

SCEC

**2008 COMPLIANCE SOURCE TEST
CENTRAL MAUI MUNICIPAL LANDFILL
GAS COLLECTION AND CONTROL SYSTEM
(FLARE)**

PREPARED FOR:

SCS Field Services
3900 Kilroy Airport Way, Suite 100
Long Beach, CA 90806-6816

EQUIPMENT LOCATION:

Central Maui Municipal Solid Waste Landfill
Pulehu Road
Puunene, Maui 96784

Covered Source Permit (CSP) No. 0652-01-C

TEST DATE:

November 19, 2008

SUBMITTAL DATE:

January 7, 2009

PARAMETERS MEASURED:

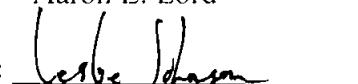
NO_x, CO, and TGNMO Emissions, and Volume Flow

TESTED BY:

Leslie A. Johnson

SCEC

1582-1 N. Batavia
Orange, CA 92867


Report No:

2170.3001.rpt1

Written By:

Aaron E. Lord

Reviewed By:

Leslie A. Johnson

TABLE OF CONTENTS

	<u>Page</u>
1.0 INTRODUCTION	1
2.0 TEST UNIT DESCRIPTION	3
3.0 TEST DESCRIPTION	4
3.1 Test Conditions	4
3.2 Sample Locations	4
3.3 Test Procedures	4
3.3.1 Methane and Total Gaseous Non-Methane Organics	6
3.3.2 Oxygen, Carbon Dioxide, Nitrogen, Carbon Monoxide, and Nitrogen Oxides	6
3.3.3 Flow Rate	7
4.0 RESULTS	7
4.1 Test Critique	7

Appendices

Appendix A - NO_x, CO, CO₂, O₂ Data, Strip Charts and Visible Emissions Data	A-1
Appendix B - Lab Results	B-1
Appendix C - Exhaust Volume Flow Data and Field Data	C-1
Appendix D - Quality Assurance / Quality Control Data	D-1
Appendix E - Calculations	E-1

1.0 INTRODUCTION

SCEC was contracted to perform the 2008 source testing on one (1) landfill gas fired flare located at the Central Maui Landfill. The testing was performed to satisfy requirements delineated by the State of Hawaii Department of Health (HDOH) CSP No. 0652-01-C.

Measurements of the flare emissions and operating parameters were conducted at the flare exhaust and at the inlet (landfill gas) of the flare. Table 1-1 provides a test matrix of the parameters tested at each sample location.

The tests were conducted on November 19, 2008 and were performed by Leslie A. Johnson – Project Manager and Aaron E. Lord - Project Specialist, of SCEC. Michael P. Murphy of SCS Field Services coordinated the source test program. On-site flare operations were coordinated by Dave Fisher of SCS Field Services.

The results of the emission tests are summarized in Table 1-2. Table 1-2 presents all data as recorded during the test program. The source tests demonstrate that the flare operates with criteria pollutant emissions below the permit limits. Detailed test results are presented in Section 4.0. All raw data, laboratory results, calculations and QA/QC data can be found in the Appendices.

**TABLE 1-1
TEST MATRIX
CENTRAL MAUI LANDFILL
November 19, 2008**

Parameter	Inlet	Exhaust
Oxygen (O ₂)	X	X
Carbon Dioxide (CO ₂)	X	X
Carbon Monoxide (CO)		X
Nitrogen Oxides (NO _x)		X
Moisture (H ₂ O)	X	X
Flow Rate (dscfm)	X	X
Temperature (°F)	X	X
<u>Total Gaseous Non-Methane Organics (TGNMO)</u>	X	X

1.0 INTRODUCTION

TABLE 1-2
SUMMARY OF TEST RESULTS
SCS Field Services
Central Maui Landfill
November 19, 2008

PARAMETER	INLET	EXHAUST	PERMIT LIMIT
O ₂ , %	0.54	14.73	
CO ₂ , %	38.70	5.85	
N ₂ , %	11.53	79.42	
Flow Rate, wscfm	525	-	
Flow Rate, dscfm	-	8,488	
Temperature, °F	106	1,481	>1,400
Btu/scf	476.7		
MMBtu/Hr	15.01		
NOx:			
ppm		9.9	
ppm @ 3% O ₂		28.7	
lb/hr (as NO ₂)		0.60	
lb/MMBtu (as NO ₂)		0.040	0.06
CO:			
ppm		40.0	
ppm @ 3% O ₂		116.0	
lb/hr		1.48	
lb/MMBtu		0.099	0.15
Hydrocarbons:			
CH ₄ , ppm	466,000	< 1	
TGNMO, ppm (as CH ₄)	7,460	1.83	
TGNMO, lb/hr (as CH ₄)	9.8	0.04	
TGNMO, ppm (as hexane)		0.30	
TGNMO, ppm @ 3% O ₂ (as hexane)		0.88	<20 NSPS
TGNMO, lb/hr (as hexane)		0.03	
Destruction Eff. %		99.59	>98%

Notes:

The results in this table are the averages of all measurements.

2.0 TEST UNIT DESCRIPTION

The landfill gas control system and flare station at the Central Maui Landfill includes a gas collection system, gas wells, and an enclosed flare to incinerate the landfill gas.

The flare tested was manufactured by Perennial Energy, Inc. Model FL-132-36-E and is 123.25 inches inside diameter by 36.75 feet high; propane fueled pilot, two Houston Service Industries 700 scfm multi-stage direct drive centrifugal blowers, two 20 HP air compressors, condensate tank and transfer system for condensate injection into flare, and a UV flame sensor. The flare has four thermocouple reading locations and one full-time thermocouple sensor. The flare was set to operate at 1475 °F while being monitored from the middle thermocouple.

3.0 TEST DESCRIPTION

3.1 Test Conditions

The landfill gas flow rate averaged 525 scfm during the source testing. Given the present state of the landfill the flare was operated at maximum throughput. Temperature and fuel flow rate were monitored and recorded by the automatic operation control system throughout the test period. In addition, SCEC recorded the flare temperature, gas flow rate and landfill gas temperature during the test runs. These data can be found in Appendix A field data sheets.

3.2 Sample Locations

Samples were collected at the flare exhaust and at the inlet (landfill gas fuel) to the flare. The sample point calculations and a schematic drawing of the sample locations are included in Appendix G.

The flare has an inside diameter of 123.25 inches. The ports are 31 feet above the ground; the stack exit is 37 feet above ground. Sixteen traverse points were used on all flow rate and Continuous Emission Monitoring System (CEMS) tests.

At the outlet to the flare, two ports located approximately 71 inches (0.58 diameters) downstream and 370 inches (3.00 diameters) upstream of all flow disturbances was used. The gas inlet pipe size is 10 inches with a single port located several diameters upstream of the flame arrestor.

3.3 Test Procedures

The test procedures used for the inlet and flare exhaust measurements are summarized below in Tables 3-1 and 3-2, respectively. Brief discussions of each procedure are given below in Sections 3.3.1 through 3.3.3. Triplicate measurements of each parameter were performed.

3.0 TEST DESCRIPTION (Continued)

TABLE 3-1
FLARE INLET TEST PROCEDURES
CENTRAL MAUI MUNICIPAL LANDFILL
NOVEMBER 19, 2008

Parameter	Sample Medium	Analytical Technique	Reference Method	Number of Replicates
Methane and Total Gaseous Non-Methane Organics & Fixed Gases	Summa Canister	TCA/FID	EPA Method 25C	3
Fixed Gases, Btu/cf and F factor	Tedlar Bags	CG/FID	ASTM D-3588	3
Moisture	Thermocouple	Wet Bulb/Dry Bulb	EPA Methods 4	3
Flow Rate	On-site Meter	Differential Pressure	NA	Continuous

TABLE 3-2
FLARE EXHAUST TEST PROCEDURES
CENTRAL MAUI MUNICIPAL LANDFILL
NOVEMBER 19, 2008

Parameter	Sample Medium	Reference Method	Number of Replicates
Methane and Total Gaseous Non-Methane Organics	Summa Canister	EPA Method 25C	3
O ₂	CEM	EPA Method 3A	3
CO ₂	CEM	EPA Method 3A	3
NO _x	CEM	EPA Methods 7E and 10	3
CO	CEM	EPA Methods 7E and 10	3
Flow Rate	NA	EPA Method 19	3

3.0 TEST DESCRIPTION (Continued)

3.3.1 Methane and Total Gaseous Non-Methane Organics

Methane and total gaseous non-methane organics were measured following EPA Method 25C. The landfill gas samples were collected over an hour period in evacuated summa canisters. ATMAA, Inc., in Calabasas, California analyzed the samples following EPA Method 25C using TCA/FID.

The exhaust gas measurements were conducted using EPA Method 25C. The sample is collected using a stainless steel probe connected by Teflon tubing to an evacuated stainless steel tank. The probe and sample line are purged with flue gas continuously for 5 minutes before sampling. The exhaust sampling was conducted simultaneously with the collection of the inlet samples for the determination of destruction efficiency. The tank samples were analyzed by ATMAA, Inc. in Calabasas, CA, using TCA/FID.

3.3.2 Oxygen, Carbon Dioxide, Nitrogen, Carbon Monoxide, and Nitrogen Oxides

Measurements of NO_x, CO, O₂ and CO₂ at the exhaust were conducted using EPA Methods 3A, 7E, and 10 sampling with a CEMS.

These CEMS measurements were obtained using SCEC's continuous emissions monitoring system described in Appendix A. The system includes a stainless steel probe connected to a 25' Teflon line to extract the exhaust sample. The sample gas is then directed through a moisture knockout cooled with ice and water. A peristaltic pump continuously drains the knockout. The sample then travels to the ground using Teflon tubing to an additional conditioning and filtering system. Leak checks were conducted prior to and at the conclusion of compliance testing by operating the sample pump, plugging the probe inlet and all pressure side system exits except for one analyzer rotameter, then measuring the leakage rate on that rotameter.

A calibration error test was performed on each analyzer prior to testing. The calibration error test was conducted by spanning the instrument with zero and high span gas and then recording the as-found value when injecting zero, mid and high span gases.

