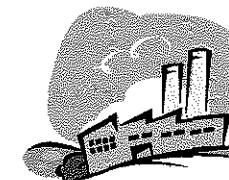


## **COMPLIANCE SOURCE EMISSIONS TEST REPORT**


*Prepared for*

**Sunnyvale Waste Water Treatment Plant  
BAAQMD Permit # A5905**

**Flare (A-8)  
THC & TNMHC  
Destruction Efficiency**

Test Date(s): September 1<sup>st</sup>, 2006  
Report Date: October 10<sup>th</sup>, 2006

**REPORT # 06095**



**Blue Sky Environmental, LLC**  
624 San Gabriel Ave  
Albany, California 94706  
510 525 1261 ph/fax  
510 508 3469 cell  
[blueskyenvironmental@yahoo.com](mailto:blueskyenvironmental@yahoo.com)

October 10<sup>th</sup>, 2006

City of Sunnyvale/Public Works  
1444 Borregas Avenue  
Sunnyvale, CA 94088

**Attn.:** Bill Theyskens

**Subject:** Source test emission report for one Flare (A-8) located at the Sunnyvale Water Pollution Control Plant, 1444 Borregas Ave, Sunnyvale, California. BAAQMD Facility #A5905. Re; Permit Condition 11586, & Reg 8 Rule 34.

**Test Date(s):** September 1<sup>st</sup>, 2006.

**Sampling Location:** The 30-40 foot tall rectangular flare required a 40' articulated boom to access the flare sampling ports.

**Sampling Personnel:** Sampling was performed by Guy Worthington of Blue Sky Environmental, LLC.

**Observing Personnel:** The BAAQMD were notified but no representatives from the BAAQMD present during the test program. Bill Theyskens and Silviana Ruiz of the City of Sunnyvale were present to coordinate testing and record flare operating conditions.

**Process Description:** The flare is used to continuously burn landfill gas and digester gas generated in the active landfill and the treatment plant. The flare is maintained at 1450°F, which is above the permitted minimum of 1400°F. The landfill and digester gas fuel flow and flare temperature are continuously recorded.

**Test Program:** The test program objective was to comply with the prevailing Permit requirements and Regulation 8 Rule 34 limits that came into effect on July 1, 2002. The flare is only required to meet hydrocarbon emission and or destruction efficiency limits.

Three 30-minute tests were performed on the flare. The continuous emission monitoring system was checked for leaks before testing, and was calibrated before and after each run with EPA protocol calibration gas standards.

One landfill gas sample was collected and analyzed to determine the %CH<sub>4</sub>, BTU and F-Factors. The LFG flowrate, BTU and F-Factor was used along with the flare exhaust %O<sub>2</sub> to determine the emission flowrate using EPA Method 19.

Three landfill gas samples were collected and analyzed by EPA 25C for NMHC and CH<sub>4</sub>.

Readings of the flare temperature and LFG flowrate were made during each test run. The facility flow monitor values were used in the calculation of the stack flowrate.

**Sampling and Analysis Methods:** The following BAAQMD sampling and analytical methods were used:

|                |                                              |
|----------------|----------------------------------------------|
| BAAQMD ST-7    | NMOC                                         |
| BAAQMD ST-14   | O <sub>2</sub>                               |
| EPA 19         | Flare exhaust flowrate by calculation, DSCFM |
| ASTM 1945/3588 | Gas analysis for BTU and F-Factor            |
| EPA 25C        | NMHC and %CH <sub>4</sub> , by GC.           |

**Continuous Emission Monitoring by BAAQMD Methods e.g., ST-5, 6, 7, 13A, 14 and 19A.** These methods are all continuous monitoring techniques using instrumental analyzers to measure carbon dioxide (CO<sub>2</sub>), carbon monoxide (CO), non-methane hydrocarbons (NMHC), nitrogen oxides (NO<sub>x</sub>), oxygen (O<sub>2</sub>) and sulfur dioxide (SO<sub>2</sub>) respectively. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample and analyzing it by continuous monitoring gas analyzers in a CEM test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, glass moisture-knockout condensers in ice, Teflon sample transfer tubing, diaphragm pump and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI was provided to each analyzer to avoid pressure variable response differences. The entire sampling system was leak checked prior to and at the end of the sampling program.

The sampling and analytical system (for BAAQMD Methods) was calibrated at the beginning and end of each test run. The calibration gases were selected to fall approximately within 80 to 90 percent of the instrument range. Zero and calibration drift values were determined for each test. All calibration gases are EPA Protocol #1. The analyzer data recording system consists of Omega 3 channel strip chart recorders, which can be supported by a PC/laptop based Data Acquisition System (DAS).

Gas samples were collected by gradually collecting an integrated sample in a teflar bag from the positive pressure in the fuel line. The ASTM 1945 samples were collected on the day of the flare test, from the flare fuel line.

**Instrumentation:** The following continuous emissions analyzers were used:

| Instrument      | Analyte        | Principle    |
|-----------------|----------------|--------------|
| Ratfisch, RS-55 | THC            | FID          |
| Rosemount 755R  | O <sub>2</sub> | Paramagnetic |

**Test Results:** The emission results are presented in Table 1 on the following page. Concentrations and emissions from the flare meet the permit limits. Since the NMHC emissions are less than 30 ppm @ 3% O<sub>2</sub>, the NMHC Destruction Efficiency limit is not also required to be satisfied.

|                                                   | Flare (A-8)<br>Avg | Permit Limit |
|---------------------------------------------------|--------------------|--------------|
| NMHC ppm as CH <sub>4</sub> @ 3% O <sub>2</sub>   | <2.19              | 30           |
| NMHC Destruction or Removal Efficiency (DRE)      | >97.8%             | 98%          |
| THC (TOC) Destruction or Removal Efficiency (DRE) | 100.0%             | 98%          |

The appendices are organized as follows:

Calculations

All the calculations performed on the continuous emissions monitoring (CEM) data and flow rate calculations are presented in this section.

Laboratory Reports

All laboratory reports and chain of custody.

Field Data Sheets

All the CEMS data, any transcribed data from the strip charts.

Strip Chart Records

The strip chart records of all the CEM data.

Calibration Gas Certifications

Certifications for the calibration gas standards.

Stack Diagram

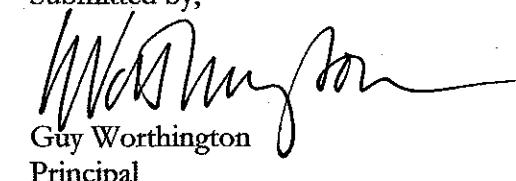
Sketch or photograph of the stack.

Sample System Diagram

Schematic of the sampling system configuration.

Permit to Operate / ATC

Permit to Operate / Authority to Construct.


Source Test Plan

Sampling protocols submitted to the BAAQMD prior to testing.

**Comments:** The details and results contained within this report are to the best of Blue Sky Environmental, LLC's knowledge an authentic and accurate representation of the test program. If this report is submitted for Compliance purposes, it should be only reproduced in its entirety.

If there are any questions concerning this report, please contact Guy Worthington at 510 525 1261.

Submitted by,



Guy Worthington  
Principal

TABLE #1

Sunnyvale WWTP  
Flare  
1450°F

| RUN                                              | 1                | 2                | 3                | AVERAGE          | LIMITS                          |
|--------------------------------------------------|------------------|------------------|------------------|------------------|---------------------------------|
| Test Date                                        | 09/01/06         | 09/01/06         | 09/01/06         |                  |                                 |
| Test Time                                        | 0717-0747        | 0754-0824        | 0830-0900        |                  |                                 |
| Standard Temp., °F                               | 70               | 70               | 70               |                  |                                 |
| Flare Temp., °F                                  | 1,458            | 1,443            | 1,456            | 1,452            |                                 |
| Fuel Flow Rate, DSCFM                            | 555              | 555              | 552              | 554              |                                 |
| Exhaust Flow Rate, DSCFM (Method 19)             | 6,322            | 6,043            | 5,947            | 6,104            |                                 |
| Oxygen, O <sub>2</sub> , %                       | 13.00            | 12.63            | 12.54            | 12.72            |                                 |
| THC, ppm                                         | 1.5              | 1.8              | 1.4              | 1.6              |                                 |
| THC, lbs/hr as CH <sub>4</sub>                   | 0.023            | 0.026            | 0.021            | 0.024            |                                 |
| CH <sub>4</sub> , ppm                            | 1.5              | 1.8              | 1.4              | 1.6              | <30 ppm                         |
| NMHC, ppm as CH <sub>4</sub>                     | <1               | <1               | <1               | <1               | NMHC @ 3%O <sub>2</sub> or >98% |
| NMHC, lbs/hr as CH <sub>4</sub>                  | <0.016           | <0.015           | <0.015           | <0.015           | THC DRE                         |
| NMHC, ppm @ 3% O <sub>2</sub> as CH <sub>4</sub> | <2.27            | <2.16            | <2.14            | <2.19            |                                 |
| INLET NMHC ppm as CH <sub>4</sub>                | 492.0            | 492.0            | 492.0            | 492.0            |                                 |
| INLET NMHC lbs/hr as CH <sub>4</sub>             | 0.68             | 0.68             | 0.67             | 0.68             |                                 |
| <b>NMHC Removal Efficiency</b>                   | <b>&gt;97.7%</b> | <b>&gt;97.8%</b> | <b>&gt;97.8%</b> | <b>&gt;97.8%</b> | <b>98</b>                       |
| INLET CH <sub>4</sub> , ppm                      | 442,000          | 442,000          | 442,000          | 442,000          |                                 |
| INLET THC (TOC) ppm as CH <sub>4</sub>           | 442,492          | 442,492          | 442,492          | 442,492          |                                 |
| INLET THC (TOC) lbs/hr as CH <sub>4</sub>        | 609.6            | 609.6            | 606.3            | 608.5            |                                 |
| <b>THC (TOC) Removal Efficiency</b>              | <b>100.0%</b>    | <b>100.0%</b>    | <b>100.0%</b>    | <b>100.0%</b>    | <b>98</b>                       |

## WHERE,

ppm = Parts Per Million Concentration

Lbs/hr = Pound Per Hour Emission Rate

Tstd. = Standard Temp. (°R = °F+460)

MW = Molecular Weight

DSCFM = Dry Standard Cubic Feet Per Minute

TOC = THC = Total Organic Carbon as Methane including CH<sub>4</sub> (MW = 16)

THC = Total Hydrocarbons as Methane (MW = 16)

NMHC = Total Non-Methane Hydrocarbons as Methane (MW = 16)

## CALCULATIONS,

PPM @ 15% O<sub>2</sub> = ppm \* 5.9 / (20.9 - %O<sub>2</sub>)PPM @ 3% O<sub>2</sub> = ppm \* 17.9 / (20.9 - %O<sub>2</sub>)

