

Horizon Test #: B06-015-FR
Date Tested: June 1, 2007
Report Date: October 25, 2007
Revision Number: 0

**EMISSION COMPLIANCE TEST
ON A LANDFILL GAS FLARE AFTER LOUVER ALTERATION**

Flare #8

Sunshine Canyon Landfill

**Permit to Operate No. F86506
Facility ID No.: 049111**

Prepared for:

BFI of California
Sunshine Canyon Landfill
14747 San Fernando Road
Sylmar, California 91342

Prepared by:

Horizon Air Measurement Services, Inc.
996 Lawrence Drive, Suite 108
Newbury Park, California 91320

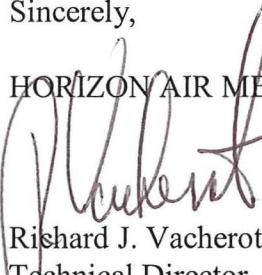
Regulatory Agency

South Coast Air Quality Management District
21865 East Copley Drive
Diamond Bar, California 91765

Edward S. Swede
Edward S. Swede
Project Manager
Richard J. Vacherot
Richard J. Vacherot
Technical Director

October 25, 2007

Ms. Susan Jennings
Sunshine Canyon Landfill
14747 San Fernando Road
Sylmar, California 91342


Dear Ms. Jennings:

Please find enclosed two copies of the final report entitled "Emission Compliance Test on a Landfill Gas Flare After Louver Alteration" for submittal to SCAQMD.

If you have any questions, please call me at (805) 498-8781.

Sincerely,

HORIZON AIR MEASUREMENT SERVICES, INC.

Richard J. Vacherot
Technical Director

CERTIFICATE OF NO CONFLICT OF INTEREST

I certify that I am responsible for the testing operations of Horizon Air Measurement Services, Inc. (Horizon) and am authorized to sign this certificate on Horizon's behalf.

Horizon may conduct tests as an independent contractor of the California Air Resources Board pursuant to Section 91200-91220 of Title 17, of the California Code of Regulations and SCAQMD Rule 304(L). I further certify that Horizon only utilizes personnel to participate in such tests where such testing and participation would not be prohibited by Section 91208, "Conflict of Interest", Title 17, California Code of Regulations.

Signature: _____

Name: Richard J. Vacherot

Title: Technical Director

Date: 6-29-07

TABLE OF CONTENTS

1. INTRODUCTION	Page 1
2. SUMMARY OF RESULTS	Page 3
3. FLARE DESCRIPTION AND OPERATION	Page 5
3.1 Flare Description	Page 5
3.2 Flare Operation	Page 5
3.3 Sample Location	Page 6
4. SAMPLING/ANALYSES	Page 7
4.1 Sample Location	Page 7
4.1.1 Flare Exhaust	Page 7
4.1.2 Landfill Gas Supply Line	Page 7
4.2 Moisture (Inlet/Outlet)	Page 8
4.3 Flow Rate/Temperature (Inlet/Outlet)	Page 8
4.4 PM10 as Particulate Matter (Outlet)	Page 8
4.5 Oxides of Nitrogen, Carbon Monoxide, Carbon Dioxide, Oxygen (Outlet)	Page 8
4.6 Hydrogen Sulfide (H ₂ S), and C ₁ - C ₃ Sulfur Compounds (Inlet)	Page 9
4.7 Speciated Organic Compounds (Inlet/Outlet)	Page 9
4.8 Total Non Methane Hydrocarbons, Methane (Outlet)	Page 9
4.9 Total Non Methane Hydrocarbons, Methane (Inlet)	Page 9
4.10 Carbon Monoxide, Carbon Dioxide, Oxygen and Nitrogen (Inlet)	Page 9
5. RESULTS DISCUSSION	Page 10

APPENDIX A - Methods Description

APPENDIX B - Computer Printout of Results

APPENDIX C - Field Data

APPENDIX D - Laboratory Data

APPENDIX E - Operating Data

APPENDIX F - Strip Chart Records

APPENDIX G - Calibration Data

APPENDIX H - Correspondences

APPENDIX I - Permit to Operate

1. INTRODUCTION

Under Permit to Operate (PTO) F86506 or per the approved 1150.1 compliance plan which states, "at least one flare every year and then alternate all others such that each is source tested at least once every three years", BFI of California (BFI) is required to conduct an annual source test on the subject landfill gas flare (Flare #8) located at the Sunshine Canyon Landfill in Sylmar, California. Horizon Air Measurement Services, Inc. (Horizon) had been retained for this purpose. The last scheduled test was August 2005 for Flare #8. The next scheduled routine source test will be conducted in August 2008.

The test program is in response to BFI requesting to an Alteration/Modification permit to the Flare. The Alteration/Modification to the existing flare stack is an increase in size of the louvers, allowing additional combustion air to enter the stack. This increased airflow to the flare will allow the flare to operate within the existing permit parameters, maximum gas flow to the flare of 4,167 scfm or 105 million BTU/hr, whichever is reached first.

The test program was completed on June 1, 2007 by Horizon in accordance with the SCAQMD-approved Test Plan (Horizon # B06-015-TP). The test was not observed by SCAQMD, even though SCAQMD had been notified seven days in advance. The test matrix is shown in Table 1-1.

The results of the testing program, with respect to PTO limits, are summarized in Section 2, Summary of Results. A brief description of the flare and flare operating conditions during testing is provided in Section 3. Section 4 provides a detailed description of the sampling/analytical techniques utilized. Section 5 provides a more detailed results summary/discussion.

Table 1-1
 Compounds of Interest
 BFI - Sunshine Canyon Landfill
 Flare 8
 June 1, 2007

Parameter	Location	Method	Number of Samples Per Flare
Total Non-Methane Hydrocarbons (TNMHC)	Inlet	ASTM D3588/D1945	2
	Outlet	SCAQMD Method 25.3	2
Reduced Sulfur Compounds (C ₁ -C ₃) Including H ₂ S	Inlet	SCAQMD Method 307.91 (equivalent)	1
Speciated Organic Compounds	Inlet	EPA TO-15	1
	Outlet	EPA TO-15	3
Particulate Matter	Outlet	SCAQMD Method 5.1	1
Oxides of Nitrogen	Outlet	SCAQMD Method 100.1	1
Oxides of Sulfur	Outlet	Calculated based on inlet reduced sulfur compounds	1
Carbon Monoxide	Outlet	SCAQMD Method 100.1	1
	Inlet	ASTM D 3588	1
Oxygen	Outlet	SCAQMD Method 100.1	1
	Inlet	ASTM D 3588	1
Carbon Dioxide	Inlet	ASTM D 3588	1
	Outlet	SCAQMD Method 100.1	1
Methane	Inlet	ASTM D 3588	1
	Outlet	SCAQMD Method 25.3	1
Flow Rate/Temperature	Inlet	SCAQMD Method 2.1	1
	Outlet	Calculated Stoichiometrically	1
Moisture	Outlet	SCAQMD Method 5.1	1
	Inlet	SCAQMD Method 4.1	1
BTU Content	Inlet	ASTM D3588	1

2. SUMMARY OF RESULTS

The results of the testing program are provided in Table 2-1. All flare emission rates are based upon the measured exhaust flow rate. Carbon monoxide concentrations were below the quantifiable limit of 20 ppm and is reported as such.

A more detailed summary of results is provided in Section 5.

Table 2-1
Summary of Results
BFI - Sunshine Canyon Landfill
Flare 8
June 1, 2007

Parameter	Emission Rate	Allowable Emissions
Inlet Gas Flow Rate	2,796 dscfm	4,167 dscfm
Oxides of Nitrogen	2.07 lb/hr	6.3 lb/hr
Total Particulate Matter (PM ₁₀)	0.48 lb/hr	0.64 lb/hr
Carbon Monoxide	<1.92 lb/hr	3.7 lb/hr
Reactive Organic Gases, as CH ₄	0.135 lb/hr	0.63 lb/hr
	0.886 ppm (C ₆) @ 3% O ₂	20 ppm (C ₆) @ 3% O ₂
	99.8% DRE	(Rule 1150.1) 98% DRE
Oxides of Sulfur, as SO ₂	1.75 lb/hr	3.8 lb/hr
Heat Output	88.1 MMBtu/hr	105 MMBtu/hr

3. FLARE DESCRIPTION AND OPERATION

3.1 Flare Description

The landfill gas flare is a Flare Industries equivalent to a McGill model No. EFG-125: consisting of an insulated steel cylinder 50 feet high and approximately 13 feet in diameter. Operating flow rate is limited (by permit conditions) to either 4167 scfm or 105 million BTU/hr, which ever is reached first. The flow rate, continuously monitored during the testing on BFI's permanent strip chart recorder, averaged 2,352 scfm. (Appendix E).

The flare is equipped with a multi-jet burner, propane gas pilot system with electric ignitor system, UV flame sensor (s), automatic shutdown and alarm system, automatic combustion air regulating system (louvers) and temperature controller.

The flare operating temperature range is 1,600°F to 2,000°F. Flare operating temperature during the test was set within this range. Flare temperature was continuously monitored by the facility over the duration of the testing period (Appendix E).

3.2 Flare Operation

Landfill gas to the flare is supplied by operating one or two blowers: Lampson, Model 362-2D, each 45 H.P., one blower for standby, venting the landfill gas collection system. The blowers supply a vacuum to the landfill gas collection system to extract gas from the landfill. The blower(s) then discharge the gas at a slightly positive pressure towards the flare where additional particulate material is removed in the particulate filter prior to combustion in the flare.

Gas enters the flare through a flame arrestor into the multi-jet burner where it is distributed to one of the six burners. The temperature is regulated by thermocouples (temperature sensors) located through the flare stack at different heights. The temperature then regulates the amount of air allowed in to the combustion chamber through the automated louvers depending upon stack temperature. The higher the temperature the more the louvers will try to open to maintain the preset temperature, and work on the same parameter as the temperature drops the louvers close. This test

was conducted at a lower temperature than the previous stack temperature to establish a lower operating temperature but, above the permitted limit of 1,600⁰F.

This test is to provide analytical data on the combusted gas leaving the flare. The Alteration/Modification permit was to allow additional gas and air into the flare for combustion. The existing louvers limited the gas flow to approximately one-half of the permitted capacity; this test proves compliance with increased landfill gas flows being combusted in the flare. Gas flow was monitored on the strip chart at least once every 15 minutes, per permit conditions.

Typical flare operating temperature range is 1,600⁰F to 2,000⁰F. Flare operating temperature during this test was set at the 1,650⁰F. Flare stack and combustion temperature was continuously monitored by the facility over the duration of the testing period.

3.3 Sample Location

Flare exhaust samples were obtained from the sample ports, of which there are four, positioned at right angles, six and a half feet from the top of the flare.

The flare inlet landfill gas supply line is 16 inches in diameter (OD) schedule 40 pipe, which is stainless steel. One sample port is located approximately 24 inches upstream of a disturbance and at 84 inches downstream of a bend in the supply piping.

