | 1,420,200    | 1908             | 0.134           | 711,340      | 846              | 0.119           |

1) = minimum detection limit (not used in the averages or summations)

( ) = estimated maximum possible concentration (included in averages and summations)

TABLE 6-9. CDD/CDF TOLUENE RINSE CONFIRMATION ANALYTICAL RESULTS  
COMPARED TO MMS ANALYTICAL RESULTS FOR ALL CONDITIONS;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER   | RUN 1       |                 |                | RUN 3       |                 |                | RUN 10      |                 |                | AVERAGE     |                 |                |
|------------|-------------|-----------------|----------------|-------------|-----------------|----------------|-------------|-----------------|----------------|-------------|-----------------|----------------|
|            | MMS<br>(pg) | TOLUENE<br>(pg) | TOL/MMS<br>(%) |
| DIOXINS    |             |                 |                |             |                 |                |             |                 |                |             |                 |                |
| 2378 TCDD  | 1,600       | [24.40]         | 0.000          | 7,500       | 9.0             | 0.120          | 1,100       | [6.300]         | 0.000          | 3,400       | 9.0             | 0.265          |
| Other TCDD | 18,600      | [24.40]         | 0.000          | 176,500     | 211.0           | 0.120          | 18,800      | 97.1            | 0.516          | 71,300      | 154.1           | 0.216          |
| FURANS     |             |                 |                |             |                 |                |             |                 |                |             |                 |                |
| 2378 TCDF  | 2,100       | [9.100]         | 0.000          | 7,800       | (16.40)         | 0.210          | 2,400       | 24.8            | 1.033          | 4,100       | 20.6            | 0.502          |
| Other TCDF | 71,500      | 14.5            | 0.020          | 473,200     | 904.0           | 0.191          | 87,600      | 819.2           | 0.935          | 210,767     | 579.2           | 0.275          |
| CONGENER   | RUN 2       |                 |                | RUN 4       |                 |                | RUN 8       |                 |                | AVERAGE     |                 |                |
|            | MMS<br>(pg) | TOLUENE<br>(pg) | TOL/MMS<br>(%) |
| DIOXINS    |             |                 |                |             |                 |                |             |                 |                |             |                 |                |
| 2378 TCDD  | 32,700      | [20.80]         | 0.000          | 105,000     | 15.0            | 0.014          | 56,300      | (47.10)         | 0.084          | 64,667      | 31.1            | 0.048          |
| Other TCDD | 449,300     | (97.70)         | 0.022          | 1,005,000   | 13.4            | 0.001          | 660,700     | 294.0           | 0.044          | 705,000     | 135.0           | 0.019          |
| FURANS     |             |                 |                |             |                 |                |             |                 |                |             |                 |                |
| 2378 TCDF  | 57,800      | 13.4            | 0.023          | 196,000     | (23.10)         | 0.012          | 80,800      | (90.30)         | 0.112          | 111,533     | 42.3            | 0.038          |
| Other TCDF | 1,722,200   | 233.6           | 0.014          | 5,514,000   | 393.0           | 0.007          | 2,289,200   | 2750.0          | 0.120          | 3,175,133   | 1125.5          | 0.035          |
| CONGENER   | RUN 5       |                 |                | RUN 6       |                 |                | RUN 9       |                 |                | AVERAGE     |                 |                |
|            | MMS<br>(pg) | TOLUENE<br>(pg) | TOL/MMS<br>(%) |
| DIOXINS    |             |                 |                |             |                 |                |             |                 |                |             |                 |                |
| 2378 TCDD  | 2,900       | 28.8            | 0.993          | 720         | [9.700]         | 0              | 9,100       | [21.60]         | 0              | 4,240       | 28.8            | 0.679          |
| Other TCDD | 56,300      | 0               | 0.000          | 11,280      | [9.700]         | 0              | 160,900     | [21.60]         | 0              | 76,160      | [15.7]          | 0.000          |
| FURANS     |             |                 |                |             |                 |                |             |                 |                |             |                 |                |
| 2378 TCDF  | 3,400       | 17.9            | 0.526          | 860         | [5.300]         | 0              | 11,400      | (20.20)         | 0.177          | 5,220       | 19.1            | 0.365          |
| Other TCDF | 128,600     | 0               | 0.000          | 29,040      | [5.300]         | 0              | 444,600     | 340             | 0.076          | 200,747     | 340             | 0.169          |

[ ] = minimum detection limit. (not used in the averages or summations)

( ) = estimated maximum possible concentration (included in averages and summations)

TABLE 6-10. CDD/CDF TOLUENE FIELD BLANK RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| FULL SCREEN ANALYSES          | TOLUENE<br>FIELD<br>BLANK<br>(total pg) | TOLUENE<br>COND 1<br>AVG<br>(total pg) | TOLUENE<br>COND 2<br>AVG<br>(total pg) | TOLUENE<br>COND 3<br>AVG<br>(total pg) |
|-------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| <b>DIOXINS</b>                |                                         |                                        |                                        |                                        |
| 2378 TCDD                     | 10.0                                    | 0.0                                    | 7.7                                    | 1.3                                    |
| TOTAL TCDD                    | 245.0                                   | 102.2                                  | 180.2                                  | 5.7                                    |
| 12378 PCDD                    | 53.0                                    | 3.2                                    | 35.5                                   | 2.8                                    |
| TOTAL PCDD                    | 360.0                                   | 127.1                                  | 156.4                                  | 35.7                                   |
| 123478 HxCDD                  | 60.0                                    | 18.3                                   | 32.3                                   | 2.7                                    |
| 123678 HxCDD                  | 82.2                                    | 35.5                                   | 39.7                                   | 3.4                                    |
| 123789 HxCDD                  | 175.0                                   | 36.8                                   | 71.7                                   | 6.6                                    |
| TOTAL HxCDD                   | 895.0                                   | 173.7                                  | 386.7                                  | 35.7                                   |
| 1234678-HpCDD                 | 618.0                                   | 249.4                                  | 280.3                                  | 9.7                                    |
| TOTAL HpCDD                   | 1140.0                                  | 493.0                                  | 452.0                                  | 32.5                                   |
| Octa-CDD                      | 887.0                                   | 603.3                                  | 414.7                                  | 163.0                                  |
| <b>FURANS</b>                 |                                         |                                        |                                        |                                        |
| 2378 TCDF                     | 337.0                                   | 163.5                                  | 218.6                                  | 44.7                                   |
| TOTAL TCDF                    | 1430.0                                  | 545.4                                  | 1192.0                                 | 157.1                                  |
| 12378 PCDF                    | 149.0                                   | 26.4                                   | 116.4                                  | 11.4                                   |
| 23478 PCDF                    | 289.0                                   | 72.8                                   | 152.1                                  | 17.1                                   |
| TOTAL PCDF                    | 2550.0                                  | 614.0                                  | 1443.3                                 | 172.9                                  |
| 123478 HxCDF                  | 544.0                                   | 135.4                                  | 318.7                                  | 24.3                                   |
| 123678 HxCDF                  | 317.0                                   | 61.2                                   | 197.4                                  | 13.4                                   |
| 234678 HxCDF                  | 366.0                                   | 118.7                                  | 159.8                                  | 14.3                                   |
| 123789 HxCDF                  | 27.2                                    | 33.8                                   | 16.3                                   | 0.0                                    |
| TOTAL HxCDF                   | 2450.0                                  | 590.3                                  | 1480.7                                 | 105.1                                  |
| 1234678-HpCDF                 | 1210.0                                  | 317.7                                  | 588.0                                  | 47.9                                   |
| 1234789-HpCDF                 | (219.0)                                 | 64.6                                   | 81.7                                   | 4.6                                    |
| TOTAL HpCDF                   | 2160.0                                  | 344.4                                  | 1002.0                                 | 80.1                                   |
| Octa-CDF                      | 1380.0                                  | 874.3                                  | 319.7                                  | 38.2                                   |
| <b>CONFIRMATION ANALYSES:</b> |                                         |                                        |                                        |                                        |
| 2378-TCDD                     | (24.10)                                 | 4.5                                    | 20.7                                   | 0.0                                    |
| 2378-TCDF                     | 46.20                                   | 8.2                                    | 42.3                                   | 10.1                                   |
| TOTAL TCDD                    | 165.00                                  | 110.0                                  | 140.0                                  | 0.0                                    |
| TOTAL TCDF                    | 1080.00                                 | 459.3                                  | 1130.0                                 | 170.0                                  |

[ ] = minimum detection limit

( ) = estimated maximum possible concentration

### **6.2.2 PM/Metals Sampling Quality Assurance**

Table 6-11 presents the leak check results for the PM/Metals. All post-test leak checks met the "0.02 cfm or 4 percent of the sample rate" acceptance criterion.

The isokinetic sampling rates for the PM/Metals trains are listed in Table 6-3. All isokinetic values were within 4 percent of 100 percent, thereby meeting the  $\pm 10$  percent criterion.

The post-test dry gas meter calibration check for box number N-31 used for PM/Metals sampling is shown in Table 6-4. The results of -0.92 percent deviation from the full calibration value is well within the 5 percent acceptance criterion.

Table 6-12 presents the results from the metals field blank analysis compared to the average values from the test runs. No metals were detected in the back half fractions (impingers 1,2 and impingers 3,4) except for chromium. Front half field blank results show detections of arsenic, barium, cadmium, chromium, lead, and nickel. Only nickel, chromium, and arsenic field blank amounts are greater than  $\sim 4$  percent of any of the average run amounts. Arsenic field blank results show the highest relative contamination at  $11.4 \mu\text{g}$  which ranges from 21 to 50 percent of the front half run catches. No arsenic was detected in the field blank back half fraction.

### **6.2.3 Microbial Survivability in Emissions Quality Assurance**

Table 6-13 presents the leak check results for the Microbial Survivability in emissions test runs. All leak checks met the "0.02 cfm or 4 percent of sample rate" acceptance criterion.

Microbial emission testing isokinetic results are presented in Table 6-3. All 18 test runs met the isokinetic criterion of  $\pm 10$  percent of 100 percent.

The microbial emissions field blank results are shown in Table 38a. No spores were detected in the 18 enumeration repetitions.

The post-test dry gas meter calibration check for the microbial emissions dry gas meter is shown in Table 6-4. Post-test calibration factors for the "A" runs were within the 5 percent acceptance criterion at -0.31 percent. No post-test calibration was performed on meter box 9 which was used for the "B" runs.

TABLE 6-11. LEAK CHECK RESULTS FOR TOXIC METALS;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | RUN NUMBER | PRELIMINARY LEAK RATE (cfm) | MAXIMUM VACUUM DURING TEST | AVG. SAMPLE RATE (cfm) * | 4% SAMPLE RATE (cfm) | ACCEPTABLE LEAK LEVEL (cfm) | MEASUREMENT POST-TEST LEAK RATE | INCHES FOR SEC. CHK. |
|----------|------------|-----------------------------|----------------------------|--------------------------|----------------------|-----------------------------|---------------------------------|----------------------|
| 09/20/90 | 1          | 0.009                       | 4                          | 0.42                     | 0.017                | 0.017                       | 0.005                           | 9                    |
| 09/21/90 | 2          | 0.011                       | 4                          | 0.39                     | 0.016                | 0.016                       | 0.010                           | 10                   |
| 09/22/90 | 3          | 0.008                       | 2                          | 0.39                     | 0.016                | 0.016                       | 0.006                           | 10                   |
| 09/23/90 | 4          | 0.006                       | 13                         | 0.41                     | 0.016                | 0.016                       | 0.018                           | 17                   |
| 09/24/90 | 5          | 0.004                       | 4                          | 0.43                     | 0.017                | 0.017                       | 0.006                           | 10                   |
| 09/25/90 | 6          | 0.004                       | 2                          | 0.41                     | 0.016                | 0.016                       | 0.003                           | 8                    |
| 09/26/90 | 7          | 0.006                       | 4                          | 0.41                     | 0.016                | 0.016                       | 0.003                           | 7                    |
| 09/27/90 | 8          | 0.010                       | 5                          | 0.42                     | 0.017                | 0.017                       | 0.004                           | 10                   |
| 09/28/90 | 9          | 0.005                       | 4                          | 0.45                     | 0.018                | 0.018                       | 0.006                           | 11                   |
| 10/02/90 | 10         | 0.004                       | 3                          | 0.40                     | 0.016                | 0.016                       | 0.006                           | 7                    |

\* This value is in dry standard cubic feet per minute (cfm) and may be slightly different than actual cfm (acf m).

