

Air Measurement Services, Inc.

EFD Ref. 97-A
AP42 Ref 63

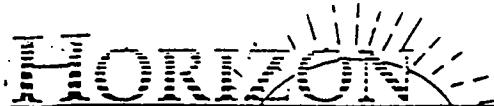
A03-006-FR

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

**LANDFILL GAS
PARTICULATE AND METALS
CONCENTRATION AND FLOW RATE**

MOUNTAINGATE LANDFILL GAS RECOVERY PLANT


May 1992

Prepared for:

**GSF ENERGY INC.
5455 Garden Grove Boulevard, Suite 355
Westminster, California 92683**

A handwritten signature in black ink, appearing to read "Richard J. Vacherot".
Richard J. Vacherot

Air Measurement Services, Inc.

(805) 498-8781

May 26, 1992

Dr. Wen Kuo
GSF Energy Inc.
5455 Garden Grove Boulevard, Suite 355
Westminster, California 92683

Dear Dr. Kuo:

Please find enclosed three copies of the Final Report entitled, "Landfill Gas Particulate and Metals Concentration and Flow Rate -- Mountaingate Landfill Gas Recovery Plant".

Please call me at (805) 498-8781 if you have any questions.

Sincerely,

HORIZON AIR MEASUREMENT SERVICES, INC.

A handwritten signature in black ink, appearing to read "Richard J. Vacherot".

Richard J. Vacherot
President

RV:lmg

Enclosures

TABLE OF CONTENTS

	<u>Page</u>
1. INTRODUCTION	1
2. SUMMARY OF RESULTS	2
3. SAMPLING/ANALYTICAL PROCEDURES	5
3.1 Sample Location	5
3.2 Landfill Gas Flow Rate	5
3.3 Particulate Matter - SCAQMD Method 5.1	5
3.4 Multimetals - CARB Draft Method 436	6

HORIZON

1. INTRODUCTION

At the request of Dr. Wen G. Kuo of GSF ENERGY INC. (Air Products PO # ZMM-0868), HORIZON AIR MEASUREMENT SERVICES, INC. conducted an emissions testing program to determine metals and particulate matter concentration and mass flow rate from the Mountaingate Landfill Gas (LFG) Recovery Plant in Los Angeles, California. Whole air samples were also collected using Tedlar bags and SUMMA canisters and submitted to AtmAA, Inc. for VOC speciation and reduced sulfur analyses.

The test program was conducted on May 18, 1992. Particulate matter and metals concentration determinations were made in accordance with SCAQMD Method 5.1 and CARB Draft Method 436, respectively, with one exception. Sample ports of adequate diameter did not exist that would allow for the use of a buttonhook nozzle in which to collect sample isokinetically per the Method. It was decided by Wen Kuo of GSF Energy to collect sample non-isokinetically through an existing sample port rather than modify the existing hardware. Thus, particulate and metals samples were collected non-isokinetically from the source.

Landfill gas flow rate was based upon the facility gas flow monitoring data. Fixed gas composition was analyzed on-site by plant personnel.

The results of the testing program are provided in Section 2. Section 3 provides all Sampling/Analytical Procedures. All pertinent documentation can be found in the Appendices.

2. SUMMARY OF RESULTS

The results of the testing program are provided in Table 2-1. The reported landfill gas flow rate is based upon facility flow monitoring data. Particulate and metals concentration is based upon one, non-isokinetically collected sample.

TABLE 2-1

Summary of Results
 Mountaingate Landfill Gas Recovery Plant
 May 18, 1992

LANDFILL GAS CHARACTERISTICS	
Temperature (°F)	85
Flow Rate (dscfm)	3375
EMISSIONS	
PARTICULATE MATTER	
gr/dscf	0.0011
lb/hr	0.032
METALS	
Antimony, mg/dscf	0.00003
lb/hr	0.00001
Arsenic, mg/dscf	0.00003
lb/hr	0.00001
Barium, mg/dscf	< 0.00011
lb/hr	< 0.000051
Beryllium, mg/dscf	< 0.00001
lb/hr	< 0.00001
Cadmium, mg/dscf	< 0.00001
lb/hr	< 0.00001
Chromium, mg/dscf	< 0.00001
lb/hr	< 0.00001
Copper, mg/dscf	0.00002
lb/hr	0.00001
Lead, mg/dscf	0.00002
lb/hr	0.00001
Manganese, mg/dscf	0.00025
lb/hr	0.00011

Note: All values preceded by "<" are detection limit values.

TABLE 2-1 (Cont.)

Summary of Results
 Mountaingate Landfill Gas Recovery Plant
 May 18, 1992

LANDFILL GAS CHARACTERISTICS		
METALS		
Mercury,	mg/dscf	0.000003
	lb/hr	0.000002
Nickel,	mg/dscf	<0.00002
	lb/hr	<0.00001
Selenium,	mg/dscf	<0.00001
	lb/hr	<0.00001
Silver,	mg/dscf	<0.00001
	lb/hr	<0.00001
Thallium,	mg/dscf	<0.00011
	lb/hr	<0.000051
Zinc,	mg/dscf	<0.00022
	lb/hr	<0.00010

Note: All values preceded by "<" are detection limit values.

3. SAMPLING/ANALYTICAL PROCEDURES

The following sampling/analytical procedures were utilized for the testing program.

3.1 Sample Location

Particulate and metals samples were collected non-isokinetically from the eight inch diameter landfill gas line through a 1.5 inch diameter port located 36 inches downstream and 26 inches upstream from a right angle bend in the pipe.

3.2 Landfill Gas Flow Rate

Landfill gas flow rate was based upon the facility air measurement system which monitors the following parameters:

- pressure drop (P)
- temperature (°F)
- static pressure
- landfill gas density

All flow rate calculations can be found in the Appendices.

3.3 Particulate Matter - SCAQMD Method 5.1

HORIZON used a sampling train which conforms to Method 5.1 specifications. Samples were withdrawn non-isokinetically from the eight inch diameter duct. Stack gases were withdrawn through a glass probe followed by 3/8" OD Teflon tubing and a series of four impingers. A 47 mm glass fiber filter was placed between the third and fourth impingers.

