

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

OTAY LANDFILL

OTAY LANDFILL

R. J. Sommerville
Air Pollution Control Officer

of San Diego

October 17, 1991

HAP eff. and combustion products. Data Qual=C
also some CO, NOx
Back up data
& codes for info

TO: Dave Byrnes
Associate Air Pollution Control Engineer

FROM: Lynn Kramer
Junior Air Pollution Control Engineer

SUBJECT: EMISSION FACTORS FOR THE LANDFILL GAS FIRED INTERNAL COMBUSTION ENGINE AT OTAY LANDFILL, OPERATED BY PACIFIC ENERGY

John Jackson of District Monitoring & Technical Services has reviewed and approved the source test results on the landfill gas (LFG) fired internal combustion engine at the Otay Landfill. Stack testing measured the exhaust rates of formaldehyde, hydrochloric acid, vinyl chloride, methylene chloride, and benzene. Landfill gas samples were collected and analyzed for vinyl chloride, methylene chloride, and benzene.

Destruction efficiencies were calculated for vinyl chloride, methylene chloride, and benzene. These DEs will be used to determine emissions of these three compounds, and will be averaged to determine the emissions of the remaining listed compounds found in LFG. The approved DEs are summarized:

<u>Toxic Air Contaminant</u>	<u>Destruction Efficiency</u>
Benzene	78.3%
Methylene Chloride	28.5%
Vinyl Chloride	100%
Ethylene Dibromide, Ethylene Dichloride, Perchloroethylene, Carbon Tetrachloride, Methyl Chloroform, Trichloroethylene, Chloroform	70%

It should be noted that the average destruction efficiency obtained from source testing is the same as the destruction efficiency assumed in permit evaluations for similar devices.

Stack samples were taken for formaldehyde and hydrochloric acid as combustion products. The approved emission factors for these TACs follow:

<u>Toxic Air Contaminant</u>	<u>Emission Factor (lb/million SCF LFG burned)</u>
Formaldehyde	6.94
Hydrochloric Acid	9.52

10/16/91

Pac. Energy, Otay EF worksheet

<u>Substance</u>	<u>lb/MM cu ft gas</u>	<u>DE %</u>	<u>EF</u>	<u>Yearly Emissions</u>	<u>Hourly Emissions</u>
Vinyl Chloride	1.5	100	0.0000	0.0000	0.0000
Benzene	1.2	78.3	0.2604	81.8854	0.0094
EDB	0.0004	70	0.0001	0.0377	0.0000
EDC	0.01	70	0.0030	0.9434	0.0001
Methylene Chloride	3.9	28.3	2.7963	879.3245	0.1007
Perc	1.4	70	0.4200	132.0732	0.0151
Carbon tetrachloride	0.0001	70	0.0000	0.0094	0.0000
Methyl Chloroform	0.03	70	0.0090	2.8301	0.0003
Trichloroethylene	0.9	70	0.2700	84.9042	0.0097
Chloroform	0.0003	70	0.0001	0.0283	0.0000
Formaldehyde	6.94		2182.3524	0.2498	
HCl	9.52		2993.6592	0.3427	

EMISSION TEST REPORT

SUPERIOR INTERNAL COMBUSTION ENGINES
INSTALLED AT THE BONSALL AND OTAY LANDFILLS

Test Dates: October 20 and 22, 1987

Prepared for:

Pacific Lighting Energy Systems
6055 E. Washington Street
Commerce, California 90040

By:

VOC Testing, Inc.
P.O. Box 5892
114 E. Airport Dr., Suite 118
San Bernardino, CA 92412

EMISSION TEST REPORT

SUPERIOR INTERNAL COMBUSTION ENGINES
INSTALLED AT THE BONSALL AND OTAY LANDFILLS

Test Dates: October 20 and 22, 1987

Prepared for:

Pacific Lighting Energy Systems
6055 E. Washington Street
Commerce, California 90040

By:

VOC Testing, Inc.
P.O. Box 5892
114 E. Airport Dr., Suite 118
San Bernardino, CA 92412

Table of Contents

Section	Page
1.0 Introduction	1-1
2.0 Summary of Results	2-1
3.0 Process Description	3-1
4.0 Testing Procedures	4-1
5.0 Calculations	5-1
Appendix	
A Raw Field Data	A-1
B Calibration Data	B-1
C Test Procedures	C-1

1.0 Introduction

On October 20 and 22, 1987 personnel of VOC Testing, Inc. performed emission testing of two natural gas fueled Superior "Clean Burn" engines installed at the Otay and Bonsal landfills. The testing consisted of continuous monitoring of the engine exhaust oxides of nitrogen, carbon monoxide, carbon dioxide, and oxygen. Three forty minute tests were performed on each of the two engines. Samples of the exhaust gas were taken during the tests in Tedlar bags and analyzed by gas chromatograph to determine the concentration of non-methane hydrocarbons present.

Participants and Observers

Ezra Abrahamy -- Pacific Lighting Energy Systems
Richard Sax -- Pacific Lighting Energy Systems
Clinton Cooney-- San Diego Air Pollution Control District
Craig Anderson-- San Diego Air Pollution Control District
Delbert Powell-- VOC Testing, Inc.

2.0 Summary of Results

Table 1 below presents the results of the first two-hour emission test performed on the sixteen cylinder Superior engine installed at the Otay Landfill on October 20, 1987, and Table 2 presents the results of the two-hour test on the twelve cylinder Superior engine installed at the Bonsal Landfill on October 22, 1987. Each test consisted of three thirty minute subtests: twenty five minutes in NO_x sampling mode, and five minutes in NO sampling mode. Table 3 presents the results of the gas chromatographic analysis of the bag sample of engine exhaust gas.

Table 1

Bonsall Landfill Test Results

Date: 10/20/87

Test Time : 10:30 a.m. to 12:17 p.m.

Average NO _x Concentration (actual)	212 ppm
Average Oxygen Concentration	8.1 %
Average NO _x Concentration (@3% O ₂)	295 ppm
Average CO Concentration (actual)	450 ppm
Average CO Concentration (@3% O ₂)	627 ppm
Average CO ₂ Concentration	11.6 %
Stack Gas Flow Rate	4450 DSCFM.
NMHC Mass Emission Rate	0.0940 lbs/Bhp-hr

Table 2

Otay Landfill Test Results

Date: 10/22/87

Test Time : 9:10 a.m. to 10:55 a.m.

Average NO _x Concentration (actual)	291 ppm
Average Oxygen Concentration	6.8 %

Table 2 (Cont.)

