

TriCities Recycling Disposal Facility

BAAQMD Facility # A2246

Annual Compliance Emissions Test Report #08071
Source Test for Landfill Gas Flare- Source A-3

Located at:

7010 Auto Mall Parkway
Fremont, CA 94538

Performed and Reported by:

Blue Sky Environmental, LLC
624 San Gabriel Avenue
Albany, CA 94706

Prepared For:

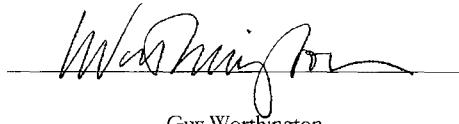
Cornerstone Environmental Group, LLC
7600 Dublin Boulevard, Suite 200
Dublin, CA 94568

For Submittal To:

Bay Area Air Quality Management District
939 Ellis Street
San Francisco, CA 94109

Testing Performed On:
June 4th, 2008

Final Report Submitted On:
7/31/08


BLUE SKY ENVIRONMENTAL, LLC

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that: a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program; b) that the sampling and analytical procedures and data presented in the report is authentic and accurate; c) that all testing details and conclusions are accurate and valid, and: d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for Compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (510) 525 1261.

Guy Worthington

Principal Project Manager

BLUE SKY ENVIRONMENTAL, LLC

TABLE of CONTENTS

SECTION 1. INTRODUCTION	4
1.1. SUMMARY.....	4
SECTION 2. SOURCE TEST PROGRAM	5
2.1. OVERVIEW	5
2.2. POLLUTANTS TESTED.....	5
2.3. TEST DATE(S).....	5
2.4. SAMPLING AND OBSERVING PERSONNEL.....	5
2.5. SOURCE/PROCESS DESCRIPTION	5
2.6. SOURCE OPERATING CONDITIONS	6
SECTION 3. SAMPLING AND ANALYSIS PROCEDURES.....	7
3.1. PORT LOCATION.....	7
3.2. POINT DESCRIPTION/LABELING – PORTS/STACK	7
3.3. SAMPLE TRAIN DESCRIPTION	7
3.4. SAMPLING PROCEDURE DESCRIPTION	7
3.5. INSTRUMENTATION AND ANALYTICAL PROCEDURES	8
3.6. COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS.....	9
SECTION 4. APPENDICES	10
A. <i>Tabulated Results</i>	
B. <i>Calculations</i>	
C. <i>Laboratory Reports</i>	
D. <i>Field Data Sheets</i>	
E. <i>Strip Charts</i>	
F. <i>Process Information</i>	
G. <i>Calibration Certifications and Quality Assurance Records</i>	
H. <i>Sample Train Configuration and Stack Diagrams</i>	
I. <i>Related Correspondence (Source Test Plan)</i>	
J. <i>BAAQMD Permit</i>	

SECTION 1. INTRODUCTION

1.1. Summary

Blue Sky Environmental, LLC was contracted to perform the emissions testing on the A-3 Landfill Gas Flare at 7010 Auto Mall Parkway, Fremont, California. Table 1 summarizes the source test information. Table 2 summarizes the results compared to the emission limits. The flare met all compliance emission criteria.

Table 1. Source Test Information

Test Location:	7010 Auto Mall Parkway, Fremont, CA 94538
Source Contact:	Colleen Cassidy (510) 624-5928
Source Tested:	Enclosed Landfill Gas Flare (A-3)
Source Test Date:	June 4 th , 2008
Test Objective:	Determine Compliance with Regulation 8, Rule 34 and Title V Permit A2246, Condition 8366
Test Performed By:	Blue Sky Environmental, LLC 624 San Gabriel Ave., Albany, CA 94706 Guy Worthington (510) 508 3469
Test Parameters:	<p>Landfill Gas O₂, N₂, CO₂, BTU, THC, CH₄, NMOC, HHV, F-Factor, TRS & Sulfur Species, Volumetric Flow Rate</p> <p>Flare Emissions THC, CH₄, NMOC, NO_x, CO, O₂, SO₂, Volumetric Flow Rate, Stack Exhaust Temperature.</p>

Table 2. Compliance Summary

	Average Test Result	Permit Limit	Compliance Status
NO _x , lbs/MMBTU	0.03	0.06	In Compliance
CO, lbs/MMBTU	0.16	0.3	In Compliance
NMOC, (ppmvd @ 3% O ₂ as CH ₄)	9.7	30	In Compliance
TRS in Landfill Gas, ppm	70	1300	In Compliance

SECTION 2. SOURCE TEST PROGRAM

2.1. Overview

This annual performance test was conducted to demonstrate that the A-3 landfill gas flare is operating in accordance with the Bay Area Air Quality Management District (BAAQMD) Title V Permit A2246 and Regulation 8 Rule 34.

2.2. Pollutants Tested

The following BAAQMD, EPA and ASTM sampling and analytical methods were used:

BAAQMD ST-5	CO ₂
BAAQMD ST-6	CO
BAAQMD ST-7	NMOC
BAAQMD ST-13A	NO _x
BAAQMD ST-14	O ₂
BAAQMD ST-19A (calculated from TRS)	SO ₂ calculated from TRS
EPA 19	Flow Rate Calculation, DSCFM
EPA 25C	LFG Gas analysis for NMOC by GC
ASTM 1945/3588	LFG Gas analysis for BTU and F-Factor
ASTM D-5504	Sulfur Species, H ₂ S and TRS

2.3. Test Date(s)

Testing was conducted on June 4th, 2008.

2.4. Sampling and Observing Personnel

Guy Worthington and Jeff Mesloh representing Blue Sky Environmental, LLC, performed testing.

Steve Thexton of Cornerstone Environmental Group, LLC was present to operate and oversee the Flare operation and assist in coordinating testing and the collection of process data during testing.

The BAAQMD was notified of the test in a plan submitted by Waste Management on May 7th, 2008. A Source Test Protocol acknowledgement was requested and received by Blue Sky Environmental (NST # 1409), but no agency observers were present to witness the testing. A copy of the source test protocol can be found in Appendix I.

2.5. Source/Process Description

The enclosed landfill gas flare consists of a 75 million British Thermal Units per hour (MMBtu/hr) multiple nozzle burner. The flare shell is approximately 40 feet high and has an approximately 102 inch inside diameter.

2.6. Source Operating Conditions

The flare operating temperature and the landfill gas flow rate records are contained in Appendix-F. There is no condensate injection.

The flare was operated between 1520 and 1534°F average temperature. The average landfill gas flow rate ranged between 1886 and 1914 scfm.

The landfill gas methane content ranged between 47.4% in Run#1 and 48.5% in Run #2. Run #3 Landfill Gas sample is suspected to be erroneously low ($\text{CH}_4=33.7\%$) as indicated by the elevated oxygen and nitrogen content in the sample in the exact proportions as in ambient air (1:4). The Flare operation was stable and constant, and the low methane result is therefore likely attributed to a failure in the integrity of the Tedlar sample bag or the analysis, and not representative of the Landfill gas.

SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

3.1. Port location

The A-3 Flare sampling was conducted in the 136 inch diameter ID stack, via ports approximately 35' above grade, accessed by a 40' boom-lift. Two of the four, 4-inch flange ports are available ~4 stack diameters downstream from the burners and ~1 stack diameters upstream from the exit.

3.2. Point description/Labeling – ports/stack

Blue Sky Environmental conducted two perpendicular 8 pt traverses and found O₂ stratification greater than 10%, therefore subsequent CEM sampling was conducted traversing two ports and a total of 16 points per run.

3.3. Sample train description

Sampling system diagrams are included in the Appendix H. Additional descriptive information is included in the following section.

3.4. Sampling procedure description

Three, 32-minute test runs were performed, completely traversing the stack on two diameters during each run.

Continuous Emission Monitoring by BAAQMD Methods ST-5, 6, 7, 13A and 14. These methods are all continuous monitoring techniques using instrumental analyzers to measure carbon dioxide (CO₂), carbon monoxide (CO), total non-methane hydrocarbons (THC & CH₄), nitrogen oxides (NO_x) and oxygen (O₂), respectively. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample and analyzing it by continuous monitoring gas analyzers in a CEM test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, glass moisture-knockout condensers in ice, Teflon sample transfer tubing, diaphragm pump and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI was provided to each analyzer to avoid pressure variable response differences. The entire sampling system was leak checked prior to and at the end of the sampling program.

Methane in the exhaust was determined per BAAQMD Methods, using a charcoal scrubber to remove the non-methane organics, and determining the difference between the total hydrocarbon and non-methane hydrocarbon concentrations.

The sampling and analytical system (per BAAQMD Methods) was calibrated at the beginning and end of each test run. The calibration gases were selected to fall approximately within 80 to 90 percent of the instrument range. Zero and calibration drift values were determined for each test. All calibration gases are EPA Protocol #1. The analyzer data recording system consists of Omega 3 channel strip chart recorders.

System Performance Criteria

Instrument Linearity	$\leq 2\%$ Full Scale (checked routinely)
Instrument Bias	$\leq 5\%$ Full Scale (checked routinely)
System Response Time	$\leq \pm 2$ minutes (checked routinely)
NO _x Converter Efficiency (EPA 20)	$\geq 90\%$ (checked routinely)
Instrument Zero Drift	$\leq \pm 3\%$ Full Scale (complied)
Instrument Span Drift	$\leq \pm 3\%$ Full Scale

Concurrent with the exhaust sampling, Blue Sky collected a total of three integrated 5-liter Tedlar Bag samples of the LFG for analysis. The samples were collected using Teflon tubing connections, and the tubing and the Tedlar bag were filled and purged prior to sampling. The gas sample was controlled with a rotameter to collect a 30-minute integrated sample. All the samples were analyzed for NMOC, HHV, F-Factor, Fixed Gases. One sample was analyzed for Sulfur Species (incl. H₂S and TRS).

The inlet volumetric flow rate was continuously measured and recorded by the facility monitors.

3.5. Instrumentation and Analytical procedures

The following continuous emissions analyzers were used:

Instrumentation	Parameter	Principle
TECO 42i	NO _x	Chemiluminescence
TECO 48C	CO	GFC/IR
Ratfisch, RS-55	THC	FID
Horiba PIR 2000	CO ₂	IR
Rosemount 755R	O ₂	Paramagnetic

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of Omega 3 channel strip chart recorders, which can be supported by a Data Acquisition System (DAS).

The instrument response was recorded on strip charts and manually reduced. The averages were corrected for drift using BAAQMD & EPA Method 6C equations.

3.6. Comments: Limitations and Data Qualifications

Blue Sky Environmental has reviewed this report for accuracy, and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

- Review of the general text
- Review of calculations
- Review of CEMS data
- Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.

SECTION 4. APPENDICES

- A. Tabulated Results**
- B. Calculations**
- C. Laboratory Reports**
- D. Field Data Sheets**
- E. Strip Charts**
- F. Process Information**
- G. Calibration Certifications and Quality Assurance Records**
- H. Sample Train Configuration and Stack Diagrams**
- I. Related Correspondence (Source Test Plan)**
- J. BAAQMD Permit**