The third and fourth impingers were of the modified Greenburgh-Smith design, and the first and second were a standard type. The first and second impingers contained 100 ml of deionized (DI) water. The third impinger was empty. The last contained a preweighed amount of silica gel. An umbilical cord connected the last impinger to the flow control console

containing a leakless, lubricated vane pump, dry gas meter, calibrated orifice, and dual magnahelics.

A leak check of the sampling train was conducted prior to and after each sampling run and prior to and after either changing any of the constituents of the train or disconnecting umbilical cords to facilitate transport of the trains.

Upon completion of each sampling run, the nozzle, probe and connective tubing was brushed and rinsed with DI water. The filter was replaced in its original container pending analyses. The impingers and all connecting glassware was collected and rinsed with DI water.

All sample bottles and filter containers were sealed with chain-of-custody tape and all liquid levels marked. Analyses were conducted on the probe and impinger catch fraction and filter fraction in accordance with SCAQMD Method 5.1.

3.4 Multimetals - CARB Draft Method 436

Metal species emissions were determined in accordance with CARB Draft Method 436 "Determination of Multiple Metals Emissions from Stationary Sources" with the exception that sample was collected non-isokinetically. In this method the stack sample was withdrawn non-isokinetically from the source, with particulate emissions collected in the probe and on a heated filter and gaseous emissions collected in a series of chilled impingers containing a solution of dilute nitric acid in hydrogen peroxide in two impingers, and acidic potassium permanganate solution in two impingers. Sampling train components were recovered and digested in separate front and back half fractions. Materials collected in the sampling train were digested with acid solutions to dissolve inorganics and to remove organic constituents that may create analytical interferences. Acid digestion was performed using conventional Parr Bomb or microwave digestion techniques. The nitric acid and hydrogen peroxide impinger solution and the probe rinse and digested filter solutions were analyzed for mercury by cold vapor atomic absorption spectroscopy (CVAAS). Except for the permanganate solution, the remainder of the sampling train catches were analyzed for metal species by atomic absorption spectroscopy (AAS).

The sampling train consisted of a heated, three foot glass lined probe; a heated filter box (225° - 275°F) containing a 47 mm diameter quartz fiber (non-binded) filter in a glass holder and a 5/8" OD Teflon tube connecting the condensate portion of the sampling train.

The condensate portion of the sampling train consisted of a series of seven impingers; the first impinger was empty, the second and third each contained 100 mls of 5% HNO₃/10% H₂O₂ solution; the fourth was empty; the fifth and six contained 100 ml of 4% KMnO₄/10% H₂SO₄; and the seventh contained approximately 200 grams of silica gel. The second impinger was the standard Greenburg Smith impinger with all others being the modified type. All impingers were connected with leak-free ground glass fittings and glass U-bends.

An umbilical cord connected the last impinger to the flow control console consisted of a leakless, lubricated vane pump, dry gas meter and calibrated orifice. Flow rate was monitored using a calibrated magnahelic gauge. A leak check of the pitot tube lines and sampling trains was conducted prior to and after each sampling run and prior to and after either changing any of the constituents of the train or changing sample ports. Upon completion of the sampling run and post test leak check, the sample train was recovered according to the following procedures:

1. Container One: The probe, sample nozzle and front half of the filter housing was rinsed with 0.1 N nitric acid into a 500 ml Nalgene container.
2. Container Two: The quartz-fiber filter was removed and replaced in its original petri dish. The petri dish was labeled and sealed with Teflon tape.
3. Container Three: After volumetrically measuring the condensate volume, impingers one, two and three were collected into one liter Nalgene containers. Each impinger and all connecting glassware was rinsed with 0.1 N nitric acid. This rinse was combined with the impinger condensate. The container(s) were sealed, labeled and taped with all liquid levels marked.
4. Container Four: After volumetrically measuring the condensate volume, impinger four was rinsed with 0.1 N nitric acid into container #4 which was sealed with Teflon tape and labeled.
5. Container Five: After volumetrically measuring the condensate volume, impingers five and six, containing KMnO₄, was collected in 1 liter amber glass bottle(s). Each impinger and all connecting glassware was rinsed with 4% KMnO₄. The rinse was added to the condensate sample. The sample container(s) were sealed, labeled and taped with all liquid levels marked.

6. Container Six: The silica gel was recovered into its original bottle and the moisture gain determined gravimetrically.

Metal species concentration was determined using either graphite furnace or direct aspiration atomic absorption spectroscopy as described in the CARB 436 Multimetals Method. Mercury was determined using cold vapor atomic absorption spectroscopy (CVAAS). No field or blank train samples were collected at the request of Wen Kuo of GSF Energy, Inc.

APPENDIX

PLANT: MOUNTAINGATE LANDFILL GAS RECOVERY
LOCATION: LOS ANGELES, CA

	RUN
RUN NUMBER	***** 1
DATE OF RUN	***** 5-18-92
CLOCK TIME: INITIAL	***** 1636
CLOCK TIME: FINAL	***** 1736
AVG. STACK TEMPERATURE	DEGREES F 82
AVG. SQUARE DELTA P	INCHES H2O NM
NOZZLE DIAMETER	INCHES NA
BAROMETRIC PRESSURE	IN. HG. 29.92
SAMPLING TIME	MIN. 60
SAMPLE VOLUME	CUBIC FEET 46.061
AVG. METER TEMP.	DEGREES F 82
AVG. DELTA H	IN. H2O 1.79
DGM CALIB. FACTOR [Y]	***** 1.0016
WATER COLLECTED	MILLITERS 0
CO 2	PERCENT NM
O 2	PERCENT NM
CO	PERCENT NM
N 2	PERCENT NM
STACK AREA	SQUARE INCHES 50
STATIC PRESSURE	INCHES WG. NM
PITOT COEFFICIENT	***** NM
SAMPLE VOLUME DRY	DSCF 45.11
WATER AT STD.	SCP 0.0
MOISTURE	PERCENT 0.0
MOLE FRACTION DRY GAS	***** 1.00
MOLECULAR WT.DRY	LB/LB MOLE 0.00
EXCESS AIR	PERCENT ERR
MOLECULAR WT. WET	LB/LB MOLE 0.00
STACK GAS PRESSURE	INCHES HG. 29.92
STACK VELOCITY	APPN ERR
VOLUMETRIC FLOWRATE, DRY STD.	DSCFM 3380
VOLUMETRIC FLOWRATE, ACTUAL	ACFM 3472
ISOKINETIC RATIO	PERCENT ERR

