

September 20, 2004

Mr. Ken Ayster
SCS Engineers
3711 Long Beach Blvd.
9th Floor
Long Beach, CA 90807

**Subject: Final Source Test Report – Otay Landfill John Zink Flare
SCEC Job No. 2170.1005**

Dear Mr. Ayster:

Enclosed please find one copy of the Final Source Test Report for your review.

Please call (714) 282-8240 if you have any questions, comments or require additional information.

Sincerely,
SCEC

David E. Evans

Mr. David E. Evans
Project Scientist

2170.1005.ltr6.doc

SCEC

OTAY LANDFILL FLARE STATION COMPLIANCE SOURCE TEST REPORT

PREPARED FOR:

SCS ENGINEERS

3711 Long Beach Blvd. 9th Floor
Long Beach, CA 90807

EQUIPMENT LOCATION:

Otay Landfill
1700 Maxwell Rd.
Chula Vista, CA
91910-0000

TEST DATE:

July 29, 2004

ISSUE DATE:

September 6, 2004

PARAMETERS MEASURED:

NO_x, CO and NMOC Emissions

TESTED BY:

David E. Evans

SCEC

1582-1 North Batavia Street
Orange, California 92867

Project No: 2170.1005

Tested By: David Evans

David E. Evans

Reviewed By: Leslie A. Johnson

Leslie A. Johnson

TABLE OF CONTENTS

	<u>Page No.</u>
1.0 Executive Summary	1
2.0 Introduction	3
3.0 Equipment and Process Description	4
4.0 Discussion of Results	5
5.0 Sampling and Analytical Procedures	5
5.1 SDAPCD Method 100	5
5.2 EPA Method 19	10
5.3 EPA Method 18/TO-15	10
5.4 EPA Methods 1 to 4	11

Tables

1-1 Summary of Test Results	2
2-1 Testing Methodologies	3

Appendices

Appendix A - Detailed Results and Raw Data	A-1
Appendix B - Strip Chart Copies	B-1
Appendix C - Quality Assurance	C-1
Appendix D - Laboratory Reports	D-1
Appendix E - Authority to Construct	E-1

1.0 Executive Summary

SCS Engineers retained SCEC to perform compliance testing on one landfill gas flare station located at the Otay Landfill facility in Chula Vista, California. Source testing was conducted to demonstrate compliance with the San Diego Air Pollution Control District (SCAPCD) Authority to Construct Application Number 979036. SCEC determined emissions of oxide of nitrogen (NO_x) carbon monoxide (CO) and non-methane organic compounds (NMOC) from the flare exhaust. Inlet NMOC was also measured. Flare destruction efficiency was calculated for NMOC. The flare station was tested at current maximum conditions. The source test was performed on July 29, 2004

Testing was conducted in accordance with the source test protocol prepared and submitted on June 30, 2004 by SCEC and approved by SDAPCD prior to the test event

The results are shown below in Table 1-1 and are the average of triplicate runs. Mass emissions rates are based on EPA Method 19, inlet flow and calculated EPA F factor.

TABLE 1-1
SUMMARY OF TEST RESULTS
OTAY LANDFILL FLARE STATION
July 29, 2004

PARAMETER	UNITS	INLET	EXHAUST	LIMITS
O ₂	%	4.00	12.61	
CO ₂	%	34.27	7.57	
N ₂	%	29.87	79.59	
H ₂ O	%	2.17	9.61	
FLOW RATE	WSCFM	2342	-	
FLOW RATE ⁽¹⁾	DSCFM	1,949	19,748.6	<5,000 inlet
FLOW RATE ⁽²⁾	DSCFM	-	28,821	
EXHAUST TEMPERATURE	deg F	-	1,444.9	
COMBUSTION ZONE TEMPERATURE ⁽³⁾	deg F	-	1650	
CALORIFIC VALUE	BTU/SCF	401.6	-	
EPA F FACTOR	DSCF/MMBTU	10,004.4	-	
NO _x	PPMV	-	14.51	
	PPMV @ 3 %O ₂	-	31.21	
	LB/HR AS NO ₂ ⁽³⁾	-	2.05	
	LB/MMBTU	-	0.038	0.06 BACT
CO	PPMV	-	3.03	
	PPMV @ 3 %O ₂	-	6.49	
	LB/HR ⁽⁴⁾	-	0.26	
	LB/MMBTU	-	0.006	0.02 BACT
TGNMO as HEXANE	PPMV	247.26	< 0.23	
	PPMV @ 3 %O ₂	261.56	< 0.50	<20 ppm
	LB/HR ⁽⁴⁾	6.48	< 0.06	
	LB/MMBTU	0.68	< 0.0013	
DESTRUCTION EFFICIENCY	%	-	> 99.05	>98%

⁽¹⁾ Volume flow rate calculated by EPA Method 19.

⁽²⁾ Volume flow rate measured by EPA Methods 1-4.

⁽³⁾ Combustion set point.

⁽⁴⁾ Mass emission rate calculated utilizing volume flow rate calculated by EPA Method 19.

2.0 Introduction

2.0 Introduction

The following test methods were used:

TABLE 2-1
Testing Methodologies

Parameter	Test Method
NO _x /CO/O ₂ /CO ₂	SDAPCD Method 100
NMOC	EPA 18
Speciated Organics	EPA TO-15
Volume Flow Rate	EPA Methods 1 to 4, EPA Method 19

All raw data was reduced and used to calculate the final results as listed in Appendix A. The calculations were performed by computer programs that have passed quality control inspections. Detailed results (computer spreadsheet data) and raw data are provided in Appendix A, strip chart copies are located in Appendix B, quality assurance documentation is contained in Appendix C, laboratory reports are provided in Appendix D, and Authority to Construct is provided in Appendix E.

The testing program was coordinated by Mr. Ken Ayster, SCS Engineers.. The testing was performed by Mr. David E. Evans - Project Manager, and Mr. Robert Conklin - Technician from SCEC. The test program was observed by SDAPCD representative Mr. Larry Owusu.

3.0 Equipment and Process Description

The landfill operates a gas blower collection system that maintains a negative pressure on the landfill. The landfill gas is collected from extraction wells and is then incinerated in a John Zink flare. The flare is rated at 150 MMBtu/hr and is equipped with an optical flame detector, automatic shut-off valve, stack thermocouple, flame arrestor and sampling ports. The stack is approximately thirteen (13) feet in diameter and fifty (50) feet in height. The flare is equipped with a propane gas pilot and a control system to retain combusted landfill gas for 0.3 seconds at a temperature of 1,500 °F. A flame arrestor is provided between the flare and the landfill gas supply piping. A safety control system shuts down the supply landfill gas valve and blower power in cases of flame-out, excess flare temperature or excess pressure in the piping system. Scrubbers are used for removing moisture and particulates from the landfill gas. Three blowers are used to create vacuum to pull landfill gas through piping from the landfill's gas collection system.

4.0 Discussion of Results

The testing was performed according to the reference methods. All system bias checks were less than 5%, all system bias drifts were less than 2%, and all internal calibrations were less than 2%. In addition, all checks of NO₂ system loss were less than 15% and all NO₂ converter checks were above 90% efficiency.

All exhaust samples were collected while traversing the stack to minimize stratification effects. The number of traverse points used to measure the stratification/concentration values was sixteen (16). The sampling location meets the minimum requirements of 0.5 diameters upstream and 2.0 diameters downstream of the nearest flow disturbance.

5.0 Sampling Methodology

The field sampling procedures that were used for this test program are described in this section. The purpose of this section is to provide an overview of the sampling methods.

5.1 SDAPCD Method 100 - Continuous Gaseous Emissions Sampling

A continuous sample was extracted from the stack through a stainless steel probe, coarse filter, heated Teflon line, sample conditioner (condensate system) and a electronic chiller and then drawn via 3/8" Teflon line to the Mobile Emissions Laboratory (MEL). The condensation system consisted of three 500 ml short steam glass impingers connected in a series and immersed in a ice/water mixture. Peristaltic pumps were installed on the first two impingers to continuously remove condensed water from the impinger. The sample was filtered again through a fine Balston filter and finally introduced to the analyzers through the sample manifold and dedicated flow meters. A schematic of the sample manifold is provided below.

Prior to beginning the test, a system leak check was performed. The leak check was accomplished by plugging the probe tip and drawing >25" Hg vacuum on the entire sampling system. When all flow meters indicated 0.000 scfh flow, the system was proven to be free of all leaks.

Three-point analyzer calibration error checks were performed before each triplicate run. System bias checks (using the mid gas of the three-point calibration) were performed before and after each run. In addition, a converter check, a NO zero and NO calibration error check were performed between each run. At the end of each triplicate, mid-point calibration error checks were performed.

The analyzer calibration error checks are performed by delivering calibration gases directly to analyzers. The system bias checks were performed by delivering zero and mid-point calibration gas through the entire sample line and recording the as-found concentration.

5.0 Sampling Methodology (Continued)

5.1 SDAPCD Method 100 - Continuous Gaseous Emissions Sampling (Cont.)

All concentrations from the NO_x, CO, CO₂, and O₂ analyzers were collected by a computer data acquisition system (DAS). For the NO_x analyzer, all parameters (NO, NO₂ and NO_x) were measured and recorded by the DAS. The flare's NO_x emissions were adjusted for NO₂ losses by the equations listed in SDAPCD Method 100, Section 7.2.3 for "High NO₂ Sites".

Equations:

$$\text{NO ppm} = (\text{NO Conc} - \text{Average Zero Bias}) \times \frac{\text{NO Cal Gas Value}}{\text{Average NO Span Bias} - \text{Average NO Zero Bias}}$$

$$\text{ppm @ 3\% O}_2 = \text{ppm obsv.} \times 17.95 / (20.95 - \% \text{O}_2 \text{ obsv.})$$

$$\text{ppm @ 15\% O}_2 = \text{ppm obsv.} \times 5.95 / (20.95 - \% \text{O}_2 \text{ obsv.})$$

5.0 Sampling Methodology (Continued)

CONTINUOUS MONITORING LAB - TVII

O₂ ANALYZER, CELL TYPE

Response Time (0-90%)

AMI MODEL 320A S/N 113160

< 10 Seconds

Accuracy

+/- 1% of scale at constant temperatures; +/- 1% of scale or +/- 5% of reading, whichever is greater, over the operating temperature range

Output

0-1V

Range

0-5%, 0-25%, 0-100%

CO GAS FILTER CORRELATION

Non-Dispersive Infrared

THERMO ELECTRON MODEL 48H

S/N 48H-35546-250

Response Time (0-95%)

10 seconds

Span Drift

+/- 1% full scale in 24 hours

Zero Drift

+/- 0.2 ppm in 24 hours

Linearity

+/- 1% full scale, all ranges

Accuracy

+/- 0.1 ppm

Output

0-10mV, 0-100mV, 0-1V, 0-5V, 0-10V

Range

100, 200, 500, 1000, 2000, 5000, 10000, 20000, and 50000 ppm

5.0 Sampling Methodology (Continued)

CONTINUOUS MONITORING LAB - TVII (cont.)

NO_x CHEMILUMINESCENT ANALYZER

THERMO ELECTRON MODEL 42H
S/N 42H-49814-284

Response Time (0-90%)	2.5 seconds in NO mode 5.0 seconds in NO _x mode
Noise	25 PPB
Zero Drift (24 hrs)	50 PPB
Detection Limit	50 PPB
Span Drift (24 hrs)	+/- 1% of full scale
Linearity	+/- 1% of full scale
Sample Flow Rate	25 cc/min.
Bypass Flow Rate	250 to 1100 cc/min.
Output	NO, NO ₂ , NO _x , 0-10V, Selectable Voltage 4-20 mA, RS-232
Ranges	0-10 ppm, 0-20 ppm, 0-100 ppm, 0-200 ppm, 0-500 ppm, 0-1000 ppm, 0-2000 ppm, 0-5000 ppm

CO₂ NON-DISPERSIVE INFRARED

HORIBA MODEL PIR 2000

Span Drift	+/- 1% per 24 hours at full scale
Zero Drift	+/- 1% per 24 hours at full scale
Response Time	Selectable 0.5 - 1.2 seconds
Repeatability	+/- 0.5% of full scale
Output	0-10mV, 0-100mV, 0-1V, 0-5V
Range	0-2%, 0-10%, 0-20%

5.0 Sampling Methodology (Continued)

CONTINUOUS MONITORING LAB - TVI (continued)

STRIP CHART RECORDER

YOKOGAWA MODEL HR2400

Scan Cycle Time	1-60 seconds
Scanning Rate	60ms/Channel
Input Impedance	More than 10 M ohms for 2V or lower ranges, approximately 1 M ohms on 6V or higher ranges
Input Bias	Less than 10mA
Temperature Spread on Terminals	0.3% among input terminals
Temperature Coefficient	Zero drift 0.01% of range/°C Full span 0.01% of range/°C
Max. Allowable Input Voltage	60 VDC
Chart Speed	1-15,000 mm/hr
Recording Accuracy	+/- 0.1% of effective
Chart Speed Accuracy	+/- 0.1% for recordings greater than 1m
Data Acquisition System (DAS)	Varilink Software

MOBILE EMISSIONS LABORATORY

Fully Insulated

Air Conditioned

On-Board Computer System
(IBM Compatible)

5.0 Sampling Methodology (Continued)

5.2 EPA Method 19 - Calculated Stack Gas Flow Rate by F-Factor

The calculated dry standard volume flow rate (DSCFM) was determined by F-factor calculation using the fuel flow rate and gross calorific value according to the equation below. Since the source was fired on landfill gas and the parameters were measured on a dry basis, the oxygen-based F-factor (F_d) published in EPA Method 19 was used.

Equation:

$$\text{DSCFM} = [\text{MMBtu/hr}] [\text{F-Factor (DSCF/MMBtu)}] [\text{hr/60 min.}] [20.9/20.9-\% \text{ O}_2]$$

$$\text{MMBtu/hr} = [\text{Fuel SCFM}] [\text{GCV (Btu/SCF)}] [\text{MMBtu/1x}10^6 \text{ Btu}] [60 \text{ hr./min.}]$$

Where: GCV = gross calorific value

5.3 EPA Method 18/TO-15 – Speciated Volatile Organic Compounds

The principles of Method 18/TO-15 were utilized to collect volatile organic compounds in six-liter summa canisters.

The apparatus consisted of a stainless steel probe connected by Teflon line to a summa canister. A uniform sample flow rate was maintained utilizing a critical orifice.

On completion of each run, the summa canister was sealed and immediately transported to the laboratory. Sample is then drawn through a septum and injected into the GC with a Flame Ionization Detector (FID) for speciation of C_2 - C_{5+} compounds. Further speciation of the AP-42 list was accomplished following the guidelines of EPA TO-15. These compounds were presented as a total NMOC value based on their carbon count.

Equation:

$$\frac{\text{lb}}{\text{hr}} = \text{ppmv} \times \text{DSCFM} \times (1.557 \times 10^{-7}) \times \text{MW}$$

Where:

ppmv = Parts Per Million (Volume)

DSCFM = Dry Standard Cubic Feet Per Minute

MW = Molecular Weight of Specific Hydrocarbon

1.557×10^{-7} = Conversion Factor

5.0 Sampling Methodology (Continued)

5.4 Measured Stack Gas Flow Rate by EPA Methods 1 to 4

A 16-point velocity traverse was performed in conjunction with a moisture according to EPA Methods 1 to 4 for each run to determine the standard flow rate (DSCFM) of the stack gas. The measured DSCFM was used to calculate NO_x and CO emission rates in units lbs/hr according to the following equation.

$$\text{lb/hr} = [\text{ppmv}] [1.558 \times 10^{-7}] [\text{MW}_{\text{pollutant}}] [\text{DSCFM}]$$

Where: ppmv = pollutant concentration
MW_{pollutant} = Molecular weight of pollutant

EPA METHOD 1 - SAMPLING AND VELOCITY TRAVERSE FOR STATIONARY SOURCES

A preliminary source test site assessment was performed prior to the source test in order to determine applicable testing port locations and sample point traverse locations. The stack diameter, and the distance from sample ports to disturbances, i.e. bends, flanges, etc., both upstream and downstream, were measured. This information was utilized to determine the minimum number of sampling points per traverse, and the distance from the inner stack wall to each sample point location. Additionally, this method takes into account cyclonic flow patterns and in-situ stratified pollutant concentrations.

EPA METHOD 2 - VELOCITY AND VOLUMETRIC FLOW RATE

The velocity of the gas stream was determined by using an "S" type pitot tube, a inclined manometer and type "K" thermocouple with a digital temperature measuring device. The calibrated pitot tube was connected to the manometer and leak checked. A temperature and velocity pressure (delta P) was obtained at each traverse point, and a duct static pressure was measured and recorded. The dry volumetric flow rate was determined from the gas velocity data, stack pressure, stack gas moisture content, stack gas molecular weight, and cross-sectional area of duct.

EPA METHOD 3 - GAS ANALYSIS FOR DRY MOLECULAR WEIGHT AND EXCESS AIR

Flare exhaust volume fractions of O₂ and CO₂ expressed in percent were determined using continuous emission analyzers following SDAPCD Method 100. Inlet O₂ and CO₂ results were determined by GC. These values were used for calculating the dry molecular weight of the flue gas.

5.0 Sampling Methodology (Continued)

5.4 Measured Stack Gas Flow Rate by EPA Methods 1 to 4 (Continued)

EPA METHOD 4 - DETERMINATION OF MOISTURE CONTENT IN STACK GASES

Moisture content was determined using a sampling train consisting of a stainless steel probe, Teflon line, four impingers in an ice water bath, leak free pump, vacuum gauge, and temperature compensated dry gas meter. Prior to sampling a leak check of the sampling train was performed to insure system integrity. Additionally, tare weights of the charged individual impingers were recorded using a triple beam balance capable of weighing to the nearest 0.1 grams or less.

After sampling, the final weights of each impinger were determined and recorded. Percent moisture content was calculated from the weight of water collected and the dry gas volume sampled.

Equations:

$$\text{Moisture (B}_w\text{)} = \frac{V_{wstd}}{V_{mstd} + V_{wstd}} \times 100$$

$$\text{Where: } V_{wstd} = \frac{0.0464 \text{ ft}^3}{\text{ml}} \times \text{Vol. H}_2\text{O Collected (ml)}$$

$$V_{mstd} = Y \text{ Meter} \times \frac{528 \text{ }^{\circ}\text{R}}{29.92 \text{ in Hg}} \times \frac{\text{Vol. Metered}}{\text{Meter}} \times \text{Meter Pressure}$$

SCEC

List of Appendices

Appendix A - Detailed Results and Raw Data

Appendix B – Strip Chart Copies

Appendix C - Quality Assurance

Appendix D - Laboratory Reports

Appendix E – Authority to Construct

Appendix A

Detailed Results and Raw Data

SUMMARY OF CONTINUOUS MONITORING DATA

FACILITY:	OTAY	DATA FOR SAMPLING RUN:			COMPLIANCE RUN 1	
SOURCE ID:	FLARE	DATE: 07/29/04			TIME: 1249-1349	
OPERATOR:	DEE	PROJECT No.:	2170.1005			
PARAMETER UNITS	O ₂ % VOL DRY	CO ₂ % VOL DRY	NO PPMV,D	NO ₂ PPMV,D	NOx PPMV,D	CO PPMV,D
INITIAL ZERO BIAS	0.10	0.02	0.05	0.02	-	-1.50
INITIAL SPAN BIAS	12.78	8.14	16.91	36.84	-	86.60
FINAL ZERO BIAS	0.08	0.03	0.05	0.07	-	-1.50
FINAL SPAN BIAS	12.77	8.11	17.05	36.99	-	86.80
AVERAGE ZERO BIAS	0.09	0.03	0.05	0.05	-	-1.50
AVERAGE SPAN BIAS	12.78	8.13	16.98	36.92	-	86.70
BIAS GAS CONCENTRATION	12.80	8.11	17.29	39.30	-	86.57
FULL SCALE RANGE	25.00	20.00	50.00	50.00	-	200.00
UNCORRECTED CONC.	12.79	7.38	13.73	-	-	0.17
CORRECTED CONC.	12.81	7.37	13.97	0.48	14.45	1.64
PPMV @ 3 % O ₂			30.81	1.06	31.87	3.61
LB/MMBTU			0.043	0.001	0.045	0.003
LB/HR BASED ON EPA 19 (DSCFM)	20,679		2.07	0.07	2.14	0.15
LB/HR BASED ON PITOT (DSCFM)	28,724		2.87	0.10	2.97	0.21