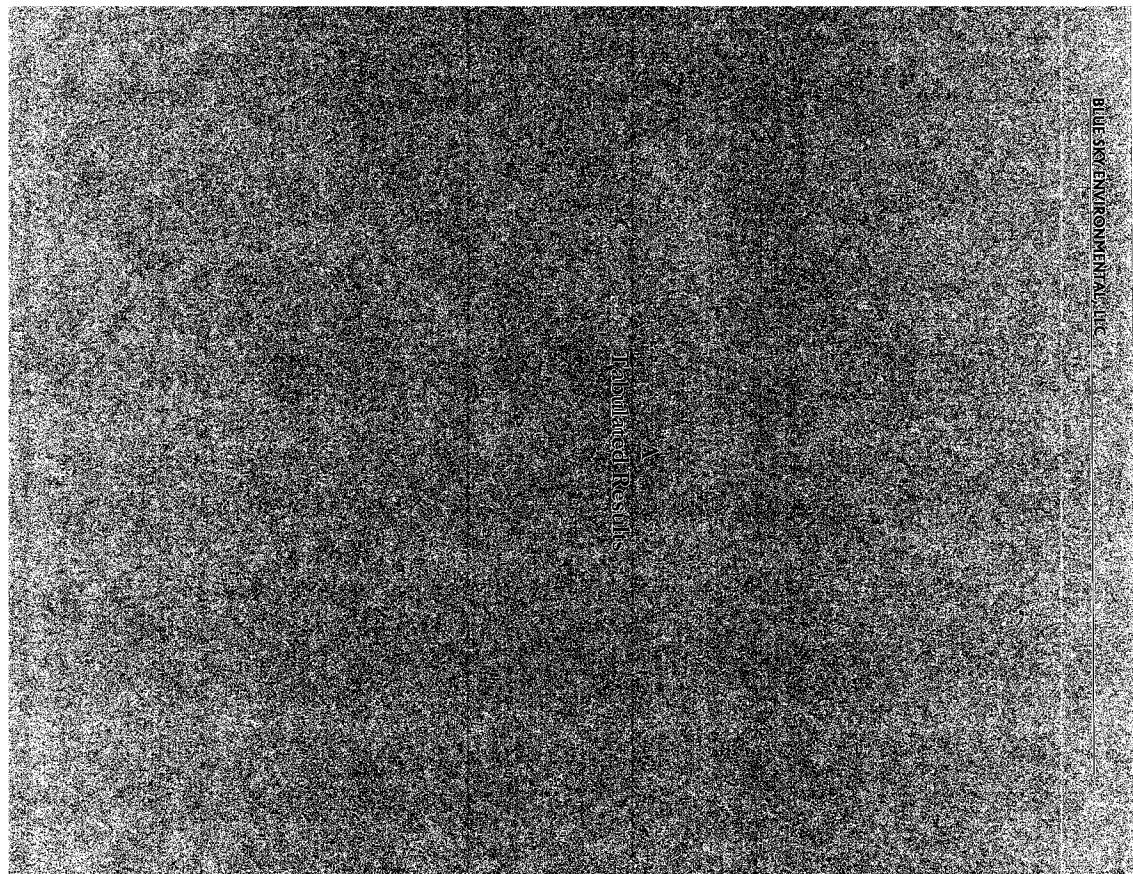


TABLE #1

TriCities Recycling Disposal Facility
 Flare A-3
 1525°F

RUN	Run 1	Run 2	Run 3	AVERAGE	LIMITS
Test Date	6/4/08	6/4/08	6/4/08		
Test Time	0757-0833	0845-0946	1008-1047		
Standard Temp., °F	70	70	70		
Flare Temperature, °F	1520-1531	1520-1533	1520-1534		
Fuel Flow Rate, DSCFM	1,905	1,906	1,914	1,908	
Fuel Heat Input, MMBTU/Hr	53.8	55.1	38.4	49.1	
Exhaust Flow Rate, DSCFM (Method 19)	22,849	23,223	16,451*	23,036**	
Oxygen, O ₂ , %	13.0	12.9	13.1	13.0	
Carbon Dioxide, CO ₂ , %	7.2	7.0	7.1	7.1	
NO _x , ppm	11.3	11.3	11.4	11.3	
NO _x , ppm @ 15% O ₂	8.4	8.4	8.6	8.5	
NO _x , lbs/hr	1.84	1.87	1.34	1.68	
NO _x , lbs/MMBTU	0.03	0.03	0.03	0.03	0.06
CO, ppm	94.2	84.5	85.3	88.0	
CO, ppm @ 15% O ₂	70.3	62.6	64.2	65.7	
CO, lbs/hr	9.35	8.53	6.10	7.99	
CO, lbs/MMBTU	0.17	0.15	0.16	0.16	0.3
Total Reduced Sulfur as H ₂ S in fuel, ppm	70.0	70.0	70.0	70.0	1300
SO ₂ , ppm calculated emission	5.8	5.7	8.1	6.6	
THC, ppm	15.2	12.4	16.4	14.7	
THC, lbs/hr as CH ₄	0.86	0.72	0.67	0.75	
CH ₄ , ppm	8.1	9.3	13.8	10.4	
NMHC, ppm as CH ₄	7.1	3.1	2.6	4.3	
NMHC, lbs/hr as CH ₄	0.4	0.2	0.1	0.2	
NMHC, ppm @ 3% O ₂ as CH ₄	16.0	7.0	6.0	9.7	30
INLET NMHC ppm as CH ₄	1,762	1,955	1,467	1,728	
INLET NMHC lbs/hr as CH ₄	8.3	9.3	7.0	8.2	
NMHC Removal Efficiency	>95.2%	>98.1%	>98.4%	>97.2%	98
INLET CH ₄	474,000	485,000	337,000*	479,500**	
INLET THC (TOC) ppm as CH ₄	475,762	486,955	338,467*	481,359**	
INLET THC (TOC) lbs/hr as CH ₄	2,250	2,304	1,608*	2,054**	
THC (TOC) Removal Efficiency	99.96%	99.97%	99.96%	99.96%	98

* Fuel Input & CH₄ content based on lab analysis believed to be under reported for Run #3, see section 2.3 of the report.

** Average Fuel Input & CH₄ content based on Runs 1 & 2, since Run #3 lab analysis is believed to be under reported, see section 2.3 of the report.

WHERE,

ppm = Parts Per Million Concentration

Lbs/hr = Pound Per Hour Emission Rate

Tstd = Standard Temp. (°R = °F+460)

MW = Molecular Weight

DSCFM = Dry Standard Cubic Feet Per Minute

NO_x = Oxides of Nitrogen as NO₂ (MW = 46)

CO = Carbon Monoxide (MW = 28)

TOC = THC as Total Organic Carbon as Methane including CH₄ (MW = 16)

THC = Total Hydrocarbons as Methane (MW = 16)

NMHC = Total Non-Methane Hydrocarbons as Methane (MW = 16)

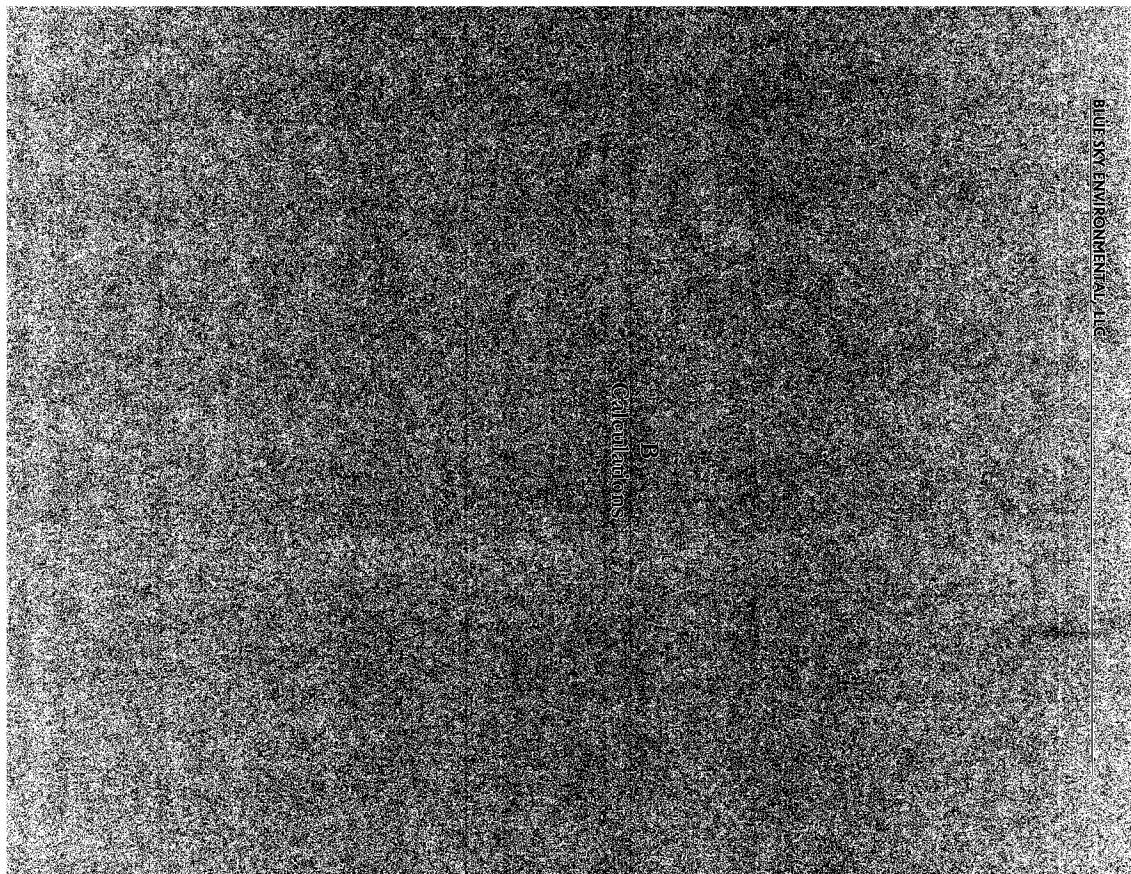
SO₂ = Sulfur Dioxide as SO₂ (MW = 64.1)

CALCULATIONS,

PPM @ 15% O₂ = ppm * 5.9 / (20.9 - %O₂)

PPM @ 3% O₂ = ppm * 17.9 / (20.9 - %O₂)

Lbs/hr = ppm x 8.223 E-05 x DSCFM x MW / Tstd °R


Lbs/MMBTU = (Lbs/hr) / (MMBTU/hr)

Lbs/day = Lbs/hr * 24

THC (TOC) Removal Efficiency = (inlet lbs/hr - outlet lbs/hr) / inlet lbs/hr

NMHC Removal Efficiency = (inlet lbs/hr - outlet lbs/hr) / inlet lbs/hr

SO₂ emission ppm = H₂S in fuel * Fuel Flow/Stack Gas Flow

Blue Sky Environmental LLC
3000 1/2 S. 300 E.
Logan, UT 84321
(435) 752-1111

B

Blue Sky Environmental LLC

BLUE SKY ENVIRONMENTAL, LLC

CEM BIAS CORRECTION SUMMARY

Facility:	TriCities Recycling Disposal Facility	Barometric:	
Unit:	Flare A-3	Leak Check:	OK
Condition:	1525°F	Strat. Check:	OK
Date:	6/4/08	Personnel:	gw, jm

Traverse 8pts x 2 ports x 2mins/pt

	O ₂	CO ₂	NOx	CO	THC	CH4	SO ₂		
Analyzer	755R	PIR 2000	42i	48C	RS-55	RS-55	721AT		
Range, r	25	15	50	500	50	50	100		r
Units, ppm or %	%	%	ppm	ppm	ppm	ppm	ppm		
Span Gas Value, sgv	20.57	12.64	45.8	454.0	45.0	45.0			Ccal

Run 1 Test Time: 0757-0833	0.00	0.00	0.00	0.0	0.0	0.0		zero (initial), Cib
	20.55	12.53	45.0	447.5	45.0	45.0		cal (initial), Cib
	13.08	7.16	11.1	92.5	15.0	8.0		TEST AVG, Cavg
	0.61	0.00	0.0	0.0	0.0	0.0		zero (final), Cfb
	20.50	12.60	45.2	444.0	44.0	44.0		cal (final), Cfb
	2%	0%	0%	0%	0%	0%		% zero drift
	0%	0%	0%	-1%	-2%	-2%		% cal drift
13.00 7.20 11.3 94.2 15.2 8.1								Cgas

Run 2 Test Time: 0845-0946	0.61	0.00	0.0	0.0	0.0	0.0		zero (initial), Cib
	20.50	12.60	45.2	444.0	44.0	44.0		cal (initial), Cib
	12.94	6.98	11.1	82.5	12.0	9.0		TEST AVG, Cavg
	0.50	0.00	0.0	0.0	0.0	0.0		zero (final), Cfb
	20.00	12.68	45.0	442.0	43.0	43.0		cal (final), Cfb
	0%	0%	0%	0%	0%	0%		% zero drift
	-2%	1%	0%	0%	-2%	-2%		% cal drift
12.94 6.98 11.3 84.5 12.4 9.3								Cgas

Run 3 Test Time: 1008-1047	0.50	0.00	0.0	0.0	0.0	0.0		zero (initial), Cib
	20.00	12.68	45.0	442.0	43.0	43.0		cal (initial), Cib
	12.68	7.13	11.2	82.9	15.0	12.5		TEST AVG, Cavg
	0.30	0.00	0.0	0.0	-1.0	-1.0		zero (final), Cfb
	19.50	12.68	44.8	440.0	41.0	41.0		cal (final), Cfb
	-1%	0%	0%	0%	-2%	-2%		% zero drift
	-2%	0%	-1%	0%	-4%	-4%		% cal drift
13.05 7.11 11.4 85.3 16.4 13.8								Cgas

Pollutant Concentration (Cgas) = (Cavg - Co) x Ccal / (Cbcal - Co)

Co = (Cib + Cfb) / 2 for zero gas

Zero and Calibration Drift = 100 x (Cfb - Cib) / r

Cbcal = (Cif + Cfb) / 2 for cal gas

Bias = 100 x (Cfb - Ca) / r

BLUE SKY ENVIRONMENTAL, LLC

STACK GAS FLOW RATE DETERMINATION -- Method 19

Facility: TriCities Recycling Disposal Facility
 Unit: Flare A-3
 Condition: 1525°F
 Date: 6/4/08

	Time: Run:	0757-0833 1	0845-0946 2	1008-1047 3	
# cubic feet/rev	Average Max	1,905	1,906	1,914	ft ³
# of seconds/rev		60	60	60	seconds
Gas Line Pressure (PSIG)		0.0	0.0	0.0	PSI Gauge
Gas Line Pressure (PSIA)		14.7	14.7	14.7	PSI Absolute
Gross Calorific Value @ 60°F	avg	479.9	491.1	341.2	Btu / ft ³
Stack Oxygen		13.0	12.9	13.1	%
Gas Fd-Factor @ 60°F	avg	9,451.1	9,455.2	9,456.9	DSCF/MMBtu
Gas Temperature (°F)		70	70	70	°F
Standard Temperature (°F) Tstd		70	70	70	°F

Realtime Fuel Rate (CFM)	1905.0	1906.0	1914.0	CFM
Corrected Fuel Rate (SCFM) @ Tstd	1905.0	1906.0	1914.0	SCFM
Fuel Flowrate (SCFH)	114,300	114,360	114,840	SCFH
Million Btu per minute	0.897	0.918	0.641	MMBtu/min
Heat Input (MMBtu/hour)	53.8	55.1	38.4	MMBtu/Hr

Stack Gas Flow Rate @ Tstd **22,849 23,223 16,451 DSCFM**

WHERE:

Gas Fd-Factor = Fuel conversion factor (ratio of combustion gas volumes to heat inputs)
 MMBtu = Million Btu

CALCULATIONS:

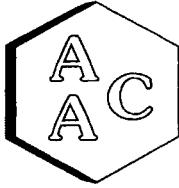
$$\text{SCFM} = \text{CFM} * (460 + \text{Tstd}) * (\text{PSIA}) / 14.7 / (460 + \text{Gas}^{\circ}\text{F})$$

$$\text{SCFH} = \text{SCFM} * 60$$

$$\text{MMBtu/min} = \text{SCFM} * (\text{Btu}/\text{ft}^3) * (520 / (460 + \text{Tstd})) / 1,000,000$$

$$\text{MMBtu/hr Heat Input} = \text{MMBtu/min} * 60$$

$$\text{DSCFM} = \text{Gas Fd-Factor} * ((460 + \text{Tstd}) / 520) * \text{MMBtu/min} * 20.9 / (20.9 - \text{O}_2\%)$$



BLUE SKY ENVIRONMENTAL, LLC

CE
Evaluation Reports

Atmospheric Analysis & Consulting, Inc.