CALCULATIONS FOR GRAIN LOADING AND EMISSION RATES

TOTAL PARTICULATE	Eq	3.2
PARTICULATE CONCENTRATION	gr/dscf	0.0011
PARTICULATE EMISSION RATE	lb/hr	0.032

XCONTAINING LANDFILL GAS RECOVERY

	RUN
AJN NUMBER	***** 1
DATE OF RUN	***** 5-18-92
LOCK TIME: INITIAL	***** 1225
LOCK TIME: FINAL	***** 1615
"G. STACK TEMPERATURE	DEGREES F 88
'G. SQUARE DELTA P	INCHES H2O NM
NUZZLE DIAMETER	INCHES NA
BAROMETRIC PRESSURE	IN. HG. 29.92
INFLING TIME	MIN. 230
AMPLE VOLUME	CUBIC FEET 180.507
Avg. METER TEMP.	DEGREES F 92
'G. DELTA H	IN. H2O 1.79
IN CALIB. FACTOR (Y)	***** 1.0116
WATER COLLECTED	MILLITERS 0
~ 2	PERCENT NM
2	PERCENT NM
W	PERCENT NM
N 2	PERCENT NM
'ACK AREA	SQUARE INCHES 50.3
'ATIC PRESSURE	INCHES WG. NM
PITOT COEFFICIENT	***** NA
AMPLE VOLUME DRY	DSCP 175.41
TER AT STD.	SCP 0.0
MOISTURE	PERCENT 0.0
MOLE FRACTION DRY GAS	***** 1.00
MOLECULAR WT.DRY	LB/LB MOLE 0.00
EXCESS AIR	PERCENT ERR
MOLECULAR WT. WET	LB/LB MOLE 0.00
'ACK GAS PRESSURE	INCHES HG. 29.92
'ACK VELOCITY	APPK ERR
VOLUMETRIC FLOWRATE, DRY STD.	DSCFM 3370
VOLUMETRIC FLOWRATE, ACTUAL	ACFM 3496
OKINETIC RATIO	PERCENT ERR

CALCULATIONS FOR GRAIN LOADING AND EMISSION RATES

CONTAININGATE LANDFILL GAS RECOVERY

RUN

RUN NUMBER	*****	1
DATE OF RUN	*****	5-18-92
CLOCK TIME: INITIAL	*****	1225
CLOCK TIME: FINAL	*****	1615

TOTALS EMISSION RATES

	WEIGHT (ug)	CONC. (ug/dscf)	EMISSION (lb/hr)
ANTIMONY	5	0.00003	0.00001
ARSENIC	5	0.00003	0.00001
ARIUM	20	0.00011	0.000051
LLYLIUM	2	0.00001	0.00001
CADMIUM	2	0.00001	0.00001
ROMIUM	2	0.00001	0.00001
PPER	4.2	0.00002	0.000011
LEAD	3	0.00002	0.00001
NGANESE	43	0.00025	0.00011
RCURY	0.6	0.000003	0.000002
NICKEL	3	0.00002	0.00001
PHOSPHORUS	NA	0.00000	0.00000
LENIUM	1	0.00001	0.00000
LVER	2	0.00001	0.00001
TEALLIUM	20	0.00011	0.000051
NC	38	0.00022	0.00010

* Below Detection Limit

Air, Water & Hazardous Waste Sampling, Analysis & Consultation
Certified Hazardous Waste, Chemistry, Bacteriology & Bioassay Laboratories

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA
Newport Beach, CA • Valparaiso, IN • Westbrook, ME

Santa Barbara Division
751 S. Kellogg, Goleta, California 93117

(805) 964-7838
FAX (805) 967-4386

CLIENT: Robert Halk
Horizon Air Measurement Services
996 Lawrence Drive, Suite 108
Newbury Park, CA 91320

Lab Number : GF-1631-1
Project : A03-006 Atm.A.A./
Mountain Air LFG Recovery Plant

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLED DATE RECEIVED			
A0306-MLFGRP-MM-PF/ A0306-MLFGRP-MM-PR	Aqueous	A.P.	05/18/92 05/19/92			
CONSTITUENT	*PQL	RESULT	UNITS	METHOD	ANALYZED	BY NOTES
Antimony, Level Found	1.	ND	µg	EPA 7041	05/26/92	NG 1
Arsenic, Level Found	1.	ND	µg	EPA 7060	05/26/92	NG 1
Barium, Level Found	20.	ND	µg	EPA 7080	05/26/92	NG 1
Beryllium, Level Found	2.	ND	µg	EPA 7090	05/26/92	NG 1
Cadmium, Level Found	2.	ND	µg	EPA 7130	05/26/92	NG 1
Chromium, Level Found	2.	ND	µg	EPA 7190	05/26/92	NG 1
Copper, Level Found	0.2	0.8	µg	EPA 7210	05/26/92	BC 1
Lead, Level Found	3.	ND	µg	EPA 7420	05/26/92	NG 1
Manganese, Level Found	1.	3.	µg	EPA 7460	05/26/92	NG 1
Mercury, Level Found	0.1	ND	µg	EPA 7470	05/26/92	AS 1
Nickel, Level Found	3.	ND	µg	EPA 7520	05/26/92	NG 1
Phosphorus, Level Found	80.	ND	µg	EPA 6010	05/27/92	AS 1
Selenium, Level Found	1.	ND	µg	EPA 7740	05/26/92	NG 1
Silver, Level Found	2.	ND	µg	EPA 7760	05/26/92	BC 1
Thallium, Level Found	20.	ND	µg	EPA 7840	05/26/92	NG 1
Zinc, Level Found	1.	6.	µg	EPA 7950	05/26/92	NG 1

Santa Barbara Division Lab Certifications: CAELAP #1204; L.A.Co.CSD#10186

*RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

(1) Sample Preparation on 05/22/92 by KJP using EPA Method 3020

06/01/92

MC/nfg/jst

Respectfully submitted,
COAST-TO-COAST ANALYTICAL SERVICES, INC.