Average NO _x Concentration (@3% O ₂)	370 ppm
Average CO Concentration (actual)	448 ppm
Average CO Concentration (@3% O ₂)	569 ppm
Average CO ₂ Concentration	13.4 %
Stack Gas Flow Rate	5680 DSCFM
NMHC Mass Emission Rate	0.0769 lbs/Bhp-hr

Need LFG - FR & CH₄ Content.

Otag LF: CH₄ = 47.7% Ref. 25.

3.0 Process Description

The sources tested were two Superior "Clean Burn" internal combustion engines incorporating stratified charge control technology fueled by natural gas. The engine at the Otay landfill is a Model 16SGTA (Serial # 307399) sixteen cylinder rated at 2650 horsepower at 900 rpm. The engine installed at the Bonsal Landfill is a Model 12SGTA (Serial # 307559) twelve cylinder rated at 2000 horsepower at 900 rpm. The engines ran at a steady load and constant speed during each test.

4.0 Testing Procedures

The exhaust of the Superior i.c. engines are discharged through an 18" i.d. stack. The stack was equipped with 3" capped pipe nipples for sampling ports.

The gas sample for carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and oxygen was taken through a stainless steel probe located at the center of the stack. The sample was drawn through 25 feet of heated 1/4" teflon tubing to a condenser system to remove moisture from the sample. The condenser system consisted of a modified Greenburg-Smith impinger in an ice bath consisting of a 50% mixture of ethylene glycol and water with dry ice. This ice bath was kept below zero degrees fahrenheit to assure that the condenser contained ice rather than water. The sample leaving the drying system passed through 1/4" teflon tubing to a manifold from which a slipstream was drawn for each of the three continuous analyzers.

The NO_x analyzer used was a Thermo Electron Model 10 AR chemiluminescence analyzer. The analyzer was calibrated at the beginning and end of each test with certified standard gas concentration of 104.8 ppm nitric oxide and 42.0 ppm nitrogen dioxide in nitrogen. This mixture was also used to check the converter efficiency. The converter efficiency was found to be 99%. The NO_x concentration was recorded on a strip chart during the test. Five minute averages of the sample concentration were used to calculate the NO_x results.

At the beginning and end of each test the effect of the condenser system on the nitrogen dioxide concentration was quantified by introducing a mixture of nitrogen dioxide in nitrogen (approximately 150 ppm) into the sampling system at the end of the probe and directly into the analyzer. The difference between these two readings was used to correct the NO₂ results for the amount lost in the condenser. In addition a mixture of nitric oxide in nitrogen (529 ppm) was introduced at the probe end and directly into the analyzer at the beginning and end of the test to assure sampling system integrity.

The carbon dioxide analyzer used during the tests was an Anarad Model AR600 non-dispersive infrared analyzer. The analyzer was calibrated with a standard gas mixture of 10% carbon dioxide in nitrogen.

The carbon monoxide analyzer used was a Horiba PIR 2000 non-dispersive infrared analyzer. The analyzer was calibrated at the beginning and end of each test with certified standards of CO in air. The CO concentrations used were 783 ppm and 2007 ppm CO in nitrogen. The carbon monoxide concentration of the sample gas was recorded on the same strip chart as the carbon dioxide concentrations. The results were averaged over five minute intervals to calculate the results.

The oxygen concentration was determined continuously with a Teledyne Model 526A fuel cell analyzer. The analyzer was calibrated at the beginning and end of each test with a certified gas standards of 1.05% and 12.0% oxygen in nitrogen and with ambient air. The oxygen concentration was read and recorded at five minute intervals on the same strip chart as the oxides of nitrogen data.

A moisture test was run at the Otay engine on October 22 in accordance with EPA Method 4. A sample of the stack gas was drawn through four impingers in an ice bath. The first two impingers contained water and the third impinger was left dry. The volume of stack gas sampled was measured with a calibrated dry gas meter. The pressure at the meter was measured with a barometer and magnehelic gauge, and the meter temperature was measured with a type K thermocouple. The volume of moisture condensed in the impingers was measured and from this data the stack gas moisture was calculated.

Pacific Lighting Energy Systems
OTay + Bansall 6.C. analysis

		Attenuation	Area/absrt	Conc.
10/20	Stda	methane 1.00 ethane propane butane pentane	4×10^{-4} 4×10^{-4} 1.00 4×10^{-4} 2.00 4×10^{-4} 4×10^{-4}	520 / 35.3 1120 / 66.5 1340 / 35.5 2100 / 72.0 2750 / 45.0
10/20	Bansall OTay Sample	methane ethane propane butane	1×10^{-4} 1×10^{-4} 1×10^{-4} 1×10^{-4}	1 / 25.5 28 340
10/22	stda	methane ethane propane butane pentane	4×10^{-4} 4×10^{-4} 4×10^{-4} 4×10^{-4} 4×10^{-4}	47.1 / 53.5 / 41 21.2 / 55.0 / 32.2 1.00 / 52.0 / 20.5 2.00 / 52.0 / 52.2
10/22	OTay Bansall Sample	methane ethane propane butane	1×10^{-4} 1×10^{-4} 1×10^{-4} 1×10^{-4}	1 / 39 30 / 15 30
24	$\Sigma_2 - 30.07 / 385 = 0.0781 \text{ ppm} = 35.46 \text{ gm/hr}$			
25	$C_2 - 44.11 / 385 = 0.1146 \text{ ppm} = 52.03 \text{ gm/hr}$			
26	$C_4 - 58.13 / 385 = 0.1510 \text{ ppm} = 68.5 \text{ gm/hr}$			
27	Bansall = ethane = $10.3 \text{ ppm} (10^{-4}) (35.46) (4445 \text{ ppm}) (60) = 94.5 \text{ gm/hr}$			
28	propane = $(0.6 \text{ ppm}) (10^{-4}) (35.46) (4445) (60) = 83 \text{ gm/hr}$			
29	butane = $(4.5) (10^{-4}) (4445) (60) = 822 \text{ gm/hr}$			
30	NMHC MER = $185.2 \text{ gm/hr} \div 2000 = 0.0926 \text{ gm/hr}$			
33	OTay ethane $(14.2 \text{ ppm}) (10^{-4}) (35.46) (59.7) (60) = 279.7 \text{ gm/hr}$			
34	propane $(0.5 \text{ ppm}) (10^{-4}) (52.03) (59.7) (60) = 9.3 \text{ gm/hr}$			
35	butane $(10 \text{ ppm}) (10^{-4}) (68.5) (59.7) (60) = 24.4 \text{ gm/hr}$			
36	NMHC MER = $213.44 \text{ gm/hr} \div 2650 = 0.0805 \text{ gm/hr}$			

September 19, 1991

TO: David Byrnes
Associate Air Pollution Control Engineer

FROM: John Jackson
Associate Air Pollution Chemist

SUBJECT: AB2588 TOXIC HOT SPOT EMISSION TEST REPORT ON AN
INTERNAL COMBUSTION ENGINE, LOCATED ON OTAY MESA
LANDFILL, OPERATED BY PACIFIC ENERGIES.