SUMMARY OF CONTINUOUS MONITORING DATA

FACILITY:	OTAY	DATA FOR SAMPLING RUN:			COMPLIANCE RUN 2	
SOURCE ID:	FLARE	DATE: 07/29/04			TIME: 1436-1536	
OPERATOR:	DEE	PROJECT No.:	2170.1005			
PARAMETER UNITS	O ₂ % VOL DRY	CO ₂ % VOL DRY	NO PPMV,D	NO ₂ PPMV,D	NOx PPMV,D	CO PPMV,D
INITIAL ZERO BIAS	0.08	0.03	0.05	0.07	-	-1.50
INITIAL SPAN BIAS	12.77	8.11	17.05	36.99	-	86.80
FINAL ZERO BIAS	0.11	0.03	0.05	0.02	-	-1.50
FINAL SPAN BIAS	12.77	7.98	16.75	37.04	-	86.60
AVERAGE ZERO BIAS	0.10	0.03	0.05	0.05	-	-1.50
AVERAGE SPAN BIAS	12.77	8.05	16.90	37.02	-	86.70
BIAS GAS CONCENTRATION	12.80	8.11	17.29	39.30	-	86.57
FULL SCALE RANGE	25.00	20.00	50.00	50.00	-	200.00
UNCORRECTED CONC.	12.58	7.50	13.70	-	-	3.47
CORRECTED CONC.	12.61	7.56	14.01	-0.08	13.92	4.88
PPMV @ 3 % O ₂			30.14	-0.18	29.96	10.50
LB/MMBTU			0.042	0.000	0.042	0.009
LB/HR BASED ON EPA 19 (DSCFM)	19,711		1.98	-0.01	1.97	0.42
LB/HR BASED ON VOL FLOW (DSCFM)	29,881		3.00	-0.02	2.98	0.64

SUMMARY OF CONTINUOUS MONITORING DATA

FACILITY:	OTAY	DATA FOR SAMPLING RUN:			COMPLIANCE RUN 3	
SOURCE ID:	FLARE	DATE: 07/29/04			TIME: 1545-1645	
OPERATOR:	DEE	PROJECT No.:	2170.1005			
PARAMETER UNITS	O ₂ % VOL DRY	CO ₂ % VOL DRY	NO PPMV,D	NO ₂ PPMV,D	NOx PPMV,D	CO PPMV,D
INITIAL ZERO BIAS	0.11	0.03	0.05	0.02	-	-1.50
INITIAL SPAN BIAS	12.77	7.98	16.75	37.04	-	86.60
FINAL ZERO BIAS	0.11	0.05	-0.01	0.03	-	-1.10
FINAL SPAN BIAS	12.76	8.12	16.91	37.53	-	87.20
AVERAGE ZERO BIAS	0.11	0.04	0.02	0.03	-	-1.30
AVERAGE SPAN BIAS	12.77	8.05	16.83	37.29	-	86.90
BIAS GAS CONCENTRATION	12.80	8.11	17.29	39.30	-	86.57
FULL SCALE RANGE	25.00	20.00	50.00	50.00	-	200.00
UNCORRECTED CONC.	12.37	7.73	14.70	-	-	1.31
CORRECTED CONC.	12.40	7.79	15.10	0.03	15.13	2.56
PPMV @ 3 % O ₂			31.68	0.07	31.75	5.37
LB/MMBTU			0.044	0.000	0.027	0.005
LB/HR BASED ON EPA 19 (DSCFM)	18,856		2.04	0.00	2.04	0.21
LB/HR BASED ON VOL FLOW (DSCFM)	27,390		2.96	0.01	2.97	0.31

SUMMARY OF VOLUME FLOW SOURCE TEST DATA AND CALCULATIONS
EXHAUST FLOW

Facility:	OTAY			
Source ID:	FLARE			
MEASURED SOURCE PARAMETERS	SYMBOL	UNITS	RUN 1	RUN 2
DATE			07/29/04	07/29/04
TIME			1249-1349	1436-1536
STACK DIAMETER	Ds	IN	156.00	156.00
STACK AREA	Ds	FT ²	132.73	132.73
BAROMETRIC PRESSURE	Pbar	IN. Hg	29.85	29.85
STATIC PRESSURE	Pstat	IN. H2O	-0.06	-0.06
STACK PRESSURE	Ps	IN. Hg	29.85	29.85
AVERAGE STACK TEMPERATURE	Ts	DEG. F	1446.6	1442.1
AVERAGE SQ. ROOT VELOCITY PRESSURE	dP	IN. H2O	0.1378	0.1456
SAMPLING PARAMETERS			RUN 3	AVERAGE
STANDARD TEMPERATURE	Tstd	DEG. F	68.0	68.0
STANDARD PRESSURE	Pstd	IN. Hg	29.92	29.92
PERCENT CARBON DIOXIDE	CO2	%	7.37	7.56
PERCENT OXYGEN	O2	%	12.81	12.61
PITOT CORRECTION FACTOR	Cp		0.816	0.816
SAMPLING TIME	t	MIN.	30.0	32.0
GAS VOLUME SAMPLED	Vm	DCF	24.742	26.525
WATER VAPOR COLLECTED	Vlc	GRAMS	47.2	62.6
DRY GAS METER CORRECTION FACTOR	Y		0.9970	0.9970
DRY GAS METER TEMPERATURE	Tm	DEG. F	82.3	82.8
ORIFICE PRESSURE	dH	IN. H2O	2.000	2.000
CALCULATED RESULTS				
CORRECTED GAS VOLUME SAMPLED	Vmstd	DSCF	24.078	25.789
VOLUME OF WATER CONDENSED	Vwstd	SCF	2.23	2.95
MOISTURE CONTENT OF FLUE GAS	Bws	%	8.47	10.28
DRY MOLECULAR WEIGHT OF FLUE GAS	MWdry	lb/lb-mol	29.69	29.71
WET MOLECULAR WEIGHT OF FLUE GAS	MWwet	lb/lb-mol	28.70	28.51
FLUE GAS VELOCITY	Vs	ft/sec	14.34	15.19
FLUE GAS FLOW RATE (ACTUAL CONDITIONS)	ACFM	ACFM	114,216	120,941
FLUE GAS FLOW RATE (STD. CONDITIONS)	SDCFM	SDCFM	28,879	30,045
PERCENT EXCESS AIR	% EA	%	155.1	148.9
				142.9
				149.0

SUMMARY OF VOLUME FLOW SOURCE TEST DATA AND CALCULATIONS
INLET FLOW

Facility:	OTAY			
Source ID:	FLARE			
MEASURED SOURCE PARAMETERS	SYMBOL	UNITS	RUN 1	RUN 2
DATE			07/29/04	07/29/04
TIME			1249-1349	1436-1536
STACK DIAMETER	Ds	IN	16.00	16.00
STACK AREA	Ds	FT^2	1.40	1.40
BAROMETERIC PRESSURE	Pbar	IN. Hg	29.85	29.85
STATIC PRESSURE	Pstat	IN. H2O	3.00	3.00
STACK PRESSURE	Ps	IN. Hg	30.07	30.07
AVERAGE STACK TEMPERATURE	Ts	DEG. F	122.0	125.0
AVERAGE SQ. ROOT VELOCITY PRESSURE	dP	IN. H2O	0.4855	0.4824
SAMPLING PARAMETERS			RUN 3	AVERAGE
STANDARD TEMPERATURE	Tstd	DEG. F	68.0	68.0
STANDARD PRESSURE	Pstd	IN. Hg	29.92	29.92
PERCENT METHANE	CH4	%	39.10	39.80
PERCENT CARBON DIOXIDE	CO2	%	31.40	32.40
PERCENT OXYGEN	O2	%	3.50	4.60
PITOT CORRECTION FACTOR	Cp		0.827	0.827
SAMPLING TIME	t	MIN.	30.0	30.0
GAS VOLUME SAMPLED	Vm	DCF	26.632	24.771
WATER VAPOR COLLECTED	Vlc	GRAMS	43.1	47.6
DRY GAS METER CORRECTION FACTOR	Y		0.9880	0.9880
DRY GAS METER TEMPERATURE	Tm	DEG. F	93.3	90.8
ORIFICE PRESSURE	dH	IN. H2O	2.200	2.200
CALCULATED RESULTS				
CORRECTED GAS VOLUME SAMPLED	Vmstd	DSCF	25.185	23.531
VOLUME OF WATER CONDENSED	Vwstd	SCF	2.03	2.25
MOISTURE CONTENT OF FLUE GAS	Bws	%	7.47	8.72
DRY MOLECULAR WEIGHT OF FLUE GAS	MWdry	lb/lb-mol	29.57	29.78
WET MOLECULAR WEIGHT OF FLUE GAS	MWwet	lb/lb-mol	28.71	28.75
FLUE GAS VELOCITY	Vs	ft/sec	28.18	28.05
FLUE GAS FLOW RATE (ACTUAL CONDITIONS)	ACFM	ACFM	2,361	2,350
FLUE GAS FLOW RATE (STD. CONDITIONS)	SDCFM	SDCFM	1,992	1,946
PERCENT EXCESS AIR	% EA	%	25.6	38.2
				30.1
				31.3

SUMMARY OF NMOC DATA

OTAY LANDFILL

July 29, 2004

FLARE INLET RESULTS

PARAMETER	UNITS	RUN 1	RUN 2	RUN 3	AVERAGE
Oxygen	%vd	3.50	4.60	3.90	4.00
Volume Flow Rate	DSCFM	1,992	1,946	1,910	1,949
NMOC as Methane	ppmv	1,706.30	1,410.10	1,334.30	1,483.57
NMOC as Hexane	ppmv	284.38	235.02	222.38	247.26
NMOC as Hexane	ppmv @ 3 % O ₂	292.53	258.02	234.12	261.56
NMOC as Hexane	lb/hr	7.60	6.14	5.70	6.48
NMOC as Hexane	lb/mmbtu	0.76	0.67	0.61	0.68

FLARE EXHAUST RESULTS

PARAMETER	UNITS	RUN 1	RUN 2	RUN 3	AVERAGE
Oxygen	%vd	12.81	12.61	12.40	12.61
Volume Flow Rate	DSCFM	20,678.88	19,710.84	18,856.03	19,748.58
NMOC as Methane	ppmv	1.4	1.4	1.4	1.4000
NMOC as Hexane	ppmv	0.23	0.23	0.23	0.23
NMOC as Hexane	ppmv @ 3 % O ₂	0.51	0.50	0.49	0.50
NMOC as Hexane	lb/hr	0.06	0.06	0.06	0.06
NMOC as Hexane	lb/mmbtu	0.0013	0.0013	0.0013	0.0013

FLARE DESTRUCTION EFFICIENCY

PARAMETER	UNITS	RUN 1	RUN 2	RUN 3	AVERAGE
NMOC as Hexane	%	99.15	98.99	98.96	99.05

FUEL ANALYSIS CALCULATIONS

LFG SAMPLE

July 29, 2004

FUEL COMPONENT	MOL. WT	DENSITY	C	H	EXPANSION FACTOR	COMPONENT MOLE %	MOLE FRACTION	EXHAUST DSCF PER SCF FUEL	CHONS WEIGHT PERCENT
METHANE	16.04	0.0423	1	4	8.57	39.567	0.396	3.391	CARBON 30.15
ETHANE	30.07	0.0792	2	6	15.25	0.0007	0.000	0.000	HYDROGEN 5.60
PROPANE	44.10	0.1162	3	8	21.92	0.006	0.000	0.001	OXYGEN 35.84
ISO-BUTANE	58.12	0.1532	4	10	28.6	0.0228	0.000	0.007	NITROGEN 23.93
NORM-BUTANE	58.12	0.1532	4	10	28.6	0.000	0.000	0.000	SULFUR 0.00
ISO-PENTANE	72.15	0.1902	5	12	35.28	0.0075	0.000	0.003	
NORM-PENTANE	72.15	0.1902	5	12	35.28	0.000	0.000	0.000	
HEXANE +	95.96	0.2529	6	14	41.95	0.000	0.000	0.000	
N2	28.01	0.0738	-	-	1	24.400	0.244	0.244	
O2	31.99	0.0843	-	-	1	4.000	0.040	0.040	
CO2	44.01	0.1160	-	-	1	32.000	0.320	0.320	
TOTALS						100.00	1.00	4.005	

CALCULATIONS

4.005	EXPANSION FACTOR DSCF EXHAUST PER SCF OF FUEL GAS AT ZERO % OXYGEN
361.8	LOWER DRY HEAT VALUE BTU/SCF OF FUEL GAS
401.6	UPPER DRY HEAT VALUE BTU/SCF OF FUEL GAS
0.075	DENSITY LB/SCF
28.567	MOLECULAR WEIGHT LB/LB-MOLE
9852.8	F-Factor (Fd) @ 60 DEGREES F
10004.4	F-Factor (Fd) @ 68 DEGREES F

SUMMARY OF EPA METHOD 19 SOURCE TEST DATA AND CALCULATIONS
OTAY FLARE EXHAUST

July 29, 2004

PARAMETER	UNITS	RUN 1	RUN 2	RUN 3
DATE		7/29/04	7/29/04	7/29/04
FUEL FLOW	SCFM	1885.8	1843.9	1808.7
CALORIFIC VALUE	BTU/CF	401.611	401.611	401.611
F FACTOR (Fd) - LFG	DSCF/MMBTU	10004.4	10004.4	10004.4
EXHAUST O2 CONCENTRATION	%VD	12.81	12.61	12.40
HEAT INPUT	MMBTU/MIN	0.75735	0.74053	0.7264
EXHAUST VOLUME FLOW RATE	DSCFM	19,577	18,675	17,859

SCEC

CONTINUOUS EMISSIONS MONITORING SYSTEM TEST DATA

1-CEM-OUT
SCS Eng.
OTAY
Zink
—
—

Date: 7/29/04
Condition: Norm
Operator: DE
Barometric: 29.85

Fuel Meter End: _____

Gas Temperatures

Stack: 1650 bottom T.C.
Probe: —
Seated Line: —

Stack Knockout: 41° F
Ambient: 85° F
Chiller: -2° C

$$\overline{NO_2} = 39.3$$

	Analyzer Values				NO_2
	O_2 (%)	CO_2 (%)	NO_x (ppm)	CO (ppm)	SO_2 (ppm)
Analyzer Span Range	25	20	50	200	50
Mid Span Cal Gas Value	12.8	18.111	(17.29)	17.4	86.57
High Span Cal Gas Value	20.95	15.9	(43)	43.4	170.00

As Found Analyzer Readings

Zero	.08	-.05	-.01	-1.1	.02
Mid Span	12.84	8.17	16.9	87.0	16.977
High Span	20.92	15.95	43.04	170.7	43.48

Pre-Test Analyzer System Bias

System Bias Zero	0.10	.02	.05	-1.5	27.02
System Bias Span	12.78	8.14	16.91	86.6	39.18

Post-Test Analyzer System Bias

System Bias Zero	.08	.03	.05	-1.5	12.07
System Bias Span	12.77	8.11	17.05	86.8	39.49

Post-Test Analyzer Calibration

Zero			.06		.08
Mid Span		17.11 → 83.78	4	44.39	
High Span		43.76 17.11		64.41 64.9	

Test Results Summary

	O ₂ (%)	CO ₂ (%)	NO _x (ppm)	CO (ppm)	SO ₂ (ppm)
Raw Average					44.5
Corrected Average					-1.26

SCEC

CONTINUOUS EMISSIONS MONITORING SYSTEM TEST DATA

Job Number: 2-CEM-Out
Client: SCS Engineers
Location: OTAY
Unit: Zink
DAS File:
El Meter St:

Date: 7/29/04
Condition: Norm
Operator: DE
Barometric: 29.85

Fuel Meter End: _____

Gas Temperatures

Stack Knockout: 40 °F
Ambient: 85 °F
Chiller: 0-2 °C

Post-Test Analyzer System Bias

System Bias Zero	.11	.03	.05	-1.5	.02
System Bias Span	12.77	7.98	16.75	86.6	39.04

Post-Test Analyzer Calibration

Zero						37.04
Mid Span						
High Span						

Test Results Summary

	O ₂ (%)	CO ₂ (%)	NO _x (ppm)	CO (ppm)	SO ₂ (ppm)
Raw Average					
Corrected Average					

SCEC
CONTINUOUS EMISSIONS MONITORING SYSTEM TEST DATA

est Number: 3-CEM-Out
Client: SCS Engineers
Location: OTAY
Unit: 2in b
DAS File: —
el Meter St: —

Date: 7/29/04
Condition: Norm.
Operator: DE
Barometric: 29.85

Fuel Meter End:

Gas Temperatures

Stack: 1650 bottom T-C. Stack Knockout: 50° E
Probe: — Ambient: 85° F
Heated Line: — Chiller: 2° C

	Analyzer Values					NO ₂ (ppm)
	O ₂ (%)	CO ₂ (%)	NO _x (ppm)	CO (ppm)	SO ₂ (ppm)	
Analyzer Span Range	20	20	50	000	000	
Mid Span Cal Gas Value	12.8	8.11	17.49	86.57		
High Span Cal Gas Value	20.95	15.90	43.94	120.1	39.3	
As Found Analyzer Readings						
Zero						
Mid Span						
High Span						

		Post-Test Analyzer System Bias				
System Bias Zero	0.11	.05	-.01	-1.1	.08	
System Bias Span	12.76	8.12	16.91	87.2	39.39	
Post-Test Analyzer Calibration					1.86	1
Zero	.06	0.12	-.01	-1.1	.08	
Mid Span	12.81	8.24	16.85	87.6	16.13	
High Span	20.88	15.89	673.15	171.1	13.44	
	Test Results Summary @ 31.3					44.15
	O ₂ (%)	CO ₂ (%)	NO _x (ppm)	CO (ppm)	SO ₂ (ppm)	
Raw Average						
Corrected Average						43.04

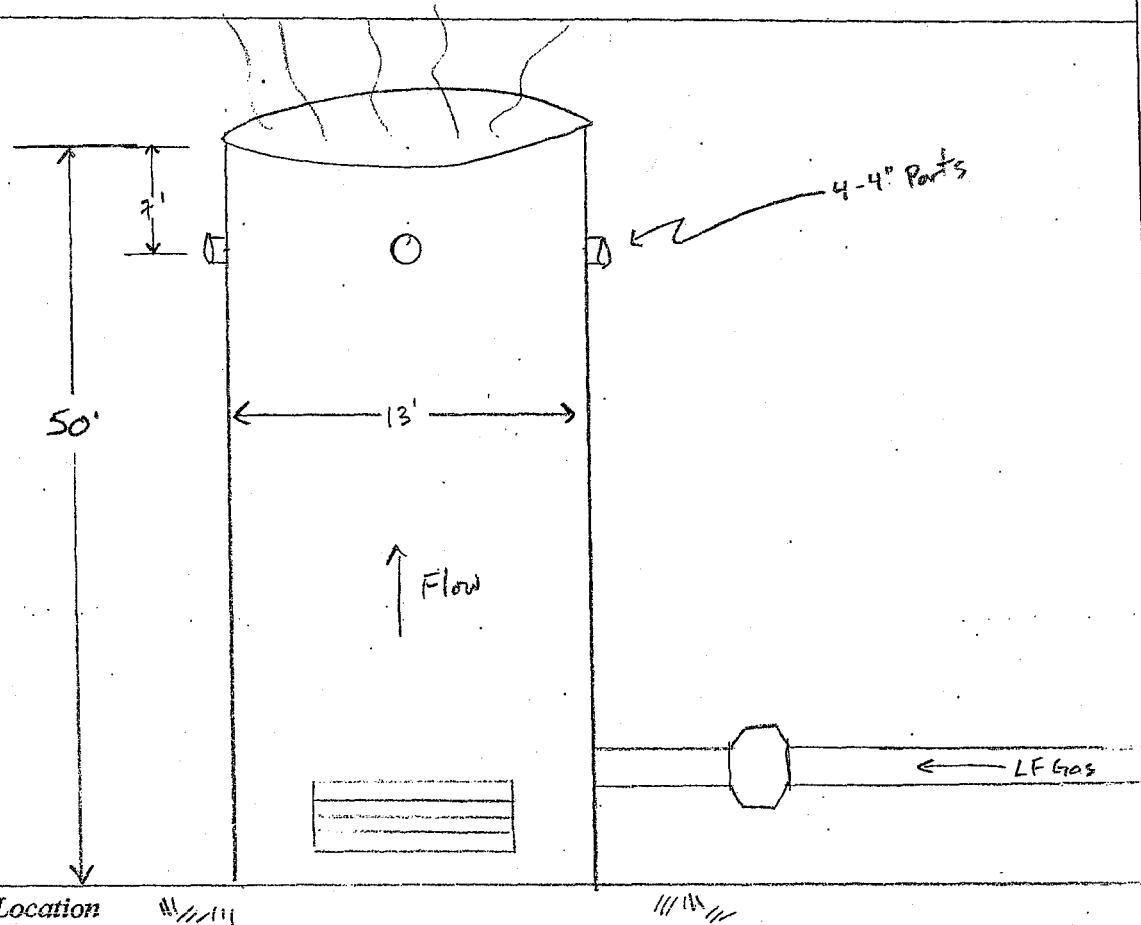
OTAY FLARE
July 29, 2004
RAW DAS DATA - COMPLIANCE RUN 1