TABLE 6-12. METALS FIELD BLANK RESULTS COMPARED TO AVERAGE AMOUNTS COLLECTED DURING THE TEST RUNS;  
CENTRAL CAROLINA HOSPITAL (1990)

| METAL     | FIELD BLANK (ug)    |                    |      | CONDITION 1 (ug) |           |      | CONDITION 2 (ug) |           |      | CONDITION 3 (ug) |           |      |
|-----------|---------------------|--------------------|------|------------------|-----------|------|------------------|-----------|------|------------------|-----------|------|
|           | FRONT IMPINGERS     | IMPINGERS          | HALF | FRONT IMPINGERS  | IMPINGERS | HALF | FRONT IMPINGERS  | IMPINGERS | HALF | FRONT IMPINGERS  | IMPINGERS | HALF |
| Antimony  | (99.5) <sup>a</sup> | [7.3] <sup>b</sup> | 1.2  | 1520.33          | 2254.67   | 1.2  | 1323.33          | 3160.00   | 1.2  | 1420.67          | 2287.33   | 1.2  |
| Arsenic   | 11.7                | [0.46]             |      | 29.17            | 4.78      |      | 55.93            | 15.04     |      | 23.37            | 11.83     |      |
| Berium    | 22.5                | [0.23]             |      | 695.67           | 33.57     |      | 1643.33          | 69.27     |      | 581.33           | 31.23     |      |
| Beryllium | [0.50]              | [0.23]             |      | 0.00             | 0.00      |      | 0.00             | 0.00      |      | 0.92             | 0.00      |      |
| Cadmium   | 17.0                | [0.57]             |      | 833.67           | 0.00      |      | 1082.67          | 0.00      |      | 1196.67          | 0.00      |      |
| Chromium  | 16.0 <sup>c</sup>   | (1.25)             |      | 92.27            | 5.79      |      | 87.67            | 7.22      |      | 50.27            | 5.93      |      |
| Lead      | 32.0                | [3.4]              |      | 13946.67         | 1.26      |      | 17833.33         | 1.53      |      | 10670.00         | 0.63      |      |
| Mercury   | [2.4]               | [6.1]              |      | 19.40            | 507.00    | 1.47 | 62.13            | 1214.00   | 5.59 | 369.33           | 4469.00   |      |
| Nickel    | 44.0                | [2.3]              |      | 41.43            | 1.03      |      | 21.43            | 0.00      |      | 18.43            | 0.78      |      |
| Silver    | [8.2]               | [3.8]              |      | 0.00             | 23.64     |      | 0.00             | 48.00     | 0.00 | 0.00             | 21.70     |      |
| Thallium  | [14]                | [6.2]              |      | 338.33           | 0.00      |      | 339.00           | 5.33      |      | 779.33           | 0.00      |      |

<sup>a</sup> Values enclosed in parenthesis represent estimates as they are less than five times the detection limit.

<sup>b</sup> Values enclosed in brackets represent minimum detection limits for elements not detected in the samples.

<sup>c</sup> Impingers 3 and 4 only sample fractions analyzed for mercury content.

TABLE 6-13. LEAK CHECK RESULTS FOR MICROBIAL SURVIVABILITY IN EMISSIONS SAMPLING RUNS;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | RUN NUMBER | PRE-TEST LEAK RATE (scfm) | MAXIMUM VACUUM DURING TEST | Avg. SAMPLE RATE (scfm) | 4% SAMPLE RATE (scfm) * | ACCEPTABLE LEAK LEVEL (scfm) | MEASUREMENT POST-TEST LEAK RATE | INCHES POF SEC. CHK. |
|----------|------------|---------------------------|----------------------------|-------------------------|-------------------------|------------------------------|---------------------------------|----------------------|
| 09/20/90 | 1A         | 0.002                     | 2.7                        | 0.59                    | 0.024                   | 0.02                         | 0.003                           | 5                    |
|          | 1B         | 0.008                     | 3                          | 0.60                    | 0.024                   | 0.02                         | 0.003                           | 6                    |
| 09/21/90 | 2A         | 0.004                     | 19                         | 0.59                    | 0.024                   | 0.02                         | 0.008                           | 28                   |
|          | 2B         | 0.006                     | 6                          | 0.54                    | 0.022                   | 0.02                         | 0.006                           | 10                   |
| 09/22/90 | 3A         | 0.004                     | 4.5                        | 0.59                    | 0.024                   | 0.02                         | 0.001                           | 6                    |
|          | 3B         | 0.005                     | 2                          | 0.60                    | 0.024                   | 0.02                         | 0.003                           | 6                    |
| 09/23/90 | 4A         | 0.004                     | 9                          | 0.55                    | 0.022                   | 0.02                         | 0.005                           | 8                    |
|          | 4B         | 0.006                     | 5                          | 0.57                    | 0.023                   | 0.02                         | NR                              | 7                    |
| 09/24/90 | 5A         | 0.006                     | 4.5                        | 0.58                    | 0.023                   | 0.02                         | 0.005                           | 9                    |
|          | 5B         | 0.006                     | 3                          | 0.50                    | 0.02                    | 0.02                         | 0.005                           | 9                    |
| 09/25/90 | 6A         | 0.003                     | 5                          | 0.65                    | 0.026                   | 0.02                         | 0.003                           | 8                    |
|          | 6B         | 0.004                     | 3                          | 0.62                    | 0.025                   | 0.02                         | 0.008                           | 9                    |
| 09/27/90 | 8A         | 0.001                     | 11.5                       | 0.56                    | 0.022                   | 0.02                         | 0.006                           | 15                   |
|          | 8B         | 0.008                     | 14                         | 0.56                    | 0.022                   | 0.02                         | 0.01                            | 18                   |
| 09/28/90 | 9A         | 0.003                     | 4                          | 0.61                    | 0.024                   | 0.02                         | 0.006                           | 9                    |
|          | 9B         | 0.008                     | 1                          | 0.59                    | 0.024                   | 0.02                         | 0.008                           | 5                    |
| 10/02/90 | 10A        | 0.012                     | 4.5                        | 0.61                    | 0.024                   | 0.02                         | 0.014                           | 7                    |
|          | 10B        | 0.004                     | 1                          | 0.59                    | 0.024                   | 0.02                         | 0.008                           | 3                    |

\* This value is in dry standard cubic feet per minute (scfm) and may be slightly different than actual cfm (acf m).

NR = Data Not Recorded

#### 6.2.4 Halogen Flue Gas Sampling Quality Assurance

Halogen flue gas concentration tests did not use an isokinetic sampling method. A constant flow of flue gas was extracted from the stack through a heated 3 foot quartz probe. The sample stream was bubbled through a series of impinger collection solutions and sent to the laboratory for analysis of Cl<sup>-</sup>, F<sup>-</sup>, and Br<sup>-</sup>. A slight modification to the method (EPA Method 26) was incorporated into the test scheme by placing a small amount of quartz wool into the upstream side of the HCl filter housing.

Leak checks were completed before and after each halogen test run. They were conducted by establishing approximately 10 inches of vacuum on the train, plugging the end of the probe, turning off the flow, and checking for any detectable vacuum loss over a 30-second period. If a leak was observed in the system, the run was invalidated. (There was no quantitation of leak rate.) All halogen test results had sample trains which met the post-test leak check criterion.

Halogen field blank results are shown in Table 6-14. A small amount of HCl was detected in the field blanks (0.245 and 0.25 mg for FB-A and FB-B). These amounts only represent a maximum of 3 percent of the lowest run average amount.

#### 6.3 QC PROCEDURES FOR ASH AND PIPE SAMPLING

As stated in Section 5.3, the incinerator waste charges were spiked with B. stearothermophilus in both wet and dry forms. Solutions of B. stearothermophilus (wet spores) were spiked to the incinerator to coincide with simultaneous emissions testing and daily ash sampling. Assessments of B. stearothermophilus survivability could then be made. A pre-aliquoted stock solution of wet spores of approximately 500 ml was deposited onto paper waste material and placed in a new, clean plastic garbage bags for each spike. This package was then added to the normal waste loads at precise spiking times. Freeze-dried quantities of B. stearothermophilus (dry spores) were placed in sealed pipes (See Figure 5-12) to determine the viability of "thermally shaded" microbial matter. Two pipes (one large and one small) were placed into the charging bin three times daily.

For both wet and dry spore spiking procedures, only pre-cleaned/disinfected materials were used for handling, application, and transport. The wet spore aliquots were divided and sealed at the manufacturer. This prevented any losses of material

TABLE 6-14. HALOGEN FIELD BLANK RESULTS COMPARED TO RUN RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| ANALYTE | FIELD<br>BLANK A<br>(total mg) | FIELD<br>BLANK B<br>(total mg) | CONDITION 1<br>AVERAGE<br>(total mg) | CONDITION 2<br>AVERAGE<br>(total mg) | CONDITION 3<br>AVERAGE<br>(total mg) |
|---------|--------------------------------|--------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| HCl     | 0.245                          | 0.250                          | 7.31                                 | 105                                  | 7.85                                 |
| HF      | [0.042]                        | [0.042]                        | 0.19                                 | 0.88                                 | 0.13                                 |
| HBr     | (0.0637)                       | [0.013]                        | 0.08                                 | 0.21                                 | 0.07                                 |

a Values enclosed in brackets represent minimum detection limits for compounds not detected in the samples.

( ) Denotes estimate as value is less than 5 times detection limit.

during shipment or upon application. (The empty solution container was also placed in the spiked waste charge.) The spiked charge was tied closed and deposited upright into the incinerator. Personnel handling the spiking material used disposable plastic gloves to prevent any cross-contamination.

The inner containers for the pipe samples were acid washed and alcohol disinfected. These were then placed in clean baggies awaiting the dry spore charge. The dry spore was loaded into the pipe container on the same day as it was spiked. The dry spore material was received from the manufacturer in seal, glass vials. This allowed for easy and complete transfer of all the spore material to the inner container.

In conjunction with the wet spore/microbial survivability tests, incinerator ash was collected before each test day (from the previous test run). The ash was also analyzed for metals, CDD/CDF, carbon, loss on ignition, moisture content, as well as indicator spores. All of the ash was completely removed from the incinerator bed every morning, passed through a 1-inch mesh stainless steel (SS) sieve and placed in a large 55-gallon drum. Using a sample "thief", four approximately 500 gram samples were taken and placed in pre-cleaned, amber glass bottles. All material used for sampling, sample compositing, and sample aliquoting was cleaned to prevent any sample contamination.

During the ash removal process, the pipe samples were also recovered. The outer containers were allowed to cool and then opened. The inner container was removed and placed in a clean, dry Ziplock baggie, labeled and kept in a clean environment prior to shipment to the laboratory. Further Microbial QA information is presented in Section 6.4.4.

#### 6.4 ANALYTICAL QUALITY ASSURANCE

The following section reports QA parameters for the CDD/CDF, Metals, Halogen, and Microbial Survivability analytical results.

##### 6.4.1 CDD/CDF Analytical Quality Assurance

6.4.1.1 Flue Gas (MM5) Analytical Procedure. There were two samples generated for each flue gas (MM5) test run. One sample consisted of the pooled MM5 sample which received both the full screen and confirmation analyses. The second sample was the post-recovery, toluene rinse, which also received a full screen and confirmation analysis. The full screen analyses were conducted using a DB-5 GC column

which allows for the separation of each class of chlorination (i.e., tetras, petra, etc.) and fully resolves 2378 TCDD from the other TCDD isomers. The confirmation analysis, performed on a DB-225 GC column, is needed to fully resolve the 2378 TCDF from the other TCDF isomers. The 2378 TCDD and total TCDD isomers are also reported on the confirmation analysis. The final results for 2378 TCDF and other TCDF emission parameters were taken from the confirmation analysis. All other CDD/CDF results were taken from the full screen analysis. (Toluene Runs 9 and 10, 2378 TCDD, Total TCDD were taken from confirmation analyses - see Section 6.4.1.2.)