Nick F. Gaone

Nick Gaone, Inorganics Manager

Marissa Coronel
Marissa Coronel
Laboratory Director

Air, Water & Hazardous Waste Sampling, Analysis & Consultation
Certified Hazardous Waste, Chemistry, Bacteriology & Bioassay Laboratories

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA
Newport Beach, CA • Valparaiso, IN • Westbrook, ME

Santa Barbara Division
751 S. Kellogg, Goleta, California 93117

(805) 964-7838
FAX (805) 967-4386

CLIENT: Robert Halk
Horizon Air Measurement Services
996 Lawrence Drive, Suite 108
Newbury Park, CA 91320

Lab Number : GF-1631-2
Project : A03-006 Atm.A.A./
Mountain Air LFG Recovery Plant

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLED DATE RECEIVED			
A0306-MLFGRP-TM-IMP 1-3	Aqueous	A.P.	05/18/92	05/19/92		
CONSTITUENT	*PQL	RESULT	UNITS	METHOD	ANALYZED	BY NOTES
Antimony, Level Found	1.	5.	µg	EPA 7041	05/26/92	NG 1
Arsenic, Level Found	1.	5.	µg	EPA 7060	05/26/92	NG 1
Barium, Level Found	20.	ND	µg	EPA 7080	05/26/92	NG 1
Beryllium, Level Found	2.	ND	µg	EPA 7090	05/26/92	NG 1
Cadmium, Level Found	2.	ND	µg	EPA 7130	05/26/92	NG 1
Chromium, Level Found	2.	ND	µg	EPA 7190	05/26/92	NG 1
Copper, Level Found	0.2	3.4	µg	EPA 7210	05/26/92	BC 1
Lead, Level Found	3.	3.	µg	EPA 7420	05/26/92	NG 1
Manganese, Level Found	1.	40.	µg	EPA 7460	05/26/92	NG 1
Mercury, Level Found	0.1	ND	µg	EPA 7470	05/26/92	AS 1
Nickel, Level Found	3.	ND	µg	EPA 7520	05/26/92	NG 1
Phosphorus, Level Found	80.	ND	µg	EPA 6010	05/27/92	AS 1
Selenium, Level Found	1.	ND	µg	EPA 7740	05/26/92	NG 1
Silver, Level Found	2.	ND	µg	EPA 7760	05/26/92	BC 1
Thallium, Level Found	20.	ND	µg	EPA 7840	05/26/92	NG 1
Zinc, Level Found	1.	32.	µg	EPA 7950	05/26/92	NG 1

Santa Barbara Division Lab Certifications: CAELAP #1204; L.A.Co.CSD#10186

*RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)
(1) Sample Preparation on 05/22/92 by KJP using EPA Method 3020

06/01/92

MC/nfg/jst

Respectfully submitted,
COAST-TO-COAST ANALYTICAL SERVICES, INC.

Nick J. Gaone

Nick Gaone, Inorganics Manager

Marissa Coronel
Marissa Coronel
Laboratory Director

Air, Water & Hazardous Waste Sampling, Analysis & Consultation
Certified Hazardous Waste, Chemistry, Bacteriology & Bioassay Laboratories

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA
Newport Beach, CA • Valparaiso, IN • Westbrook, ME

Santa Barbara Division
751 S. Kellogg, Goleta, California 93117

(805) 964-7838
FAX (805) 967-4386

CLIENT: Robert Halk
Horizon Air Measurement Services
996 Lawrence Drive, Suite 108
Newbury Park, CA 91320

Lab Number : GF-1631-3
Project : A03-006 Atm.A.A./
Mountain Air LFG Recovery Plant

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLED DATE RECEIVED
A0306-MLFGRP-MM-IMP4 / A306-MLFGRP-MM- IMP 5&6	Aqueous	A.P.	05/18/92 05/19/92
CONSTITUENT	*POL	RESULT UNITS METHOD	ANALYZED BY NOTES
Mercury, Level Found	0.1	0.6 μ g EPA 7470 05/26/92 AS 1	

Santa Barbara Division Lab Certifications: CAELAP #1204; L.A.Co.CSD#10186

*RESULTS listed as 'ND' were not detected at or above the listed POL (Practical Quantitation Limit)
(1) Sample Preparation on 05/22/92 by KJP using EPA Method 3020

06/01/92

MC/nfg/jst

Respectfully submitted,
COAST-TO-COAST ANALYTICAL SERVICES, INC.

Nick F. Gaone
Nick Gaone, Inorganics Manager

Marissa Coronel
Marissa Coronel
Laboratory Director

Air, Water & Hazardous Waste Sampling, Analysis & Consultation
Certified Hazardous Waste, Chemistry, Bacteriology & Bioassay Laboratories

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA
Newport Beach, CA • Valparaiso, IN • West Brook, ME

Santa Barbara Division
751 S. Kellogg, Goleta, California 93117

(805) 964-7838
FAX (805) 967-4386

CLIENT: Robert Halk
Horizon Air Measurement Services
996 Lawrence Drive, Suite 108
Newbury Park, CA 91320

Lab Number : GF-1631-4
Project : A03-006 Atm.A.A./
Mountain Air LFG Recovery Plant

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLED DATE RECEIVED
A-306-MLFCRP-104-RINSE HCL	Aqueous	A.P.	05/18/92 05/19/92
CONSTITUENT	*PQL	RESULT UNITS	METHOD ANALYZED BY NOTES
Mercury, Level Found	0.1	ND	µg EPA 7470 05/26/92 AS 1

Santa Barbara Division Lab Certifications: CAELAP #1204; L.A.C.C. CSD#10186

*RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)
(1) Sample Preparation on 05/22/92 by KJP using EPA Method 3020

06/01/92

MC/nfg/jst

Respectfully submitted,
COAST-TO-COAST ANALYTICAL SERVICES, INC.