EPA Protocol 1 Calibration Gases were used for all analyzer calibrations. In accordance with EPA Method procedures, a pre- and post-test system bias check was conducted for each test run. The system bias check was conducted by delivering zero and span gas to the CEM probe tip and recording the as-found concentration. No analyzer adjustments were made between these pre- and post-system bias checks. Calculations for the correction of measured system bias and instrument drift were then applied to each test run.

Triplicate emissions measurements were performed to determine the concentration of O₂, CO₂, CO, and NO_x. The average concentrations were determined during each test for a period of sixty minutes. This test average was then corrected for measured system bias and drift.

3.0 TEST DESCRIPTION (Continued)

3.3.3 Flow Rate

Landfill gas flow rate into the flare was set to specification using on-site instrumentation. The thermal capacity (MMBtu/scf) and expansion potential (EPA F factor) of the landfill gas was analyzed. Based on the on-site fuel meter and fuel quality analysis the exhaust volume flow was calculated. All results in the reported tables use EPA Method 19 calculated exhaust flow rate. The exhaust flow rate calculations are included in Appendix C.

4.0 RESULTS

The results of the source tests of the Central Maui Municipal Landfill flare show that the flare emissions are below HDOH permit limits. The flare exhaust TGNMO is well below both the 20 ppm_v @3% O₂ as hexane and the 98% DRE. Table 1-2 present the summarized test results and application permit limits. Table 4-1 present detailed test results of each parameter.

4.1 Test Critique

No sampling or analytical problems occurred during the test program. All calibration error and system bias checks were below their allowable tolerance, 2% and 5%. The on-site NO₂ converter check met the method 7e requirement.

4.0 RESULTS (Continued)

TABLE 4-1
GENERAL RESULTS
SCS Field Services
Central Maui Landfill
November 19, 2008

Parameter	INLET				EXHAUST			
	First Run	Second Run	Third Run	Average	First Run	Second Run	Third Run	Average
O ₂ , %	0.51	0.55	0.56	0.54	14.57	14.80	14.81	14.73
CO ₂ , %	38.3	38.7	39.1	38.7	5.95	5.79	5.82	5.85
N ₂ , %	12.5	11.2	10.9	11.5	79.5	79.4	79.4	79.4
Flow Rate, wsfcfm	526	526	523	525	-	-	-	-
Flow Rate, dscfm	-	-	-	-	8,196	8,652	8,617	8,488
Temperature, °F	106	106	106	106	1,457	1,484	1,502	1,481
Btu/scf	469	479	482	477				
MMBtu/Hr	14.80	15.12	15.13	15.01				
NOx:								
ppm					10.17	9.55	9.98	9.90
ppm @ 3% O ₂					28.7	28.1	29.3	28.7
lb/hr (as NO ₂)					0.60	0.59	0.62	0.60
lb/MM Btu (as NO ₂)					0.040	0.039	0.041	0.040
CO:								
ppm					39.7	45.3	35.0	40.0
ppm @ 3% O ₂					112.1	133.2	102.8	116.0
lb/hr					1.418	1.711	1.314	1.481
lb/MM Btu					0.096	0.113	0.087	0.099
Hydrocarbons:								
CH ₄ , ppm	459,000	468,000	471,000	466,000	< 1	< 1	< 1	< 1
Ethane, ppm	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1
TGNMO, ppm (as CH ₄)	6,790	7,680	7,910	7,460	2.56	1.92	< 1	< 1.83
TGNMO, lb/hr (as CH ₄)	8.90	10.06	10.31	9.76	0.05	0.04	0.02	0.04
TGNMO, ppm (as hexane)	1,132	1,280	1,318	1,243	0.43	0.32	0.17	0.30
TGNMO, ppm @ 3% O ₂ (as hexane)	993	1,126	1,160	1,093	1.21	0.94	0.49	0.88
TGNMO, lb/hr (as hexane)	7.97	9.02	9.23	8.74	0.05	0.04	0.02	0.03
Destruction Eff. %					99.41	99.59	99.78	99.59

The exhaust volume flow values are based on EPA Method 19.

Appendices

**Appendix A - NO_x, CO, CO₂, O₂ Data, Strip Charts
and Visible Emissions Data**

Appendix B - Lab Results

Appendix C - Exhaust Volume Flow Data and Field Data

Appendix D - Quality Assurance / Quality Control Data

Appendix E - Calculations

Appendix A

**NO_x, CO, CO₂, O₂ Data, Strip Charts
and Visible Emission Data**

SCS Field Services
Central Maui Landfill
November 19, 2008
RAW DAS DATA - COMPLIANCE RUN 1
TIME: 1212-1257

DATA PT	DATE	TIME	O2 % VD	CO2 % VD	NOx PPMVD	CO PPMVD
1	11/19	12:12:05	14.21	6.32	10.90	12.3
2	11/19	12:13:05	13.27	7.03	14.60	2.6
3	11/19	12:14:05	13.72	6.86	12.90	1.4
4	11/19	12:15:05	14.11	6.14	12.10	5.5
5	11/19	12:16:05	14.12	6.69	11.50	9.4
6	11/19	12:17:05	13.52	6.95	13.50	3.5
7	11/19	12:18:05	13.83	5.81	12.60	13.6
8	11/19	12:19:05	13.41	6.78	14.20	0.6
9	11/19	12:20:05	14.34	6.36	11.00	10.4
10	11/19	12:21:05	15.11	5.86	9.20	10.3
11	11/19	12:22:05	15.12	6.52	11.40	3.2
12	11/19	12:23:05	13.92	6.32	12.00	6.8
13	11/19	12:24:05	14.07	6.06	11.60	11.7
14	11/19	12:25:05	14.31	6.25	11.40	11.3
15	11/19	12:26:05	15.77	5.23	7.90	19.8
16	11/19	12:27:05	14.22	5.82	10.90	40.7
17	11/19	12:28:05	14.56	5.93	9.80	63.5
18	11/19	12:29:05	14.42	5.88	10.30	57.1
19	11/19	12:30:05	15.02	5.45	9.50	54.5
20	11/19	12:31:05	14.66	5.66	10.10	54.1
21	11/19	12:32:05	14.72	5.76	9.90	46.4
22	11/19	12:33:05	14.81	5.82	9.60	72.7
23	11/19	12:34:05	14.82	5.63	9.30	87.2
24	11/19	12:35:05	15.28	4.92	9.40	58.6
25	11/19	12:36:05	14.62	5.84	10.30	75.1
26	11/19	12:37:05	15.20	5.44	9.30	77.0
27	11/19	12:38:05	14.70	5.79	9.80	68.9
28	11/19	12:39:05	14.72	5.78	9.90	65.9
29	11/19	12:40:05	14.62	5.54	10.10	69.0
30	11/19	12:41:05	14.60	5.76	10.10	54.2
31	11/19	12:42:05	14.84	5.75	9.60	81.2
32	11/19	12:43:05	14.52	5.94	10.60	68.2
33	11/19	12:44:05	14.23	5.69	11.20	31.0
34	11/19	12:45:05	14.53	5.82	10.30	36.9
35	11/19	12:46:05	13.66	6.55	13.60	6.9
36	11/19	12:47:05	14.12	6.03	13.20	6.2
37	11/19	12:48:05	14.12	5.87	10.90	34.2
38	11/19	12:49:05	14.92	5.48	9.80	81.3
39	11/19	12:50:05	14.83	5.70	10.10	86.5
40	11/19	12:51:05	14.02	6.30	12.30	33.1
41	11/19	12:52:05	14.48	5.87	10.90	52.7
42	11/19	12:53:05	14.12	6.28	11.70	46.8
43	11/19	12:54:05	13.92	6.19	12.60	27.0
44	11/19	12:55:05	14.12	6.12	11.40	42.9
45	11/19	12:56:05	14.22	6.11	10.90	47.1
AVERAGES			14.41	6.00	10.98	38.87

SCS Field Services
 Central Maui Landfill
 November 19, 2008

RAW DAS DATA - COMPLIANCE RUN 2
 TIME: 1312-1357

DATA PT	DATE	TIME	O2 % VD	CO2 % VD	NOx PPMVD	CO PPMVD
1	11/19	13:12:47	14.65	6.00	10.20	20.6
2	11/19	13:13:47	14.92	5.98	9.50	33.3
3	11/19	13:14:47	14.14	6.38	10.90	43.2
4	11/19	13:15:47	14.58	5.69	10.10	40.6
5	11/19	13:16:47	14.42	6.26	10.50	71.3
6	11/19	13:17:47	14.82	5.75	9.80	58.9
7	11/19	13:18:47	14.92	5.44	9.60	47.2
8	11/19	13:19:47	14.84	5.44	9.50	57.1
9	11/19	13:20:47	15.56	5.40	8.80	44.6
10	11/19	13:21:47	14.83	5.59	9.80	82.1
11	11/19	13:22:47	14.64	5.77	9.90	83.9
12	11/19	13:23:47	14.53	5.32	10.00	81.8
13	11/19	13:24:47	14.67	5.93	11.10	25.5
14	11/19	13:25:47	13.81	6.77	15.20	3.0
15	11/19	13:26:47	14.23	6.17	13.70	2.5
16	11/19	13:27:47	14.13	5.99	11.30	24.1
17	11/19	13:28:47	14.42	5.94	10.00	50.9
18	11/19	13:29:47	14.42	6.00	9.20	62.6
19	11/19	13:30:47	14.42	5.86	9.60	45.0
20	11/19	13:31:47	14.92	5.54	9.00	73.3
21	11/19	13:32:47	14.72	5.52	9.60	79.4
22	11/19	13:33:47	14.63	5.82	10.20	65.9
23	11/19	13:34:47	14.42	5.98	10.40	63.4
24	11/19	13:35:47	15.45	4.99	9.10	73.5
25	11/19	13:36:47	15.12	5.46	9.50	60.2
26	11/19	13:37:47	14.43	6.24	11.00	41.2
27	11/19	13:38:47	14.61	5.30	11.20	18.3
28	11/19	13:39:47	14.22	5.88	11.00	19.0
29	11/19	13:40:47	13.83	7.18	15.40	2.0
30	11/19	13:41:47	14.42	5.78	10.10	16.4
31	11/19	13:42:47	14.42	6.31	10.70	14.5
32	11/19	13:43:47	14.57	5.66	11.40	20.0
33	11/19	13:44:47	15.02	5.85	9.70	42.6
34	11/19	13:45:47	14.42	5.67	10.40	53.7
35	11/19	13:46:47	14.72	5.23	9.70	42.8
36	11/19	13:47:47	14.92	5.61	9.60	54.6
37	11/19	13:48:47	15.08	5.33	10.00	42.0
38	11/19	13:49:47	14.53	5.58	9.90	40.7
39	11/19	13:50:47	14.92	5.64	8.80	48.7
40	11/19	13:51:47	14.72	5.72	9.10	58.1
41	11/19	13:52:47	14.72	5.12	9.60	53.7
42	11/19	13:53:47	14.12	6.07	11.00	32.6
43	11/19	13:54:47	14.01	6.22	12.10	17.8
44	11/19	13:55:47	14.18	6.05	11.50	44.0
45	11/19	13:56:47	14.13	6.46	13.40	33.8
AVERAGES			14.58	5.82	10.49	44.23