4. SAMPLING/ANALYSES

The sampling/analytical program had been designed to quantify the parameters of interest outlined in Table 1-1.

4.1 Sample Location

4.1.1 Flare Exhaust

At the flare exhaust 24 sample points (12 per diameter), determined in accordance with Method 1, were utilized for the determination of the following compounds:

- PM₁₀, as particulate matter
- NO_x
- CO
- O₂/CO₂
- Flow Rate
- Moisture

A single sample point was used for the collection of the following samples:

- speciated organic compounds
- total non methane hydrocarbons
- methane

4.1.2 Landfill Gas Supply Line

A single sample point was utilized for the collection of the following compounds:

- moisture
- total non methane hydrocarbons
- CO
- CO₂/O₂
- reduced sulfur compounds
- speciated organic compounds
- BTU content

4.2 Moisture (Inlet/Outlet)

Moisture content of the landfill gas was determined using SCAQMD Method 4.1. One, sixty-minute SCAQMD Method 4.1 run was conducted at the landfill gas inlet. Moisture content of the exhaust was determined using SCAQMD Method 4.1 in conjunction with SCAQMD Method 5.1 sampling. A description of SCAQMD Method 4.1 is provided in Appendix A.

4.3 Flow Rate/Temperature (Inlet/Outlet)

The landfill gas flow rate was determined using SCAQMD Method 1.1 and 2.1. The flare exhaust flow rate was determined using SCAQMD Methods 1.1 and 2.1 in conjunction with SCAQMD Method 5.1. Descriptions of SCAQMD Methods 1.1 and 2.1 are provided in Appendix A.

4.4 PM10 as Particulate Matter (Outlet)

Horizon conducted one, 60-minute test run on the flare exhaust for particulate matter determination in accordance with SCAQMD Method 5.1 as described in Appendix A. Twenty-four traverse points were utilized. Samples were withdrawn isokinetically from each of the determined traverse points.

4.5 Oxides of Nitrogen, Carbon Monoxide, Carbon Dioxide, Oxygen (Outlet)

One, 60-minute test run was conducted at the flare exhaust. Twenty-four sample points were utilized. All sampling was performed under the guidelines of SCAQMD Method 100.1 as detailed in Appendix A.

4.6 Hydrogen Sulfide (H₂S), and C₁ - C₃ Sulfur Compounds (Inlet)

Hydrogen sulfide and C₁ - C₃ sulfur compounds samples were collected at the inlet of the flare using the Tedlar bag collection system depicted in Appendix A. All system components coming in contact with the landfill gas were polypropylene or Teflon.

All reduced sulfur samples were analyzed within 24 hours of collection. Hydrogen sulfide and C₁ - C₃ sulfur compounds were analyzed using a Method 307.91 equivalent by AtmAA, Inc. Equivalency has been formally granted by SCAQMD to AtmAA, Inc. for this Method.

4.7 Speciated Organic Compounds (Inlet/Outlet)

One inlet and three outlet samples were gathered in Tedlar bags using the Tedlar bag lung sampling procedure described in Appendix A for analysis using TO-15 (GC/MS) for speciated organic compounds (Rule 1150.1 list).

4.8 Total Non Methane Hydrocarbons, Methane (Outlet)

Duplicate samples for methane and total non methane hydrocarbon (TNMHC) samples were collected at the outlet using SCAQMD Method 25.3 as described in Appendix A.

4.9 Total Non Methane Hydrocarbons, Methane (Inlet)

Total non-methane/non-ethane hydrocarbons and methane concentration of the landfill gas were determined using ASTM D1945. A description of ASTM D1945 is provided in Appendix A.

4.10 Carbon Monoxide, Carbon Dioxide, Oxygen and Nitrogen (Inlet)

Oxygen and carbon dioxide concentrations of the landfill gas were determined using SCAQMD Method 10.1. Nitrogen was determined by difference. A description of SCAQMD Method 10.1 is provided in Appendix A.

5. RESULTS DISCUSSION

The results of the test program are provided in Table 5-1. Trace organic species emission rates and destruction efficiencies are presented in Tables 5-2, 5-3 and 5-4.

Test Critique

No sampling or analytical problems were encountered during any phase of the test program.

Table 5-1
 Summary of Results
 BFI - Sunshine Canyon Landfill
 Flare 8
 June 1, 2007

	LANDFILL GAS	FLARE EXHAUST
Run Number	1	1
STACK GAS CHARACTERISTICS		
Temperature, degrees F*	118	1546
Moisture, %	5.0	8.1
Flow Rate, acfm	3454	
Flow Rate, dscfm	2796	21723
Fixed Gases		
Oxygen, %	1.55	12.62
Carbon Dioxide, %	37.90	7.42
Methane, %	50.61	-
BTU Value, Btu/scf	525	-
EMISSIONS		
Oxides of Nitrogen		
ppm	-	13.1
ppm @ 3% O ₂	-	28.4
lb/hr	-	2.07
lb/MMBtu	-	0.0377
Carbon Monoxide		
ppm	-	< 20.0
ppm @ 3% O ₂	-	< 43.2
lb/hr	-	< 1.92
lb/MMBtu	-	< 0.0350
Total Particulate Matter		
gr/dscf	-	0.0026
lb/hr	-	0.48
Total Non-Methane Hydrocarbons		
(Reactive Organic Compounds)		
ppm, as Methane	7558	2.46
lb/hr, as Methane	53.41	0.135
Sulfur Compounds		
Hydrogen Sulfide, ppm	51.4	0.000
Total Sulfur, ppm as H ₂ S	61.9	-
Oxides of Sulfur**		
lb/hr	-	1.75

* As recorded at the Reference Method sample probe, not at the permanent thermocouple.

** Calculated from sulfur balance

Table 5-2
Trace Organic Species
Destruction Efficiency Results
BFI - Sunshine Canyon Landfill
Flare 8
June 1, 2007
Run 1

Species	Inlet		Outlet			Destruction Efficiency (%)
	Concentration (ppb)	Emission Rate (lb/hr)	Concentration (ppb)	Emission Rate (lb/hr)		
Hydrogen Sulfide	51400	7.75E-01	<	500	<	5.86E-02 > 92.44
Benzene	2910	1.00E-01	<	0.6	<	1.61E-04 > 99.84
Benzylchloride	< 80	< 4.49E-03	<	0.80	<	3.49E-04 NA
Chlorobenzene	< 80	< 4.00E-03	<	0.8	<	3.10E-04 NA
Dichlorobenzenes	236	1.53E-02	<	0.6	<	3.03E-04 > 98.02
1,1-dichloroethane	172	7.53E-03	<	0.8	<	2.72E-04 > 96.39
1,2-dichloroethane	221	9.67E-03	<	0.8	<	2.72E-04 > 97.19
1,1-dichloroethylene	< 80	< 3.43E-03	<	0.8	<	2.66E-04 NA
Dichloromethane	< 80	< 3.01E-03		1.49		4.35E-04 NA
1,2-dibromoethane	< 60	< 4.98E-03	<	0.6	<	3.87E-04 NA
Perchloroethene	852	8.93E-02	<	0.60	<	4.88E-04 99.45
Carbon tetrachloride	< 60	< 4.08E-03	<	0.6	<	3.17E-04 NA
Toluene	13200	5.37E-01		0.83		2.62E-04 99.951
1,1,1-trichloroethane	< 60	< 3.53E-03	<	0.6	<	2.74E-04 NA
Trichloroethene	408	2.36E-02	<	0.6	<	2.70E-04 > 98.86
Chloroform	< 60	< 3.16E-03	<	0.6	<	2.45E-04 NA
Vinyl Chloride	393	1.09E-02	<	0.8	<	1.72E-04 > 98.42
m xylenes	5640	2.64E-01		0.68		2.48E-04 99.91
o+p xylene	1720	8.06E-02	<	0.6	<	2.18E-04 > 99.73
TNMHC	7558000	5.35E+01		2460		1.35E-01 99.75

Note: All values preceded by "<" are below the detection limit - reported values are detection limit values.

NA--Not applicable: Destruction efficiency cannot be calculated since both inlet and outlet values are below the detection limit.

Table 5-3
Trace Organic Species
Destruction Efficiency Results
BFI - Sunshine Canyon Landfill
Flare 8
June 1, 2007
Run 2

Species	Inlet		Outlet		Destruction Efficiency (%)
	Concentration (ppb)	Emission Rate (lb/hr)	Concentration (ppb)	Emission Rate (lb/hr)	
Hydrogen Sulfide	51400	7.75E-01	< 500	< 5.86E-02	> 92.44
Benzene	2910	1.00E-01	< 0.6	< 1.61E-04	> 99.84
Benzylchloride	< 80	< 4.49E-03	< 0.80	< 3.49E-04	92.23
Chlorobenzene	< 80	< 4.00E-03	< 0.8	< 3.10E-04	NA
Dichlorobenzenes	236	1.53E-02	< 0.6	< 3.03E-04	> 98.02
1,1-dichloroethane	172	7.53E-03	< 0.8	< 2.72E-04	> 96.39
1,2-dichloroethane	221	9.67E-03	< 0.8	< 2.72E-04	> 97.19
1,1-dichloroethylene	< 80	< 3.43E-03	< 0.8	< 2.66E-04	NA
Dichloromethane	< 80	< 3.01E-03	1.12	3.27E-04	NA
1,2-dibromoethane	< 60	< 4.98E-03	< 0.6	< 3.87E-04	NA
Perchloroethene	852	8.93E-02	< 0.60	< 4.88E-04	99.45
Carbon tetrachloride	< 60	< 4.08E-03	< 0.6	< 3.17E-04	NA
Toluene	13200	5.37E-01	< 0.8	< 2.53E-04	> 99.953
1,1,1-trichloroethane	< 60	< 3.53E-03	< 0.6	< 2.74E-04	NA
Trichloroethene	408	2.36E-02	< 0.6	< 2.70E-04	> 98.86
Chloroform	< 60	< 3.16E-03	< 0.6	< 2.45E-04	NA
Vinyl Chloride	393	1.09E-02	< 0.8	< 1.72E-04	> 98.42
m xylenes	5640	2.64E-01	< 0.6	< 2.18E-04	> 99.92
o+p xylene	1720	8.06E-02	< 0.6	< 2.18E-04	> 99.73
TNMHC	7558000	5.35E+01	2460	1.35E-01	99.75

Note: All values preceded by "<" are below the detection limit - reported values are detection limit values.

NA--Not applicable: Destruction efficiency cannot be calculated since both inlet and outlet values are below the detection limit.