Nick J. Gaone
Nick Gaone, Inorganics Manager

Marissa Coronel
Marissa Coronel
Laboratory Director

DATE SHEET FOR PARTICULATE MATTER SCAQMD METHOD 5.1

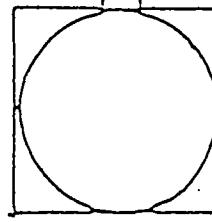
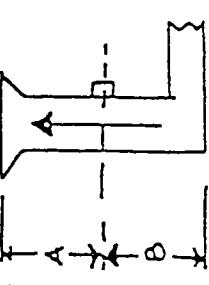
CLIENT: PLANT: SOURCE: JOB NUMBER: DATE SAMPLED: DATE EXTRACTED:	SAMPLE ID 9205163	BEAKER/ FILTER ID FILTER 235	VOLUME NA	INITIAL 0.1466	FINAL 0.1463	NET WEIGHT(g) 0
A - FILTER CATCH PROBE ACID PROBE SULFATE						
B - PROBE CATCH PROBE ACID PROBE SULFATE						
C - IMP. CATCH(INSOLUBLE) INSOLUBLE ACID INSOLUBLE SULFATE	9205164	FILTER 260	630	0.1470	0.1467	-0.0003
BLANK FILTER	FIELD BLANK	FILTER 257	250	0.1454	0.1447	-0.0007
D - IMP. CATCH(SOLUBLE) SOLUBLE ACID SOLUBLE SULFATE	9205164	BEAKER B5	630	112.2402	112.2462	0.0060
BLANK SOLUTION	FIELD BLANK	BEAKER D4	250	108.4026	108.4043	0.0043
E - ORGANIC EXTRACT BLANK EXTRACT	9205164	BEAKER D3 BEAKER C4	125 125	109.5761 108.9555	109.5777 108.9560	0.0016 0.0005

FILTER (PARTICULATE) TEMPERATURE GEATER THAN 200F

TOTAL PARTICULATE
BLANK CORRECTED
(A+B+C+D+E)-----
SOLID PARTICULATE
BLANK CORRECTED
(A+B+C+D)0.0073
0.00320.0057
0.0021

1403-006

PLANT: Mountain Gas Recovery Plant										FILTER NO. 47-235	
LOCATION: LA, CA	AMBIENT TEMP.:	BAROMETRIC PRESS., IN.HG.:		ASSUMED MOISTURE:		HEATER BOX SETTING:		PROBE LENGTH, FT.:		NOZZLE DIAMETER, IN.:	
COUNTY: San Bernardino		1		%		%		3' glass		1	
UNIT: San Gas Unit		1		%		%		1		%	
DATE: 5/18/92		1		%		%		1		%	
RUN NO/METHOD: 1 San and S.1		1		%		%		1		%	
COLD BOX NO.: 1		1		%		%		1		%	
METER BOX NO.: 1		1		%		%		1		%	
METER FACTOR: 4×1.0016 $40 = 1.7959$		1		%		%		1		%	
PITOT #/FACTOR: 4×1.0016 $40 = 1.7959$		1		%		%		1		%	
PIROMETER #: 4000		1		%		%		1		%	
MAGNEHELIC FACTOR: $\Delta P = \Delta H \cdot 0.5$		1		%		%		1		%	
1636	28	84	84	1.79	388.930	80	80	1.79	4	58	
1641	16	83	83	1.79	382.7	83	79	1.79	5	56	
1651	19	82	82	1.79	386.4	86	78	1.79	5	54	
1656	20	82	82	1.79	390.2	88	78	1.79	5	54	
1701	25	87	87	1.79	394.1	88	78	1.79	5	55	
1706	26	87	87	1.79	398.0	87	79	1.79	5	55	
1711	38	82	82	1.79	401.8	87	78	1.79	5	56	
1716	40	82	82	1.79	405.5	87	78	1.79	5	56	
1721	45	82	82	1.79	409.2	87	79	1.79	5	57	
1726	50	82	82	1.79	413.1	87	78	1.79	5	58	
1731	59	82	82	1.79	417.0	87	78	1.79	5	59	
ZERO	1736	60	82	1.79	421.0	88	78	1.79	5	59	
SPAN					424.991						
AVERAGE					46.061	82.4					
PITOT LEAK CHECK:	TOP $\Delta P =$	14	BOTTOM $\Delta P =$	14	TOP $\Delta P =$	14	BOTTOM $\Delta P =$	14	TOP $\Delta P =$	14	
BEFORE:	$\Delta P =$	1	$\Delta P =$	1	$\Delta P =$	1	$\Delta P =$	1	$\Delta P =$	1	
AFTER:	$\Delta P =$	1	$\Delta P =$	1	$\Delta P =$	1	$\Delta P =$	1	$\Delta P =$	1	
COMMENTS: <i>Refer to previous data</i>	PURGE _____										
COMMENTS: <i>Sample train leak.</i>	CFM @ 15 in. HG.										
COMMENTS: <i>CFM @ 5 in. HG.</i>											



$$T_1 = 190 - 200 = -10 \text{ °C}$$

PLANT: Marinette LFG Recovery
 LOCATION: Los Altos, CA
 COUNTY: SACMD
 UNIT: Sales Gas Line

DATE: 5/16/92
 RUN NO/METHOD: ♦1 CARD 434

COLD BOX NO.: 1
 METER BOX NO.: 1
 METER FACTOR: 1 = 1,001.6 10 = 1,395.9

PITOT #/FACTOR: ♦ Process date and backflow
 PYROMETER #: Blue
 MAGNEHELIUC FACTOR: ΔP = ΔH Q/S