SCS Field Services
Central Maui Landfill
November 19, 2008
RAW DAS DATA - COMPLIANCE RUN 3
TIME: 1422-1557

DATA PT	DATE	TIME	O2 % VD	CO2 % VD	NOx PPMVD	CO PPMVD
1	11/19	14:22:11	14.46	6.01	9.00	10.3
2	11/19	14:23:11	14.60	6.13	10.50	69.2
3	11/19	14:24:11	14.99	5.57	11.30	54.2
4	11/19	14:25:11	14.95	5.68	10.20	65.4
5	11/19	14:26:11	14.61	6.25	10.80	62.6
6	11/19	14:27:11	14.87	5.42	10.80	51.7
7	11/19	14:28:11	14.77	5.94	10.50	56.8
8	11/19	14:29:11	14.42	5.99	11.20	50.5
9	11/19	14:30:11	14.72	5.30	11.20	48.7
10	11/19	14:31:11	14.70	5.22	11.00	41.2
11	11/19	14:32:11	15.23	5.55	9.40	49.6
12	11/19	14:33:11	14.30	6.05	11.00	53.1
13	11/19	14:34:11	14.48	6.17	11.60	55.7
14	11/19	14:35:11	14.76	5.90	11.60	42.8
15	11/19	14:36:11	14.39	5.88	10.50	50.9
16	11/19	14:37:11	14.38	6.01	11.20	49.9
17	11/19	14:38:11	15.45	5.90	9.90	29.9
18	11/19	14:39:11	15.02	4.99	8.50	45.9
19	11/19	14:40:11	14.73	5.25	10.80	35.3
20	11/19	14:41:11	14.95	4.23	7.50	38.0
21	11/19	14:42:11	15.68	4.61	10.40	39.2
22	11/19	14:43:11	14.29	5.60	11.10	30.5
23	11/19	14:44:11	15.48	5.12	9.50	36.2
24	11/19	14:45:11	15.73	5.46	8.50	28.6
25	11/19	14:46:11	15.43	5.75	7.00	30.4
26	11/19	14:47:11	14.54	5.23	10.10	40.5
27	11/19	14:50:11	13.92	6.37	13.00	23.6
28	11/19	14:51:11	14.78	6.10	10.30	20.4
29	11/19	14:52:11	14.43	6.11	11.10	44.9
30	11/19	14:53:11	14.52	6.22	11.50	26.0
31	11/19	14:54:11	13.72	6.53	11.90	11.7
32	11/19	14:55:11	15.07	5.52	12.60	8.3
33	11/19	14:56:11	14.04	6.34	10.80	9.8
34	11/19	14:57:11	13.54	6.79	14.30	1.8
35	11/19	14:58:11	13.87	6.37	13.60	3.5
36	11/19	14:59:11	14.05	5.79	12.20	2.3
37	11/19	15:00:11	13.99	6.44	11.60	6.1
38	11/19	15:01:11	14.50	6.03	11.00	40.5
39	11/19	15:02:11	14.91	5.80	10.40	26.0
40	11/19	15:03:11	13.91	6.23	13.90	33.2
41	11/19	15:04:11	14.07	6.26	11.10	41.0
42	11/19	15:05:11	14.12	6.37	11.70	16.8
43	11/19	15:06:11	14.19	6.34	6.30	12.7
44	11/19	15:07:11	14.16	6.32	9.96	11.3
AVERAGES			14.58	5.84	10.74	34.25

SUMMARY OF CONTINUOUS MONITORING DATA

FACILITY:	SCS Field Services	DATA FOR SAMPLING RUN:		COMPLIANCE RUN 1	
SOURCE ID/CONDITION:	Central Maui Landfill	DATE: 11/19/08		TIME: 1212-1257	
OPERATOR:	LAJ	PROJECT No.:	2170.1012		
PARAMETER UNITS	O ₂ % VOL DRY	CO ₂ % VOL DRY	NO _x PPMV,D	CO PPMV,D	SO ₂ PPMV,D
INITIAL ZERO BIAS	0.05	0.12	0.60	0.50	NA
INITIAL SPAN BIAS	11.93	10.08	44.20	83.40	NA
FINAL ZERO BIAS	0.05	0.12	1.00	0.50	NA
FINAL SPAN BIAS	11.83	9.96	44.70	82.90	NA
AVERAGE ZERO BIAS	0.05	0.12	0.80	0.50	NA
AVERAGE SPAN BIAS	11.88	10.02	44.45	83.15	NA
BIAS GAS CONCENTRATION	12.00	10.02	43.60	85.45	NA
FULL SCALE RANGE	25	20	50	200	NA
UNCORRECTED CONC.	14.41	6.00	10.98	38.87	NA
CORRECTED CONC.	14.57	5.95	10.17	39.67	NA
PPMV @ 3 % O ₂			28.74	112.12	NA
LB/mmBTU BASED ON HEAT INPUT (MMBTU/HR)	14.80		0.040	0.096	NA
LB/HR BASED ON VOL FLOW (DSCFM)	8,196		0.60	1.42	NA

SUMMARY OF CONTINUOUS MONITORING DATA

FACILITY:	SCS Field Services	DATA FOR SAMPLING RUN:		COMPLIANCE RUN 2		
SOURCE ID/CONDITION:	Central Maui Landfill	DATE: 11/19/08		TIME: 1312-1357		
OPERATOR:	LAJ	PROJECT No.: 2170.1012				
PARAMETER	UNITS	O ₂ % VOL DRY	CO ₂ % VOL DRY	NO _x PPMV,D	CO PPMV,D	SO ₂ PPMV,D
INITIAL ZERO BIAS		0.05	0.12	1.00	0.50	NA
INITIAL SPAN BIAS		11.83	9.96	44.70	82.90	NA
FINAL ZERO BIAS		0.05	0.11	0.70	0.50	NA
FINAL SPAN BIAS		11.83	10.00	45.00	82.90	NA
AVERAGE ZERO BIAS		0.05	0.12	0.85	0.50	NA
AVERAGE SPAN BIAS		11.83	9.98	44.85	82.90	NA
BIAS GAS CONCENTRATION		12.00	10.02	43.60	85.45	NA
FULL SCALE RANGE		25	20	50	200	NA
UNCORRECTED CONC.		14.58	5.82	10.49	44.23	NA
CORRECTED CONC.		14.80	5.79	9.55	45.35	NA
PPMV @ 3 % O ₂				28.05	133.15	NA
LB/mmBTU BASED ON HEAT INPUT (MMBTU/HR)		15.12		0.039	0.113	NA
LB/HR BASED ON VOL FLOW (DSCFM)		8,652		0.59	1.71	NA

SUMMARY OF CONTINUOUS MONITORING DATA

FACILITY:	SCS Field Services	DATA FOR SAMPLING RUN:		COMPLIANCE RUN 3		
SOURCE ID/CONDITION:	Central Maui Landfill	DATE: 11/19/08		TIME: 1422-1557		
OPERATOR:	LAJ	PROJECT No.:	2170.1012			
PARAMETER		O ₂ % VOL DRY	CO ₂ % VOL DRY	NO _x PPMV,D	CO PPMV,D	SO ₂ PPMV,D
INITIAL ZERO BIAS		0.05	0.11	0.70	0.50	NA
INITIAL SPAN BIAS		11.83	10.00	45.00	82.90	NA
FINAL ZERO BIAS		0.06	0.13	0.50	0.50	NA
FINAL SPAN BIAS		11.83	9.95	44.80	83.00	NA
AVERAGE ZERO BIAS		0.06	0.12	0.60	0.50	NA
AVERAGE SPAN BIAS		11.83	9.98	44.90	82.95	NA
BIAS GAS CONCENTRATION		12.00	10.02	43.60	85.45	NA
FULL SCALE RANGE		25	20	50	200	NA
UNCORRECTED CONC.		14.58	5.84	10.74	34.25	NA
CORRECTED CONC.		14.81	5.82	9.98	34.98	NA
PPMV @ 3 % O ₂				29.31	102.76	NA
LB/MMBTU BASED ON HEAT INPUT (MMBTU/HR)	15.13			0.041	0.087	NA
LB/HR BASED ON VOL FLOW (DSCFM)	8,617			0.62	1.31	NA