Table 5-4
Trace Organic Species
Destruction Efficiency Results
BFI - Sunshine Canyon Landfill
Flare 8
June 1, 2007
Run 3

Species	Inlet		Outlet		Destruction Efficiency (%)
	Concentration (ppb)	Emission Rate (lb/hr)	Concentration (ppb)	Emission Rate (lb/hr)	
Hydrogen Sulfide	51400	7.75E-01	< 500	< 5.86E-02	> 92.44
Benzene	2910	1.00E-01	1.53	4.10E-04	99.59
Benzylchloride	< 80	< 4.49E-03	< 0.80	< 3.49E-04	92.23
Chlorobenzene	< 80	< 4.00E-03	< 0.8	< 3.10E-04	NA
Dichlorobenzenes	236	1.53E-02	< 0.6	< 3.03E-04	> 98.02
1,1-dichloroethane	172	7.53E-03	< 0.8	< 2.72E-04	> 96.39
1,2-dichloroethane	221	9.67E-03	< 0.8	< 2.72E-04	> 97.19
1,1-dichloroethylene	< 80	< 3.43E-03	< 0.8	< 2.66E-04	NA
Dichloromethane	< 80	< 3.01E-03	1.35	3.94E-04	NA
1,2-dibromoethane	< 60	< 4.98E-03	< 0.6	< 3.87E-04	NA
Perchloroethene	852	8.93E-02	< 0.60	< 4.88E-04	99.45
Carbon tetrachloride	< 60	< 4.08E-03	< 0.6	< 3.17E-04	NA
Toluene	13200	5.37E-01	8.68	2.74E-03	99.489
1,1,1-trichloroethane	< 60	< 3.53E-03	< 0.6	< 2.74E-04	NA
Trichloroethene	408	2.36E-02	< 0.6	< 2.70E-04	> 98.86
Chloroform	< 60	< 3.16E-03	< 0.6	< 2.45E-04	NA
Vinyl Chloride	393	1.09E-02	< 0.8	< 1.72E-04	> 98.42
m xylenes	5640	2.64E-01	7.48	2.72E-03	98.97
o+p xylene	1720	8.06E-02	2.82	1.03E-03	98.73
TNMHC	7558000	5.35E+01	2460	1.35E-01	99.75

Note: All values preceded by "<" are below the detection limit - reported values are detection limit values.

NA-Not applicable: Destruction efficiency cannot be calculated since both inlet and outlet values are below the detection limit.

Facility: BFI SunShine

Source: Flare 8

Job No.: B06-015

Date: 06/01/07

STANDARD TEMPERATURE	Degrees F	60
RUN NUMBER	*****	1
CLOCK TIME: INITIAL	*****	1218
CLOCK TIME: FINAL	*****	1318
AVG. STACK TEMPERATURE	Degrees F	118
AVG. SQUARE DELTA P	Inches H20	0.5617
BAROMETRIC PRESSURE	Inches HG	27.73
SAMPLING TIME	Minutes	60
SAMPLE VOLUME	Cubic Feet	44.808
AVG. METER TEMP.	Degrees F	83
AVG. DELTA H	Inches H20	1.60
DGM CALIB. FACTOR [Y]	*****	0.988
WATER COLLECTED	Milliliters	44
CO 2	Percent	37.90
O 2	Percent	1.55
CO	Percent	0.00
CH4	Percent	50.61
N 2	Percent	8.33
STACK AREA	Square Inches	201.1
STATIC PRESSURE	Inches WG	8.20
PITOT COEFFICIENT	*****	0.99
SAMPLE VOLUME DRY	DSCF	39.47
WATER AT STD.	SCF	2.1
MOISTURE	Percent	5.0
MOLE FRACTION DRY GAS	*****	0.95
MOLECULAR WT.DRY	lb/lb Mole	27.60
EXCESS AIR	Percent	239
MOLECULAR WT. WET	lb/lb Mole	27.12
STACK GAS PRESSURE	Inches HG	28.33
STACK VELOCITY	AFPM	2474
VOLUMETRIC FLOWRATE, DRY STD.	DSCFM	2796
VOLUMETRIC FLOWRATE, ACTUAL	ACFM	3454

EMISSION RATES

SAMPLE A

TNMHC Concentration, as CH4	ppm	7815
TNMHC Concentration, as CH4	mg/dscf	149
TNMHC Emission Rate, as CH4	lb/hr	55.2

SAMPLE B

TNMHC Concentration, as CH4	ppm	7301
TNMHC Concentration, as CH4	mg/dscf	140
TNMHC Emission Rate, as CH4	lb/hr	51.6

AVERAGE

TNMHC Concentration, as CH4	ppm	7558
TNMHC Concentration, as CH4	mg/dscf	144
TNMHC Emission Rate, as CH4	lb/hr	53.4

SCAQMD Method 307.91

Facility: BFI SunShine
Source: Flare 8
Job No.: B06-015
Date: 06/01/07

Sulfur Compounds

Speciated Compound	Concentration ppm, as H ₂ S	No. of S molecules in Compound	Total S ppm, as H ₂ S	SO ₂ Conc. mg/dscf	Avg. Inlet Flow Rate dscfm	SO ₂ Rate lb/hr
Hydrogen Sulfide	51.4	1	51.4	3.94	2796	1.46
Carbonyl Sulfide	0.24	1	0.24	0.018	2796	0.0068
Methyl mercaptan	3.70	1	3.70	0.283	2796	0.105
Ethyl mercaptan	< 0.2	1	0.2	0.02	2796	0.006
Dimethyl sulfide	5.26	1	5.26	0.403	2796	0.149
Carbon disulfide	0.19	2	0.38	0.029	2796	0.011
Dimethyl disulfide	< 0.1	2	0.2	0.02	2796	0.006
iso-propyl mercaptan	0.40	1	0.40	0.031	2796	0.011
n-propyl mercaptan	< 0.1	1	0.1	0.01	2796	0.003
Total			61.9			1.75

SCAQMD Method 100.1 Emission Rates

Facility: BFI SunShine

Source: Flare 8

Job No.: B06-015

Date: 06/01/07

Run Number	*****	1
Load	*****	as Found
EPA F-Factor	dscf/MMBtu	9399
Stack Flow Rate	dscfm	21723
Oxygen	%	12.62
Carbon Dioxide	%	7.42

Oxides of Nitrogen

Concentration	ppm	13.1
Concentration @ 3% O ₂	ppm	28.4
Concentration	lb/dscf	1.59E-06
Emission Rate	lb/MMBtu	3.77E-02
Emission Rate	lb/hr	2.07

Carbon Monoxide

Concentration	ppm	< 20.0
Concentration @ 3% O ₂	ppm	< 43.2
Concentration	lb/dscf	< 1.48E-06
Emission Rate	lb/MMBtu	< 3.50E-02
Emission Rate	lb/hr	< 1.92

Facility: BFI
Source: Flare 8
Job No.: B16-015
Date: 06/01/07

Run No.: 1
Fuel: LFG
Std. O2: 3

	O2 %	CO2 %	NOx ppm	CO ppm
Range:	25	15	25	100
Span:	12.00	7.00	13.30	51.20
Low:				
High:	20.05	11.97	24.60	77.10

**** POST-TEST DRIFT (DIRECT) ****

Values	0.00	0.05	0.00	0.00
Zero:	0.00	0.05	0.00	0.00
Span:	12.02	7.03	13.30	51.00

Percent Drift

Zero:	0.00	0.33	0.00	0.00
Span:	0.08	0.20	0.00	-0.20

**** PRE-TEST BIAS ****

Values	0.00	0.05	0.10	0.00
Zero:	0.00	0.05	0.10	0.00
Span:	11.99	7.00	13.20	50.80

**** POST-TEST BIAS ****

Values	0.00	0.10	0.45	0.00
Zero:	0.00	0.10	0.45	0.00
Span:	12.10	7.06	13.50	49.80

**** BIAS CORRECTION ****

Zero Average	0.00	0.08	0.28	0.00
Span Average	12.05	7.03	13.35	50.30

**** POST-TEST DRIFT (BIAS) ****

Percent Drift	0.00	-0.33	-1.40	0.00
Zero:	0.00	-0.33	-1.40	0.00
Span:	-0.44	-0.40	-1.20	1.00

Bias-Corrected Concentration	12.62	7.42	13.12	2.67
Bias-Corrected Conc.(O2 adjusted)			28.37	5.78

**** RAW AVERAGE CONCENTRATION ****

Average:	12.67	7.45	13.17	2.63	
O2 adjust:	3.0		28.65	5.71	
Date	Time	O2	CO2	NOx	CO
1-Jun-07	1218	13.05	7.12	12.55	-2.08 a
1-Jun-07	1219	13.45	6.80	11.31	-0.90
1-Jun-07	1220	13.27	6.91	10.20	26.12
1-Jun-07	1221	13.03	7.18	12.74	-1.10
1-Jun-07	1222	13.16	7.02	12.54	-1.95
1-Jun-07	1223	13.28	6.92	11.83	3.92
1-Jun-07	1224	13.19	6.99	12.12	1.76
1-Jun-07	1225	13.16	7.05	12.07	-1.29
1-Jun-07	1226	13.19	7.01	12.12	-1.88

Method 100.1 Performance Data

Facility: BFI Sunshine
 Source: Flare 8
 Job No.: B06-015
 Date: 06/01/07

PRETEST CALIBRATION ERROR				
LEAK CHECK	Good			
<u>RANGE :</u>				
	25 O2	15 CO2	25 NOx	100 CO
<u>ZERO</u>				
Instrument	0.00	0.00	0.00	0.00
Cylinder	0.00	0.00	0.00	0.00
Difference (%)	0.00	0.00	0.00	0.00
<u>LOW LEVEL</u>				
Instrument				
Cylinder				
Difference (%)				
<u>MID LEVEL</u>				
Instrument	12.00	6.99	13.10	51.00
Cylinder	12.00	7.00	13.30	51.20
Difference (%)	0.00	-0.07	-0.80	-0.20
<u>HIGH LEVEL</u>				
Instrument	20.00	11.90	24.50	76.00
Cylinder	20.05	11.97	24.60	77.10
Difference (%)	-0.20	-0.47	-0.40	-1.10

PRETEST LINEARITY		
	Cylinder	Instrument
	<u>O2</u>	
Zero	0.00	0.00
High Level	20.05	20.00
Slope	1.00	
Intercept	0.00	Status
Predicted Value	11.97	<1
Linearity (%)	0.12	PASS
	<u>CO2</u>	
Zero	0.00	0.00
High Level	11.97	11.90
Slope	1.01	
Intercept	0.00	Status
Predicted Value	6.96	<1
Linearity (%)	0.21	PASS
	<u>NOx</u>	
Zero	0.00	0.00
High Level	24.60	24.50
Slope	1.00	
Intercept	0.00	Status
Predicted Value	13.25	<1
Linearity (%)	-0.58	PASS
	<u>CO</u>	
Zero	0.00	0.00
High Level	77.10	76.00
Slope	1.01	
Intercept	0.00	Status
Predicted Value	50.47	<1
Linearity (%)	0.53	PASS

SYSTEM RESPONSE TIME			
	#1	#2	
Upscale			
CO	48	49	
NOx	31	29	
O2	30	32	
CO2	28	27	
Downscale			
CO	48	48	
NOx	30	30	
O2	31	30	
CO2	27	25	