FILTER NO. 47-248

AMBIENT TEMP.: 55° F

BAROMETRIC PRESS.,IN.HG.: 29.86

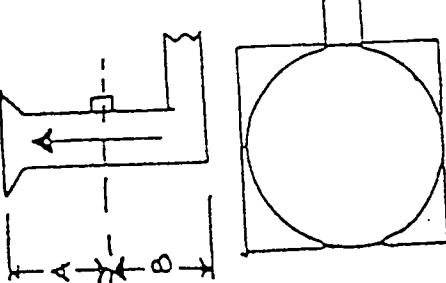
ASSUMED MOISTURE: 25%

HEATER BOX SETTING: 250

PROBE LENGTH,FT. 3' Glass

NOZZLE DIAMETER,IN.: .04

PROBE HEATER SETTING: 250


APPROX.WIND VEL.,MPH: 0-5 MPH

SAMPLE BOX TEMP.,(F): <60

STATIC PRESSURE: ~ +90 "H2O

OFFSET: 3 in. PORT DIA.: 1 in. (M) / F

TRAVERSE POINT NUMBER	DISTANCE INCHES	O2	CO2	SAMPLE TIME MIN.	STACK TEMP. (T _s) F	VELOCITY HEAD IN. H2O	PRESSURE DIFF ORIFICE METER (ΔH) IN. H2O	DRY GAS SAMPLE VOLUME (V _m) FT.	GAS SAMPLE TEMP. @DRY GAS METER		PUMP VACUUM IN.HG	TEMP. LAST IMPINGER (F)
									INLET (T _m)	OUTLET (T _m)		
1230	84.71			1130	86.74	1.79	196.208	196.208	95	84	6	57
1235	85.80					1.79	207.6	207.6	98	85	6	57
1240	87					1.79	211.2	211.2	91	87	6	56
1245	88					1.79	215.3	215.3	100	88	6	56
1250	89					1.79	219.2	219.2	101	88	6	58
1255	88					1.79	223.1	223.1	101	89	6	59
1300	89					1.79	226.9	226.9	101	89	6	60
1305	88					1.79	231.0	231.0	100	90	6	58
1310	86					1.79	235.1	235.1	99	90	6	58
1315	89					1.79	239.1	239.1	100	90	6	59
1320	88					1.79	243.0	243.0	100	91	6	59
ZERO SPAN						1.79	246.9	246.9	100	91	6	60
AVERAGE												
PITOT LEAK CHECK: BEFORE: <u>TOP ΔP = NA</u> <u>ΔP = ΔP</u>												
AFTER: <u>TOP ΔP = ΔP</u> <u>ΔP = ΔP</u>												
COMMENTS: <u>-0.5 ml sec</u>												
SIDE 1												
TOP = $374 - 400 = -26$												
SIDE 2												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												
TOP = $374 - 400 = -26$												
TOP = $301.9 - 284.4 = 25.5 \text{ ml}$												

PLANT: Montezuma Lfo Recovery

LOCATION: Sample Gas Line

COUNTY: UNIT : Sanles Gas Line

UNIT : 516/92

DATE: 1/16/92

RUN NO/METHOD: #1

COLD BOX NO.: Chas 436 (cont'd)

METER BOX NO.:

METER FACTOR:

PITOT #/ FACTOR:

PYROMETER #:

MAGNETIC FIELD FACTOR: ΔP

FILTER NO.

AMBIENT TEMP.:

BAROMETRIC PRESS.,IN.HG.:

ASSUMED MOISTURE:

HEATER BOX SETTING:

PROBE LENGTH,FT.:

NOZZLE DIAMETER,IN.:

PROBE HEATER SETTING:

APPROX.WIND VEL.,MPH:

SAMPLE BOX TEMP.,(F):

STATIC PRESSURE: "H2O

PORT DIA.: in.

IN. (M / F)

OFFSET: in.

TRAVERSE POINT NUMBER	DISTANCE INCHES	O2 (%)	CO2 (%)	SAMPLE TIME MIN.	STACK TEMP. (T _s), F	VELOCITY HEAD IN. H ₂ O	HEAD IN. H ₂ O	PRESSURE DIFF ORIFICE METER (ΔH) IN.H ₂ O	DRY GAS SAMPLE VOLUME (VM),FT.	GAS SAMPLE TEMP. @DRY GAS METER (T _m), (T _m)	INLET OUTLET IN.HG.		PUMP VACUUM	TEMP. LAST IMPINGER (F)	
											INLET	OUTLET			
After port	1330	89			1330	1.39	250.2	1.39	100	91	6	6	62	58	
	1335	89			1335	1.39	258.2	1.39	100	90	6	6	56	56	
	1340	89			1340	1.39	266.2	1.39	100	90	6	6	56	56	
	1345	89			1345	1.39	264.2	1.39	100	90	6	6	57	57	
	1350	89			1350	1.39	265.9	1.39	100	90	6	6	57	57	
	1355	89			1355	1.39	273.7	1.39	98	90	6	6	56	56	
	1400	89			1400	1.79	278.0	1.79	97	90	6	6	56	56	
	1405	89			1405	1.79	282.3	1.79	96	90	6	6	56	56	
	1410	89			1410	1.79	286.3	1.79	96	89	6	6	56	56	
	1415	89			1415	1.79	289.5	1.79	96	89	6	6	57	57	
	1420	89			1420	1.79	293.3	1.79	96	88	6	6	56	56	
	1425	89			1425	1.79	297.1	1.79	96	88	6	6	56	56	
	1430	89			1430										
AVERAGE	ZERO SPAN														
SAMPLE TRAIN LEAK: CRV @ IN. HG.															
PITOT LEAK CHECK: BEFORE: TOP ΔP = ΔP = ΔP = ΔP =				BOTTOM ΔP = ΔP = ΔP = ΔP =				COMMENTS: PURGE _____				AFTER: TOP ΔP = ΔP = ΔP = ΔP =			

100% O2

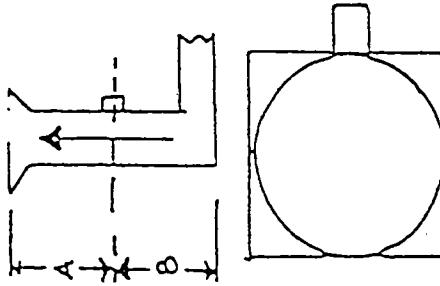
PLANT: Mountainair Leg Recovery

LOCATION:

COUNTY:

UNIT:

DATE:


RUN NO/METHOD: #1 CARS 436 (cont'd)

COLD BOX NO.:

METER BOX NO.:

METER FACTOR:

PIOT #/ PYROMETER #:

MAGNEHELIC FACTOR: ΔP AFTER: ΔP = _____AFTER: ΔP = _____

FILTER NO.

AMBIENT TEMP.:

BAROMETRIC PRESS., IN.HG.:

ASSUMED MOISTURE:

HEATER BOX SETTING:

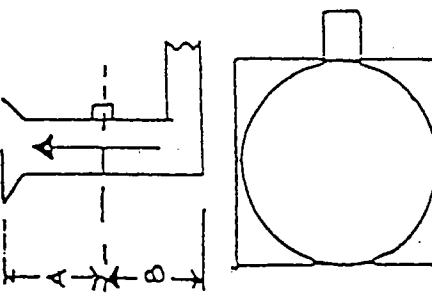
PROBE LENGTH, FT.