Co. Penn 200

卷之三

卷之三

132

100

८८

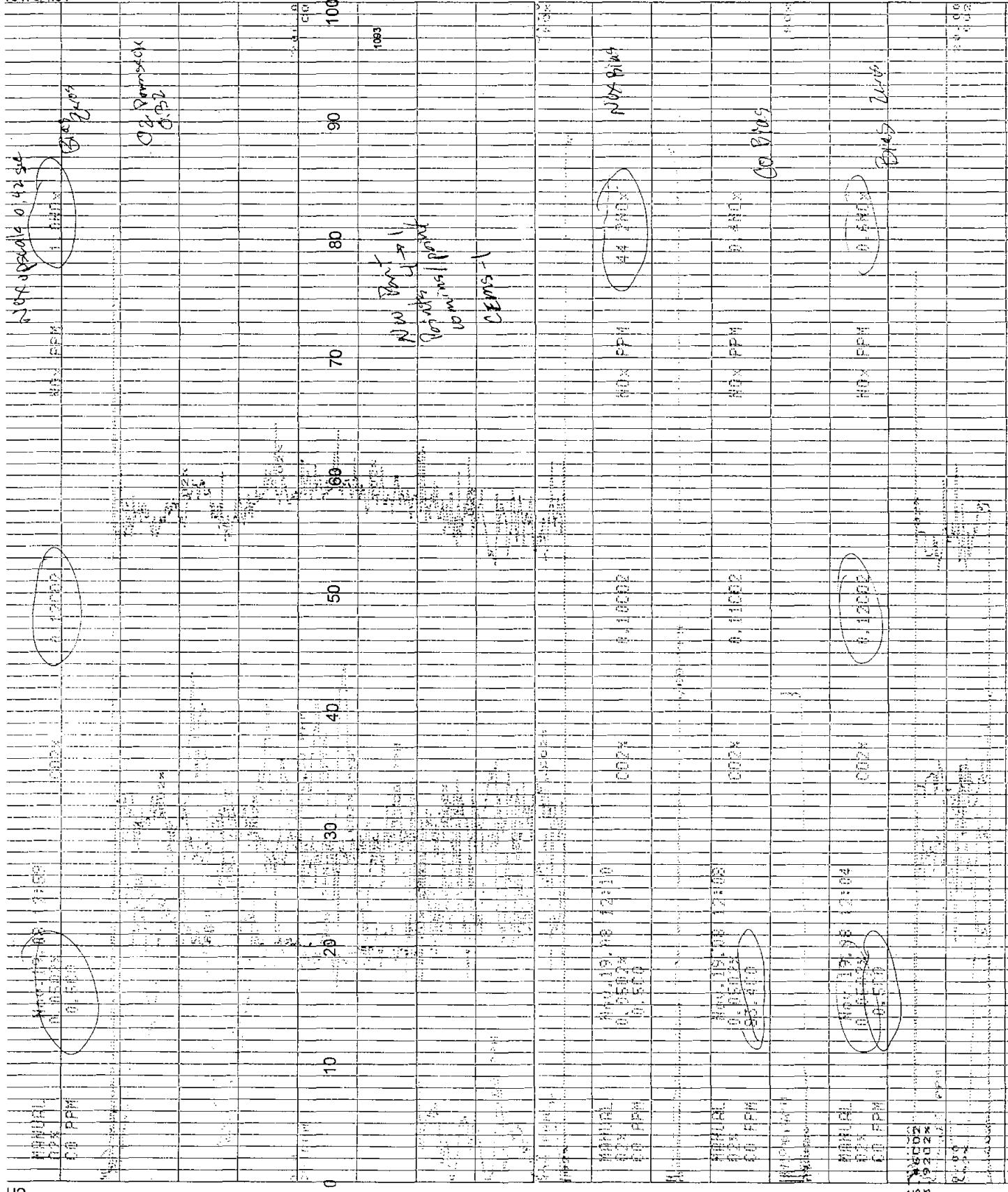
111

111

111

111

21


111

114

111

1093

CO₂x
O₂x
H₂O₂

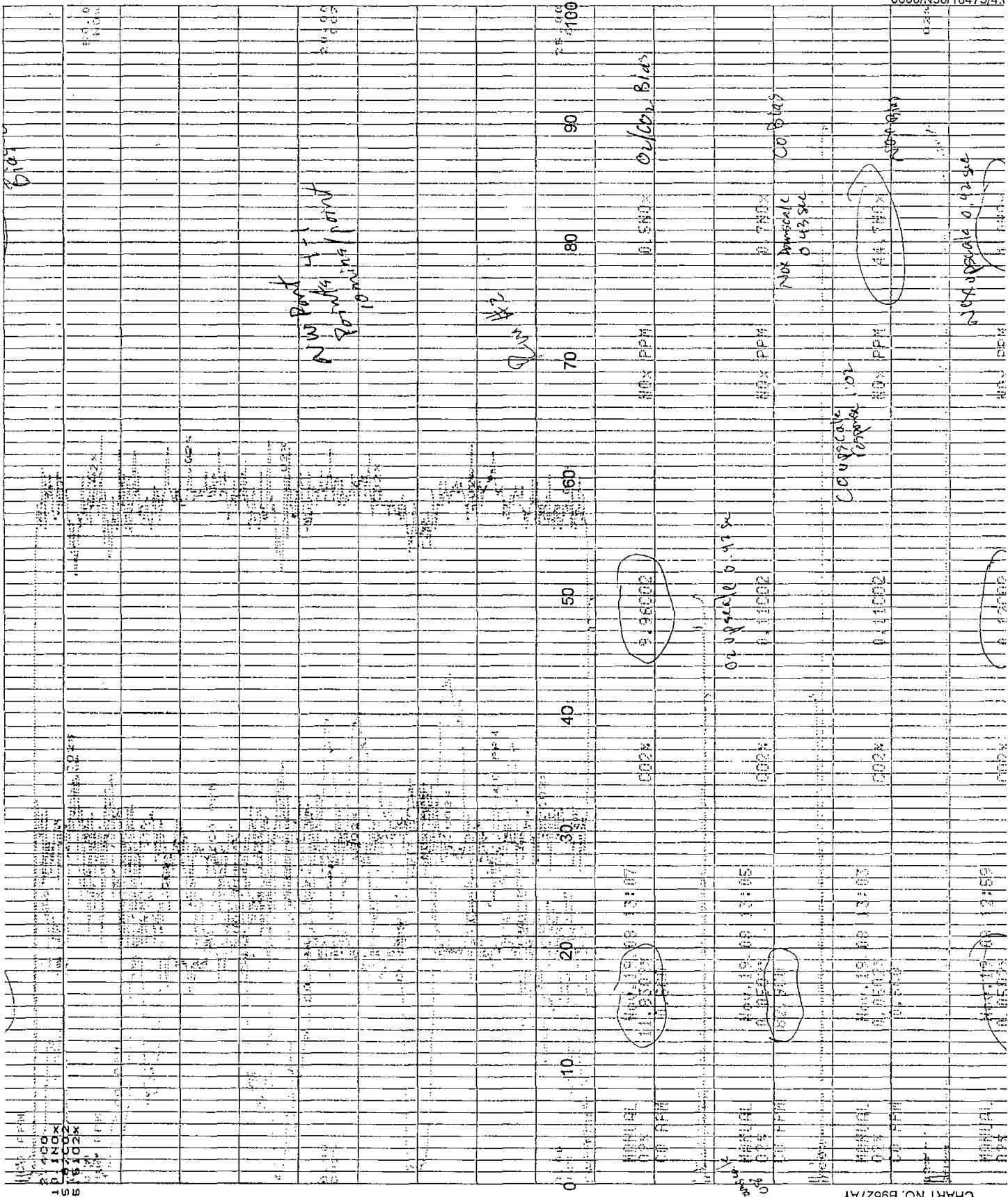


CHART NO. B9627AY

1083

35

- 2 -

5
8
2002
100

3
3

100

260

100

60

45

40

3

20

12.4

卷之三

1

114

— (

10

118

卷之三

1

CO PPM
NO₂ PPM
CO₂%
O₂%
Nov. 19

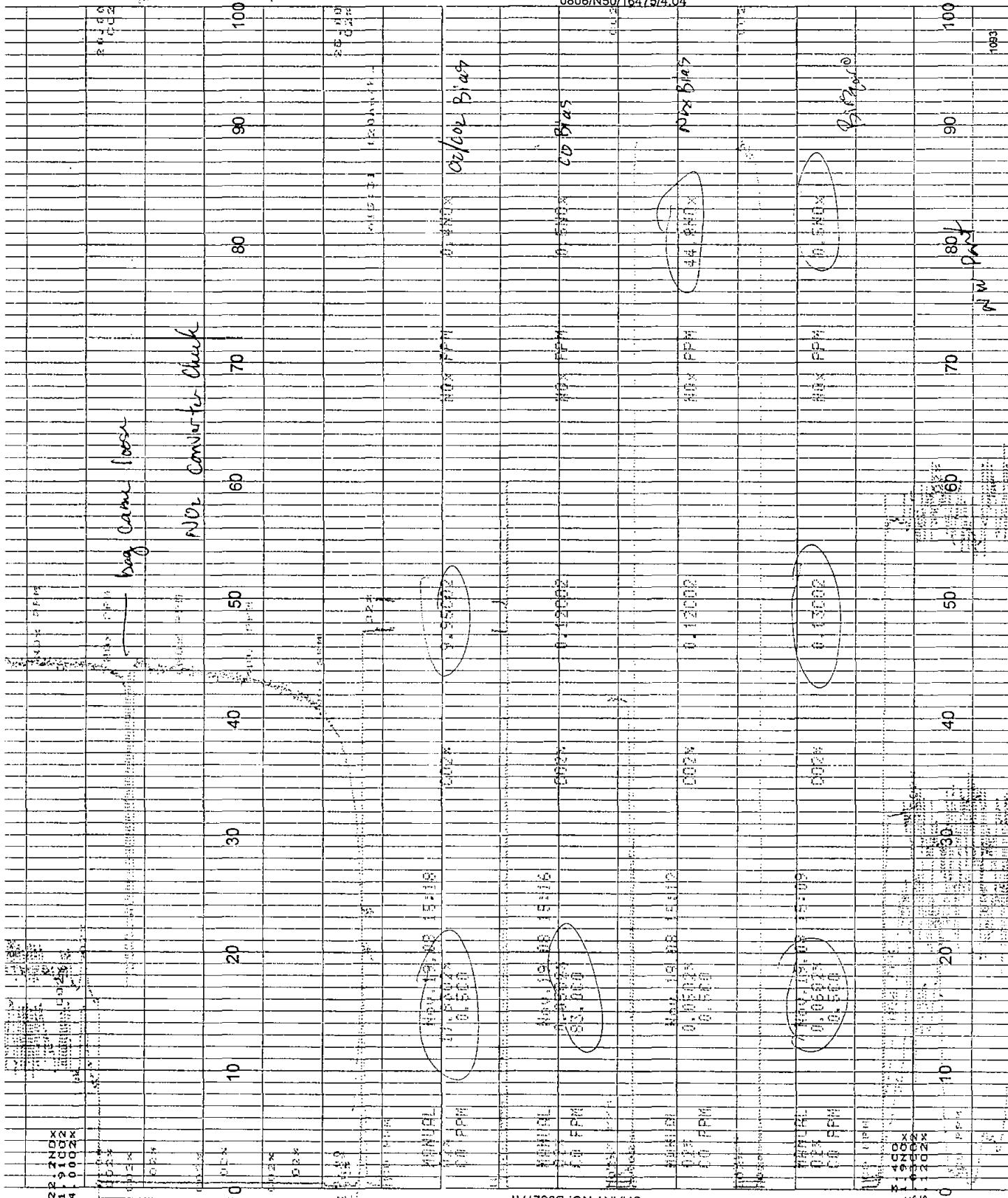


CHART NO. B9627AY

VISIBLE EMISSIONS FORM
STATE OF HAWAII
COVERED SOURCE PERMIT NO. 0652-01-C

Issuance Date: March 3, 2008

Expiration Date: March 2, 2013

Make Copies for Future Use For Each Equipment)