Lbs/hr = ppm x 8.223 E-05 x DSCFM x MW / Tstd. °R

Lbs/day = Lbs/hr \* 24

THC (TOC) Removal Efficiency = (inlet lbs/hr- outlet lbs/hr) / inlet lbs/hr

## **APPENDICES**

**Calculations**

**Laboratory Reports**

**Field Data Sheets**

**Strip Chart Records**

**QC Calibration Gas Certifications**

**Stack Diagram**

**Sample System Diagram**

**Permit/Authority to Construct**

**Source Test Plan**

## **Calculations**

BLUE SKY ENVIRONMENTAL, LLC

CEM BIAS CORRECTION SUMMARY

Facility: Sunnyvale WWTP  
 Unit: Flare  
 Condition: 1450°F  
 Date: 09-01-06

Barometric: 29.92  
 Leak Check: OK  
 Strat. Check:  
 Personnel: gw

|                 | O <sub>2</sub> |  |  |  | THC   | CH4   | NMHC |  |      |
|-----------------|----------------|--|--|--|-------|-------|------|--|------|
| Analyzer        | 755R           |  |  |  | RS-55 | RS-55 |      |  |      |
| Range           | 25             |  |  |  | 50    | 50    |      |  | x    |
| Units, ppm or % | %              |  |  |  | ppm   | ppm   |      |  |      |
| Span Gas Value  | 20.95          |  |  |  | 45.6  | 45.6  |      |  | Ccal |

|            |       |  |  |  |      |      |      |  |                     |
|------------|-------|--|--|--|------|------|------|--|---------------------|
| Run 1      | 0.00  |  |  |  | 0.0  | 0.0  |      |  | zero (initial), Cib |
| Test Time: | 20.95 |  |  |  | 45.6 | 45.6 |      |  | cal (initial), Cib  |
| 0717-0747  | 12.89 |  |  |  | <1   | <1   |      |  | TEST AVG, Cavg      |
|            | 0.38  |  |  |  | -1.0 | -1.0 |      |  | zero (final), Cfb   |
|            | 20.38 |  |  |  | 45.0 | 45.0 |      |  | cal (final), Cfb    |
|            | 2%    |  |  |  | -2%  | -2%  |      |  | % zero drift        |
|            | -2%   |  |  |  | -1%  | -1%  |      |  | % cal drift         |
|            | 13.00 |  |  |  | <1.5 | <1.5 | <1.0 |  | Cgas                |

|            |       |  |  |  |      |      |      |  |                     |
|------------|-------|--|--|--|------|------|------|--|---------------------|
| Run 2      | 0.38  |  |  |  | -1.0 | -1.0 |      |  | zero (initial), Cib |
| Test Time: | 20.38 |  |  |  | 45.0 | 45.0 |      |  | cal (initial), Cib  |
| 0754-0824  | 12.40 |  |  |  | <1   | <1   |      |  | TEST AVG, Cavg      |
|            | 0.50  |  |  |  | -0.5 | -0.5 |      |  | zero (final), Cfb   |
|            | 20.18 |  |  |  | 44.0 | 44.0 |      |  | cal (final), Cfb    |
|            | 1%    |  |  |  | 1%   | 1%   |      |  | % zero drift        |
|            | -1%   |  |  |  | -2%  | -2%  |      |  | % cal drift         |
|            | 12.63 |  |  |  | <1.8 | <1.8 | <1.0 |  | Cgas                |

|            |       |  |  |  |      |      |      |  |                     |
|------------|-------|--|--|--|------|------|------|--|---------------------|
| Run 3      | 0.50  |  |  |  | -0.5 | -0.5 |      |  | zero (initial), Cib |
| Test Time: | 20.18 |  |  |  | 44.0 | 44.0 |      |  | cal (initial), Cib  |
| 0830-0900  | 12.25 |  |  |  | <1   | <1   |      |  | TEST AVG, Cavg      |
|            | 0.60  |  |  |  | -0.3 | -0.3 |      |  | zero (final), Cfb   |
|            | 20.00 |  |  |  | 42.7 | 42.7 |      |  | cal (final), Cfb    |
|            | 0%    |  |  |  | 1%   | 1%   |      |  | % zero drift        |
|            | -1%   |  |  |  | -3%  | -3%  |      |  | % cal drift         |
|            | 12.54 |  |  |  | <1.4 | <1.4 | <1.0 |  | Cgas                |

Pollutant Concentration (Cgas) = (Cavg - Co) x Ccal / (Cbcal - Co)

Zero and Calibration Drift = 100 x (Cfb - Cib) / x

Co = (Cib + Cfb) / 2 for zero gas

Cbcal = (Cif + Cfb) / 2 for cal gas

## STACK GAS FLOW RATE DETERMINATION -- Method 19

Facility: Sunnyvale WWTP  
 Unit: Flare  
 Condition: 1450°F  
 Date: 09/01/06

|                                | Time:<br>Run: | 0717-0747<br>1 | 0754-0824<br>2 | 0830-0900<br>3 |                       |
|--------------------------------|---------------|----------------|----------------|----------------|-----------------------|
| # cubic feet/rev               | scfm          | 555            | 555            | 552            | ft <sup>3</sup>       |
| # of seconds/rev               |               | 60             | 60             | 60             | seconds               |
| Gas Line Pressure (PSIG)       |               | 0.0            | 0.0            | 0.0            | PSI Gauge             |
| Gas Line Pressure (PSIA)       |               | 14.7           | 14.7           | 14.7           | PSI Absolute          |
| Gross Calorific Value @ 60°F   |               | 447.5          | 447.5          | 447.5          | Btu / ft <sup>3</sup> |
| Stack Oxygen                   |               | 13.0           | 12.6           | 12.5           | %                     |
| Gas Fd-Factor @ 60°F           |               | 9,625.0        | 9,625.0        | 9,625.0        | DSCF/MMBtu            |
| Gas Temperature (°F)           |               | 70             | 70             | 70             | °F                    |
| Standard Temperature (°F) Tstd |               | 70             | 70             | 70             | °F                    |

|                                   |        |        |        |           |
|-----------------------------------|--------|--------|--------|-----------|
| Realtime Fuel Rate (CFM)          | 555.0  | 555.0  | 552.0  | CFM       |
| Corrected Fuel Rate (SCFM) @ Tstd | 555.0  | 555.0  | 552.0  | SCFM      |
| Fuel Flowrate (SCFH)              | 33,300 | 33,300 | 33,120 | SCFH      |
| Million Btu per minute            | 0.244  | 0.244  | 0.242  | MMBtu/min |
| Heat Input (MMBtu/hour)           | 14.6   | 14.6   | 14.5   | MMBtu/Hr  |

Stack Gas Flow Rate @ Tstd

|       |       |       |       |
|-------|-------|-------|-------|
| 6,322 | 6,043 | 5,947 | DSCFM |
|-------|-------|-------|-------|

## WHERE:

Gas Fd-Factor = Fuel conversion factor (ratio of combustion gas volumes to heat inputs)  
 MMBtu = Million Btu

## CALCULATIONS:

$$\text{SCFM} = \text{CFM} * (460 + \text{Tstd}) * (\text{PSIA}) / 14.7 / (460 + \text{Gas}^{\circ}\text{F})$$

$$\text{SCFH} = \text{SCFM} * 60$$

$$\text{MMBtu/min} = \text{SCFM} * (\text{Btu}/\text{ft}^3) * (520 / (460 + \text{Tstd})) / 1,000,000$$

$$\text{MMBtu/hr Heat Input} = \text{MMBtu/min} * 60$$

$$\text{DSCFM} = \text{Gas Fd-Factor} * ((460 + \text{Tstd}) / 520) * \text{MMBtu/min} * 20.9 / (20.9 - \text{O}_2\%)$$

BLUE SKY ENVIRONMENTAL, LLC

Fd-FACTOR CALCULATION

Landfill Gas

Sample ID: 25C +CH4  
Date: 09/01/06

|                                                   | Molecular Weight | Ideal Gas Specific Gravity, $G_i$ | Total Calorific Value, $H_i$ | Compressibility Summation Factor, $\beta_i$ | Specific Volume, $\text{ft}^3/\text{lb}$ | Composition Mole Fraction, $x_i$ | Specific Gravity Fraction, $x_i G_i$ | Calorific Value Fraction, $x_i H_i$ | Compressibility Factor, $x_i \beta_i$ | $x_i \text{MW}$ | Weight Fraction, $x_i \text{MW} / \sum x_i \text{MW}$ | CARBON Weight Fraction | HYDROGEN Weight fraction | OXYGEN Weight fraction | NITROGEN Weight fraction | SULFUR Weight fraction | CHONS SUM | Specific Volume, $\text{ft}^3/\text{lb}$ |        |
|---------------------------------------------------|------------------|-----------------------------------|------------------------------|---------------------------------------------|------------------------------------------|----------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|-----------------|-------------------------------------------------------|------------------------|--------------------------|------------------------|--------------------------|------------------------|-----------|------------------------------------------|--------|
| Helium‡                                           | 4.00             | 0.1382                            | 0.0                          | -0.0170                                     | 187.723                                  | 0.0000                           | 0.0000                               | 0.0                                 | 0.0000                                | 0.0000          |                                                       |                        |                          |                        |                          |                        |           |                                          |        |
| Hydrogen (H <sub>2</sub> )‡                       | 2.02             | 0.0696                            | 324.9                        |                                             |                                          |                                  |                                      |                                     |                                       |                 |                                                       |                        |                          |                        |                          |                        | 0.0000    | 0.2236                                   | 3.0065 |
| Nitrogen                                          | 28.01            | 0.9672                            | 0.0                          | 0.0164                                      | 13.443                                   | 0.2230                           | 0.2157                               | 0.0                                 | 0.0037                                | 6.2462          | 0.2236                                                |                        |                          |                        |                          |                        | 0.0135    | 0.1598                                   |        |
| Oxygen                                            | 32.00            | 1.1053                            | 0.0                          |                                             | 11.819                                   | 0.0118                           | 0.0130                               | 0.0                                 | 0.0000                                | 0.3776          | 0.0135                                                |                        |                          |                        |                          |                        | 0.0000    | 0.0000                                   |        |
| Carbon Monoxide                                   | 28.01            | 0.9671                            | 321.3                        | 0.0217                                      | 13.506                                   | 0.0000                           | 0.0000                               | 0.0                                 | 0.0000                                | 0.0000          | 0.0000                                                | 0.0135                 | 0.0000                   | 0.0000                 | 0.0000                   | 0.0000                 | 0.0000    |                                          |        |
| Carbon Dioxide‡                                   | 44.01            | 1.5194                            | 0.0                          | 0.0640                                      | 8.548                                    | 0.3230                           | 0.4908                               | 0.0                                 | 0.0207                                | 14.2152         | 0.5090                                                | 0.1389                 | 0.0000                   | 0.3701                 |                          |                        | 0.5090    | 4.3508                                   |        |
| Methane                                           | 16.04            | 0.5539                            | 1012.0                       | 0.0436                                      | 23.565                                   | 0.4420                           | 0.2448                               | 447.3                               | 0.0193                                | 7.0897          | 0.2538                                                | 0.1901                 | 0.0638                   |                        |                          |                        | 0.2539    | 5.9819                                   |        |
| Ethane                                            | 30.01            | 1.0382                            | 1772.9                       | 0.0917                                      | 12.455                                   | 0.0000                           | 0.0000                               | 0.0                                 | 0.0000                                | 0.0000          | 0.0000                                                | 0.0000                 | 0.0000                   |                        |                          |                        | 0.0000    | 0.0000                                   |        |
| Propane                                           | 44.09            | 1.5224                            | 2523.0                       | 0.1342                                      | 8.365                                    | 0.0000                           | 0.0000                               | 0.0                                 | 0.0000                                | 0.0000          | 0.0000                                                | 0.0000                 | 0.0000                   |                        |                          |                        | 0.0000    | 0.0000                                   |        |
| Isobutane                                         | 58.12            | 2.0067                            | 3260.1                       | 0.1744                                      | 6.321                                    | 0.0000                           | 0.0000                               | 0.0                                 | 0.0000                                | 0.0000          | 0.0000                                                | 0.0000                 | 0.0000                   |                        |                          |                        | 0.0000    | 0.0000                                   |        |
| n-Butane                                          | 58.12            | 2.0067                            | 3269.6                       | 0.1825                                      | 6.321                                    | 0.0000                           | 0.0000                               | 0.0                                 | 0.0000                                | 0.0000          | 0.0000                                                | 0.0000                 | 0.0000                   |                        |                          |                        | 0.0000    | 0.0000                                   |        |
| Isopentane                                        | 72.14            | 2.4910                            | 4009.4                       | 0.2276                                      | 5.252                                    | 0.0000                           | 0.0000                               | 0.0                                 | 0.0000                                | 0.0000          | 0.0000                                                | 0.0000                 | 0.0000                   |                        |                          |                        | 0.0000    | 0.0000                                   |        |
| n-Pentane                                         | 72.14            | 2.4910                            | 4018.5                       | 0.2377                                      | 5.252                                    | 0.0000                           | 0.0000                               | 0.0                                 | 0.0000                                | 0.0000          | 0.0000                                                | 0.0000                 | 0.0000                   |                        |                          |                        | 0.0000    | 0.0000                                   |        |
| Hexanes                                           | 86.17            | 2.9753                            | 4758.0                       | 0.2830                                      | 4.398                                    | 0.0000                           | 0.0000                               | 0.0                                 | 0.0000                                | 0.0000          | 0.0000                                                | 0.0000                 | 0.0000                   |                        |                          |                        | 0.0000    | 0.0000                                   |        |
| <b>Total</b>                                      |                  |                                   |                              |                                             |                                          | 0.9998                           | 0.964                                | 447.3                               | 0.0229                                | 27.9287         | 1.0000                                                | 0.3290                 | 0.0638                   | 0.3836                 | 0.2236                   | 0.0000                 | 1.0000    | 13.50 $\text{ft}^3/\text{lb}$            |        |
| ‡ Omitted from Compressibility Factor Calculation |                  |                                   |                              |                                             |                                          |                                  |                                      |                                     |                                       |                 |                                                       |                        |                          |                        |                          |                        |           |                                          |        |