NOZZLE DIAMETER, IN.:

PROBE HEATER SETTING:

APPROX WIND VEL., MPH:

SAMPLE BOX TEMP., (F):


STATIC PRESSURE: "H2O

PORT DIA. : ?

in. (M / F)

TRAVERSE POINT NUMBER	DISTANCE INCHES	O2 (%)	CO2 (%)	SAMPLE TIME MIN.	STACK TEMP. (T _s) F	VELOCITY HEAD IN. H ₂ O	PRESSURE IN. H ₂ O	DRY GAS DIFF ORIFICE METER (ΔH)	GAS SAMPLE VOLUME (VM), FT.	GAS METER INLET (T _m)	GAS SAMPLE TEMP. @ DRY GAS METER (T _m)	OUTLET (T _m)	IN.HG	PUMP VACUUM	LAST IMPINGER	TEMP. (F)	
Subject					1235	88		1.79	301.0	96	87	6	56				
					1440	89		1.79	205.2	97	87	6	56				
					1445	89		1.79	209.0	96	87	6	56				
					1450	89		1.79	312.8	96	87	6	57				
					1455	89		1.79	316.6	95	87	6	57				
					1500	89		1.79	320.5	95	87	6	57				
					1505	88		1.79	324.4	95	87	6	57				
					1510	88		1.79	328.3	96	87	6	57				
					1515	88		1.79	332.2	94	87	6	58				
					1520	88		1.79	336.1	94	86	6	59				
					1525	88		1.79	339.9	94	86	6	59				
					1530	88		1.79	343.8	94	86	6	59				
					1535	88		1.79	347.7	93	86	6	57				
					AVERAGE												
PITOT LEAK CHECK:																	
BEFORE: TOP ΔP =		BOTTOM ΔP =		BEFORE: TOP ΔP =		BOTTOM ΔP =		BEFORE: TOP ΔP =		BOTTOM ΔP =		BEFORE: TOP ΔP =		BOTTOM ΔP =			

PLANT: Montaukate Let Recovery
LOCATION: _____
COUNTY: _____
UNIT: Series AHS Line
DATE: 5/18/92
RUN NO/METHOD: #1 Gees 436 (cont'd)
COLD BOX NO.: _____
METER BOX NO.: _____
METER FACTOR: _____
PILOT #/ PYROMETER #: _____
PYROMETER #: _____
MAGNETIC FIELD FACTOR: AP ΔH

FILTER NO.:	_____
AMBIENT TEMP.:	_____
BAROMETRIC PRESS. IN HG.:	_____
ASSUMED MOISTURE:	_____
HEATER BOX SETTING:	_____
PROBE LENGTH, FT.:	_____
NOZZLE DIAMETER, IN.:	_____
PROBE HEATER SETTING:	_____
APPROX. WIND VEL., MPH.:	_____
SAMPLE BOX TEMP. (F.):	_____
STATIC PREASURE:	_____
OFFSET:	_____ in.

STATIC PREASURE: _____ "H2O
OFFSET: _____ in. PORT DIA: _____ in. (M / F)

Landell Gas Flow Rate

Multi metals (1226 - 1405)