Permit No.: 0652-01-C

Company Name: SCEC

Equipment and Fuel: LANDFILL GAS COLLECTION AND CONTROL SYSTEM
- METHANE

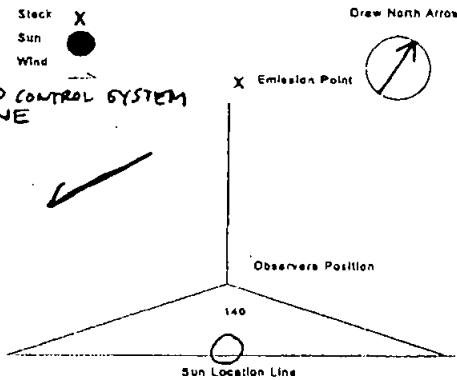
Site Conditions:

Stack height above ground (ft): 45'

Stack distance from observer (ft): 70'

Emission color (black or white): CLEAR

Sky conditions (% cloud cover): 35

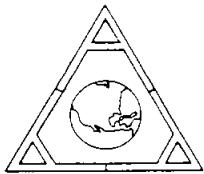

Wind speed (mph): 15 - 20

Temperature (°F): 78

Observer Name: AARON LORD

Certified? (Yes/No): YES

Observation Date and Start Time: 11-19-08 / 10:23 am


SECONDS MINUTES	0	15	30	45	COMMENTS
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	0	0	
6	0	0	0	0	
Six (6) Minute Average Opacity Reading (%)					0

Observation Date and Start Time: 11-19-08 / 10:29 am

SECONDS MINUTES	0	15	30	45	COMMENTS
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	0	0	
6	0	0	0	0	
Six (6) Minute Average Opacity Reading (%)					0

Appendix B

Lab Results

AtmAA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants
laboratory services

LABORATORY ANALYSIS REPORT

Permanent Gases and TGNMO Analysis in SUMMA Canister Samples

Report Date: December 9, 2008

Client: SCEC

Site: SCS Field Services

Location: Central Maui Landfill

Client Project No.: 2170.3001

Date Received: November 24, 2008

Date Analyzed: December 1, - 4, 2008

ANALYSIS DESCRIPTION

Permanent gases are measured by thermal conductivity detection/gas chromatography (TCD/GC), EPA 3C. TGNMO is measured by Method 25 analysis, FID/TCA, total combustion analysis.

AtmAA Lab No.:	03298-10	03298-11	03298-12	
Sample ID:	Inlet-R1 374	Inlet-R2 171	Inlet-R3 286	
(Concentration in %v)				

Methane 45.9 46.8 47.1

Carbon Dioxide 38.3 38.7 39.1

Nitrogen 12.5 11.2 10.9

Oxygen 0.51 0.55 0.56

(Concentration in ppmv)

Ethane <10 <10 <10

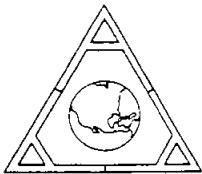
TGNMO 6790 7680 7910

*TGNMO is total gaseous non-methane organics (excluding ethane), reported as ppmvC.
Ethane is reported as ppmvC.*

Michael L. Porter
Laboratory Director

QUALITY ASSURANCE SUMMARY
(Repeat Analyses)


Site: Central Maui Landfill


Date Received: November 24, 2008

Date Analyzed: December 1, - 4, 2008

Components	Sample ID	Repeat Analysis		Mean Conc.	% Diff. From Mean
		Run #1	Run #2		
Methane	Exh. #1	<1	<1	---	---
	Exh. #2	<1	<1	---	---
	Exh. #3	<1	<1	---	---
Ethane	Exh. #1	<1	<1	---	---
	Exh. #2	<1	<1	---	---
	Exh. #3	<1	<1	---	---
TGNMO	Exh. #1	2.61	2.50	2.56	2.2
	Exh. #2	2.09	1.75	1.92	8.9
	Exh. #3	<1	<1	---	---

Three canister samples, laboratory numbers 03298-(13 - 15), were analyzed for methane, ethane, and TGNMO. Agreement between repeat analyses is a measure of precision and is shown in the column "% Difference from Mean". The average % Difference from Mean for 2 repeat measurements from three canister samples is 5.5%

AtmAA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

**environmental consultants
laboratory services**

LABORATORY ANALYSIS REPORT

Methane, Ethane, and Total Gaseous Non-Methane Organics Analysis in SUMMA Canister Samples

Report Date: December 9, 2008
Client: SCEC
Site: SCS Field Services
Location: Central Maui Landfill
Client Project No.: 2170.3001

Date Received: November 24, 2008
Date Analyzed: December 1. - 4. 2008

ANALYSIS DESCRIPTION

Methane, ethane, and TGNMO were measured by Method 25, total combustion analysis, (FID/TCA).

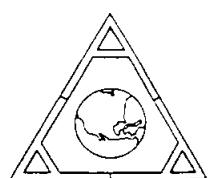
AtmAA Lab No.:	03298-13	03298-14	03298-15	
Sample ID:	Exh. #1 162	Exh. #2 147	Exh. #3 272	

Methane <1 <1 <1

Ethane <1 <1 <1

TGNMO 2.56 1.92 <1

TGNMO is total gaseous non-methane organics (excluding ethane), reported as ppmvC. Ethane is reported as ppmvC.


*Michael L. Porter
Laboratory Director*

QUALITY ASSURANCE SUMMARY
(Repeat Analyses)

Site: Central Maui Landfill
 Date Received: November 24, 2008
 Date Analyzed: December 1, - 4, 2008

Components	Sample ID	Repeat Analysis		Mean Conc.	% Diff. From Mean
		Run #1	Run #2		
<i>(Concentration in %v)</i>					
Methane	Inlet-R1	45.9	45.9	45.9	0.0
	Inlet-R2	46.8	46.8	46.8	0.0
	Inlet-R3	47.1	47.0	47.1	0.11
Carbon Dioxide	Inlet-R1	38.3	38.3	38.3	0.0
	Inlet-R2	38.8	38.6	38.7	0.26
	Inlet-R3	39.1	39.1	39.1	0.0
Nitrogen	Inlet-R1	12.4	12.6	12.5	0.80
	Inlet-R2	11.3	11.0	11.2	1.3
	Inlet-R3	11.0	10.8	10.9	0.92
Oxygen	Inlet-R1	0.43	0.59	0.51	16
	Inlet-R2	0.56	0.54	0.55	1.8
	Inlet-R3	0.57	0.54	0.56	2.7
<i>(Concentration in ppmv)</i>					
Ethane	Inlet-R1	<10	<10	---	---
	Inlet-R2	<10	<10	---	---
	Inlet-R3	<10	<10	---	---
TGNMO	Inlet-R1	6810	6770	6790	0.29
	Inlet-R2	7650	7710	7680	0.39
	Inlet-R3	7900	7920	7910	0.13

Three SUMMA canister samples, laboratory numbers 03298-(10 - 12), were analyzed for permanent gases and TGNMO. Agreement between repeat analyses is a measure of precision and is shown in the column "% Difference from Mean". The average % Difference from Mean for 15 repeat measurements from three SUMMA canister samples is 1.6%.

Calculated values for Specific Volume, BTU and F (factor)

Report Date: December 9, 2008

Client: SCEC

Project Location: Central Maui Landfill

Date Received: November 24, 2008

Date Analyzed: December 1 - 4, 2008

AtmAA Lab No.: 03298-10 Inlet R1

Specific volume, BTU, and F factor are calculated using laboratory analysis results for methane, carbon dioxide, nitrogen, oxygen, TGNMO, and sulfur compounds in equations that include assumed values for the specific volume of gases (CH₄, CO₂, N₂, O₂, Ar, and (CH₂)_n). The specific volume of gases were taken from the Scott Speciality Gases catalogue, 2001, and represents as is gas at 60° F and 1 atm. The F factor is calculated according to the equation in ASTM D-3588 B89

Component	Mole %	Wt %	C, H, O, N, S,	Wt. %
Methane	45.92	26.29	Carbon	36.44
Carbon dioxide	38.27	60.26	Hydrogen	6.62
Nitrogen	12.50	12.52	Oxygen	44.38
Oxygen	0.49	0.56	Nitrogen	12.52
Argon	0.022	0.031	Argon	0.03
(CH ₂) _n	0.679	0.340	Sulfur	0.00
Specific Volume		13.154		
BTU/ft ³		469		
BTU/ lb.		6172		
F (factor)		9915	10,068	at 68°

Component	Specific volume reference values *
Methane	23.35 (ft ³ /lb)
Carbon dioxide	8.59
Nitrogen	13.54
Oxygen	11.87
Argon	9.52
(CH ₂) _n	21

* reference, Scott Specialty Gases Catalogue, 2001 adjusted to 60°F

Calculated values for Specific Volume, BTU and F (factor)