A component of the CDD/CDF analytical laboratory's QA/QC program is adding isotopically labeled standards to each sample during various stages of analysis to determine recovery efficiencies and to aid in the quantitation of "native" CDD/CDF species. Four different type standards are added. Surrogate standards are usually spiked on the XAD absorbent trap prior to the sampling session. (Toluene surrogates are added to the sample prior to extraction.) Recovery of these compounds allows for the evaluation of overall sample collection efficiency and analytical matrix effects. Internal standards are spiked after the sampling session but prior to extraction. Alternate standards are also spiked at this stage. Recovery percentage of internal standards are used in quantifying the flue gas native CDD/CDF isomers. Recovery of alternate standards allows for extraction/fractionation efficiencies to be determined. Finally, recovery standards are added after fractionation, just prior to the HRGC/HRMS analysis. Internal standards recovery are determined relative to recovery standards recovery. Recovery standards recovery efficiencies are not typically reported with the analytical results.

Poor recovery percentage of the various standards can reveal poor data quality. In some cases, if an analysis with a poor recovery is also accompanied by a suitable QA/QC "flag", the sample result can be validated. A full discussion of the analytical QA/QC program can not be presented in this summary report, but can be found in Triangle's CDD/CDF Data User Manual.

**6.4.1.2 CDD/CDF MMS Analytical Protocol Changes.** Based on previous Hospital MWI test programs, high levels of organics were expected to be found in the

CDD/CDF MM5 samples. Therefore a different analytical protocol was developed for the analysis. One percent of the MM5 extract was used for Runs 2, 4, and 8 (Condition 2) instead of the typical 50 percent. This resulted in a diluted fraction which did not saturate the MS detector. However, surrogate (pre-sample) spike recoveries could not be determined. Additional standards were added at higher than normal amounts to allow full quantitation of the CDD/CDF congeners for Runs 2, 4 and 8.

A slight modification to the CDD/CDF data reduction protocol was also incorporated into the toluene flue gas samples. Values for Runs 9 and 10,2378 TCDD and Total TCDD (Other) were taken from the confirmation analysis as designated by Triangle Laboratories. This is further explained in the TLI Project No. 16653T Case Narrative shown in Appendix E3.

6.4.1.3 CDD/CDF MM5 Blank Results. Both method blanks and field blanks were analyzed for CDD/CDF isomers. Modified Method 5 samples as well as the toluene rinses were submitted. Table 6-15 presents these results. The MM5 method blanks had no CDD/CDF isomers except for a small amount of O<sub>ctu</sub>-TCDF (0.18 ng). The toluene Field Blank had relatively high quantities of all isomers when compared to the run results (picograms). The toluene method blanks were clean.

6.4.1.4 CDD/CDF Standard Recoveries. Tables 6-16 and 6-17, and Tables 6-18 and 6-19 present the standard recovery values for the MM5 flue gas and toluene flue gas samples, respectively. Both full screen (FS) and confirmation (C) values are presented. The analytical acceptance criterion for internal standard recoveries is 40 percent to 130 percent for tetra- through hexa-chlorinated compounds, while the range is 25 percent to 130 percent for hepta- and octa-chlorinated compounds. Recoveries outside of these limits may still be acceptable if other identification criteria are met.

As stated before, surrogate recoveries for MM5 Samples 2, 4, and 8 could not be determined because of the modified analytical routine. All other MM5 surrogate recoveries were within  $\pm 30$  percent.

Internal standard recoveries for MM5 Runs 1-10 FS and C all met the acceptable criteria. All toluene internal standards recoveries were within the acceptance criteria except for Run 1 13C12-HxCDD 678 and several Run 5 isomers. The Run 5 toluene sample had no native hexa-substituted isomers present in hence high standards recoveries

TABLE 6-15. METHOD BLANK AND FIELD BLANK RESULTS FOR THE MMS AND TOLUENE FLUE GAS SAMPLES:  
CENTRAL CAROLINA HOSPITAL HOSPITAL (1990)

| FULL-SCREEN ANALYSIS |         | MMS                              | MMS                                           | MMS                         | TOL                              | TOL                         |
|----------------------|---------|----------------------------------|-----------------------------------------------|-----------------------------|----------------------------------|-----------------------------|
|                      |         | TLI-METHOD<br>BLANK<br>(est. ng) | TLI-METHOD<br>BLANK (1/2 OM-50%)<br>(est. ng) | FIELD<br>BLANK<br>(est. ng) | TLI-METHOD<br>BLANK<br>(est. ng) | FIELD<br>BLANK<br>(est. ng) |
| <b>DIOXINS</b>       |         |                                  |                                               |                             |                                  |                             |
| 2378 TCDD            | [6.500] | [0.050]                          | [0.060]                                       | [25.50]                     | 10.0                             |                             |
| TOTAL TCDD           | [6.500] | [0.050]                          | [0.070]                                       | [25.50]                     | 245.0                            |                             |
| 12378 PCDD           | [8.600] | [0.060]                          | [0.080]                                       | [31.20]                     | 53.0                             |                             |
| TOTAL PCDD           | [8.600] | [0.060]                          | 0.29                                          | [34.40]                     | 360.0                            |                             |
| 123478 HxCDD         | [8.500] | [0.050]                          | [0.100]                                       | [44.40]                     | 60.0                             |                             |
| 123678 HxCDD         | [8.300] | [0.050]                          | [0.100]                                       | [43.40]                     | 82.2                             |                             |
| 123789 HxCDD         | [9.500] | [0.050]                          | [0.180]                                       | [49.30]                     | 175.0                            |                             |
| TOTAL HxCDD          | [8.700] | [0.050]                          | 0.85                                          | [45.60]                     | 895.0                            |                             |
| 1234678-HpCDD        | [14.50] | [0.080]                          | 0.58                                          | [160.0]                     | 618.0                            |                             |
| TOTAL HpCDD          | [14.50] | [0.080]                          | 0.58                                          | [160.0]                     | 1140.0                           |                             |
| Octa-CDD             | [26.50] | 0.18                             | (0.950)                                       | [493.0]                     | 887.0                            |                             |
| <b>FURANS</b>        |         |                                  |                                               |                             |                                  |                             |
| 2378 TCDF            | [4.500] | [0.040]                          | 0.35                                          | [19.20]                     | 337.0                            |                             |
| TOTAL TCDF           | [4.500] | [0.040]                          | 0.63                                          | [19.20]                     | 1430.0                           |                             |
| 12378 PCDF           | [6.300] | [0.050]                          | 0.14                                          | [25.50]                     | 149.0                            |                             |
| 23478 PCDF           | [6.600] | [0.050]                          | 0.23                                          | [26.60]                     | 289.0                            |                             |
| TOTAL PCDF           | [6.400] | [0.050]                          | 1.9                                           | [26.00]                     | 2550.0                           |                             |
| 123478 HxCDF         | [5.000] | [0.030]                          | (0.680)                                       | [27.30]                     | 544.0                            |                             |
| 123678 HxCDF         | [4.800] | [0.030]                          | 0.38                                          | [26.20]                     | 317.0                            |                             |
| 234678 HxCDF         | [6.600] | [0.040]                          | (0.460)                                       | [36.20]                     | 366.0                            |                             |
| 123789 HxCDF         | [8.400] | [0.050]                          | [0.100]                                       | [46.20]                     | 27.2                             |                             |
| TOTAL HxCDF          | [5.900] | [0.030]                          | 0.72                                          | [32.30]                     | 2450.0                           |                             |
| 1234678-HpCDF        | [10.10] | [0.060]                          | [0.200]                                       | [48.50]                     | 1210.0                           |                             |
| TOTAL HpCDF          | [7.500] | [0.040]                          | 3.00                                          | [80.70]                     | (219.0)                          |                             |
| Octa-CDF             | [22.40] | [0.100]                          | 0.91                                          | [60.60]                     | 2160.0                           |                             |
|                      |         |                                  |                                               | [383.0]                     | 1380.0                           |                             |

[ ] = minimum detection limit

( ) = estimated maximum possible concentration

TABLE 6-16. STANDARDS RECOVERY RESULTS FOR CDD/CDF ANALYSES, TEST RUN SAMPLES;  
CENTRAL CAROLINA HOSPITAL (1990)

| SAMPLE ID                               | MMS-RUN 1 | MMS-RUN 2 | MMS-RUN 3 | MMS-RUN 4 | MMS-RUN 5 | MMS-RUN 6 | MMS-RUN 7 | MMS-RUN 8 | MMS-RUN 9 | MMS-RUN 10 |
|-----------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| <u>FULL SCREEN ANALYSES</u>             |           |           |           |           |           |           |           |           |           |            |
| <u>SURROGATE STANDARDS RECOVERY (%)</u> |           |           |           |           |           |           |           |           |           |            |
| 37Cl-TCDD                               | 86.7      | 94.9      | 91.7      | 91.0      | 90.2      | 89.9      |           |           |           |            |
| 13C12-PeCDF 234                         | 107.0     | 99.7      | 97.1      | 100.0     | 88.0      | 97.4      |           |           |           |            |
| 13C12-HxCDF 478                         | 90.5      | 98.5      | 94.1      | 94.3      | 95.0      | 93.0      |           |           |           |            |
| 13C12-HxCDD 478                         | 86.3      | 86.1      | 86.4      | 71.6      | 90.6      | 86.8      |           |           |           |            |
| 13C12-HpCDF 789                         | 78.1      | 81.7      | 82.5      | 87.7      | 76.2      | 75.9      |           |           |           |            |
| <u>ALTERNATE STANDARDS RECOVERY</u>     |           |           |           |           |           |           |           |           |           |            |
| 13C12-HxCDF 789                         | 81.8      | 84.7      | 91.0      | 86.2      | 86.5      | 82.3      | 89.6      | 85.2      |           |            |
| 13C12-HxCDD 234                         | 102.0     | 104.0     | 105.0     | 101.0     | 97.4      | 107.0     | 108.0     | 109.0     |           |            |
| <u>INTERNAL STANDARDS RECOVERY</u>      |           |           |           |           |           |           |           |           |           |            |
| 13C12-2378-TCDF                         | 63.0      | 78.3      | 79.7      | 75.5      | 78.6      | 82.7      | 87.2      |           |           |            |
| 13C12-2378-TCDD                         | 74.6      | 84.3      | 81.7      | 81.9      | 85.1      | 79.6      | 82.6      |           |           |            |
| 13C12-PeCDF 123                         | 76.7      | 96.1      | 89.1      | 97.9      | 82.3      | 92.2      | 106.0     | 99.8      | 79.1      |            |
| 13C12-PeCDD 123                         | 81.4      | 120.0     | 91.5      | 128.0     | 77.7      | 124.0     | 115.0     | 98.9      | 87.6      |            |
| 13C12-HxCDF 678                         | 115.0     | 105.0     | 109.0     | 103.0     | 115.0     | 97.5      | 99.4      | 113.0     | 119.0     |            |
| 13C12-HxCDD 678                         | 122.0     | 106.0     | 113.0     | 102.0     | 119.0     | 129.0     | 103.0     | 119.0     | 125.0     |            |
| 13C12-HpCDF 678                         | 83.2      | 84.1      | 80.3      | 90.9      | 81.9      | 77.5      | 81.7      | 81.6      | 93.7      |            |
| 13C12-HpCDD 678                         | 77.0      | 75.3      | 74.9      | 78.1      | 77.8      | 78.3      | 70.9      | 74.1      | 86.1      |            |
| 13C12-OCDD                              | 52.1      | 55.4      | 54.0      | 62.2      | 55.3      | 58.4      | 53.4      | 54.4      | 70.8      |            |
| <u>CONFIRMATION DATA</u>                |           |           |           |           |           |           |           |           |           |            |
| SURROGATE STANDARD RECOVERY %           | 98.2      | 96.5      | 100.0     | 101.0     |           |           | 97.2      | 96.9      |           |            |
| 37Cl-TCDD                               | 76.2      | 91.3      | 87.6      | 98.7      | 90.9      | 90.8      | 93.9      | 87.5      | 85.0      |            |
| INTERNAL STANDARDS RECOVERY %           | 78.6      | 91.6      | 91.1      | 98.0      | 94.7      | 93.8      | 95.4      | 96.2      | 82.6      |            |
| 13C12-2378-TCDD                         |           |           |           |           |           |           |           |           |           |            |
| 13C12-2378-TCDF                         |           |           |           |           |           |           |           |           |           |            |