DATA PT	DATE	TIME	O2 % VD	CO2 % VD	NOX PPMVD	CO PPMVD	NO PPMVD
1	07/29	12:48:47	12.36	7.29	26.87	-2.5	12.55
2	07/29	12:49:47	12.37	7.82	16.03	-3.9	14.90
3	07/29	12:50:47	12.33	7.86	16.23	-4.1	15.14
4	07/29	12:51:47	13.08	7.00	14.63	-3.3	13.51
5	07/29	12:52:47	12.51	7.81	13.89	-2.5	13.26
6	07/29	12:53:47	12.42	7.85	14.83	-3.3	14.00
7	07/29	12:54:47	11.93	7.92	15.23	-3.9	14.71
8	07/29	12:55:47	10.98	8.85	17.17	-4.1	16.85
9	07/29	12:56:47	10.91	9.15	18.49	-4.1	18.16
10	07/29	12:57:47	12.92	7.05	14.68	5.5	13.55
11	07/29	12:58:47	17.76	0.43	13.53	30.5	12.91
12	07/29	12:59:47	20.92	0.08	0.71	-1.3	0.35
13	07/29	13:00:47	20.93	0.10	0.52	-1.5	0.25
14	07/29	13:01:47	13.15	7.13	13.18	-1.7	13.85
15	07/29	13:02:47	13.15	7.03	14.14	-2.9	13.91
16	07/29	13:03:47	12.93	7.39	14.49	-3.5	14.11
28	07/29	13:04:47	12.21	8.04	16.29	-4.1	16.10
29	07/29	13:05:47	12.09	7.94	17.13	-3.9	16.70
30	07/29	13:06:47	13.61	6.59	14.63	10.5	13.85
31	07/29	13:07:47	13.54	6.86	12.43	48.1	11.11
32	07/29	13:08:47	12.10	8.15	14.64	6.1	15.35
33	07/29	13:09:47	13.08	7.19	15.88	-3.9	15.99
34	07/29	13:10:47	13.58	6.65	12.90	11.5	10.81
35	07/29	13:11:47	15.89	2.09	12.64	9.7	12.61
36	07/29	13:12:47	20.92	0.06	0.62	-1.3	0.31
37	07/29	13:13:47	20.93	0.12	0.37	-1.3	0.20
38	07/29	13:14:47	20.93	0.02	0.32	-1.3	0.15
39	07/29	13:15:47	20.93	-0.03	0.27	-1.5	0.15
40	07/29	13:16:47	20.93	-0.07	0.22	-1.3	0.10
41	07/29	13:17:47	20.93	0.04	0.27	-1.3	0.15
42	07/29	13:18:47	20.93	0.05	0.22	-1.3	0.11
43	07/29	13:19:47	20.94	0.02	0.17	-1.4	0.11
44	07/29	13:20:47	17.40	5.88	0.17	-1.5	0.05
45	07/29	13:21:47	13.31	6.97	11.32	-3.7	11.75
46	07/29	13:22:47	13.60	6.78	11.37	-2.9	10.96
47	07/29	13:23:47	12.55	7.45	12.38	-3.9	12.35
48	07/29	13:24:47	12.14	7.92	13.89	-4.1	14.07
49	07/29	13:25:47	13.70	6.42	12.09	-3.1	11.51
50	07/29	13:26:47	14.23	6.12	9.28	9.7	7.92
51	07/29	13:27:47	14.65	4.95	9.42	-1.7	10.01
52	07/29	13:28:47	14.19	5.89	9.92	-3.5	9.76
53	07/29	13:29:47	14.12	6.59	9.83	-3.2	9.36
54	07/29	13:30:47	17.19	2.46	9.02	-3.1	8.12

OTAY FLARE
July 29, 2004
RAW DAS DATA - COMPLIANCE RUN 3

DATA PT	DATE	TIME	O2 % VD	CO2 % VD	NOX PPMVD	CO PPMVD	NO PPMVD
1	07/29	15:45:35	12.89	7.19	15.13	-3.5	14.21
2	07/29	15:46:35	13.05	7.01	14.14	-1.7	13.20
3	07/29	15:47:35	12.90	7.26	13.58	-2.3	13.41
4	07/29	15:48:35	12.84	7.36	13.48	-2.3	13.15
5	07/29	15:49:35	11.31	8.62	16.48	-3.7	16.19
6	07/29	15:50:35	11.76	8.39	15.08	-3.5	14.91
7	07/29	15:51:35	11.27	9.00	15.98	-3.9	15.50
8	07/29	15:52:35	11.10	9.04	17.13	-3.9	16.46
9	07/29	15:53:35	11.31	8.66	16.69	-3.5	16.06
10	07/29	15:54:35	12.09	7.97	16.19	-3.7	15.20
11	07/29	15:55:35	20.89	0.04	0.57	-2.1	0.25
12	07/29	15:56:35	20.91	0.08	0.22	-1.1	0.11
13	07/29	15:57:35	12.24	7.87	16.24	-3.1	16.05
14	07/29	15:58:35	12.58	7.53	16.48	-3.7	15.95
15	07/29	15:59:35	12.86	7.33	14.98	-3.5	14.71
16	07/29	16:00:35	12.33	7.79	14.59	-3.1	15.19
25	07/29	16:01:35	12.58	7.51	15.98	-3.5	15.50
26	07/29	16:02:35	12.42	7.84	15.29	-2.7	14.95
27	07/29	16:03:35	11.91	8.18	16.29	-3.5	16.30
28	07/29	16:04:35	11.37	8.73	16.63	-3.7	17.15
29	07/29	16:05:35	12.22	7.70	17.89	-3.9	17.31
30	07/29	16:06:35	11.92	8.14	17.29	-3.5	17.15
31	07/29	16:07:35	20.89	0.06	0.47	-1.7	0.20
32	07/29	16:08:35	20.91	0.02	0.17	-1.3	0.10
33	07/29	16:09:35	20.92	0.05	0.13	-1.3	0.06
34	07/29	16:10:35	20.92	0.07	0.17	-0.9	0.11
35	07/29	16:11:35	20.92	0.09	0.07	-1.1	0.05
36	07/29	16:12:35	20.92	0.05	0.07	-1.3	0.05
37	07/29	16:13:35	20.92	0.07	0.02	-1.1	-0.01
38	07/29	16:14:35	20.92	0.01	0.02	-1.3	-0.01
39	07/29	16:15:35	20.92	0.01	-0.04	-1.1	-0.01
40	07/29	16:16:35	20.92	0.08	-0.04	-0.9	-0.01
42	07/29	16:17:35	20.92	0.06	-0.04	-1.1	-0.01
43	07/29	16:18:35	20.92	0.03	-0.04	-1.1	-0.01
44	07/29	16:19:35	20.93	0.10	-0.03	-1.3	0.00
45	07/29	16:20:35	20.91	0.01	-0.09	-1.3	-0.01
46	07/29	16:21:35	16.82	6.35	-0.14	-1.3	0.40
47	07/29	16:22:35	11.50	8.31	16.09	-3.5	16.06
48	07/29	16:23:35	12.42	7.47	15.03	-3.7	15.06
49	07/29	16:24:35	14.03	6.20	11.63	4.5	10.72
50	07/29	16:25:35	14.02	6.38	8.68	117.4	8.42
51	07/29	16:26:35	12.54	7.56	14.34	13.5	13.91
52	07/29	16:27:35	13.23	6.79	13.34	-3.7	12.80

53	07/29	16:28:35	13.70	6.48	10.57	4.9	10.52
54	07/29	16:29:35	13.69	6.61	10.76	2.1	10.61
55	07/29	16:30:35	12.75	7.25	12.03	-2.5	12.26
56	07/29	16:31:35	20.77	0.08	3.86	-3.0	4.80
57	07/29	16:32:35	19.60	2.64	0.12	-0.9	0.10
58	07/29	16:33:35	13.35	6.88	10.27	40.6	10.57
59	07/29	16:34:35	12.19	7.90	15.23	3.7	15.55
60	07/29	16:35:35	12.11	8.00	15.74	-3.7	15.70
61	07/29	16:36:35	11.99	7.99	17.34	-3.5	16.66
62	07/29	16:37:35	12.80	7.23	13.89	3.1	13.72
63	07/29	16:38:35	12.51	7.57	14.64	-0.3	14.21
64	07/29	16:39:35	11.86	8.30	15.78	-2.7	15.50
65	07/29	16:40:35	12.25	7.72	15.58	-3.1	15.14
66	07/29	16:41:35	11.78	8.30	15.24	-2.9	16.25
67	07/29	16:42:35	11.55	8.72	16.78	-3.7	16.85
68	07/29	16:43:35	20.82	0.07	3.42	-2.7	2.75
			12.37	7.73	14.95	1.31	14.70


SCEC

Method 1: SAMPLE POINT LOCATION

Client/Facility: SCS Field Services / Otay
 Sample Location: Otay Landfill
 Unit ID: John Zink

Date: 6/30/04
 Data By: LAS

Barometric (in Hg): -

Duct Dimension: 13'
 Duct Area: 132.7 ft²
 Upstream Dst/Dia: ⁽¹⁾ 7' / 0.5 dia
 Downstream Dst/Dia: ⁽²⁾ 43' / 3.3 dia
 Port Length: ⁽³⁾ 4"
 Port Diameter: 4"
 Number of Points: 16
 Number of Points Per Port: 4

From sample point to disturbance in direction of flow
 From disturbance to sample point in direction of flow
 Measurement from inner stack wall to end of port

Sample Point	% of Stack Diameter	Position in Stack (in)	Inches from Outside of Port
1	3.2	5.0	
2	10.5	16.4	
3	19.4	30.3	
4	32.3	50.4	
5			
6			
7			
8			
9			
10			
11			
12			

Method 1: Sample Point Location
 For Circular Stacks:

Test No.:	1-H ₂ O-Out	Date:	7/29/04	IMPINGER DATA					SAMPLE TRAIN LEAK CHECK			
Client:	SCS Eng. Zink	Barometric:	29.85	Imp. #	Mat'l	Final WT	Int. WT	Net WT		CFM	Vac	By:
Test Location:	OTAY Mtn	Meter ID:	CB#8	1	H ₂ O	592.1	550.7		Meter Pre-Test	.003	10 ⁴	82
Test Condition:	norm	Meter Yd:	CB#8 0.997	2	H ₂ O	570.9	570.0		Meter Post-Test	.003	10 ³	
Test Method:	epo 4	Meter ^H @:	174 17812	3	-	487.9	487.3		Check	Press.		By:
Stack Diameter:	13'	Pilot ID:	34F#34	4	SG	816.7	812.4		Pilot Pre-Test	✓		
No. of Points:	single	Pilot Coef.:	-822 812	5					Pilot Post-Test	✓		
Sample Time:	30 min	Probe Length/Mat'l:	9' gate	6					SAMPLE TRAIN PRE-TEST CHECK			
Per-Point:	30	Nozzle Diameter/Mat'l:	1/8	7					Time	^H	Meter Reading	Temp.
Isokinetic Factor:	0	Assumed Stack Temp.:	1500	Total					Initial			
		Assumed Meter Temp.:	83	Filter No.:					Final			

TEST DATA																
SAMPLE POINT	TIME	METER CONDITIONS			STACK	TEMPERATURES, °F					VAC	O ₂	STATIC PRESS.	SAMPLE TRAIN OPERATION		
		^P	^H	READING		METER		IMP. OUT	PROBE	OVEN				O ₂	PRESS.	Operator:
						INLET	OUTLET									BC
W 000	000	2.0	318.18	2	83	81	16			3			Imp. Setup/Recovery:			
	1000	"	326.3		84	81	64			3			Comments:			
	2000	"	334.7		84	81	64			3						
	3000		342.860													
													TEST SUMMARY			
													Calculated by: DE			
													Time:			
													Static:			
													Stack Temp.:			
													^P in. H ₂ O:			
													O ₂ /CO ₂ :			
													Meter Vol. (acf): 24.742			
													Meter Temp.: 82.33			
													Meter Press.: 2.0			
													Liquid Vol.: 47.2			

SCEC
1582-1 NORTH BATAVIA
ORANGE, CA 92667

6

STACK GAS VELOCITY AND TEMPERATURE DATA SHEET

FACILITY	STACK LF	MOISTURE CONTENT	360
SOURCE	EMC FLARE	STACK DIAMETER	13"
DATE	7/29/64	STATIC PRESSURE	-0.06
RUN NO	1	DRY MOLECULAR WEIGHT	812
PROJECT NO.	2120 1005	PILOT COEFFICIENT	0
BAROMETRIC PRESSURE	29.85	TEST TIME: START	30
TOTAL TRAVERSE POINTS	16	END	

SAMPLE POINT	DELTA P (INCHES H2O)	STACK TEMPERATURE (DEGREE F)
44 (N)		
1 9	.024	1412
1 3	.028	1408
3 2	.014	1459
4 1	.014	1468
5 9	.020	1479
8 3	.022	1439
7 2	.020	1504
8 1	.020	1524
8 4	.015	1457
10 3	.019	1447
11 2	.016	1381
12 1	.016	1384
14 4	.018	1338
12 3	.024	1493
8 2	.020	1422
4 1	.022	1418
5		
6		
7		
8		
9		
10		
11		
12	ND = 0.13776	
AVERAGE	.0190	1446.63

Test No.: Z-H2O-Dut		Date: 7/29/04		IMPINGER DATA					SAMPLE TRAIN LEAK CHECK			
Client: SES Eng.		Barometric:	29.85	Imp. #	Mat'l	Final WL	Int. WL	Net WL		CFM	Vac	By:
Test Location: OTAY Flare Zirk		Meter ID:	OB #9	1	H2O	663.5	609.1		Meter Pre-Test	.001	10 ³	BC
Test Condition: norm		Meter Yd: 997 1744 1.66		2	H2O	656.9	654.7		Meter Post-Test	.001	"	
Test Method: ep29		Meter ^H @:	1.716	3	-	453.2	452.5		Check	Press.	By:	
Stack Diameter: 13'		Pilot ID:	F #34	4	SG	790.7	785.4		Pilot Pre-Test			
No. of Points: 0		Pilot Coef.:	.812	5					Pilot Post-Test			
Sample Time: 30 min		Probe Length/Mat'l:	9' /quarts	6					SAMPLE TRAIN PRE-TEST CHECK			
Per-Point: 30		Nozzle Diameter/Mat'l:	n/a	7					Time	^H	Meter Reading	Temp.
Isokinetic Factor: n/a		Assumed Stack Temp.:	1500	Total					Initial			
		Assumed Meter Temp.:	23	Filter No.:					Final			

TEST DATA

SAMPLE POINT	TIME	METER CONDITIONS			TEMPERATURES, °F					STATIC O ₂	PRESS.	SAMPLE TRAIN OPERATION		
		^P	^H	METER READING	STACK	METER INLET	OUTLET	IMP. OUT	PROBE	OVEN		Operator: BC	Assistant:	
	000		2.0	392.970		82	81	106			3		Imp. Setup/Recovery:	
	1000		"	350.4		81	81	9			3		Comments:	
	2000			350.1		81	81	+			3			
	3000			369.995										
TEST SUMMARY														
													Calculated by: DE	
													Time:	
													Static:	
													Stack Temp.:	
													^P In. H ₂ O:	
													O ₂ /CO ₂ :	
													Meter Vol. (acf):	26.525
													Meter Temp.:	82.83
													Meter Press.:	2.0
													Liquid Vol.:	62.6

SCEC
1582-1 NORTH BATAVIA
ORANGE, CA 92667

(2)

STACK GAS VELOCITY AND TEMPERATURE DATA SHEET

FACILITY SOURCE	OT94 LF	MOISTURE CONTENT	3%
DATE	8/29/04	STACK DIAMETER	15"
RUN NO.	2	STATIC PRESSURE	-.06
PROJECT NO.	2170 1005	DRY MOLECULAR WEIGHT	.812
BAROMETRIC PRESSURE	29.85	PITOT COEFFICIENT	0
TOTAL TRAVERSE POINTS	16	TEST TIME: START	30

SAMPLE POINT	DELTA P (INCHES H2O)	STACK TEMPERATURE (DEGREE F)
8 4	.027	1350
2 3	.030	1453
8 1	.020	1464
4 1	.022	1466
5 4	.012	1392
8 3	.008	1411
2 2	.010	1412
8 1	.015	1443
9 1	.022	1433
10 3	.028	1443
11 2	.028	1492
12 1	.027	1522
8 4	.022	1496
2 3	.025	1429
8 2	.024	1494
9 1	.029	1428
5		
6		
7		
8		
9		
10		
11		
12	0.0456	
AVERAGE	.0212	1442.13

Test No.: 3-H2O -Out		Date: 7/29/04	IMPINGER DATA					SAMPLE TRAIN LEAK CHECK			
Client: SCS Engineers	Barometric:	29.85	Imp. #	Mat'l	Final Wt	Int. Wt	Net Wt		CFM	Vac	By:
Test Location: OTAY Zink	Meter ID:	CS#8	1	H2O	645.7	592.1		Meter Pre-Test	000	10 ³	BC
Test Condition: Norm	Meter Yd:	1.244 .997	2	H2O	573.4	570.9		Meter Post-Test	000	10 ²	
Test Method: EPA 4	Meter ^H @:	1.716	3	~	488.5	487.9		Check	Press.	By:	
Stack Diameter: 13'	Pilot ID:	F#34	4	SG	820.5	816.7		Pilot Pre-Test			
No. of Points: 1	Pilot Coef.:	.812	5					Pilot Post-Test			
Sample Time: 30 min	Probe Length/Mat'l:	9' quartz	6					SAMPLE TRAIN PRE-TEST CHECK			
Per-Point: 30	Nozzle Diameter/Mat'l:	n/a	7					Time	^H	Meter Reading	Temp.
Isokinetic Factor: 1/2	Assumed Stack Temp.: 1500	Total					Initial				
	Assumed Meter Temp.: 93	Filter No.:					Final				

TEST DATA

SCEC
1582-1 NORTH BATAVIA
ORANGE, CA 92667

(3)

STACK GAS VELOCITY AND TEMPERATURE DATA SHEET

FACILITY	0744	MOISTURE CONTENT	370
SOURCE	ZINC	STACK DIAMETER	13
DATE	7/21/07	STATIC PRESSURE	±0.00
RUN NO.	3	DRY MOLECULAR WEIGHT	.812
PROJECT NO.	2170 1005	PITOT COEFFICIENT	0
BAROMETRIC PRESSURE	29.85	TEST TIME: START	30
TOTAL TRAVERSE POINTS	16	END	

BC

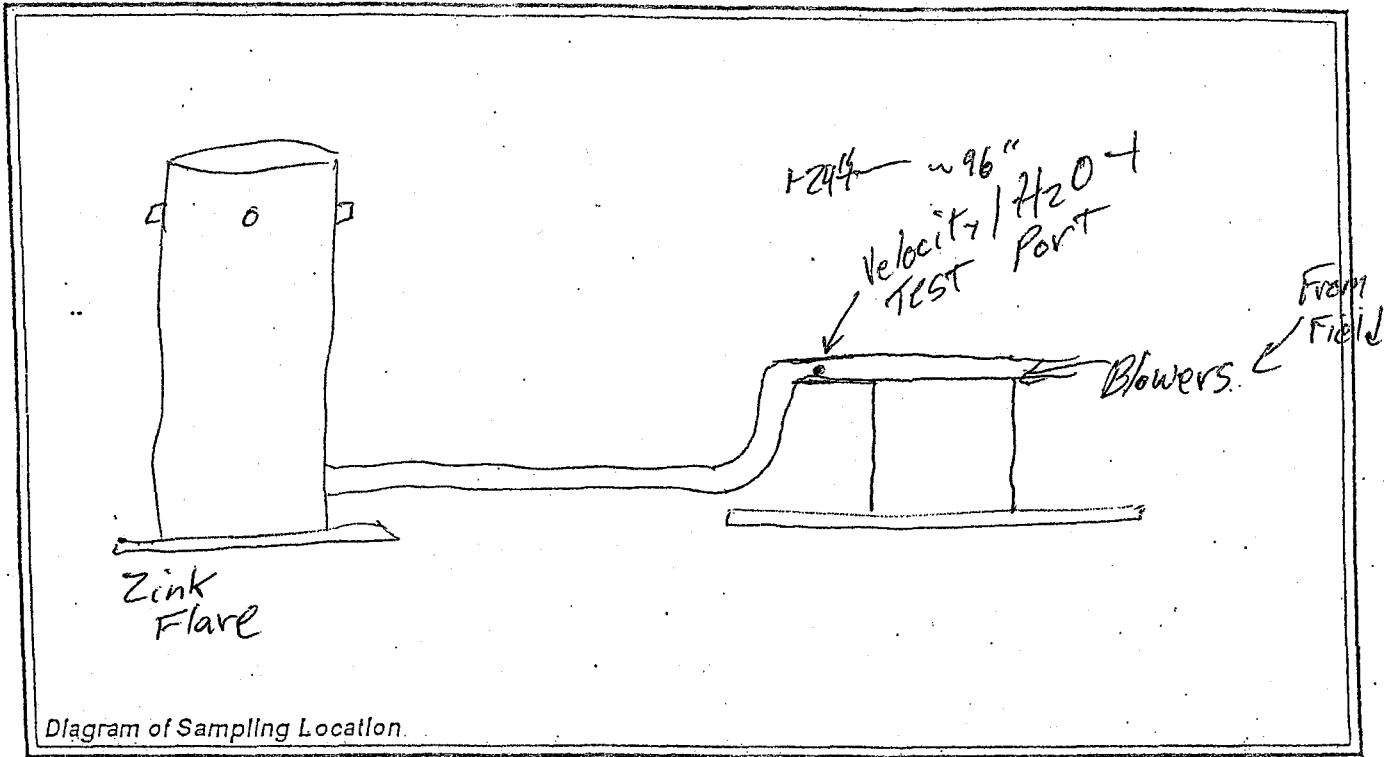
Port W

SAMPLE POINT	DELTA P (INCHES H2O)	STACK TEMPERATURE (DEGREE F)
x 4	.020	1460
x 3	.030	1433
x 2	.015	1470
x 1	.012	1509
8 4	.024	1427
8 3	.025	1475
8 2	.028	1404
8 1	.015	1415
8 9	.010	1447
10 3	.010	1493
11 2	.005	1436
12 1	.005	1403
x 4	.024	1432
x 3	.019	1429
x 2	.024	1450
x 1	.025	1395
5		
6		
7		
8		
9		
10		
11		
12		
AVERAGE	.0178	1445.88