The Monitoring and Technical Services staff has reviewed the test report received on June 12, 1991. This report was prepared by South Coast Environmental Company (SCE) of La Verne, CA.

The scope of stack testing encompassed the testing for: Hydrogen chloride (HCl), formaldehyde, vinyl chloride, dichloromethane, and benzene. Additionally, digestion fuel samples were collected and analyzed for HCl, vinyl chloride, dichloromethane, benzene, total sulfur content, specific gravity and calorific value.

SCE used CARB methods to extract samples. The samples were sent to various laboratories for analysis. The formaldehyde samples were analyzed by Air Toxics LTD. Zalco Laboratories, Inc. and Atm AA, Inc. analyzed the fuel samples, and Enseco analyzed inlet and outlet samples for HCl.

The formaldehyde values reported initially in the SCE report were erroneous. SCE has submitted an addendum which included the correct values (see attached).

In conclusion, the data submitted in this report and the addendum are acceptable.

JJ.JI
Attachments

PACIFIC ENERGY
 APRIL 2-5, 1991
 PROJECT: T1265
 UNIT: LANDFILL GAS-FIRED INTERNAL COMBUSTION ENGINES

I. SELECTED RESULTS - OTAY LANDFILL

A. FORMALDEHYDE RESULTS (EXHAUST)

RUN NO.	SAMPLE VOLUME (DSCF)	LB/SCF OF LFG	TOTAL FORMALDEHYDE (LB/HR)
1	2.12	1.13E-06	3.98E-02
2	1.99	8.23E-07	2.90E-02
3	1.90	1.02E-07	3.61E-02
AVERAGE =		9.91E-07	3.50E-02
		AVERAGE =	3.245 ⁴ / hr

B. HYDROGEN CHLORIDE RESULTS

i. EXHAUST EMISSIONS

RUN NO.	SAMPLE VOLUME (DSCF)	LB/SCF OF LFG	TOTAL HCL LB/HR
1	72.92	1.10E-05	3.90E-01
2	67.66	8.74E-06	3.08E-01
3	68.98	8.78E-06	3.10E-01
AVERAGE =		9.52E-06	3.36E-01

ii. INLET EMISSIONS

RUN NO.	SAMPLE VOLUME (DSCF)	TOTAL HCL LB/HR	TOTAL CL LB/HR
1	28.23	1.25E+00	1.53E-04

LFG FR = 591 SCFM.

CH₄ Content?
 47.7% from
 ref. 25

I. SELECTED RESULTS - OTAY LANDFILL (CONTINUED)

C. VINYL CHLORIDE RESULTS

i. INLET EMISSIONS

<u>RUN NO.</u>	<u>PPB</u>	<u>LB/HR</u>
1	5270	3.06E-02
2	5340	3.10E-02
3	5420	<u>3.15E-02</u>
AVERAGE =		3.10E-02

ii. EXHAUST EMISSIONS

<u>RUN NO.</u>	<u>PPB</u>	<u>LB/HR</u>	<u>LB/SCF OF LFG</u>
1	0.00	0.00E+00	0.00E+00
2	0.00	0.00E+00	0.00E+00
3	0.00	<u>0.00E+00</u>	<u>0.00E+00</u>
AVERAGE =		0.00E+00	0.00E+00

iii. PERCENT REDUCTION = 100%

I. SELECTED RESULTS - OTAY LANDFILL (CONTINUED)

D. DICHLOROMETHANE RESULTS

i. INLET EMISSIONS

<u>RUN NO.</u>	<u>PPB</u>	<u>LB/HR</u>
1	6180	4.88E-02
2	6010	4.75E-02
3	6200	<u>4.90E-02</u>
AVERAGE = 4.84E-02		

ii. EXHAUST EMISSIONS

<u>RUN NO.</u>	<u>PPB</u>	<u>LB/HR</u>	<u>LB/SCF OF LFG</u>
1	437.0	3.74E-02	1.06E-06
2	365.0	3.12E-02	8.85E-07
3	410.0	<u>3.51E-02</u>	<u>9.94E-07</u>
AVERAGES = 3.46E-02 9.80E-07			

iii. PERCENT REDUCTION = 28.5%

SELECTED RESULTS - OTAY LANDFILL (CONTINUED)

E. BENZENE RESULTS

i. INLET EMISSIONS

<u>RUN NO.</u>	<u>PPB</u>	<u>LB/HR</u>
1	1700	1.23E-02
2	1700	1.23E-02
3	1620	<u>1.18E-02</u>

AVERAGE = 1.21E-02

ii. EXHAUST EMISSIONS

<u>RUN NO.</u>	<u>PPB</u>	<u>LB/HR</u>	<u>LB/SCF OF LGF</u>
1	36.10	2.84E-03	8.05E-08
2	33.70	2.65E-03	7.51E-07
3	30.20	2.37E-03	6.73E-08

AVERAGE = 2.62E-03 3.00E-07

iii. PERCENT REDUCTION = 78.3%

I. SELECTED RESULTS - OTAY LANDFILL (CONTINUED)

F. TOTAL SULFUR COMPOUNDS RESULTS

i. INLET EMISSIONS

<u>RUN NO.</u>	<u>PPM</u>	<u>LB/HR</u>
1	51.41	1.74E-01
2	50.82	1.73E-01
3	50.48	<u>1.71E-01</u>
AVERAGE =		1.73E-01

R. J. Sommerville
Air Pollution Control Officer

August 30, 1991

Leslie Johnson
South Coast Environmental Company
1915 McKinley Avenue, Suite E
La Verne, CA 91750

INFORMATION REQUEST FOR PACIFIC ENERGY, OTAY MESA AB2588 REPORT

The source test report, submitted by the South Coast Environmental Company (SCEC), is being reviewed by District staff. The following additional information is needed to complete the review process.