$$PSI = 6.65$$

$$T = 7.6 \text{ } (86.6^\circ\text{F})$$

$$\Delta P = 9.40$$

Correction factor 79.7018

Temp correction factor = 0.9863 0.9753

$$(9.40) \times (6.65) \times (79.7018) \times (0.9753) = 4,859 \text{ mmcf/d}$$

$$0.202 \text{ mmcf/h}$$

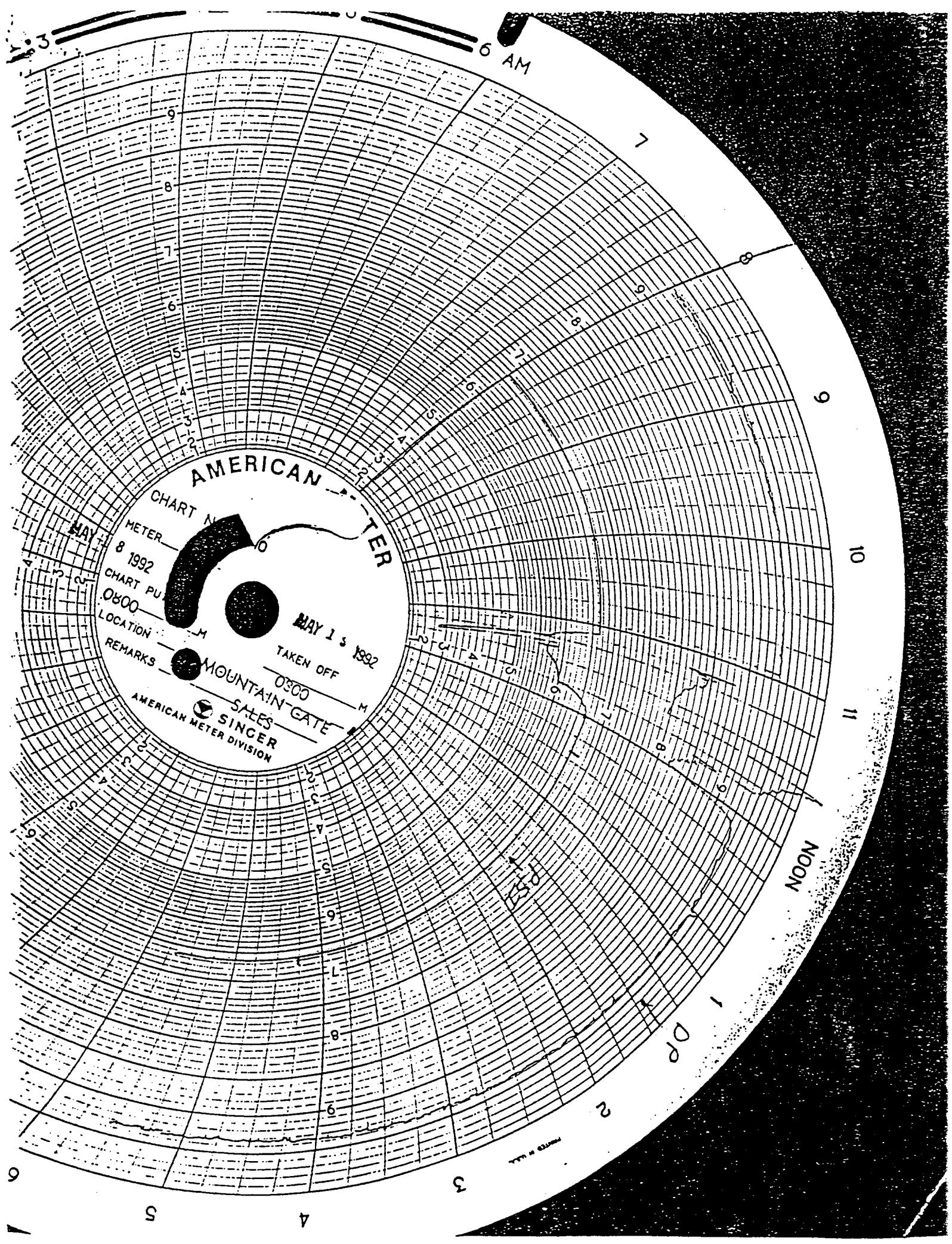
$$0.00387 \text{ mmcfm}$$

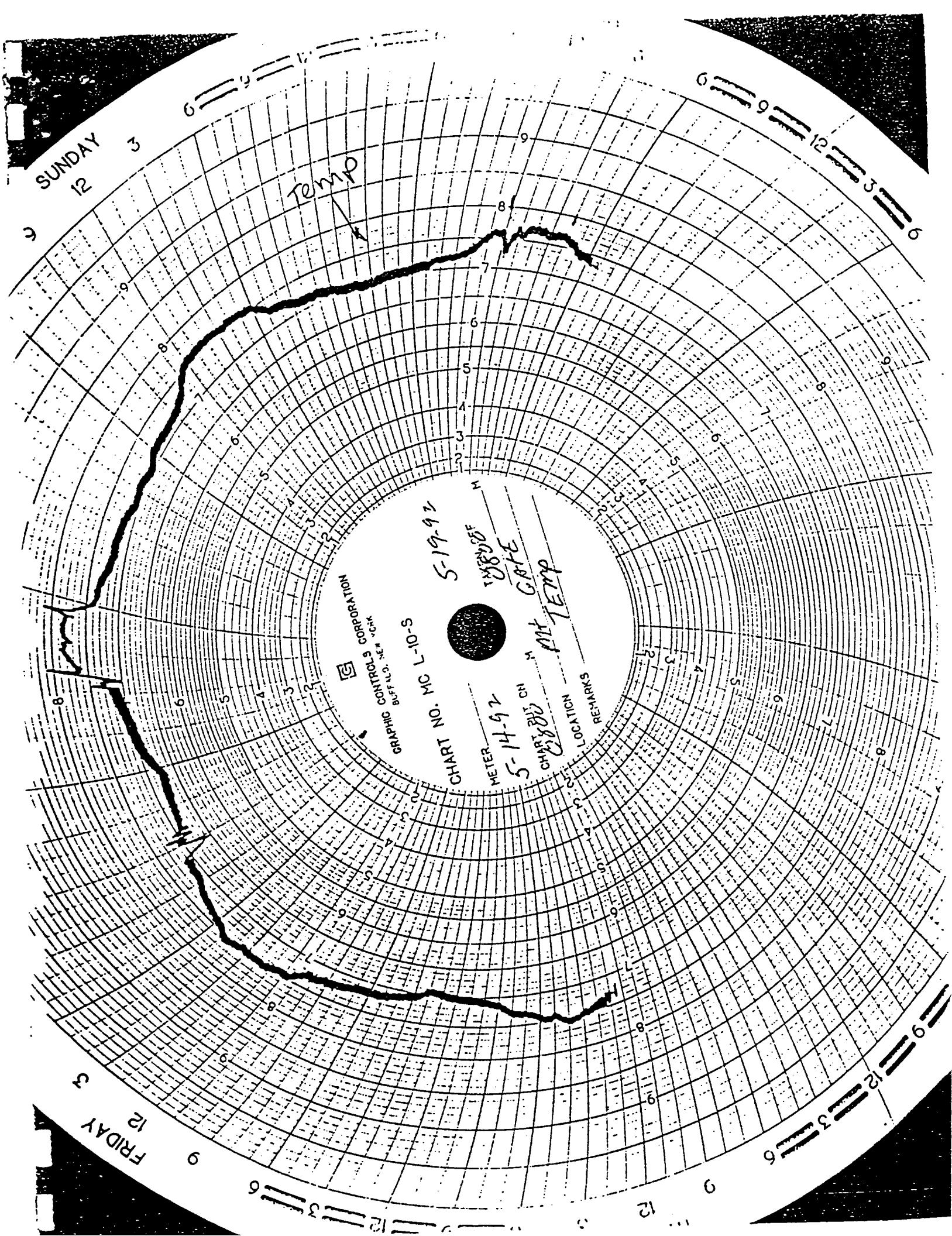
Barbeauite Melted (1636 - 1736)

$$PSI = 6.65$$

$$T = 7.5 \text{ } (84.4^\circ\text{F})$$

$$\Delta P = 9.40$$


Correction factor = 79.7018


Temp CF = 0.9774

$$(9.40)(6.65)(79.7018)(0.9774) = 4,870 \text{ mmcf/d}$$

$$0.203 \text{ mmcf/h}$$

$$0.00388 \text{ mmcfm}$$

MOUNTAINGATE PLANT

SALES GAS TEMPERATURE COEFFICIENT

<u>Sales Gas Chart Reading</u>	<u>Temperature °F</u>	<u>Temperature Coefficient</u>
6.0	54.0	1.0058
6.1	55.8	1.0041
6.2	57.7	1.0023
6.3	59.5	1.0005
6.4	61.4	0.9986
6.5	63.4	0.9968
6.6	65.3	0.9949
6.7	67.3	0.9930
6.8	69.4	0.9911
6.9	71.4	0.9892
7.0	73.5	0.9873
7.1	75.6	0.9853
7.2	77.8	0.9834
7.3	79.9	0.9826
7.4	82.1	0.9794
7.5	84.4	0.9774
7.6	86.6	0.9753
7.7	88.9	0.9733
7.8	91.3	0.9712
7.9	93.6	0.9692
8.0	96.0	0.9671
8.1	98.4	0.9650
8.2	100.9	0.9629
8.3	103.3	0.9608
8.4	105.8	0.9586
8.5	108.4	0.9565

Mountaingate Coefficient = 79.7018 based on 0° - 150° scale.