NO2 CONVERTER EFFICIENCY			
	ppm	%	status
Cylinder(CO)	18.40		
NO Mode(C1)	0.75		
NOx Mode(C2)	17.55		
D1		17.65	
D2		16.80	
D3		0.85	
CE		95.18	
CE > 90 %			PASS
D3 < 1.0 ppm		0.85	PASS

POST TEST CALIBRATION ERROR				
LEAK CHECK	Good			
<u>ZERO</u>				
O2	0.00	0.05	0.00	0.00
Cylinder	0.00	0.00	0.00	0.00
Difference (%)	0.00	0.33	0.00	0.00
<u>LOW LEVEL</u>				
Instrument				
Cylinder				
Difference (%)				
<u>MID LEVEL</u>				
Instrument	12.02	7.03	13.30	51.00
Cylinder	12.00	7.00	13.30	51.20
Difference (%)	0.08	0.20	0.00	-0.20
<u>HIGH LEVEL</u>				
Instrument	20.25	12.08	24.38	77.00
Cylinder	20.05	11.97	24.60	77.10
Difference (%)	0.80	0.70	-0.90	-0.10

POST TEST LINEARITY		
	Cylinder	Instrument
	<u>O2</u>	
Zero	0.00	0.00
High Level	20.05	20.25
Slope	0.99	
Intercept	0.00	Status
Predicted Value	12.12	<1
Linearity (%)	-0.40	PASS
	<u>CO2</u>	
Zero	0.00	0.05
High Level	11.97	12.08
Slope	1.00	
Intercept	-0.05	Status
Predicted Value	7.08	<1
Linearity (%)	-0.35	PASS
	<u>NOx</u>	
Zero	0.00	0.00
High Level	24.60	24.38
Slope	1.01	
Intercept	0.00	Status
Predicted Value	13.18	<1
Linearity (%)	0.49	PASS
	<u>CO</u>	
Zero	0.00	0.00
High Level	77.10	77.00
Slope	1.00	
Intercept	0.00	Status
Predicted Value	51.13	<1
Linearity (%)	-0.13	PASS

Table 5-3
 Trace Organic Species
 Destruction Efficiency Results
 BFI - Sunshine Canyon Landfill
 Flare 8
 June 1, 2007
 Run 2

Species	INLET		dscfm	OUTLET		dscfm	Dest. Eff. (%)
	Flow rate	2796		Flow rate	21723		
Hydrogen Sulfide	51400	2.09E+00	7.75E-01	< 500	< 2.04E-02	5.86E-02	92.44
Benzene	2910	2.71E-01	1.00E-01	< 0.6	< 5.59E-05	< 1.61E-04	> 99.84
Benzylchloride	< 80	< 1.21E-02	< 4.49E-03	< 0.8	< 1.21E-04	3.49E-04	92.23
Chlorobenzene	< 80	< 1.08E-02	< 4.00E-03	< 0.8	< 1.08E-04	< 3.10E-04	NA
Dichlorobenzenes	236	4.15E-02	1.53E-02	< 0.6	< 1.05E-04	< 3.03E-04	> 98.02
1,1-dichloroethane	172	2.04E-02	7.53E-03	< 0.8	< 9.47E-05	< 2.72E-04	> 96.39
1,2-dichloroethane	221	2.61E-02	9.67E-03	< 0.8	< 9.47E-05	< 2.72E-04	> 97.19
1,1-dichloroethylene	< 80	< 9.27E-03	< 3.43E-03	< 0.8	< 9.27E-05	< 2.66E-04	NA
Dichloromethane	< 80	< 8.13E-03	< 3.01E-03	1.12	1.14E-04	3.27E-04	NA
1,2-Dibromoethane	< 60	< 1.35E-02	< 4.98E-03	< 0.6	< 1.35E-04	< 3.87E-04	NA
Perchloroethene	852	2.41E-01	8.93E-02	< 0.6	< 1.70E-04	4.88E-04	99.45
Carbon tetrachloride	< 60	< 1.10E-02	< 4.08E-03	< 0.6	< 1.10E-04	< 3.17E-04	NA
Toluene	13200	1.45E+00	5.37E-01	< 0.8	< 8.80E-05	< 2.53E-04	> 99.95
1,1,1-trichloroethane	< 60	< 9.54E-03	< 3.53E-03	< 0.6	< 9.54E-05	< 2.74E-04	NA
Trichloroethene	408	6.39E-02	2.36E-02	< 0.6	< 9.39E-05	< 2.70E-04	> 98.86
Chloroform	< 60	< 8.53E-03	< 3.16E-03	< 0.6	< 8.53E-05	< 2.45E-04	NA
Vinyl Chloride	393	2.94E-02	1.09E-02	< 0.8	< 5.98E-05	< 1.72E-04	> 98.42
m+p-xlenes	5640	7.14E-01	2.64E-01	< 0.6	< 7.60E-05	< 2.18E-04	> 99.92
o-xylene	1720	2.18E-01	8.06E-02	< 0.6	< 7.60E-05	< 2.18E-04	> 99.73
TNMHC	7558000	1.45E+02	5.35E+01	2460	4.70E-02	1.35E-01	99.75

Note: All values preceded by "<" are below the detection limit. The reported values are the detection limit.

NA--Not Applicable: Destruction efficiency can not be calculated since both inlet and outlet values are below the detection limit.

APPENDIX C - Field Data

PARTICULATE FIELD DATA

PLANT SUNSHINE CYN L.F.
 DATE 6-1-07
 LOCATION SYLMAR, CA
 OPERATOR CSM, TW, RS
 SOURCE FLARE #8
 RUN NO. 1 M-4 INT
 SAMPLE BOX NO. C-9

TIME START 1218

B06-015

METER BOX NO. 6
 METER ΔH @ 1.555
 Y= 0.988
 PROBE I.D. NO. -
 NOZZLE DIAMETER, in. -
 STACK DIAMETER, in. -
 PROBE HEATER SETTING -
 HEATER BOX SETTING -
 Δ Cp FACTOR -
 FILTER NO. -

ASSUMED MOISTURE, % -
 AMBIENT TEMPERATURE 56
 BARO. PRESS. 27.73
 STATIC PRESS. -
 NOMAGRAPH INDEX -

PRE TEST LEAK CHECKS
 METER 0.002 @ 15 in. Hg
 PITOTS - @ - in. Hg
 ORSAT -

P#	TIME	T _s °F	Δ P in H ₂ O	√ Δ P	Δ H in H ₂ O	V _m ft ³	T _{m IN} °F	T _{m OUT} °F	OVEN °F	IMP. OUT °F	VAC. (in Hg)
0	—	—	—	1.6	458.444	71	68	7	58	2	
10				1.6	464.3	82	76	7	56	2	
20				1.6	471.2	96	77	7	54	2	
30				1.6	479.2	97	77	7	53	2	
40				1.6	487.2	98	77	7	53	2	
50				1.6	495.2	98	78	7	51	2	
60				—	503.252	—	—	—	—	—	
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											
<hr/>											

INTEGRATED BAG SAMPLING DATA FORM

Run Number: |

Date: 6-1-07 Plant: _____

Sampling Location: FLARE # 8 - OUTLET

Barometric Pressure: 27.73

Ambient Temp. °F: 72°F Stack Temp. °F: _____

Operator: CSM, TW, ES

Probe # P3

a

$$\% \text{ Dev.} = \left(\frac{Q - Q_{avg}}{Q_{avg}} \right) 100; \text{ must be } \leq 10\%$$

APPENDIX D - Laboratory Data

Calculated values for Specific Volume, BTU and F (factor)

Report Date: June 27, 2007

Client: Horizon Air Measurement Services

Project Location: BFI Sunshine Canyon Landfill

Date Received: June 1, 2007

Date Analyzed: June 1, & 5, 2007

AtmAA Lab No.: 01527-35 In-1

Specific volume, BTU, and F factor are calculated using laboratory analysis results for methane, carbon dioxide, nitrogen, oxygen, TGNMO, and sulfur compounds in equations that include assumed values for the specific volume of gases (CH₄, CO₂, N₂, O₂, Ar, and (CH₂)_n). The specific volume of gases were taken from the Scott Specialty Gases catalogue, 2001, and represents as is gas at 60° F and 1 atm. The F factor is calculated according to the equation in ASTM D-3588.B89

Component	Mole %	Wt %	C,H,O,N,S, Wt.%
Methane	50.57	29.18	Carbon 38.59
Carbon dioxide	37.81	59.99	Hydrogen 7.35
Nitrogen	8.38	8.46	Oxygen 45.49
Oxygen	1.61	1.86	Nitrogen 8.46
Argon	0.072	0.103	Argon 0.10
(CH ₂) _n	0.782	0.395	Sulfur 0.00
Specific Volume		13.430	
BTU/ft ³		517	
BTU/ lb.		6944	
F (factor)		9513	

"as is" gas at 60° F, 1 atm, where CH₄-1010, TGNMO-804 BTU/cu.ft.

Component	Specific volume reference values *
Methane	23.35 (ft ³ /lb)
Carbon dioxide	8.59
Nitrogen	13.54
Oxygen	11.87
Argon	9.52
(CH ₂) _n	21

* reference, Scott Specialty Gases Catalogue, 2001 adjusted to 60°F

AtmAA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants
laboratory services

LABORATORY ANALYSIS REPORT

Organic Carbon Analysis in Water Impinger and Methane & TGNMO Analysis in SUMMA Canister Samples from Impinger/Canister Train Sample Collection

Report Date: June 27, 2007

Client: Horizon Air Measurement Services, Inc.

Client Project No.: B06 - 015

Source Location : BFI Sunshine Canyon Landfill

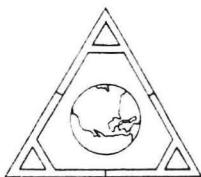
Source ID: Flare Outlet

Date Received: June 1, 2007

Date Analyzed: June 1, - 6, 2007

Methane and total gaseous non-methane organics were measured by flame ionization detection/total combustion analysis (FID/TCA). Organic carbon in water vial samples were measured by Dohrman total organic carbon analyzer, water FID/TCA.

Lab No.	ID	Canister			Canister TGNMO	Impinger Carbon	Impinger Volume	P ₁	P ₂
		Methane	Ethane	(concentration, ppmv)					
01527-40	S3	<1	<1	1.28	---	---	---	535	820
	Impinger H1	---	---	---	---	1.13	2.64	--	--
01527-41	S4	<1	<1	1.74	---	---	---	442	820
	Impinger H2	---	---	---	---	0.77	2.74	--	--


TGNMO is total gaseous non-methane organics (excluding ethane), reported as ppmv carbon.
Ethane is reported as ppmv carbon.

* Note - Impinger sample results are not field blank corrected. The field blank (impinger H3) contained 0.55 ug carbon, corresponding to 0.29 ppm carbon for a 3.92 liter sample.

P₁ and P₂ are initial and final pressures measured in mm Hg.

