

SIERRA ENVIRONMENTAL ENGINEERING INC.

MBUSTION AND ENVIRONMENTAL ENGINEERS

Puente Hills 2/86

LFG EFD
87 87

Data Qual = D.

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

Engineering Report:
Puente Hills Landfill
Flare #11:
Dioxin, Furan, and
PCB Test Results

Prepared for
County Sanitation Districts
of Los Angeles County
1955 Workman Mill Road
P.O. Box 4998
Whittier, CA 90607

Prepared by
George L. Moilanen, PE
Sierra Environmental Engineering Inc.
1515 W. MacArthur Blvd. #9
Costa Mesa, CA 92626

Report: Sierra 86021-100

February 28, 1986

TABLE 1.1
SUMMARY OF PCDD's, PCDF's and PCB's
PUENTE HILLS FLARE #11

<u>Specie</u>	<u>Test #1</u> ng/sample* <u>found</u>	<u>Test #2</u> ng/sample <u>found</u>	<u>Detection</u> <u>limit</u> ng/sample
PCDD's (Outlet)			
TETRA (total)	ND ⁺	ND	0.14
PENTA	ND	ND	0.44
HEXA	ND	ND	0.48
HEPTA	ND	ND	0.88
OCTA	ND	ND	3.70
PCDF's (Outlet)			
TETRA (Total)	ND	ND	0.18
PENTA	ND	ND	0.26
HEXA	ND	ND	0.24
HEPTA	ND	ND	0.94
OCTA	ND	ND	4.50
PCB's (Inlet)			
MONO	ND	ND	1.0 ⁺⁺
DI	ND	ND	1.0
TRI	ND	ND	1.0
TETRA	ND	ND	1.0
PENTA	ND	ND	1.0
HEXA	ND	ND	1.0
HEPTA	ND	ND	1.0
OCTA	ND	ND	1.0
NONA	ND	ND	1.0
DECA	ND	ND	1.0

* ng = nanogram

+ ND = Not Detected

++ microgram per sample

TABLE 1.2
SUMMARY OF GROSS EMISSIONS
PUENTE HILLS FLARE #11

<u>PARAMETER</u>	<u>UNITS</u>	<u>TEST #1</u>	<u>TEST #2</u>	<u>AVG</u>
Date	M-D-Y	1-21-86	1-22-86	
<u>FLARE CONDITIONS</u>				
A) Fuel Flow	CFM	1000	1000	
B) Temperature Set Point	°F	1440	1440	
C) Average Inlet Temperature	°F	88.7	90.5	
<u>OUTLET FLUE GAS FLOW</u>				
A) Actual	WACFM	44629.9	41358.8	
B) Dry, Standard Conditions*	DSCFM	10367.7	9781.6	10574.7
C) Average Temperature	°F	1542	1522	
D) Stack C.S. Area	FT ²	41.04	41.04	
E) Average Velocity	FPM	1087.3	1007.6	
	FPS	18.12	16.79	
F) Average M.W., (wet)	lb/mol	28.16	28.51	
<u>OUTLET GAS ANALYSIS</u>				
Carbon Dioxide (Orsat)	%, dry	6.6	6.0	
Oxygen (Orsat)	%, dry	12.98	14.1	
Water	%	9.0	8.6	
<u>OUTLET GASEOUS SPECIES</u>				
SO ₂ , as found	ppm, dry	8.9	6.1	
SO ₂ at 3.0% O ₂	ppm, dry	19.2	15.3	
SO ₂ mass flow	lb/hr	0.93	0.60	0.765
NO _x as found	ppm, dry	13.2	12.9	
NO _x at 3.0% O ₂	ppm, dry	39.0	35.8	
NO _x mass flow (as NO ₂)	lb/hr	0.99	0.92	0.955
CO as found	ppm, dry	371.2	123.9	
CO mass flow	lb/hr	17.0	5.4	11.2
HCl as found	ppm, dry	65.7	3.3	
HCl mass flow	lb/hr	3.93	0.2	2.07
TOC (Total Organic Carbon)	ppm, dry	34.5	21.0	
TOC mass flow (as C ₁)	lb/hr	0.68	0.39	0.54
CH ₄ , Methane as found	ppm, dry	15.0	6.5	
CH ₄ mass flow	lb/hr	0.39	0.16	0.25
Nonmethane Hydrocarbons	ppm, dry	19.5	14.5	
as found (as C ₁)	lb/hr	0.38	0.27	0.33
NMHC mass flow				

* 60° F, 29.92 in. Hg.