Port N

(3) 20

31


SAMPLING POINT LOCATION DATA - EPA METHOD 1

PLANT: OTAY Zink Flare

DATA BY: DE

DATE: 7/29/04

TEST LOCATION: Inlet

UPSTREAM DIST./DIA.: 24" / 1.5
 DOWNSTREAM DIST./DIA.: 96" / 6
 COUPLING LENGTH: 1"
 NO. OF SAMPLING PTS.: 6 / dia
 STACK DIMENSION: 16"
 STACK AREA, FT²: 1.3963

SAMPLE POINT	% OF DIAMETER	IN. FROM NEAR WALL	IN. FROM NOZZLE
1	4.4	70 (1)	2
2	14.6	2.33	3.33
3	29.6	4.736	5.736
4	70.4	11.26	12.26
5	85.4	13.66	14.66
6	95.6	15.29 (15)	16

*INCHES FROM WALL PLUS
COUPLING LENGTH

Test No.: 1-H2O-In		Date: 7/29/04	IMPINGER DATA					SAMPLE TRAIN LEAK CHECK			
Client: SCS Eng.		Barometric: 29.85	Imp. #	Mat'l	Final WL	Int. WL	Net WL		CFM	Vac	By:
Test Location: OTAY Link Flare		Meter ID: CB6	1	H2O	580.2	553.6		Meter Pre-Test	.006	10	DE
Test Condition: Norm		Meter Yd: 988	2	H2O	586.3	583.2		Meter Post-Test	.004	10	DE
Test Method: 4		Meter ^H @: 60-1.632 / 68-1.655	3	-	485.4	482.9		Check	Press.	By:	
Stack Diameter: 16"		Pilot ID: 10	4	SG	784.0	773.1		Pilot Pre-Test	✓	10	DE
No. of Points: 1		Pilot Coef.: 18114, 827	5					Pilot Post-Test	✓		
Sample Time: 30		Probe Length/Mat'l: —	6					SAMPLE TRAIN PRE-TEST CHECK			
Per-Point: 30		Nozzle Diameter/Mat'l: —	7					Time	^H	Meter Reading	Temp.
Isokinetic Factor: —		Assumed Stack Temp.: —	Total				Initial				
		Assumed Meter Temp.: —	Filter No.:				Final				

TEST DATA

SAMPLE POINT	TIME	METER CONDITIONS			TEMPERATURES, °F						STATIC PRESS.	O ₂	SAMPLE TRAIN OPERATION	
		^P	^H	METER READING	STACK	INLET	OUTLET	IMP. OUT	PROBE	OVEN			Assistant:	
0	22	333.033			89	89	120				1			Imp. Setup/Recovery:
10		343.251			96	95	51				1			Comments:
20		352.215			97	96	65				1			
30		359.665												
														TEST SUMMARY
														Calculated by: DE
														Time:
														Static:
														Stack Temp.:
														^P ln. H ₂ O:
														O ₂ /CO ₂ :
														Meter Vol. (acf): 26.632
														Meter Temp.: 93.33
														Meter Press.: 2.2
														Liquid Vol.: 43.1

SCEC
1582-1 NORTH BATAVIA
ORANGE, CA 92667

STACK GAS VELOCITY AND TEMPERATURE DATA SHEET

FACILITY	OTAY	GCSEng.	MOISTURE CONTENT	
SOURCE	Flare		STACK DIAMETER	16"
DATE	7/29/04		STATIC PRESSURE	3
RUN NO.	1		DRY MOLECULAR WEIGHT	
PROJECT NO.	21701009		PITOT COEFFICIENT	
BAROMETRIC PRESSURE	29.85		TEST TIME: START	
TOTAL TRAVERSE POINTS	4		END	014, 827

SAMPLE POINT	DELTAP (INCHES H2O)	STACK TEMPERATURE (DEGREE F)
1	.18	122
2	.22	122
3	.27	122
4	.28	122
5		
6		
7		
8		
9		
10		
11		
12		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
AVERAGE	.2357	122

14855

Test No.: Z-H2O-In.		Date: 7/29/04		IMPINGER DATA					SAMPLE TRAIN LEAK CHECK			
Client: SCS Eng.	Barometric:			Imp. #	Mat'l	Final WL	Int. WL	Net WL		CFM	Vac	By:
Test Location: OTAK Zink Flare	Meter ID:			1	H2O	609.4	577.1		Meter Pre-Test	.008	11	DE
Test Condition: Norm	Meter Yd:	50		2	H2O	585.2	581.1		Meter Post-Test	.006	10	DE
Test Method: 4	Meter ^H @:	10A		3	-	530.1	528.3		Check	Press.	By:	
Stack Diameter: 16"	Pitot ID:	10A		4	SG	6796	6702		Pitot Pre-Test			
No. of Points: 1	Pitot Coef.:	One		5					Pitot Post-Test			
Sample Time: 30	Probe Length/Mat'l:			6					SAMPLE TRAIN PRE-TEST CHECK			
Per-Point: 30	Nozzle Diameter/Mat'l:			7					Time	^H	Meter Reading	Temp.
Isokinetic Factor: 1	Assumed Stack Temp.:			Total					Initial			
	Assumed Meter Temp.:			Filter No.:					Final			

TEST DATA

SAMPLE POINT	TIME	METER CONDITIONS			TEMPERATURES, °F					STATIC PRESS.	O ₂	SAMPLE TRAIN OPERATION		
		^P	^H	METER READING	STACK	INLET	OUTLET	IMP. OUT	PROBE	OVEN		Assistant:	Operator: DE	
	0	2.2	359.783		89	89	100				1			Imp. Setup/Recovery:
	10	2.2	369.512		93	89	99				1			Comments:
	20		375.625		95	90	98				1			
	30		384.554											
														TEST SUMMARY
														Calculated by: DE
														Time:
														Static:
														Stack Temp.:
														^P in. H ₂ O:
														O ₂ /CO ₂ :
														Meter Vol. (acf): 24.771
														Meter Temp.: 90.83
														Meter Press.: 2.2
														Liquid Vol.: 47.6

SCEC
1582-1 NORTH BATAVIA
ORANGE, CA 92667

STACK GAS VELOCITY AND TEMPERATURE DATA SHEET

FACILITY	OTAY SCS Encl	MOISTURE CONTENT	W3
SOURCE	Zink	STACK DIAMETER	16"
DATE	7/29/04	STATIC PRESSURE	3
RUN NO.	2	DRY MOLECULAR WEIGHT	
PROJECT NO.	2170 1005	PITOT COEFFICIENT	.827
BAROMETRIC PRESSURE	29.85	TEST TIME: START	
TOTAL TRAVERSE POINTS	4	END	

SAMPLE POINT	DELTA P (INCHES H2O)	STACK TEMPERATURE (DEGREE F)
1	.18	125
2	.20	125
3	.28	125
4	.28	125
5		
6		
7		
8		
9		
10		
11		
12		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
AVERAGE	.2328	125

$\sqrt{4824}$

Test No.:		Date:		IMPINGER DATA					SAMPLE TRAIN LEAK CHECK				
Client:	SCS Engineers	Barometric:		Imp. #	Mat'l	Final WL	Int. WL	Net WL		CFM	Vac	By:	
Test Location:	OTAY Zink	Meter ID:		1	H2O	618.9	580.2		Meter Pre-Test	.008	10	DE	
Test Condition:	Norm	Meter Yd:	See	2	H2O	588.8	586.3		Meter Post-Test	.002	10	DE	
Test Method:	Meter ^H @:			3	-	487.2	485.4		Check	Press.	By:		
Stack Diameter:	Pitot ID:	FE05		4	56	790.2	784.0		Pitot Pre-Test	✓	1.0	DE	
No. of Points:	Pitot Coef.:			5					Pitot Post-Test	✓	1.0	DE	
Sample Time:	Probe Length/Mat'l:	One		6					SAMPLE TRAIN PRE-TEST CHECK				
Per-Point:	Nozzle Diameter/Mat'l:			7					Time	^H	Meter Reading	Temp.	
Isokinetic Factor:	Assumed Stack Temp.:			Total					Initial				
	Assumed Meter Temp.:			Filter No.:					Final				

TEST DATA

SCEC

Appendix B
Strip Chart Copies

02/00
one

Zerö:

$$N_{02} = 0.07 \cdot 0.05 = 0.002$$

卷之三

A diagram of a cell with a nucleus and organelles.

卷之三

卷之三

卷之三

卷之三

卷之三

9/15/81.
Or/Co
Mr. M.

co / noth

Hi Cali.

zero 9
Int. Cal

B

26

卷之三

SSC Engineering Flare-Zint 3/27/2014

SYS B.

END RE

60

80

70

60

50

40

30

20

10

0

1. ISBN: 0-87351-022-0
2. Title: *1001 Stories*
3. Author: *Various*
4. Publisher: *DK Publishing*
5. Date: *1995*

B

1

3

1001 Stories
DK Publishing
1995

30/18
2:34
30.84
NO 2 B1

Conn

000

80

70

60

50

40

30

20

10

0

NO 2 B1

000

80

70

60

50

40

30

20

10

0

100
Lat.

NO2
Lat

40.0
1/2
u3,4

100
Lat

NO2

Lat

100

NO BIA

NO BIA

NO BIA

NO BIA
NO BIA
NO BIA

Zero Bias

Zero NO₂ bias -0.04 -0.01 = -0.03

NO₂ bias

NO₂ bias

on Cal's

NO₂ bias

NO₂ bias

Hi Cal

NO₂ bias

NO₂ bias

Recal NO_x

NO_x bias

NO_x bias

NO fast HI

卷之三

Orta
mac

卷之三

$$\text{NO}_2 \text{ zero } 0.07 - 0.05 = 0.02$$

545.1
K5
1907
Tess
2.

B - 6

Cystar NO_2 Br_2

卷之三

200 NO₂ - 600 = 0.03
Endpath Sys B,

0
10
20
30
40
50
60
70
80
90
100

NO₂
B
O₂
CO₂
H₂O
N₂

700
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7400
7600
7800
8000
8200
8400
8600
8800
9000
9200
9400
9600
9800
10000
10200
10400
10600
10800
11000
11200
11400
11600
11800
12000
12200
12400
12600
12800
13000
13200
13400
13600
13800
14000
14200
14400
14600
14800
15000
15200
15400
15600
15800
16000
16200
16400
16600
16800
17000
17200
17400
17600
17800
18000
18200
18400
18600
18800
19000
19200
19400
19600
19800
20000
20200
20400
20600
20800
21000
21200
21400
21600
21800
22000
22200
22400
22600
22800
23000
23200
23400
23600
23800
24000
24200
24400
24600
24800
25000
25200
25400
25600
25800
26000
26200
26400
26600
26800
27000
27200
27400
27600
27800
28000
28200
28400
28600
28800
29000
29200
29400
29600
29800
30000
30200
30400
30600
30800
31000
31200
31400
31600
31800
32000
32200
32400
32600
32800
33000
33200
33400
33600
33800
34000
34200
34400
34600
34800
35000
35200
35400
35600
35800
36000
36200
36400
36600
36800
37000
37200
37400
37600
37800
38000
38200
38400
38600
38800
39000
39200
39400
39600
39800
40000
40200
40400
40600
40800
41000
41200
41400
41600
41800
42000
42200
42400
42600
42800
43000
43200
43400
43600
43800
44000
44200
44400
44600
44800
45000
45200
45400
45600
45800
46000
46200
46400
46600
46800
47000
47200
47400
47600
47800
48000
48200
48400
48600
48800
49000
49200
49400
49600
49800
50000
50200
50400
50600
50800
51000
51200
51400
51600
51800
52000
52200
52400
52600
52800
53000
53200
53400
53600
53800
54000
54200
54400
54600
54800
55000
55200
55400
55600
55800
56000
56200
56400
56600
56800
57000
57200
57400
57600
57800
58000
58200
58400
58600
58800
59000
59200
59400
59600
59800
60000
60200
60400
60600
60800
61000
61200
61400
61600
61800
62000
62200
62400
62600
62800
63000
63200
63400
63600
63800
64000
64200
64400
64600
64800
65000
65200
65400
65600
65800
66000
66200
66400
66600
66800
67000
67200
67400
67600
67800
68000
68200
68400
68600
68800
69000
69200
69400
69600
69800
70000
70200
70400
70600
70800
71000
71200
71400
71600
71800
72000
72200
72400
72600
72800
73000
73200
73400
73600
73800
74000
74200
74400
74600
74800
75000
75200
75400
75600
75800
76000
76200
76400
76600
76800
77000
77200
77400
77600
77800
78000
78200
78400
78600
78800
79000
79200
79400
79600
79800
80000
80200
80400
80600
80800
81000
81200
81400
81600
81800
82000
82200
82400
82600
82800
83000
83200
83400
83600
83800
84000
84200
84400
84600
84800
85000
85200
85400
85600
85800
86000
86200
86400
86600
86800
87000
87200
87400
87600
87800
88000
88200
88400
88600
88800
89000
89200
89400
89600
89800
90000
90200
90400
90600
90800
91000
91200
91400
91600
91800
92000
92200
92400
92600
92800
93000
93200
93400
93600
93800
94000
94200
94400
94600
94800
95000
95200
95400
95600
95800
96000
96200
96400
96600
96800
97000
97200
97400
97600
97800
98000
98200
98400
98600
98800
99000
99200
99400
99600
99800
100000

Sample

NO₂ M₁

CO min

Hi Cal

MCA

Zeros:

$$NO_2 2000 - 0.07 - (-0.001) = 0.06$$


First 16
NO2 0.

B 1 8

NO 0.01

NO 0.01

200 NO2 - 0.02 - (-0.001) = 0.03
Zeros

SCEC

Appendix C

Quality Assurance

CALIBRATION ERROR

FACILITY:	OTAY	DATA FOR SAMPLING RUNS:		RUN 1 INITIAL
SOURCE ID:	FLARE	DATE:		7/29/04
OPERATOR:	DEE	PROJECT No.:		2170.1005
PARAMETER	CYLINDER VALUE	ANALYZER CALIBRATION RESPONSE	ABSOLUTE DIFFERENCE	DIFFERENCE
UNITS	PPMV or % VOL	PPMV or % VOL	PPMV or % VOL	% OF SPAN
O ₂ - FULL SCALE	25.00			
O ₂ - ZERO	0.00	0.08	-0.08	-0.32
O ₂ - MID CAL	12.80	12.84	-0.04	-0.16
O ₂ - HIGH CAL	20.95	20.92	0.03	0.12
CO ₂ - FULL SCALE	20.00			
CO ₂ - ZERO	0.00	-0.05	0.05	0.25
CO ₂ - MID CAL	8.11	8.17	-0.06	-0.29
CO ₂ - HIGH CAL	15.90	15.95	-0.05	-0.25
NO - FULL SCALE	50.00			
NO - ZERO	0.00	-0.01	0.01	0.02
NO - MID CAL	17.29	16.90	0.39	0.78
NO - HIGH CAL	43.00	43.04	-0.04	-0.08
NO ₂ - FULL SCALE	50.00			
NO ₂ - ZERO	0.00	0.02	-0.02	-0.04
NO ₂ - MID CAL	39.30	43.24	-3.94	-7.88
CO - FULL SCALE	200.00			
CO - ZERO	0.00	-1.10	1.10	0.55
CO - MID CAL	86.57	87.00	-0.43	-0.22
CO - HIGH CAL	170.00	170.70	-0.70	-0.35

NOTE: CO₂/O₂ - % VOL AND NO/NO₂/CO - PPMV; ALL ON A DRY BASIS

CALIBRATION ERROR

FACILITY:	OTAY	DATA FOR SAMPLING RUNS:		RUN 1 FINAL/RUN 2 INITIAL
SOURCE ID:	FLARE	DATE:		7/29/04
OPERATOR:	DEE	PROJECT No.:		2170.1005
PARAMETER	CYLINDER VALUE	ANALYZER CALIBRATION RESPONSE	ABSOLUTE DIFFERENCE	DIFFERENCE
UNITS	PPMV or % VOL	PPMV or % VOL	PPMV or % VOL	% OF SPAN
O ₂ - FULL SCALE	25.00			
O ₂ - ZERO	0.00	0.08	-0.08	-0.32
O ₂ - MID CAL	12.80	12.84	-0.04	-0.16
O ₂ - HIGH CAL	20.95	20.92	0.03	0.12
CO ₂ - FULL SCALE	20.00			
CO ₂ - ZERO	0.00	-0.05	0.05	0.25
CO ₂ - MID CAL	8.11	8.17	-0.06	-0.29
CO ₂ - HIGH CAL	15.90	15.95	-0.05	-0.25
NO - FULL SCALE	50.00			
NO - ZERO	0.00	0.01	-0.01	-0.02
NO - MID CAL	17.29	16.85	0.44	0.88
NO - HIGH CAL	43.00	43.05	-0.05	-0.10
NO ₂ - FULL SCALE	50.00			
NO ₂ - ZERO	0.00	0.02	-0.02	-0.04
NO ₂ - MID CAL	39.30	43.24	-3.94	-7.88
CO - FULL SCALE	200.00			
CO - ZERO	0.00	-1.10	1.10	0.55
CO - MID CAL	86.57	87.00	-0.43	-0.22
CO - HIGH CAL	170.00	170.70	-0.70	-0.35

NOTE: CO₂/O₂ - % VOL AND NO/NO₂/CO - PPMV; ALL ON A DRY BASIS

CALIBRATION ERROR

FACILITY:	OTAY	DATA FOR SAMPLING RUNS:		RUN 2 FINAL/RUN 3 INITIAL
SOURCE ID:	FLARE	DATE:		7/29/04
OPERATOR:	DEE	PROJECT No.:		2170.1005
PARAMETER	CYLINDER VALUE	ANALYZER CALIBRATION RESPONSE	ABSOLUTE DIFFERENCE	DIFFERENCE
UNITS	PPMV or % VOL	PPMV or % VOL	PPMV or % VOL	% OF SPAN
O ₂ - FULL SCALE	25.00			
O ₂ - ZERO	0.00	0.08	-0.08	-0.32
O ₂ - MID CAL	12.80	12.84	-0.04	-0.16
O ₂ - HIGH CAL	20.95	20.92	0.03	0.12
CO ₂ - FULL SCALE	20.00			
CO ₂ - ZERO	0.00	-0.05	0.05	0.25
CO ₂ - MID CAL	8.11	8.17	-0.06	-0.29
CO ₂ - HIGH CAL	15.90	15.95	-0.05	-0.25
NO - FULL SCALE	50.00			
NO - ZERO	0.00	-0.01	0.01	0.02
NO - MID CAL	17.29	16.90	0.39	0.78
NO - HIGH CAL	43.00	43.04	-0.04	-0.08
NO ₂ - FULL SCALE	50.00			
NO ₂ - ZERO	0.00	0.02	-0.02	-0.04
NO ₂ - MID CAL	39.30	43.24	-3.94	-7.88
CO - FULL SCALE	200.00			
CO - ZERO	0.00	-1.10	1.10	0.55
CO - MID CAL	86.57	87.00	-0.43	-0.22
CO - HIGH CAL	170.00	170.70	-0.70	-0.35

NOTE: CO₂/O₂ - % VOL AND NO/NO₂/CO - PPMV; ALL ON A DRY BASIS

CALIBRATION ERROR

FACILITY:		OTAY	DATA FOR SAMPLING RUNS:		RUN 3 FINAL
SOURCE ID:		FLARE	DATE:		7/29/04
OPERATOR:		DEE	PROJECT No.:		2170.1005
PARAMETER		CYLINDER VALUE	ANALYZER CALIBRATION RESPONSE	ABSOLUTE DIFFERENCE	DIFFERENCE
UNITS		PPMV or % VOL	PPMV or % VOL	PPMV or % VOL	% OF SPAN
O ₂ - FULL SCALE		25.00			
O ₂ - ZERO		0.00	0.06	-0.06	-0.24
O ₂ - MID CAL		12.80	12.81	-0.01	-0.04
O ₂ - HIGH CAL		20.95	20.88	0.07	0.28
CO ₂ - FULL SCALE		20.00			
CO ₂ - ZERO		0.00	0.12	-0.12	-0.60
CO ₂ - MID CAL		8.11	8.24	-0.13	-0.64
CO ₂ - HIGH CAL		15.90	15.89	0.01	0.05
NO - FULL SCALE		50.00			
NO - ZERO		0.00	-0.01	0.01	0.02
NO - MID CAL		17.29	16.85	0.44	0.88
NO - HIGH CAL		43.00	43.15	-0.15	-0.30
NO ₂ - FULL SCALE		50.00			
NO ₂ - ZERO		0.00	0.08	-0.08	-0.16
NO ₂ - MID CAL		39.30	43.04	-3.74	-7.48
CO - FULL SCALE		200.00			
CO - ZERO		0.00	-1.10	1.10	0.55
CO - MID CAL		86.57	87.60	-1.03	-0.52
CO - HIGH CAL		170.00	171.10	-1.10	-0.55