Michael L. Porter
Laboratory Director

AtmAA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants
laboratory services

LABORATORY ANALYSIS REPORT

Hydrogen Sulfide and Reduced Sulfur Compounds Analysis in Tedlar Bag Sample

Report Date: June 15, 2007

Client: Horizon Air Measurements

Project Location: BFI Sunshine

Client Project No.: B05-015

Date Received: June 1, 2007

Date Analyzed: June 5 2007

ANALYSIS DESCRIPTION

Hydrogen sulfide was analyzed by gas chromatography with a Hall electrolytic conductivity detector operated in the oxidative sulfur mode. All other components were measured by GC/ Mass Spec.

Components	AtmAA Lab No.: 01527-35
	Sample I.D.: B6-15-TB-I-1
	(Concentration in ppmv)
Hydrogen sulfide	51.4
Carbonyl sulfide	0.24
Methyl mercaptan	3.70
Ethyl mercaptan	<0.2
Dimethyl sulfide	5.26
Carbon disulfide	0.19
isopropyl mercaptan	0.40
n-propyl mercaptan	<0.1
Dimethyl disulfide	<0.1
TRS	61.4

TRS - total reduced sulfur

Michael L. Porter
Laboratory Director

AtmAA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

LABORATORY ANALYSIS REPORT

**environmental consultants
laboratory services**

R1150.1 Component Analysis in Tedlar Bag Sample, by GC/MS, TO-15

Report Date: June 25, 2007

Client: Horizon Air Measurement Services

Project Location: BFI Sunshine Canyon

Client Project No.: B05-015

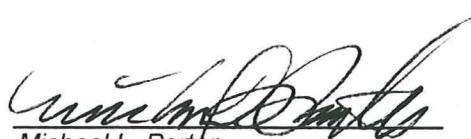
Date Received: June 1, 2007

Date Analyzed: June 6, 2007

AtmAA Lab No.: 01527-35

Sample ID: B6-15-TB-I-1

(Concentrations in ppmv)


Components

Hydrogen sulfide 51.9

(Concentrations in ppbv)

Benzene	2910
Benzylchloride	<80
Chlorobenzene	<80
Dichlorobenzenes*	236
1,1-dichloroethane	172
1,2-dichloroethane	221
1,1-dichloroethylene	<80
Dichloromethane	<80
1,2-dibromoethane	<60
Perchloroethylene	852
Carbon tetrachloride	<60
Toluene	13200
1,1,1-trichloroethane	<60
Trichloroethene	408
Chloroform	<60
Vinyl chloride	393
m+p-xylenes	5640
o-xylene	1720

* total amount containing meta, para and ortho isomers.

Michael L. Porter
Laboratory Director

AtmAA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

LABORATORY ANALYSIS REPORT

environmental consultants
laboratory services

R1150.1 Component Analysis in Tedlar Bag Samples, by GC/MS, TO-15

Report Date: June 25, 2007

Client: Horizon Air Measurement Services

Project Location: BFI Sunshine Canyon

Client Project No.: B05-015

Date Received: June 1, 2007

Date Analyzed: June 6, 2007

AtmAA Lab No.:	01527-37	01527-38	01527-39
Sample ID:	B6-15-TB-O-1	B6-15-TB-O-2	B6-15-TB-O-3

(Concentrations in ppbv)

Components

	<500	<500	<500
Benzene	<0.6	<0.6	1.53
Benzylchloride	<0.8	<0.8	<0.8
Chlorobenzene	<0.8	<0.8	<0.8
Dichlorobenzenes*	<0.6	<0.6	<0.6
1,1-dichloroethane	<0.8	<0.8	<0.8
1,2-dichloroethane	<0.8	<0.8	<0.8
1,1-dichloroethylene	<0.8	<0.8	<0.8
Dichloromethane	1.49	1.12	1.35
1,2-dibromoethane	<0.6	<0.6	<0.6
Perchloroethylene	<0.6	<0.6	<0.6
Carbon tetrachloride	<0.6	<0.6	<0.6
Toluene	0.83	<0.8	8.68
1,1,1-trichloroethane	<0.6	<0.6	<0.6
Trichloroethene	<0.6	<0.6	<0.6
Chloroform	<0.6	<0.6	<0.6
Vinyl chloride	<0.8	<0.8	<0.8
m+p-xylenes	0.69	<0.6	7.48
o-xylene	<0.6	<0.6	2.82

* total amount containing meta, para and ortho isomers.

Michael L. Porter
Laboratory Director

CHAIN OF CUSTODY RECORD

Client/Project Name BFI Sunshine Cyn		Project Location Sylmar CA		ANALYSES ASTM D3588 EPA TO 15 SCAQMD 307 D1945 8/02							
Project No. B05-015		Field Logbook No.									
Sampler: (Signature) P. Wiss		Chain of Custody Tape No.									
Sample No./Identification	Date	Time	Lab Sample Number	Type of Sample	REMARKS						
B615TB-I-1	06/01/07		0152735	52 bag	X	X	X				INLET
B615TB-I-2			36		X						INLET
B615TB-O-1			37			X					OUTLET
B615TB-O-2			38			X					OUTLET
B615TB-O-3			39			X					outlet
Relinquished by: (Signature) Ellen Mesh				Date: 6/1/07 Time: 1515	Received by: (Signature)				Date	Time	
Relinquished by: (Signature)				Date	Time	Received by: (Signature)				Date	Time
Relinquished by: (Signature)				Date	Time	Received for Laboratory: (Signature)				Date	Time
Sample Disposal Method:				Disposed of by: (Signature)						Date	Time
SAMPLE COLLECTOR HORIZON AIR MEASUREMENT SERVICES, INC 996 Lawrence Drive, Suite 108 Newbury Park, CA 91320 (805) 498-8781 Fax (805) 498-3173				ANALYTICAL LABORATORY AtmosA							
										No 09430	

Facility: BFI
Source: FLARE 8
Job No.: B06-015
Test Date: 06/05/07

SCAQMD Method 5.1

DATA SHEET FOR PARTICULATE MATTER SCAQMD METHOD 5.1

DATE SAMPLED: 06/01/07

RUN #1

DATE EXTRACTED: 06/05/007

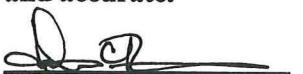
	SAMPLE ID	BEAKER/ FILTER ID	VOLUME	INITIAL	FINAL	NET WEIGHT(g)
A - FILTER CATCH FILTER ACID FILTER SULFATE	B06015-M5-F8-PF-1	G7014	NA	0.1154	0.1155	0.0001 0.0000 0.0000
B - PROBE CATCH PROBE ACID PROBE SULFATE						0.0000 0.0000 0.0000
C - IMP.CATCH(INSOL) INSOLUBLE ACID INSOLUBLE SULFATE	B06015-M5-F8-EF-1	G7025	650	0.1177	0.1177	0.0000 0.0000 0.0000
D - IMP. CATCH (SOL) SOLUBLE ACID SOLUBLE SULFATE	B06015-M5-F8-DI-1	7049	650	30.5863	30.5955	0.0092 0.0000 0.0000
E - ORGANIC EXTRACT						0.0000
TOTAL PARTICULATE	(A+B+C+D+E)					0.0093
SOLID PARTICULATE	(A+B+C+D)					0.0093

CHAIN OF CUSTODY RECORD

Client/Project Name BFI Sunshine		Project Location Sunshine Cyn, Sylmar		ANALYSES							
Project No. BOB-015		Field Logbook No.		<p style="text-align: center; transform: rotate(-45deg);">Scans (115/36)</p>							
Sampler: (Signature) <i>R. Wilson</i>		Chain of Custody Tape No.									
Sample No./Identification	Date	Time	Lab Sample Number	Type of Sample	REMARKS						
BOB-015 M5F8PF1	06/01/07			PF 47m 7014 DI H ₂ O	X						PF # 7014
36015 M5F8 DF1					X						
Relinquished by: (Signature) <i>R. Wilson</i>				Date 06/01/07	Time	Received by: (Signature)				Date	Time
Relinquished by: (Signature)				Date	Time	Received by: (Signature)				Date	Time
Relinquished by: (Signature)				Date	Time	Received for Laboratory: (Signature) <i>200</i>				Date 06-04-07	Time 0700
Sample Disposal Method:				Disposed of by: (Signature)						Date	Time
SAMPLE COLLECTOR HORIZON AIR MEASUREMENT SERVICES, INC 996 Lawrence Drive, Suite 108 Newbury Park, CA 91320 (805) 498-8781 Fax (805) 498-3173				ANALYTICAL LABORATORY HAMS (N.P., C4)							
										No 09428	