TABLE 6-17. STANDARDS RECOVERY RESULTS FOR CDD/CDF ANALYSES  
 BLANK SAMPLES;  
 CENTRAL CAROLINA HOSPITAL (1990)

| SAMPLE ID                               | MMS-FIELD<br>BLANK<br>(1/2 10 OM) | MMS-TLI<br>BLANK |
|-----------------------------------------|-----------------------------------|------------------|
| <b><u>FULL SCREEN ANALYSES</u></b>      |                                   |                  |
| <b>SURROGATE STANDARDS RECOVERY (%)</b> |                                   |                  |
| 37Cl-TCDD                               | 90.4                              |                  |
| 13C12-PeCDF 234                         | 78.1                              |                  |
| 13C12-HxCDF 478                         | 91.6                              |                  |
| 13C12-HxCDD 478                         | 86.1                              |                  |
| 13C12-HpCDF 789                         | 65.8                              |                  |
| <b>ALTERNATE STANDARDS RECOVERY</b>     |                                   |                  |
| 13C12-HxCDF 789                         | 65.1                              | 76.3             |
| 13C12-HxCDF 234                         | 87.0                              | 98.8             |
| <b>INTERNAL STANDARDS RECOVERY</b>      |                                   |                  |
| 13C12-2378-TCDF                         | 66.2                              | 69.1             |
| 13C12-2378-TCDD                         | 73.8                              | 72.0             |
| 13C12-PeCDF 123                         | 102.0                             | 83.4             |
| 13C12-PeCDD 123                         | 98.4                              | 101.0            |
| 13C12-HxCDF 678                         | 104.0                             | 80.1             |
| 13C12-HxCDD 678                         | 116.0                             | 83.2             |
| 13C12-HpCDF 678                         | 59.9                              | 68.8             |
| 13C12-HpCDD 678                         | 49.7                              | 65.9             |
| 13C12-OCDD                              | 32.8                              | 53.6             |
| <b><u>CONFIRMATION DATA</u></b>         |                                   |                  |
| <b>SURROGATE STANDARD RECOVERY %</b>    |                                   |                  |
| 37Cl-TCDD                               | 100.0                             |                  |
| <b>INTERNAL STANDARDS RECOVERY %</b>    |                                   |                  |
| 13C12-2378-TCDF                         | 79.8                              |                  |
| 13C12-2378-TCDD                         | 75.8                              |                  |

TABLE 6-18. STANDARDS RECOVERY RESULTS FOR CDD/CDF TOLUENE ANALYSES, TEST RUN SAMPLES  
CENTRAL CAROLINA HOSPITAL (1990)

| SAMPLE ID                               | TOL-RUN 1 | TOL-RUN 2 | TOL-RUN 3 | TOL-RUN 4 | TOL-RUN 5 | TOL-RUN 6 | TOL-RUN 7 | TOL-RUN 8 | TOL-RUN 9 | TOL-RUN 10 |
|-----------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| <b>FULL SCREEN ANALYSIS</b>             |           |           |           |           |           |           |           |           |           |            |
| <b>SURROGATE STANDARDS RECOVERY (%)</b> |           |           |           |           |           |           |           |           |           |            |
| 37Cl-TCDD                               | 47.8      | 53.3      | 31.6      | 49.1      | 31.9      | 51.8      | 54.7      | 69.0      | 50.9      |            |
| 13C12-PcCDF 234                         | 63.4      | 75.6      | 52.4      | 75.6      | 48.3      | 61.8      | 69.4      | 79.6      | 52.8      |            |
| 13C12-HxCDF 478                         | 88.8      | 76.4      | 86.0      | 63.1      | 170.0     | 71.1      | 80.2      | 77.2      | 88.7      |            |
| 13C12-HxCDD 478                         | 105.0     | 93.8      | 111.0     | 81.2      | 171.0     | 95.0      | 100.0     | 110.0     | 101.0     |            |
| 13C12-HpCDF 789                         | 43.0      | 44.6      | 41.2      | 45.7      | 71.0      | 45.8      | 55.1      | 56.4      | 32.4      |            |
| <b>ALTERNATE STANDARDS RECOVERY</b>     |           |           |           |           |           |           |           |           |           |            |
| 13C12-HxCDF 789                         | 54.6      | 54.3      | 47.6      | 55.1      | 78.1      | 56.4      | 67.9      | 68.5      | 53.9      |            |
| 13C12-HxCDF 234                         | 85.3      | 82.8      | 83.9      | 79.7      | 128.0     | 70.2      | 76.5      | 87.6      | 77.8      |            |
| <b>INTERNAL STANDARDS RECOVERY</b>      |           |           |           |           |           |           |           |           |           |            |
| 13C12-2378-TCDF                         | 44.9      | 49.8      | 30.2      | 44.8      | 33.8      | 53.0      | 51.9      | 70.4      | 50.4      |            |
| 13C12-2378-TCDD                         | 52.8      | 58.7      | 35.3      | 56.3      | 33.5      | 56.7      | 59.2      | 72.6      | 61.3      |            |
| 13C12-PcCDF 123                         | 65.9      | 74.6      | 53.9      | 74.3      | 43.2      | 58.3      | 65.5      | 74.4      | 59.7      |            |
| 13C12-PcCDD 123                         | 96.5      | 103.0     | 74.3      | 110.0     | 63.6      | 86.0      | 106.0     | 106.0     | 57.1      |            |
| 13C12-HxCDF 678                         | 103.0     | 81.0      | 95.7      | 73.7      | 180.0     | 77.2      | 77.6      | 77.8      | 89.6      |            |
| 13C12-HxCDD 678                         | 149.0     | 118.0     | 142.0     | 110.0     | 218.0     | 104.0     | 103.0     | 111.0     | 105.0     |            |
| 13C12-HpCDF 678                         | 67.5      | 61.0      | 64.3      | 59.1      | 126.0     | 58.5      | 63.7      | 63.2      | 52.0      |            |
| 13C12-HpCDD 678                         | 60.9      | 58.9      | 52.5      | 63.4      | 72.2      | 62.2      | 70.1      | 71.0      | 47.7      |            |
| 13C12-OCDD                              | 42.1      | 47.4      | 34.4      | 57.7      | 28.9      | 43.8      | 49.4      | 51.3      | 33.1      |            |
| <b>CONFIRMATION DATA</b>                |           |           |           |           |           |           |           |           |           |            |
| <b>SURROGATE STANDARD RECOVERY (%)</b>  |           |           |           |           |           |           |           |           |           |            |
| 37Cl-TCDD                               | 50.4      | 59.1      | 40.3      | 54.2      | 43.0      | 59.5      | 56.2      | 67.1      | 61.5      |            |
| <b>INTERNAL STANDARDS RECOVERY (%)</b>  |           |           |           |           |           |           |           |           |           |            |
| 13C12-2378-TCDF                         | 60.9      | 69.1      | 33.9      | 48.6      | 39.4      | 49.8      | 53.7      | 59.3      | 54.4      |            |
| 13C12-2378-TCDD                         | 48.8      | 56.4      | 40.3      | 56.4      | 49.1      | 58.8      | 60.2      | 72.5      | 68.0      |            |

TABLE 6-19. STANDARDS RECOVERY RESULTS FOR CDD/CDF  
TOLUENE ANALYSES, BLANK SAMPLES;  
CENTRAL CAROLINA HOSPITAL (1990)

| SAMPLE ID                               | TOL-TLI<br>BLANK | TOL-FIELD<br>BLANK |
|-----------------------------------------|------------------|--------------------|
| <u>FULL SCREEN ANALYSIS</u>             |                  |                    |
| <b>SURROGATE STANDARDS RECOVERY (%)</b> |                  |                    |
| 37Cl-TCDD                               | 31.3             | 58.1               |
| 13C12-PeCDF 234                         | 37.0             | 73.5               |
| 13C12-HxCDF 478                         | 73.1             | 84.9               |
| 13C12-HxCDD 478                         | 83.7             | 103.0              |
| 13C12-HpCDF 789                         | 24.7             | 53.2               |
| <b>ALTERNATE STANDARDS RECOVERY</b>     |                  |                    |
| 13C12-HxCDF 789                         | 35.6             | 71.9               |
| 13C12-HxCDF 234                         | 61.8             | 80.8               |
| <b>INTERNAL STANDARDS RECOVERY</b>      |                  |                    |
| 13C12-2378-TCDF                         | 30.0             | 54.6               |
| 13C12-2378-TCDD                         | 34.4             | 59.8               |
| 13C12-PeCDF 123                         | 38.6             | 67.4               |
| 13C12-PeCDD 123                         | 52.2             | 90.5               |
| 13C12-HxCDF 678                         | 78.2             | 86.3               |
| 13C12-HxCDD 678                         | 95.5             | 112.0              |
| 13C12-HpCDF 678                         | 45.8             | 63.4               |
| 13C12-HpCDD 678                         | 31.9             | 64.0               |
| 13C12-OCDD                              | 16.7             | 30.6               |
| <u>CONFIRMATION DATA</u>                |                  |                    |
| <b>SURROGATE STANDARD RECOVERY (%)</b>  |                  |                    |
| 37Cl-TCDD                               |                  | 63.7               |
| <b>INTERNAL STANDARDS RECOVERY (%)</b>  |                  |                    |
| 13C12-2378-TCDF                         |                  | 58.8               |
| 13C12-2378-TCDD                         |                  | 62.9               |

these compounds do not present a problem. All CDD/CDF data was inspected and released as valid by the Triangle Laboratory QA officer.

Table 6-20 present the recovery standards for the ash samples. All recoveries were within acceptable limits. Further information on standards recoveries can be found in Appendix E.1.

#### **6.4.2 Metals Analytical Quality Assurance**

The analytical methods used for the flue gas samples, the ash samples, and the metals samples are fully discussed in Section 5. The following paragraph will briefly report to metals analytical QA parameters.

Table 6-21 present the method blank metals results for both the ash and flue gas samples. Only barium was detected in the ash blank. Barium was also detected in the flue gas method blank. Relatively high amounts of arsenic, chromium, and nickel were found in the field blank. This was more fully discussed in Section 6.2.2.

Table 6-22 presents the method spike results for the metals analyses. All spiked recoveries were within the QA allowance of  $\pm 20$  percent of 100 percent except for the back half fraction of mercury. This does not appear to be significant enough to affect the overall quality of the final results. At this point, no front half method spike duplicate values have been determined.

#### **6.4.3 Halogen Analytical Quality Assessment**

The analysis for  $\text{Cl}^-$ ,  $\text{F}^-$ , and  $\text{Br}^-$  incorporate stringent QA/QC guidelines. Table 6-23 presents the method blank results for the IC analysis. None of the target halogen ions were detected in any of the method blanks, laboratory proof blanks, or the reagent blank. The field blank revealed very low amounts of  $\text{HCl}$  but only represented 3 percent of the average run amounts.

The matrix spike recoveries are also shown in Table 6-23. Results for all 3 ions were within the 20 percent criteria.