NOTE: CO₂/O₂ - % VOL AND NO/NO₂/CO - PPMV; ALL ON A DRY BASIS

SYSTEM CALIBRATION BIAS AND DRIFT DATA

FACILITY:		OTAY	DATA FOR SAMPLING RUN:		COMPLIANCE RUN 1			
SOURCE ID:		FLARE	DATE:		07/29/04			
OPERATOR:		DEE	PROJECT No.:		2170.1005			
PARAMETER		ANALYZER CALIBRATION RESPONSE	SYSTEM CALIBRATION	SYSTEM CALIBRATION BIAS	SYSTEM CALIBRATION	SYSTEM CALIBRATION BIAS	CALIBRATION DRIFT	
UNITS	PPMV or % VOL	PPMV or % VOL	% OF SPAN	PPMV or % VOL	% OF SPAN	% OF SPAN	% OF SPAN	
O ₂ - ZERO	0.08	0.10	-0.08	0.08	0.00	0.08		
O ₂ - SPAN	12.84	12.78	0.24	12.77	0.28	0.04		
CO ₂ - ZERO	-0.05	0.02	-0.35	0.03	-0.40	-0.05		
CO ₂ - SPAN	8.17	8.14	0.15	8.11	0.30	0.15		
NO - ZERO	-0.01	0.05	-0.12	0.05	-0.12	0.00		
NO - SPAN	16.90	16.91	-0.02	17.05	-0.30	-0.28		
NO ₂ - ZERO	0.02	0.02	0.00	0.07	-0.10	-0.10		
NO ₂ - SPAN	43.24	36.84	12.80	36.99	12.50	-0.30		
CO - ZERO	-1.10	-1.50	0.20	-1.50	0.20	0.00		
CO - SPAN	87.00	86.60	0.20	86.80	0.10	-0.10		

NOTE: CO₂/O₂ - % VOL AND NO/NO₂/CO - PPMV; ALL ON A DRY BASIS

SYSTEM CALIBRATION BIAS AND DRIFT DATA

FACILITY:	OTAY	DATA FOR SAMPLING RUN:		COMPLIANCE RUN 2			
SOURCE ID:	FLARE	DATE:		07/29/04			
OPERATOR:	DEE	PROJECT No.:		2170.1005			
		INITIAL VALUES		FINAL VALUES			
PARAMETER	ANALYZER CALIBRATION RESPONSE	SYSTEM CALIBRATION RESPONSE	SYSTEM CALIBRATION BIAS	SYSTEM CALIBRATION RESPONSE	SYSTEM CALIBRATION BIAS	CALIBRATION DRIFT	
UNITS	PPMV or % VOL	PPMV or % VOL	% OF SPAN	PPMV or % VOL	% OF SPAN	% OF SPAN	
O ₂ - ZERO	0.08	0.08	0.00	0.11	-0.12	-0.12	
O ₂ - SPAN	12.84	12.77	0.28	12.77	0.28	0.00	
CO ₂ - ZERO	-0.05	0.03	-0.40	0.03	-0.40	0.00	
CO ₂ - SPAN	8.17	8.11	0.30	7.98	0.95	0.65	
NO - ZERO	0.01	0.05	-0.08	0.05	-0.08	0.00	
NO - SPAN	16.85	17.05	-0.40	16.75	0.20	0.60	
NO ₂ - ZERO	0.02	-0.03	0.10	0.02	0.00	-0.10	
NO ₂ - SPAN	43.24	36.89	12.70	37.04	12.40	-0.30	
CO - ZERO	-1.10	-1.50	0.20	-1.50	0.20	0.00	
CO - SPAN	87.00	86.80	0.10	86.60	0.20	0.10	

NOTE: CO₂/O₂ - % VOL AND NO/NO₂/CO - PPMV; ALL ON A DRY BASIS

SYSTEM CALIBRATION BIAS AND DRIFT DATA

FACILITY:	OTAY	DATA FOR SAMPLING RUN:		COMPLIANCE RUN 3			
SOURCE ID:	FLARE	DATE:		07/29/04			
OPERATOR:	DEE	PROJECT No.:		2170.1005			
		INITIAL VALUES		FINAL VALUES			
PARAMETER	ANALYZER CALIBRATION RESPONSE	SYSTEM CALIBRATION RESPONSE	SYSTEM CALIBRATION BIAS	SYSTEM CALIBRATION RESPONSE	SYSTEM CALIBRATION BIAS	CALIBRATION DRIFT	
UNITS	PPMV or % VOL	PPMV or % VOL	% OF SPAN	PPMV or % VOL	% OF SPAN	% OF SPAN	
O ₂ - ZERO	0.08	0.11	-0.12	0.11	-0.12	0.00	
O ₂ - SPAN	12.84	12.77	0.28	12.76	0.32	0.04	
CO ₂ - ZERO	-0.05	0.03	-0.40	0.05	-0.50	-0.10	
CO ₂ - SPAN	8.17	7.98	0.95	8.12	0.25	-0.70	
NO - ZERO	-0.01	0.05	-0.12	-0.01	0.00	0.12	
NO - SPAN	16.90	16.75	0.30	16.91	-0.02	-0.32	
NO ₂ - ZERO	0.02	0.02	0.00	0.03	-0.02	-0.02	
NO ₂ - SPAN	43.24	37.04	12.40	37.53	11.42	-0.98	
CO - ZERO	-1.10	-1.50	0.20	-1.10	0.00	-0.20	
CO - SPAN	87.00	86.60	0.20	87.20	-0.10	-0.30	

NOTE: CO₂/O₂ - % VOL AND NO/NO₂/CO - PPMV; ALL ON A DRY BASIS

SCOTT-MARRIN, INC.

6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507
TELEPHONE (909) 653-6780 • FAX (909) 653-2430

REPORT OF ANALYSIS

SCEC01
TO: Bipul Saraf
SCEC, Air Quality Specialists
1582-1 N Batavia St
Orange CA 92867

DATE: 6/22/04

CUSTOMER ORDER NUMBER: 3167

CYLINDER NUMBER: CC114789

COMPONENT	CONCENTRATION(v/v)	NIST TRACEABLE REFERENCE STANDARD
Nitrogen Dioxide	39.3 ± 0.8 ppm	SRM 1683a
Nitrogen	Balance	

Reanalysis

Shelf life = 6 months

ppm = μ mole/mole % = mole-%

Cylinder Pressure: 1400 psig

The above analyses are traceable to the National Institute of Standards and Technology by intercomparison with the reference standards listed above.

Where indicated, volumetric and gravimetric reference standards are traceable thru use of our analytical balance NIST Weight Report No. MMAP 232.09/202491.

ANALYST

B.M. Marrin

APPROVED

J.T. Marrin

Certificate of Analysis EPA Protocol Gas Mixture

Cylinder No: CC46715 Reference Number: 48-68896800-002
Cylinder Pressure: 2,014 psig Expiration Date: 12/22/2006
Certification Date: 12/22/2003 Laboratory: ASG - LA

Certified Concentrations

Component	Concentration	Accuracy	Analytical Principle	Procedure
Oxygen	7.996%	+/- 0.01%	PARAMAGNETIC	CL
Carbon Dioxide	15.90%	+/- 0.1%	NDIR	CL
Nitrogen	Balance	-	-	-

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences.

Notes:

Do not use cylinder below 150 psig.

Approved for Release

Reference Standard Information

Type	Component	Cyl. Number	Concentration
NTRM 82745	Carbon Dioxide	CC55225	22.06 PERCENT
NTRM 40212	Oxygen	CC109004	10.00 PERCENT

Analytical Results

Certificate of Analysis EPA Protocol Gas Mixture

Cylinder No: CC12956 Reference Number: 48-77033000-001
Cylinder Pressure: 2,013 psig Expiration Date: 02/25/2007
Certification Date: 02/25/2004 Laboratory: ASG - LA

Certified Concentrations

Component	Concentration	Accuracy	Analytical Principle	Procedure
Carbon Dioxide	8.111%	+/- 1%	NDIR	G1
Oxygen	12.80%	+/- 1%	PARAMAG	G1
Nitrogen	Balance	+/- 1%		

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed.
Analytical Methodology does not require correction for analytical interferences.

Notes:

Do not use cylinder below 150 psig.

Approved for Release

Reference Standard Information

Type	Component	Cyl. Number	Concentration
NTRM 40311	Oxygen	CC96415	20.01 PERCENT
NTRM 404	Carbon Dioxide	CC113747	7.061 PERCENT

Analytical Results

1st Component							2nd Component						
Carbon Dioxide							Oxygen						
1st Analysis Date:	02/25/2004						1st Analysis Date:	02/25/2004					
R	64.20	S	73.75	Z	0.0000	Conc	8.111 %	R	90.00	S	57.55	Z	0.0000
S	73.75	Z	0.0000	R	64.20	Conc	8.111 %	S	57.55	Z	0.0000	R	90.00
Z	0.0000	R	64.20	S	73.75	Conc	8.111 %	Z	0.0000	R	90.00	S	57.55
						AVG:	8.111 %						Conc
													12.80 %
													Conc
													12.80 %
													AVG:
													12.80 %

Certificate of Analysis EPA Protocol Gas Mixture

Cylinder No: CC171401 Reference Number: 48-68896500-002
Cylinder Pressure: 2,013 psig Expiration Date: 12/31/2006
Certification Date: 12/31/2003 Laboratory: ASG - LA

Certified Concentrations

Component	Concentration	Accuracy	Analytical Principle	Procedure
Carbon Monoxide	170.0 PPM	+/- 10%	NDIR	G1
Nitrogen	Balance			

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences.

Notes:

Do not use cylinder below 150 psig.

Approved for Release

Reference Standard Information

Type	Component	Cyl. Number	Concentration
NTRM 81639	Carbon Monoxide	SG9196935B	244.7 PPM

Analytical Results

1st Component

Carbon Monoxide

1st Analysis Date: 12/23/2003
R 96.90 S 67.00 Z 0.0000 Conc 169.2 PPM
S 67.00 Z 0.0000 R 96.90 Conc 169.2 PPM
Z 0.0000 R 96.90 S 67.00 Conc 169.2 PPM
AVG: 169.2 PPM

2nd Analysis Date: 12/31/2003
R 96.50 S 67.30 Z 0.0000 Conc 170.7 PPM
S 67.30 Z 0.0000 R 96.50 Conc 170.7 PPM
Z 0.0000 R 96.50 S 67.30 Conc 170.7 PPM
AVG: 170.7 PPM

Certificate of Analysis EPA Protocol Gas Mixture

Cylinder No: CC97580
Cylinder Pressure: 2,013 psig
Certification Date: 02/17/2004

Reference Number: 48-75558300-004
Expiration Date: 02/17/2007
Laboratory: ASG - LA

Certified Concentrations

Component	Concentration	Accuracy	Analytical Principle	Procedure
Carbon Monoxide	86.57 PPM	+/- 1.0%	NDIR	Gas Chromatography
Nitrogen	Balance	+/- 0.5%		

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed.
Analytical Methodology does not require correction for analytical interferences.

Notes:

Do not use cylinder below 150 psig.

Approved for Release

Reference Standard Information

Type	Component	Cyl. Number	Concentration
GMIS 6	Carbon Monoxide	CC16173	195.8 PPM

Analytical Results

1st Component

Carbon Monoxide							
1st Analysis Date:						02/10/2004	
R	96.80	S	42.80	Z	0.0000	Conc	86.57 PPM
S	42.80	Z	0.0000	R	96.80	Conc	86.57 PPM
Z	0.0000	R	96.80	S	42.80	Conc	86.57 PPM
					AVG:	86.57 PPM	
2nd Analysis Date:						02/17/2004	
R	96.80	S	42.80	Z	0.0000	Conc	86.57 PPM
S	42.80	Z	0.0000	R	96.80	Conc	86.57 PPM
Z	0.0000	R	96.80	S	42.80	Conc	86.57 PPM
					AVG:	86.57 PPM	

rgas

specialty Gases

Alameda Street
Los, CA 90059-2130
1-6891
(310) 567-3686

Certificate of Analysis: E.P.A. Protocol Gas Mixture

Customer:	Airgas West Inc.	P.O.:	374326-Long Beach
Cylinder No :	CC71800	Order No.	437194-01
Cylinder Pressure:	2000 PSIG	Expiration Date:	7/14/05
Certification Date	7/14/03	Laboratory:	LOS ANGELES

Reference Standard Information:

Type	Component	Cyl. Number	Concentration
NTRM 01040303	Nitric oxide	CC18409	96.4 PPM

Instrumentation:

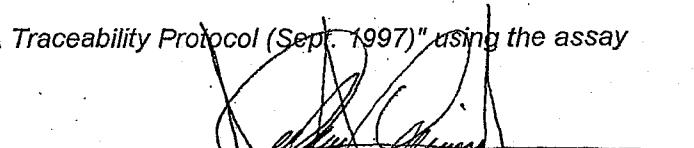
Instrument/Model/Serial No.	Analytical Principle
Siemens/Ultramat 5E	NDIR

Analytical Methodology does not require correction for analytical interferences.

Certified Concentrations:

Component	Concentration	Accuracy	Procedure
Nitric oxide	43.0 PPM	+/- 1%	C1
NO _x	43.4 PPM		
Nitrogen	Balance		

Analytical Results:


1st Component:

1st Analysis Date:	7/7/03				
R	96.400	S	43.200	Z	0.000
S	43.200	Z	0.000	R	96.400
Z	0.000	R	96.400	S	43.200
				Conc	43.200 PPM
				Conc	43.200 PPM
				Conc	43.200 PPM
				AVG:	43.200 PPM

2nd Analysis Date:	7/14/03				
R	96.400	S	42.800	Z	0.000
S	42.800	Z	0.000	R	96.400
Z	0.000	R	96.400	S	42.800
				Conc	42.800 PPM
				Conc	42.800 PPM
				Conc	42.800 PPM
				AVG:	42.800 PPM

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed.

Do not use cylinder below 150 psig.

Approved for Release

Certificate of Analysis: E.P.A. Protocol Gas Mixture

Certification performed in accordance with "EPA Traceability Protocol (Sept.1997)"
 using assay procedures listed.

Cylinder No: **SC91E2011BAE**
 Certification Date: **03/24/2003**
 Cylinder Pressure: **2000**

Order No: **1279319-00**
 Expiration Date: **03/24/2005**
 Part No: **E02N199E15AC240**

*Do not use cylinder below 150 psig.

Component	Certified Concentration	Unit of Measure	Accuracy	Procedure	Analytical Principle
Nitric Oxide	17.29	ppm	±1%	GSP	Chemiluminescence
Nitrogen	Balance				
Nox	17.40	ppm			

(Reference Value Only)

Reference Standard Information

Type	Component	Concentration	Unit	Cylinder Number
NTRM	Nitric Oxide	18.12	ppm	SC91E0140BAE

Analytical Data

Component 1

Nitric Oxide

1st Analysis Date:

03/27/2003

Zero 0.000

Cand

16.880

Ref

17.880

Zero 0.000

Cand

16.950

Ref

17.880

Zero 0.000

Cand

16.930

Ref

17.880

2nd Analysis Date:

03/24/03

Zero 0.000

Cand

17.180

Ref

17.880

Zero 0.000

Cand

17.150

Ref

17.880

Zero 0.000

Cand

17.100

Ref

17.900

Analyzed by:

S. Bahr

2/17/04

SEMI-ANNUAL METER BOX CALIBRATION DATA AT STANDARD TEMPERATURE OF 60 DEG F

Orifice Method - Triplicate Runs/Four Calibration Points

English Meter Box Units, English K' Factor

Filename: N:\Source Test\QAQC Info\CONTROL BOX (CB) CAL USING CRITICAL ORIFICE\2004 Second Half Calibrations\CB 8.xls]SCAQMD at 60 Deg F Date: 06 14 04

File Modified From: APEX 522 Series Meter box Calibration

Revised: 4/7/2004

Model #: Nutech
ID #: CB 8
Bar. Pressure: 29.92 (in. Hg)
Performed By: TT

Theoretical Critical Vacuum = 14.12

DRY GAS METER READINGS

dH (in H ₂ O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Temps.		Final Temps.		Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Ambient Temperature		
					Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)				Initial (deg F)	Final (deg F)	Average (deg F)
0.27	19.00	406.89	412.77	5.88	81.00	79.00	83.00	80.00	40	0.233	21.00	79.00	80.00	79.50
0.27	18.00	412.77	418.34	5.57	83.00	80.00	84.00	81.00	40	0.233	21.00	80.00	80.00	80.00
0.27	18.00	418.34	423.94	5.60	84.00	81.00	84.00	82.00	40	0.233	21.00	80.00	81.00	80.50
0.63	13.00	432.00	437.98	5.98	75.00	74.00	77.00	75.00	48	0.347	19.00	73.00	73.00	73.00
0.63	14.00	437.98	444.42	6.44	77.00	75.00	78.00	75.00	48	0.347	19.00	73.00	73.00	73.00
0.63	13.00	444.42	450.40	5.97	78.00	75.00	79.00	76.00	48	0.347	19.00	73.00	73.00	73.00
1.80	8.00	450.40	456.43	6.03	79.00	78.00	80.00	78.00	63	0.566	18.00	73.00	73.00	73.00
1.80	8.00	456.44	462.45	6.01	80.00	78.00	81.00	77.00	63	0.566	18.00	73.00	73.00	73.00
1.80	8.00	462.45	468.46	6.01	81.00	77.00	82.00	77.00	63	0.566	18.00	73.00	73.00	73.00
3.30	6.00	468.46	474.62	6.16	81.00	77.00	83.00	77.00	73	0.792	12.00	73.00	73.00	73.00
3.30	6.00	474.62	480.80	6.18	83.00	77.00	85.00	78.00	73	0.792	12.00	73.00	73.00	73.00
3.30	6.00	480.80	486.96	6.18	85.00	78.00	86.00	78.00	73	0.792	12.00	73.00	73.00	73.00

VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)	VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)	Y Value (number)	dH@ Value (in H ₂ O)	DRY GAS METER CALIBRATION FACTOR		ORIFICE CALIBRATION FACTOR		Individual Run	Individual Orifice	Orifice Average	Orifice Average
							Yd	Yd@ Value (in H ₂ O)	Ymax - Ymin < 0.010?	Yd@ - dH@ av < 0.155?				
5.738	162.5	5.693	161.2	5.908	0.992	1.632					Pass			
5.430	153.8	5.391	152.7	5.598	0.993	1.631					Pass			
5.447	154.3	5.388	152.6	5.601	0.989	1.629					Pass			
				Average	0.991	1.631					Pass			
5.802	167.1	5.853	165.8	5.999	0.992	1.703					Pass			
6.352	179.9	6.303	178.5	6.451	0.992	1.701					Pass			
5.882	165.6	5.853	165.8	5.999	0.995	1.700					Pass			
				Average	0.993	1.701					Pass			
5.947	168.4	5.865	166.1	6.012	0.986	1.830					Pass			
5.919	167.6	5.865	166.1	6.012	0.991	1.828					Pass			
5.908	167.3	5.865	166.1	6.012	0.993	1.826					Pass			
				Average	0.990	1.828					Pass			
6.077	172.1	6.159	174.4	6.313	1.014	1.708					Pass			
6.081	172.2	6.159	174.4	6.313	1.013	1.708					Pass			
6.052	171.4	6.159	174.4	6.313	1.018	1.704					Pass			
				Average	1.015	1.706					Pass			

Average Yd: 0.997	dH@: 1.716
Q @ dH = 1: 0.672	

SIGNED:

Tor Tag

Date:

6/16/04

IMPORTANT
IMPORTANT

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.
The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3/(deg R)^0.5/((in.Hg)^2(min)).