Report Date: December 9, 2008

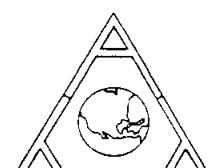
Client: SCEC

Project Location: Central Maui Landfill

Date Received: November 24, 2008

Date Analyzed: December 1, - 4, 2008

AtmAA Lab No.: 03298-11 Inlet R2


Specific volume, BTU, and F factor are calculated using laboratory analysis results for methane, carbon dioxide, nitrogen, oxygen, TGNMO, and sulfur compounds in equations that include assumed values for the specific volume of gases (CH₄, CO₂, N₂, O₂, Ar, and (CH₂)_n). The specific volume of gases were taken from the Scott Speciality Gases catalogue, 2001, and represents as is gas at 60° F and 1 atm. The F factor is calculated according to the equation in ASTM D-3588 B89

Component	Mole %	Wt %	C, H, O, N, S,	Wt. %
Methane	46.79	26.81	Carbon	37.07
Carbon dioxide	38.70	60.99	Hydrogen	6.76
Nitrogen	11.14	11.17	Oxygen	44.96
Oxygen	0.53	0.60	Nitrogen	11.17
Argon	0.023	0.033	Argon	0.03
$(\text{CH}_2)_n$	0.768	0.385	Sulfur	0.00
Specific Volume		13.171		
BTU/ft ³		479		
BTU/ lb.		6306		
F (factor)		9865	10,017 at 68°	

"as is" gas at 60° F, 1 atm, where CH4-1010 TGNMO-804 BTU/cu ft

Component	Specific volume reference values *
Methane	23.35 (ft ³ /lb)
Carbon dioxide	8.59
Nitrogen	13.54
Oxygen	11.87
Argon	9.52
(CH ₂) _n	21

* reference, Scott Specialty Gases Catalogue, 2001 adjusted to 60°F

Calculated values for Specific Volume, BTU and F (factor)

Report Date: December 9, 2008

Client: SCEFC

Project Location: Central Maui Landfill

Date Received: November 24, 2008

Date Analyzed: December 1 - 4, 2008

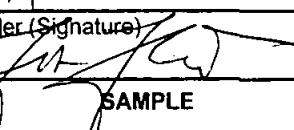
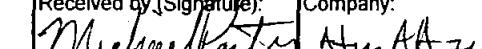
AtmAA Lab No.: 03298-12 Inlet R3

Specific volume, BTU, and F factor are calculated using laboratory analysis results for methane, carbon dioxide, nitrogen, oxygen, TGNMO, and sulfur compounds in equations that include assumed values for the specific volume of gases (CH₄, CO₂, N₂, O₂, Ar, and (CH₂)_n). The specific volume of gases were taken from the Scott Speciality Gases catalogue, 2001, and represents as is gas at 60° F and 1 atm. The F factor is calculated according to the equation in ASTM D-3588 B89

Component	Mole %	Wt %	C,H,O,N,S,	Wt.%
Methane	47.05	26.80	Carbon	37.15
Carbon dioxide	39.12	61.28	Hydrogen	6.76
Nitrogen	10.93	10.89	Oxygen	45.17
Oxygen	0.53	0.61	Nitrogen	10.89
Argon	0.024	0.034	Argon	0.03
$(\text{CH}_2)_n$	0.791	0.394	Sulfur	0.00
Specific Volume		13.156		
BTU/ ft^3		482		
BTU/ lb.		6335		
F (factor)		9814	9965 at .68° F	

"as is" gas at 60° F, 1 atm, where CH4-1010, TGNMO-804 BTU/cu.ft.

Component	Specific volume reference values *
Methane	23.35 (ft ³ /lb)
Carbon dioxide	8.59
Nitrogen	13.54
Oxygen	11.87
Argon	9.52
(CH ₂) _n	21



* reference, Scott Specialty Gases Catalogue, 2001 adjusted to 60°F

SCEC

1582-1 N. Batavia St. Orange, CA 92867
 (714) 282-8240 phone, (714) 282-8247 fax

Chain of Custody Record
 Analytical Services Request

Client/Project Name SCS Field Services		Client Project No. 2170.3001		ANALYSES REQUESTED					Laboratory Name ATM-AA	
Project Location Central Maui Landfill									Lab Contact Mike Parker	
Contact Leslie Johnson		Sampler (Signature) 							Lab Phone No.	
Sample #	Description	SAMPLE					EPA 25C	ASTM D-3588	Turnaround Time NTAT	
		Date	Time	Type					Remarks:	
	Inlet #1 #374	11/19/08		Cannisters	X	X			03298-10	
	" #2 #171	"		"	X	X			-11	
	" #3 #286	"		"	X	X			-12	
	Exhaust #1 #162	"		"	X				-13	
	" #2 #147	"		"	X				-14	
	" #3 #272	"		"	X				-15	
Relinquished by (Signature):		Company:		Date	Time	Received by (Signature):	Company:	Date:	Time:	
		Atm-AA						11/4/08	10130	
Relinquished by (Signature):		Company:		Date	Time	Received by (Signature):	Company:	Date:	Time:	
Relinquished by (Signature):		Company:		Date	Time	Received by (Signature):	Company:	Date:	Time:	

Appendix C
Exhaust Volume Flow Data and Field Data

**SCS Field Services
Central Maui Landfill
November 19, 2008**

SUMMARY OF EPA METHOD 19 SOURCE TEST DATA AND CALCULATIONS

PARAMETER	UNITS	RUN 1	RUN 2	RUN 3
DATE		11/19/2008	11/19/2008	11/19/2008
FUEL FLOW - @ 68 DEG F	SCFM	526	526	523
CALORIFIC VALUE - @ 68 DEG F	BTU/CF	469	479	482
F FACTOR (Fd) - @ 68 DEG F	DSCF/MMBTU	10,068	10,017	9,965
EXHAUST O2 CONCENTRATION	%VD	14.57	14.80	14.81
HEAT INPUT - NATURAL GAS	MMBTU/MIN	0.2467	0.2520	0.2521
EXHAUST VOLUME FLOW RATE @ 68 DEG F	DSCFM	8,196	8,652	8,617

SCS Field Services
Central Maui Landfill
November 19, 2008
Flare Collected Field Data

Run #	Time	Stack Temp Deg. F	Inlet Flow scfm	Field Vac	Inlet Gas Deg. F
R1	1214	1439	526	59.6	106
R1	1236	1475	525	59.8	106
R2	1316	1479	529	59.6	106
R2	1332	1500	520	59.5	106
R2	1356	1474	528	59.6	106
R3	1419	1500	519	59.3	106
R3	1503	1503	527	58.9	106
R3	1530	1504	523	59.2	106

REACTIVE ORGANIC COMPOUNDS
EPA METHOD 25C
SCEC FIELD SAMPLING DATA SHEET

Job #: 2173.3001

Control Device: Flare

Facility: Central Maui Landfill

Sample Location: Exhaust

Location: Stack Exhaust

Ambient Temperature: 78°F

Date: 11/19/08

Barometric Pressure: 30.07

Operator: _____

SAMPLE A - Run 1

Tank #: 162

Initial Vacuum: _____

Final Vacuum: _____

SAMPLE B - Run 2

Tank #: 147

Initial Vacuum: 30

Final Vacuum: _____

SAMPLE C - Run 3

Tank #: 272

Initial Vacuum: _____

Final Vacuum: _____

TIME	VACUUM ("Hg)
9:23 a	-30
12:04	-30
12:19	-26
12:42	-8

TIME	VACUUM ("Hg)
13:14	30
13:40	-26
13:55	-20
14:08	-8

TIME	VACUUM ("Hg)
14:15	-30
14:20	-26
14:45	-20
15:00	-14
15:15	-8

Leak Rate Pre: _____

Leak Rate Pre: _____

Leak Rate Pre: _____

Leak Rate Post: _____

Leak Rate Post: _____

Leak Rate Post: _____

REACTIVE ORGANIC COMPOUNDS
EPA METHOD 25C
SCEC FIELD SAMPLING DATA SHEET

Job #: 2170.3001

Control Device: Flare

Facility: Central Maui Landfill

Sample Location: Inlet

Location: Flare station

Ambient Temperature: 78°F

Date: 11/19/08

Barometric Pressure: 30.07

Operator: CAS

SAMPLE A

Tank #: 374

Initial Vacuum: 23

Final Vacuum: 6

SAMPLE B

Tank #: 171

Initial Vacuum: 22

Final Vacuum: 6

SAMPLE C

Tank #: 286

Initial Vacuum: 22

Final Vacuum: _____

TIME	VACUUM ("Hg)
923	23
932	19
936-1204 OFF - injection issues	
1204	14
1220	6

TIME	VACUUM ("Hg)
1316	22
1326	17
1352	6
1403	

TIME	VACUUM ("Hg)
1418	22
1443	10
1505	2

Leak Rate Pre: ✓ good

Leak Rate Pre: ✓ good

Leak Rate Pre: _____

Leak Rate Post: ✓

Leak Rate Post: ✓

Leak Rate Post: _____

Appendix D
Quality Assurance / Quality Control Data

CALIBRATION ERROR

FACILITY:	SCS Field Services	DATA FOR SAMPLING RUNS:		COMPLIANCE RUNS 1,2,3 (INITIAL)
SOURCE ID/CONDITION:	Central Maui Landfill	DATE:		11/19/2008
OPERATOR:	LAJ	PROJECT No.:		2170.1012
PARAMETER	CYLINDER VALUE	ANALYZER CALIBRATION RESPONSE	ABSOLUTE DIFFERENCE	DIFFERENCE
UNITS	PPMV or % VOL	PPMV or % VOL	PPMV or % VOL	% OF GAS
O ₂ - FULL SCALE	25			
O ₂ - ZERO	0.00	0.05	-0.05	-0.24
O ₂ - MID CAL	12.00	11.93	0.07	0.33
O ₂ - HIGH CAL	20.99	20.81	0.18	0.86
CO ₂ - FULL SCALE	20			
CO ₂ - ZERO	0.00	0.13	-0.13	-0.72
CO ₂ - MID CAL	10.020	10.11	-0.09	-0.50
CO ₂ - HIGH CAL	17.95	18.08	-0.13	-0.72
NO _x - FULL SCALE	50			
NO _x - ZERO	0.00	0.20	-0.20	-0.46
NO _x - MID CAL	21.80	21.70	0.10	0.23
NO _x - HIGH CAL	43.70	43.70	0.00	0.00
CO - FULL SCALE	200			
CO - ZERO	0.00	0.30	-0.30	-0.18
CO - MID CAL	85.45	83.20	2.25	1.34
CO - HIGH CAL	167.60	167.20	0.40	0.24