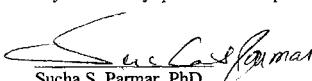
CLIENT : Blue Sky Environmental, LLC
PROJECT NAME : Tri-Cities
AAC PROJECT NO. : 080348
REPORT DATE : 06/05/2008

On June 05, 2008, Atmospheric Analysis & Consulting, Inc. received three (3) Tedlar Bags for analysis by ASTM D-1945 which includes: Fixed Gases analysis by EPA 3C and hydrocarbon analysis by EPA 18, as well as non-methane organic compounds analysis by EPA 25C. Total Reduced Sulfur analysis by ASTM D-5504 was additionally requested on "LFG-3". Upon receipt the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.
LFG-1	080348-33123
LFG-2	080348-33124
LFG-3	080348-33125

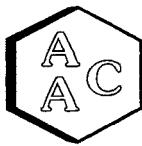
EPA 3C - An aliquot of the gaseous sample is injected into the GC/TCD for analysis following EPA 3C as specified in the SOW.

EPA 18 Analysis - Up to a 1 ml aliquot of samples is injected into the GC/FID for analysis following EPA 18 as specified in the SOW.


EPA 25C Analysis - Up to a 1 mL aliquot of samples is injected into the GC/FID/TCA for analysis following EPA 25C as specified in the SOW.

ASTM D-5504 - Up to a 1mL aliquot of sample is injected into the GC/SCD for analysis following ASTM D-5504 as specified in the SOW.

No problems were encountered during receiving, preparation, and/ or analysis of this sample. The test results included in this report meet all requirements of the NELAC Standards and/or AAC SOP# AACI- EPA 3C, 25C, EPA 18 and ASTM D-5504.


I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Release of the data contained in this hardcopy data package and its electronic data deliverable submitted on diskette has been authorized by the Laboratory Director or his designee, as verified by the following signature.

If you have any questions or require further explanation of data results, please contact the undersigned.

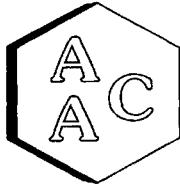
Sucha S. Parmar, PhD
Technical Director

This report consists of 13 pages.

Atmospheric Analysis & Consulting, Inc.

Laboratory Analysis Report

Client: Blue Sky Environmental
Project No. 080348
Matrix Air
Units %


Sampling Date 06/04/2008
Receiving Date 06/05/2008
Analysis Date 06/05/2008
Report Date 06/05/2008

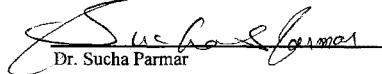
EPA Method 3C

PQL: 0.1 %			Analyte				
Client ID	AAC ID	Hydrogen	Oxygen	Nitrogen	CO	Methane	CO2
LFG-1	080348-33123	<PQL	1.4	14.2	<PQL	47.4	37.0
LFG-2	080348-33124	<PQL	0.9	12.7	<PQL	48.5	37.9
LFG-3	080348-33125	<PQL	7.1	32.8	<PQL	33.7	26.3

Dr. Sucha Parmar

Technical Director

Atmospheric Analysis & Consulting, Inc.


LABORATORY ANALYSIS REPORT

CLIENT	Blue Sky Environmental	SAMPLING DATE	06/04/2008
PROJECT NO.	080348	RECEIVING DATE	06/05/2008
UNITS	PPMV	ANALYSIS DATE	06/05/2008
		REPORT DATE	06/05/2008

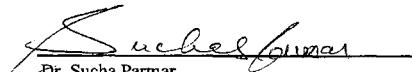
Total Reduced Sulfur Compounds Analysis by ASTM D-5504

Client ID	LFG-3		PQL (RLxDF's)	Reporting Limit		
AAC ID	080348-33125					
Can Dilution Factor	1.0					
H ₂ S	66.93	1000	10.00	0.01		
Carbonyl Sulfide	<PQL	100	1.00	0.01		
SO ₂	<PQL	100	1.00	0.01		
Methyl Mercaptan	1.74	100	1.00	0.01		
Ethyl Mercaptan	<PQL	100	1.00	0.01		
Dimethyl Sulfide	1.28	100	1.00	0.01		
n-Butyl mercaptan	<PQL	100	1.00	0.01		
Carbon Disulfide	<PQL	100	1.00	0.01		
Allyl Sulfide	<PQL	100	1.00	0.01		
Propyl Sulfide	<PQL	100	1.00	0.01		
Allyl disulfide	<PQL	100	1.00	0.01		
Isopropyl Mercaptan	<PQL	100	1.00	0.01		
t-Butyl Mercaptan	<PQL	100	1.00	0.01		
Propyl Mercaptan	<PQL	100	1.00	0.01		
Butyl Sulfide	<PQL	100	1.00	0.01		
Ethyl Methyl Sulfide	<PQL	100	1.00	0.01		
Thiophene	<PQL	100	1.00	0.01		
Isobutyl Mercaptan	<PQL	100	1.00	0.01		
Dimethyl Disulfide	<PQL	100	1.00	0.01		
Allyl Mercaptan	<PQL	100	1.00	0.01		
3-Methylthiophene	<PQL	100	1.00	0.01		
Tetrahydrothiophene	<PQL	100	1.00	0.01		
Diethyl Sulfide	<PQL	100	1.00	0.01		
2-Ethylthiophene	<PQL	100	1.00	0.01		
2,5-Dimethylthiophene	<PQL	100	1.00	0.01		
Diethyl disulfide	<PQL	100	1.00	0.01		
Total Unidentified Sulfurs as H ₂ S	<PQL					
Total Reduced Sulfurs as H ₂ S	69.95					

All compound's concentrations expressed in terms of H₂S.

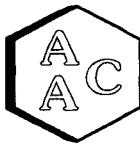
Dr. Sucha Parmar
Technical Director

Atmospheric Analysis & Consulting, Inc.


Laboratory Analysis Report

Client	Blue Sky Environmental	Sampling Date	06/04/2008
Project No.	080348	Receiving Date	06/05/2008
Matrix	AIR	Analysis Date	06/05/2008
Units	ppmV	Report Date	06/05/2008

EPA Method 25C


<i>PQL:</i>		1.0 ppmv
Client Sample ID	AAC ID	NMHC**
LFG-1	080348-33123	1762
LFG-2	080348-33124	1955
LFG-3	080348-33125	1467

**Non-Methane Hydrocarbons as Methane

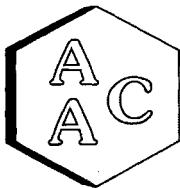
Dr. Sucha Parmar
Technical Director

Atmospheric Analysis & Consulting, Inc.

Laboratory Analysis Report

CLIENT:	Blue Sky Environmental	Sampling Date	06/04/2008
PROJECT NO.	080348	Receiving Date	06/05/2008
MATRIX	AIR	Analysis Date	06/05/2008
UNITS	ppmV	Report Date	06/05/2008

C1 to C6+ Hydrocarbons by EPA Method 18


Client ID	AAC ID	ANALYSIS METHOD		EPA Method 18			
		PQL		0.3 ppmv			
		C1 *	C2 **	C3	C4	C5	C6
LFG-1	080348-33123	NA	<30	21.1	25.2	37.3	32.6
LFG-2	080348-33124	NA	<30	21.7	24.7	37.2	30.6
LFG-3	080348-33125	NA	<30	20.0	19.7	29.4	23.9
							376.7
							307.0
							263.5

* C1 reported off of the EPA 3C report

** Due to the extremely high C1 concentration, the C2 concentration could not be measured below this PQL due to matrix interference.

Dr. Sucha Parmar
Technical Director

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed: 6/5/2008
Analyst: DN

Instrument ID: TCD#1
Units: %

I - Method Blank-EPA Method 3C

AAC ID	Analyte	MB Concentration
Method Blank	Hydrogen	ND
	Oxygen	ND
	Nitrogen	ND
	CO	ND
	Methane	ND
	CO2	ND

II-Laboratory Control Spike & Duplicate - EPA Method 3C

AAC ID	Analyte	Spike Added	LCS Result	LCSD Result	LCS % Rec *	LCSD % Rec *	% RPD***
Lab Control Standards	Hydrogen	20.0	20.5	20.6	102	103	0.8
	Nitrogen	20.0	19.6	19.7	98	98	0.4
	CO	20.0	19.8	19.9	99	99	0.5
	Methane	20.0	19.8	19.9	99	99	0.6
	CO2	20.0	19.8	20.0	99	100	0.7

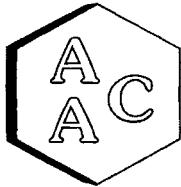
III - Duplicate Analysis - EPA Method 3C

AAC ID	Analyte	Sample Concentration	Duplicate Concentration	Mean	% RPD***
080344-33081	Hydrogen	0.00	0.00	0.0	0.0
	Oxygen	0.85	0.83	0.8	2.7
	Nitrogen	3.43	3.35	3.4	2.4
	CO	0.00	0.00	0.0	0.0
	Methane	26.49	26.49	26.5	0.0
	CO2	21.38	21.38	21.4	0.0

IV-Matrix Spike & Duplicate- EPA Method 3C

AAC ID	Analyte	Sample Concentration	Spike Added	MS Result	MSD Result	MS % Rec **	MSD % Rec **	% RPD***
080344-33081	Hydrogen	0.00	10.0	9.55	9.44	95	94	1.2
	Nitrogen	1.70	10.0	11.78	12.06	101	104	2.8
	CO	0.00	10.0	10.09	10.09	101	101	0.0
	Methane	13.25	10.0	22.99	22.96	97	97	0.3
	CO2	10.69	10.0	20.48	20.45	98	98	0.3

* Must be 85-115%


** Must be 75-125%

*** Must be < 25%

Sucha Parmar, Ph.D.

Technical Director

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed: 6/5/2008

Instrument ID: TCD#1

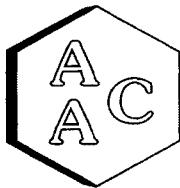
Analyst: DN

Calb Date: 04/03/08

Opening Calibration Verification Standard

Analyte	xLR**	LR	%RPD*
Hydrogen	1869	1975	5.5
Oxygen***	49346	50261	1.8
Nitrogen	59197	59635	0.7
Carbon Monoxide	57917	59391	2.5
Methane	48425	49740	2.7
Carbon Dioxide	77691	80034	3.0

Closing Calibration Verification Standard


Analyte	xLR**	LR	%RPD*
Hydrogen	1869	1948	4.1
Nitrogen	59197	57568	2.8
Carbon Monoxide	57917	57928	0.0
Methane	48425	48534	0.2
Carbon Dioxide	77691	78144	0.6

* Must be <15%

** Linear Response Factor from Initial Calibration Curve

*** Oxygen from Lab Air

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed: 06/05/2008
Analyst: DN

Instrument ID: SCD#2
Units: PPMV

I - Method Blank - ASTM D-5504

AAC ID	Analyte	MB Conc.
Method Blank	H2S	ND

II-Laboratory Control Spike & Duplicate - ASTM D-5504

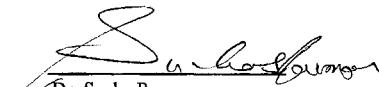
Analyte	Spike Added	LCS Result	LCSD Result	LCS % Rec *	LCSD % Rec *	% RPD***
H2S	0.050	0.050	0.050	100.0	100.0	0.0

III-Matrix Spike & Duplicate - ASTM D-5504

Sample ID 080348-33215 (2000x)

Analyte	Sample Concentration	Spike Added	MS Result	MSD Result	MS % Rec **	MSD % Rec **	% RPD***
H2S	0.033	0.025	0.055	0.057	86	94	3.6

IV - Duplicate Analysis - ASTM D-5504


Sample ID 080348-33215

Analyte	Sample Concentration	Duplicate Concentration	Mean	% RPD***
H2S	66.4	67.5	66.9	0.0

* Must be 90-110%

** Must be 85-115%

*** Must be < 10%

Dr. Sucha Parmar
Technical Director

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed: 6/5/2008
Analyst: DN
Calibration Date: 5/14/2008

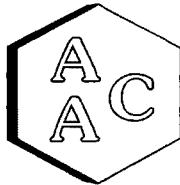
Instrument ID: SCD#2
Units: PPMV

Opening Calibration Verification Standards

Analyte	Std. Conc.	Result	%Recovery*
H2S	0.050	0.051	102

Closing Calibration Verification Standard

Analyte	Std. Conc.	Result	%Recovery*
H2S	0.050	0.048	96


* Must be 90-110%

Dr. Sucha Parmar

Technical Director

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Analysis Date: 6/5/2008

Analyst: DN

Units: ppmv

Instrument ID: FID#4

Calibration Date: 8/25/2007

I - Opening Calibration Verification Standard - Method 25C

Analyte	xCF	dCF	%RPD*
CO	3177	2983	6.3
CH4	3171	3236	2.0
CO2	3123	3125	0.1
Propane	9157	8825	3.7

II - Method Blank - Method 25C

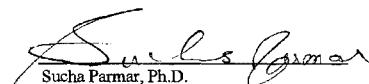
AAC ID	Analyte	Sample Result
MB	NMEHC	ND

III - Laboratory Control Spike & Duplicate - Method 25C

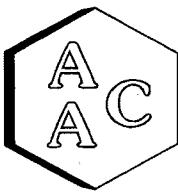
AAC ID	Analyte	Spike Added	LCS Result	LCSD Result	LCS % Rec **	LCSD % Rec **	% RPD***
LCS/LCSD	NMEHC	50.0	51.0	50.9	102.0	101.9	0.1