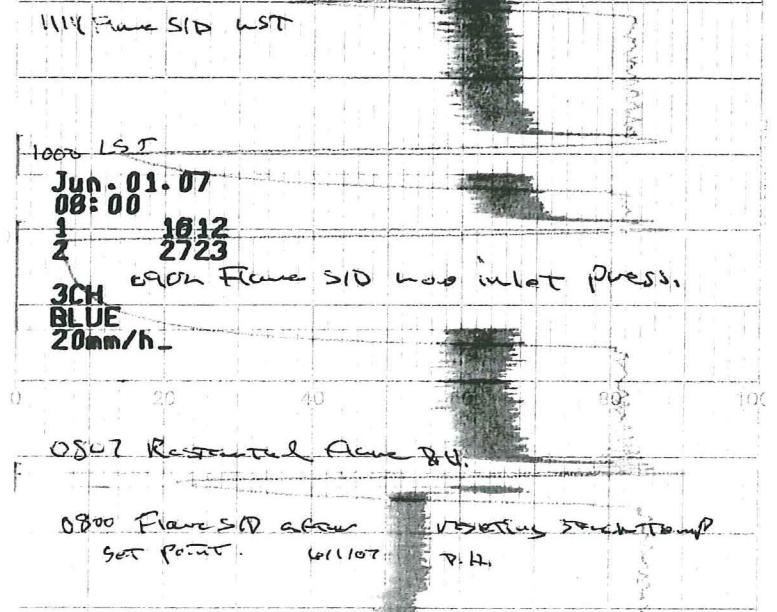
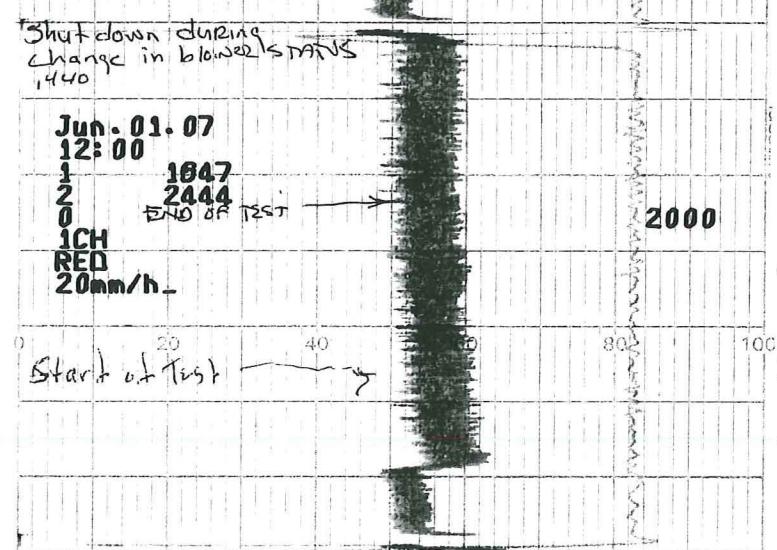
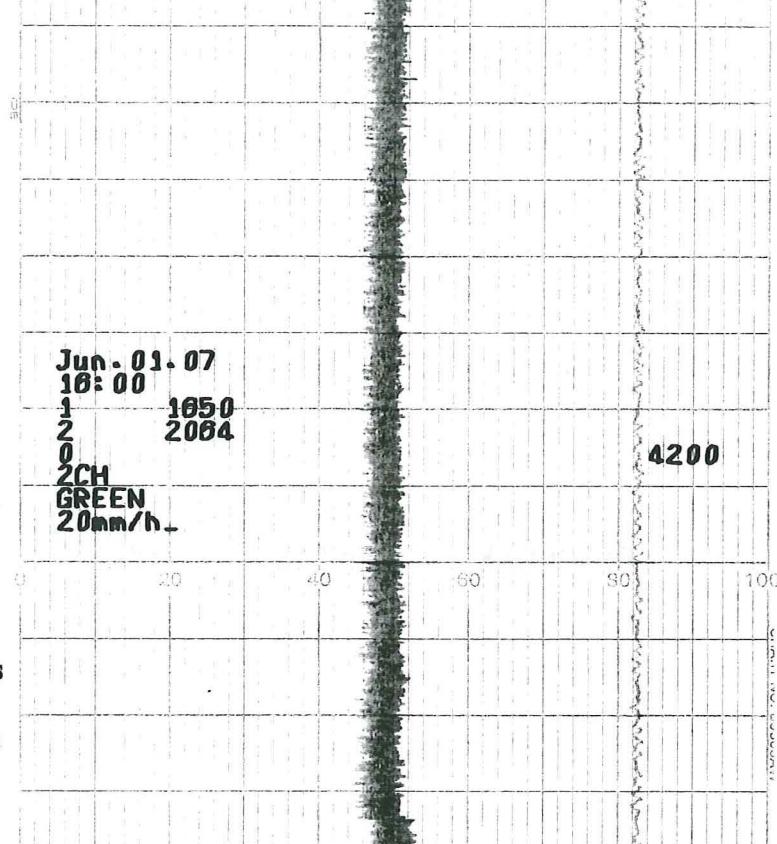
GAS TO FLARE RECORDER

FLARE # 8


SOURCE TEST DATE
June 1, 2007

Gas flowing to the flare is shown on the recorder. Gas is calculated with a Rosemont differential pressure, Rosemont pressure and Temperature elements, then the actual gas volume is calculated by this recorder and a line is drawn for the actual volume going to the Flare. The range of this recorder is from 0 scfm to 4200 scfm. Flow instrumentation was calibrated on May 31, 2007.

The line at approximately 56% of the chart value correlates to 2,352 scfm. Total flow combusted for the day was 3,035,340 scf.




This strip chart recorder paper is kept on-site at Sunshine Canyon Landfill.

All data on this page is true and accurate.

John C. Burns
Operations Supervisor –
Landfill Gas & Liquids

June 4, 2007

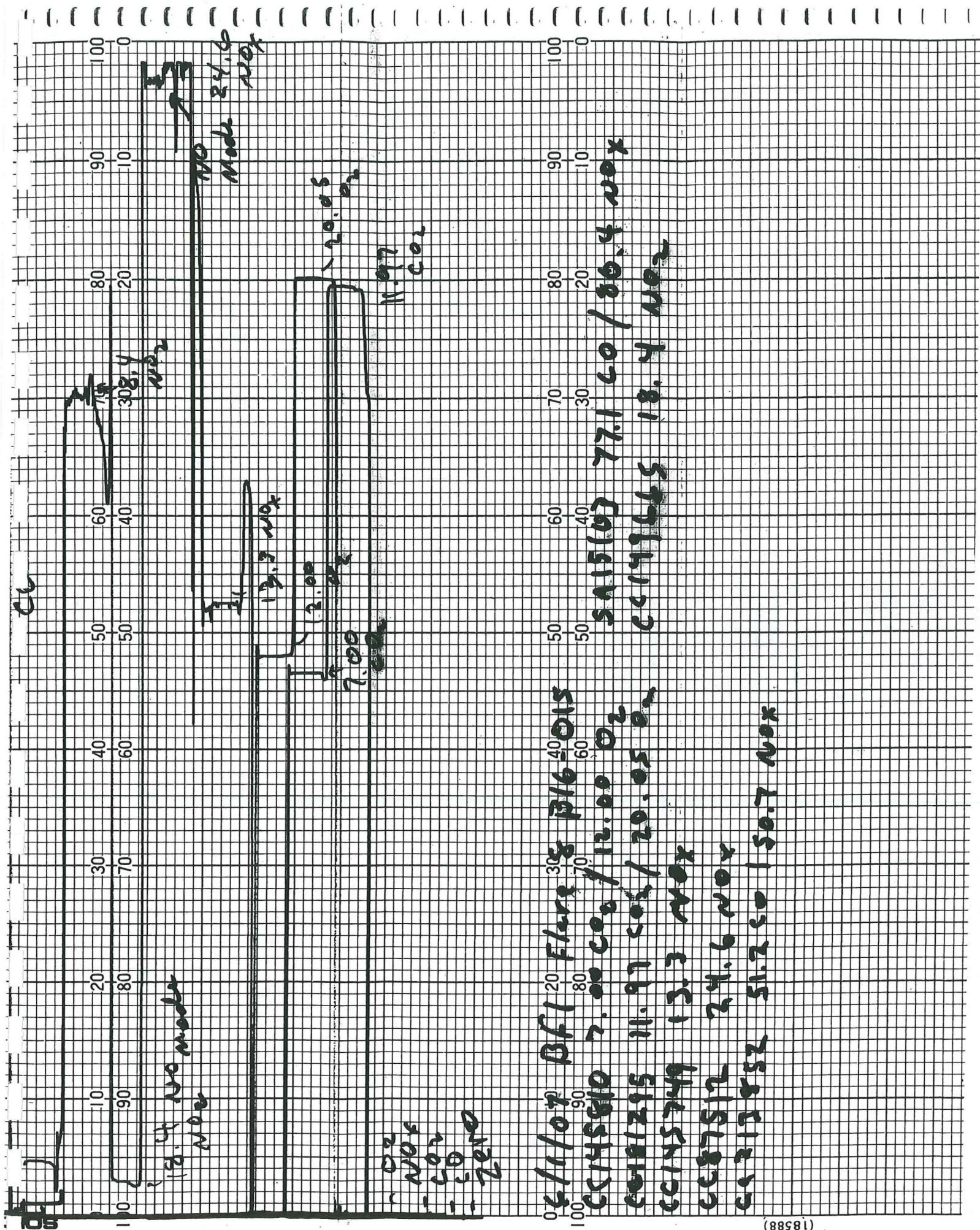
STACK TEMPERATURE RECORDER

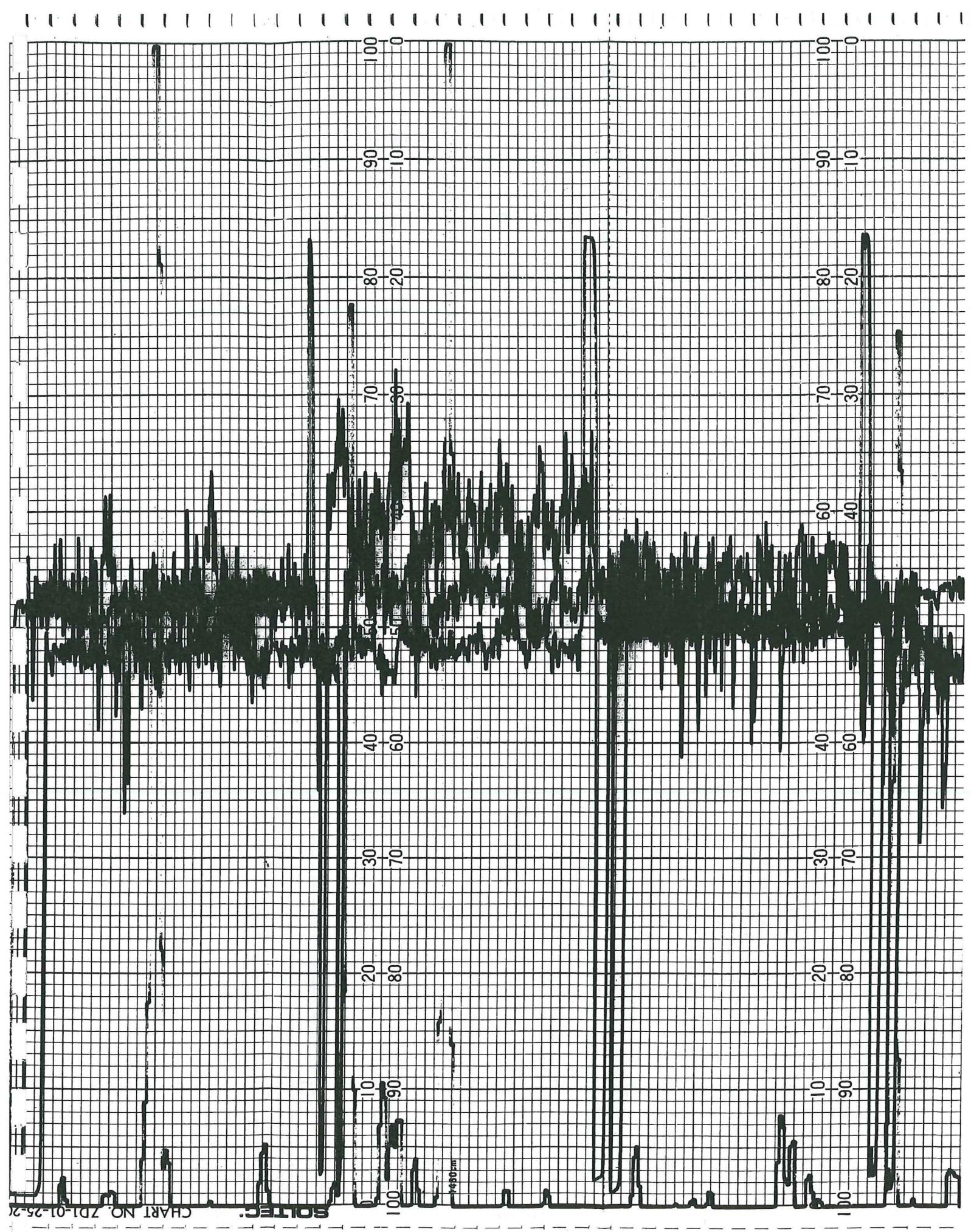
FLARE # 8

SOURCE TEST DATE
June 1, 2007

Stack temperature recorder is set to record the temperature of the exhaust gases exiting the stack. The recorder is set to record real time data from 0°F to 2000°F.

The line at 82.5% of total range of scale is equivalent to 1650°F.


This strip chart recorder paper is kept on-site at Sunshine Canyon Landfill.


All data on this page is true and accurate.

John C. Burns
Operations Supervisor –
Landfill Gas & Liquids

June 4, 2007

APPENDIX G - Calibration Data

STACK TEMPERATURE SENSOR CALIBRATION DATA: APEX PROBE ASSEMBLIES

Date: 05/02/07

Calibrated by: B.J.

THERMOCOUPLE
ID:

ICE WATER			ABSOLUTE T DIFF., %			BOILING WATER			ABSOLUTE T DIFF., %			BOILING OIL			ABSOLUTE T DIFF., %			
REF			TC			REF			TC			REF			TC			
1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
Stainless Steel Probes																		
3-1	32	32	32	32	31	31	0.0	0.2	0.2	212	212	212	213	212	212	-0.1	0.0	0.0
4-2	32	32	32	30	32	32	0.4	0.0	0.0	212	212	212	210	210	210	0.3	0.3	0.3
4-3	32	32	32	32	30	31	0.0	0.4	0.2	212	212	212	208	209	210	0.6	0.4	0.3
6-2	32	32	32	30	29	30	0.4	0.6	0.4	212	212	212	208	209	209	0.6	0.4	0.4
6-3	32	32	32	31	30	30	0.2	0.4	0.4	212	212	212	211	212	210	0.1	0.0	0.3
6-4	32	32	32	29	30	31	0.6	0.4	0.2	212	212	212	210	210	210	0.2	0.3	0.3
A6-5	32	32	32	30	31	31	0.4	0.2	0.2	212	212	212	213	213	212	-0.1	-0.1	0.0
A8-1	31	32	32	30	30	31	0.2	0.4	0.2	212	212	212	209	208	209	0.4	0.6	0.4
A8-2	32	32	32	31	31	31	0.2	0.2	0.2	212	212	212	211	212	210	0.1	0.0	0.3
A8-3	32	32	32	31	30	31	0.2	0.4	0.2	212	212	212	210	210	211	0.3	0.3	0.1
10-1	32	32	32	32	31	31	0.0	0.2	0.2	212	212	212	211	212	209	0.1	0.0	0.4
M17-1	32	32	32	31	31	32	0.2	0.2	0.0	212	212	212	211	211	211	0.1	0.1	0.1
M17-2	32	32	32	32	33	33	0.0	-0.2	-0.2	212	212	212	212	211	210	0.0	0.1	0.3
M17-3	32	32	32	31	32	31	0.2	0.0	0.2	212	212	212	211	211	212	0.1	0.1	0.0
Inconel																		
10-2 Inc	32	32	32	34	34	34	-0.4	-0.4	-0.4	212	212	212	213	213	213	-0.1	-0.1	-0.1
6-1 Inc	32	32	32	36	36	36	-0.8	-0.8	-0.8	212	212	212	210	210	208	0.3	0.3	0.6
Loose Thermocouple																		
6-5	32	32	32	34	35	34	-0.4	-0.6	-0.4	212	212	212	210	211	211	0.3	0.1	0.1
6-8	32	32	32	32	32	32	0.0	0.0	0.0	212	212	212	212	210	210	0.0	0.3	0.3
7-1	32	32	32	34	35	35	-0.4	-0.6	-0.6	212	212	212	210	210	210	0.3	0.3	0.3
8-3	32	32	32	33	32	32	0.0	-0.2	0.0	212	212	212	212	210	213	0.3	0.0	-0.1

Note: If absolute temperature values of the reference thermometer being calibrated and the stack temperature sensors agree within 1.5 percent at each of the three calibration points, no correction is needed.

Magnehelic Gauge Calibration Data

Range: 0 - 1.0"

Date: 5/1/2007

Calibrated by: BJ

BAROMETRIC PRESSURE: 29.24

Reference: 0.0-10.0" Manometer

SYSTEM

LEAK CHECKS (Y/N): Y

POINT

LEAK CHECK (Y/N): Y

Magnahelic Box 4

Serial # R041109LM41

MAG	MAN R1	MAN R2	MAN R3	MEAN	MEAN/MAG
0.20	2.00	0.20	0.20	0.800	4.000
0.40	0.40	0.40	0.40	0.400	1.000
0.60	0.60	0.60	0.60	0.600	1.000
0.80	0.80	0.80	0.80	0.800	1.000
1.00	1.00	1.00	1.00	1.000	1.000

Correction Factor: 1.6000

**APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION
USING CALIBRATED CRITICAL ORIFICES
5-POINT ENGLISH UNITS**

Meter Console Information	
Console Model Number	522/MB04
Console Serial Number	40622
DGM Model Number	S110
DGM Serial Number	300230

Calibration Conditions			
Date	Time	8-May-07	8:15AM
Barometric Pressure		29.2	in Hg
Theoretical Critical Vacuum ¹		13.8	in Hg
Calibration Technician	BJ - Run #1		

Factors/Conversions		
Std Temp	528	°R
Std Press	29.92	in Hg
K ₁	17.647	oR/in Hg

¹For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, $(m^3 R^{1/2})/(in.Hg \cdot min)$.

Run Time	Calibration Data						Critical Orifice			
	Metering Console			Serial Number	Coefficient	Amb Temp Initial	Amb Temp Final	Actual Vacuum		
Elapsed	DGM Orifice ΔH	Volume Initial	Volume Final	Outlet Temp Initial	Outlet Temp Final					
(θ)	(P _m)	(V _m)	(V _m)	(T _m)	(T _m)		K'	(T _{amb})	(T _{amb})	
min	in H ₂ O	cubic feet	cubic feet	°F	°F		see above ²	°F	°F	in Hg
20.0	0.3	118.320	124.371	67	68	RN-40	0.2333	76	77	25
15.0	0.7	124.371	131.128	67	70	RN-48	0.3455	77	77	24
20.0	1.1	131.128	142.691	68	73	RN-55	0.4431	77	77	22
15.0	2.1	142.691	154.483	70	74	RN-63	0.6003	77	77	20
12.0	3.6	154.483	166.829	73	78	RN-73	0.7827	77	78	17

Results							
Standardized Data				Dry Gas Meter			
Dry Gas Meter		Critical Orifice		Calibration Factor		Flowrate	ΔH @
				Value	Variation	Std & Corr	0.75 SCFM
(V _{m(Std)})	(Q _{m(Std)})	(V _{cr(Std)})	(Q _{cr(Std)})	(Y)	(ΔY)	(Q _{m(Std,corr)})	(ΔH@)
cubic feet	cfm	cubic feet	cfm			cfm	in H ₂ O
5.908	0.295	5.872	0.294	0.994	0.004	0.294	1.850
6.588	0.439	6.519	0.435	0.990	0.000	0.435	1.979
11.243	0.562	11.148	0.557	0.991	0.002	0.557	1.943
11.468	0.765	11.327	0.755	0.988	-0.002	0.755	2.027
11.979	0.998	11.809	0.984	0.986	-0.004	0.984	2.049
				0.990	Y Average	1.970	ΔH@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.

I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

Signature

Date

5-8-07

Praxair

5700 South Alameda Street
Los Angeles, CA 90058
Telephone: (323) 585-2154
Facsimile: (714) 542-6689

6/14/2006

Horizon Air
996 Lawrence Dr Ste 108
Newbury Park, CA 91320
USA

Attention: DRF

Praxair Order No. **558202-00**

Product Lot/Batch No. **109612303**

Customer Reference No.

Praxair Part No. **NI CDOXP80-AS**

Intended End User: **HORIZON AIR
MEASUREMENTS**

CERTIFICATE OF ANALYSIS

Primary Standard

<u>Component</u>	<u>Requested Concentration</u>	<u>Certified Concentration</u>	<u>Analytical Principle</u>	<u>Analytical Accuracy</u>
Carbon dioxide	12 %	11.97 %	V	±1 %
Oxygen	20 %	20.05 %	V	±1 %
Nitrogen	balance	balance		

Analytical Instruments: **Mettler~ID5~Gravimetric~Gravimetric**

Cylinder Style: **AS**

Filling Method: **Gravimetric**

Cylinder Pressure @70F: **2000 psig**

Date of Fill: **5/3/2006**

Cylinder Volume: **151 ft3**

Expiration Date: **12/31/2009**

Valve Outlet Connection: **CGA-590**

Cylinder No(s). **CC 181295**

Comments: **VALUES NOT VALID BELOW 150 PSIG.**

Analyst: **Ben Chen**

QA Reviewer: **Phu Tien Nguyen**

The gas calibration cylinder standard prepared by Praxair Distribution is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST) or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted.

Key to Analytical Techniques:

A	Flame Ionization with Methanizer	B	Gas Chromatography with Discharge Ionization Detector	C	Gas Chromatography with Electrolytic Conductivity Detector	D	Gas Chromatography with Flame Ionization Detector
E	Gas Chromatography with Flame Photometric Detector	F	Gas Chromatography with Helium Ionization Detector	G	Gas Chromatography with Methanizer Carbonizer	H	Gas Chromatography with Photoionization Detector
I	Gas Chromatography with Reduction Gas Analyzer	J	Gas Chromatography with Thermal Conductivity Detector	K	Gas Chromatography with Ultrasonic Detector	L	Infrared - FTIR or NDIR
M	Mass Spectrometry - MS or GC/MS	N	Proprietary	O	Paramagnetic	P	Specific Water Analyzer
O	Total Hydrocarbon Analyzer	R	Wet Chemical	S	Detector Tube	T	Odor
U	Chemiluminescence	V	Gravimetric	W	Electrolytic Cell/Electrochemical	X	Photionization
Y	Pulsed Fluorescence	Z	UV Spectrometry				

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair
5700 South Alameda Street
Los Angeles, CA 90058
Telephone: (323) 585-2154
Facsimile: (714) 542-6689
CM

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER HORIZON AIR MEASUREMENTS

P.O. NUMBER 8685

REFERENCE STANDARD

COMPONENT	NIST SRM NO.	CYLINDER NO.	CONCENTRATION
NITRIC OXIDE GMIS	VG.SRM#2029	CC 134870	24.83 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT	NITRIC OXIDE	GMIS	ANALYZER MAKE-MODEL-S/N	Thermo Env. 42C S/N 0518112467	LAST CALIBRATION DATE	8/24/05
ANALYTICAL PRINCIPLE	Chemiluminescence				SECOND ANALYSIS DATE	09/15/05
FIRST ANALYSIS DATE	08/03/05					
Z 0.0	R 25.6	C 25.7	CONC. 24.9	Z 0.0	R 24.8	C 24.3
R 25.9	Z 0.2	C 25.4	CONC. 24.3	R 24.8	Z 0.0	C 24.4
Z 0.2	C 25.2	R 25.8	CONC. 24.5	Z 0.0	C 24.3	R 24.7
U/M ppm	MEAN TEST ASSAY		24.6	U/M ppm	MEAN TEST ASSAY 24.4	

NOx value for reference only.