#### **6.4.4 Microbial Survivability Quality Assurance**

The stock wet spore solution, that were used for spiking the incinerator was analyzed. These results are listed in Table 6-24. Two pre-aliquoted wet spore bags were

TABLE 6-20. STANDARDS RECOVERY RESULTS FOR CDD/CDF ASH ANALYSES;  
CENTRAL CAROLINA HOSPITAL (1990)

| SAMPLE ID                               | ASH<br>CONDITION 1 | ASH<br>CONDITION 2 | ASH<br>CONDITION 3 | ASH-TLI<br>BLANK |
|-----------------------------------------|--------------------|--------------------|--------------------|------------------|
| <b><u>FULL SCREEN ANALYSIS</u></b>      |                    |                    |                    |                  |
| <b>SURROGATE STANDARDS RECOVERY (%)</b> |                    |                    |                    |                  |
| 37CI-TCDD                               | 73.3               | 77.3               | 68.0               | 37.0             |
| 13C12-PeCDF 234                         | 88.8               | 94.1               | 88.5               | 55.6             |
| 13C12-HxCDF 478                         | 121.0              | 108.0              | 93.2               | 58.8             |
| 13C12-HxCDD 478                         | 119.0              | 114.0              | 107.0              | 80.9             |
| 13C12-HpCDF 789                         | 74.4               | 68.4               | 59.0               | 52.1             |
| <b>ALTERNATE STANDARDS RECOVERY</b>     |                    |                    |                    |                  |
| 13C12-HxCDF 789                         | 81.3               | 86.2               | 67.4               | 55.3             |
| 13C12-HxCDF 234                         | 112.0              | 109.0              | 92.7               | 78.2             |
| <b>INTERNAL STANDARDS RECOVERY</b>      |                    |                    |                    |                  |
| 13C12-2378-TCDF                         | 98.0               | 99.5               | 95.2               | 33.7             |
| 13C12-2378-TCDD                         | 74.0               | 77.8               | 69.3               | 41.6             |
| 13C12-PeCDF 123                         | 83.9               | 84.7               | 77.7               | 46.9             |
| 13C12-PeCDD 123                         | 73.6               | 72.1               | 66.7               | 77.7             |
| 13C12-HxCDF 678                         | 98.1               | 90.5               | 79.5               | 64.3             |
| 13C12-HxCDD 678                         | 92.1               | 94.2               | 85.7               | 94.1             |
| 13C12-HpCDF 678                         | 89.6               | 81.4               | 71.8               | 58.0             |
| 13C12-HpCDD 678                         | 73.0               | 75.8               | 63.3               | 61.6             |
| 13C12-OCDD                              | 48.8               | 57.5               | 37.6               | 58.8             |
| <b><u>CONFIRMATION DATA</u></b>         |                    |                    |                    |                  |
| <b>SURROGATE STANDARD RECOVERY (%)</b>  |                    |                    |                    |                  |
| 37CI-TCDD                               | 77.3               | 88.0               | 71.8               |                  |
| <b>INTERNAL STANDARDS RECOVERY (%)</b>  |                    |                    |                    |                  |
| 13C12-2378-TCDF                         | 67.2               | 79.0               | 61.5               |                  |
| 13C12-2378-TCDD                         | 75.9               | 84.9               | 70.6               |                  |

TABLE 6-21. METALS ASH AND FLUE GAS METHOD BLANK RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| METAL     | ASH<br>METHOD<br>BLANK<br>(mg/kg) | FLUE GAS METHOD BLANK       |                                |                                  | FIELD BLANK                 |                                |                                  |
|-----------|-----------------------------------|-----------------------------|--------------------------------|----------------------------------|-----------------------------|--------------------------------|----------------------------------|
|           |                                   | FRONT<br>HALF<br>(total ug) | 1,2<br>IMPINGERS<br>(total ug) | 3,4 a<br>IMPINGERS<br>(total ug) | FRONT<br>HALF<br>(total ug) | 1,2<br>IMPINGERS<br>(total ug) | 3,4 a<br>IMPINGERS<br>(total ug) |
| Antimony  | [6.4]                             | [16]                        | [7.0]                          |                                  | (59.5)                      | [7.3]                          |                                  |
| Arsenic   | [4.0]                             | [1.0]                       | [0.44]                         |                                  | 11.7                        | [0.46]                         |                                  |
| Barium    | 2.30                              | 6.75                        | [0.22]                         |                                  | 22.5                        | [0.23]                         |                                  |
| Beryllium | [0.20]                            | [0.50]                      | [0.22]                         |                                  | [0.50]                      | [0.23]                         |                                  |
| Cadmium   | [0.50]                            | [1.2]                       | (0.978)                        |                                  | 17.0                        | [0.57]                         |                                  |
| Chromium  | [1.0]                             | [2.5]                       | [1.1]                          |                                  | 16.0                        | (1.25)                         |                                  |
| Lead      | [3.0]                             | [0.75]                      | [3.3]                          |                                  | 32.0                        | [3.4]                          |                                  |
| Mercury   | [0.039]                           | [2.4]                       | [4.0]                          | [0.37]                           | [2.4]                       | [6.1]                          | [0.67]                           |
| Nickel    | [2.0]                             | [5.0]                       | [2.2]                          |                                  | 44.0                        | [2.3]                          |                                  |
| Silver    | [3.3]                             | [8.2]                       | [3.6]                          |                                  | [8.2]                       | [3.8]                          |                                  |
| Thallium  | [5.4]                             | [14]                        | [5.9]                          |                                  | [14]                        | [6.2]                          |                                  |

a Impingers 3 and 4 sample fractions analyzed for mercury content only.

NOTE:

-- Values enclosed in brackets represent minimum detection limits for elements not detected in the samples.

-- Values enclosed in parenthesis represent estimates as they are less than five times the detection limit.

TABLE 6-22. METALS METHOD BLANK SPIKE RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| METAL     | METHOD SPIKE  |                  |                  | METHOD SPIKE DUPLICATE |                  |                  |
|-----------|---------------|------------------|------------------|------------------------|------------------|------------------|
|           | FRONT<br>HALF | IMPINGERS<br>1,2 | IMPINGERS<br>3,4 | FRONT<br>HALF          | IMPINGERS<br>1,2 | IMPINGERS<br>3,4 |
| Antimony  | 104           | 95.2             |                  | NC                     | 81.0             |                  |
| Arsenic   | 98.0          | 96.2             |                  | NC                     | 94.4             |                  |
| Barium    | 97.6          | 96.6             |                  | NC                     | 96.0             |                  |
| Beryllium | 99.6          | 96.0             |                  | NC                     | 94.4             |                  |
| Cadmium   | 102           | 101              |                  | NC                     | 101              |                  |
| Chromium  | 104           | 99.6             |                  | NC                     | 98.2             |                  |
| Lead      | 100           | 95.2             |                  | NC                     | 92.8             |                  |
| Mercury   | 115           | 109              | 64.1             | NC                     | 101              | 80.1             |
| Nickel    | 92.2          | 89.6             |                  | NC                     | 90.0             |                  |
| Silver    | 113           | NC               |                  | NC                     | NC               |                  |
| Thallium  | 83.4          | 89.2             |                  | NC                     | 85.8             |                  |

NC = Analysis not completed

TABLE 6-23. HALOGEN METHOD BLANK, LAB PROOF BLANK, REAGENT BLANK AND MATRIX SPIKE RECOVERY;  
CENTRAL CAROLINA HOSPITAL (1990)

| ANALYTE | METHOD<br>BLANK<br>1<br>(total mg) | LAB PROOF<br>BLANK<br>SIFT 1<br>(total mg) | REAGENT<br>BLANK<br>SIFT 2<br>(total mg) | FIELD<br>BLANK<br>H <sub>2</sub> SO <sub>4</sub><br>(total mg) | FIELD<br>BLANK<br>A<br>(total mg) | FIELD<br>BLANK<br>B<br>(total mg) | ANALYTE | MATRIX<br>RECOVERY<br>(%) | MATRIX<br>SPIKE<br>DUPLICATE<br>RECOVERY<br>(%) |
|---------|------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------------------------------------|-----------------------------------|-----------------------------------|---------|---------------------------|-------------------------------------------------|
| HCl     | [0.011]                            | [0.011]                                    | [0.011]                                  | [0.0099]                                                       | 0.245                             | 0.250                             | HCl     | 97.20                     | 106                                             |
| HF      | [0.042]                            | [0.043]                                    | [0.043]                                  | [0.037]                                                        | [0.042]                           | [0.042]                           | HF      | 96.20                     | 96.80                                           |
| HBr     | [0.013]                            | [0.013]                                    | [0.013]                                  | [0.011]                                                        | (0.064)                           | [0.013]                           | HBr     | 106.0                     | 96.20                                           |

NOTE:

[ ] = Minimum Detection Limit

( ) = Denotes estimated value as number is less than 5 times detection limit.

TABLE 6-24. WET SPORE SPIKE SOLUTION CONFIRMATION ANALYSIS;  
CENTRAL CAROLINA HOSPITAL (1990)

| SAMPLE ID                   | MANUFACTURER'S COUNT (spores/ml) | CONFIRMATION AVERAGE (viable spores/ml) | CONFIRMATION COUNT (viable spores/ml) | STANDARD DEVIATION (viable spores/ml) |
|-----------------------------|----------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|
| Spike Aliquot Spore Susp.-1 | 6.72E+08                         | 3.0E+09                                 | 1.0E+09                               |                                       |
| Spike Aliquot Spore Susp.-2 | 7.88E+08                         | 3.0E+09                                 | 2.0E+09                               |                                       |

NOTE: All Values were taken from the average of the 10 ml - 48-hour counts

Spike Aliquot Spore Susp.-1 was labelled 3.68E+11 spores/bag at 500 ml/bag.

Spike Aliquot Spore Susp.-2 was labelled 3.94E+11 spores/bag at 500 ml/bag.

submitted for confirmation analysis. The confirmation counts of  $3 \times 10^9$  and  $3 \times 10^9$  spores/ml were higher than the manufacturer's respective count of  $6.72 \times 10^8$  and  $7.88 \times 10^8$  spores/ml. However, because the final analyses were also completed by the same laboratory conducting confirmation analyses, the confirmation results were used to calculate Overall Microbial Survivability.

A dry spore sample was also sent in for QA analysis. These results are shown in Table 6-25. The sample was sent to the laboratory as it was received from the manufacturer (in a glass vial). The confirmation count exceeded the manufacturer count at  $5.2 \times 10^6$  versus  $3.45 \times 10^5$ , respectively.

Two empty pipe samples (blanks) that were not charged to the incinerator were also submitted to the laboratory for analysis. These results are listed on Page 2 in Appendix E.3 (CCH-298, CCH-299). One large and one small pipe field blank were submitted. The results were 10 and  $>200$  spores, respectively. Therefore, either the sample recovery procedures or the analytical methods appear to have contaminated both pipe field blanks.

Two pipes which were loaded with spores and not charged to the incinerator (ambient pipes) were also submitted for analysis (see Apppendix E.3-CCH-300, CCH-301). The results show that the large pipe sample has 10 spores detected and the small pipe sample had  $>200$  spores found. The number of spores detected probably does not represent the total spores present. This is because all pipe samples were rinsed and filtered without any dilutions. Henceforth quantitation of higher numbers of spores (pipes were loaded with  $5.2 \times 10^6$  spores) was not feasible without performing serial dilutions.

## 6.5 CEM QUALITY ASSURANCES

Flue gas was analyzed for carbon monoxide (CO), oxygen (O<sub>2</sub>), carbon dioxide (CO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), nitrogen oxides (NO<sub>x</sub>), and total hydrocarbons (THC), using EPA Methods 10, 3A, 6C, 7E, and 25A, respectively. An additional CEM analyzer was also employed for real time HCl gas concentrations.