NOTE: CO₂/O₂ - % VOL AND NO_x/CO - PPMV, ALL ON A DRY BASIS

SYSTEM CALIBRATION BIAS AND DRIFT DATA

FACILITY:	SCS Field Services	DATA FOR SAMPLING RUN:		COMPLIANCE RUN 1			
SOURCE ID/CONDITION:	Central Maui Landfill	DATE:		11/19/08			
OPERATOR:	LAJ	PROJECT No.:		2170.1012			
PARAMETER	ANALYZER CALIBRATION RESPONSE	INITIAL VALUES	FINAL VALUES	SYSTEM CALIBRATION BIAS	SYSTEM CALIBRATION RESPONSE	CALIBRATION DRIFT	
UNITS	PPMV or % VOL	PPMV or % VOL	% OF SPAN	PPMV or % VOL	% OF SPAN	% OF SPAN	
O ₂ - ZERO	0.05	0.05	0.00	0.05	0.00	0.00	
O ₂ - SPAN	11.93	11.93	0.00	11.83	0.48	0.48	
CO ₂ - ZERO	0.13	0.12	0.06	0.12	0.06	0.00	
CO ₂ - SPAN	10.11	10.08	0.17	9.96	0.84	0.67	
NO _x - ZERO	0.20	0.60	-0.92	1.00	-1.83	-0.92	
NO _x - SPAN	43.70	44.20	-1.15	44.70	-2.29	-1.15	
CO - ZERO	0.30	0.50	-0.12	0.50	-0.12	0.00	
CO - SPAN	83.2	83.4	-0.12	82.9	0.18	0.30	

NOTE: CO2/O2 - % VOL AND NO_x/CO - PPMV; ALL ON A DRY BASIS

SYSTEM CALIBRATION BIAS AND DRIFT DATA

FACILITY:	SCS Field Services	DATA FOR SAMPLING RUN:		COMPLIANCE RUN 2		
SOURCE ID/CONDITION:	Central Maui Landfill	DATE:			11/19/08	
OPERATOR:	LAJ	PROJECT No.:			2170.1012	
PARAMETER		INITIAL VALUES		FINAL VALUES		
ANALYZER CALIBRATION RESPONSE		SYSTEM CALIBRATION RESPONSE	SYSTEM CALIBRATION BIAS	SYSTEM CALIBRATION RESPONSE	SYSTEM CALIBRATION BIAS	CALIBRATION DRIFT
UNITS	PPMV or % VOL	PPMV or % VOL	% OF SPAN	PPMV or % VOL	% OF SPAN	% OF SPAN
O ₂ - ZERO	0.05	0.05	0.00	0.05	0.00	0.00
O ₂ - SPAN	11.93	11.83	0.48	11.83	0.48	0.00
CO ₂ - ZERO	0.13	0.12	0.06	0.11	0.11	0.06
CO ₂ - SPAN	10.11	9.96	0.84	10.00	0.61	-0.22
NO _x - ZERO	0.20	1.00	-1.83	0.70	-1.15	0.69
NO _x - SPAN	43.70	44.70	-2.29	45.00	-2.98	-0.69
CO - ZERO	0.30	0.50	-0.12	0.50	-0.12	0.00
CO - SPAN	83.2	82.9	0.18	82.9	0.18	0.00

NOTE: CO2/O2 - % VOL AND NOx/CO - PPMV; ALL ON A DRY BASIS

SYSTEM CALIBRATION BIAS AND DRIFT DATA

FACILITY:	SCS Field Services	DATA FOR SAMPLING RUN:		COMPLIANCE RUN 3			
SOURCE ID/CONDITION:	Central Maui Landfill	DATE:		11/19/08			
OPERATOR:	LAJ	PROJECT No.:		2170.1012			
PARAMETER		INITIAL VALUES		FINAL VALUES			
ANALYZER CALIBRATION RESPONSE		SYSTEM CALIBRATION RESPONSE	SYSTEM CALIBRATION BIAS	SYSTEM CALIBRATION RESPONSE	SYSTEM CALIBRATION BIAS	CALIBRATION DRIFT	
UNITS		PPMV or % VOL	PPMV or % VOL	% OF SPAN	PPMV or % VOL	% OF SPAN	
O2 - ZERO		0.05	0.05	0.00	0.06	-0.05	
O2 - SPAN		11.93	11.83	0.48	11.83	0.48	
CO2 - ZERO		0.13	0.11	0.11	0.13	0.00	
CO2 - SPAN		10.11	10.00	0.61	9.95	0.89	
NOx - ZERO		0.20	0.70	-1.15	0.50	-0.69	
NOx - SPAN		43.70	45.00	-2.98	44.80	-2.52	
CO - ZERO		0.30	0.50	-0.12	0.50	-0.12	
CO - SPAN		83.2	82.9	0.18	83.0	0.12	

NOTE: CO2/O2 - % VOL AND NOx/CO - PPMV; ALL ON A DRY BASIS

SCEC
CONTINUOUS EMISSIONS MONITORING SYSTEM TEST DATA

Test Number: CEMS 1-3
 Client: SCS Field Services
 Location: Central Maui Landfill
 Unit: Plan

Date: 11/19/08
 Condition: As Found
 Operator: CAS
 Barometric: 30.07

Stack: 1475°F
 Probe: +250°F
 Heated Line: N/A

Gas Temperatures

Stack Knockout: 140°F
 Ambient: 79°F
 Chiller: -

chart recorder 8 minutes faster than CEMS time

	Analyzer Values				
	O ₂ (%)	CO ₂ (%)	NO _x (ppm)	CO (ppm)	SO ₂ (ppm)
Analyzer Span Range	0-25	0-20	0-50	200	
Mid Span Cal Gas Value	12.00	10.02	250/21.8	50 72-85.45	
High Span Cal Gas Value	20.99	17.95	43.6	167.6	

As Found Analyzer Readings

Zero	0.05	0.13	0.2	0.3	
Mid Span	11.93	10.11	21.7	83.2	
High Span	20.81	18.08	43.7	167.2	

Pre-Test Analyzer System Bias

System Bias Zero	0.05	0.12	0.6	0.5	
System Bias Span	11.93	10.08	44.2	83.4	

Sample Point	Time		Raw Test Data				
	Start	Stop	O ₂ (%)	CO ₂ (%)	NO _x (ppm)	CO (ppm)	SO ₂ (ppm)
NW Port	1212	1257	0.05	0.12	1.0	0.5	
			11.83	9.96	44.7	82.9	

NW →	1312	1357	0.05	0.11	0.7	0.5	
			11.83	10.0	45.0	82.9	

SW NW 4-1 4-1	1422	1557	0.06	0.13	0.5	0.5	
			11.83	9.95	44.8	83.0	

Post-Test Analyzer System Bias

System Bias Zero							
System Bias Span							

Post-Test Analyzer Calibration

Zero							
Mid Span							
High Span							

Test Results Summary

	O ₂ (%)	CO ₂ (%)	NO _x (ppm)	CO (ppm)	SO ₂ (ppm)
Raw Average					
Corrected Average					

SCOTT-MARRIN, INC.

6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507
TELEPHONE (951) 653-6780 • FAX (951) 653-2430

Report Of Analysis
EPA Protocol Gas Mixtures

SCEC01

TO: SCEC - Air Quality Specialists
Attn: Harry Johnson
98-030 Hekaha Street, Suite 1
Aiea, HI 96701
(808) 488-8113

REPORT NO: 52200-01

REPORT DATE: August 10, 2007

CUSTOMER PO NO: 232

CYLINDER NUMBER: CC67232		CYLINDER SIZE: 150A (141 std cu ft)		CYLINDER PRESSURE: 2000 psig	
COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENCE STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION	EXPIRATION DATE	REPLICATE ANALYSIS DATA
Carbon dioxide	17.95 ± 0.03 %	GMIS CYLINDER #: CC51172 @ 18.03 %	Varian Model 1860 Serial # None Thermal Conductivity Gas Chromatography	8/7/2010 LAST CAL DATE: 7/25/2007	8/7/2007 17.94 % 17.94 % 17.98 % MEAN: 17.95 %
Oxygen	20.99 ± 0.22 %	GMIS CYLINDER #: ALM031591 @ 24.4 %	Varian Model 1860 Serial # None Thermal Conductivity Gas Chromatography	8/9/2010 LAST CAL DATE: 8/9/2007	8/9/2007 20.98 % 21.03 % 20.97 % MEAN: 20.99 %
Nitrogen	Balance				

ppm = umole/mole

% = mole-%

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA-600/R97/121, dated September 1997.

The above analyses are invalid if the cylinder pressure is less than 150 psig.

ANALYST: M.S. Calhoun
M.S. Calhoun

APPROVED: J. T. Marrin
J. T. Marrin

The only liability of this company for gas which fails to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost.

STANDARD CALIBRATION GASES IN ALUMINUM CYLINDERS

SCOTT-MARRIN, INC.

6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507
TELEPHONE (951) 653-6780 • FAX (951) 653-2430

Report Of Analysis
EPA Protocol Gas Mixtures

SCEC01

TO: SCEC - Air Quality Specialists
Attn: Harry Johnson
98-030 Hekaha Street, Suite 1
Aiea, HI 96701
(808) 488-8113

REPORT NO: 52200-02

REPORT DATE: August 10, 2007

CUSTOMER PO NO: 232

CYLINDER NUMBER: CC12823		CYLINDER SIZE: 150A (141 std cu ft)		CYLINDER PRESSURE: 2000 psig	
COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENCE STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION	EXPIRATION DATE	REPLICATE ANALYSIS DATA
Carbon dioxide	10.02 ± 0.1 %	GMIS CYLINDER #: CC83094 @ 8.1 %	Varian Model 1860 Serial # None Thermal Conductivity Gas Chromatography LAST CAL DATE: 7/25/2007	8/7/2010	<u>8/7/2007</u> 10.02 % 10.02 % 10.02 % MEAN: 10.02 %
Oxygen	12.00 ± 0.11 %	GMIS CYLINDER #: CC81204 @ 9.89 %	Varian Model 1860 Serial # None Thermal Conductivity Gas Chromatography LAST CAL DATE: 8/9/2007	8/9/2010	<u>8/9/2007</u> 11.96 % 12.00 % 12.03 % MEAN: 12.00 %
Nitrogen	Balance				

ppm = umole/mole

% = mole-%

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA-600/R97/121, dated September 1997.