All values not valid below 150 psig.

First analysis was done on analyzer THERMO ENV. 42H.

THIS CYLINDER NO.	CC 87512	CERTIFIED CONCENTRATION		
HAS BEEN CERTIFIED ACCORDING TO SECTION		EPA-600/R97/121	NITRIC OXIDE	24.5 ppm
OF TRACEABILITY PROTOCOL NO.	Rev. 9/97		NITROGEN	BALANCE
PROCEDURE	G1		NOx	24.6 ppm
CERTIFIED ACCURACY	± 1	% NIST TRACEABLE		
CYLINDER PRESSURE	2000	PSIG		
CERTIFICATION DATE	09/15/05			
EXPIRATION DATE	09/15/07	TERM 24 MONTHS		

ANALYZED BY

HENRY KOUNG

CERTIFIED BY

JOSEPH CHARLES

IMPORTANT
Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

PRAXAIR

EPA STOCK

Praxair
5700 South Alameda Street
Los Angeles, CA 90058
Telephone: (323) 585-2154
Facsimile: (714) 542-6689

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER HORIZON AIR MEASUREMENTS

P.O NUMBER 8512

REFERENCE STANDARD

COMPONENT	NIST SRM NO.	CYLINDER NO.	CONCENTRATION
NITRIC OXIDE GMIS	vsSRM#1684b	CC 136077	99.1 ppm
CARBON MONOXIDE GMIS	vs.SRM#1679	CC 160064	101.3 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT	NITRIC OXIDE	GMIS	ANALYZER MAKE-MODEL-S/N	BECKMAN 951A S/N#0101354	LAST CALIBRATION DATE	01/03/05
ANALYTICAL PRINCIPLE	CHEMILUMINESCENCE			SECOND ANALYSIS DATE	01/14/05	
FIRST ANALYSIS DATE	01/07/05			Z 0.0	R 965.0	C 780.9
Z 0.0	R 991.3	C 799.1	CONC. 79.9	Z 0.0	R 966.0	C 779.8
R 992.5	Z 0.0	C 801.6	CONC. 80.0	Z 0.0	C 781.0	C 966.3
Z 0.0	C 802.6	R 993.2	CONC. 80.1	Z 0.0	R 966.3	C 80.1
U/M mV	MEAN TEST ASSAY 80.0			U/M mV	MEAN TEST ASSAY 80.1	
2. COMPONENT	CARBON MONOXIDE	GMIS	ANALYZER MAKE-MODEL-S/N	Siemens Ultramat 5E S/N A12-729	LAST CALIBRATION DATE	01/03/05
ANALYTICAL PRINCIPLE	NDIR			SECOND ANALYSIS DATE	01/14/05	
FIRST ANALYSIS DATE	01/07/05			Z 0.0	R 101.3	C 77.2
Z 0.0	R 101.3	C 77.2	CONC. 77.2	Z 0.0	R 101.3	C 77.1
R 101.3	Z 0.0	C 77.2	CONC. 77.2	Z 0.0	C 77.2	R 101.4
Z 0.0	C 77.2	R 101.5	CONC. 77.0	Z 0.0	C 77.2	C 77.1
U/M ppm	MEAN TEST ASSAY 77.1			U/M ppm	MEAN TEST ASSAY 77.1	

VALUES NOT VALID BELOW 150 PSIG
NOX VALUE FOR REFERENCE ONLY.

THIS CYLINDER NO.	SA 15103	CERTIFIED CONCENTRATION
HAS BEEN CERTIFIED ACCORDING TO SECTION		EPA-600/R97/121
OF TRACEABILITY PROTOCOL NO.		REV 9/97
PROCEDURE	G1	NITRIC OXIDE 80.0 ppm
CERTIFIED ACCURACY	± 1	CARBON MONOXIDE 77.1 ppm
CYLINDER PRESSURE	2000 PSIG	NITROGEN BALANCE
CERTIFICATION DATE	01/14/05	NOx 81.1 ppm
EXPIRATION DATE	01/14/07	TERM 24 MONTHS

ANALYZED BY

MICHAEL TSANG

CERTIFIED BY

CHRIS VU

IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

APPENDIX H - Correspondences

APPENDIX I - Permit to Operate

FACILITY PERMIT TO OPERATE SUNSHINE CANYON LANDFILL

4. A SET OF FOUR SAMPLING PORTS SHALL BE INSTALLED IN THE FLARE SHROUD AND LOCATED AT LEAST TWO FEET ABOVE THE FLAME ZONE AND AT LEAST SIX AND ONE HALF FEET BELOW THE TOP OF THE FLARE SHROUD. EACH PORT SHALL CONSIST OF A FOUR-INCH COUPLING WITH PLUG. ADEQUATE AND SAFE ACCESS TO ALL SOURCE TEST PORTS SHALL BE PROVIDED WITHIN 24 HOURS OF A REQUEST BY THE AQMD TO CONDUCT A TEST. [RULE 217]
5. A SAMPLING PORT SHALL BE MAINTAINED AT THE INLET GAS LINE TO THE FLARE TO ALLOW LANDFILL GAS SAMPLING AND FLOW MEASUREMENT. [RULE 217, 431.1, 1150.1]
6. THE FLARE SHALL BE EQUIPPED WITH A CONTINUOUS TEMPERATURE INDICATOR AND RECORDER WHICH MEASURES AND RECORDS THE GAS TEMPERATURE IN THE FLARE STACK. THE TEMPERATURE INDICATOR AND RECORDER SHALL OPERATE WHENEVER THE FLARE IS IN OPERATION. THE THERMOCOUPLE USED TO MEASURE THE TEMPERATURE SHALL BE AT LEAST TWO FEET ABOVE THE FLAME ZONE AND AT LEAST SIX AND ONE HALF FEET BELOW THE TOP OF THE FLARE SHROUD AND AT LEAST 0.6 SECONDS DOWNSTREAM OF THE BURNER. [RULE 1150.1, 1303 (a)(1)-BACT, 40CFR 60.756(b)(1)]
7. WHENEVER THE FLARE IS IN OPERATION, A TEMPERATURE OF NOT LESS THAN 1600 DEGREES F, AS MEASURED BY THE TEMPERATURE INDICATOR AND RECORDER, SHALL BE MAINTAINED IN THE FLARE STACK. [RULE 1303 (a)(1)-BACT]
8. THE SKIN TEMPERATURE OF THE FLARE SHROUD WITHIN FOUR FEET OF ALL THE SOURCE TEST PORTS SHALL NOT EXCEED 250 DEGREES F. IF A HEAT SHIELD IS REQUIRED TO MEET THIS REQUIREMENT, ITS DESIGN SHALL BE APPROVED BY THE AQMD PRIOR TO CONSTRUCTION. THE HEAT SHIELD, IF REQUIRED TO MEET THE TEMPERATURE REQUIREMENT, SHALL BE IN PLACE WHENEVER A SOURCE TEST IS CONDUCTED BY THE AQMD. [RULE 217]
9. A SUFFICIENT NUMBER OF SIGHT GLASS WINDOWS SHALL BE MAINTAINED IN THE FLARE TO ALLOW VISUAL INSPECTION OF THE FLAME WITHIN THE FLARE AT ALL TIMES. PERMANENT AND SAFE ACCESS SHALL BE PROVIDED FOR ALL SIGHT GLASS WINDOWS. [RULE 217, 1303(a)(1)-BACT]
10. A FLOW INDICATOR AND RECORDER SHALL BE MAINTAINED IN THE LANDFILL GAS SUPPLY LINE TO THE FLARE TO MEASURE AND RECORD THE GAS FLOW RATE (IN SCFM) TO THE FLARE AT LEAST EVERY FIFTEEN MINUTES AND SHALL OPERATE WHENEVER THE FLARE IS IN OPERATION. [RULE 1150.1, 1303 (b)(2)-OFFSET, 40CFR 60.756(b)(2)(i)]
11. THE TOTAL VOLUME OF LANDFILL GAS BURNED IN THE FLARE SHALL NOT EXCEED 4,167 STANDARD CUBIC FEET PER MINUTE. [RULE 1303 (b)(2)-OFFSET]

FACILITY PERMIT TO OPERATE SUNSHINE CANYON LANDFILL

15. A PRESSURE SENSING DEVICE WITH AN AUTOMATIC BLOWER SHUT OFF SYSTEM SHALL BE MAINTAINED IN THE BLOWER DISCHARGE LINE TO DETECT PRESSURE DROP DUE TO LANDFILL GAS LEAKS AND SHALL BE TESTED EVERY SIX MONTHS FOR PROPER OPERATION AND THE RESULTS RECORDED.
[RULE 1303 (a)(1)-BACT]
16. A PRESSURE DIFFERENTIAL INDICATOR SHALL BE MAINTAINED ACROSS THE PARTICULATE FILTER.
[RULE 1303 (a)(1)-BACT]
17. A PRESSURE DIFFERENTIAL INDICATOR SHALL BE MAINTAINED ACROSS THE FLAME ARRESTOR.
[RULE 1303 (a)(1)-BACT]
18. THE HEAT RELEASE OF LANDFILL GAS BURNED IN THIS FLARE SHALL NOT EXCEED 105 MILLION BTU/HR.
[RULE 1303 (b)(2)-OFFSET]
19. LANDFILL GAS ENTERING THE FLARE SHALL BE ANALYZED WEEKLY FOR HEATING VALUE AND METHANE CONCENTRATION. RESULTS SHALL BE RECORDED AND PROVIDED TO THE AQMD UPON REQUEST.
[RULE 1303 (b)(2)- OFFSET]
20. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF DAY.
[RULE 1303 (b)(2)- OFFSET]
21. ALL RECORDS SHALL BE KEPT FOR A PERIOD OF AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO THE AQMD UPON REQUEST. A RECORD OF THE HOURS OF FLARE OPERATION SHALL BE INCLUDED.
[RULE 1150.1, 1303 (b)(2)- OFFSET]
22. ANY BREAKDOWN OR MALFUNCTION OF THE LANDFILL GAS FLARE SYSTEM RESULTING IN THE EMISSION OF RAW LANDFILL GAS SHALL BE REPORTED TO THE AQMD WITHIN ONE HOUR AFTER OCCURRENCE, AND IMMEDIATE REMEDIAL MEASURES SHALL BE UNDERTAKEN TO CORRECT THE PROBLEM AND PREVENT FURTHER EMISSIONS INTO THE ATMOSPHERE.
[RULE 430]
23. THIS PERMIT SHALL EXPIRE IF CONSTRUCTION OF THIS EQUIPMENT IS NOT COMPLETE WITHIN ONE YEAR FROM THE DATE OF ISSUANCE OF THIS PERMIT UNLESS AN EXTENSION IS GRANTED BY THE EXECUTIVE OFFICER.
[RULE 204]