TABLE 6-25. DRY SPORE SPIKE SOLUTION CONFIRMATION ANALYSIS;  
CENTRAL CAROLINA HOSPITAL (1990)

| SAMPLE ID            | MANUFACTURER'S COUNT<br>(spores/vial) | CONFIRMATION                                 |  | CONFIRMATION COUNT<br>STANDARD DEVIATION<br>(viable spores/vial) |
|----------------------|---------------------------------------|----------------------------------------------|--|------------------------------------------------------------------|
|                      |                                       | CONFIRMATION AVERAGE<br>(viable spores/vial) |  |                                                                  |
| Dry Spore Glass Vial | 3.45E+05                              | 5.2E+06 <sup>a</sup>                         |  | 1.0E+06                                                          |

NOTE: All Values were taken from the average of the 10 ml - 48-hour counts

### **6.5.1 CEM Data Overview**

CEM sampling system and instruments were operated performing daily QA/QC procedures. These included QC gas challenges, sample systems blow back, probe maintenance, filter replacement, conditioner inspection and maintenance, calibration drift checks and others. The aim was to ensure a quality data product. Details of the CEM QC procedures are fully outlined in this test program's test plan.

Table 6-26 presents the CEM internal QA/QC checks along with their respective acceptance criteria which were conducted at the Central Carolina tests.

### **6.5.2 Calibration Drift Checks**

All CEM analyzers were calibrated daily with a zero gas (generally nitrogen), and a high-range span gas. Calibrations were performed prior to and at the completion of each test run. By comparing the post-test calibration to the pre-test calibration, the calibration drift was determined (zero drift and span drift). Post-test calibrations were not completed for 4 out of the 9 HCl CEM test runs. This was because HCl calibrations had to be completed at stack gas temperatures and the incinerator would go into a "burndown" mode (lower temperature) before the post-test calibration could be performed.

Daily drift requirements between calibrations for both zero and span was  $\pm 3$  percent of full scale as required by EPA Methods 6C and 3A. Although Method 10 for CO allows  $\pm 10$  percent of full scale drift, the CO drift requirements were  $\pm 3$  percent for this test program, to ensure the quality of data produced.

Table 6-27 lists the zero and span calibration drift results for each CEM analyzer on each test day. All drifts met QC allowances except HCl-Runs 1 and 9, and THC-Runs 7 and 9. The HCl data for the above runs were drift corrected. The THC CEM data for Run 7 were not included in the final results. No drift corrections were made on the THC-Run 9 data.

### **6.5.3 Daily QC Gas Challenges**

After initial calibration, mid-range QC gases for all instruments were analyzed with no adjustment, as a quality control check of daily calibrations and to provide day-to-day precision estimates for each instrument. The calibration was considered

TABLE 6-26. CEM INTERNAL QA/QC CHECKS

| Check                                          | Frequency                                                                                                                                  | Criteria                                                                                      |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Initial Leak Check                             | Once/Site                                                                                                                                  | < 4% of Total flow while under vacuum                                                         |
| Daily Leak Checks                              | Before Each Test Run                                                                                                                       | < 0.5% O <sub>2</sub> with 0.2% O <sub>2</sub> gas                                            |
| Calibration Drift                              | Daily                                                                                                                                      | < $\pm$ 3% Span zero and upscale gas (can use $\pm$ 10 ppm limit for HCl if less restrictive) |
| Multipoint Linearity Check (Calibration Error) | Every 3 <sup>rd</sup> Day<br>3 point for O <sub>2</sub> , CO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , HCl<br>4 point for CO, THC | r = 0.998                                                                                     |
| Sample System Bias                             | Every 3 <sup>rd</sup> Day<br>Zero and Span                                                                                                 | < 5% Span                                                                                     |
| Response Time                                  | Once/Site                                                                                                                                  | 85% of time for stable SO <sub>2</sub> measurements                                           |
| NO <sub>x</sub> Convertor                      | Once/Site                                                                                                                                  | > 90% conversion efficiency                                                                   |
| Stratification Test                            | Once/Site                                                                                                                                  | Within 10% of average                                                                         |

TABLE 6-27. DAILY CALIBRATION DRIFTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| PARAMETER: O2                 |     |                                         |                                         |
|-------------------------------|-----|-----------------------------------------|-----------------------------------------|
| ZERO CALIBRATION GAS: 0.2% O2 |     |                                         |                                         |
| FULL SCALE: 25                |     |                                         |                                         |
| DATE                          | RUN | ZERO<br>INSTRUMENT DRIFT<br>(% of Span) | SPAN<br>INSTRUMENT DRIFT<br>(% of Span) |
| 09/20/90                      | 1   | 0.0100                                  | -0.5900                                 |
| 09/21/90                      | 2   | 0.0200                                  | -0.1000                                 |
| 09/22/90                      | 3   | 0.0100                                  | -0.3300                                 |
| 09/23/90                      | 4   | 0.0500                                  | -0.3200                                 |
| 09/24/90                      | 5   | 0.1600                                  | -0.5000                                 |
| 09/25/90                      | 6   | 0.0200                                  | -0.3100                                 |
| 09/26/90                      | 7   | 0.1900                                  | -0.6100                                 |
| 09/28/90                      | 9   | 0.0500                                  | -0.6500                                 |
| 10/02/90                      | 10  | -0.0400                                 | -0.4400                                 |
| PARAMETER: CO                 |     |                                         |                                         |
| ZERO CALIBRATION GAS: N2      |     |                                         |                                         |
| FULL SCALE: 5000              |     |                                         |                                         |
| DATE                          | RUN | ZERO<br>INSTRUMENT DRIFT<br>(% of Span) | SPAN<br>INSTRUMENT DRIFT<br>(% of Span) |
| 09/20/90                      | 1   | -0.0500                                 | -0.2000                                 |
| 09/21/90                      | 2   | 0.0000                                  | -0.0400                                 |
| 09/22/90                      | 3   | 0.0800                                  | -0.2000                                 |
| 09/23/90                      | 4   | 0.0000                                  | -0.2000                                 |
| 09/24/90                      | 5   | -0.0200                                 | -0.0400                                 |
| 09/25/90                      | 6   | -0.0100                                 | -0.0900                                 |
| 09/26/90                      | 7   | 0.0900                                  | -0.1000                                 |
| 09/28/90                      | 9   | -0.0500                                 | -0.0900                                 |
| 10/02/90                      | 10  | -0.0200                                 | -0.1100                                 |
| PARAMETER: CO2                |     |                                         |                                         |
| ZERO CALIBRATION GAS: N2      |     |                                         |                                         |
| FULL SCALE: 20                |     |                                         |                                         |
| DATE                          | RUN | ZERO<br>INSTRUMENT DRIFT<br>(% of Span) | SPAN<br>INSTRUMENT DRIFT<br>(% of Span) |
| 09/20/90                      | 1   | 0.0600                                  | -1.4700                                 |
| 09/21/90                      | 2   | 0.0200                                  | 0.0700                                  |
| 09/22/90                      | 3   | 0.0700                                  | 0.6200                                  |
| 09/23/90                      | 4   | -0.0200                                 | 0.0300                                  |
| 09/24/90                      | 5   | 0.0300                                  | 0.0400                                  |
| 09/25/90                      | 6   | 0.0500                                  | 0.0100                                  |
| 09/26/90                      | 7   | -0.0400                                 | 0.2000                                  |
| 09/28/90                      | 9   | -0.1700                                 | -0.0400                                 |
| 10/02/90                      | 10  | -0.0200                                 | 0.0000                                  |

TABLE 6-27. DAILY CALIBRATION DRIFTS; (continued)  
CENTRAL CAROLINA HOSPITAL (1990)

| PARAMETER: HCl           |     |                                         |                                         |
|--------------------------|-----|-----------------------------------------|-----------------------------------------|
| ZERO CALIBRATION GAS: N2 |     |                                         |                                         |
| FULL SCALE: 2000         |     |                                         |                                         |
| DATE                     | RUN | ZERO<br>INSTRUMENT DRIFT<br>(% of Span) | SPAN<br>INSTRUMENT DRIFT<br>(% of Span) |
| 09/20/90                 | 1   | 0.3700                                  | -20.0100                                |
| 09/21/90                 | 2   | 0.6100                                  | -0.1300                                 |
| 09/22/90                 | 3   | no final cal                            | no final cal                            |
| 09/23/90                 | 4   | -0.1200                                 | -0.5400                                 |
| 09/24/90                 | 5   | -0.2600                                 | -0.6900                                 |
| 09/25/90                 | 6   | no final cal                            | no final cal                            |
| 09/26/90                 | 7   | no final cal                            | no final cal                            |
| 09/28/90                 | 9   | 1.4500                                  | 9.5500                                  |
| 10/02/90                 | 10  | no final cal                            | no final cal                            |

| PARAMETER: SO2           |     |                                         |                                         |
|--------------------------|-----|-----------------------------------------|-----------------------------------------|
| ZERO CALIBRATION GAS: N2 |     |                                         |                                         |
| FULL SCALE: 500          |     |                                         |                                         |
| DATE                     | RUN | ZERO<br>INSTRUMENT DRIFT<br>(% of Span) | SPAN<br>INSTRUMENT DRIFT<br>(% of Span) |
| 09/20/90                 | 1   | -0.0200                                 | -0.1900                                 |
| 09/21/90                 | 2   | -0.0100                                 | 0.0000                                  |
| 09/22/90                 | 3   | 0.0500                                  | 0.0800                                  |
| 09/23/90                 | 4   | -0.0300                                 | -0.1400                                 |
| 09/24/90                 | 5   | 0.0400                                  | -0.0100                                 |
| 09/25/90                 | 6   | -0.0200                                 | -0.1600                                 |
| 09/26/90                 | 7   | 0.0000                                  | -0.0500                                 |
| 09/28/90                 | 9   | -0.0300                                 | -0.0800                                 |
| 10/02/90                 | 10  | -0.0200                                 | -0.0700                                 |

| PARAMETER: NOX           |     |                                         |                                         |
|--------------------------|-----|-----------------------------------------|-----------------------------------------|
| ZERO CALIBRATION GAS: N2 |     |                                         |                                         |
| FULL SCALE: 250          |     |                                         |                                         |
| DATE                     | RUN | ZERO<br>INSTRUMENT DRIFT<br>(% of Span) | SPAN<br>INSTRUMENT DRIFT<br>(% of Span) |
| 09/20/90                 | 1   | 0.0200                                  | -2.0900                                 |
| 09/21/90                 | 2   | -0.1200                                 | -1.0500                                 |
| 09/22/90                 | 3   | -0.3800                                 | -2.0000                                 |
| 09/23/90                 | 4   | no final cal                            | no final cal                            |
| 09/24/90                 | 5   | -0.0700                                 | -1.9300                                 |
| 09/25/90                 | 6   | 0.0900                                  | 0.5700                                  |
| 09/26/90                 | 7   | -0.2900                                 | -0.8200                                 |
| 09/28/90                 | 9   | 0.1000                                  | 0.0500                                  |
| 10/02/90                 | 10  | 0.4500                                  | 1.3200                                  |

TABLE 6-27. DAILY CALIBRATION DRIFTS; (continued)  
CENTRAL CAROLINA HOSPITAL (1990)

| PARAMETER: THC<br>ZERO CALIBRATION GAS: N2<br>FULL SCALE: 100 |     |                                         |                                         |
|---------------------------------------------------------------|-----|-----------------------------------------|-----------------------------------------|
| DATE                                                          | RUN | ZERO<br>INSTRUMENT DRIFT<br>(% of Span) | SPAN<br>INSTRUMENT DRIFT<br>(% of Span) |
| 09/20/90                                                      | 1   | 0.8900                                  | -0.8800                                 |
| 09/21/90                                                      | 2   | 3.9500                                  | 0.8700                                  |
| 09/22/90                                                      | 3   | -1.8700                                 | 0.9300                                  |
| 09/23/90                                                      | 4   | -1.7100                                 | 0.3700                                  |
| 09/24/90                                                      | 5   | -1.1600                                 | -0.9700                                 |
| 09/25/90                                                      | 6   | -1.5100                                 | -1.2500                                 |
| 09/26/90                                                      | 7   | -4.2700                                 | -4.2400                                 |
| 09/28/90                                                      | 9   | -1.4200                                 | -4.7800                                 |
| 10/02/90                                                      | 10  | -1.9600                                 | -1.0600                                 |

acceptable if the difference between the measured response and the certified concentration was within  $\pm 2$  percent of full scale of the analyzer full range.