SEMI-ANNUAL METER BOX CALIBRATION DATA AT STANDARD TEMPERATURE OF 68 DEG F

Orifice Method - Triplicate Runs/Four Calibration Points

English Meter Box Units, English K Factor

Filename: N:\Source Test\QAQC Info\CONTROL BOX (CB) CAL USING CRITICAL ORIFICE\2004 Second Half Calibrations\CB 6.xls]EPA at 68 Deg dH

File Modified From: APEX 522 Series Meter box Calibration

Revised: 4/7/2004

Model #: Nutech
ID #: DB-6
Date: 7/23/2004
Bar. Pressure: 29.90 (in. Hg)
Performed By: TJC

Theoretical Critical Vacuum = 14.11

DRY GAS METER READINGS										CRITICAL ORIFICE READINGS			Ambient Temperature		
dH (in H ₂ O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial Temps. Inlet (deg F)	Initial Temps. Outlet (deg F)	Final Temps. Inlet (deg F)	Final Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)	
0.27	18.00	63.837	69.437	5.600	79.0	78.0	80.0	79.0	40	0.233	23.0	77.0	77.0	77.0	
0.27	18.00	69.437	75.048	5.811	80.0	78.0	81.0	79.0	40	0.233	23.0	77.0	77.0	77.0	
0.27	18.00	75.048	80.663	5.815	81.0	79.0	81.0	80.0	40	0.233	23.0	77.0	77.0	77.0	
0.60	13.00	80.663	86.704	6.041	81.0	80.0	82.0	80.0	48	0.347	21.0	77.0	77.0	77.0	
0.60	13.00	86.704	92.773	6.089	82.0	80.0	82.0	81.0	48	0.347	21.0	77.0	77.0	77.0	
0.60	13.00	92.773	98.818	6.045	82.0	81.0	83.0	81.0	48	0.347	21.0	77.0	77.0	77.0	
1.60	9.00	98.818	105.662	6.844	83.0	81.0	84.0	82.0	63	0.566	19.0	77.0	77.0	77.0	
1.60	8.00	105.662	111.743	6.081	84.0	82.0	85.0	82.0	63	0.566	19.0	77.0	77.0	77.0	
1.60	8.00	111.743	117.827	6.084	85.0	82.0	85.0	82.0	63	0.566	19.0	77.0	77.0	77.0	
3.20	6.00	136.852	143.138	6.288	82.0	82.0	82.0	82.0	73	0.792	16.0	79.0	79.0	79.0	
3.20	6.00	143.138	149.423	6.285	82.0	82.0	83.0	82.0	73	0.792	16.0	78.0	80.0	79.5	
3.20	6.00	149.423	155.688	6.265	83.0	82.0	84.0	82.0	73	0.792	16.0	80.0	80.0	80.0	

DRY GAS METER			ORIFICE			DRY GAS METER			ORIFICE			DRY GAS METER				
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)	VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)	Y Value (number)	Individual Run	Individual Orifice	Orifice Average	Orifice Average							
5.483	155.3	5.402	153.0	5.500	0.985				1.652				Pass			
5.487	155.4	5.402	153.0	5.500	0.985				1.651				Pass			
5.485	155.3	5.402	153.0	5.500	0.985				1.649				Pass			
				Average	0.985				1.651				Pass	Pass	Pass	
5.901	167.1	5.827	165.0	5.933	0.987				1.641				Pass			
5.923	167.7	5.827	165.0	5.933	0.984				1.640				Pass			
5.894	166.9	5.827	165.0	5.933	0.989				1.638				Pass			
				Average	0.987				1.640				Pass	Pass	Pass	
6.680	189.2	6.569	188.0	6.888	0.983				1.646				Pass			
5.927	167.9	5.839	165.4	5.945	0.985				1.645				Pass			
5.927	167.9	5.839	165.4	5.945	0.985				1.645				Pass			
				Average	0.985				1.645				Pass	Pass	Pass	
6.165	174.6	6.121	173.3	6.255	0.993				1.684				Pass			
6.161	174.5	6.118	173.3	6.258	0.993				1.685				Pass			
6.136	173.8	6.115	173.2	6.261	0.997				1.687				Pass			
				Average	0.994				1.685				Pass	Pass	Pass	

Average Yd:	0.988	dh@:	1.655
Q @ dh = 1:	0.583		

SIGNED:

Tom Tag

Date:

7/23/04

IMPORTANT
IMPORTANT

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.
The Critical Orifice Coefficient, K', must be entered in English units, (ft)³(deg R)^{0.5}((in.Hg)⁴(min)).

S-TYPE PITOT TUBE CALIBRATION

DATE:	04/07/04
PITOT TUBE ID:	PT-34
CALIBRATED BY:	TT
PHYSICAL DESCRIPTION:	103 inch Flare Probe

SIDE "A" CALIBRATION

Run No.	Std. Pitot dP (in Hg)	S-Type dP (in Hg)	Cp(S)	Deviation Cp(S) - Cp(A)
1	0.77	1.13	0.825	0.009
2	0.77	1.17	0.811	-0.005
3	0.77	1.17	0.811	-0.005

Side "A" average, Cp(A) = 0.816

Average deviation, d = 0.006

Is d \leq 0.01 Yes

SIDE "B" CALIBRATION

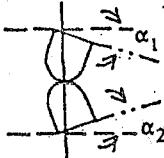
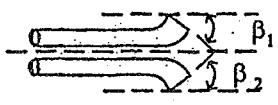
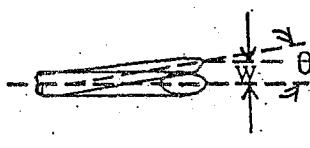
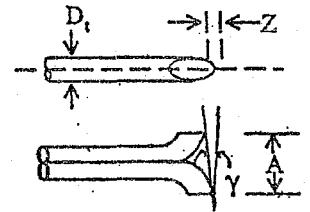
Run No.	Std. Pitot dP (in Hg)	S-Type dP (in Hg)	Cp(S)	Deviation Cp(S) - Cp(B)
1	0.77	1.17	0.811	0.003
2	0.77	1.20	0.801	-0.007
3	0.77	1.17	0.811	0.003

Side "B" average, Cp(B) = 0.808

Average deviation, d = 0.005

Is d \leq 0.01 Yes

AMS Temp. (degrees F)	68
Barometric Pressure	30.15
Actual Calculated Pitot Coef.	0.812





Difference between sides "A" and "B", D = |Cp(A) - Cp(B)| = 0.008

Is D \leq 0.01 Yes

Table 2G-1. Type S Probe Inspection Sheet

Note: Method 2 provides the criteria for an acceptably constructed Type S pitot tube. However, the procedure for making the necessary measurements is not specified. One approach is given below.

1. Use a vise with parallel and perpendicular faces. Use an angle-measuring device (analog or digital) for this check.
2. Place the pitot tube in the vise, and level the pitot tube horizontally using the angle-measuring device.
3. Place the angle-measuring device as shown below.
4. Measure distance A , which is P_A plus P_B . Method 2 specifies that $P_A = P_B$, but provides no tolerance for this measurement. Because this measurement is very difficult, it is suggested that $P_A = P_B = A/2$.
5. Measure the external tube diameter (D_t) with a micrometer, machinist's rule, or internal caliper.
6. Record all data as shown on the form below.
7. Calculate dimensions w and z as shown below.

<p>Degree indicating level position for determining α_1 and α_2</p> <p>Degree indicating level position for determining β_1 and β_2</p> <p>Degree indicating level position for determining θ</p> <p>Degree indicating level position for determining γ, then calculating z.</p>		<table border="1"> <thead> <tr> <th colspan="2">Level and perpendicular?</th> </tr> </thead> <tbody> <tr> <td colspan="2">Yes</td> </tr> <tr> <td colspan="2">Obstruction?</td> </tr> <tr> <td colspan="2">No</td> </tr> <tr> <td colspan="2">Damaged?</td> </tr> <tr> <td colspan="2">No</td> </tr> <tr> <td>α_1</td><td>$(-2^\circ \leq \alpha_1 \leq +2^\circ)$</td></tr> <tr> <td colspan="2">0°</td></tr> <tr> <td>α_2</td><td>$(-2^\circ \leq \alpha_2 \leq +2^\circ)$</td></tr> <tr> <td colspan="2">-5°</td></tr> <tr> <td>β_1</td><td>$(-2^\circ \leq \beta_1 \leq +2^\circ)$</td></tr> <tr> <td colspan="2">5°</td></tr> <tr> <td>β_2</td><td>$(-2^\circ \leq \beta_2 \leq +2^\circ)$</td></tr> <tr> <td colspan="2">-5°</td></tr> <tr> <td>γ</td><td>$.5^\circ$</td></tr> <tr> <td>θ</td><td>0°</td></tr> <tr> <td>$z = A \tan \gamma$ [$\leq 0.5 \text{ mm (0.02 in.)}$]</td><td>.008</td></tr> <tr> <td>$w = A \tan \theta$ [$\leq 0.5 \text{ mm (0.02 in.)}$]</td><td>0</td></tr> <tr> <td>D_t</td><td>$[\geq 9.5 \text{ mm (3/8 in.)}]$</td></tr> <tr> <td colspan="2">.375</td></tr> <tr> <td>A</td><td>.953</td></tr> <tr> <td>$A/2D_t$ ($1.05 \leq P_A/D_t \leq 1.5$)*</td><td>.127</td></tr> </tbody> </table> <p>* Recommended dimensions</p>	Level and perpendicular?		Yes		Obstruction?		No		Damaged?		No		α_1	$(-2^\circ \leq \alpha_1 \leq +2^\circ)$	0°		α_2	$(-2^\circ \leq \alpha_2 \leq +2^\circ)$	-5°		β_1	$(-2^\circ \leq \beta_1 \leq +2^\circ)$	5°		β_2	$(-2^\circ \leq \beta_2 \leq +2^\circ)$	-5°		γ	$.5^\circ$	θ	0°	$z = A \tan \gamma$ [$\leq 0.5 \text{ mm (0.02 in.)}$]	.008	$w = A \tan \theta$ [$\leq 0.5 \text{ mm (0.02 in.)}$]	0	D_t	$[\geq 9.5 \text{ mm (3/8 in.)}]$.375		A	.953	$A/2D_t$ ($1.05 \leq P_A/D_t \leq 1.5$)*	.127
Level and perpendicular?																																														
Yes																																														
Obstruction?																																														
No																																														
Damaged?																																														
No																																														
α_1	$(-2^\circ \leq \alpha_1 \leq +2^\circ)$																																													
0°																																														
α_2	$(-2^\circ \leq \alpha_2 \leq +2^\circ)$																																													
-5°																																														
β_1	$(-2^\circ \leq \beta_1 \leq +2^\circ)$																																													
5°																																														
β_2	$(-2^\circ \leq \beta_2 \leq +2^\circ)$																																													
-5°																																														
γ	$.5^\circ$																																													
θ	0°																																													
$z = A \tan \gamma$ [$\leq 0.5 \text{ mm (0.02 in.)}$]	.008																																													
$w = A \tan \theta$ [$\leq 0.5 \text{ mm (0.02 in.)}$]	0																																													
D_t	$[\geq 9.5 \text{ mm (3/8 in.)}]$																																													
.375																																														
A	.953																																													
$A/2D_t$ ($1.05 \leq P_A/D_t \leq 1.5$)*	.127																																													

QA/QC Check

Completeness
Specifications

Legibility
Reasonableness

Accuracy

Certification

I certify that the Type S probe ID 34 meets or exceeds all specifications, criteria, and applicable design features.

Certified by: John Jones

Date: 4/15/04

(592-9212)

S-TYPE PITOT TUBE CALIBRATION

DATE:	2/6/04
PITOT TUBE ID:	PT-10
CALIBRATED BY:	TT/GS
PHYSICAL DESCRIPTION:	1.5' Pitot Tube

SIDE "A" CALIBRATION

Run No.	Std. Pitot dP (in Hg)	S-Type dP (in Hg)	Cp(S)	Deviation Cp(S) - Cp(A)
1	0.70	1.05	0.816	-0.013
2	0.70	1.00	0.837	0.007
3	0.70	1.00	0.837	0.007

Side "A" average, Cp(A) = 0.830

Average deviation, d = 0.009

Is d \leq 0.01 Yes

SIDE "B" CALIBRATION

Run No.	Std. Pitot dP (in Hg)	S-Type dP (in Hg)	Cp(S)	Deviation Cp(S) - Cp(B)
1	0.70	1.00	0.837	0.012
2	0.70	1.05	0.816	-0.009
3	0.71	1.05	0.822	-0.003

Side "B" average, Cp(B) = 0.825

Average deviation, d = 0.008

Is d \leq 0.01 Yes

AMS Temp. (degrees F)	68
Barometric Pressure	29.92
Actual Calculated Pitot Coef.	0.827

Difference between sides "A" and "B", $D = |Cp(A) - Cp(B)|$ 0.005

Is D \leq 0.01 Yes

Table 2G-1. Type S Probe Inspection Sheet

Note: Method 2 provides the criteria for an acceptably constructed Type S pitot tube. However, the procedure for making the necessary measurements is not specified. One approach is given below.

1. Use a vise with parallel and perpendicular faces. Use an angle-measuring device (analog or digital) for this check.
2. Place the pitot tube in the vise, and level the pitot tube horizontally using the angle-measuring device.
3. Place the angle-measuring device as shown below.
4. Measure distance A, which is P_A plus P_B . Method 2 specifies that $P_A = P_B$, but provides no tolerance for this measurement. Because this measurement is very difficult, it is suggested that $P_A = P_B = A/2$.
5. Measure the external tube diameter (D) with a micrometer, machinist's rule, or internal caliper.
6. Record all data as shown on the form below.
7. Calculate dimensions w and z as shown below.

Degree indicating level position for determining α_1 and α_2		Level and perpendicular?	Yes
Obstruction?		Obstruction?	NO
Damaged?		Damaged?	NO
α_1 $(-2^\circ \leq \alpha_1 \leq +2^\circ)$		α_1 $(-2^\circ \leq \alpha_1 \leq +2^\circ)$	5°
α_2 $(-2^\circ \leq \alpha_2 \leq +2^\circ)$		α_2 $(-2^\circ \leq \alpha_2 \leq +2^\circ)$	1°
β_1 $(-2^\circ \leq \beta_1 \leq +2^\circ)$		β_1 $(-2^\circ \leq \beta_1 \leq +2^\circ)$	1°
β_2 $(-2^\circ \leq \beta_2 \leq +2^\circ)$		β_2 $(-2^\circ \leq \beta_2 \leq +2^\circ)$	-1°
γ		γ	0°
θ		θ	0°
$z = A (\tan \gamma)$ $[\leq 0.5 \text{ mm (0.02 in.)}]$		$z = A (\tan \gamma)$ $[\leq 0.5 \text{ mm (0.02 in.)}]$	0
$w = A (\tan \theta)$ $[\leq 0.5 \text{ mm (0.02 in.)}]$		$w = A (\tan \theta)$ $[\leq 0.5 \text{ mm (0.02 in.)}]$	0
D_1 $[\geq 9.5 \text{ mm (3/8 in.)}]$		D_1 $[\geq 9.5 \text{ mm (3/8 in.)}]$	275
A		A	$.578$
$A/2D_1$ $(1.05 \leq P_A/D_1 \leq 1.5) *$		$A/2D_1$ $(1.05 \leq P_A/D_1 \leq 1.5) *$	1.05
* Recommended dimensions			

QA/OC Check

Completeness _____ ✓
Specifications _____ ✓

Legibility _____ ✓
Reasonableness _____ ✓

Accuracy

Certification

I certify that the Type S probe ID 10 meets or exceeds all specifications, criteria, and applicable design features.

Certified by: Chris Zapek

Date: 4/15/04

SCEC

Appendix D
Laboratory Reports

10366 ROSELLE STREET, #C • SAN DIEGO, CALIFORNIA 92121
TEL: 858.535.9979 • FAX: 858.535.9978 • E-MAIL: ECALAB@ADNC.COM
WWW.ECALAB.COM

Analytical Testing Report

David Evans
SCEC
1582-1 North Batavia
Orange, CA 92867

8-31-04

ECA #04279

The analysis of the gas sample(s) has been completed. The sample information is given below. The results are in the tables on the following pages.

Sample Information:

Customer Sample Id.:	1. Otay Flare/Inlet #1
	2. Otay Flare/Inlet #2
	3. Otay Flare/Inlet #3
	4. APCD Audit Sample
	4. Otay Flare/Exhaust #1
	5. Otay Flare/Exhaust #2
	6. Otay Flare/Exhaust #3
ECA Sample #:	1. 04279a 2. 04279b 3. 04279c
	4. 04279d 5. 04279e 6. 04279f 7. 04279g
Date Received:	7-30-04
Method Reference:	EPA Method 18/ EPA TO-15

If you have any questions concerning these results, please call us at (858) 535-9979.
We appreciate your business!

Sincerely,

Jim Polansky
Jim Polansky
Scientist

Julie Velt
Q.C. Officer

10366 ROSELLE STREET, #G • SAN DIEGO, CALIFORNIA 92121
 TEL: 858.535.9979 • FAX: 858.535.9978 • E-MAIL: ECAINC@ABNC.COM
 WWW.ECALAB.COM

Results of Analysis

Otay Flare Inlet

All results in ppmV unless otherwise stated

ID.	C1	C2	C3	C4	C5+	Oxygen	CO ₂	Nitrogen
Otay Flare/ Inlet #1	39.1 % a5C1 16	8.0	57.6	289.5	71.9	3.5 %	31.4 %	balance
Otay Flare/ Inlet #2	39.8 % 19.4	9.7	65.4	202.0	77.3	4.6 %	32.4 %	balance
Otay Flare/ Inlet #3	39.8 % 7.4	3.7	57.6	193.4	76.1	3.9 %	32.2 %	balance

a5C1

1706.3

1410.1

1337.3

Otay Flare Exhaust

All results in ppmV unless otherwise stated

ID.	C1	C2	C3	C4	C5+
Otay Flare/ Exhaust #1	< 50 ppm	< 0.1 ppm	< 0.1 ppm	< 0.1 ppm	< 0.1 ppm
Otay Flare/ Exhaust #2	< 50 ppm	< 0.1 ppm	< 0.1 ppm	< 0.1 ppm	< 0.1 ppm
Otay Flare/ Exhaust #3	< 50 ppm	< 0.1 ppm	< 0.1 ppm	< 0.1 ppm	< 0.1 ppm

a5C1

1.4

1.4

1.4

SDAPCD Audit Sample

ID.	Methane	Acetylene	Ethylene	Ethane	Propyne
SDAPCD Audit Sample	< 50 ppm	0.38 ppm	0.28 ppm	0.50 ppm	0.57 ppm
ID.	Propylene	Propane	2-methyl propane	Butane	
SDAPCD Audit Sample	0.63 ppm	0.53 ppm	0.60 ppm	0.60 ppm	

10366 ROSELLE STREET, #C - SAN DIEGO, CALIFORNIA 92121
 TEL: 858.535.9979 • FAX: 858.535.9978 • E-MAIL: ECALAB@ADNC.COM
 WWW.ECALAB.COM

Results of Testing using EPA TO-15/Otay Flare Inlet Samples

Compounds identified by GC-MS (TO-15) in all of the Otay Flare Inlet Samples.

The compounds that are AP-42 compounds are both underlined and in **bold** lettering. Other halogenated compounds that may be of interest are listed in **bold** only.

2-methyl propane	methyl butanoate	1-ethyl-2-methyl cis-cyclohexane
<u>butane</u>	2-methyl ~1-pentanol	3-methyl nonane
2-methyl butane	2-methyl heptane	camphene
<u>pentane</u>	2-hexanone	propyl benzene
<u>ethanol</u>	1,1,1 trimethyl cyclopentane	decane
methyl acetate	toluene	1,3,5-trimethyl benzene
<u>dichloromethane</u>	2-hexanol	beta-pinene
<u>hexane</u>	1,2 dimethylcyclohexane	hexyl butanoate
<u>1,1-dichloroethane</u>	ethyl butanoate	delta-3-carene
2-methyl furan	butyl acetate	1-limonene
ethyl acetate	ethyl cyclohexane	1,8-cineole
tetrahydrofuran	isopropyl butanoate	2-methylbutyl butanoate
2-methyl hexane	1,3,5-trimethyl cyclohexane	gamma terpinene
cyclohexane	3-methyl octane	undecane
3-methyl hexane	2-methyl propanoic acid	decahydronaphthalene
2-methyl-1-propanol	propyl ester	propyl hexanoate
benzene	1-chloro-4-difluoromethyl benzene	1,2-dibromo-2-methyl undecane
heptane	nonane	dodecane
3-methyl-2-butane	<u>o-xylene</u>	butyl hexanoate
2-methyl propanoic acid	2-azido-2-methyl pentane	camphor
methyl ester	propyl butanoate	azulene
1-butanol		
<u>trichloroethene</u>		
methyl cyclohexane		
propyl acetate		

SCEC

Appendix E

Authority to Construct

Air Pollution Control Board

Greg Fox	District 1
Diane Jacob	District 2
Pam Storer	District 3
Ron Roberts	District 4
Bill Hart	District 5

May 6, 2004

ROBERT FIFAREK
ENVIRONMENTAL MANAGER
OTAY LANDFILL INC
3514 MAST BLVD
SANTEE CA 92071

EQUIPMENT ADDRESS: 1700 MAXWELL ROAD, CHULA VISTA, CA 91911

Dear Mr. Fifarek:

After examination of your Applications No. 979036 and No. 980160 for an Authority to Construct and Permit to Operate an expansion of the existing non-hazardous solid waste facility and the addition of a 150 mmBTU/hr flare to the current gas collection system at the Otay landfill, the District has decided on the following action:

The application is complete and Authority to Construct is granted pursuant to Rule 20 of the Air Pollution Control District Rules and Regulations. The modified facility will consist of:

an existing non-hazardous solid waste landfill with a revised elevation limit of 725 ft Mean Sea Level resulting in a total post-project revised capacity of ~60,000,000 cubic yards;

an existing 48 mmBTU/hr enclosed ground flare (dimensions 10 ft in diameter x 32 ft in height) equipped with an optical flame detector, automatic shut-off valve, stack thermocouple, flame arrestor, and sampling ports;

a new 150 mmBTU/hr enclosed John Zink ground flare (dimensions 3 ft diameter and 50 ft in height) equipped with an optical flame detector, automatic shut-off valve, stack thermocouple, flame arrestor, sampling ports, and provisions for 3 blowers;

an existing landfill gas collection system consisting of extraction wells, condensate traps, piping, sampling ports, shut-off valves, and other associated equipment including a limited connection to the existing Pacific Recovery Corporation gas combustion equipment (Permit to Operate No. 40247);

9150 Chesapeake Drive • San Diego • California 92123-1096 • (858) 550-4700
FAX (858) 650-4659 • Smoking Vehicle Hotline 1-800-28-SMOKING

Printed on Recycled Paper

Otay Landfill Inc.
Application No. 979036

May 6, 2004

-2-

an existing offsite gas migration probe monitoring system which complies with the design, spacing, and operational requirements of the State Integrated Waste Management Board;

an existing flare station equipment with provisions for two (2) Lamson landfill gas blowers, fittings, valves, piping, a condensate knockout trap, an in-line landfill gas oxygen analyzer, a landfill gas flow meter, and a backup fuel supply, at 1,

an existing landfill gas condensate collection, storage, and injection system including an air compressor, piping, sumps, holding tank, and pumps.