1. Air Toxic Ltd. reported the laboratory analysis in micrograms of formaldehyde. The SCEC should resubmit calculations which do not include a correction factor for formaldehyde hydrozone.
2. The SCEC used a Nutech dry gas meter in their sampling train. They used a meter correction factor associated with an Anderson dry gas meter in their computations. The error is relatively small. Therefore, correction is not mandatory.
3. The percent reduction efficiency addressed in the report compares output concentrations to input concentrations. The output values were measured in dry standard cubic feet and the input values were measured in wet standard cubic feet. This should be explained.

Please provide this information within 14 days. If any questions arise, please contact me at (619) 694-3345.

JOHN JACKSON
Associate Air Pollution Chemist

JJ:jl
cc: Lynn Kramer

March 15, 1991

Mr. Dave Burns
San Diego Air Pollution Control District
9150 Chesapeake Drive
San Diego, CA 92123

SUBJECT: Pacific Energy (PEn) Otay Landfill
AB2588 Testing Amendments
SCEC #T1265

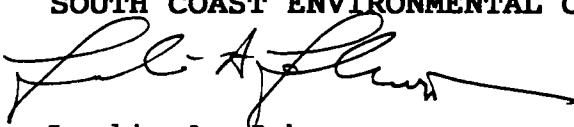
Dear Mr. Burns:

This letter is to confirm our telephone conversation of March 13, 1991 regarding the subject testing.

The following is a list of compounds and testing locations that you requested to satisfy AB2588 requirements. All other compounds listed on the original protocol -- dated January 31, 1991 -- are omitted.

EXHAUST EMISSIONS

Methylene Chloride
Benzene
Vinyl Chloride
Formaldehyde
Hydrogen Chloride


INLET GAS EMISSIONS

Methylene Chloride
Benzene
Vinyl Chloride

Upon your approval, please send a confirmation letter to Mr. Terence Hee at PEn with a cc: to South Coast Environmental Company, attention Keith B. Shannon.

If you have any questions, comments, or require any further information, please feel free to contact me or Keith B. Shannon at (714) 596-6540.

Sincerely,
SOUTH COAST ENVIRONMENTAL COMPANY

Leslie A. Johnson
Source Test Manager

LAJ/KBS:mmn

cc: Terence Hee - PEn
John Jackson - SDAPCD

John J. ;
THIS WILL SATISFY THE
AB2588 REQUIREMENTS.
PLEASE MODIFY P.A.S. &
ADVISE SITE WHEN PROTOCOL
IS ACCEPTABLE.

THANKS
Dave
3/15/91

SOUTH
COAST
ENVIRONMENTAL
COMPANY

SOURCE TEST PROTOCOL

AB2588 COMPLIANCE

Prepared for

Pacific Energy
6085 East Washington Blvd.
Commerce, CA 90040

Submitted to

San Diego Air Pollution Control District
9150 Chesapeake Drive
San Diego, CA 92123

Prepared by

South Coast Environmental Company
1915 McKinley Ave., Suite E
La Verne, CA 91750

January 31, 1991

TEST PROTOCOL
AB2588

(a) Test date: March 5, 1991

(b) Testing Company:

South Coast Environmental Company (SCEC)
1915 McKinley Ave.
LaVerne, CA 91750

Analytical Laboratory:

Enseco -CRL
7440 Lincoln Way
Garden Grove, CA 92641

Zalco Laboratories
4309 Armour Avenue
Bakersfield, CA 93308
and

Air Toxics
11325 Sunrise Gold Circle
Suite E
Rancho Cordova, CA 95742

(c) Name of Contractor:

Pacific Energy
6085 East Washington Blvd.
Commerce, CA 90040

(d) Units to be tested: Internal Combustion Engine, landfill gas-fired, 650 BHP, 900 rpm, clean burn, model #165 GTA.

(e) Process reactant composition and rates: To be determined as part of the source test.

(f) Fuel analysis and flow rates: Landfill gas will be analyzed as part of the source test being performed in March. These results will be included in the final report.

(g) Proposed Test Methodology

This test plan defines the methodology proposed for the compliance testing as specified by AB2588 Emissions Inventory Criteria and Guidelines. Included within this test plan are the test protocol and guidelines, the sampling and analytical procedures, the quality assurance.

Parameter	# And Location	Test Method
Flow, Velocity and Temperature	TriPLICATE, Exhaust only	CARB Methods #1 and #2
Multiple Metals: Ar, Be, Br, Ca, Cr, Cu, Fl, Pb, Mn, Hg, Ni, P, Se, and Zn.	Single, Fuel Analysis	EPA Method 6010, in SW-846

<u>Parameter</u>	<u># And Location</u>	<u>Test Method</u>
Sulfur	Single, Fuel Analysis	ASTM Method D129-64
Chlorine	Single, Fuel Analysis	ASTM Method 0808-87
Hydrogen Chloride	TriPLICATE, Exhaust and Fuel Analysis	CARB Method 421 CARB Method 106
Formaldehyde	TriPLICATE, Exhaust	CARB Method 430
Benzene	TriPLICATE, Fuel Analysis and Exhaust	CARB Method 410A
Vinyl Chloride	TriPLICATE, Fuel Analysis and Exhaust	CARB Method 106
Methylene Chloride	TriPLICATE, Fuel Analysis and Exhaust	CARB Method 422
Acetonitrile	TriPLICATE Fuel, Only	CARB Method 422
Benzyl Chloride		
Chlorobenzene		
1,1 Dichloroethane		
1,2 Dichloroethane		
1,1 Dichloroethene		
Tetrachloroethylene		
Tetrachloromethane		
Toluene		
1,1,1 Trichloroethane		
Trichloroethylene		
Trichloromethane		
Xylene		
H2S	TriPLICATE, Fuel only	CARB Method 16
CO2, O2, N2	TriPLICATE, Exhaust only	CARB Method 3

(h) Equipment specifications and drawings: See Attachment A.

(i) Independent tester Executive Order: See Attachment B for CARB Testing Certification.

(j) Typical values and allowable ranges of operating parameters: To be determined as part of the source test.

(k) Process operating conditions during test: Engine operating at maximum capacity.

(l) Stack temperature: Approximately 900 F

(m) Concentration of any listed substances in the exhaust stream: To be determine as part of the source test.

(n) Mass emission rate of any listed substance: To be determined as part of the source test.

(o) Composition and rate waste streams: Not applicable.