IV - Closing Calibration Verification Standard - Method 25C

Analyte	xCF	dCF	%RPD*
CO	3177	3028	4.8
CH4	3171	3364	5.9
CO2	3123	3180	1.8
Propane	9157	9263	1.2


xCF - Average Calibration Factor from Initial Calibration Curve

dCF - Daily Calibration Factor


* Must be <15%

** Must be 90-110 %

*** Must be <20%

Sucha Parmar, Ph.D.
Technical Director

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed: 6/5/2008
Analyst: DN

Instrument ID: FID#3
Units: PPMV

I - Method Blank-EPA Method 18

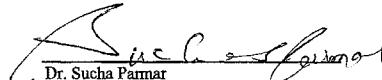
AAC ID	Analyte	MB
		Concentration
Method Blank	Methane	ND
	Ethane	ND
	Propane	ND
	Butane	ND
	Pentane	ND
	Hexane	ND

II-Laboratory Control Spike & Duplicate - EPA Method 18

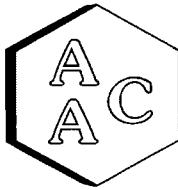
AAC ID	Analyte	Spike	LCS	LCS	LCS	% RPD***
		Added	Result	Result	% Rec.*	% Rec.*
Lab Control Standards	Methane	100.4	97.6	100.5	97.2	100.1
	Ethane	100.2	99.3	102.1	99.1	101.9
	Propane	100.2	98.6	100.8	98.4	100.6
	Butane	100.4	100.1	101.6	99.7	101.2
	Pentane	100.0	100.7	103.6	100.7	103.6
	Hexane	99.4	99.7	101.9	100.3	102.5

III - Duplicate Analysis - EPA Method 18

AAC ID	Analyte	Sample	Duplicate	Mean	% RPD***
		Concentration	Concentration		
080348-33123	Methane	NA	NA	NA	NA
	Ethane	NA	NA	NA	NA
	Propane	21.25	21.39	21.3	0.7
	Butane	10.36	10.34	10.4	0.2
	Pentane	5.21	5.86	5.5	11.7
	Hexane	1.84	1.78	1.8	3.2


IV-Matrix Spike & Duplicate- EPA Method 18

AAC ID	Analyte	Sample	Spike	MS	MS	MS	MS	% RPD***
		Concentration	Added	Result	Result	% Rec.**	% Rec.**	
080348-33123	Methane	NA	NA	NA	NA	NA	NA	NA
	Ethane	NA	NA	NA	NA	NA	NA	NA
	Propane	10.7	50.0	60.3	60.9	99	101	1.2
	Butane	5.2	50.0	58.6	58.5	107	107	0.0
	Pentane	2.8	50.0	58.1	57.9	111	110	0.5
	Hexane	0.9	50.0	57.6	58.0	113	114	0.7


* Must be 85-115%

** Must be 75-125%

*** Must be < 25%

Dr. Sucha Parmar
Technical Director

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

Date Analyzed: 6/5/2008

Instrument ID: FID#3

Analyst: DN

Calibration Date: 04/18/2008

Opening Calibration Verification Standard

Analyte	xCF**	CF	%RPD*
C1	671	683	1.7
C2	1308	1345	2.9
C3	2018	2017	0.0
C4	2610	2704	3.5
C5	3155	3336	5.6
C6	3632	3836	5.5

Closing Calibration Verification Standard

Analyte	xCF**	CF	%RPD*
C1	671	676	0.7
C2	1308	1333	1.9
C3	2018	1995	1.1
C4	2610	2636	1.0
C5	3155	3233	2.5
C6	3632	3788	4.2

* Must be <15%

** Average Calibration Factor from Initial Calibration Curve

BLUE SKY ENVIRONMENTAL, LLC
624 San Gabriel Avenue
Albany, CA 94706
510.525.1261 ph/fax
Contact: Guy Worthington 510 508 3469
E-Mail blueskyenvironmental@yahoo.com

LAB: AAC
ADDRESS:

Page 1 of 1

ph/fax 805 650 1642
Contact:

Contact: 08034 8

CHAIN OF CUSTODY RECORD

BLUE SKY ENVIRONMENTAL, LLC.

Environmental
Audit
Report
B
Final Data Sheets

CONTINUOUS EMISSION MONITORING SUMMARY DATA SHEET

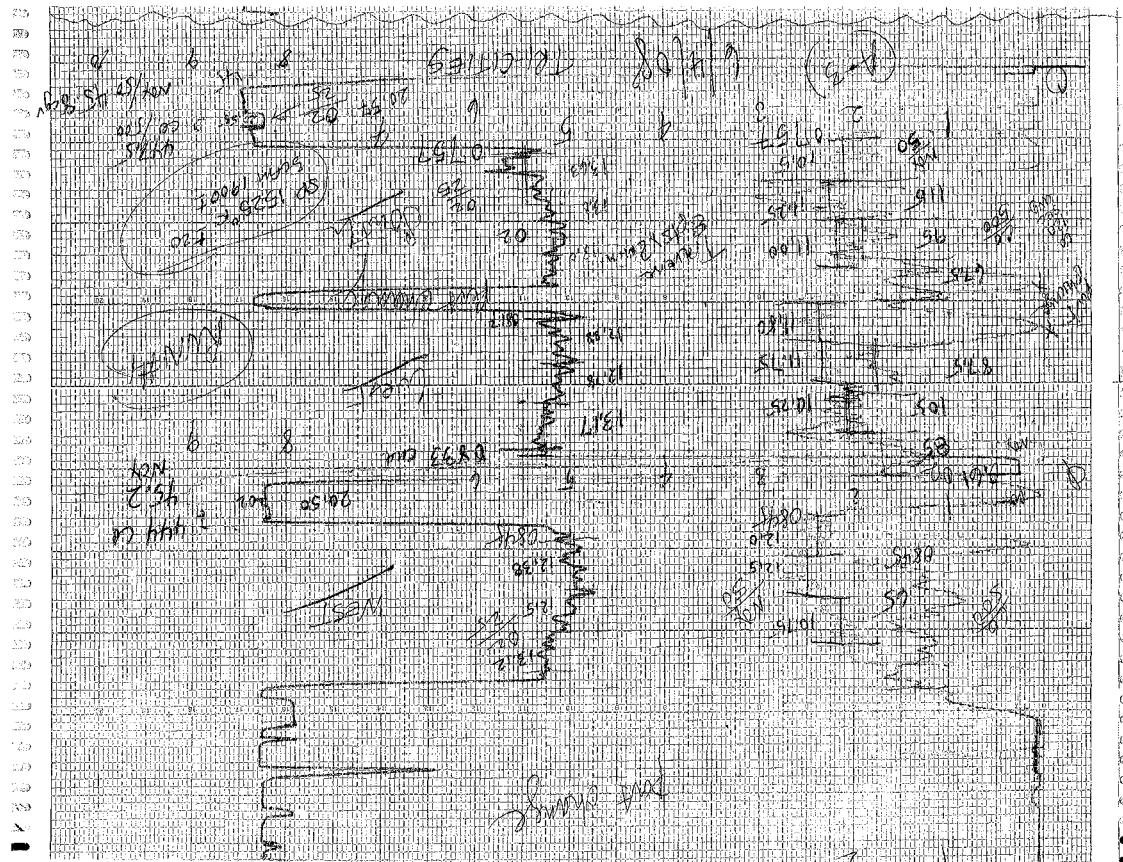
Facility: TRI-CITIES

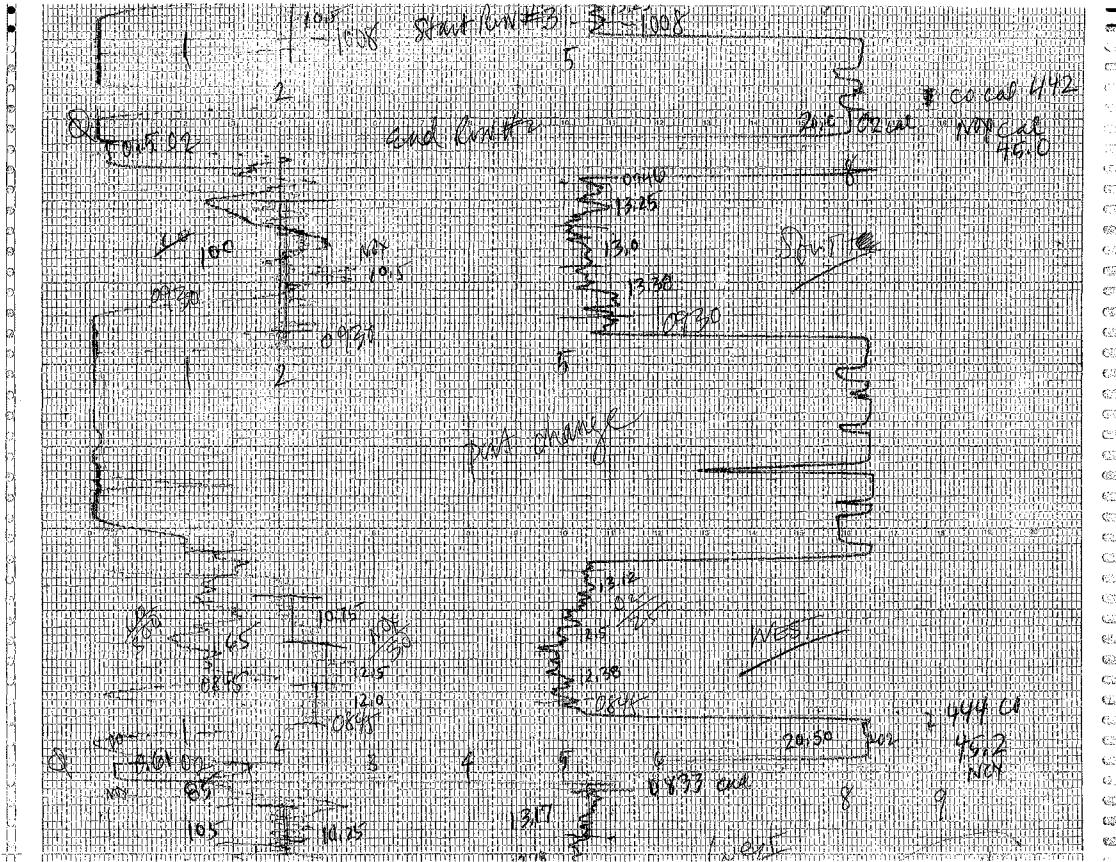
Test #: 1-2-3

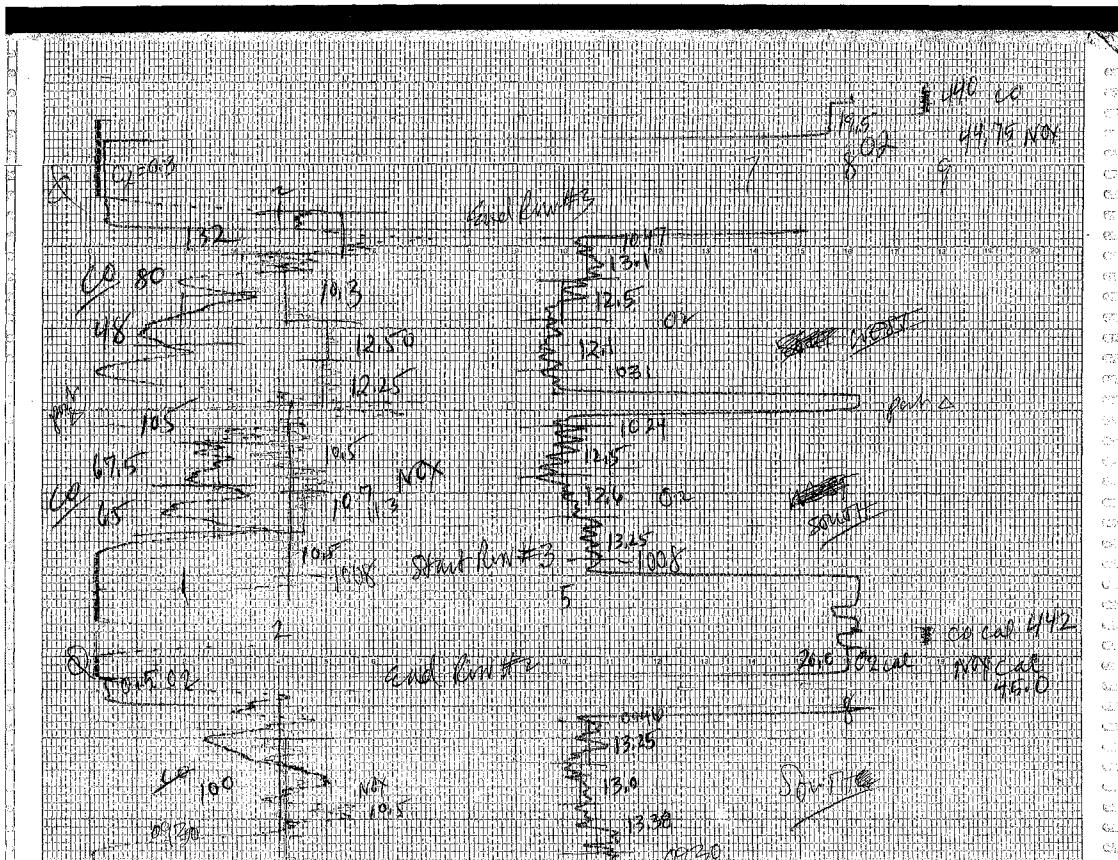
Date: 6-4-08

Location:

Personnel: GW, JM


Leak Check:


Stratification Check:


Parameter	O ₂	CO ₂	NO _x	CO	THC	CH ₄	SO ₂		Unit Description/Serial #:
Analyzer	755R	PIR 2000	42 L	48C	RS-55	RS-55			A-3 FLARE
Range	25	15	50	500	100				Operating Conditions:
Span Value(s)	20.57	12.64	45.8	454	45.0				1525 ±
Span Value(s)									Fuel: LFG
Span Value(s)									1900 ± SCFM
	CAL	20.55	12.53	45.2	447.5	45.0			NOTES:
	Ø	Ø	Ø	Ø	Ø	Ø			8'5" dia
(1)	0757	13.63	7.13	10.5	115	15	—	SOUTH	PTS
	↓	13.0	7.13	11.25	95	15	—		3.3
	0813	13.0	7.13	11.00	67.5	15	—		10.7
	0817	12.88	7.20	11.80	87.5	—	8	WEST	19.8
	↓	12.78	7.20	11.75	105	—	8		32.7
	0833	13.17	7.20	10.25	85	—	8		69.1
	Ø	0.61	Ø	Ø	Ø	Ø			82.2
	CAL	20.56	12.6	45.2	444	44			91.3
	Avg	13.08	7.16	11.1	92.5	15	8		98.7
(2)	0845	12.38	7.35	12.0	65	12	—		2 mins pt. x 2 pt.
	↓	12.50	7.35	12.15	65	12	—		32 mins
	0901	13.12	7.35	10.75	65	12	—		
	0930	13.38	6.6	10.15	100	—	9		
	↓	13.0	6.6	10.15	100	—	9		
	0946	13.25	6.6	10.5	100	—	9		
	Ø	0.5	Ø	Ø	Ø	Ø			
	CAL	20.6	12.68	45.0	442	43.0			
	Avg	12.94	6.98	11.1	82.5	12	9		
(3)	1008	13.25	6.98	10.15	65	15	—		
	↓	12.6	6.98	10.3	67.5	15	—		
	1024	12.5	6.98	10.15	105	15	—		
	1031	12.1	7.28	12.25	48	—	12.5		
	↓	12.5	7.28	12.50	80	—	12.5		
	1047	13.1	7.28	10.3	132	—	12.5		
	Ø	0.3	Ø	Ø	Ø	—	1		
	CAL	19.5	12.68	44.75	440	41			
	Avg	12.68	7.13	11.2	82.9	15	12.5		

BLUESKY ENVIRONMENTAL, INC.

15
Strip Chart

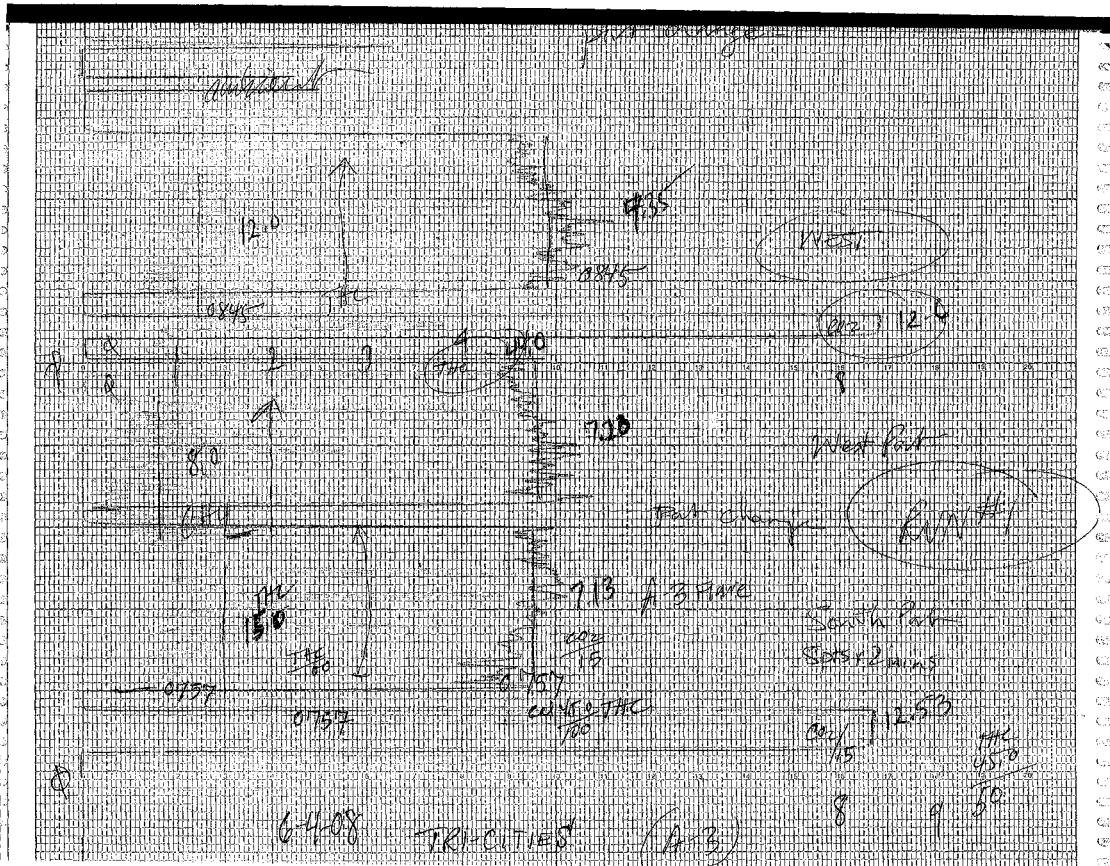
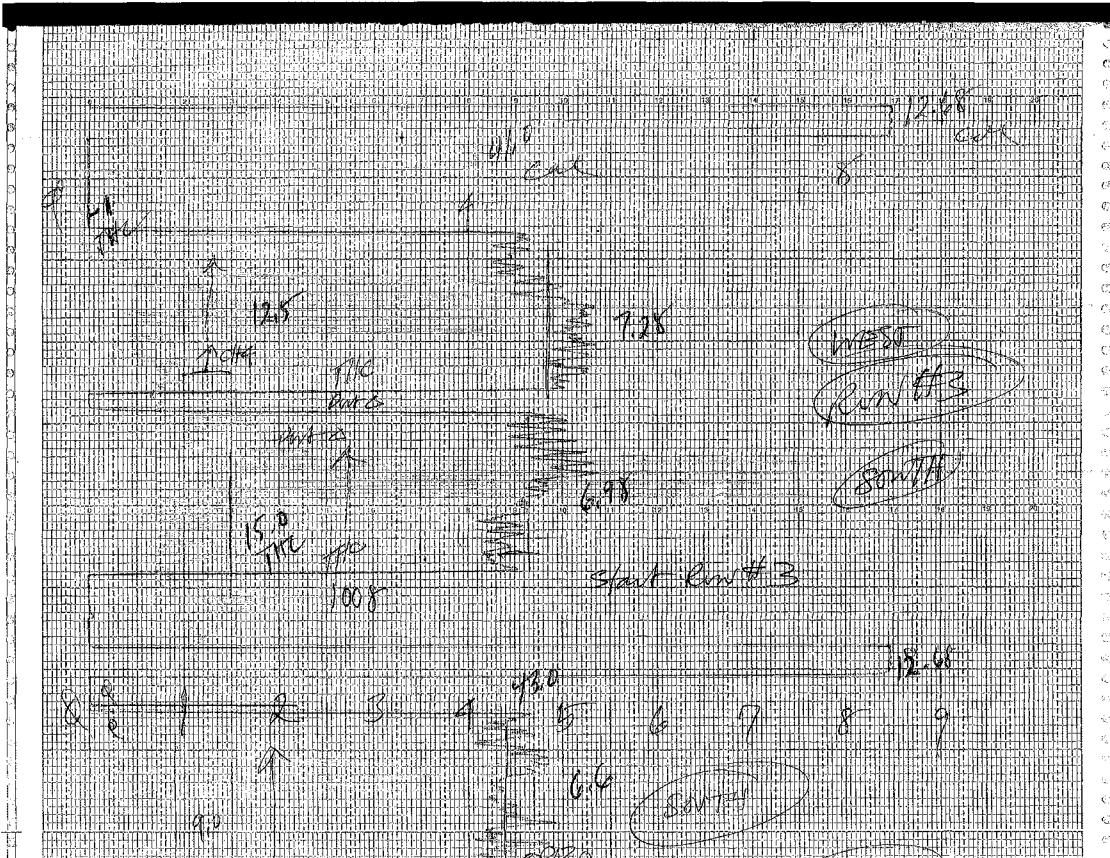
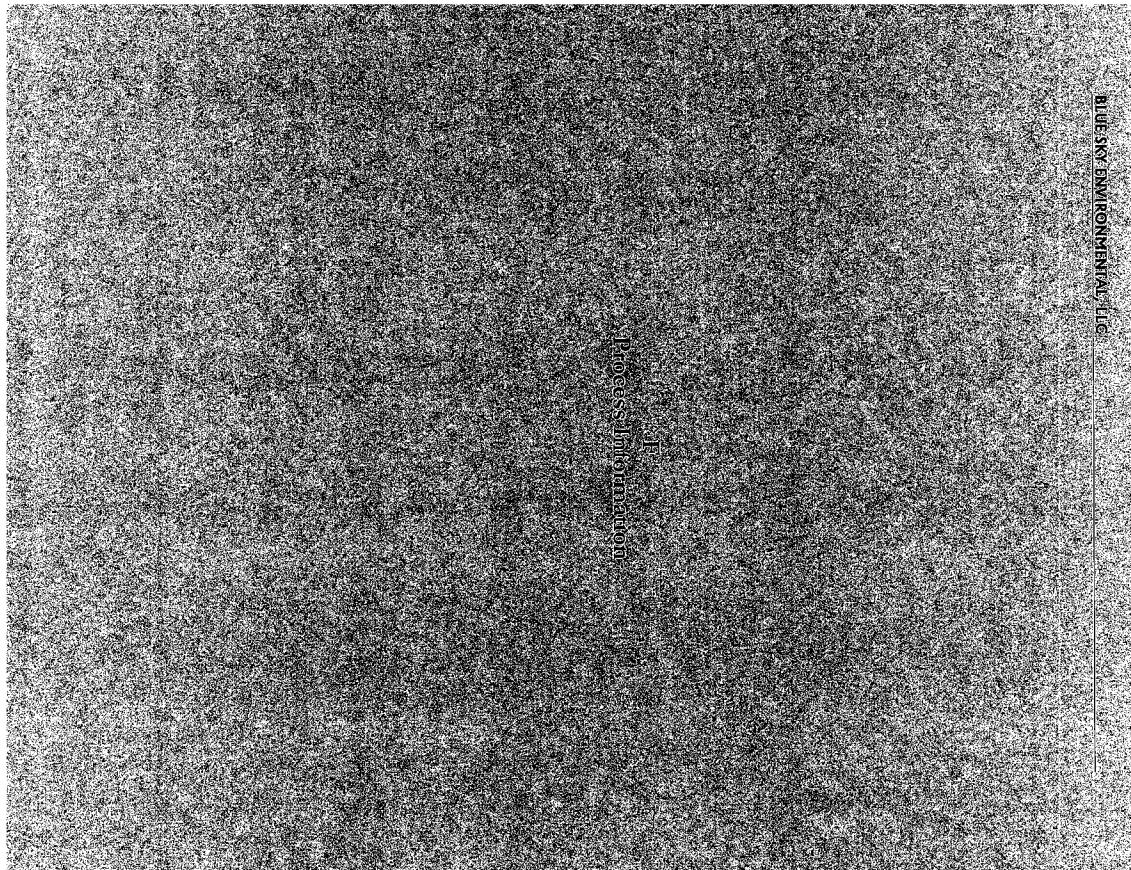




Diagram illustrating a 12x12 square divided into four quadrants:

- Top-Right Quadrant:** Labeled "Open" and contains a circle labeled "Spiral".
- Bottom-Right Quadrant:** Labeled "1/4 Change" and contains a circle labeled "Curve".
- Bottom-Left Quadrant:** Labeled "West" and contains a circle labeled "12".
- Top-Left Quadrant:** Labeled "Open" and contains a circle labeled "Spiral".

Arrows point from the center to the four quadrants. The entire diagram is enclosed in a large circle labeled "12".