Table 6-28 presents the results of the daily QC gas challenges. Several QC gas responses exceeded the QC criterion. However, other QC challenges were made for these instruments with acceptable results.

#### 6.5.4 Multipoint Linearity Check

During the test program, the multipoint linearity was determined for each CEM analyzer. This is important because flue gas concentrations are determined from a two point linear regression analysis (zero calibration and span calibration gas). Multipoint calibrations are performed with either three or four certified gases depending on the instrument: a zero gas, a low scale gas concentration, a mid-range concentration, and a high scale concentration (span gas). The QC criterion for acceptable linearity will be a correlation coefficient ( $r$ ) of greater than or equal to .998, where the independent variable is the cylinder gas concentration and the dependent variable is the instrument response.

Table 6-29 presents the results of CEM linearity checks. All linearity checks met the acceptance criteria, except for one  $\text{CO}_2$  and one  $\text{SO}_2$  check. Other  $\text{CO}_2$  and  $\text{SO}_2$  linearity checks met the acceptance criteria.

#### 6.5.4 Sample Bias

All calibrations and linearity checks were performed through the entire sampling system. Therefore, any system bias which may have existed was compensated for in the calibrations.

### 6.6 PSD QUALITY ASSURANCE

The most important QC procedure performed on a PSD test is inspecting the quality of particulate loadings on every impactor stage. Assessments can then be made on the validity of the test run. All PSD test runs were inspected during the Central Carolina Hospital MWI test program and observations were noted on the field data sheets (see Appendix A.6). Only those runs with discrete "particulate piles", showing no evidence of overloading, were accepted. The PSD Runs 1 and 2 were overloaded and underloaded, respectively, and were, therefore, not accepted as valid test runs. Runs 3

TABLE 6-28. QC GAS RESPONSES;  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | PARAMETER | TRUE CONCENTRATION | MEASURED CONCENTRATION | PERCENT DIFFERENCE * |
|----------|-----------|--------------------|------------------------|----------------------|
| 09/20/90 | O2 b      | 10.1               | 10.1                   | 0.00%                |
|          |           | 5.0                | 4.9                    | -0.40%               |
|          |           | 10.1               | 10.1                   | 0.00%                |
|          |           | 10.1               | 10.1                   | 0.00%                |
|          |           | 10.1               | 12.3                   | 8.80%                |
|          |           | 20.2               | 20.4                   | 0.80%                |
|          |           | 10.1               | 10.1                   | 0.00%                |
|          |           | 5.00               | 5.00                   | 0.00%                |
|          |           | 10.1               | 10.1                   | 0.00%                |
|          |           | 10.1               | 10.2                   | 0.40%                |
|          |           | 10.1               | 11.0                   | 3.60%                |
|          |           | 5.0                | 5.0                    | 0.00%                |
| 09/26/90 |           | 20.0               | 20.0                   | 0.00%                |
|          |           | 20.2               | 20.2                   | 0.00%                |
| 10/02/90 |           | 5.0                | 4.9                    | -0.40%               |
| 09/20/90 | CO(dry) c | 198.0              | 189.3                  | -0.17%               |
|          |           | 50.0               | 41.8                   | -0.16%               |
|          |           | 198.0              | 186.7                  | -0.23%               |
|          |           | 198.0              | 182.5                  | -0.31%               |
|          |           | 198.0              | 188.9                  | -0.18%               |
|          |           | 198.0              | 188.4                  | -0.19%               |
|          |           | 198.0              | 188.4                  | -0.19%               |
|          |           | 50.0               | 44.2                   | -0.12%               |
|          |           | 198.0              | 192.3                  | -0.11%               |
|          |           | 198.0              | 187.0                  | -0.22%               |
|          |           | 198.0              | 221.0                  | 0.46%                |
|          |           | 50.0               | 48.8                   | -0.02%               |
| 09/27/90 |           | 400.0              | 402.1                  | 0.04%                |
|          |           | 50.0               | 48.6                   | -0.03%               |
| 10/02/90 |           |                    |                        |                      |

NOTE:

a percent difference =  $100 * (\text{measured value} - \text{true value})/\text{span}$

b in units of percent

c in units of ppm

TABLE 6-28. QC GAS RESPONSES (continued);  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | PARAMETER         | TRUE CONCENTRATION | MEASURED CONCENTRATION | PERCENT DIFFERENCE * |
|----------|-------------------|--------------------|------------------------|----------------------|
| 09/20/90 | CO <sub>2</sub> b | 9.03               | 8.7                    | -1.65%               |
|          |                   | 5.03               | 4.9                    | -0.65%               |
|          |                   | 9.03               | 9.0                    | -0.15%               |
|          |                   | 9.03               | 9.0                    | -0.15%               |
|          |                   | 9.03               | 9.0                    | -0.15%               |
|          |                   | 9.03               | 7.9                    | -5.65%               |
|          |                   | 17.97              | 18.0                   | 0.15%                |
|          |                   | 9.03               | 9.2                    | 0.85%                |
|          |                   | 5.03               | 5.1                    | 0.35%                |
|          |                   | 9.03               | 9.1                    | 0.35%                |
|          |                   | 9.03               | 9.0                    | -0.15%               |
|          |                   | 9.03               | 7.7                    | -6.65%               |
|          |                   | 5.03               | 5.1                    | 0.35%                |
| 09/26/90 | SO <sub>2</sub> c | 17.97              | 18.0                   | 0.15%                |
|          |                   | 17.97              | 18.0                   | 0.15%                |
|          |                   | 5.03               | 5.1                    | 0.35%                |
|          |                   | 99.9               | 103.5                  | 0.72%                |
|          |                   | 50.4               | 51.5                   | 0.22%                |
|          |                   | 99.9               | 99.1                   | -0.16%               |
|          |                   | 99.9               | 100.1                  | 0.04%                |
|          |                   | 99.9               | 98.5                   | -0.28%               |
|          |                   | 99.9               | 98.5                   | -0.28%               |
|          |                   | 99.9               | 100.3                  | 0.08%                |
|          |                   | 50.4               | 50.2                   | -0.04%               |
|          |                   | 25.2               | 26.3                   | 0.22%                |
|          |                   | 99.9               | 97.6                   | -0.46%               |
| 09/27/90 | SO <sub>2</sub> c | 99.9               | 96.9                   | -0.60%               |
|          |                   | 99.9               | 91.5                   | -1.68%               |
|          |                   | 50.4               | 52.8                   | 0.48%                |
|          |                   | 25.2               | 25.7                   | 0.10%                |
|          |                   | 99.9               | 101.6                  | 0.34%                |
|          |                   | 50.4               | 50.4                   | 0.00%                |
| 09/28/90 | SO <sub>2</sub> c | 25.2               | 25.8                   | 0.12%                |
|          |                   |                    |                        |                      |
| 10/02/90 | SO <sub>2</sub> c |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |
|          |                   |                    |                        |                      |

NOTE:

a percent difference = 100 \* (measured value - true value)/span

b in units of percent

c in units of ppm

TABLE 6-28. QC GAS RESPONSES (continued);  
CENTRAL CAROLINA HOSPITAL (1990)

| DATE     | PARAMETER   | TRUE CONCENTRATION | MEASURED CONCENTRATION | PERCENT DIFFERENCE |
|----------|-------------|--------------------|------------------------|--------------------|
| 09/20/90 | NOX c       | 102.0              | 101.7                  | -0.15%             |
|          |             | 51.7               | 51.5                   |                    |
|          |             | 51.7               | 51.5                   | -0.10%             |
|          |             | 102.0              | 102.4                  | 0.20%              |
|          |             | 102.0              | 102.0                  | 0.00%              |
|          |             | 102.0              | 103.7                  | 0.85%              |
|          |             | 102.0              | 104.1                  | 1.05%              |
|          |             | 51.7               | 52.0                   | 0.15%              |
|          |             | 250.0              | 253.2                  | 1.60%              |
|          |             | 102.0              | 103.5                  | 0.75%              |
|          |             | 102.0              | 104.4                  | 1.20%              |
|          |             | 102.0              | 102.8                  | 0.40%              |
|          |             | 51.7               | 52.3                   | 0.30%              |
| 10/02/90 |             | 102.0              | 104.2                  | 1.10%              |
|          |             | 51.7               | 52.0                   | 0.15%              |
| 09/20/90 | THC (wet) c | 91.6               | 91.0                   | -0.60%             |
|          |             | 15.0               | 15.5                   | 0.50%              |
|          |             | 91.6               | 83.7                   | -7.90%             |
|          |             | 91.6               | 88.2                   | -3.40%             |
|          |             | 91.6               | 91.9                   | 0.30%              |
|          |             | 91.6               | 89.9                   | -1.70%             |
|          |             | 15.0               | 14.5                   | -0.50%             |
|          |             | 91.6               | 89.5                   | -2.10%             |
|          |             | 91.6               | 95.2                   | 3.60%              |
|          |             | 15.0               | 19.6                   | 4.60%              |
|          |             | 240.0              | 230.8                  | -9.20%             |
| 10/02/90 |             | 15.0               | 15.3                   | 0.30%              |
|          |             |                    |                        |                    |
| 09/20/90 | HCL (wet) c | 1826.8             | 1845.0                 | 0.91%              |

NOTE:

a percent difference =  $100 * (\text{measured value} - \text{true value})/\text{span}$

b in units of percent

c in units of ppm

TABLE 6-29. LINEARITY RESULTS;  
CENTRAL CAROLINA HOSPITAL (1990)

| PARAMETER | DATE     | TRUE CONCENTRATION | MEASURED CONCENTRATION | CORRELATION (R) |
|-----------|----------|--------------------|------------------------|-----------------|
| O2 *      | 9/25/90  | 0.20               | 0.2                    | 0.99980         |
|           |          | 5.00               | 5.0                    |                 |
|           |          | 10.10              | 10.1                   |                 |
|           |          | 20.20              | 20.4                   |                 |
| O2 *      | 9/28/90  | 0.20               | 0.2                    | 0.99865         |
|           |          | 5.00               | 5.0                    |                 |
|           |          | 10.10              | 11.0                   |                 |
|           |          | 20.20              | 20.2                   |                 |
| CO **     | 9/28/90  | 0.00               | 0.0                    | 0.99815         |
|           |          | 50.00              | 48.8                   |                 |
|           |          | 198.00             | 221.0                  |                 |
|           |          | 400.00             | 402.1                  |                 |
| CO2 *     | 9/25/90  | 0.00               | 0.0                    | 0.99995         |
|           |          | 5.03               | 5.1                    |                 |
|           |          | 9.03               | 9.2                    |                 |
|           |          | 17.97              | 18.0                   |                 |
|           |          | 450.00             | 475.8                  |                 |
| CO2 *     | 9/28/90  | 0.00               | 0.0                    | 0.99596         |
|           |          | 5.03               | 5.1                    |                 |
|           |          | 9.03               | 7.7                    |                 |
|           |          | 17.97              | 18.0                   |                 |
| SO2 **    | 9/25/90  | 0.00               | 0.0                    | 0.99991         |
|           |          | 25.20              | 26.3                   |                 |
|           |          | 50.40              | 50.2                   |                 |
|           |          | 99.90              | 100.3                  |                 |
| SO2 **    | 9/28/90  | 0.00               | 0.00                   | 0.99674         |
|           |          | 25.20              | 25.70                  |                 |
|           |          | 50.40              | 52.80                  |                 |
|           |          | 99.90              | 91.50                  |                 |
| SO2 **    | 10/02/90 | 0.00               | 0.00                   | 0.99994         |
|           |          | 25.20              | 25.80                  |                 |
|           |          | 50.40              | 50.40                  |                 |
|           |          | 99.90              | 101.60                 |                 |

\* in units of percent

\*\* in units of ppm

\*\*\* as methane in units of ppm

TABLE 6-29. LINEARITY RESULTS; (continued)  
CENTRAL CAROLINA HOSPITAL (1990)

| PARAMETER   | DATE    | TRUE CONCENTRATION | MEASURED CONCENTRATION | CORRELATION (R) |
|-------------|---------|--------------------|------------------------|-----------------|
| NOx **      | 9/25/90 | 0.00               | 0.0                    | 0.99999         |
|             |         | 51.70              | 52.0                   |                 |
|             |         | 102.00             | 104.1                  |                 |
|             |         | 250.00             | 253.2                  |                 |
| HCl(wet) ** | 9/28/90 | 0.00               | 0.0                    | 0.99982         |
|             |         | 101.20             | 120.2                  |                 |
|             |         | 965.90             | 964.1                  |                 |
| THC ***     | 9/25/90 | 0.00               | 0.00                   | 1.00000         |
|             |         | 15.00              | 14.50                  |                 |
| THC ***     | 9/28/90 | 0                  | 0                      | 0.99978         |
|             |         | 15                 | 19.6                   |                 |
|             |         | 240                | 230.8                  |                 |
|             |         | 91.60              | 89.90                  |                 |

\* in units of percent

\*\* in units of ppm

\*\*\* as methane in units of ppm

through 6 were validated by the recovery technician and the results are reported in Section 2.9.

All PSD sample trains were carefully configured and a pre-test leak check was completed on the system. In order to prevent sample particulate matter from being disturbed, post-test leak checks can not be completed on a PSD sample train. All pre-test PSD leak checks met the acceptable criterion of less than 0.02 cfm at 0 inches Hg vacuum.

## 6.7 DATA VARIABILITY

### 6.7.1 Overview

Coefficients of Variation (CV) were calculated for all the final stack gas pollutant concentrations. The CV or relative standard deviation (RSD) is calculated by dividing the standard deviation by the mean and expressed as a percentage. CVs from several distinct groups of data can be combined into a "Pooled CV". The pooled CV is calculated as follows:

$$CV = \frac{S}{M} \times 100$$

Where:

CV = Coefficient of variation

S = Standard deviation (calculated using LOTUS 123<sup>TM</sup> which uses n and not n-1 where n = number of data points.)

M = mean

$$CV_p = \sqrt{\frac{\sum (CV_i)^2 n_i}{\sum n_i}}$$

CV<sub>p</sub> = pooled coefficient of Variation

CV<sub>i</sub> = Coefficient of variation for a simple sample set i.

n<sub>i</sub> = Number of data points in that sample set.

The CV values expressed in the following tables are not intended to represent sampling/analytical precision. They are more a reflection of the variability of the data as a whole, including process caused emission variability.

#### 6.7.2 CDD/CDF Data Variation

Table 6-30 presents the CVs for the CDD/CDF flue gas concentrations. Values are listed for each congener for each triplicate run as well as a pooled CV for the entire nine runs. Pooled CVs are also compiled for all of the congeners and for the entire test program (overall). The overall pooled CV for the CDD/CDF flue gas concentrations was 64.4 percent.

Table 6-31 presents CVs for the metal flue gas concentrations. The overall pooled CV for the metals flue gas concentrations is 65.0 percent.

The Halogen gas test CVs are listed in Table 6-32. Values were calculated for each run as each run consisted of multiple "sub-runs" (1A, 1B, 1C, etc). The overall pooled CV for all three halogen flue gas concentrations is 29.8 percent.

Table 6-33 presents the CV values for the CEM 30 second averages. It should be noted in comparing these numbers to the manual test CVs, that the CEM data reflect real time, almost instantaneous changes in concentrations. The manual tests are all integrated tests which by sampling over an extended period of time, result in a "smoothed" average concentration for that time period. The overall pooled CV for the CEM data 159 percent. Results from the triplicate manual tests did not fluctuate nearly as much as the 30 second CEM readings, therefore had much lower CVs.

TABLE 6-30. COEFFICIENTS OF VARIATIONS FOR THE CDD/CDF FLUE GAS CONCENTRATIONS;  
CENTRAL CAROLINA HOSPITAL (1990)

| CONGENER          | CV:1,3,10<br>(%) | CV:2,4,8<br>(%) | CV:5,6,9<br>(%) | POOLED<br>CV<br>(%) |
|-------------------|------------------|-----------------|-----------------|---------------------|
| <b>DIOXINS</b>    |                  |                 |                 |                     |
| 2378 TCDD         | 47.4             | 45.8            | 83.8            | 61.5                |
| Other TCDD        | 100.7            | 29.7            | 76.8            | 75.1                |
| 12378 PCDD        | 63.3             | 46.0            | 76.3            | 63.1                |
| Other PCDD        | 95.8             | 46.9            | 80.6            | 77.2                |
| 123478 HxCDD      | 68.5             | 39.5            | 68.7            | 60.5                |
| 123678 HxCDD      | 64.3             | 43.6            | 67.4            | 59.4                |
| 123789 HxCDD      | 68.4             | 46.2            | 59.3            | 58.7                |
| Other HxCDD       | 80.2             | 40.4            | 64.0            | 63.7                |
| 1234678-HpCDD     | 58.1             | 37.2            | 49.3            | 48.9                |
| Other HpCDD       | 60.7             | 38.3            | 52.2            | 51.2                |
| Octa-CDD          | 60.3             | 33.1            | 49.6            | 48.9                |
| <b>FURANS</b>     |                  |                 |                 |                     |
| 2378 TCDF         | 64.0             | 87.6            | 84.5            | 79.4                |
| Other TCDF        | 88.1             | 83.1            | 86.7            | 86.0                |
| 12378 PCDF        | 59.8             | 66.3            | 75.2            | 67.4                |
| 23478 PCDF        | 69.3             | 60.7            | 71.0            | 67.1                |
| Other PCDF        | 80.1             | 67.1            | 86.3            | 78.2                |
| 123478 HxCDF      | 82.1             | 56.2            | 63.8            | 68.3                |
| 123678 HxCDF      | 72.8             | 58.2            | 65.2            | 65.7                |
| 234678 HxCDF      | 82.0             | 46.1            | 60.3            | 64.5                |
| 123789 HxCDF      | 68.4             | 56.4            | 60.0            | 61.8                |
| Other HxCDF       | 76.1             | 55.6            | 70.1            | 67.8                |
| 1234678-HpCDF     | 80.7             | 45.4            | 50.3            | 60.8                |
| 1234789-HpCDF     | 74.0             | 38.7            | 39.7            | 53.4                |
| Other HpCDF       | 78.6             | 40.9            | 49.5            | 58.6                |
| Octa-CDF          | 75.9             | 18.7            | 35.9            | 49.6                |
| Pooled CV         | 73.8             | 51.4            | 66.6            |                     |
| Overall Pooled CV | 64.4             |                 |                 |                     |

TABLE 6-31. COEFFICIENTS OF VARIATION OF THE  
FLUE GAS METALS CONCENTRATIONS;  
CENTRAL CAROLINA HOSPITAL (1990)

| FLOW RATE (dscmm) | CONDITION      | CONDITION      | CONDITION      | POOLED<br>CV |
|-------------------|----------------|----------------|----------------|--------------|
|                   | 1<br>CV<br>(%) | 2<br>CV<br>(%) | 3<br>CV<br>(%) |              |
| Antimony          | 69.7           | 21.9           | 8.62           | 42.4         |
| Arsenic           | 121            | 36.6           | 123            | 102          |
| Barium            | 77.1           | 14.6           | 16.1           | 46.3         |
| Beryllium         | ND             | 1.1            | ND             | 1.1          |
| Cadmium           | 93.4           | 16.0           | 25.4           | 50.2         |
| Chromium          | 93.2           | 11.2           | 116            | 86.2         |
| Lead              | 19.2           | 22.8           | 28.2           | 24.2         |
| Mercury           | 92.9           | 30.5           | ND             | 69.1         |
| Nickel            | ND             | 66.4           | 113.1          | 92.7         |
| Silver            | ND             | 28.8           | ND             | 28.8         |
| Thallium          | ND             | ND             | ND             | ND           |
| Pooled CV         | 87.6           | 30.8           | 78.6           |              |
| Overall Pooled CV | 65.0           |                |                |              |

ND = Not Detected

TABLE 6-32. COEFFICIENTS OF VARIATION FOR  
HALOGEN FLUE GAS CONCENTRATIONS;  
CENTRAL CAROLINA HOSPITAL (1990)

| TEST<br>RUN<br>NUMBER       | HCl<br>(%)  | HF<br>(%)   | HBr<br>(%)  |
|-----------------------------|-------------|-------------|-------------|
| CV-1                        | 28.8        | 25.8        | 4.40        |
| CV-3                        | 2.33        | 29.5        | 5.89        |
| CV-10                       | 48.2        | 60.0        | 12.6        |
| <b>Pooled Condition 1</b>   | <b>34.4</b> | <b>42.6</b> | <b>8.67</b> |
| CV-2                        | 8.71        | 46.3        | 46.6        |
| CV-4                        | 47.2        | 36.7        | 31.3        |
| CV-8                        | 34.3        | 30.5        | 8.61        |
| <b>Pooled Condition 2</b>   | <b>36.0</b> | <b>37.3</b> | <b>30.6</b> |
| CV-5                        | 20.1        | 21.7        | ND          |
| CV-6                        | 6.28        | 15.2        | ND          |
| CV-9                        | 26.8        | 16.5        | 9.36        |
| <b>Pooled Condition 3</b>   | <b>19.7</b> | <b>18.0</b> | <b>9.36</b> |
| <b>Pooled Analyte</b>       | <b>30.6</b> | <b>33.8</b> | <b>21.4</b> |
| <b>Total Pooled Halogen</b> |             |             | <b>29.8</b> |

TABLE 6-33. COEFFICIENTS OF VARIATION OF CEM GAS CONCENTRATIONS;  
CENTRAL CAROLINA HOSPITAL (1990)

| RUN NUMBER      | DATE     | COEFFICIENTS OF VARIATION<br>(percent) |                 |     |                 |                 | POOLED CV<br>BY DAY |     |
|-----------------|----------|----------------------------------------|-----------------|-----|-----------------|-----------------|---------------------|-----|
|                 |          | CO <sub>2</sub>                        | CO <sub>2</sub> | CO  | NO <sub>x</sub> | SO <sub>2</sub> | HCl                 | THC |
| 1               | 9/20/90  | 6.09                                   | 23.6            | 325 | 51.3            | 58.8            | 172                 | 174 |
| 2               | 9/21/90  | 10.7                                   | 33.5            | 248 | 49.7            | 122             | 44.8                | 259 |
| 3               | 9/22/90  | 7.67                                   | 28.7            | 235 | 71.2            | 55.8            | 91.5                | 146 |
| 4               | 9/23/90  | 9.76                                   | 31.1            | 201 | 68.7            | 88.7            | 62.5                | 122 |
| 5               | 9/24/90  | 6.15                                   | 27.8            | 252 | 46.9            | 43.3            | 32.9                | 398 |
| 6               | 9/25/90  | 5.76                                   | 24.0            | 254 | 49.0            | 41.0            | 36.7                | 447 |
| 8               | 9/27/90  | 10.0                                   | 32.6            | 283 | 46.6            | 133             | 56.2                | 176 |
| 9               | 9/28/90  | 7.73                                   | 28.5            | 296 | 44.8            | 42.6            | 43.8                | 196 |
| 10              | 10/02/90 | 8.78                                   | 32.2            | 228 | 61.3            | 57.4            | 39.5                | 158 |
|                 |          |                                        |                 |     |                 |                 | 323                 | 131 |
|                 |          |                                        |                 |     |                 |                 | 251                 | 194 |
|                 |          |                                        |                 |     |                 |                 | 251                 | 133 |
| Pooled Composed |          | 8.26                                   | 29.3            | 260 | 55.2            | 76.6            | 76.6                | 306 |
| Overall Pooled  |          | 159                                    |                 |     |                 |                 |                     |     |

## 7.0 REFERENCES

1. North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot Study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.