(p) Oxygen, Carbon dioxide, and moisture content of exhaust gas:

O2 = 8-9%

CO2 = 9-10%

(q) Gas velocity and volumetric flow rate:

Velocity = 180-200 fps

DSCFM = 6800-7300

(r) Sample points and number of samples: A total of 24 sampling point locations will be used for the traverses. Please see Attachment C for sample point locations.

(s) Calibration Data: See Attachment D.

(t) Quality assurance and quality control data:

1. Testing Company-SCEC will adhere to all QA/QC set forth in referenced source test methods as stated in this protocol. See Attachment E for applicable forms.

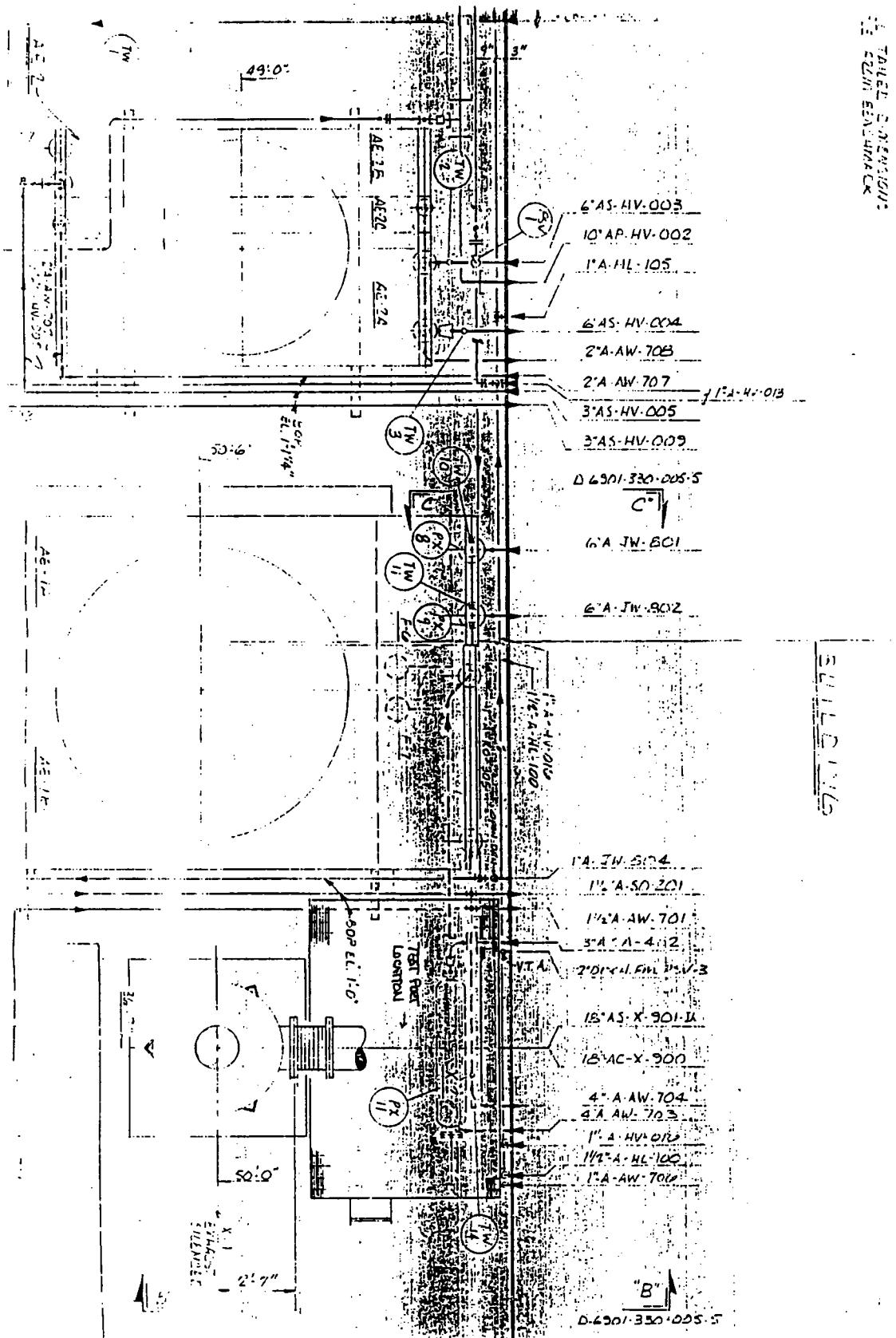
2. Analytical Laboratories Enseco CRL, Zalco and Air Toxics have a formal QA/QC program which governs data quality for the entire laboratory. The QA/QC procedures are designed to monitor and control the basic elements of quality assurance-instrumentation, glassware, reagents, solvents, gases, and to generate valid precision and accuracy for each method and analysis. Other activities include matrix spikes/spike duplicate analysis, and reagent blank analysis.

(u) Chain of custody document: See Attachment F.

(v) Applicable emission standards: Not applicable.

If there are any questions regarding this Test Protocol, please call Leslie Johnson or Keith Shannon at (714) 596-6540.

1265b


LIST OF ATTACHMENTS


ATTACHMENT A - EQUIPMENT SPECIFICATION AND DRAWING
ATTACHMENT B - CARB INDEPENDENT TESTERS CERTIFICATE
ATTACHMENT C - SAMPLE POINT LOCATIONS
ATTACHMENT D - CALIBRATION DATA FORMS
ATTACHMENT E - SCEC QA/QC FORMS
ATTACHMENT F - CHAIN OF CUSTODY FORM

SOUTH
COAST
ENVIRONMENTAL
COMPANY

ATTACHMENT A

EQUIPMENT SPECIFICATION AND DRAWING

6

6

SOUTH
COAST
ENVIRONMENTAL
COMPANY

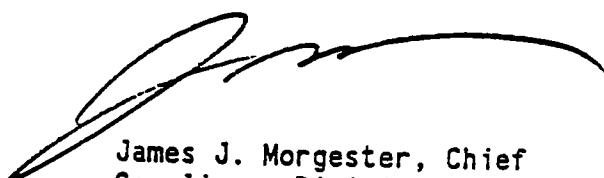
ATTACHMENT B

CARB INDEPENDENT TESTERS CERTIFICATE

State of California
AIR RESOURCES BOARD

Executive Order G-591

Approval to South Coast Environmental Company
To Conduct Testing as an Independent Contractor


WHEREAS, the Air Resources Board ("Board"), pursuant to Section 41512 of the California Health and Safety Code, has established the procedures contained in Section 91200-91220, Title 17, California Code of Regulations, to allow the use of independent testers for compliance tests required by the Board; and

WHEREAS, pursuant to Sections 91200-91220, Title 17, California Code of Regulations, the Executive Officer has determined that South Coast Environmental Company meets the requirements of the Board for conducting ARB Test Method 1-5.