Calculated Specific Gravity (SG) ( $\text{Air} = 1.000 @ 760\text{mm Hg, } 60^\circ\text{F}$ ) **0.964**

Compressibility Factor (Z) **0.9995**

$$Z = 1 - \left[ \left( \sum x_i \sqrt{\beta_i} \right)^2 + \left( 2x_H \cdot x_H^2 \right) (0.0005) \right]$$

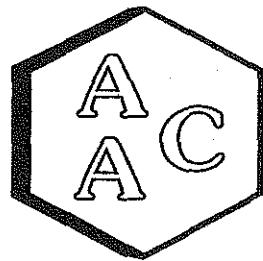
Specific Gravity (corrected) **0.965**

Specific Volume, (SV)  $\text{ft}^3/\text{lb}$  **13.50**  $\text{ft}^3/\text{lb}$

Gross Calorific Value (GCV) @  $60^\circ\text{F}$  **447.5**  $\text{Btu}/\text{ft}^3$  Gross

Gross Calorific Value (GCV) @  $68^\circ\text{F}$  **440.8**  $\text{Btu}/\text{ft}^3$  Gross

Ideal Gross Calorific Value (GCV) **6,041**  $\text{Btu}/\text{lb}$


$$Btu/\text{lb} = Btu/\text{ft}^3 \cdot \rho^3/\text{lb}$$

Gas Fd-Factor @  $68^\circ\text{F}$  **9,773**  $\text{DSCF/MMBtu}$

$$DSCF/MMBtu = 10^6 \cdot \left[ (3.64\% H_2) + (1.53\% O_2) + (0.57\% S) + (0.14\% N_2) + (0.46\% CO_2) \right] / Btu/\text{lb}$$

Gas Fd-Factor @  $60^\circ\text{F}$  **9,625**  $\text{DSCF/MMBtu}$

## **Laboratory Reports**



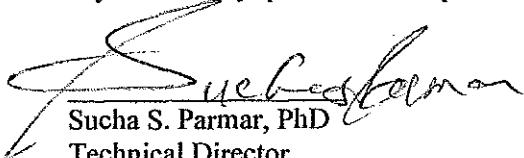
## Atmospheric Analysis & Consulting, Inc.

CLIENT : Blue Sky Environmental, LLC  
PROJECT NAME : SUNNY VALE  
AAC PROJECT NO. : 060678  
REPORT DATE : 09/07/2006

On September 05, 2006, Atmospheric Analysis & Consulting, Inc. received one (1) Tedlar Bag for non-methane organic compounds analysis by EPA 25C and ASTM D-1945, which includes Hydrocarbons analysis by EPA method 18 and fixed gases analysis by EPA 3C. Upon receipt the sample was assigned a unique Laboratory ID number as follows:

| Client ID     | Lab No.       |
|---------------|---------------|
| SUNNYVALE - 1 | 060678- 18486 |

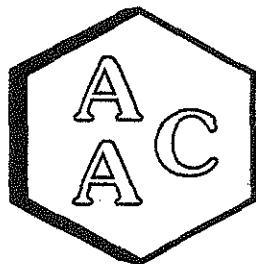
EPA 25C Analysis - Up to a 1 mL aliquot of samples is injected into the GC/FID/TCA for analysis following EPA 25C as specified in the SOW.


EPA 18 - An aliquot of the gaseous sample is injected into the GC/FID for analysis following EPA 18 as specified in the SOW.

EPA 3C - An aliquot of the gaseous sample is injected into the GC/FID for analysis following EPA 3C as specified in the SOW.

No problems were encountered during receiving, preparation, and/ or analysis of this sample. The test results included in this report meet all requirements of the NELAC Standards and/or AAC SOP# AACI-EPA 25C, EPA 18 and EPA 3C.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Release of the data contained in this hardcopy data package and its electronic data deliverable submitted on diskette has been authorized by the Laboratory Director or his designee, as verified by the following signature.


If you have any questions or require further explanation of data results, please contact the undersigned.

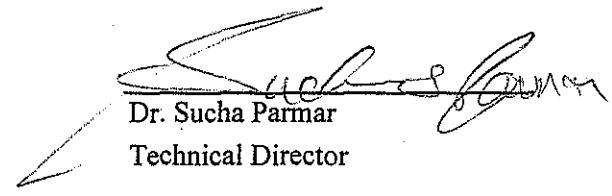


Sucha S. Parmar, PhD  
Technical Director

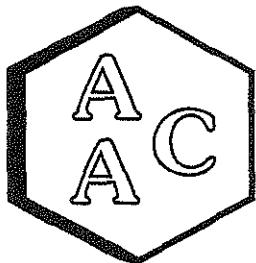
This report consists of 11 pages.






## Laboratory Analysis Report

Client: : Blue Sky Environmental, LLC  
Project No. : 060678  
Matrix : air  
Units : %


Sampling Date : 09/01/2006  
Receiving Date : 09/05/2006  
Analysis Date : 09/05/2006  
Report Date : 09/07/2006

### EPA Method 3C

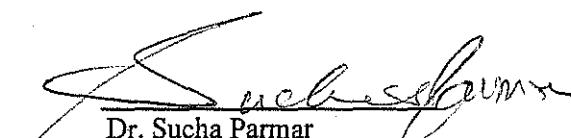
| Detection Limit: 0.1 % |              |          | Analyte |          |    |         |      |
|------------------------|--------------|----------|---------|----------|----|---------|------|
| Client ID              | AAC ID       | Hydrogen | Oxygen  | Nitrogen | CO | Methane | CO2  |
| SUNNYVALE-1            | 060678-18486 | ND       | 1.18    | 22.3     | ND | 44.2    | 32.3 |



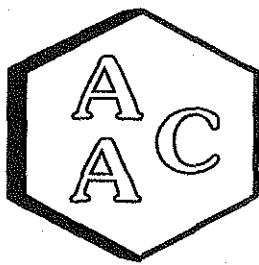
Dr. Sucha Parmar  
Technical Director



## *Laboratory Analysis Report*


CLIENT: : Blue Sky Environmental  
PROJECT NO. : 060678  
MATRIX : AIR  
UNITS : PPMV

SAMPLING DATE : 09/01/2006  
RECEIVING DATE : 09/05/2006  
ANALYSIS DATE : 09/05/2006  
REPORT DATE : 09/07/2006


| Client ID   | AAC ID       | ANALYSIS METHOD |      | EPA Method 18 |      |      |      |      |
|-------------|--------------|-----------------|------|---------------|------|------|------|------|
|             |              | Detection Limit |      | 0.3 ppmv      |      |      |      |      |
|             |              | C1              | C2** | C3**          | C4   | C5   | C6   | C6+  |
| SUNNYVALE-1 | 060678-18486 | *               | <30  | <30           | 6.03 | 0.51 | 2.94 | 4.71 |

\* C1 Value from EPA 3C Report

\*\* Due to the extremely high C1 concentration, the C2 and C3 concentration  
could not be measured below this PQL due to matrix interference.

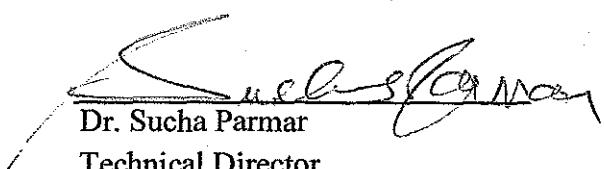


Dr. Sucha Parmar  
Technical Director



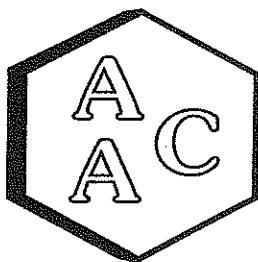
## Atmospheric Analysis & Consulting, Inc.

### *Laboratory Analysis Report*


Client : Blue Sky Environmental, LLC  
Project No. : 060678  
Matrix : air  
Units : ppmv

Sampling Date : 09/01/2006  
Receiving Date : 09/05/2006  
Analysis Date : 09/06/2006  
Report Date : 09/07/2006

#### EPA Method 25C


|                         |              |          |
|-------------------------|--------------|----------|
| <i>Detection Limit:</i> |              | 0.3 ppmv |
| Client Sample ID        | AAC ID       | NMHC**   |
| SUNNYVALE-1             | 060678-18486 | 492      |

\*\*Non-Methane Hydrocarbons as methane



Dr. Sucha Parmar  
Technical Director





# Atmospheric Analysis & Consulting, Inc.

## Quality Control/Quality Assurance Report

Date Analyzed: 9/5/06

Analyst: SW

Instrument ID: TCD#1

Units: %

### I - Method Blank-EPA Method 3C

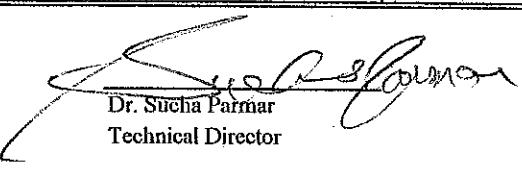
| AAC ID       | Analyte  | MB Concentration |
|--------------|----------|------------------|
| Method Blank | Hydrogen | ND               |
|              | Oxygen   | ND               |
|              | Nitrogen | ND               |
|              | CO       | ND               |
|              | Methane  | ND               |
|              | CO2      | ND               |