This Authority to Construct is granted with the following conditions:

1. Except as otherwise required by these conditions, the equipment for which this Authority to Construct is granted shall be as described above and installed in accordance with the specifications and drawings submitted with the applications.
2. In the event the District determines that additional landfill gas collection or control equipment is appropriate to ensure compliance with applicable emission limits, the applicant shall promptly submit all necessary applications and install the specified equipment on either a temporary or permanent basis as required.
3. Except as otherwise required by the conditions herein, the applicant shall comply with the emission limits, operating requirements, monitoring procedures, inspection activities, and reporting provisions specified in Permit to Operate No. 171112.
4. All equipment shall be properly maintained and kept in good operating condition at all times. Except during equipment installation and repair, there shall be no hydrocarbon leaks along the gas transfer path (i.e., collection wells, header piping, flanges, valves, blowers, flame arrestor, etc.) which result in landfill gas emissions of 1,375 ppmv or greater as methane.
5. Water shall be applied to all on-site paved and unpaved haul roads for dust control purposes at intervals of no more than 4 hours unless the road surface appears visibly wet or the facility is not open for business. In addition, such watering must, except for non-repeatable momentary readings, prevent visible emissions ~~of~~ ^{at} feet above the road surface from exceeding 10 percent (%) opacity. (Requirement 5?)
6. Prior to installation, the applicant shall submit a detailed, final schematic of the new flare which demonstrates that it has been sized to provide a minimum 0.3 second retention. The dimensions of the final flare design should be approximately 13 feet in diameter and 50 feet in height. This flare shall be equipped with a circular exhaust stack, 4-inch test ports, and provisions for personnel access during source testing.

P. 100
P. 5 - Built-in
Has this been
done? If
so why have
this in
here?

MAY-06-2004 THU 01:14 PM SD AIR POLLUTION CONTROL FAX NO. 858 650 4628

P. 04

Otay Landfill Inc.
Application No. 979036

May 6, 2004

-3-

7. The new flare shall be equipped with an automatic shut-off valve that activates under conditions of flame-out, low stack gas temperature ($<1,500^{\circ}\text{F}$), high stack gas temperature ($>1,800^{\circ}\text{F}$), and excessive oxygen ($>3.5\%$ oxygen by volume in the landfill gas header piping at the flare station).

8. The total landfill gas collection rates shall not exceed the BTU capacity of each installed flare. This equates to approximately 1800 scfm for the existing flare and 5000 scfm for the new flare. The applicant shall not remove the smaller flare from operation until testing of the new unit is completed. Additionally, the applicant may choose to leave the existing flare on site for emergency and/or back-up purposes. 012 - Good
Leave down
open to
run in
parallel

9. Excavated waste brought to the surface during regrading, repairs and/or equipment installation shall be managed to prevent odors detectable beyond the property line of the disposal site. All material transported to other disposal sites shall be covered to reduce odors to the maximum extent possible.

10. The applicant shall take all corrective actions necessary to prevent leachate from reaching any surface where odors, toxic air contaminants or volatile organic compounds may evaporate into the atmosphere.

11. Access, facilities and utilities for source testing required by the Air Pollution Control Officer shall be provided when such testing is performed by the District. Specifically, temporary scaffolding, man lifts, and electrical outlets which comply with District Monitoring and Technical Services Division specifications must be provided when deemed necessary.

12. The applicant shall conduct testing of the installed landfill gas flare(s) as required in District Rule 59.1, the Federal Title V program, and subpart WWW of the Federal Register. The applicant shall submit a proposed source test protocol for review and approval within 60 days of the initial flare start up which complies with the minimum federal testing requirements. All testing must be conducted under normal operating conditions within 60 days of receiving an approved source test protocol from the District and be witnessed by District staff. Proposals
60 Days
then 60
Days, from
Re approval

13. A final report which provides all of the source test results shall be submitted to the District for approval approximately 90 days following completion of the testing. Test - Final report
90 Days

14. Within 90 days of completing construction, the applicant shall submit an Operations and Maintenance Manual for this landfill gas collection, monitoring and flare system. This manual shall specify the minimum recommended inspection procedures and maintenance frequencies. The manual shall include an as-built drawing of the final gas collection system as well as the location of all approved State Integrated Waste Board offsite gas migration probes. 90 Days
OPS manual +
AS-Built

(6W-SITE)

05/20/2004 07:55 FAX 6194215714

OTAY LAND FILL

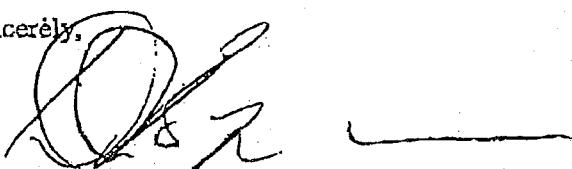
006

MAY-06-2004 THU 01:14 PM SD AIR POLLUTION CONTROL FAX NO. 858 650 462

P. 05

Otay Landfill Inc.
Application No. 979036

May 6, 2004


-4-

This is not the Permit to Operate document. Operation of the modified equipment without written authority (District Startup Authorization, Permit to Operate, Hearing Board Variance, etc.) is a violation of Rule 10(b) subject to civil penalties of up to \$1,000 per day.

This Authority to Construct does not relieve the holder from obtaining permits or authorizations which may be required by other governmental agencies. A copy of this Authority to Construct shall be posted or kept readily available at the site of construction. This Authority to Construct will expire on May 6, 2005.

Within ten days of receiving this Authority to Construct, the applicant may petition the Hearing Board for a hearing on any condition imposed herein in accordance with Rule 25. If you have any questions regarding this action, please contact me at (858) 610-4623.

Sincerely,

DAVID BYRNES
Associate Air Pollution Control Engineer

DB:e

cc: Kerry McNeil, San Diego County Department of Environmental Health (LEA)
Carol Tarnaki, Regional Water Quality Control Board
Gary Hartnett, SDAPCD Compliance Division
Stan Romelezyk, SDAPCD Title V Program

01/88176A
Sector/ID

SAN DIEGO AIR POLLUTION CONTROL DISTRICT
9150 CHESAPEAKE DRIVE
SAN DIEGO, CA 92123

980160
Application No.

(new)
BEC

revised May 21, 2004
START-UP AUTHORIZATION

05/12/2004
Date of Issuance

OTAY LANDFILL INC
1700 MAXWELL ROAD, CHULA VISTA CA 91910

may operate the following equipment for shakedown and source testing purposes:

A NEW LANDFILL GAS FLARE SYSTEM

located at the existing OTAY LANDFILL

until JULY 12, 2004 pursuant to Rule 21 of the Rules and Regulations of the Air Pollution Control District, subject to the conditions of existing Permit to Operate No. 971112 and the following requirements:

1. Continue to operate the gas collection and dual flare system in a manner that safely mitigates off-site gas migration (>5% methane at the property line) and prevents excessive surface emissions (>500 ppmv as methane) as required by District Rule 59.1.
2. Continue to inspect the landfill surface and quantify the methane content of each gas migration probe on a minimum quarterly basis.
3. The landfill gas flow rate shall not exceed 1800 scfm to the existing Perennial flare or 5000 scfm to the new John Zink flare at any time. The flares may be operated simultaneously at or below these maximum flow rates provided the LFG oxygen content remains below 3.5% at the flare station.
4. Except during an ignition and warm up period not to exceed 15 minutes, landfill gas shall not be incinerated in either flare unless exhaust gas temperature is maintained between 1500 F and 1800 F as measured by the stack thermocouple most representative of a 0.3 second retention time.
5. Submit the written documentation (i.e.; manufacturer's suggested procedure, chart, etc.) that will be used in the field to establish the proper combination of parameters (LFG flow rate / selected thermocouple / exhaust gas temperature set point) necessary to ensure the exhaust gas temperature is maintained between 1500 F and 1800 F for a minimum 0.3 second retention time. Provide this information by July 12, 2004.
6. Make all necessary corrections to the high oxygen (>3.5%) safety shutdown device. The time delay between the instrument reading and the activation of the automatic shutoff valve should be minimal.
7. Continue to maintain, adjust, and repair all gas collection equipment so that there are no hydrocarbon leaks along the gas transfer path in excess of 1375 ppmv as methane (per District Rule 59.1).

MAY-21-2004 FRI 03:18 PM SD AIR POLLUTION CONTROL FAX NO. 858 650 4628

P. 03

Otay Landfill Inc.
Start Up Authorization


May 12, 2004
revised May 21, 2004
App. No.s 979036 and 980160

8. Do not allow leachate or condensate to reach any surface where odors, reactive organic compounds, or toxic air contaminants may evaporate into the atmosphere as per District Rules 59.1 and 51.
9. Submit the manufacturer's specifications for the condensate injection system and specifically identify the maximum condensate injection rate at which the flare may operate properly. If the injection rate is dependent upon the LPG flow rate, identify the proper operating parameters. Provide this information by July 12, 2004.
10. Submit a final detailed schematic of the installed John Zink flare as specified in condition (6) of the Authority to Construct granted for this equipment. Provide this information by July 12, 2004.
11. Submit a proposed source test protocol which complies with Federal subpart WWW requirements as specified in condition (12) of the Authority to Construct granted for this equipment. Provide this information by July 12, 2004.

Operation is authorized only for the purposes of allowing operation of this equipment prior to the issuance of a District Permit to Operate.

THIS IS NOT AN AUTHORIZATION TO EXCEED ANY APPLICABLE EMISSION STANDARD. THIS AUTHORIZATION IS SUBJECT TO CANCELLATION IF ANY EMISSION STANDARD OR CONDITION IS VIOLATED. IF THERE ARE ANY QUESTIONS ABOUT THIS AUTHORIZATION, PLEASE CONTACT THE UNDERSIGNED AT (858) 650-4623.

copy to: Compliance Division
file

Signed:
Print Name: Richard J. Smith
for Richard J. Smith, Air Pollution Control Officer

CONTROL NO.
243271COUNTY OF SAN DIEGO, AIR POLLUTION CONTROL DISTRICT
9150 CHESAPEAKE DRIVE, SAN DIEGO, CA 92123-1096
(858) 650-4700 FAX (858) 650-4659PERMIT NO
971112
EXPIRES
JUNE 1, 2005

PERMIT TO OPERATE

THE FOLLOWING IS HEREBY GRANTED A PERMIT TO OPERATE THE ARTICLE, MACHINE, EQUIPMENT OR CONTRIVANCE DESCRIBED BELOW. THIS PERMIT IS NOT TRANSFERABLE TO A NEW OWNER NOR IS IT VALID FOR OPERATION OF THE EQUIPMENT AT ANOTHER LOCATION, EXCEPT AS SPECIFIED. THIS PERMIT TO OPERATE OR A COPY MUST BE POSTED ON OR WITHIN 25 FEET OF THE OF THE EQUIPMENT, OR READILY AVAILABLE, ON THE OPERATING PREMISES.

PERMITTEE
OTAY LANDFILL INC

8364 CLAIREMONT MESA BL
SAN DIEGO CA 92111-0000

EQUIPMENT ADDRESS
OTAY LANDFILL INC

1700 MAXWELL RD
CHULA VISTA CA 91910-0000

EQUIPMENT DESCRIPTION

AN ACTIVE NON-HAZARDOUS WASTE LANDFILL OPERATION THAT INCLUDES QUARRYING, MUNICIPAL WASTE DISPOSAL, WASTE COMPACTION, COVER MATERIAL APPLICATION, AND HAUL ROAD ACTIVITIES AND ASSOCIATED LANDFILL GAS COLLECTION AND CONTROL SYSTEM CONSISTING OF: LANDFILL GAS (LFG) COLLECTION WELLS WITH ASSOCIATED FITTINGS, PIPING AND INDIVIDUAL WELL SHUT OFF VALVES; OFFSITE LFG MIGRATION PROBES WITH ASSOCIATED FITTINGS AND SAMPLING PORTS; 2 LFG BLOWERS WITH ASSOCIATED FITTINGS, VALVES AND PIPING; FLAME ARRESTOR, ONE LIQUID KNOCKOUT VESSEL; 48 MM BTU/HR ENCLOSED GROUND FLARE (APPROXIMATELY 6 FT DIA X 30 FT HIGH) EQUIPPED WITH OPTICAL FLAME DETECTOR, AUTOMATIC SHUTOFF VALVE AND AUXILIARY FUEL. THE FLARE IS EQUIPPED WITH CONDENSATE INJECTION ATOMIZING GUN, STACK TEMPERATURE PROBE, IN-LINE LFG OXYGEN ANALYZER, AND LFG FLOW METER AT FLARE STATION

Sector#:17 ID#:88176A PO#:971112 BEC#:11173

Fee Schedules: 48C01

EVERY PERSON WHO OWNS OR OPERATES THIS EQUIPMENT IS REQUIRED TO COMPLY WITH THE CONDITIONS LISTED BELOW AND ALL APPLICABLE REQUIREMENTS AND DISTRICT RULES, INCLUDING BUT NOT LIMITED TO RULE(S) 53, 59.1.

FAILURE TO OPERATE IN COMPLIANCE IS A MISDEMEANOR SUBJECT TO CIVIL AND CRIMINAL PENALTIES.

A. FEDERALLY-ENFORCEABLE AND DISTRICT-ENFORCEABLE CONDITIONS

1. THE PERMITTEE SHALL COMPLY WITH THE FOLLOWING APPLICABLE REQUIREMENTS:
RULE 53 AND RULE 59.1.
RULE(S): 59.1.
2. THE COLLECTED LANDFILL GAS TEMPERATURE SHALL BE MAINTAINED AT LESS THAN 55 DEG.C AT EACH WELL AND THE OXYGEN LEVEL SHALL BE LESS THAN OR EQUAL TO 5 PERCENT OR THE NITROGEN LEVEL SHALL BE LESS THAN OR EQUAL TO 20 PERCENT.
RULE 59.1

1 Permit Conditions Continued

CONTROL NO. COUNTY OF SAN DIEGO, AIR POLLUTION CONTROL DISTRICT
243271 9150 CHESAPEAKE DRIVE, SAN DIEGO, CA 92123-1096
(858) 650-4700 FAX (858) 650-4659

PERMIT NO
971112
EXPIRES
JUNE 1, 2005

PERMIT TO OPERATE

RULE(S) :59.1.

3. TEMPERATURE GAUGE MAINTENANCE AND CALIBRATION RECORDS SHALL BE MAINTAINED FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO THE DISTRICT UPON REQUEST. RULE 59.1.

RULE(S) :59.1.

4. THE PERMITTEE SHALL MAINTAIN A NEGATIVE PRESSURE WITHIN EACH GAS EXTRACTION WELL. AN OPERATING PRESSURE GAUGE WITH AN ACCURACY OF 1 PERCENT OF THE PRESSURE MEASURED SHALL BE PROVIDED TO THE DISTRICT UPON REQUEST FOR VERIFYING THE PRESSURE. THE PRESSURE GAUGE SHALL BE MAINTAINED AND CALIBRATED IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

RULE(S) :59.1.

5. THE PERMITTEE SHALL ROUTE ALL THE COLLECTED LANDFILL GAS TO THE LANDFILL GAS DESTRUCTION SYSTEM. RULE 59.1.

RULE(S) :59.1.

6. THE LANDFILL GAS DESTRUCTION SYSTEM SHALL BE OPERATED TO REDUCE NON-METHANE ORGANIC COMPOUNDS (NMOCs) BY 98 WEIGHT PERCENT OR REDUCE THE NMOC OUTLET CONCENTRATION TO LESS THAN 20 PPMV, DRY BASIS AS HEXANE AT 3 PERCENT OXYGEN.

RULE(S) :59.1.

7. THE PERMITTEE SHALL MONITOR THE FLARE EXHAUST GAS TEMPERATURE. THE GAS TEMPERATURE MONITORING DEVICE SHALL BE EQUIPPED WITH A CONTINUOUS RECORDER WHICH HAS AN ACCURACY OF +/- 1 PERCENT OF THE TEMPERATURE BEING MEASURED. RULE 59.1.

RULE(S) :59.1.

8. THE PERMITTEE SHALL MONITOR AND RECORD GAS FLOW FROM THE COLLECTION SYSTEM TO THE FLARE AT LEAST ONCE EVERY 15 MINUTES. ALTERNATIVELY WHEN USING A CAR-SEAL OR A LOCK-AND-KEY TYPE CONFIGURATION TO SECURE THE BYPASS LINE VALVE IN A CLOSED POSITION, THE PERMITTEE SHALL VERIFY THAT THE BYPASS LINE VALVES ARE SECURED IN A CLOSED POSITION EACH MONTH.

RULE(S) :59.1.

9. THE SYSTEM SHALL BE CONTINUOUSLY MONITORED FOR THE PRESENCE OF A FLARE FLAME.

RULE(S) :59.1.

10. THE PERMITTEE SHALL IMPLEMENT A PROGRAM TO MONITOR FOR LANDFILL COVER INTEGRITY AS REQUIRED IN 40 CFR PART 60.753 (D) AND IMPLEMENT COVER REPAIRS AS NECESSARY ON A MONTHLY BASIS.

RULE(S) :59.1.

2 Permit Conditions Continued

CONTROL NO.
243271COUNTY OF SAN DIEGO, AIR POLLUTION CONTROL DISTRICT
9150 CHESAPEAKE DRIVE, SAN DIEGO, CA 92123-1096
(858) 650-4700 FAX (858) 650-4659PERMIT NO
971112
EXPIRES
JUNE 1, 2005

PERMIT TO OPERATE

11. THE PERMITTEE SHALL ON A MONTHLY BASIS MONITOR OR CONDUCT TESTING TO VERIFY COMPLIANCE AS FOLLOWS:
MONITOR THE COVER INTEGRITY, VISUALLY INSPECT THE BYPASS VALVE TO ENSURE THAT IT IS CLOSED, AND MEASURE THE GAGE PRESSURE AND MONITOR THE TEMPERATURE AND NITROGEN OR OXYGEN CONTENT AT EACH WELL HEAD. THE NITROGEN LEVEL SHALL BE DETERMINED USING EPA METHOD 3C OR EPA-APPROVED FIELD INSTRUMENT, OR THE OXYGEN LEVEL SHALL BE DETERMINED USING EPA METHOD 3A EXCEPT THAT:
1) THE SPAN SHALL BE SET SO THE REGULATORY LIMIT IS BETWEEN 20 AND 50 PERCENT OF THE SPAN; 2) A DATA RECORDER IS NOT REQUIRED; 3) ONLY TWO CALIBRATION GASES ARE REQUIRED, A ZERO AND A SPAN, AND AMBIENT AIR MAY BE USED AS THE SPAN; 4) A CALIBRATION ERROR CHECK IS NOT REQUIRED; AND 5) THE ALLOWABLE SAMPLE BIAS, ZERO DRIFT, AND CALIBRATION DRIFT ARE +/- 10 PERCENT.
RULE(S): 59.1.
12. THE METHANE CONCENTRATION AT THE LANDFILL SURFACE SHALL BE MAINTAINED AT LESS THAN 500 PPM ABOVE BACKGROUND. THE PERMITTEE SHALL MONITOR SURFACE CONCENTRATIONS OF METHANE AT DISCRETE SAMPLING POINTS ALONG THE ENTIRE PERIMETER OF THE COLLECTION AREA AND ALONG A PATTERN THAT TRAVERSES THE LANDFILL AT 30 METER INTERVALS FOR EACH COLLECTION AREA ON A QUARTERLY BASIS USING AN ORGANIC VAPOR ANALYZER, FLAME IONIZATION DETECTOR OR OTHER PORTABLE MONITOR MEETING THE SPECIFICATIONS PROVIDED IN 40 CFR PART 60.755 (D).
SURFACE EMISSION MONITORING SHALL BE PERFORMED IN ACCORDANCE WITH SECTION 4.3.1 OF EPA METHOD 21 EXCEPT THAT THE PROBE INLET SHALL BE PLACED WITHIN 5 TO 10 CENTIMETERS OF THE GROUND. THE CALIBRATION PROCEDURES PROVIDED IN SECTION 4.2 OF EPA METHOD 21 SHALL BE FOLLOWED IMMEDIATELY BEFORE COMMENCING A SURFACE MONITORING SURVEY, AND THE CALIBRATION GAS SHALL BE METHANE DILUTED TO A NOMINAL CONCENTRATION OF 500 PPM. ANY READING OF 500 PPM OR MORE ABOVE BACKGROUND AT ANY LOCATION SHALL BE RECORDED AS A
RULE(S): 59.1.
13. CONT. FROM ABOVE
MONITORED EXCEEDANCE. THE BACKGROUND CONCENTRATION SHALL BE DETERMINED BY MOVING THE PROBE INLET UPWIND AND DOWNWIND OUTSIDE THE BOUNDARY OF THE LANDFILL AT A DISTANCE OF AT LEAST 30 METERS FROM THE PERIMETER WELLS. A MONITORED EXCEEDANCE IS NOT A VIOLATION OF THE ABOVE REQUIREMENT AS LONG AS THE FOLLOWING SPECIFIED ACTIONS ARE TAKEN:
 - A) THE LOCATION OF EACH MONITORED EXCEEDANCE SHALL BE MARKED AND THE LOCATION RECORDED.
 - B) COVER MAINTENANCE OR ADJUSTMENTS TO THE VACUUM OF THE ADJACENT WELLS TO INCREASE THE GAS COLLECTION IN THE VICINITY OF EACH EXCEEDANCE SHALL BE MADE AND THE LOCATION SHALL BE RE-MONITORED WITHIN 10 CALENDAR DAYS OF DETECTING THE EXCEEDANCE; AND
 - C) IF THE RE-MONITORING OF THE LOCATION SHOWS A SECOND EXCEEDANCE, ADDI-

3 Permit Conditions Continued

CONTROL NO.
243271COUNTY OF SAN DIEGO, AIR POLLUTION CONTROL DISTRICT
9150 CHESAPEAKE DRIVE, SAN DIEGO, CA 92123-1096
(858) 650-4700 FAX (858) 650-4659PERMIT NO
971112
EXPIRES
JUNE 1, 2005**PERMIT TO OPERATE**

TIONAL CORRECTIVE ACTION SHALL BE TAKEN AND THE LOCATION SHALL BE MONITORED AGAIN WITHIN 10 DAYS OF THE SECOND EXCEEDANCE. IF THE RE-MONITORING SHOWS RULE(S): 59.1.

14. CONT. FROM ABOVE
A THIRD EXCEEDANCE FROM THE SAME LOCATION, THE ACTION SPECIFIED IN SECTION E OF THE CONDITION SHALL BE TAKEN.

D) ANY LOCATION THAT INITIALLY SHOWED AN EXCEEDANCE BUT HAS A METHANE CONCENTRATION LESS THAN 500 PPM ABOVE BACKGROUND AT THE 10-DAY RE-MONITORING SPECIFIED IN SECTION B OR C OF THIS CONDITION SHALL BE RE-MONITORED 1 MONTH FROM THE INITIAL EXCEEDANCE. IF THE 1-MONTH RE-MONITORING SHOWS A CONCENTRATION <500 PPM ABOVE BACKGROUND, NO FURTHER MONITORING IS REQUIRED UNTIL THE NEXT QUARTERLY MONITORING PERIOD. IF THE 1-MONTH RE-MONITORING SHOWS AN EXCEEDANCE, THE ACTIONS SPECIFIED IN SECTION C OR D OF THIS CONDITION SHALL BE TAKEN.

E) FOR ANY LOCATION WHERE MONITORED METHANE CONCENTRATION EQUALS OR EXCEEDS 500 PPM ABOVE BACKGROUND THREE TIMES WITHIN A QUARTERLY PERIOD, A NEW WELL OR OTHER COLLECTIONS DEVICE SHALL BE INSTALLED WITHIN 120 CALENDAR DAYS OF THE INITIAL EXCEEDANCE. AN ALTERNATIVE REMEDY TO THE EXCEEDANCE RULE(S): 59.1.

15. CONT. FROM ABOVE
AND A CORRESPONDING TIME LINE FOR INSTALLATION MAY BE SUBMITTED TO THE DISTRICT FOR APPROVAL. RULE 59.1.

16. THE PERMITTEE SHALL MAINTAIN THE FOLLOWING RECORDS:

A) RECORDS OF THE MAXIMUM DESIGN CAPACITY, THE CURRENT AMOUNT OF SOLID WASTE IN PLACE, THE YEAR-BY-YEAR WASTE ACCEPTANCE RATE;

B) PLOT MAP WITH EXISTING AND PLANNED WELLS IN THE GAS COLLECTION SYSTEM;

C) INSTALLATION DATE AND LOCATION OF ALL NEWLY INSTALLED WELLS;

D) DESCRIPTION, LOCATION, AMOUNT, AND PLACEMENT DATE OF ALL NONDEGRADABLE REFUSE INCLUDING ASBESTOS AND DEMOLITION REFUSE PLACE IN LANDFILL AREAS WHICH ARE EXCLUDED FROM LANDFILL GAS COLLECTION AND CONTROL AS PROVIDED BY 40 CFR PART 60.759(A)(3)(II); AND

E) RECORD OF MAXIMUM EXPECTED GAS FLOW, ETC. FROM THE INITIAL PERFORMANCE TEST.

RULE(S): 59.1.

17. THE PERMITTEE SHALL RECORD ALL FLARE MONITORING DATA AND SHALL KEEP A RECORD OF ALL PERIODS WHEN THE FLARE IS NON-OPERATIONAL.

RULE(S): 59.1.

18. THE PERMITTEE SHALL RECORD ALL VALUES WHICH EXCEED THE OPERATION

CONTROL NO. COUNTY OF SAN DIEGO, AIR POLLUTION CONTROL DISTRICT
243271 9150 CHESAPEAKE DRIVE, SAN DIEGO, CA 92123-1096
(858) 650-4700 FAX (858) 650-4659

PERMIT NO
971112
EXPIRES
JUNE 1, 2005

PERMIT TO OPERATE

STANDARDS SPECIFIED IN 40 CFR PART 60.753, AND SHALL INCLUDE THE OPERATING VALUE FROM THE NEXT SUBSEQUENT MONITORING PERIOD AND THE LOCATION OF EACH EXCEDDANCE.

RULE(S): 59.1.

19. IN THE EVENT THAT THE GAS COLLECTION SYSTEM OR THE GAS THAT THE GAS COLLECTION SYSTEM OR THE GAS COMBUSTION DEVICE IS INOPERABLE, THE GAS MOVER SYSTEM SHALL BE SHUT DOWN AND ALL VALVES IN THE COLLECTION SYSTEM AND GAS COMBUSTION DEVICE CONTRIBUTING TO VENTING OF THE GAS TO THE ATMOSPHERE SHALL BE CLOSED WITHIN 1 HOUR OR THE LANDFILL GAS VENTED TO THE FLARE. THIS PROVISION DOES NOT APPLY TO THE GAS COMBUSTION DEVICE DURING PERIODS OF START-UP, SHUTDOWN, OR MALFUNCTION PROVIDED THE DURATION OF START-UP, SHUTDOWN, OR MALFUNCTION DOES NOT EXCEED 1 HOUR.

RULE(S): 59.1.

20. IF THE GAS COLLECTION SYSTEM IS EQUIPPED WITH A VALVE TO BYPASS THE GAS TURBINE, THIS BYPASS VALVE MUST BE IN A CLOSED POSITION WITH A CAR-SEAL OR A LOCK-AND-KEY TYPE OF CONFIGURATION. RULE 59.1.

RULE(S): 59.1.

21. THE PERMITTEE SHALL MAINTAIN, READILY ACCESSIBLE RECORDS FOR THE LIFE OF THE CONTROL EQUIPMENT, THE CONTROL DEVICE VENDOR SPECIFICATIONS, AND THE FOLLOWING DATA AS MEASURED DURING THE INITIAL PERFORMANCE TEST OR COMPLIANCE DETERMINATION:

THE MAXIMUM EXPECTED GAS GENERATION FLOW RATE AS CALCULATED IN 40 CFR PART 60.755 (A) (1); AND THE DENSITY OF WELLS, HORIZONTAL COLLECTORS, SURFACE COLLECTORS, OR OTHER GAS EXTRACTION DEVICES DETERMINED USING THE PROCEDURES SPECIFIED IN 40 CFR PART 60.759 (A) (1).

RULE(S): 59.1.

22. THE PERMITTEE SHALL SUBMIT AN ANNUAL REPORT WITH THE INITIAL REPORT DUE NO LATER THAN JUNE 30, 2001 WITH THE FOLLOWING REQUIRED INFORMATION:

A) THE VALUE AND LENGTH OF TIME FOR EXCEEDANCES OF APPLICABLE PARAMETERS MONITORED AS REQUIRED IN 40 CFR PART 60.753; AND

B) A DESCRIPTION AND THE DURATION OF ALL PERIODS WHEN THE GAS STREAM IS DIVERTED FROM THE GAS TURBINE; AND

C) A DESCRIPTION AND THE DURATION OF ALL PERIODS WHEN THE GAS TURBINE WAS NOT OPERATING FOR ANY PERIOD EXCEEDING 1 HOUR AND THE LENGTH OF TIME THE GAS TURBINE WAS NOT OPERATING; AND

D) ALL PERIODS WHEN THE COLLECTION SYSTEM WAS NOT OPERATING IN EXCESS OF FIVE DAYS; AND

E) THE LOCATION AND CONCENTRATION OF EACH EXCEEDANCE OF THE SURFACE METHANE CONCENTRATION LIMIT AS MONITORED BY CONDITION 12; AND

F) THE DATE OF INSTALLATION AND THE LOCATION OF EACH WELL OR COLLECTION

RULE(S): 59.1.

5 Permit Conditions Continued

CONTROL NO.
243271COUNTY OF SAN DIEGO, AIR POLLUTION CONTROL DISTRICT
9150 CHESAPEAKE DRIVE, SAN DIEGO, CA 92123-1096
(858) 650-4700 FAX (858) 650-4659PERMIT NO
971112
EXPIRES
JUNE 1, 2005

PERMIT TO OPERATE

23. CONT. FROM ABOVE
SYSTEM EXPANSION ADDED PURSUANT TO CONDITION 12 (E).
IN ADDITION TO THE ABOVE, THE INITIAL REPORT SHALL INCLUDE:
G) THE MOST RECENT PERFORMANCE TEST RESULTS; AND
H) A DIAGRAM OF THE COLLECTION SYSTEM SHOWING COLLECTION SYSTEM POSITIONING INCLUDING ALL WELLS, HORIZONTAL COLLECTORS, SURFACE COLLECTORS, OR OTHER GAS EXTRACTION DEVICES, INCLUDING THE LOCATIONS OF ANY AREAS EXCLUDED FROM COLLECTION AND THE PROPOSED SITES FOR THE FUTURE COLLECTION SYSTEM EXPANSION; AND
I) THE DATA UPON WHICH THE SUFFICIENT DENSITY OF WELLS, HORIZONTAL COLLECTORS, SURFACE COLLECTORS, OR OTHER GAS EXTRACTION DEVICES AND THE GAS MOVER EQUIPMENT SIZING ARE BASED; AND
J) THE DOCUMENTATION OF THE PRESENCE OF ASBESTOS OR NONDEGRADABLE MATERIAL FOR EACH AREA FROM WHICH COLLECTION WELLS HAVE BEEN EXCLUDED BASED ON THE PRESENCE OF ASBESTOS OR NONDEGRADABLE MATERIAL; AND
RULE(S): 59.1.

24. CONT. FROM ABOVE
K) THE SUM OF GAS GENERATION FLOW RATES FOR ALL AREAS FROM WHICH COLLECTION WELLS HAVE BEEN EXCLUDED BASED ON NONPRODUCTIVITY AND THE CALCULATIONS OF GAS GENERATION FLOW RATE FOR EACH EXCLUDED AREA; AND
L) THE PROVISIONS FOR INCREASING GAS MOVER EQUIPMENT CAPACITY WITH INCREASED GAS GENERATION FLOW RATE, IF THE PRESENT GAS MOVER EQUIPMENT IS INADEQUATE TO MOVE THE MAXIMUM FLOW RATE EXPECTED OVER THE LIFE OF THE LANDFILL; AND
M) THE PROVISIONS FOR THE CONTROL OF OFF-SITE MIGRATION. RULE 59.1.
RULE(S): 59.1.

25. THE PERMITTEE SHALL SUBMIT AN EQUIPMENT REMOVAL REPORT TO THE DISTRICT 30 DAYS PRIOR TO REMOVAL OR CESSION OF OPERATION OF THE LANDFILL GAS CONTROL EQUIPMENT. THE EQUIPMENT REMOVAL REPORT SHALL CONTAIN THE FOLLOWING:
A) A COPY OF THE CLOSURE REPORT FOR THE LANDFILL; AND
B) A COPY OF THE INITIAL PERFORMANCE TEST REPORT DEMONSTRATING THAT THE 15 YEAR MINIMUM CONTROL PERIOD HAS EXPIRED; AND
C) DATED COPIES OF THREE SUCCESSIVE ANNUAL NMOC EMISSION RATE REPORTS DEMONSTRATING THAT THE LANDFILL IS NO LONGER PRODUCING 50 MEGAGRAMS OR GREATER OF NMOC PER YEAR. RULE 59.1.
RULE(S): 59.1.

26. SHOULD THE DISTRICT, SAN DIEGO COUNTY HEALTH DEPARTMENT, OR ANY HEALTH AGENCY OF THE STATE OF CALIFORNIA DETERMINE THAT AN IMMINENT, LIFE ENDANGERING THREAT TO HUMAN LIFE REQUIRING IMMEDIATE ACTION EXISTS ON SITE, THE OWNER/OPERATOR SHALL TAKE WHATEVER ACTIONS ARE DEEMED NECESSARY

6 Permit Conditions Continued

CONTROL NO. COUNTY OF SAN DIEGO, AIR POLLUTION CONTROL DISTRICT
243271 9150 CHESAPEAKE DRIVE, SAN DIEGO, CA 92123-1096
(858) 650-4700 FAX (858) 650-4659

PERMIT NO
971112
EXPIRES
JUNE 1, 2005

PERMIT TO OPERATE

BY THE DISTRICT AND/OR THE HEALTH AGENCY TO PROTECT HUMAN HEALTH.
RULE(S): 51.

27. EXCEPT DURING MAINTENANCE OR REPAIR, THE PERMITTEE SHALL SUBMIT AN APPLICATION AND OBTAIN WRITTEN AUTHORIZATION FROM THE DISTRICT BEFORE ALTERING ANY PORTION OF THE GAS COLLECTION OR FLARE SYSTEM, OR BEFORE INSTALLING NON-IDENTICAL PARTS IN A MANNER WHICH MAY AFFECT EMISSIONS FROM THE FACILITY.
RULE(S): 1421.

28. THE SULFUR CONTENT OF ANY GASEOUS FUEL BURNED SHALL NOT EXCEED 0.05% BY WEIGHT.
RULE(S): 53.

29. PARTICULATE EMISSIONS SHALL NOT EXCEED 0.10 GRAINS PER DRY STANDARD CUBIC FOOT OF GAS WHICH IS STANDARDIZED TO 12 PERCENT OF CARBON DIOXIDE BY VOLUME.
RULE(S): 53.

30. PARTICULATE EMISSIONS SHALL BE MEASURED IN ACCORDANCE WITH DISTRICT METHOD 5.
RULE(S): 53.

31. THE SULFUR CONTENT OF FUEL SHALL BE MEASURED IN ACCORDANCE WITH ASTM TEST METHOD D-3246.
RULE(S): 53.

32. THE EQUIPMENT SHALL BE PROPERLY MAINTAINED IN GOOD OPERATING CONDITION AT ALL TIMES. CALIBRATION AND MAINTENANCE RECORDS REQUIRED BY THIS PERMIT SHALL BE RETAINED FOR AT LEAST THREE (3) YEARS AND BE MADE AVAILABLE TO THE DISTRICT ON REQUEST.
RULE(S): 59.1.

33. THERE SHALL BE NO LEAKS OF LANDFILL GAS FROM THE COLLECTION SYSTEM AND FLARE EQUIPMENT IN EXCESS OF 1375 PPMV (AS METHANE) EXCEPT DURING MAINTENANCE, REPAIR, OR SAMPLING ACTIVITIES.
RULE(S): 59.1.

34. THE PERMITTEE SHALL INSPECT EACH OFFSITE GAS MIGRATION PROBE WITH A COMBUSTIBLE GAS INDICATOR FOR THE PRESENCE OF METHANE ON A MINIMUM QUARTERLY BASIS AND RETAIN RECORDS. INSPECTION RECORDS SHALL BE MADE AVAILABLE TO THE DISTRICT ON REQUEST.
RULE(S): 59.1.

35. THE FLOW RATE OF LANDFILL GAS INTO THE FLARE SHALL NOT EXCEED 1800 SCFM.

7 Permit Conditions Continued

CONTROL NO.
243271

COUNTY OF SAN DIEGO, AIR POLLUTION CONTROL DISTRICT
9150 CHESAPEAKE DRIVE, SAN DIEGO, CA 92123-1096
(858) 650-4700 FAX (858) 650-4659

PERMIT NO
971112
EXPIRES
JUNE 1, 2005

PERMIT TO OPERATE

A METER SHALL BE INSTALLED AT THE FLARE STATION WHICH MEASURES AND DISPLAYS THE LANDFILL GAS FLOW RATE. PERMITTEE SHALL CALIBRATE THIS METER AT LEAST BIENNIALLY.

RULE(S) :59.1.

36. A SHUT-OFF VALVE SHALL BE IN PLACE AND MAINTAINED AT EACH WELL HEAD.
RULE(S) :59.1.
37. EXCEPT FOR A FLARE IGNITION AND STARTUP NOT TO EXCEED 15 MINUTES, PERMITTEE SHALL ENSURE COMPLETE COMBUSTION OF LANDFILL GASES DURING OPERATION BY MAINTAINING THE STACK GAS EXIT TEMPERATURE AT NO LESS THAN 1500 F OR AS OTHERWISE SPECIFIED BY THE FLARE MANUFACTURER. SUPPLEMENTAL FUEL (NATURAL GAS OR PROPANE) SHALL BE ADDED AS NECESSARY TO MAINTAIN THE REQUIRED STACK GAS EXIT TEMPERATURE.
RULE(S) :59.1.
38. AN AUTOMATIC SHUTOFF DEVICE SHALL STOP THE FLOW OF LANDFILL GAS TO THE FLARE WHENEVER CONDITIONS OF FLAME-OUT, EXCESSIVE EXHAUST GAS TEMPERATURE (>1800 F), OR EXCESSIVE LANDFILL GAS OXYGEN CONTENT (>3.5% BY VOLUME) OCCUR.
RULE(S) :59.1.
39. A THERMOCOUPLE, DESIGNED TO BE ACCURATE TO +/- 50 F AT 1500 F, SHALL BE INSTALLED IN THE FLARE STACK AND MAINTAINED IN GOOD WORKING CONDITION. THE TEMPERATURE OF THE EXHAUST GAS IN THE FLARE STACK SHALL BE DISPLAYED AT THE FLARE STATION DURING INCINERATION.
RULE(S) :59.1.
40. THE PERMITTEE SHALL OPERATE, ADJUST, AND MAINTAIN THE GAS COLLECTION SYSTEM TO PREVENT EXCESSIVE QUANTITIES OF AIR FROM BEING DRAWN INTO THE LANDFILL. AN OXYGEN ANALYZER, DESIGNED TO BE ACCURATE TO +/- 0.5% BY VOLUME, SHALL BE INSTALLED IN THE COLLECTION PIPING AT THE FLARE STATION, MAINTAINED IN GOOD WORKING CONDITION, AND CALIBRATED AT LEAST BIENNIALLY. THE CONCENTRATION OF OXYGEN IN LANDFILL GAS AT THE FLARE STATION SHALL NOT EXCEED 3.5% BY VOLUME.
RULE(S) :59.1.
41. THERE SHALL BE NO RELEASE OF DUST FROM ANY PART OF THE LANDFILL, ASSOCIATED LANDFILL OPERATIONS, OR ON-SITE EQUIPMENT WHICH EXCEED THE APPLICABLE VISIBLE EMISSION STANDARDS SPECIFIED IN THE DISTRICT RULES AND REGULATIONS.
RULE(S) :50.
42. THERE SHALL BE NO RELEASE OF LEACHATE OR CONDENSATE FROM ANY PART OF THE LANDFILL, LANDFILL GAS COLLECTION SYSTEM, OR FLARE STATION WHICH RESULTS IN

8 Permit Conditions Continued

CONTROL NO.
243271COUNTY OF SAN DIEGO, AIR POLLUTION CONTROL DISTRICT
9150 CHESAPEAKE DRIVE, SAN DIEGO, CA 92123-1096
(858) 650-4700 FAX (858) 650-4659PERMIT NO
971112
EXPIRES
JUNE 1, 2005

PERMIT TO OPERATE

THE DISCHARGE OF NON-METHANE ORGANIC COMPOUNDS TO THE ATMOSPHERE.
RULE (S) : 59.1.

43. THE ACTIVE WASTE DISPOSAL OPERATION SHALL NOT EXCEED THE MAXIMUM ELEVATION (480 FT MSL) AND SIZE (463 ACRES) LIMITS SPECIFIED IN THE STATE INTEGRATED WASTE MANAGEMENT BOARD PERMITS NOS. 37-AA-0009 AND 37-AA-0010. THESE LIMITS ARE EQUIVALENT TO A TOTAL DESIGN CAPACITY OF APPROXIMATELY 23,750,000 CUBIC YARDS.
RULE (S) : NSR.

B. DISTRICT-ONLY--ENFORCEABLE CONDITIONS

44. THIS AIR POLLUTION CONTROL DISTRICT PERMIT DOES NOT RELIEVE THE HOLDER FROM OBTAINING PERMITS OR AUTHORIZATIONS REQUIRED BY OTHER GOVERNMENTAL AGENCIES.

45. THE PERMITTEE, SHALL UPON DETERMINATION OF APPLICABILITY AND WRITTEN NOTIFICATION BY THE DISTRICT, COMPLY WITH ALL APPLICABLE REQUIREMENTS OF THE AIR TOXICS 'HOT SPOTS' INFORMATION AND ASSESSMENT ACT (CALIFORNIA HEALTH AND SAFETY CODE SECTION 44300 ET. SEQ.).