NOW, THEREFORE, BE IT ORDERED that South Coast Environmental Company is granted an approval, from the date of execution of this order, until June 30, 1992 to conduct the tests listed above, subject to compliance with Section 91200-91220, Title 17, California Code of Regulations.

BE IT FURTHER ORDERED that during the approved period the Executive Officer or his or her authorized representative may field audit one or more tests conducted pursuant to this order for each type of testing listed above.

Executed this 21 st day of December 1990, at Sacramento,
California.

James J. Morgester, Chief
Compliance Division

RECEIVED SEP 21 1990

September 12, 1990

South Coast Environmental Company

1915 McKinley Ave., Suite E
La Verne, CA 91750

Ms. Leslie Johnson
(714) 596-6540

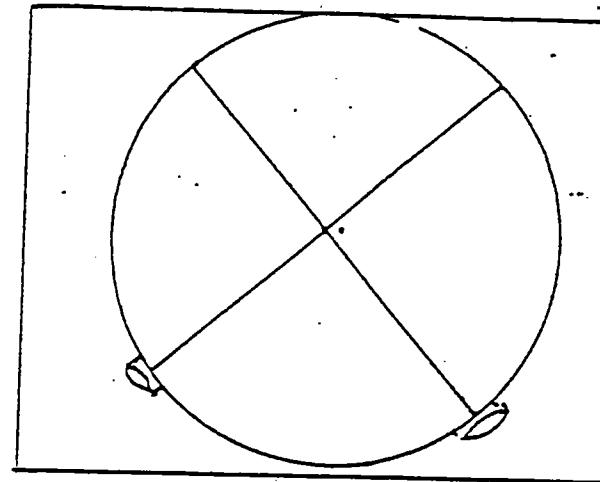
TEST

Method 1-1
Method 1-2
Method 1-3
Method 1-4
Method 1-100
CO2
NOx
O2
Visible Emissions Evaluation

EXPIRES

6/30/91
6/30/91
6/30/91
6/30/91
6/30/91
6/30/91
6/30/91
6/30/91
6/30/91

SOUTH
COAST
ENVIRONMENTAL
COMPANY


ATTACHMENT C

SAMPLE POINT LOCATIONS

FILE REF: ST12

SAMPLE POINT LOCATION DATA SHEET

FACILITY: Pacific Energy: Otay
PROJECT #: 00
DATE:
STACK DIMENSIONS: L=
W=
H=
UPSTREAM DIST./
EQUIVALENT DIAMETERS min 2
DOWNSTREAM DIST./
EQUIVALENT DIAMETERS min 1
NO. OF SAMPLING POINTS
SAMPLING PORT DIMENSIONS:
DIA.= 17
PROTRUSION DIST.= 4

SAMPLE POINT	% OF STACK DIAMETER	DISTANCE FROM STACK WALL (IN.)	DISTANCE FROM SAMPLE PORT (IN.)
1	2.1	0.3	
2	6.7	0.8	
3	11.8	9.3	
4	17.7	21	
5	25.0	3.0	
6	35.6	4.3	
7	64.4	7.7	
8	75.0	9.0	
=	82.3	9.9	
10	88.2	10.6	
11	93.3	11.2	
12	97.9	11.8	

SOUTH
COAST
ENVIRONMENTAL
COMPANY

ATTACHMENT D

CALIBRATION DATA FORMS

DATA SHEET FOR MAGNEHELIC GAUGE

Magnehelic Gauge I.D.: _____ Date: _____

Date: _____

Reference Gauge I.D. : _____ Calibrated by: _____

Calibrated by:

Full Scale of Magnehelic Gauge: "H2O

"H2O

DATA SHEET FOR CALIBER 10 MM OF PICTURE THROSES

$$\sigma(A \text{ or } B) = \sum_{i=1}^3 [C_p - \bar{C}_i] (A \text{ or } B)$$

Example Data Sheet for Calibration of Pitot Tubes

Orifice Calibration Data and Calculation Form

DATE _____

ORIFICE # _____

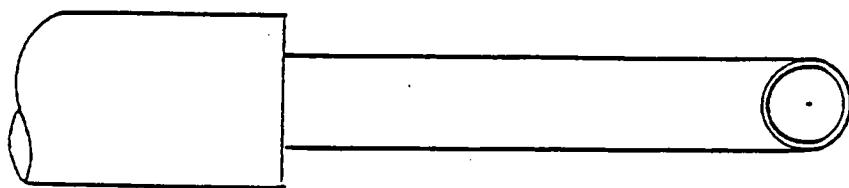
BAREMETRIC PRESSURE, $P_{\text{bar}} = \underline{\hspace{2cm}}$ in.Hg CALIBRATED BY

Q (CFM)	ΔH in. H_2O	$\Delta H \theta_i = \frac{0.319xt_w x \Delta H}{P_{bar}}$	$\left[\frac{e}{YxVxA} \right]^2$
0.25			
0.50			
0.75			
1.00			

*If there is only one thermometer on the dry gas meter, record temperature under T_3 .

**Acceptable if the four values obtained differ by no more than 3.0 mm H₂O (0.15 in. H₂O) from the average.

Nozzle Calibration


Date _____

Calibrated by _____

Nozzle identification number	D_1 mm (in.)	D_2 mm (in.)	D_{12} mm (in.)	ΔD mm (in.)	D_{avg}

where

D_{12} = nozzle diameter measured on a different diameter, mm (in.) Tolerance = measure within 0.25 mm (0.001 in.)
 ΔD = maximum difference in any two measurements, mm (in.) Tolerance = 0.1 mm (0.004 in.)
 D_{avg} = average of D_1 , D_2 , D_{12}

Nozzle Calibration Data Sheet

Calibration Data Form
Thermocouple-Potentiometer

Field Meter STC/A _____
Field Meter S/N _____
Ref. Indication S/N _____
Ref. Indication STC/A _____
Lead Wire STC/A _____

Calibration _____
Semiannual _____
Bimonthly _____
Other _____
Rate _____
Cal. By _____