BLUE SKY ENVIRONMENTAL, LLC

Process Information

Date	Time	CH01		CH02	
		TEMP	DEG F	FLOW	
				MIN	MAX
55 minutes behind PST					
2008/06/04	06:52:00	1518	1531	1893	1919
2008/06/04	06:54:00	1518	1530	1898	1913
2008/06/04	06:56:00	1520	1533	1897	1913
2008/06/04	06:58:00	1516	1527	1892	1908
2008/06/04	07:00:00	1518	1532	1892	1912
2008/06/04	07:02:00	1522	1529	1895	1906
2008/06/04	07:04:00	1516	1532	1891	1906
2008/06/04	07:06:00	1523	1531	1890	1916
2008/06/04	07:08:00	1520	1526	1894	1910
2008/06/04	07:10:00	1523	1531	1884	1899
2008/06/04	07:12:00	1518	1531	1888	1898
2008/06/04	07:14:00	1521	1530	1883	1904
2008/06/04	07:16:00	1523	1530	1883	1903
2008/06/04	07:18:00	1522	1531	1887	1908
2008/06/04	07:20:00	1523	1531	1887	1908
2008/06/04	07:22:00	1521	1531	1887	1902
2008/06/04	07:24:00	1522	1535	1882	1902
2008/06/04	07:26:00	1522	1528	1881	1897
2008/06/04	07:28:00	1517	1532	1886	1902
2008/06/04	07:30:00	1517	1530	1880	1900
2008/06/04	07:32:00	1517	1535	1880	1901
2008/06/04	07:34:00	1518	1530	1885	1901
2008/06/04	07:36:00	1522	1531	1880	1899
2008/06/04	07:38:00	1520	1531	1880	1895
RUN #1		1520	1531	1887	1905

Date	Time	CH01		CH02	
		TEMP DEG F	MIN MAX	FLOW SCFM	MIN MAX
55 minutes behind PST					
2008/06/04	07:50:00	1519	1533	1876	1897
2008/06/04	07:52:00	1519	1533	1871	1891
2008/06/04	07:54:00	1522	1536	1871	1890
2008/06/04	07:56:00	1521	1541	1875	1890
2008/06/04	07:58:00	1520	1532	1875	1895
2008/06/04	08:00:00	1525	1531	1880	1895
2008/06/04	08:02:00	1519	1531	1874	1895
2008/06/04	08:04:00	1521	1530	1874	1895
2008/06/04	08:06:00	1523	1532	1874	1895
2008/06/04	08:08:00	1525	1533	1875	1890
2008/06/04	08:10:00	1523	1531	1870	1886
2008/06/04	08:12:00	1524	1531	1875	1890
2008/06/04	08:14:00	1520	1530	1876	1896
2008/06/04	08:16:00	1521	1535	1876	1894
2008/06/04	08:18:00	1517	1542	1871	1895
2008/06/04	08:20:00	1522	1531	1881	1896
2008/06/04	08:22:00	1519	1533	1881	1896
2008/06/04	08:24:00	1519	1533	1875	1896
2008/06/04	08:26:00	1524	1535	1870	1885
2008/06/04	08:28:00	1517	1528	1884	1915
2008/06/04	08:30:00	1516	1535	1899	1919
2008/06/04	08:32:00	1516	1547	1883	1934
2008/06/04	08:34:00	1515	1530	1908	1934
2008/06/04	08:36:00	1522	1537	1912	1928
2008/06/04	08:38:00	1516	1531	1912	1927
2008/06/04	08:40:00	1521	1536	1911	1927
2008/06/04	08:42:00	1520	1531	1901	1931
2008/06/04	08:44:00	1519	1528	1911	1926
2008/06/04	08:46:00	1521	1536	1905	1921
2008/06/04	08:48:00	1517	1533	1905	1925
2008/06/04	08:50:00	1521	1530	1904	1919
RUN #2		1520	1533	1886	1906

Date	Time	CH01		CH02	
		TEMP	DEG F	FLOW	SCFM
		MIN	MAX	MIN	MAX
55 minutes behind PST					
2008/06/04	09:14:00	1519	1531	1899	1915
2008/06/04	09:16:00	1524	1529	1899	1915
2008/06/04	09:18:00	1521	1533	1904	1915
2008/06/04	09:20:00	1524	1538	1898	1922
2008/06/04	09:22:00	1518	1536	1888	1914
2008/06/04	09:24:00	1514	1531	1892	1913
2008/06/04	09:26:00	1519	1533	1892	1922
2008/06/04	09:28:00	1517	1533	1896	1912
2008/06/04	09:30:00	1523	1536	1902	1912
2008/06/04	09:32:00	1520	1531	1896	1927
2008/06/04	09:34:00	1519	1533	1895	1922
2008/06/04	09:36:00	1523	1531	1895	1912
2008/06/04	09:38:00	1523	1536	1895	1916
2008/06/04	09:40:00	1520	1536	1889	1906
2008/06/04	09:42:00	1521	1536	1894	1910
2008/06/04	09:44:00	1518	1531	1894	1909
2008/06/04	09:46:00	1521	1536	1896	1909
2008/06/04	09:48:00	1522	1528	1888	1914
2008/06/04	09:50:00	1520	1536	1890	1909
2008/06/04	09:52:00	1519	1546	1893	1911
RUN #3		1520	1534	1895	1914

BLUE SKY ENVIRONMENTAL, LLC

©ibration Corrections & QC Record

IN SDV Vile
3/08

Praxair
5700 South Alameda Street
Los Angeles, CA 90058
Telephone: (323) 585-2154
Facsimile: (323) 585-0582

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER MARK FOR BLUE SKY

P.O NUMBER

REFERENCE STANDARD

COMPONENT	NIST SRM NO.	CYLINDER NO.	CONCENTRATION
CARBON DIOXIDE GMIS	vs. SRM#2745	SA 18273	15.05 %
OXYGEN GMIS	vs. SRM#2659	CC 95752	20.97 %

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT	CARBON DIOXIDE GMIS	ANALYZER MAKE-MODEL-S/N	Siemens Ultramat 5E S/N A12-730				
ANALYTICAL PRINCIPLE	NDIR	LAST CALIBRATION DATE	01/07/08				
FIRST ANALYSIS DATE	01/09/08	SECOND ANALYSIS DATE					
Z 0.00	R 15.04	C 12.64	CONC. 12.64	Z	R	C	CONC.
R 15.04	Z 0.00	C 12.64	CONC. 12.64	R	Z	C	CONC.
Z 0.00	C 12.64	R 15.04	CONC. 12.64	Z	C	R	CONC.
U/M %		MEAN TEST ASSAY	12.64	U/M %		MEAN TEST ASSAY	
2. COMPONENT	OXYGEN GMIS	ANALYZER MAKE-MODEL-S/N	Siemens Oxymat 5E S/N A12-839				
ANALYTICAL PRINCIPLE	Paramagnetic	LAST CALIBRATION DATE	01/07/08				
FIRST ANALYSIS DATE	01/09/08	SECOND ANALYSIS DATE					
Z 0.0	R 21.0	C 20.6	CONC. 20.57	Z	R	C	CONC.
R 21.0	Z 0.0	C 20.6	CONC. 20.57	R	Z	C	CONC.
Z 0.0	C 20.6	R 21.0	CONC. 20.57	Z	C	R	CONC.
U/M %		MEAN TEST ASSAY	20.57	U/M %		MEAN TEST ASSAY	

Values not valid below 150 psig
O2 concentration is corrected for CO2 interference.

THIS CYLINDER NO.	CC 149153	CERTIFIED CONCENTRATION
HAS BEEN CERTIFIED ACCORDING TO SECTION	EPA-600/R97/121	CARBON DIOXIDE 12.64 %
OF TRACEABILITY PROTOCOL NO.	Rev. 9/97	OXYGEN 20.57 %
PROCEDURE	G1	NITROGEN BALANCE
CERTIFIED ACCURACY	± 1 % NIST TRACEABLE	
CYLINDER PRESSURE	2000 PSIG	
CERTIFICATION DATE	01/09/08	
EXPIRATION DATE	01/09/11 TERM 36 MONTHS	

ANALYZED BY

PETER SU

CERTIFIED BY

HELENA TRAN

IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair
5700 South Alameda Street
Los Angeles, CA 90058
Telephone: (323) 585-2154
Facsimile: (323) 585-0582

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER BLUE SKY (MARK)

P.O NUMBER

REFERENCE STANDARD

COMPONENT	NIST SRM NO.	CYLINDER NO.	CONCENTRATION
CARBON MONOXIDE GMIS	vs. SRM#2635	SA 15590	24.35 ppm
NITRIC OXIDE GMIS	vs. SRM#1683	SA 11017	50.4 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT	CARBON MONOXIDE GMIS	ANALYZER MAKE-MODEL-S/N	HORIBA, VIA-510, S/N 576876015
ANALYTICAL PRINCIPLE	NDIR	LAST CALIBRATION DATE	02/04/08
FIRST ANALYSIS DATE	02/04/08	SECOND ANALYSIS DATE	02/13/08
Z 0	R 24.6	CONC. 45.7	Z 0
R 24.6	Z 0	CONC. 45.6	R 24.6
Z 0	C 46.2	CONC. 45.7	Z 0
U/M ppm	MEAN TEST ASSAY 45.7	U/M ppm	MEAN TEST ASSAY 45.8
2. COMPONENT	NITRIC OXIDE GMIS	ANALYZER MAKE-MODEL-S/N	Thermo Env. 42C S/N 0518112467
ANALYTICAL PRINCIPLE	Chemiluminescence	LAST CALIBRATION DATE	02/04/08
FIRST ANALYSIS DATE	02/04/08	SECOND ANALYSIS DATE	02/13/08
Z 0	R 50.4	CONC. 45.5	Z 0
R 50.3	Z 0	CONC. 45.6	R 49.4
Z 0	C 45.5	CONC. 45.5	Z 0
U/M ppm	MEAN TEST ASSAY 45.5	U/M ppm	MEAN TEST ASSAY 45.8

Values not valid below 150 psig.
NOx value for reference use only.

THIS CYLINDER NO.	CC 267455	CERTIFIED CONCENTRATION
HAS BEEN CERTIFIED ACCORDING TO SECTION	EPA-600/R97/121	CARBON MONOXIDE 45.8 ppm
OF TRACEABILITY PROTOCOL NO.	Rev. 9/97	NITRIC OXIDE 45.6 ppm
PROCEDURE	G1	NITROGEN BALANCE
CERTIFIED ACCURACY	± 1 % NIST TRACEABLE	NOx 45.8 ppm
CYLINDER PRESSURE	2000 PSIG	
CERTIFICATION DATE	02/13/08	
EXPIRATION DATE	02/13/10 TERM 24 MONTHS	

ANALYZED BY

Henry Koung

CERTIFIED BY

Ben McCauley

IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair
5700 South Alameda Street
Los Angeles, CA 90058
Telephone: (323) 585-2154
Facsimile: (714) 542-6689

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER BLUE SKY

P.O NUMBER 492438

REFERENCE STANDARD

COMPONENT	NIST SRM NO.	CYLINDER NO.	CONCENTRATION
CARBON MONOXIDE GMIS	vs.SRM#1680	CC 95754	499 ppm
NITRIC OXIDE GMIS	vs.SRM#1686	CC 137743	491 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT	CARBON MONOXIDE	GMIS	ANALYZER MAKE-MODEL-S/N	HORIBA, VIA-510, S/N 576876015
ANALYTICAL PRINCIPLE	NDIR		LAST CALIBRATION DATE	09/12/06
FIRST ANALYSIS DATE	10/04/06		SECOND ANALYSIS DATE	10/11/06
Z 0	R 513	C 466	CONC. 453	Z 0 R 499 C 454 CONC. 454
R 513	Z 0	C 466	CONC. 452	R 499 Z 0 C 454 CONC. 454
Z 0	C 466	R 513	CONC. 453	Z 0 C 454 R 499 CONC. 454
U/M ppm			MEAN TEST ASSAY 453	U/M ppm MEAN TEST ASSAY 454
2. COMPONENT	NITRIC OXIDE	GMIS	ANALYZER MAKE-MODEL-S/N	BECKMAN 951A S/N#0101354
ANALYTICAL PRINCIPLE	CH2MILUMINESCENCE		LAST CALIBRATION DATE	10/10/06
FIRST ANALYSIS DATE	10/04/06		SECOND ANALYSIS DATE	10/11/06
Z 0	R 654	C 611	CONC. 459	Z 0 R 651 C 609 CONC. 459
R 656	Z 0	C 612	CONC. 453	R 650 Z 0 C 609 CONC. 460
Z 0	C 614	R 656	CONC. 460	Z 0 C 610 R 651 CONC. 460
U/M mV			MEAN TEST ASSAY 459	U/M mV MEAN TEST ASSAY 460

VALUES NOT VALID BELOW 150 PSIG
NOX VALUE FOR REFERENCE ONLY

THIS CYLINDER NO.	SA 13373
HAS BEEN CERTIFIED ACCORDING TO SECTION	
OF TRACEABILITY PROTOCOL NO.	
PROCEDURE	G1
CERTIFIED ACCURACY	± 1 % NIST TRACEABLE
CYLINDER PRESSURE	2000 PSIG
CERTIFICATION DATE	10/11/06
EXPIRATION DATE	10/11/08 TERM 24 MONTHS

CERTIFIED CONCENTRATION	
CARBON MONOXIDE	454 ppm
NITRIC OXIDE	460 ppm
NITROGEN	BALANCE
NOx	465 ppm

ANALYZED BY

GEORGE WAHBA

CERTIFIED BY

PHU TIEN NGUYEN

IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

PRAXAIR

in service 12/1/07

Praxair
5700 South Alameda Street
Los Angeles, CA 90058
Telephone: (323) 585-2154
Facsimile: (714) 542-6689

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER BLUE SKY

P.O. NUMBER

REFERENCE STANDARD

COMPONENT
PROPANE GMIS

NIST SRM NO.
vs. SRM#1666

CYLINDER NO.
SA 9503

CONCENTRATION
10.1 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

COMPONENT	PROPANE	GMIS	ANALYZER MAKE-MODEL-S/N	HORIBA, FID-510, 851135122	LAST CALIBRATION DATE	09/04/07
ANALYTICAL PRINCIPLE	Flame Ionization Detector				SECOND ANALYSIS DATE	
FIRST ANALYSIS DATE	09/25/07					
Z 0.00	R 27.56	C 40.83	CONC. 15.0	Z	R	C
R 27.59	Z 0.00	C 40.98	CONC. 15.0	R	Z	C
Z 0.00	C 41.02	R 27.53	CONC. 15.0	Z	C	R
U/M ppm	MEAN TEST ASSAY 15.0			U/M ppm	MEAN TEST ASSAY	

Values not valid below 150 psig

THIS CYLINDER NO.	CC 76661	CERTIFIED CONCENTRATION	15.0 ppm
HAS BEEN CERTIFIED ACCORDING TO SECTION		EPA-600/R97/121	PROPROPANE
OF TRACEABILITY PROTOCOL NO.		Rev. 9/97	AIR
PROCEDURE	G1	BALANCE	
CERTIFIED ACCURACY ± 1 % NIST TRACEABLE		<i>45.0</i>	
CYLINDER PRESSURE 2000 PSIG			
CERTIFICATION DATE 09/25/07			
EXPIRATION DATE 09/25/10 TERM 36 MONTHS			

ANALYZED BY

PB
PABLO BETES

CERTIFIED BY

EC
EUGENE CHO

IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Sample Train Configuration and Stock Diagrams

Flare at TriCities Recycling Disposal Facility

BAAQMD ST-5 (CO₂)
 BAAQMD ST-6 (CO)
 BAAQMD ST-7 (THC by FID)
 BAAQMD ST-13A (NO_x)
 BAAQMD ST-14 (O₂)
 BAAQMD ST-19A (SO₂)

Reduced Correspondence (Source Test Plan)

Blue Sky Environmental, LLC
624 San Gabriel Avenue
Albany, California 94706
Ph/Fax (510) 525 1261
Cell (510) 508 3469
blueskyenvironmental@yahoo.com

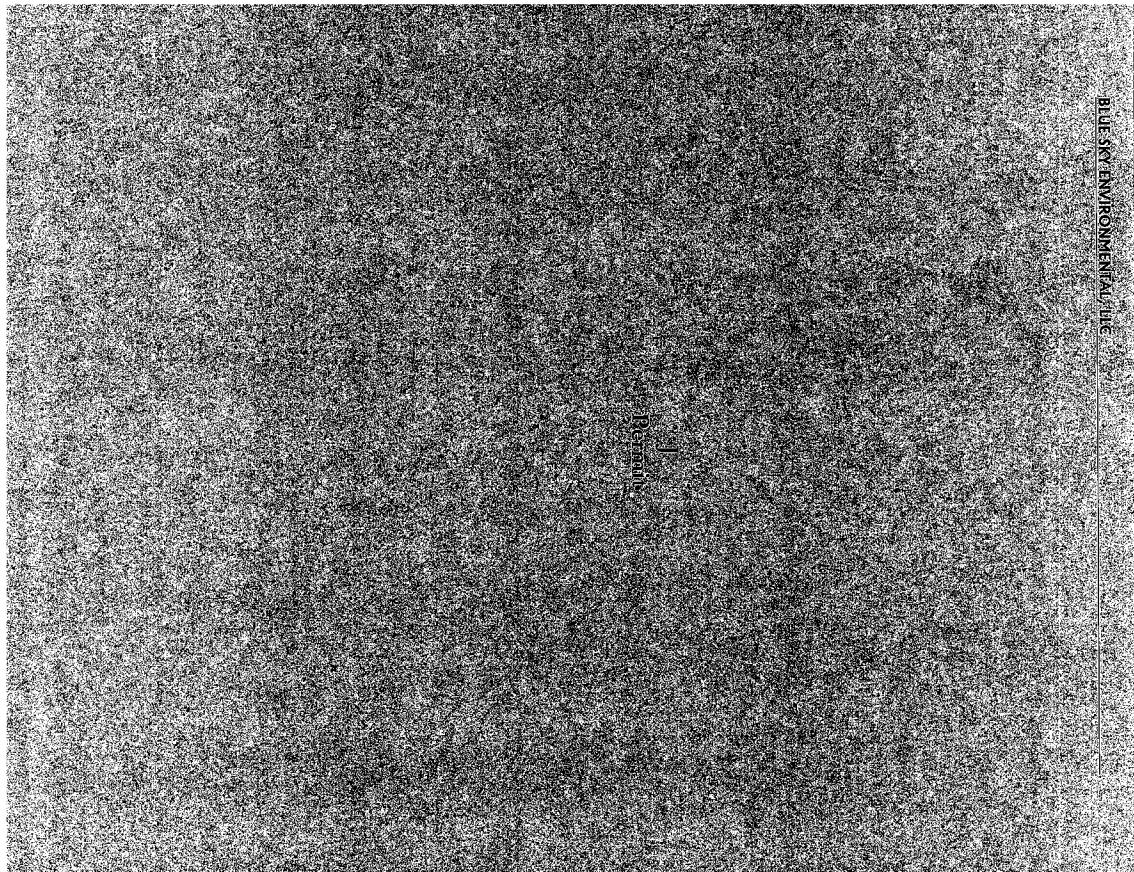
May 7, 2008

Attn.: Ken Kunanec
Bay Area Air Quality Management District
Compliance and Enforcement Division
939 Ellis Street
San Francisco, CA 94109

Source Test Plan

Re: Source Test Protocol for compliance emissions testing of the Enclosed Landfill Gas Flare (A-3) at TriCities Waste Management, located at 7010 Auto Mall Parkway, Fremont, California, 94538. BAAQMD Facility #A2246.

Dear Mr. Underwood,


Blue Sky Environmental, LLC is pleased to present this Source Test Plan for the Enclosed Landfill Gas Flare (A-3). Blue Sky Environmental, LLC is approved by the California Air Resources Board as an independent contractor to conduct compliance emission testing. This Source Test will include the following:

BAAQMD Source # A-3 Flare Condition 8366	Test Parameters/Limits
Compliance Test	THC, CH ₄ , NMOC, NO _x , CO, O ₂ in the flare stack gas (Part 10d) NO _x 0.06 lbs/MMBtu (Part 8) CO 0.30 lbs/MMBtu (Part 9) The NMOC destruction efficiency achieved by the flare (part 10 e) NMOC 98% DE or < 30 ppm as CH ₄ @3% O ₂ (BAAQMD 8-34-301.3) 3 LFG samples for CO ₂ , N ₂ , O ₂ , THC, NMOC & CH ₄ (Part 10b) One LFG sample for TRS[KG1] (Part 12) LFG Flow rate to the flare (dry basis) (Part 10a) Stack gas flow rate from the flare (dry basis) (Part 10c) The average combustion temperature in the flare during the test period (Part 10f)

Testing is currently scheduled for June 4th, 2008, with a 7:00 am arrival time. If you have any questions, please contact Guy Worthington at 510 525 1261, or 510 508 3469.

- At the flare exhaust, triplicate thirty-minute tests will be performed. Testing will use BAAQMD methods for NO_x (ST-13A), CO (ST-6), TNMHC's (ST-7-FID), CO₂ (ST-5) and O₂ (ST-14). Testing is designed to determine compliance with the following BAAQMD Permit and Reg 8 Rule 34 conditions listed in the Table above. EPA Method 19 will be used to calculate the Stack Gas Flowrate.
- Integrated Tedlar bag samples of the Landfill Gas (LFG) will be collected during each test run, and will be analyzed for HHV, CO₂, N₂, O₂, NMOC and CH₄, using ASTM 1945 (EPA 18 & 3C) & EPA 25C. A single sample of LFG will be analyzed for TRS by ASTM 5504. The samples will be analyzed within 72 hours.[KG2]

- The facility fuel flow meter will be recorded and a fuel analysis will be performed to calculate outlet volumetric flow rate using EPA Method 19. The facility is required to have accurate, operating Flare temperature recording and LFG gas flow monitors. If necessary, the fuel flow may be measured by BAAQMD Methods 17 & 18. The fuel moisture content will be determined by wet-bulb/dry-bulb measurement.
- Three hard copies of the compliance test report and one electronic copy will be submitted to the client upon completion of the test program and will include analytical test results. The report will include a test description and tables presenting concentrations (ppm), emission rates (lbs/hr) for all sampling parameters. All supporting documents (strip charts, field data sheets, calibrations, calculations, etc.) will also be included. The final report is due to the BAAQMD 60 days after testing has been completed

BLUE SKY ENVIRONMENTAL, INC.

Bay Area Air Quality Management District

939 Ellis Street
San Francisco, CA 94109
(415) 771-6000

Final

MAJOR FACILITY REVIEW PERMIT

Issued To:
TriCities Waste Management
Facility #A2246

Facility Address:
7010 Auto Mall Parkway
Fremont, CA 94538

Mailing Address:
7010 Auto Mall Parkway
Fremont, CA 94538

Responsible Official
James Devlin
North Bay Market Area Manager
(510) 430-8509

Facility Contact
Colleen Cassidy
Environmental Protection Specialist
(510) 624-5928

Type of Facility: Municipal Solid Waste Landfill **BAAQMD Permit Division Contact:**
Primary SIC: 4953 Ted Hull, Senior Air Quality Engineer
Product: Landfill Operations

ISSUED BY THE BAY AREA AIR QUALITY MANAGEMENT DISTRICT

Signed by Jack P. Broadbent November 2, 2007
Jack P. Broadbent, Executive Officer/Air Pollution Control Officer Date

II. EQUIPMENT

Table II A - Permitted Sources

Each of the following sources has been issued a permit to operate pursuant to the requirements of BAAQMD Regulation 2, Permits. The capacities in this table are the maximum allowable capacities for each source, pursuant to Standard Condition I.J and Regulation 2-1-301.

S#	Description	Make or Type	Model	Capacity
S-1	TriCities Landfill: (Active Solid Waste Disposal Site with Active Gas Collection System, Up to 38 Vertical Gas Collection Wells)	Municipal Solid Waste	N/A	Max. Design Capacity = 19.271 million cubic yards (14.735 million cubic meters) Max. Waste In Place = 13.5 million tons Max. Waste Acceptance Rate = 2,628 tons/day
S-5	Wood Waste Stockpiles	N/A	N/A	200 tons/day
S-9	Portable Diesel Engine	John Deere		70 hp
S-10	Parts Cleaner	Safety-Kleen		20 gallon capacity
S-14	Diesel IC Engine – Air Compressor (GE-1)	John Deere	4239D	80 BHP
S-15	Diesel IC Engine – Air Compressor (GE-2)	John Deere	4239D	80 BHP
S-16	Diesel IC Engine – Vacuum Truck	Cummins	6BTAS.9	177 BHP
S-17	Diesel IC Engine – Street Sweeper	John Deere	4239D	80 BHP

II. Equipment

Table II B – Abatement Devices

A #	Description	Source(s) Controlled	Applicable Requirement	Operating Parameters	Limit or Efficiency
A-3	Landfill Gas Flare, burning propane (during start-up only) and landfill gas, 75 MM BTU/hour	S-1	BAAQMD Regulation 8-34-301.3 and BAAQMD Condition #8366, Part 6, see also Table IV-A	Minimum Flue Gas Temperature: 1450 degrees F (3-hour average), see also Table VII-A	Either NMOC destruction efficiency ≥98% (wt), or <30 ppm NMOC @ 3% O ₂ at flare outlet, see also Table VII-A
A-5	Water Truck	S-1	BAAQMD Regulation 6-301	None	Ringelmann No. 1

VI. PERMIT CONDITIONS

Any condition that is preceded by an asterisk is not federally enforceable.

Condition # 8366

FOR S-1: LANDFILL WITH GAS COLLECTION SYSTEM AND A-3: LANDFILL GAS FLARE

1. The TriCities Landfill S-1 is permitted for a total refuse capacity of 19,271,000 cubic yards (approximately 13,489,700 tons), with a maximum refuse acceptance rate of 2,628 tons/day. Prior to increasing the design capacity of the landfill, the owner/operator of this site shall first apply for and receive from the District a modified permit to operate. (Basis: Cumulative Increase, Offsets, and Toxic Risk Management Policy)
2. The Permit Holder shall apply for and receive an Authority to Construct before modifying the landfill gas collection system described. Increasing or decreasing the number of wells or collectors, or significantly changing the length of collectors or the locations of wells or collectors are modifications that are subject to the Authority to Construct requirement.

The Permit Holder has been issued a Permit to Operate for the landfill gas collection system components listed below. Well and collector locations, depths, and lengths are as described in detail in Permit Applications # 3515 and 10998.

	<u>Required Components</u>
Total Number of Vertical Wells:	28

In addition, the Permit Holder has been issued an Authority to Construct for modifications to the gas collection system, the details of which are included in Permit Application #15345. The landfill is now authorized for up to a total of 38 vertical gas extraction wells. (Basis: Regulations 2-1-301, 8-34-301.1, and 8-34-305)

3. In order to demonstrate compliance with the above requirements, the S-1 Permit Holder shall maintain the following records:
 - a. Monthly records of the quantity of refuse accepted and placed in the landfill.
 - b. For areas of the landfill not controlled by a landfill gas collection system, the Permit Holder shall maintain a record of the date that waste was initially placed in the area or cell.
 - c. The cumulative amount of waste placed in each uncontrolled area or cell on a monthly basis.

VI. Permit Conditions

Condition # 8366

FOR S-1: LANDFILL WITH GAS COLLECTION SYSTEM AND A-3: LANDFILL GAS FLARE

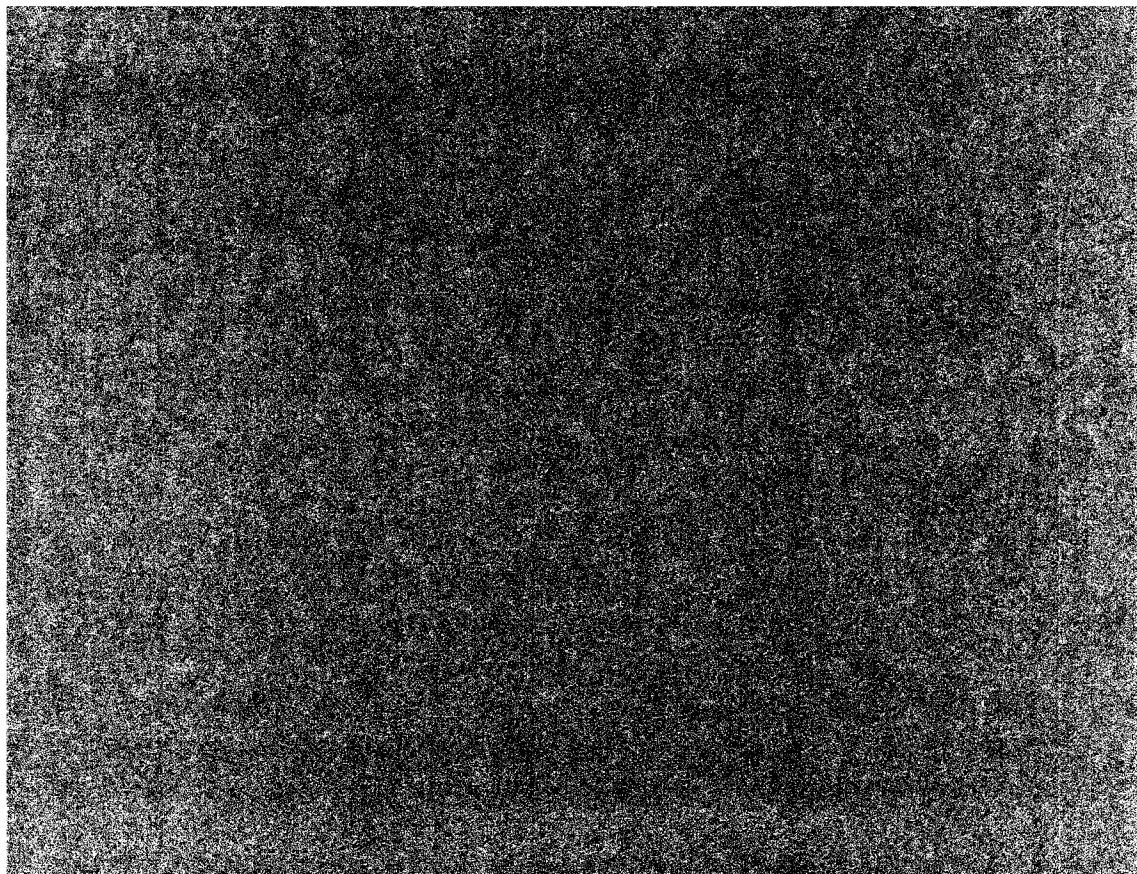
- d. If the Permit Holder plans to exclude an uncontrolled area or cell from the collection system requirement, the types and amounts of all non-decomposable waste placed in the area or cell shall be recorded. If non-decomposable waste makes up less than 100% of the contents of a given cell, that percentage shall be noted.
- e. The initial operation date for each new landfill gas well and collector.
- f. An accurate map of the landfill that indicates the locations of all refuse boundaries and the locations of all wells and collectors as identified in the Collection and Control System Design Plan. Any areas containing only non-decomposable waste shall be clearly identified. This map shall be updated at least every six months to indicate changes in refuse boundaries and to include any newly installed wells and collectors.
These records shall be kept on-site and be made available for inspection to District personnel upon request for a period of five years from the date on which a record was made. (Basis: Cumulative Increase and Regulations 2-6-501 and 8-34-304)
- 4. The landfill gas collection system described in Part 2 above shall be operated continuously. Wells shall not be disconnected or removed from operation nor shall isolation or adjustment valves be closed without written authorization from the District, unless the Permit Holder complies with all applicable requirements of Regulation 8, Rule 34, Sections 113, 116, 117, and 118. (Basis: Regulations 8-34-301 and 8-34-305)
- 5. All landfill gas collected by the gas collection system for S-1 shall be abated at all times by the Landfill Gas Flare A-3. Under no circumstances shall raw landfill gas be vented to the atmosphere. This limitation does not apply to unavoidable landfill gas emissions that occur during collection system installation, maintenance, or repair performed in compliance with Regulation 8, Rule 34, Sections 113, 116, 117, or 118 or to inadvertent component or surface leaks that do not exceed the limits specified in 8-34-301.2 or 8-34-303. (Basis: Regulation 8-34-301)

VI. Permit Conditions

Condition # 8366

FOR S-1: LANDFILL WITH GAS COLLECTION SYSTEM AND A-3: LANDFILL GAS FLARE

6. The combustion zone temperature of the flare shall be maintained at a minimum temperature of 1450 degrees F, averaged over any 3-hour period. If a source test demonstrates compliance with all applicable requirements at a different temperature, the APCO may revise this minimum temperature limit in accordance with the procedures identified in Regulation 2-6-414 or 2-6-415, based on the following criteria. The minimum combustion zone temperature for the flare shall be equal to the average combustion zone temperature determined during the most recent complying source test minus 50 degrees F, provided that the minimum combustion zone temperature is not less than 1400 degrees F. (Basis: Regulation 8-34-301, Toxic Risk Management Policy, RACT, and 40 CFR 60.758(c)(1)(i))
7. The Landfill Gas Flare A-3 shall be equipped with a combustion temperature readout monitor and continuous recorder to measure and record the temperature in the combustion zone. (Basis: Regulation 8-34-507)
8. Emissions of Nitrogen Oxides (NOx) from the Flare A-3 shall not exceed 0.06 pounds per million BTU (calculated as NO₂). (basis: RACT and Offsets)
9. Emissions of Carbon Monoxide (CO) from the Flare A-3 shall not exceed 0.3 pounds per million BTU. (basis: RACT and Offsets).
10. In order to demonstrate compliance with Regulation 8, Rule 34, Section 301.3, Regulation 9, Rule 1, Section 302, 40 CFR 60 .752(b)(2)(iii)(B), and the above requirements, the Permit Holder shall ensure that a District approved source test is conducted annually on the Landfill Gas Flare (A-3). The annual source test shall determine the following:
 - a. Landfill gas flow rate to the flare (dry basis)
 - b. Concentrations (dry basis) of methane (CH₄) and total non-methane organic compounds (NMOC) in the landfill gas;
 - c. Stack gas flow rate from the flare (dry basis)
 - d. Concentrations (dry basis) of nitrogen oxides (NOx), carbon monoxide (CO), CH₄, NMOC, and O₂ in the flare stack gas
 - e. The NMOC destruction efficiency achieved by the flare
 - f. The average combustion temperature in the flare during the test period.


VI. Permit Conditions

Condition # 8366

FOR S-1: LANDFILL WITH GAS COLLECTION SYSTEM AND A-3: LANDFILL GAS FLARE

Annual source tests shall be conducted no sooner than 9 months and no later than 12 months after the previous source test. The Source Test Section of the District shall be contacted to obtain its approval of the source test procedures at least 14 days in advance of each source test. The Source Test Section shall be notified of the scheduled test date at least 7 days in advance of each source test. The source test report shall be submitted to the Compliance and Enforcement Division within 60 days after the test date. (Basis: Regulations 8-34-301.3 and 8-34-412 and 40 CFR 60.752(b)(2)(iii)(B))

11. The heat input to the A-3 Flare shall not exceed 1,800 million BTU per day or 657,000 million BTU per year. In order to demonstrate compliance with this part, the Permit Holder shall calculate and record on a monthly basis the maximum daily and total monthly heat input to the flare based on the landfill gas flow rate recorded pursuant to Part10, the average methane concentration in the landfill gas based on the most recent source test, and a high heating value for methane of 1013 BTU/scf. The records shall be retained for five years and shall be made available to the District staff upon request. (Basis: Regulation 2-1-301)
12. Total reduced sulfur compounds in the collected landfill gas shall be monitored as a surrogate for monitoring sulfur dioxide in control systems exhaust. The concentration of total reduced sulfur compounds in the collected landfill gas shall not exceed 1300 ppmv (dry). In order to demonstrate compliance with this part, the Permit Holder shall measure the total sulfur content in collected landfill gas on a quarterly basis using a draeger tube. The landfill gas sample shall be taken from the main landfill gas header. The Permit Holder shall follow the manufacturer's recommended procedures for using the draeger tube and interpreting the results. The Permit Holder shall conduct the first draeger tube test no later than 3 months after the issue date of the MFR Permit and quarterly thereafter.
(Basis: Regulations 9-1-302 and 2-6-503)
13. On rainless operating days, water shall be applied as necessary and at least 2 times per full operational day to all unpaved roadways and active soil removal and fill areas associated with this facility to suppress dust emissions. On operating days when rain has fallen in the last 24 hours, water shall be applied as necessary to prevent visible dust emissions. (Basis: Regulations 6-301 and 1-301)
14. Paved roadways at the facility shall be kept sufficiently clear of dirt and debris as to prevent visible particulate emissions from vehicle traffic or wind. (Basis: Regulations 6-301 and 1-301)

Thompson, Jimmy

From: Teixeira, Sarah
Sent: Friday, August 01, 2008 9:02 AM
To: Thompson, Jimmy
Subject: FW: FedEx Shipment 796041645968 Delivered

From: TrackingUpdates@fedex.com [mailto:TrackingUpdates@fedex.com]
Sent: Friday, August 01, 2008 8:58 AM
To: Teixeira, Sarah
Subject: FedEx Shipment 796041645968 Delivered

This tracking update has been requested by:

Company Name: Cornerstone Environmental Grou
Name: Sarah Teixeira
E-mail: sarah.teixeira@cornerstoneeg.com

Our records indicate that the following shipment has been delivered:

Ship (P/U) date: Jul 31, 2008
Delivery date: Aug 1, 2008 8:55 AM
Sign for by: V.COOPER
Delivered to: Shipping/Receiving
Service type: FedEx Priority Overnight
Packaging type: Your Packaging
Number of pieces: 1
Weight: 1.00 lb.
Special handling/Services: Deliver Weekday

Tracking number: 796041645968

Shipper Information	Recipient Information
Sarah Teixeira	Tim Underwood
Cornerstone Environmental Grou	BAAQMD Source Test Division
7600 Dublin Blvd Suite 200	939 ELLIS ST
Dublin	SAN FRANCISCO
CA	CA
US	US
94568	94109

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 10:57 AM CDT on 08/01/2008.
To learn more about FedEx Express, please visit our website at fedex.com.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above, or visit us at fedex.com.

This tracking update has been sent to you by FedEx on the behalf of the Requestor noted above. FedEx does not validate the authenticity of the requestor and does not validate, guarantee or warrant the authenticity of the request, the requestor's message, or the accuracy of this tracking update. For tracking results and fedex.com's terms of use, go to fedex.com.

Thank you for your business.

FedEx Express
Customer Support Trace
3875 Airways Boulevard
Module H, 4th Floor
Memphis, TN 38116

U.S. Mail: PO Box 727
Memphis, TN 38194-4643
Telephone: 901-369-3600

August 1, 2008

Dear Customer:

The following is the proof-of-delivery for tracking number **796041645968**.

Delivery Information:

Status:	Delivered	Delivery location:	SAN FRANCISCO, CA
Signed for by:	V.COOPER	Delivery date:	Aug 1, 2008 08:55
Service type:	Priority Overnight		

NO SIGNATURE IS AVAILABLE

FedEx Express proof-of-delivery details appear below; however, no signature is currently available for this shipment.
Please check again later for a signature.

Shipping Information:

Tracking number:	796041645968	Ship date:	Jul 31, 2008
		Weight:	1.0 lbs.

Recipient: SAN FRANCISCO, CA US	Shipper: Dublin, CA US
---	----------------------------------

Thank you for choosing FedEx Express.

FedEx Worldwide Customer Service
1.800.GoFedEx 1.800.463.3339

Thompson, Jimmy

From: Teixeira, Sarah
Sent: Friday, August 01, 2008 9:02 AM
To: Thompson, Jimmy
Subject: FW: FedEx Shipment 796041657858 Delivered

From: TrackingUpdates@fedex.com [mailto:TrackingUpdates@fedex.com]
Sent: Friday, August 01, 2008 8:58 AM
To: Teixeira, Sarah
Subject: FedEx Shipment 796041657858 Delivered

This tracking update has been requested by:

Company Name: Cornerstone Environmental Grou
Name: Sarah Teixeira
E-mail: sarah.teixeira@cornerstoneeg.com

Our records indicate that the following shipment has been delivered:

Ship (P/U) date: Jul 31, 2008
Delivery date: Aug 1, 2008 8:55 AM
Sign for by: V.COOPER
Delivered to: Shipping/Receiving
Service type: FedEx Priority Overnight
Packaging type: Your Packaging
Number of pieces: 1
Weight: 1.00 lb.
Special handling/Services: Deliver Weekday

Tracking number: 796041657858

Shipper Information	Recipient Information
Sarah Teixeira	Compliance and Enforcement Division
Cornerstone Environmental Grou	Bay Area Air Quality Management Dis
7600 Dublin Blvd Suite 200	939 ELLIS ST
Dublin	SAN FRANCISCO
CA	CA
US	US
94568	94109

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 10:57 AM CDT on 08/01/2008.
To learn more about FedEx Express, please visit our website at fedex.com.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above, or visit us at fedex.com.

This tracking update has been sent to you by FedEx on the behalf of the Requestor noted above. FedEx does not validate the authenticity of the requestor and does not validate, guarantee or warrant the authenticity of the request, the requestor's message, or the accuracy of this tracking update. For tracking results and fedex.com's terms of use, go to fedex.com.

Thank you for your business.

FedEx Express
Customer Support Trace
3875 Airways Boulevard
Module H, 4th Floor
Memphis, TN 38116

U.S. Mail: PO Box 727
Memphis, TN 38194-4643
Telephone: 901-369-3600

August 1, 2008

Dear Customer:

The following is the proof-of-delivery for tracking number **796041657858**.

Delivery Information:

Status:	Delivered	Delivery location:	SAN FRANCISCO, CA
Signed for by:	V.COOPER	Delivery date:	Aug 1, 2008 08:55
Service type:	Priority Overnight		

NO SIGNATURE IS AVAILABLE
FedEx Express proof-of-delivery details appear below; however, no signature is currently available for this shipment.
Please check again later for a signature.

Shipping Information:

Tracking number:	796041657858	Ship date:	Jul 31, 2008
		Weight:	1.0 lbs.

Recipient:	Shipper:
SAN FRANCISCO, CA US	Dublin, CA US

Thank you for choosing FedEx Express.

FedEx Worldwide Customer Service
1.800.GoFedEx 1.800.463.3339