### II-Laboratory Control Spike & Duplicate - EPA Method 3C

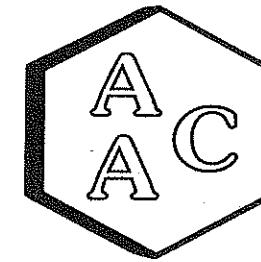
| AAC ID                | Analyte  | Spike Added | LCS Result | LCSD Result | LCS % Rec. * | LCSD % Rec. * | % RPD*** |
|-----------------------|----------|-------------|------------|-------------|--------------|---------------|----------|
| Lab Control Standards | Hydrogen | 20.0        | 18.1       | 18.3        | 90.4         | 91.3          | 1.0      |
|                       | Nitrogen | 20.0        | 20.4       | 20.4        | 101.8        | 102.2         | 0.4      |
|                       | CO       | 20.0        | 19.0       | 19.1        | 95.2         | 95.6          | 0.4      |
|                       | Methane  | 20.0        | 21.1       | 21.2        | 105.4        | 105.8         | 0.4      |
|                       | CO2      | 20.0        | 19.8       | 19.6        | 98.8         | 98.2          | 0.6      |

### III - Duplicate Analysis - EPA Method 3C

| AAC ID       | Analyte  | Sample Concentration | Duplicate Concentration | Mean | % RPD*** |
|--------------|----------|----------------------|-------------------------|------|----------|
| 060660-18381 | Hydrogen | 0.0                  | 0.0                     | 0.0  | 0.0      |
|              | Oxygen   | 15.6                 | 15.7                    | 15.6 | 0.7      |
|              | Nitrogen | 61.2                 | 61.3                    | 61.2 | 0.1      |
|              | CO       | 0.0                  | 0.0                     | 0.0  | 0.0      |
|              | Methane  | 0.0                  | 0.0                     | 0.0  | 0.0      |
|              | CO2      | 0.3                  | 0.3                     | 0.3  | 1.0      |


### IV-Matrix Spike & Duplicate- EPA Method 3C

| AAC ID       | Analyte  | Sample Concentration | Spike Added | MS Result | MSD Result | MS % Rec. ** | MSD % Rec. ** | % RPD** |
|--------------|----------|----------------------|-------------|-----------|------------|--------------|---------------|---------|
| 060660-18381 | Hydrogen | 0.0                  | 10.0        | 8.5       | 7.9        | 85           | 79            | 7.3     |
|              | Nitrogen | 30.6                 | 10.0        | 40.4      | 41.0       | 98           | 104           | 5.5     |
|              | CO       | 0.0                  | 10.0        | 9.9       | 9.6        | 99           | 96            | 2.1     |
|              | Methane  | 0.0                  | 10.0        | 10.9      | 10.6       | 109          | 106           | 2.1     |
|              | CO2      | 0.2                  | 10.0        | 10.1      | 10.0       | 100          | 98            | 1.4     |


\* Must be 85-115%

\*\* Must be 75-125%

\*\*\* Must be < 25%

  
Dr. Sucha Parmar  
Technical Director





## Atmospheric Analysis & Consulting, Inc.

### *Quality Control/Quality Assurance Report*

Date Analyzed: 9/5/06

Analyst: SW

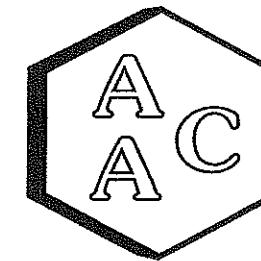
Instrument ID: TCD#1

Calibration Date: 04/03/06

#### Opening Calibration Verification Standard

| Analyte         | xCF** | CF    | %RPD* |
|-----------------|-------|-------|-------|
| Hydrogen        | 2147  | 2120  | 1.2   |
| Oxygen***       | 58602 | 58520 | 0.1   |
| Nitrogen        | 65056 | 62925 | 3.3   |
| Carbon Monoxide | 72946 | 67341 | 8.0   |
| Methane         | 60595 | 57125 | 5.9   |
| Carbon Dioxide  | 97830 | 93328 | 4.7   |

#### Closing Calibration Verification Standard


| Analyte         | xCF** | CF    | %RPD* |
|-----------------|-------|-------|-------|
| Hydrogen        | 2147  | 2042  | 5.0   |
| Nitrogen        | 65056 | 62833 | 3.5   |
| Carbon Monoxide | 72946 | 63539 | 13.8  |
| Methane         | 60595 | 54882 | 9.9   |
| Carbon Dioxide  | 97830 | 90101 | 8.2   |

\* Must be <15%

\*\* Average Calibration Factor from Initial Calibration Curve

\*\*\* Oxygen from Lab Air





# Atmospheric Analysis & Consulting, Inc.

## Quality Control/Quality Assurance Report

Date Analyzed: 9/5/06  
Analyst: SW

Instrument ID: FID#3  
Units: PPMV

### I - Method Blank-EPA Method 18

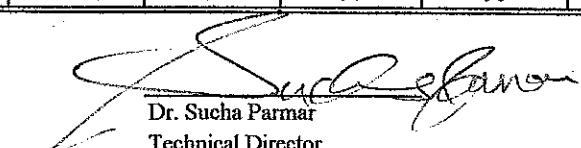
| AAC ID       | Analyte | MB Concentration |
|--------------|---------|------------------|
| Method Blank | Methane | ND               |
|              | Ethane  | ND               |
|              | Propane | ND               |
|              | Butane  | ND               |
|              | Pentane | ND               |
|              | Hexane  | ND               |

### II-Laboratory Control Spike & Duplicate - EPA Method 18

| AAC ID                | Analyte | Spike Added | LCS Result | LCSD Result | LCS % Rec * | LCSD % Rec * | % RPD*** |
|-----------------------|---------|-------------|------------|-------------|-------------|--------------|----------|
| Lab Control Standards | Methane | 100.2       | 90.0       | 90.1        | 89.8        | 89.9         | 0.1      |
|                       | Ethane  | 100.6       | 94.0       | 94.1        | 93.4        | 93.5         | 0.1      |
|                       | Propane | 100.0       | 95.6       | 95.9        | 95.6        | 95.9         | 0.3      |
|                       | Butane  | 99.6        | 95.2       | 96.7        | 95.6        | 97.1         | 1.5      |
|                       | Pentane | 99.6        | 92.6       | 98.7        | 93.0        | 99.1         | 6.4      |
|                       | Hexane  | 97.6        | 90.0       | 95.2        | 92.2        | 97.5         | 5.6      |

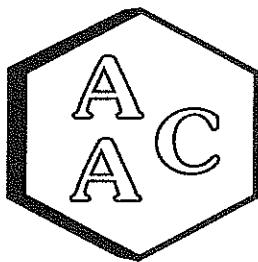
### III - Duplicate Analysis - EPA Method 18

| AAC ID               | Analyte | Sample Concentration | Duplicate Concentration | Mean     | % RPD*** |
|----------------------|---------|----------------------|-------------------------|----------|----------|
| 060678-18486 (1000x) | Methane | 483793               | 499703                  | 491700.0 | 3.2      |
|                      | Ethane  | 0.0                  | 0.0                     | 0.0      | 0.0      |
|                      | Propane | 0.0                  | 0.0                     | 0.0      | 0.0      |
|                      | Butane  | 0.0                  | 0.0                     | 0.0      | 0.0      |
|                      | Pentane | 0.0                  | 0.0                     | 0.0      | 0.0      |
|                      | Hexane  | 0.0                  | 0.0                     | 0.0      | 0.0      |


### IV-Matrix Spike & Duplicate- EPA Method 18

| AAC ID               | Analyte | Sample Concentration | Spike Added | MS Result | MS Result | MS % Rec *** | MS % Rec ** | % RPD** |
|----------------------|---------|----------------------|-------------|-----------|-----------|--------------|-------------|---------|
| 060678-18486 (1000x) | Methane | 245.9                | 250.0       | 483.6     | 465.4     | 95           | 88          | 8.0     |
|                      | Ethane  | 0.0                  | 250.0       | 253.0     | 253.4     | 101          | 101         | 0.2     |
|                      | Propane | 0.0                  | 250.0       | 254.1     | 253.4     | 102          | 101         | 0.3     |
|                      | Butane  | 0.0                  | 250.0       | 252.0     | 251.5     | 101          | 101         | 0.2     |
|                      | Pentane | 0.0                  | 250.0       | 248.8     | 250.8     | 100          | 100         | 0.8     |
|                      | Hexane  | 0.0                  | 250.0       | 241.4     | 244.8     | 97           | 98          | 1.4     |

\* Must be 85-115%


\*\* Must be 75-125%

\*\*\* Must be < 25%



Dr. Sucha Parmar  
Technical Director





# Atmospheric Analysis & Consulting, Inc.

## *Quality Control/Quality Assurance Report*

**Date Analyzed:** 9/5/06

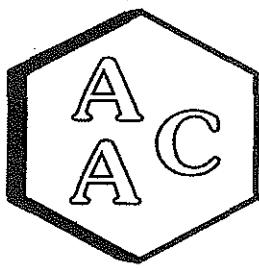
**Instrument ID:** FID#3

**Analyst:** SW

**Calibration Date:** 08/31/06

### **Opening Calibration Verification Standard**

| Analyte | xCF** | CF   | %RPD* |
|---------|-------|------|-------|
| C1      | 679   | 628  | 7.9   |
| C2      | 1349  | 1258 | 7.0   |
| C3      | 1952  | 1849 | 5.4   |
| C4      | 2591  | 2426 | 6.6   |
| C5      | 3121  | 2925 | 6.5   |
| C6      | 3601  | 3365 | 6.8   |


### **Closing Calibration Verification Standard**

| Analyte | xCF** | CF   | %RPD* |
|---------|-------|------|-------|
| C1      | 679   | 642  | 5.7   |
| C2      | 1349  | 1295 | 4.1   |
| C3      | 1952  | 1899 | 2.7   |
| C4      | 2591  | 2502 | 3.5   |
| C5      | 3121  | 3005 | 3.8   |
| C6      | 3601  | 3517 | 2.4   |

\* Must be <15%

\*\* Average Calibration Factor from Initial Calibration Curve





# Atmospheric Analysis & Consulting, Inc.

## Quality Control/Quality Assurance Report

Date Analyzed: 9/6/06  
Analyst: SW

Instrument ID: FID#4  
Units: PPMV

### I - Method Blank - Method 25.3

| AAC ID | Analyte | Sample Analysis |
|--------|---------|-----------------|
| MB     | NMEHC   | ND              |

### II - Laboratory Control Spike & Duplicate - Method 25.3

| AAC ID                | Analyte | Spike Added | LCS Result | LCSD Result | LCS % Rec. * | LCSD % Rec. * | % RPD*** |
|-----------------------|---------|-------------|------------|-------------|--------------|---------------|----------|
| Lab Control Standards | NMEHC   | 50.0        | 50.0       | 49.9        | 1.0          | 1.0           | 0.2      |

### III - Duplicate Analysis - Method 25.3

| AAC ID       | Analyte | Sample Concentration | Duplicate Concentration | Mean | % RPD*** |
|--------------|---------|----------------------|-------------------------|------|----------|
| 060656-18366 | NMEHC   | 3.8                  | 3.9                     | 3.9  | 2.0      |

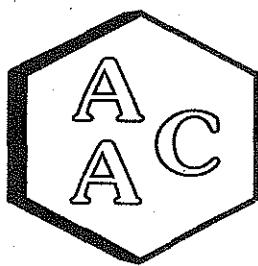
### IV - Matrix Spike & Duplicate - Method 25.3

| AAC ID       | Analyte | Sample Concentration | Spike Added | MS Result | MSD Result | MS % Rec. ** | MSD % Rec. ** | % RPD*** |
|--------------|---------|----------------------|-------------|-----------|------------|--------------|---------------|----------|
| 060656-18366 | NMEHC   | 1.9                  | 25.0        | 25.6      | 25.3       | 94.7         | 93.3          | 1.5      |


### V - 1 ppm Backflush - Method 25.3

| AAC ID    | Analyte | Backflush Result | Backflush % Rec. *** |
|-----------|---------|------------------|----------------------|
| Backflush | NMEHC   | 1.06             | 106.0                |

\* Must be 90-110%


\*\* Must be 75-125%

\*\*\* Must be < 20%



Dr. Sucha Parmar,  
Technical Director





## Atmospheric Analysis & Consulting, Inc.

### *Quality Control/Quality Assurance Report*

**Date Analyzed:** 9/6/06

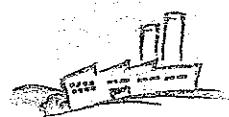
**Instrument ID:** FID#4

**Analyst:** SW

**Calibration Date:** 09/06/06

#### **Opening Calibration Verification Standard**

| Analyte | xCF** | CF    | %RPD* |
|---------|-------|-------|-------|
| CO      | 3866  | 3813  | 1.4   |
| CH4     | 3729  | 3733  | 0.1   |
| CO2     | 3890  | 3824  | 1.7   |
| Propane | 10500 | 10338 | 1.6   |


#### **Closing Calibration Verification Standard**

| Analyte | xCF** | CF    | %RPD* |
|---------|-------|-------|-------|
| CO      | 3866  | 3656  | 5.6   |
| CH4     | 3729  | 3615  | 3.1   |
| CO2     | 3890  | 3698  | 5.1   |
| Propane | 10500 | 10090 | 4.0   |

\* Must be <15%

\*\* Average Calibration Factor from Initial Calibration Curve





## CHAIN OF CUSTODY RECORD

Project Name:

SUNNYVALE

Project #:

SAMPLE

Date

SAMPLE

Time

grab or  
comp

Sample ID (Method-Run-Fraction)

9/1/06

## **Field Data Sheets**

## CONTINUOUS EMISSION MONITORING SUMMARY DATA SHEET

Facility: SUNNYVALE WWTP

Test #: 1, 2, 3

Date: 9/1/06

Location: FLARE

Barometric:

Leak Check: ✓

Observers:

Personnel: GW

Stratification Check:

Cyl. #:s

| Parameter     | INLET |          |       |       | OUTLET |          |       |       |  |
|---------------|-------|----------|-------|-------|--------|----------|-------|-------|--|
|               | O2    | CO2      | THC   | CH4   | O2     | CO2      | THC   | CH4   |  |
| Analyzer      | 755R  | PIR 2000 | RS-55 | RS-55 | 755R   | PIR 2000 | RS-55 | RS-55 |  |
| Range         |       |          |       |       | 25     | 50       | 50    | 50    |  |
| Span Value(s) |       |          |       |       | 20.95  | 45.6     |       |       |  |

Run Time

|  |  |  |  |  |      |        |      |      |  |
|--|--|--|--|--|------|--------|------|------|--|
|  |  |  |  |  | CAL  | 20.95  |      | 45.6 |  |
|  |  |  |  |  | ZERO | 0      |      | 0    |  |
|  |  |  |  |  | 0717 | 13.50  |      | 125  |  |
|  |  |  |  |  | 0722 | 13.50  | 0.55 | 0.15 |  |
|  |  |  |  |  | 0727 | 13.45  | 1.0  |      |  |
|  |  |  |  |  | 0732 | 12.38  | 0    |      |  |
|  |  |  |  |  | 0737 | 12.0   | 0    |      |  |
|  |  |  |  |  | 0742 | 12.38  | 0    |      |  |
|  |  |  |  |  | ZERO | 0.375  | -1   |      |  |
|  |  |  |  |  | CAL  | 20.375 | 45   |      |  |
|  |  |  |  |  | AVG  | 12.89  | 21   |      |  |
|  |  |  |  |  |      |        |      |      |  |
|  |  |  |  |  | 0754 | 12.4   | 0    |      |  |
|  |  |  |  |  | 0759 | 12.4   | 0    |      |  |
|  |  |  |  |  | 0804 | 12.4   | 0    |      |  |
|  |  |  |  |  | 0809 | 12.4   | 0    |      |  |
|  |  |  |  |  | 0814 | 12.4   | 0    |      |  |
|  |  |  |  |  | 0819 | 12.4   | 0    |      |  |
|  |  |  |  |  | ZERO | 0.5    | -0.5 |      |  |
|  |  |  |  |  | CAL  | 20.18  | 44   |      |  |
|  |  |  |  |  | AVG  | 12.4   | 21   |      |  |
|  |  |  |  |  |      |        |      |      |  |
|  |  |  |  |  | 0830 | 12.25  | 0    |      |  |
|  |  |  |  |  | 0835 | 12.25  | 0    |      |  |
|  |  |  |  |  | 0840 | 12.25  | 0    |      |  |
|  |  |  |  |  | 0845 | 12.25  | 0    |      |  |
|  |  |  |  |  | 0850 | 12.25  | 0    |      |  |
|  |  |  |  |  | 0855 | 12.25  | 0    |      |  |
|  |  |  |  |  | ZERO | 0.6    | 0.25 |      |  |
|  |  |  |  |  | CAL  | 20.0   | 42.7 |      |  |
|  |  |  |  |  | AVG  | 12.25  | 21   |      |  |
|  |  |  |  |  |      |        |      |      |  |

**Landfill Flare Emissions Test Log**  
September 1, 2006

**Atmospheric Data**

Time: Temperature: 50.3 deg F Dew Point: Wind: 1.0 mph Barometric: 29.92" Hg

| Time | Field Vac<br>W.C." | DIGAS Flow<br>scfm | LFG Flow<br>scfm | PGF Flow<br>scfm | Flow to Flare<br>precision meter (scfm) | Flare<br>Temp | Thermocouple |       | Gas Quality       |                   |                  |         | Notes                                |
|------|--------------------|--------------------|------------------|------------------|-----------------------------------------|---------------|--------------|-------|-------------------|-------------------|------------------|---------|--------------------------------------|
|      |                    |                    |                  |                  |                                         |               | Lower        | Upper | % CH <sub>4</sub> | % CO <sub>2</sub> | % O <sub>2</sub> | Balance |                                      |
| 6:33 | -15.0              | 0                  | 472              | 0                | 465                                     | 1455          | X            |       | 42.2              | 34.1              | 0.4              | 23.1    | GEM -14.4 to -13.6                   |
| 6:40 | -14.5              | 0                  | 464              | 14.3             | 466                                     | 1459          | X            |       |                   |                   |                  |         |                                      |
| 6:46 |                    |                    |                  |                  |                                         |               |              | X     |                   |                   |                  |         | Changed to upper thermocouple for hi |
| 6:52 | -15.1              | 0                  | 476              | 0                | 506                                     | 1344          |              | X     |                   |                   |                  |         | LFG only to flare                    |
| 7:00 | -15 to -16         | 63                 | 494              | 0                | 560                                     | 1482          |              | X     |                   |                   |                  |         |                                      |
| 7:03 | -15 to -16         | 62                 | 491              | 0                | 559                                     | 1454          |              | X     | 41.9              | 34.1              | 0.6              | 23.5    | 29.93" Hg, GEM -15.5 to -15.7"       |
| 7:05 | -16 to -16.5       | 66                 | 489              | 16.2             | 559                                     | 1450          |              | X     |                   |                   |                  |         |                                      |
| 7:11 | -16.5              | 58                 | 494              | 15.4             | 556                                     | 1445          |              | X     |                   |                   |                  |         | system stable- still flaring         |
| 7:19 | -16                | 55                 | 501              | 0                | 557                                     | 1458          |              | X     |                   |                   |                  |         | Running good @ this point, begin en  |
| 7:25 | -16                | 56                 | 494              | 0                | 555                                     | 1458          |              | X     | 41.5              | 34.2              | 0.5              | 23.8    | GEM -15.6"                           |
| 7:30 | -16                | 54                 | 501              | 15               | 550                                     | 1438          |              | X     |                   |                   |                  |         |                                      |
| 7:40 | -16                | 56                 | 496              | 0                | 557                                     | 1445          |              | X     | 41.9              | 34.4              | 0.3              | 23.3    | GEM -15.4"                           |
| 7:57 | -16                | 57                 | 494              | 0                | 551                                     | 1443          |              | X     |                   |                   |                  |         |                                      |
| 8:06 | -16                | 53                 | 499              | 0                | 555                                     | 1438          |              | X     |                   |                   |                  |         |                                      |
| 8:13 | -16 to -16.5       | 53                 | 497              | 0                | 549                                     | 1459          |              | X     |                   |                   |                  |         |                                      |
| 8:28 | -16                | 51                 | 500              | 0                | 549                                     | 1450          |              | X     | 41.7              | 33.9              | 0.5              | 23.6    | 29.91" Hg, GEM -15.6 to -15.8        |
| 8:30 | -16 to -16.5       | 51                 | 501              | 0                | 552                                     | 1456          |              | X     |                   |                   |                  |         |                                      |
| 8:42 | -16 to -16.5       | 50                 | 501              | 0                | 552                                     | 1438          |              | X     |                   |                   |                  |         |                                      |

Test over @ ~9:02.

## **Strip Chart Records**

1995-05-14 10:15:00

John C. Stennis  
U.S. Senator

12.7

卷之三

100

111

11

100

三

Age

Frequency

12 13 14 15 16 17 18 19 20

9 8 7 6 5 4 3 2 1 0

12.35

12.50

12.65

12.80

13.00

13.15

13.30

13.45

13.60

13.75

13.90

14.05

14.20

14.35

14.50

14.65

14.80

14.95

15.10

15.25

15.40

15.55

15.70

15.85

16.00

16.15

16.30

16.45

16.60

16.75

16.90

17.05

17.20

17.35

17.50

17.65

17.80

17.95

18.10

18.25

18.40

18.55

18.70

18.85

19.00

19.15

19.30

19.45

19.60

19.75

19.90

20.05

12 13 14 15 16 17 18 19 20

9 8 7 6 5 4 3 2 1 0

12.35

12.50

12.65

12.80

13.00

13.15

13.30

13.45

13.60

13.75

13.90

14.05

14.20

14.35

14.50

14.65

14.80

14.95

15.10

15.25

15.40

15.55

15.70

15.85

16.00

16.15

16.30

16.45

16.60

16.75

16.90

17.05

17.20

17.35

17.50

17.65

17.80

17.95

18.10

18.25

18.40

18.55

18.70

18.85

19.00

19.15

19.30

19.45

19.60

19.75

19.90

20.05

12 13 14 15 16 17 18 19 20

9 8 7 6 5 4 3 2 1 0

12.35

12.50

12.65

12.80

13.00

13.15

13.30

13.45

13.60

13.75

13.90

14.05

14.20

14.35

14.50

14.65

14.80

14.95

15.10

15.25

15.40

15.55

15.70

15.85

16.00

16.15

16.30

16.45

16.60

16.75

16.90

17.05

17.20

17.35

17.50

17.65

17.80

17.95

18.10

18.25

18.40

18.55

18.70

18.85

19.00

19.15

19.30

19.45

19.60

19.75

19.90

20.05

12 13 14 15 16 17 18 19 20

9 8 7 6 5 4 3 2 1 0

12.35

12.50

12.65

12.80

13.00

13.15

13.30

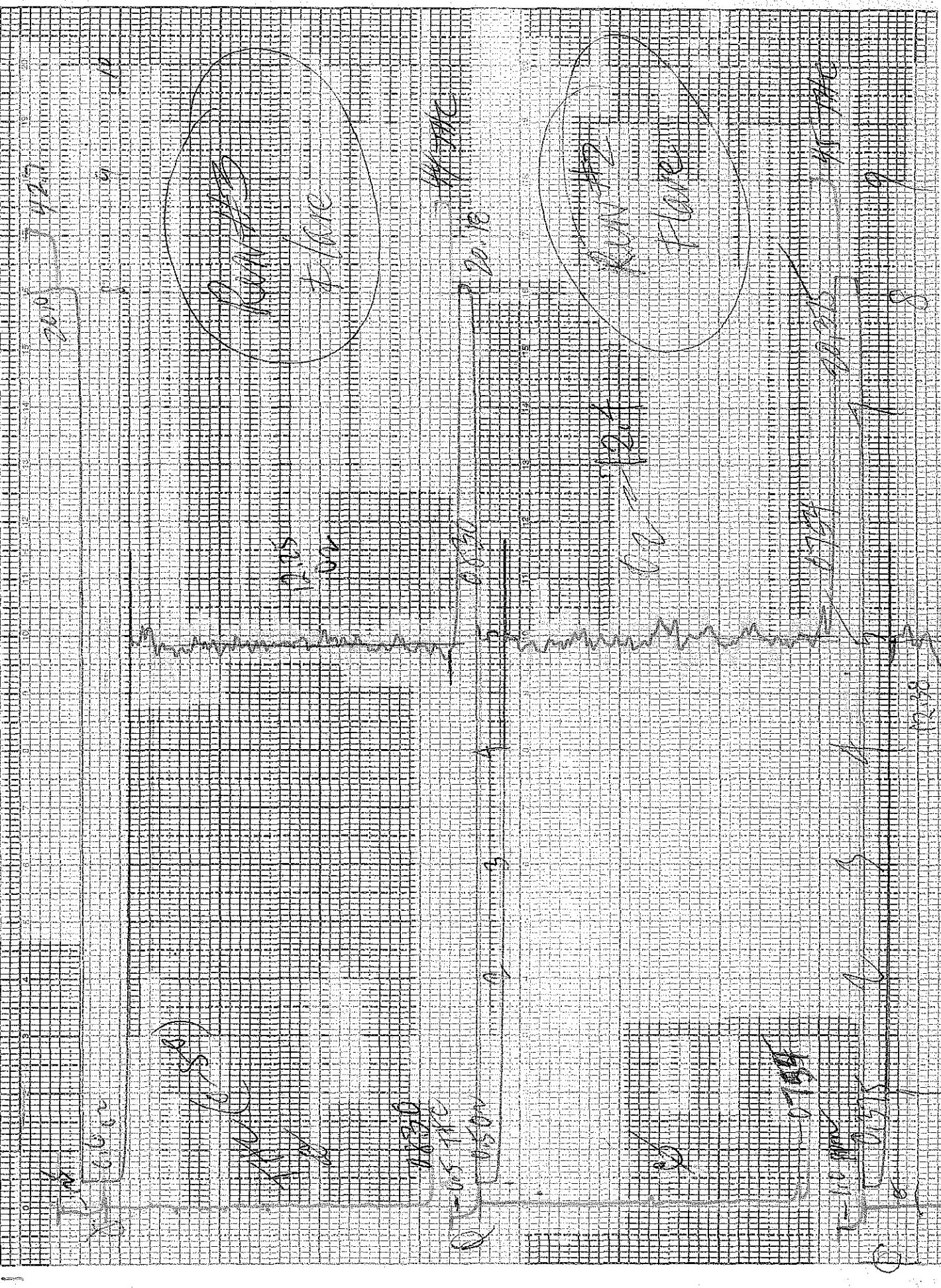
13.45

13.60

13.75

13.90

14.05


14.20

14.35

14.50

14.65

14.80



## QC Calibration Gas Certifications

IN SERVICE 9/1/06

PRAXAIR

Praxair  
5700 South Alameda Street  
Los Angeles, CA 90058  
Telephone: (323) 585-2154  
Facsimile: (714) 542-6689

## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER BLUE SKY ENV.

P.O. NUMBER #524989

### REFERENCE STANDARD

| COMPONENT    | NIST SRM NO. | CYLINDER NO. | CONCENTRATION |
|--------------|--------------|--------------|---------------|
| PROPANE GMIS | vs. SRM#1666 | SA 5175      | 29.9 ppm      |

### ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

| 1. COMPONENT         | PROPANE         | GMIS   | ANALYZER MAKE-MODEL-S/N   | HORIBA, FIA-510, 851135122 | LAST CALIBRATION DATE | 06/02/06 |
|----------------------|-----------------|--------|---------------------------|----------------------------|-----------------------|----------|
| ANALYTICAL PRINCIPLE |                 |        | Flame Ionization Detector |                            |                       |          |
| FIRST ANALYSIS DATE  | 06/20/06        |        |                           |                            |                       |          |
| Z 0.0                | R 80.7          | C 41.0 | CONC. 15.2                | Z                          | R                     | C        |
| R 80.9               | Z 0.0           | C 41.0 | CONC. 15.2                | R                          | Z                     | C        |
| Z 0.0                | C 41.0          | R 80.9 | CONC. 15.2                | Z                          | C                     | R        |
| U/M ppm              | MEAN TEST ASSAY |        | 15.2                      | U/M ppm                    | MEAN TEST ASSAY       |          |

Values not valid below 150 psig

THIS CYLINDER NO. CC 49867  
 HAS BEEN CERTIFIED ACCORDING TO SECTION EPA-600/R97/121  
 OF TRACEABILITY PROTOCOL NO. Rev. 9/97  
 PROCEDURE G1  
 CERTIFIED ACCURACY  $\pm 1$  % NIST TRACEABLE  
 CYLINDER PRESSURE 2000 PSIG  
 CERTIFICATION DATE 06/20/06  
 EXPIRATION DATE 06/20/09 TERM 36 MONTHS

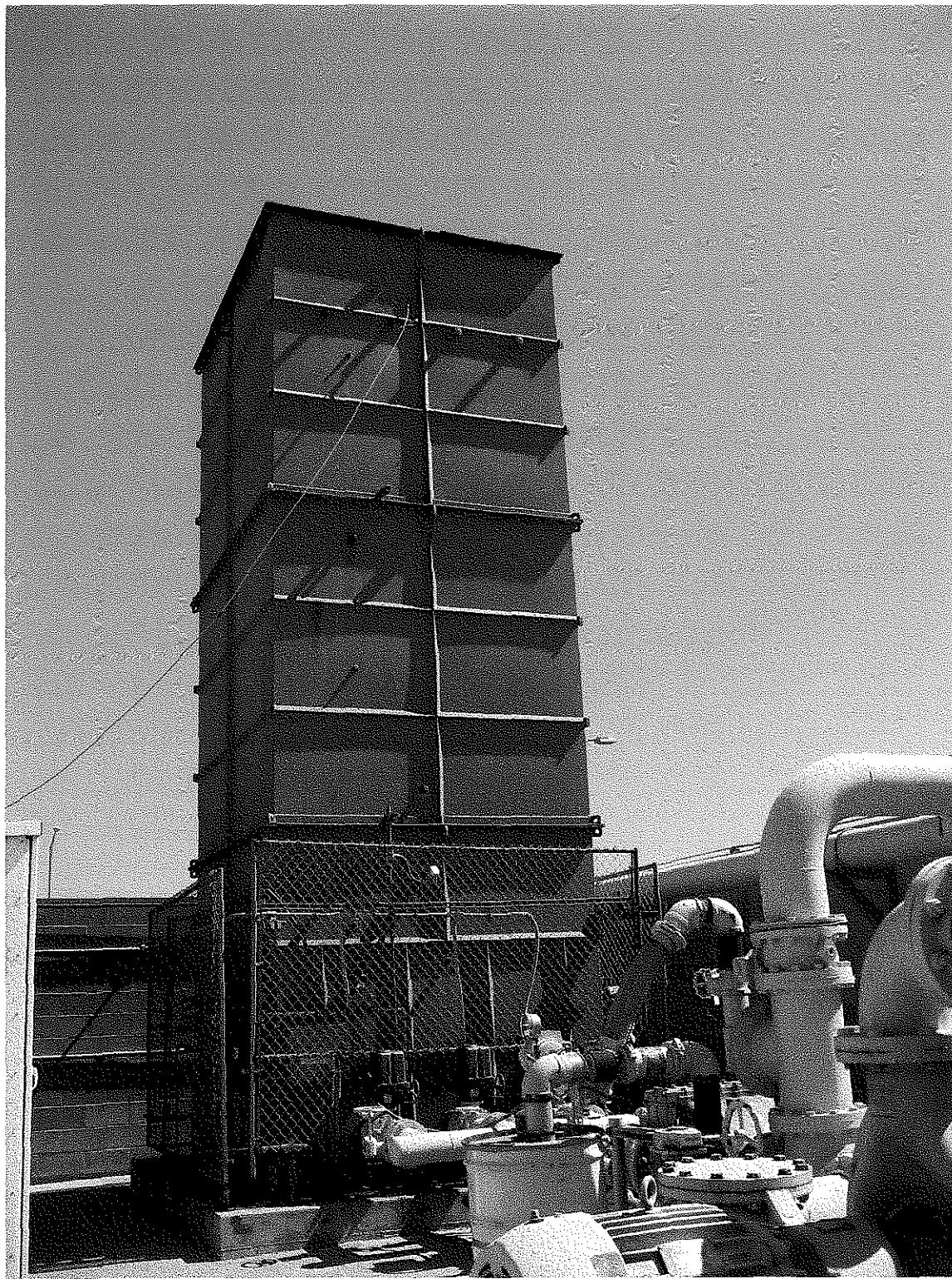
### CERTIFIED CONCENTRATION

PROPANE 15.2 ppm  
AIR BALANCE

45.6 C

ANALYZED BY

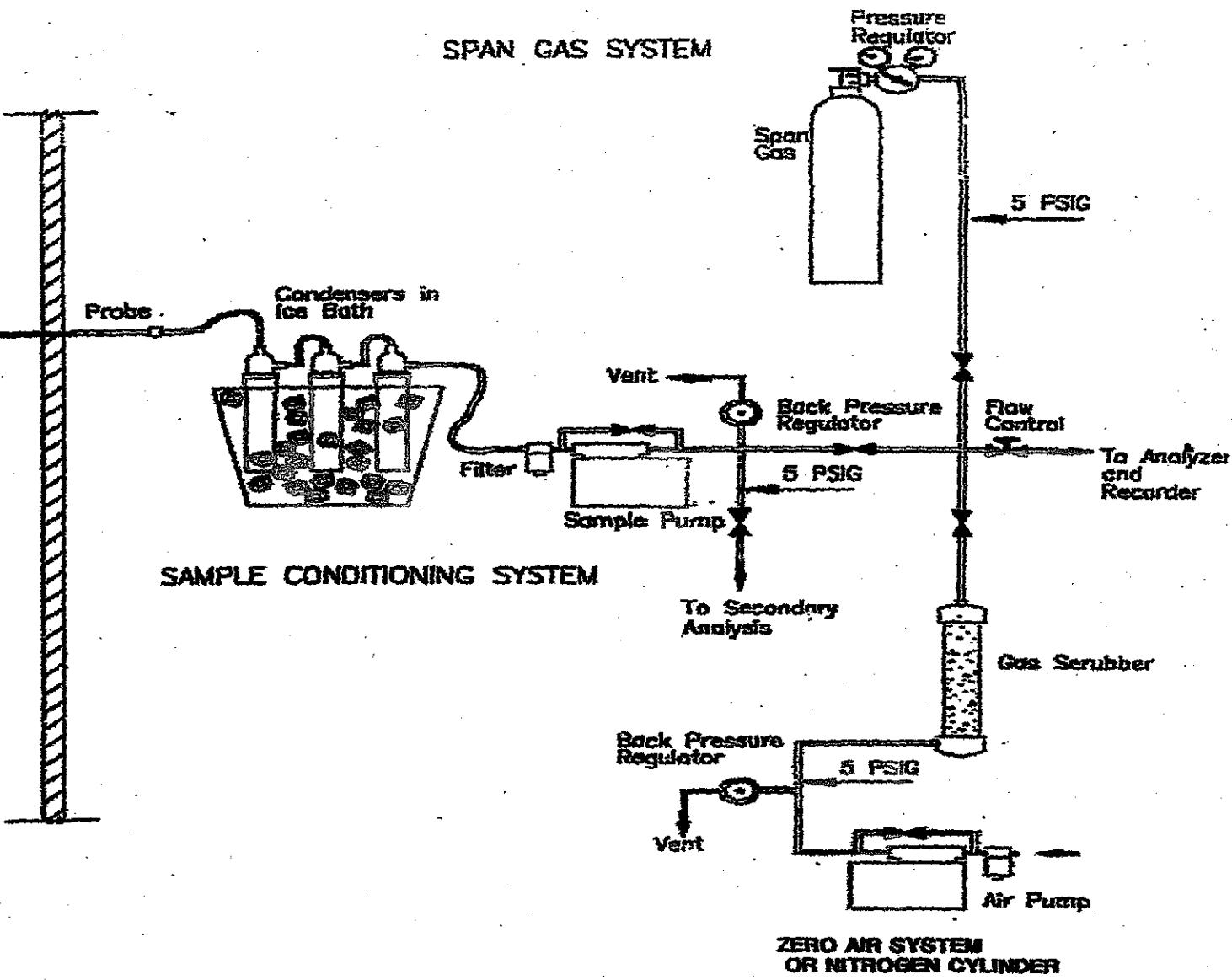
*Heleena Tran*


CERTIFIED BY

*Phu Nguyen*

### IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.


## **Stack Diagram**



Sunnyvale Flare

## Sample System Diagram

## SPAN GAS SYSTEM



## SAMPLE CONDITIONING SYSTEM

BAAQMD ST-5 (CO<sub>2</sub>)  
BAAQMD ST-6 (CO)  
BAAQMD ST-7 (THC by FID)  
BAAQMD ST-13A (NO<sub>x</sub>)  
BAAQMD ST-14 (O<sub>2</sub>)  
BAAQMD ST-19A (SO<sub>2</sub>)

## ZERO AIR SYSTEM OR NITROGEN CYLINDER

## **Permit/Authority to Construct**

SLO-26.12


**BAY AREA AIR QUALITY  
MANAGEMENT DISTRICT**

 939 ELLIS STREET  
 SAN FRANCISCO, CALIFORNIA 94109  
 (415) 771-6000

**PERMIT  
TO OPERATE**

Plant# 5905

Page: 1 of 1000 Expires: FEB 1, 2007

This document does not permit the holder to violate any District regulation or other law.

 Mark Bowers  
 City of Sunnyvale/Public Works Dept  
 P O Box 3707  
 Sunnyvale, CA 94086

 Location: 301 Carl Road  
 Sunnyvale, CA 94086

| S# | DESCRIPTION                                                                                                                               | [Schedule] | PAID |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 1  | MISC-HDLG> Material handling, Solid waste - other/not spec<br>Solid Waste Transfer Station<br>Abated by: A1 Unclassified Abatement Device | [F]        | 150  |
| 2  | MISC-HDLG> Material handling, Wood - other/not spec<br>Wood Waste Unloading Operation<br>Abated by: A2 Unclassified Abatement Device      | [F]        | 150  |
| 3  | MISC> Waste material grinding, Hogged wood, 17 tons/hr max<br>Wood Shredder                                                               | [G1]       | 624  |
| 4  | MISC-HDLG> Material handling, Hogged wood, 17 tons/hr max<br>Conveyor<br>Abated by: A5 Baghouse, Pulse Jet                                | [F]        | 150  |
| 5  | MISC-HDLG> Storage, Hogged wood<br>Wood Chip Processing Hoppers (feeding and loadout)                                                     | [F]        | 150  |
| 6  | MISC-HDLG> Material handling, Hogged wood, 55 tons/hr max<br>Wood Chip Screening Operation<br>Abated by: A5 Baghouse, Pulse Jet           | [F]        | 150  |
| 7  | STANDBY, Reciprocating Engine, Elect Gen, 736 in <sup>3</sup> displ<br>Diesel Engine for an Emergency Standby Generator                   | [B]        | 137  |

The operating parameters described above are based on information supplied by permit holder and may differ from the limits set forth in the attached conditions of the Permit to Operate. The limits of operation in the permit conditions are not to be exceeded. Exceeding these limits is considered a violation of District regulations subject to enforcement action.

**BAY AREA AIR QUALITY  
MANAGEMENT DISTRICT**

939 ELLIS STREET  
SAN FRANCISCO, CALIFORNIA 94109  
(415) 771-8000

**PERMIT  
TO OPERATE**

Plant# 5905 Page 2 Expires: FEB 1, 2007

This document does not permit the holder to violate any District regulation or other law.

| S# | DESCRIPTION                                                                                                                                                                                                               | [Schedule] | PAID |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 8  | CHEM> Landfill with gas collection system, Multi-material<br>City of Sunnyvale Sanitary Landfill with Gas Collection Sys [K]<br>Abated by: A8 Flare<br>A3 Adsorption, Activated Carbon/Charcoal<br>Emissions at: P1 Stack |            | 686  |
| 9  | Fixed roof tank, 1K gal, Waste water - other/not spec<br>Condensate Feed Storage Tank                                                                                                                                     | [exempt]   | 0    |

8 Permit Sources, 1 Exempt Source

\*\*\* See attached Permit Conditions \*\*\*

The operating parameters described above are based on information supplied by permit holder and may differ from the limits set forth in the attached conditions of the Permit to Operate. The limits of operation in the permit conditions are not to be exceeded. Exceeding these limits is considered a violation of District regulations subject to enforcement action.

**BAY AREA AIR QUALITY  
MANAGEMENT DISTRICT**

939 ELLIS STREET  
SAN FRANCISCO, CALIFORNIA 94109  
(415) 771-6000

**PERMIT  
TO OPERATE**

Plant# 5905 Page 3 Expires FEB 1, 2007

This document does not permit the holder to violate any District regulation or other law.

**\*\*\* PERMIT CONDITIONS \*\*\***

=====

|           |                                |
|-----------|--------------------------------|
| Source# 1 | subject to Condition ID# 5367  |
| Source# 2 | subject to Condition ID# 5368  |
| Source# 3 | subject to Condition ID# 5369  |
| Source# 5 | subject to Condition ID# 5370  |
| Source# 6 | subject to Condition ID# 5371  |
| Source# 7 | subject to Condition ID# 18922 |
| Source# 8 | subject to Condition ID# 11586 |



**BAY AREA AIR QUALITY  
MANAGEMENT DISTRICT**

939 ELLIS STREET  
SAN FRANCISCO, CALIFORNIA 94109  
(415) 771-6000

**PERMIT  
TO OPERATE**

Plant# 5905 Page: 4

Expires: FEB 1, 2007

This document does not permit the holder to violate any District regulation or other law.

**\*\*\* PERMIT CONDITIONS \*\*\***

---

**CONDITION ID #5367**

**FOR: S-1 SOLID WASTE TRANSFER STATION**

1. Daily throughput of refuse shall not exceed 1,500 tons in any consecutive 24 hour period.

**CONDITION ID #5368**

**FOR: S-2 WOOD WASTE UNLOADING OPERATION**

1. Building demolition debris shall not be accepted.
2. Wood wastes shall not be dumped outside of the wood shredder building.
3. Daily throughput of wood waste shall not exceed 110 tons in any consecutive 24 hour period.

**CONDITION ID #5369**

**For: S-3 WOOD SHREDDER**

1. Building demolition debris shall not be processed.
2. The wood shredder shall be enclosed and operated within the wood shredder building at all times.
3. Daily throughput of wood waste shall not exceed 110 tons in any consecutive 24 hour period.

**CONDITION ID #5370**

**For: S-5 WOOD CHIP PROCESSING HOPPERS**

1. Daily throughput of wood waste shall not exceed 110 tons in any consecutive 24 hour period.

**CONDITION ID #5371**

**For: S-6 Wood Chip Screening Operation and**



**BAY AREA AIR QUALITY  
MANAGEMENT DISTRICT**

939 ELLIS STREET  
SAN FRANCISCO, CALIFORNIA 94109  
(415) 771-6000

**PERMIT  
TO OPERATE**

Plant# 5905

Page: 5

Expires: FEB 1, 2007

This document does not permit the holder to violate any District regulation or other law.

\*\*\* PERMIT CONDITIONS \*\*\*

**A-5 Baghouse Dust Collector**

1. The screening operation shall be enclosed and abated by A-5 Baghouse Dust Collector at all times.
2. The baghouse shall be equipped with a District approved manometer for measuring the pressure drop across the baghouse.
3. Daily throughput of wood waste shall not exceed 110 tons in any consecutive 24 hour period.

**CONDITION ID #11586**

For: S-8 CITY OF SUNNYVALE SANITARY LANDFILL WITH GAS COLLECTION SYSTEM, A-3 CARBON ADSORBER, AND A-8 LANDFILL GAS FLARE

1. All landfill gas collected by the landfill gas collection system for the S-8 City of Sunnyvale Sanitary Landfill shall be vented to either the IC Engines (S-14 and S-15) located at Plant #733, to the A-8 Landfill Gas Flare located at Plant #5905, or to the A-3 Carbon Adsorber located at Plant #5905.
  - a. If only one IC Engine (S-14 or S-15) is operating, the Permit Holder shall ensure that either:
    - i. the A-8 Flare is operated concurrently with the single IC Engine, or
    - ii. the time that a single IC Engine is operated alone is limited to:

| Hours Per Incident | Applicable Year |
|--------------------|-----------------|
| 307                | 2002            |
| 370                | 2003            |
| 472                | 2004            |
| 660                | 2005            |
| 1008               | 2006            |
| 2960               | 2007            |
| no limit           | 2008            |

- b. To demonstrate compliance with Part 1a(ii), the Permit Holder shall maintain records in an APCO approved log of all times when only one IC Engine (S-14 or S-15 at Plant # 733) is operating and no other landfill gas control devices (engine, flare, or carbon adsorber) are operating.

**BAY AREA AIR QUALITY  
MANAGEMENT DISTRICT**

936 ELLIS STREET  
SAN FRANCISCO, CALIFORNIA 94109  
(415) 771-6000

**PERMIT  
TO OPERATE**

Plant# 5905

Page: 6

Expires: FEB 1, 2007

This document does not permit the holder to violate any District regulation or other law.

**\*\*\* PERMIT CONDITIONS \*\*\***

(Basis: Regulations 8-34-301 and 8-34-301.1)

2. The landfill gas collection system described in Part 3a below shall be operated continuously. Wells shall not be disconnected or removed from operation nor shall isolation or control valves be closed without written authorization from the District, unless the Permit Holder complies with all applicable requirements of Regulation 8, Rule 34, Sections 113, 117, and 118.  
(Basis: Regulations 8-34-301, 8-34-303, and 8-34-304)

3. The Permit Holder shall apply for and receive an Authority to Construct before modifying the landfill gas collection system described in Part 3a below. Increasing or decreasing the number of wells or collectors or significantly changing the locations, depths, or lengths of wells or collectors are all considered to be modifications that are subject to the Authority to Construct requirement.

- a. The Permit Holder has been issued a Permit to Operate for the landfill gas collection system components listed below. Well and collector locations, depths, and lengths of associated piping are as described in detail in Permit Application #2229.

Required Vertical Wells: 66

Required Horizontal Collectors: 13

(Basis: Regulations 8-34-303 and 8-34-305)

4. The A-8 Landfill Gas Flare shall be properly operated and properly maintained during all hours of operation. Digestor gas may be blended with landfill gas and vented to A-8, as necessary to maintain proper operation of A-8. Raw landfill gas or raw landfill/digestor gas blend shall not be vented to the atmosphere, except for unavoidable gas emissions that occur during collection system installation, maintenance, or repair, which is performed in compliance with Regulation 8, Rule 34, Sections 113, 117, or 118, and for inadvertent component or surface leaks that do not exceed the limits specified in 8-34-301.2 or 8-34-303.

(Basis: Regulations 8-34-301 and 8-34-301.1)

5. A temperature monitor with readout display and

**BAY AREA AIR QUALITY  
MANAGEMENT DISTRICT**

939 ELLIS STREET  
SAN FRANCISCO, CALIFORNIA 94109  
(415) 771-6000

**PERMIT  
TO OPERATE**

Plant# 5905 Page: 7

Expires: FEB 1, 2007

This document does not permit the holder to violate any District regulation or other law.

**\*\*\* PERMIT CONDITIONS \*\*\***

continuous recorder (recording thermocouple) shall be installed and maintained on the A-8 Landfill Gas Flare. One or more thermocouples shall be placed in the primary combustion zone of the A-8 Flare and shall accurately indicate combustion temperature at all times. Temperature charts shall be retained for at least five years and made available at all times for District inspection. (Basis: Regulations 8-34-501.3, 8-34-501.6, and 8-34-507)

6. The combustion zone temperature of the A-8 Flare shall be maintained at a minimum of 1400 degrees F, averaged over any three hour period, unless the Permit Holder complies with all requirements listed in Part 9 below. If a source test demonstrates compliance with all applicable requirements at a different temperature, the minimum combustion zone temperature for A-8 will be adjusted by the APCO such that the minimum combustion zone temperature is equal to the average combustion zone temperature measured during the most recent complying source test minus 50 degrees F (but not less than 1400 degrees F).  
(Basis: Regulation 8-34-301.3 and Toxic Risk Management Policy)
7. A flow meter to measure gas flow into the A-8 Flare shall be installed and maintained.  
(Basis: Regulation 8-34-301.1 and Cumulative Increase)
8. The A-8 Flare shall be equipped with both local and remote alarm systems. (Basis: Regulation 8-34-301)
9. Upon the discretion of the Permit Holder, collected landfill gas may be vented to the A-3 Carbon Adsorber, provided that the Permit Holder satisfies all of the following requirements:
  - a. The A-3 Carbon Adsorber shall contain at least 140 pounds of activated carbon.
  - b. Each 140 pound carbon canister shall treat no more than 3,091,000 scf of landfill gas.
  - c. Treated landfill gas shall be vented to the A-8 Landfill Gas Flare, the S-14 IC Engine at Plant #733, or the S-15 IC Engine at Plant #733.
  - d. The Permit Holder shall maintain the following records:

**BAY AREA AIR QUALITY  
MANAGEMENT DISTRICT**

939 ELLIS STREET  
SAN FRANCISCO, CALIFORNIA 94108  
(415) 771-8000

**PERMIT  
TO OPERATE**

Plant# 5905

Page: 8

Expires: FEB 1, 2007

This document does not permit the holder to violate any District regulation or other law.

**\*\*\* PERMIT CONDITIONS \*\*\***

- i. Record the operating times for A-3 on a daily basis.
- ii. Record the total amount of landfill gas treated by A-3, as determined from the flow meter required by Part 7, for each day that A-3 is operated.
- iii. Record the cumulative amount of landfill gas treated by A-3 since the last carbon replacement, for each day that A-3 is operated.
- iv. Record the date, time, and amount of fresh carbon installed for each carbon replacement.
- e. During any time that landfill gas is vented to A-3 followed by the A-8 Landfill Gas Flare, the A-8 Flare is not required to meet the minimum combustion zone temperature limit in Part 6 above if all other requirements of this part are satisfied.

(Basis: Regulation 8-34-301.4)

**CONDITION ID #18922****For: S-7 DIESEL ENGINE FOR AN EMERGENCY STANDBY GENERATOR**

- 1. Hours of Operation: S-7 shall only be operated to mitigate emergency conditions or for reliability-related activities. Operation for reliability-related activities shall not exceed 100 hours in any calendar year. Operation while mitigating emergency conditions is unlimited. (Basis: Regulation 9-8-330)
- 2. "Emergency Conditions" is defined as any of the following:
  - a. Loss of regular natural gas supply.
  - b. Failure of regular electric power supply.
  - c. Flood mitigation.
  - d. Sewage overflow mitigation.
  - e. Fire.
  - f. Failure of a primary motor, but only for such time as needed to repair or replace the primary motor.

(Basis: Regulation 9-8-231)

**BAY AREA AIR QUALITY  
MANAGEMENT DISTRICT**

939 ELLIS STREET  
SAN FRANCISCO, CALIFORNIA 94109  
(415) 771-6000

**PERMIT  
TO OPERATE**

Plant# 5905 Page: 2 of 20 Expires: FEB 1, 2007

This document does not permit the holder to violate any District regulation or other law.

**\*\*\* PERMIT CONDITIONS \*\*\***

=====

3. "Reliability-related activities" is defined as any of the following:
  - a. Operation of an emergency standby engine to test its ability to perform for an emergency use, or
  - b. Operation of an emergency standby engine during maintenance of a primary motor.  
(Basis: Regulation 9-8-232)
4. The emergency standby engine shall be equipped with a non-resettable totalizing meter that measures and records the hours of operation for the engine.  
(Basis: Regulation 9-8-530)
5. Records: The following monthly records shall be maintained in a District-approved log for at least 2 years and shall be made available for District inspection upon request:
  - a. Total hours of operation.
  - b. Hours of operation under emergency conditions and a description of the nature of each emergency condition.
  - c. Fuel usage.  
(Basis: Regulation 9-8-530, 1-441)

===== END OF CONDITIONS =====

Bay Area Air Quality  
Management District

## \*\* SOURCE EMISSIONS \*\*

PLANT # 5905  
Dec 31, 2005

| # | Source Description                         | Annual Average lbs/day |             |            |            |
|---|--------------------------------------------|------------------------|-------------|------------|------------|
|   |                                            | PART                   | ORG         | NOx        | SO2        |
|   | Solid Waste Transfer Station               | 5.31                   | -           | -          | -          |
|   | Wood Waste Unloading Operation             | -                      | -           | -          | -          |
|   | Wood Shredder                              | .18                    | -           | -          | -          |
|   | Conveyor                                   | -                      | -           | -          | -          |
|   | Wood Chip Processing Hoppers (feeding and  | -                      | -           | -          | -          |
|   | Wood Chip Screening Operation              | -                      | -           | -          | -          |
|   | Diesel Engine for an Emergency Standby Gen | .07                    | .1          | .93        | .01        |
|   | City of Sunnyvale Sanitary Landfill with G | -                      | 48.5        | -          | -          |
|   | Condensate Feed Storage Tank               | -                      | -           | -          | -          |
|   | <b>T O T A L S</b>                         | <b>5.56</b>            | <b>48.6</b> | <b>.93</b> | <b>.01</b> |
|   |                                            |                        |             |            | .2         |

## \*\* PLANT TOTALS FOR EACH EMITTED TOXIC POLLUTANT \*\*

| Pollutant Name            | Emissions lbs/day |
|---------------------------|-------------------|
| Benzene                   | .13               |
| Ethylene dichloride       | .04               |
| Hexane                    | .51               |
| Methyl ethyl ketone (MEK) | .46               |
| Perchloroethylene         | .55               |
| Toluene                   | 3.23              |
| Trichloroethylene         | .33               |
| Xylene                    | 1.15              |
| Ethylbenzenes             | .44               |
| Vinylidene chloride       | .02               |
| Methylene chloride        | 1.08              |
| Ethyl chloride            | .07               |
| Vinyl chloride            | .41               |
| 1,1,1-Trichloroethane     | .06               |
| Trichlorofluoromethane    | .09               |
| Hydrogen Sulfide (H2S)    | 1.08              |

# **Source Test Plan**

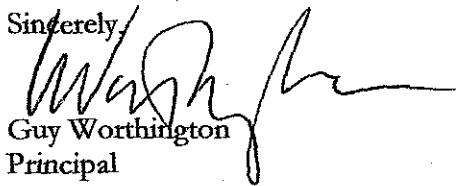


## Blue Sky Environmental, LLC.

624 San Gabriel Avenue  
Albany, California 94706  
(510) 525 1261 phone/fax  
(510) 508 3469 cell  
[blueskyenvironmental@yahoo.com](mailto:blueskyenvironmental@yahoo.com)

August 22, 2006

Attn.: Ken Kunaniec  
Bay Area Air Quality Management District  
Compliance and Enforcement Division  
939 Ellis Street  
San Francisco, CA 94109


**Re: Source Test Plan (STP) for compliance emissions testing of one landfill gas flare (A-2) located at Sunnyvale Water Pollution Control Plant (WPCP), 1444 Borregas Avenue, Sunnyvale; Plant # 5905, Condition 11586**

Blue Sky Environmental, LLC is pleased to present this Source Test Plan for the above referenced sampling project. Testing will include the following:

- Three (3) thirty-minute tests will be performed using BAAQMD Methods for NMOC's (ST-7-FID) and O<sub>2</sub> (ST-14), to determine compliance with the 98% NMHC Destruction Efficiency or 30 ppm @ 3% O<sub>2</sub>.
- One integrated gas characterization sample will be collected of the landfill gas for NMOC using EPA Method 25C; CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, BTU, C1-C6 hydrocarbons by ASTM 1945/3588.
- Fuel flow rate will be measured by BAAQMD Methods 17 & 18 if ports are available. The fuel moisture content will be determined by wet-bulb/dry-bulb measurement. The facility fuel flow meter will be recorded and a fuel analysis will be performed to calculate outlet volumetric flow rate using EPA Method 19. The facility is required to have accurate, operating Flare temperature recording and LFG gas flow monitors.
- Three copies of the compliance test report will be submitted to the client within four weeks of completion of the test program. The report will include a test description and tables presenting concentrations (ppm), emission rates (lbs/hr) for all sampling parameters. All supporting documents (e.g., strip charts, field data sheets, calibrations, calculations, etc.) will also be included.

Testing is scheduled for approximately 8am on September 1<sup>st</sup>, 2006. The facility contact is Bill Theyskens, who may be reached at 408 730 7718. If you have any questions, please contact Guy Worthington at 510 525 1261, or 510 508 3469.

Sincerely,

  
Guy Worthington  
Principal

BAAQMD FAX  
Bill Theyskens Fax

(415) 749-4922

(408) 730-7718  
emailed

Cell 408 242 2137