The above analyses are invalid if the cylinder pressure is less than 150 psig.

ANALYST:

M.S. Calhoun

APPROVED:

J. T. Marrin

The only liability of this company for gas which fails to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost.

STANDARD CALIBRATION GASES IN ALUMINUM CYLINDERS

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Airgas Specialty Gases
11711 Alameda Street
Los Angeles, CA 90059-2130
(323) 357-6891
FAX: (323) 567-3686
www.airgas.com

Part Number: E02NI99E15A0501

Reference Number: 48-124090317-2

Cylinder Number: CC12905

Cylinder Volume: 144 Cu.Ft.

Laboratory: ASG - Los Angeles - CA

Cylinder Pressure: 2015 PSIG

Analysis Date: Mar 26, 2007

Valve Outlet: 350

Expiration Date: Mar 26, 2010

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.
Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

ANALYTICAL RESULTS

Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty
CARBON MONOXIDE	85.00 PPM	85.45 PPM	G1	+/- 1% NIST Traceable
NITROGEN	Balance			

CALIBRATION STANDARDS

Type	Lot ID	Cylinder No	Concentration	Expiration Date
NTRM	980608	CC97683	98.0PPM CARBON MONOXIDE/	Feb 28, 2008

ANALYTICAL EQUIPMENT

Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration
Nicolet CO	FTIR	Mar 08, 2007

Triad Data Available Upon Request

Notes:

QA Approval

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Airgas Specialty Gases
11711 Alameda Street
Los Angeles, CA 90059-2130
(323) 357-3891
FAX: (323) 567-3686
www.airgas.com

Part Number: E02NI99E15A1647

Reference Number: 48-124111939-9

Cylinder Number: CC26998

Cylinder Volume: 144 Cu.Ft.

Laboratory: ASG - Los Angeles - CA

Cylinder Pressure: 2015 PSIG

Analysis Date: Oct 30, 2007

Valve Outlet: 660

Expiration Date: Oct 30, 2009

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

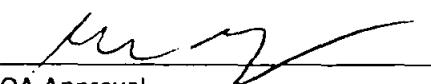
Do Not Use This Cylinder below 150 psig, i.e. 1 Mega Pascal

ANALYTICAL RESULTS

Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty
NITRIC OXIDE	42.00 PPM	42.27 PPM	G1	+/- 1% NIST Traceable
NITROGEN	Balance			

Total oxides of nitrogen 42.30 PPM For Reference Only

CALIBRATION STANDARDS


Type	Lot ID	Cylinder No	Concentration	Expiration Date
NTRM	60610	CC208053	49.38PPM NITRIC OXIDE/NITROGEN	Oct 02, 2008

ANALYTICAL EQUIPMENT

Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration
Nicolet NO	FTIR	Oct 18, 2007

Triad Data Available Upon Request

Notes:

QA Approval

Certificate of Analysis: EPA Protocol Gas Mixture

Cylinder Number: SG9135017BAL Reference Number: 48-124063854-2
Cylinder Pressure: 2000.6 PSIG Expiration Date: 5/9/2009
Certification Date: 5/9/2006 Laboratory: ASG - Los Angeles - CA

Airgas Specialty Gases
11711 S. Alameda Street
Los Angeles, CA 90059-2130
323.357.6891 fax: 323.567.3686
www.airgas.com

Certified Concentrations

Component	Concentration	Accuracy	Analytical Principle	Procedure
CARBON MONOXIDE	167.6 PPM	+/- 1%	FTIR	
NITROGEN	Balance			G1

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed.
Analytical Methodology does not require correction for analytical interferences:

Notes:

Do not use cylinder below 150 psig.

Approval Signature

Reference Standard Information

Type	Balance Gas	Component	Cyl Number	Concentration
NTRM 81639		CARBON MONOXIDE	SG9198935B	244.7 PPM

Analytical Results

1st Component CARBON MONOXIDE

1st Analysis Date: 04/28/2006

R 246.2	S 168.6	Z -0.027	Conc 167.6 PPM
S 169.4	Z -0.030	R 247.0	Conc 167.2 PPM
Z -0.042	R 246.4	S 169.3	Conc 168.1 PPM
			AVG: 167.6 PPM

2nd Analysis Date: 05/00/2006

R 243.3	S 166.7	Z -0.070	Conc 167.7 PPM
S 166.9	Z -0.062	R 244.2	Conc 167.3 PPM
Z -0.057	R 243.2	S 167.0	Conc 168.1 PPM
			AVG: 167.7 PPM

Appendix E

Calculations

EMISSION CALCULATIONS

1. Sample Volume and Isokinetics

a. Sample gas volume, dscf

$$V_{m\ std} = 0.03342 \ V_m \left(P_{bar} + \frac{H}{13.6} \right) \left(\frac{T_{ref}}{T_m} \right) (Y)$$

b. Water vapor volume, scf

$$V_{w\ std} = 0.0472 \ V_{lc} \left(\frac{T_{ref}}{528^{\circ}R} \right)$$

c. Moisture content, nondimensional

$$B_{wo} = \frac{V_{wstd}}{V_{mstd} + V_{wstd}}$$

d. Stack gas molecular weight, lb/lb mole

$$MW_{dry} = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$$

$$MW_{wet} = MW_{dry}(1 - B_{wo}) + 18(B_{wo})$$

e. Absolute stack pressure, in Hg

$$P_s = P_{bar} + \frac{P_{sg}}{13.6}$$

f. Stack velocity, ft/sec

N/A

$$V_s = 2.90 C_p \sqrt{\frac{P_s}{\rho_s}} \sqrt{\frac{(29.92)(28.95)}{P_s + \Delta MW_{wet}}}$$

g. Actual stack flow rate, wachm

$$Q = (V_s)(A_s)(60)$$

h. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q \left(1 - B_{wo}\right) \left(\frac{T_{ref}}{T_s}\right) \left(\frac{P_s}{29.92}\right)$$

i. Percent isokinetic

$$I = \left(\frac{17.32(T_s)(V_{msta})}{(1 - B_{wo})(\theta)(V_s)(P_s)(D_n^2)} \right) \left(\frac{528^{\circ}R}{T_{ref}} \right)$$

2. Particulate Emissions

2. EPA Method 19


a. Grain loading, g/dscfm

$$E = \frac{\text{Inlet Gas flow}}{\text{SCFM}} \times \text{EPA Factor} \times \frac{\text{mmbtu}}{\text{SCF}} \left(\frac{20.9}{20.9 - \text{O}_2 \text{ exhaust}} \right)$$

N/A

b. Grain loading at 12% CO₂, g/dscfm

Mass emissions, lb/hr

$$M = \frac{c(Q_{sd})(60 \text{ min/hr})}{(7000 \text{ g/lb})}$$

3. Gaseous Emissions, lb/hr

$$M = (ppm) \left(10^{-6}\right) \left(\frac{MW_i \text{ lb/lbmole}}{SV}\right) (Q_{sd}) (60 \text{ min/hr})$$

where,

SV = specific molar volume of an ideal gas:

$$SV = 385.3 \text{ ft}^3/\text{lb mole} \text{ for } T_{ref} = 528^{\circ}R$$

$$SV = 379.5 \text{ ft}^3/\text{lb mole} \text{ for } T_{ref} = 520^{\circ}R$$

4. Emissions Rates, lb/10⁶ Btu

a. Fuel factor at 68°F, dscf/10⁶ Btu at 0% O₂

$$F_{68} = \frac{10^6 [3.64(\%H) - 1.53(\%C) - 0.14(\%N) - 0.57(\%S) - 0.46(\%O_2, fuel)]}{HHV, Btu/lb}$$

b. Fuel factor at 60°F

$$F_{60} = F_{68} \left(\frac{520^\circ R}{528^\circ R} \right)$$

c. Gaseous Emissions factor

$$\left(\frac{lb}{10^6 Btu} \right)_i = (ppm)_i \left(10^{-6} \left(\frac{MW_i lb}{lb mole} \right) \left(\frac{1}{SV} \right) (F) \left(\frac{20.9}{20.9 - \%O_2} \right) \right)$$

d. Particulate emission factor

$$\left(\frac{lb}{10^6 Btu} \right) = C \left(\frac{1lb}{7000 gr} \right) (F) \left(\frac{20.9}{20.9 - \%O_2} \right)$$

Nomenclature:

A_s = stack area, ft²

B_{wo} = flue gas moisture content

$C_{12\%CO_2}$ = particulate grain loading, gr/dscf corrected to 12% CO₂

C = particulate grain loading, gr/dscf

C_p = pitot calibration factor, dimensionless

D_n = nozzle diameter, in.

F = fuel F factor, dscf/10⁶ Btu at 0% O₂

H = orifice pressure differential, iwg

I = % isokinetics

M_n = mass of collected particulate, mg

M_i = mass of emissions of species I, lb/hr

MW = molecular weight of flue gas

MW_i = molecular weight of species i:

NO _x	:	46
CO	:	28
SO _x	:	64
HC	:	16

θ = sample time, min.

ΔP = average velocity head, $iwg = \left(\sqrt{\Delta P}\right)^2$

P_{bar} = barometric pressure, in.Hg

P_s = stack absolute pressure, in.Hg

P_{sg} = stack static pressure, iwg

Q = wet stack gas flow rate at actual conditions, wacfm

Q_{sd} = dry stack gas flow rate at standard conditions, dscfm

SV = specific molar volume of an ideal gas at standard conditions, ft³/lb mole

T_m = meter temperature, °R

T_{ref} = reference temperature, °R

T_s = stack temperature, °R

V_s = stack velocity, ft/sec

V_{lc} = volume of liquid collected in impingers, ml

V_m = dry meter volume uncorrected, dcf

$V_{m\ std}$ = dry meter volume at standard conditions, dscf

$V_{w\ std}$ = volume of water vapor at standard conditions, scf

Y = meter calibration coefficient