Temperature Source _____

I.O. Number	Temperature (°F)			Average Error, °F	ΔT $C - E - A'$
	Ref. Therm.	Temp. Sensor (A)	Temp. Sensor (B)		
CH #1					
CH #2					
CH #3					
CH #4					
CH #5					
CH #6					
CH #7					
CH #8					
CH #9					
CH #10					
CH #11					
CH #12					
CH #13					
CH #14					
CH #15					
CH #16					
CH #17					
CH #18					
CH #19					
CH #20					

Calibration Data Form

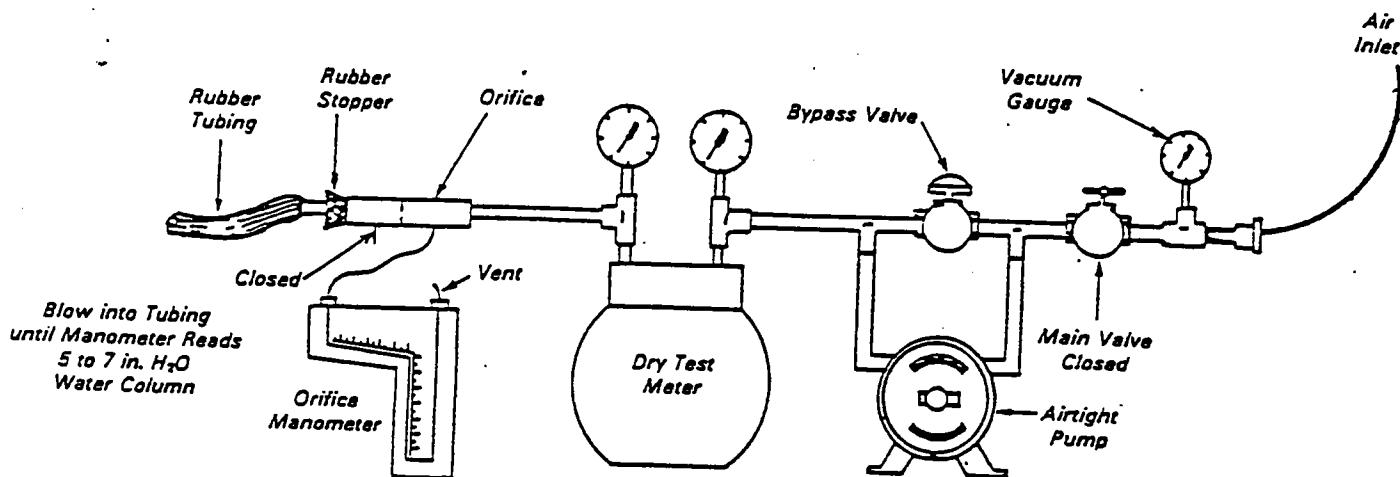


Figure 2.1. Positive leak check of metering system.

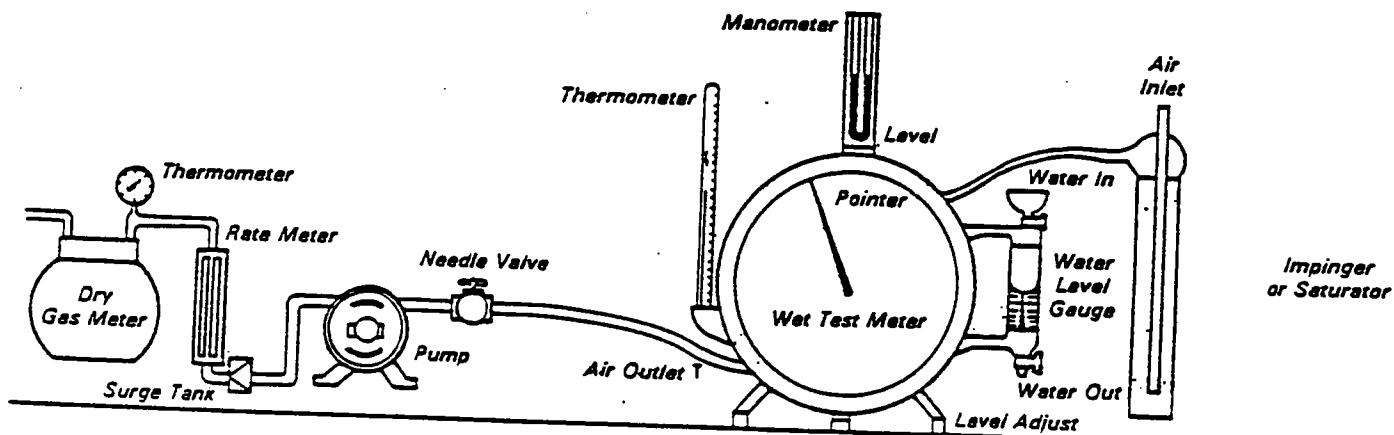


Figure 2.2. Sample meter system calibration setup.

Dry Gas Meter Sample Calibration Data (English units)

Date _____ Calibrated by _____

Dry test meter temperature correction factor _____ in. Hg
 Barometer pressure, p_m = _____ °F
 Wet test meter number _____

卷之三

U_m expressed as a negative number.

Volume passing through meter. Dry gas volume is minimum.

The average of t_1 and t_2 using two thermometers is minimum for at least five revolutions of the meter.

The time it takes to complete the calibration run using two thermometers; the actual reading it using one thermometer.

With Y defined as the average ratio of volumes for the two cases, the ratio of the two volumes is given by

misses checks, thus, $V_m/(s + 460^\circ F) [(\rho_m + (D_m/13.6))/(\rho_e/11) - Y]$

$$V_0(f_w + 4600F) / P_m \quad (Eq. 1) \quad \gamma = \frac{1 + \sqrt{1 + 4F}}{2} \quad (Eq. 2)$$

With Y defined as the average ratio of volumetric measurement by wet test meter to rotameter. Tolerance $Y_t = 1 \pm 0.05$ for calibration and ± 0.1 for post-test checks.

$$= \frac{V_{up}/(I_{up} + 460^{\circ}F) \cdot (P_m + (D_m/13.6)/160)}{\theta (I_{up} + 460^{\circ}F) / P_m / 0.035} \quad (E-1)$$

3 (Eq. 4)

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT
FIELD DRY GAS TEST METER COEFFICIENT CALCULATIONS

BAROMETRIC PRESSURE
(P_{bar}) in. Hg

AMBIENT TEMPERATURE

Set 1 _____ Date _____
Page 1 _____ Calibrated by _____

CALIBRATION FOR:

Semiannual _____
Bimonthly _____
Other _____

1. For Non Temperature Compensated Dry Gas Meter:

$$Q'_{in} = Q'_{in} \left(\frac{520}{6000} \right) \left(\frac{P_{bar} + \frac{\bar{p}}{13.6}}{29.92} \right)$$

$$Q'_{in} = Q'_{in}$$

2. For Temperature Compensated Dry Gas Meter:

$$Q'_{in} = Q'_{in} \left(\frac{P_{bar} + \frac{\bar{p}}{13.6}}{29.92} \right)$$

3. $T_{in} = \frac{Q'_{in}}{Q'_{in}}$

* CRITERIA MUST BE SATISFIED BEFORE CALCULATING \bar{Y}_{f_m} AND \bar{Y}_{f_B}

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT
DATA SHEET FOR REFERENCE DRY GAS METER CALIBRATION

ORIFICE IDENTIFICATION (S/N) _____
 DRY GAS METER IDENTIFICATION (S/N) _____
 DRY GAS METER IDENTIFICATION (STOC) _____
 BAROMETRIC PRESSURE (P_{bar}) _____
 AMBIENT TEMPERATURE _____
 LEAK CHECK _____

DATE: _____
 CALIB. BY: _____
 CALIBRATION FOR:
 ANNUAL _____
 SEMIANNUAL _____
 OTHER _____

Approx CFM Proj- ect	Total CF	Crit. Orif.	ORIFICE							REFERENCE DRY GAS METER						
			ΔP in H ₂ O	Temp. ("F")	Man. in H ₂ O	Flow Rate CFM	Time Min: Sec.	Close Time: Min.	Flow Rate CFH	Temp. ("F")	Vac. in H ₂ O	Peter Read. CF	Time Min: Sec.	Close Time: Min.	Flow Rate CFM	
		Start														
		End														
		Avg. Or Total														
		Start														
		End														
		Avg. Or Total														
		Start														
		End														
		Avg. Or Total														
		Start														
		End														
		Avg. Or Total														
		Start														
		End														
		Avg. Or Total														
		Start														
		End														
		Avg. Or Total														

SOUTH
COAST
ENVIRONMENTAL
COMPANY

ATTACHMENT E

SCEC QA/QC FORMS

TRACEABILITY AND ACCEPTABLE STANDARDS OF SOURCE TESTING INSTRUMENTS

Equipment	Traceability	Acceptable Standard
S-type Pitot Tube (Conical), (CFR40-60-App. A, Meth. 2)	NBS Traceable or STD Pitot with Correction Factor of 0.99 ± 0.01	≤ 0.02 or Calibration Curve
Differential Pressure Gauge	Magnehelic Gauge, Inclined Manometer, Liquid in U-Tube Manometer	± 5 percent of the Reading
Liquid in Glass Thermometer or Temperature Sensor	ASTM (NBS Traceable) Mercury in Glass Thermometer or Equivalent	± 1.5 percent
Thermocouple-Potentiometer	ASTM (NBS Traceable) Mercury in Glass Thermometer or Equivalent	± 1.5 percent
Aneroid Barometer (Reference Standard)	NBS Traceable Mercury Barometer	2.54 mm Hg (0.1 in. Hg)
Dry Gas Meter	NBS Traceable Orifice Gauge or Bell Prover	± 2 percent
Field Dry Gas Test Meter	(Reference Standard) Dry Gas Meter	± 2 percent
Turbine Meter	NBS Traceable Orifice Gauge or Equivalent	± 2 percent
Dry Gas Meter Orifice	Proper Construction	3.8 mm H ₂ O (0.15 in. H ₂ O)

FREQUENCY OF CALIBRATION OF SOURCE TESTING INSTRUMENTS

Equipment	Frequency	Procedure
S-Type Pitot Tube	Annual Calibrations (optional)	Measure the configuration multiple (3) points calibration or wind tunnel.
	Seminannual	Measure the Configuration.
	Reshape Pitot Tube	Measure the configuration and conduct multiple (3) point calibration if dimensions do not conform to Figures III-2 and III-3.
Standard Pitot Tube	Semiannual	Measure the configuration
Differential Pressure Gauge (Magnehelic)	Semiannual Calibration	Point leak check and triplicate runs over 5 points.
	Bimonthly Calibration	Point leak check and 1 run over 3 points.
Differential Pressure Gauge (Monometer)	Semiannual	Clean and replace fluid.
Liquid in Glass Thermometer or Temperature Sensor	Annual Calibration	TriPLICATE runs at each of 3 temperatures.
	Monthly Calibration	1 run at each of 3 temperatures.
Thermocouple- Potentiometer	Semiannual Calibration	TriPLICATE runs at each of 3 temperatures.
	Bimonthly Calibration	1 run at each of 3 temperatures.
Aneroid Barometer	Semiannually	Single point calibration 2.54 mm Hg. (0.10 Hg barometer).

<u>Equipment</u>	<u>Frequency</u>	<u>Procedure</u>
(Reference Standard) Dry Gas Meter or Wet Meter	Annual Calibration	TriPLICATE runs at each of 4 flow rates (0.25- 1.0 cfm).
	Semiannual Calibration	2 point check.
Field Dry Gas Test Meter (use Secondary STD)	Semiannual Calibration	TriPLICATE runs at 4 flow rates (0.25- 1.0 cfm).
	Bimonthly Calibration	2 flow rates check.
	Check against dry gas meter orifice before and after every test.	
Turbine Meter	Semiannual Calibration	TriPLICATE runs at 4 flow rates.
	Annual Calibration	TriPLICATE runs at 10 flow rates.
Dry Gas Meter Orifice	Annual Calibration	At multiple (4) points calibration.
	Check against field dry gas meter before and after every test.	

SOUTH
COAST
ENVIRONMENTAL
COMPANY

ATTACHMENT F

CHAIN OF CUSTODY FORM

CHAIN OF CUSTODY RECORD

Parameters:

Samplers: (signature)

RELINQUISHED BY: (SIGNATURE)

RECEIVED BY: (SIGNATURE)

DATE/TIME

RELINQUISHED BY: (SIGNATURE)

RECEIVED BY: (SIGNATURE)

DATE/TIME

RElinquished By: (Signature)

RECEIVED BY: (SIGNATURE)

DATE/TIME

BELIEVED BY: (SIGNATURE)

RECEIVED BY: (SIGNATURE)

DATE/TIME

DISPATCHED BY: (SIGNATURE)

DATE / TIME

RECEIVED BY LAB BY

DATE/TIME

METHOD OF SHIPMENT:

