

Allyson

Horizon Test No.: W07-046-FR

Date Tested: March 22, 2006

Report Date: March 31, 2006

Revision No.: 0

**EMISSIONS COMPLIANCE TEST RESULTS
ON A LANDFILL GAS FLARE
TOTAL NON-METHANE ORGANIC CARBON (NMOC)
DESTRUCTION / REMOVAL EFFECIENCY (DRE)**

**Antelope Valley Air Pollution Control District
Authority to Construct C008629**

Prepared for:

Waste Management of California, Inc.
Antelope Valley Recycling & Disposal Facility
1200-1202 West City Ranch Road
Palmdale, California 93551

Prepared by:

Horizon Air Measurement Services, Inc.
996 Lawrence Drive, Suite 108
Newbury Park, California 91320

Regulatory Agency:

US EPA Region IX
Air Division
75 Hawthorne Street (Air-5)
San Francisco, California 94105

Robert Carrier
Robert Carrier
Project Manager
Richard J. Vacherot
Richard J. Vacherot
Technical Director

AIR MEASUREMENT SERVICES, INC.

March 31, 2006

Mr. Matt Salazar
Air Division
U.S. EPA Region IX
75 Hawthorne Street (Air-5)
San Francisco, California 94105

Dear Mr. Salazar:

On behalf of Waste Management of California, Inc. Antelope Valley Recycling and Disposal Facility, please find enclosed two copies of the final report entitled "Emissions Compliance Test on a Landfill Gas Flare to Determine Total Non-Methane Organic Carbon (NMOC) Destruction / Removal Efficiency (DRE)".

If you have any questions, please call me at (805) 498-8781.

Sincerely,

HORIZON AIR MEASUREMENT SERVICES, INC.

A handwritten signature in black ink that reads "Robert Carrier/PP". The signature is written in a cursive style with "Robert Carrier" on top and "PP" on the line below.

Robert Carrier
Project Manager

cc: Nicole Stetson, Waste Management of California, Inc.
Wayne Nakagawa, SCS Engineers

TABLE OF CONTENTS

1. INTRODUCTION	Page 1
2. SUMMARY OF RESULTS	Page 3
3. FLARE DESCRIPTION AND OPERATION	Page 5
3.1 Flare Description	Page 5
3.2 Flare Operation During Testing	Page 5
3.3 Sample Location	Page 5
4. SAMPLING/ANALYSES	Page 6
4.1 Sample Location	Page 6
4.1.1 Flare Exhaust	Page 6
4.1.2 Landfill Gas Supply Line	Page 6
4.2 Moisture	Page 6
4.2.1 Inlet	Page 6
4.2.2 Outlet	Page 6
4.3 Flow Rate	Page 7
4.3.1 Inlet	Page 7
4.3.2 Outlet	Page 7
4.4 Carbon Dioxide and Oxygen	Page 7
4.4.1 Exhaust	Page 7
4.4.2 Inlet	Page 7
4.5 Total Non Methane Organic Compounds and Methane	Page 7
4.5.1 Exhaust	Page 7
4.5.2 Inlet	Page 8

APPENDIX A - Methods Description

APPENDIX B - Computer Printout of Results

APPENDIX C - Laboratory Results

APPENDIX D - Field Data Sheets

APPENDIX E - Strip Chart Recording

APPENDIX F - Calibrations

APPENDIX G - Process Data

INTRODUCTORY INFORMATION

A. Facility Identifying Information:

Owner/Company Name: Waste Management of California, Inc.

Owner Mailing Address: 1200-1202 W. City Ranch Road
Palmdale, CA 93551

Facility Name: Antelope Valley Recycling & Disposal

Facility Location: 1200-1202 W. City Ranch Road
Palmdale, CA 93551

AVAPCD Authority to Construct: C008629

Company Responsible Official: Ms. Nicole Stetson
Phone Number: (661)223-3418

Test Firm: Horizon Air Measurement Services, Inc.
Address: 996 Lawrence Drive, Newbury Park, CA 91320
Phone Number: (805)498-8781

Test Date: March 22, 2006

Test Firm Representatives: Mr. Richard Vacherot, Technical Director

Test Personnel: Mr. Robert Carrier, Mr. Travis Williams and Mr. Mike Bivona

Test Purpose: To determine Total Non-Methane Hydrocarbon Destruction Efficiency

1. INTRODUCTION

Waste Management of California, Inc. is required by the Federal Plan for the Emission Guideline (EG) (40 CFR Part 62, Subpart GGG) to conduct an emissions compliance test on the subject landfill gas flare located at the Antelope Valley Recycling & Disposal Facility in Palmdale, California. The New Source Performance Standards (NSPS) for municipal solid waste landfills (40 CFR Part 60, Subpart WWW), includes a requirement for initial source testing of enclosed combustion devices [60.752(b)(2)(iii)(B)] to determine compliance with the NMOC destruction efficiency requirement of 98% destruction efficiency (DRE) for NMOCs (by weight) or an outlet concentration of 20 ppmv NMOC as hexane at 3% oxygen. Horizon Air Measurement Services, Inc. (Horizon) has been retained to conduct the test program.

The emissions test was completed on March 22, 2006 in accordance with the Horizon Test Plan W07-046-TP which had been submitted to US EPA Region IV at least 30 days prior to the emission test. Three, 60-minute test runs were completed for each parameter of interest. The emission parameters measured at each sample location are provided in Table 1-1.

A summary of results is provided in Section 2. A brief description of the flare and flare operating conditions during the test program is provided in Section 3. Section 4 provides a detailed description of sampling/analytical techniques.

Table 1-1
Compounds of Interest - Test Methods
Antelope Valley Recycling & Disposal Facility - Landfill Flare

Parameter	Location	Method	Number of Test Runs
Total Non Methane Organic Compounds	Inlet	EPA Method 25C	3
	Outlet	EPA Method 25C	3
Oxygen	Inlet	EPA Method 3C	3
	Outlet	EPA Method 3A	3
Carbon Dioxide	Inlet	EPA Method 3C	3
	Outlet	EPA Method 3A	3
Methane	Inlet	EPA Method 25C	3
	Outlet	EPA Method 25C	3
Flow Rate/Temperature	Inlet	EPA Method 2	3
	Outlet	Calculated - EPA Method 19	3
Moisture	Inlet	Wet Bulb/Dry Bulb	3

2. SUMMARY OF RESULTS

A summary of results is provided in Table 2-1. Destruction efficiency averaged 99.1%, which is well within the 40 CFR Part 60, subpart WWW requirement of 98%. The concentration of NMOC averaged 1.6 ppmv, as C₆ @ 3%O₂.

No sampling or analytical problems were encountered during any phase of the test program.

Table 2-1
Summary of Results
Antelope Valley Landfill and Recycling Center
March 22, 2006

	Run 1	Run 2	Run 3	Average
<u>Inlet</u>				
Oxygen, %	1.2	1.4	1.1	1.2
Carbon Dioxide, %	37.8	37.3	36.8	37.3
Methane, %	48.8	40.1	39.1	42.7
Heating Value, Btu/scf	493	405	395	431
Flow Rate, dscfm	736	645	634	672
acfm	873	790	779	814
Non-Methane Organic Carbon				
ppm, C ₁	5330	5440	5180	5317
lb/hr, as CH ₄	9.80	8.75	8.19	8.91
<u>Exhaust</u>				
Oxygen, %	12.9	12.6	12.2	12.6
Carbon Dioxide, %	7.2	7.4	7.6	7.4
Flow Rate, dscfm	8994	6539	6007	7180
Non-Methane Organic Carbon				
ppm, C ₁	4.3	3.8	5.0	4.4
ppm, as C ₆ @3%O ₂	1.6	1.4	1.7	1.6
lb/hr, as CH ₄	0.096	0.062	0.075	0.078
Destruction Efficiency, %	99.0	99.3	99.1	99.1

3. FLARE DESCRIPTION AND OPERATION

3.1 Flare Description

The landfill gas flare is a McGill Environmental Systems, Inc. which consists of an insulated steel cylinder 35 feet high and 104 inches inside diameter. Operating flow rate is limited by ATC C008629 to not exceed 1388 standard cubic feet per minute. The flare is equipped with condensate injection.

3.2 Flare Operation During Testing

The flare was tested under the prevailing landfill gas flow rate, condensate injection rate and temperature set point (>1400°F). Following are the average operating parameter values recorded during the emissions testing

<u>Parameter</u>	<u>Run 1</u>	<u>Run 2</u>	<u>Run 3</u>
landfill gas flow rate, scfm	768	770	754
flare temperature, °F	1481	1477	1478
condensate injection rate, gpm	0.38	0.39	0.38

This data, recorded at 10-minute intervals during the test period, is provided in Appendix G, Process Data.

3.3 Sample Location

Flare exhaust samples were obtained from each of two ports positioned at right angles, located five feet from the top of the flare and approximately 30 feet above ground level. Inlet samples were obtained from the 10-inch diameter (ID) landfill gas line supplying the flare 62 inches (6.2 diameters) downstream and 36 inches (3.6 diameters) upstream of any flow disturbance.

4. SAMPLING/ANALYSES

The sampling/analytical program has been designed to quantify the parameters of interest outlined in Table 1-1. Three, one-hour test runs were conducted simultaneously at the flare inlet and outlet using the test methods outlined in the following subsections.

4.1 Sample Location

4.1.1 Flare Exhaust

At the flare exhaust, a minimum of 16 sample points (8 per diameter), determined in accordance with Method 1, were utilized for the determination of oxygen and carbon dioxide. A single sample point was utilized for the collection of the TNMOC samples.

4.1.2 Landfill Gas Supply Line

Twelve sample points (6 per diameter), determined in accordance with Method 1, were utilized for flow rate determination. A single sample point was utilized for the collection of total non methane organic compounds, methane and CO₂/O₂ at the flare inlet duct.

4.2 Moisture

4.2.1 Inlet

Landfill gas moisture content was determined using a wet bulb/dry bulb thermometer.

4.2.2 Outlet

Moisture content of the flare exhaust was not determined since the flow rate was calculated using EPA Method 19.

4.3 Flow Rate

4.3.1 Inlet

Landfill gas flow rate was determined using EPA Method 2 as described in Appendix A.

4.3.2 Outlet

Since the flare exhaust velocity is below the applicable limit (11 fps) of EPA Method 2, the exhaust flow rate was calculated stoichiometrically using EPA Method 19.

4.4 Carbon Dioxide and Oxygen

4.4.1 Exhaust

Concentrations of O₂ and CO₂ at the flare exhaust were continuously monitored using EPA Method 3A as detailed in Appendix A.

4.4.2 Inlet

Concentration of O₂ and CO₂ of the landfill gas were determined using EPA Method 3C as described in Appendix A.

4.5 Total Non Methane Organic Compounds and Methane

4.5.1 Exhaust

Methane and total non methane organic compounds (NMOC) samples were collected and analyzed at the outlet using EPA Method 25C procedure as described in Appendix A.

4.5.2 Inlet

Total non methane organic compound and methane concentration were determined at the flare inlet using EPA Method 25C as described in Appendix A

APPENDIX A - Methods Description

Method:

Sample Velocity Traverses for Stationary Sources

Applicable for
Methods:

EPA Method 1, SCAQMD Method 1.1, CARB Method 1

Principle:

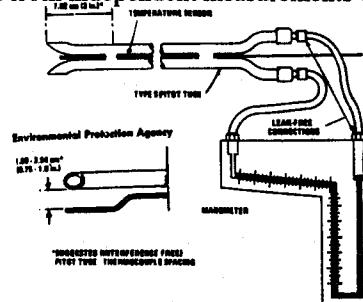
To aid in the representative measurements of pollutant emissions and/or total volumetric flow rate from a stationary source, a measurement site where the effluent stream is flowing in a known direction is selected, and the cross section of the stack is divided into a number of equal areas. A traverse point is then located within these equal areas. The method cannot be used when, 1) flow is cyclonic or swirling, 2) stack is small than about 0.30 meter (12 inches) in diameter or 3) the measurement of the site is less than two stack or duct diameters downstream or less than a half diameter upstream from the flow disturbance.

002

Method:

Stack Gas Velocity and Volumetric Flow Rate

Applicable for
Methods:


EPA Method 2, CARB 2, SCAQMD Method 2.1

Principle:

The average gas velocity in a stack gas is determined from the gas density and from measurement of the average velocity head with a type S or standard pitot tube.

Sampling Procedure:

Set up the apparatus as shown in the figure. Measure the velocity head and temperature at the traverse points specified by EPA Method 2, CARB Method 2 or SCAQMD Method 2.1. Measure the static pressure in the stack and determine the atmospheric pressure. The stack gas molecular weight is determined from independent measurements of O_2 , CO_2 and H_2O concentrations.

Sample Recovery:
and Analyses:

The stack gas velocity is determined from the measured average velocity head, the measured dry concentrations of O_2 and CO_2 and the measured concentration of H_2O . The velocity is determined from the following set of equations:

Where,

ΔP = velocity head, inches in H_2O

M_{wd} = dry molecular weight

T_s = gas/temperature, degrees R

M_w = molecular weight

P_s = absolute static pressure

C_p = pitot flow coefficient

Dry molecular weight of stack gas

$$M_{wd} = 0.44 (\%CO_2) + 0.32 (\%O_2) + 0.28 (\%N_2 + \%CO)$$

Molecular weight of stack gas, wet basis

$$M_w = (M_{wd} \times M_d) + 18 (1 - M_d)$$

$$\text{Where, } M_d = \frac{100 - B_{ws}}{100}$$

Stack gas velocity

$$(V_s) \text{ avg.} = (5130) C_p \times \sqrt{\Delta P} \text{ avg.} \times \sqrt{T_s} \times \left(\frac{1}{P_s \times M_w} \right)^{1/2}$$

Method:	EPA Method 3C
Reference:	Determination of CO ₂ , CH ₄ , N ₂ and O ₂ from Stationary Sources
Principle:	Gaseous samples are collected in SUMMA polished stainless steel canisters or a Tedlar bag. The canisters are then pressurized with nitrogen and analyzed for CO ₂ , CH ₄ , N ₂ and O ₂
Sampling Procedure:	<p><u>SUMMA Canister</u></p> <p>Samples are collected, in duplicate, using 6-liter SUMMA polished stainless steel canisters which are evacuated to less than 10 mm Hg absolute. The tanks are pressurized and evacuated three times with ultrapure nitrogen and leak checked prior to use. A gas flow metering device and stainless steel shutoff valve is located just upstream of the canister. Representative, integrated samples are collected through a heat conditioned 1/4" stainless steel probe. The gas samples are metered into the canisters through the vacuum regulator maintaining a constant flow rate throughout each sampling period.</p> <p>The sampling apparatus is checked for leaks prior to the sampling program by attaching the probe end to an absolute pressure gauge and vacuum pump in series. The sample lines were evacuated to less than 10 mm Hg and the gauge shutoff valve is then closed. The sample lines are deemed to be leak-free if no loss of vacuum occurs as indicated by the vacuum gauge. During sampling the tank pressures are monitored with a 0-30 inch vacuum gauge to ensure integrated sampling.</p> <p><u>Tedlar Bag</u></p> <p>Samples are collected by evacuating the canister at a constant rate over each test run using a rotameter/needle valve and a diaphragm pump. Prior to each sampling run, the evacuated canister (containing the Tedlar bag) is leak checked at 2" Hg vacuum. The sample train upstream of the Tedlar bag is then purged with stack gas. At the conclusion of each test run, each Tedlar bag sample is sealed and stored in an opaque container pending analysis.</p>
Analytical Procedure:	Samples are analyzed for CO ₂ , CH ₄ , N ₂ and O ₂ using a gas chromatograph (GC) equipped with a thermal conductivity detector (TCD).

CONTINUOUS EMISSIONS MONITORING SYSTEM - TRUCK

EPA Methods 3A, 6C, 7E, 10

The continuous emissions monitoring system consists of a Thermo Electron Model 10AR chemiluminescence NO/NO_x analyzer, a Teledyne electro chemical O₂ analyzer, a Thermo Electron Model 48H CO gas filter correlation analyzer, a TECO Model 43C-HL pulsed fluorescent SO₂ analyzer and a Fuji PIR 2000 non dispersive infrared CO₂ analyzer. All analyzer specifications are provided in Table 1. All concentrations are determined on a dry basis. Concentrations of NO_x, CO, SO₂ and CO₂ are continuously recorded on a Linseis 10-inch strip chart recorder and a Strawberry Tree Data Acquisition System (DAS). The extractive monitoring system conforms with the requirements of SCAQMD Method 100.1.

The sampling probe (heated to 250°F), constructed of 1/2 inch-diameter 316 stainless steel, is connected to a condenser with a six foot length of 3/8 inch Teflon line (heated to 250°F). A Nupro stainless steel filter (10 micron) is connected at the tip of the probe and maintained at stack temperature.

The condenser consists of a series of two stainless steel moisture knock-out bottles immersed in an ethylene glycol/dry ice bath. The system is designed to minimize contact between the sample and the condensate. Condensate is continuously removed from the knock-out bottles via a peristaltic pump. The condenser outlet temperature is monitored either manually at 10-minute intervals or on a strip chart recorder/DAS system. The sample exiting the condenser is then transported through a filter, housed in a stainless steel holder, followed by 3/8 inch O.D. Teflon tubing and a Teflon coated (or stainless steel/viton) diaphragm pump to the sample manifold. The sample manifold is constructed of stainless steel tubing and directs the sample through each of five rotameters to the NO_x monitor, O₂ monitor, CO monitor, SO₂ monitor and CO₂ monitor and excess sample exhaust line, respectively. Sample flow through each channel is controlled by a back pressure regulator and by stainless steel needle valves on each rotameter. All components of the sampling system that contact the sample are composed of stainless steel, Teflon or glass.

The calibration system is comprised of two parts: the analyzer calibration and the system bias check. The calibration gases are, at a minimum, certified to $\pm 1\%$ by the manufacturer. Where necessary to comply with the reference method requirements, EPA Protocol 1 gases are used. The cylinders are equipped with pressure regulators which supply the calibration gas to the analyzers at the same pressure and flow rate as the sample. The selection of zero, span or sample gas directed to each analyzer is accomplished by operation of the zero, calibration or sample selector knobs located on the main flow control panel.

For EPA Methods 3A/6C/7E/10 the following procedures are conducted before and after each series of test runs:

Leak Check:

The leak check is performed by plugging the end of the sampling probe, evacuating the system to at least 20 inches of Hg. The leak check is deemed satisfactory if the system holds 20 inches of Hg vacuum for five minutes with less than one inch Hg loss.

Alternately the leak check is accomplished by plugging the probe at the tip and operating the system in the "sample" position. The excess sample vent is closed and the flow observed on the low-flow (0-140 cc/min) sample delivery system. If no flow is observed the system is deemed leak tight.

Linearity Check:

NO_x, CO, O₂, SO₂ and CO analyzer linearity check is performed by introducing, at a minimum, zero gas, mid range calibration gas (40-60% scale) and high range calibration gas (80-100% scale). Instrument span value is set on each instrument with the mid range gas. Linearity is confirmed, if all values agree with the calibration gas value to within 2% of the range.

005

Stratification Check:

A stack stratification check is performed (pre-test only) by traversing the stack (6 points per traverse). If the gas composition is homogenous, <10% variation between any two points in the gas stream throughout the cross sectional diameter of the stacks, single point gas sampling is performed at an average point. If stratification exceeds the 10% criteria, then the stack cross section is traversed during sampling.

System Bias Check:

The system bias check is accomplished by transporting the same gases used to zero and span the analyzers to the sample system as close as practical to the probe inlet. This is accomplished by opening a valve located on the probe, allowing the gas to flow to the probe and back through the moisture knockout and sample line to the analyzers. During this check the system is operated at the normal sampling rate with no adjustments. The system bias check is considered valid if the difference between the gas concentration exhibited by the measurement system which a known concentration gas is introduced at the sampling probe tip and when the sample gas is introduced directly to the analyzer, does not exceed $\pm 5\%$ of the analyzer range.

Response Time:

Response time (upscale and downscale) for each analyzer is recorded during the system bias check. Upscale response time is defined as the time it takes the subject analyzer gas to reach 95% of the calibration gas value after introducing the upscale gas to the sample bias calibration system. Downscale response time is defined as the time it takes the subject analyzer to return to zero after the zero gas is introduced into the sample system bias calibration system.

NO_x Conversion Efficiency

The NO_x analyzer NO₂ conversion efficiency is determined by injecting a NO₂ gas standard directly into the NO_x analyzer (after initial calibration). The analyzer response must be a least 90% of the NO₂ standard gas value.

NO₂ Converter Efficiency (alternate method)

The mid level NO gas standard is directly injected into a clean leak-free Tedlar bag. The bag is then diluted 1:1 with air (20.9 % O₂). The bag is immediately attached to the NO_x sample line. The initial NO_x concentration is recorded on the strip chart. After at least 30 minutes the Tedlar bag is reattached to the NO_x sample line. Analyzer response must be at 98% of the initial Tedlar bag NO_x value to be acceptable.

In between each sampling run the following procedures are conducted:

Zero and Calibration Drift Check:

Upon the completion of each test run, the zero and calibration drift check is performed by introducing zero and mid range calibration gases to the instruments, with no adjustments (with the exception of flow to instruments) after each test run. The analyzer response must be within $\pm 3\%$ of the actual calibration gas value.

Analyzer Calibration:

Upon completion of the drift test, the analyzer calibration is performed by introducing the zero and mid range gases to each analyzer prior to the upcoming test run and adjusting the instrument calibration as necessary.

System Bias Check

(same as above)

A schematic of the sample system and specific information of the analytical equipment is provided in the following pages.

003

TABLE 1

CONTINUOUS EMISSIONS MONITORING LABORATORY - TRUCK

NO_x CHEMILUMINESCENT ANALYZER -- THERMO ELECTRON MODEL 10 A

Response Time (0-90%)	1.5 sec -- NO mode/1.7 sec -- NO _x mode
Zero Drift	Negligible after 1/2 hour warmup
Linearity	± 1% of full scale
Accuracy	Derived from the NO or NO ₂ calibration gas, ± 1% of full scale
Operating Ranges (ppm)	2.5, 10, 25, 100, 250, 1000, 2500, 10000
Output	0-1 volt

O₂ ANALYZER, FUEL TYPE -- TELEDYNE MODEL 326RA

Response Time (0-90%)	60 seconds
Accuracy	± 1% of scale at constant temperature
Operating Ranges (%)	± 1% of scale of ± 5% of reading, whichever is greater, over the operation temperature range.
Output	0-5, 0-25
	0-1 volt

O₂ ANALYZER, PARAMAGNETIC -- SERVOMEX MODEL 1400B

Response Time (0-90%)	15 seconds
Accuracy	0.1% oxygen
Linearity	± 1% scale
Operating Ranges (%)	0-25, 0-100
Output	0-1 volt

CO GAS FILTER CORRELATION -- THERMO ELECTRON MODEL 48H

Response Time (0-95%)	1 minute
Zero Drift	± 0.2 ppm CO
Span Drift	Less than 1% full scale in 24 hours
Linearity	± 1% full scale, all ranges
Accuracy	± 0.1 ppm CO
Operating Ranges (ppm)	50, 100, 250, 500, 1000, 2500, 5000, 10,000, 25,000, 50,000
Output	0-1 volt

TABLE 1 (Cont.)

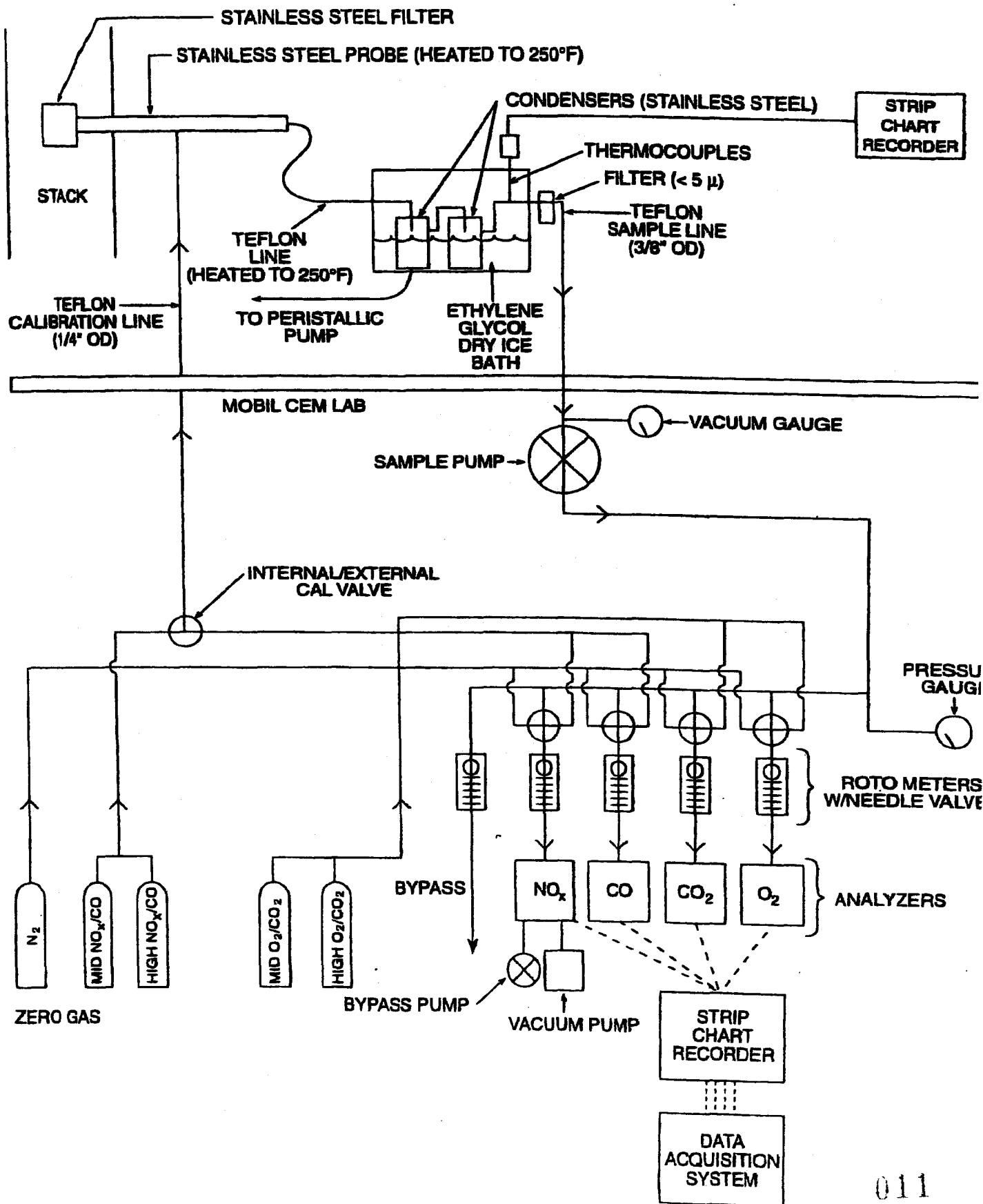
CO₂ INFRARED GAS ANALYZER -- HORIBA - MODEL PIR 2000

Response Time (0-90%)	5 seconds
Zero Drift	± 1% of full scale in 24 hours
Span Drift	± 1% of full scale in 24 hours
Linearity	± 2% of full scale
Resolution	Less than 1% of full scale
Operating Ranges (%)	0-5, 0-15, 0-25
Output	0-1 volt

SO₂ PULSED FLOURESCENT ANALYZER - TECO MODEL 43C-HL

Response Time	80 seconds
Zero Drift	± 1% of full scale in 24 hours
Span Drift	± 1% of full scale in 24 hours
Linearity	± 2% of full scale
Resolution	less than 1% of full scale
Operating Ranges	5, 10, 20, 50, 100, 200 ppm and customized
Output	0-10 volt

RATFISCH FID TOTAL HYDROCARBON ANALYZER -- MODEL 55CA


Response Time (0-90%)	5 seconds
Zero Drift	± 1% full scale in 24 hours
Span Drift	± 1% full scale in 24 hours
Linearity	± 1% full scale - constant
Accuracy	± 1% full scale at constant temp.
Operating Ranges (ppm)	10, 100, 1000, 10,000
Output	0 - 10 volts

LINSEIS MODEL L2045 FOUR PEN STRIP CHART RECORDER

Pen Speed	up to 120 cm/min
Measuring Response	0-20 volts
Linearity Error	0.25%
Accuracy	0.3%
Zero Suppression	Manual (from 1 to 10X full scale)

LINEAR 3 PEN CONTINUOUS -- MODEL 595 STRIP CHART

Pen Response	20 inches/second
Measuring Response	1 Mv through 5V
Zero Set	Electronically adjustable full scale with 1 full scale of zero suppression
Accuracy	Total limit of error \pm 0.5%

Method:	Oxygen (O₂) by Continuous Analyzer
Applicable Reference Methods:	EPA 3A, EPA 20, CARB 100, BAAQMD ST-14, SCAQMD 100.1
Principle:	A sample is continuously withdrawn from the flue gas stream, conditioned and conveyed to the instrument for direct readout of O ₂ concentration.
Analyzer:	Teledyne Model 326R
Measurement Principle:	Electrochemical cell
Ranges:	0-5, 0-25% 0-100%
Accuracy:	1% of full scale
Output:	0-1 V
Interferences:	Halogens and halogenated compounds will cause a positive interference. Acid gases will consume the fuel cell and cause a slow calibration drift.
Response Time:	90% < 60 seconds
Sampling Procedure:	A representative flue gas sample is collected and conditioned using the CEM system described previously. If Method 20 is used, that method's specific procedures for selecting sample points are used. Otherwise, stratification checks are performed at the start of a test program to select single or multiple-point sample locations.
Analytical Procedure:	An electrochemical cell is used to measure O ₂ concentration. Oxygen in the flue gas diffuses through a Teflon membrane and is reduced on the surface of the cathode. A corresponding oxidation occurs at the anode internally and an electric current is produced that is proportional to the concentration of oxygen. This current is measured and conditioned by the instrument's electronic circuitry to give an output in percent O ₂ by volume.

Method:	Carbon Dioxide (CO ₂) by Continuous Analyzer
Applicable Reference	EPA 3A, CARB 100, BAAQMD ST-5, SCAQMD 100.1
Principle:	A sample is continuously drawn from the flue gas stream, conditioned and conveyed to the instrument for direct readout of CO ₂ concentration.
Analyzer:	PIR 2000
Measurement Principle:	Non-dispersive infrared (NDIR)
Accuracy:	1% of full scale
Ranges:	0-5, 0-15%
Output:	0-1 V
Interferences:	A possible interference includes water. Since the instrument receives dried sample gas, this interference is not significant.
Response Time:	5 seconds
Sampling Procedure:	A representative flue gas sample is collected and conditioned using the CEM system described previously.
Analytical Procedure:	Carbon dioxide concentrations are measured by short path length non-dispersive infrared analyzers. These instruments measure the differential in infrared energy absorbed from energy beams passed through a reference cell (containing a gas selected to have minimal absorption of infrared energy in the wavelength absorbed by the gas component of interest) and a sample cell through which the sample gas flows continuously. The differential absorption appears as a reading on a scale of 0-100%.

Method: **Methane and Total Non-Methane Hydrocarbons by Total Carbon Analyses**

Reference: **EPA Method 25C**

Principle: Gaseous samples are collected in stainless steel canisters. The canisters are then pressurized with nitrogen and analyzed for methane and total non methane hydrocarbons (TNMHC) using a TCA/FID.

Sampling Procedure: Samples are collected, in duplicate, using stainless steel canisters which are evacuated to less than 10 mm Hg absolute. The tanks are pressurized and evacuated three times with ultrapure nitrogen and leak checked prior to use. A gas flow metering device and stainless steel shutoff valve is located just upstream of the canister. Representative, integrated samples are collected through a heat conditioned 1/4" stainless steel probe. The gas samples are metered into the canisters through the vacuum regulator maintaining a constant flow rate throughout each sampling period.

The sampling apparatus is checked for leaks prior to the sampling program by attaching the probe end to an absolute pressure gauge and vacuum pump in series. The sample lines were evacuated to less than 10 mm Hg and the gauge shutoff valve is then closed. The sample lines are deemed to be leak-free if no loss of vacuum occurs as indicated by the vacuum gauge. During sampling the tank pressures are monitored with a 0-30 inch vacuum gauge to ensure integrated sampling.

Analytical Procedure: Samples are analyzed for methane and total non methane hydrocarbons (TNMHC) by total combustion analyses (TCA)/flame ionization detection (FID).

APPENDIX B - Computer Printout of Results

CEM Emission Rates

Facility: Antelope Valley L.F.
Source: Flare Exhaust
Job No.: W07-046
Date: 3/22/2006

Run Number	*****	1	2	3
------------	-------	---	---	---

Inlet

Flow Rate	dscfm	736	645	634
-----------	-------	-----	-----	-----

Total Non-Methane Hydrocarbons, as Methane

Concentration	ppm	5330	5440	5180
Concentration	lb/dscf	2.22E-04	2.26E-04	2.15E-04
Emission Rate	lb/hr	9.78	8.74	8.18

Exhaust

Flow Rate	dscfm	8994	6539	6007
Oxygen	%	12.9	12.6	12.2

Total Non-Methane Hydrocarbons

Concentration, as Methane	ppm	4.30	3.78	5.00
Concentration, as C ₆ @ 3% O ₂	ppm	1.60	1.36	1.71
Concentration, as Methane	lb/dscf	1.79E-07	1.57E-07	2.08E-07
Emission Rate, as Methane	lb/hr	0.0964	0.0616	0.0749

Destruction Efficiency	%	99.0	99.3	99.1
-------------------------------	---	------	------	------

Facility: Antelope Valley LF
Source: Flare Inlet
Job No.: W07-046
Test Date: 3/22/06

SCAQMD Methods 1-4 Flowrate Determination

STD TEMP: 68

RUN NUMBER	*****	1	2	3
DATE OF RUN	*****	03/22/06	03/22/06	03/22/06
CLOCK TIME: INITIAL	*****	900	1105	1213
CLOCK TIME: FINAL	*****	1000	1205	1313
AVG. STACK TEMPERATURE	Degrees F	98	105	107
AVG. SQUARE DELTA P	Inches H20	0.3703	0.3382	0.3332
NOZZLE DIAMETER	Inches	NA	NA	NA
BAROMETRIC PRESSURE	Inches HG	27.57	27.57	27.57
SAMPLING TIME	Minutes	60	60	60
SAMPLE VOLUME	Cubic Feet	NA	NA	NA
AVG. METER TEMP.	Degrees F	NA	NA	NA
AVG. DELTA H	Inches H20	NA	NA	NA
DGM CALIB. FACTOR [Y]	*****	NA	NA	NA
WATER COLLECTED	Milliliters	NA	NA	NA
CO 2	Percent	37.8	37.3	36.8
O 2	Percent	1.17	1.37	1.05
CO	Percent			
CH4	Percent	48.8	40.1	39.1
N 2	Percent	12.2	21.2	23.1
STACK AREA	Square Inches	78.5	78.5	78.5
STATIC PRESSURE	Inches WG	0.90	0.90	0.80
PITOT COEFFICIENT	*****	0.99	0.99	0.99
SAMPLE VOLUME DRY	DSCF	0.00	0.00	0.00
WATER AT STD.	SCF	0.0	0.0	0.0
MOISTURE	Percent	3.5	4.0	4.0
MOLE FRACTION DRY GAS	*****	0.97	0.96	0.96
MOLECULAR WT.DRY	lb/lb Mole	28.24	29.21	29.24
EXCESS AIR	Percent	57	32	21
MOLECULAR WT. WET	lb/lb Mole	27.88	28.76	28.79
STACK GAS PRESSURE	Inches HG	27.64	27.64	27.63
STACK VELOCITY	AFPM	1600	1448	1429
VOLUMETRIC FLOWRATE, DRY STD.	DSCFM	736	645	634
VOLUMETRIC FLOWRATE, ACTUAL	ACFM	873	790	779

017

EXPANSION AND F-FACTOR CALC. METHOD

Client: <u>Antelope Valley L.F.</u>	Date: <u>3/22/06</u>
Location: <u></u>	Job #: <u>W07-046</u>
Unit: <u>Flare Exhaust</u>	Bomb#: <u>Run 1</u>

Fuel temperature	deg F	Std. Temp.	<u>68</u>
Fuel Pressure	psi		
Fuel Flow Rate	cfm	Fuel Flow	<u>736.2</u> scfm
Exhaust Outlet O2	%		
Barometric Pressure	<u>27.57</u>		

COMPONENTS	MOLE %	HHV btu/ft3	LLV btu/ft3	Exp Factor dscf/scf fuel
Oxygen	1.17			0.012
Nitrogen	12.23			0.122
Carbon Dioxide	37.80			0.378
Methane	48.80	492.88	443.79	4.182
Ethane	C2	0.00	0.00	0.000
Propane	C3	0.00	0.00	0.000
Iso-Butane	C4	0.00	0.00	0.000
N-Butane		0.00	0.00	0.000
Iso-Pentane	C5	0.00	0.00	0.000
N-Pentane		0.00	0.00	0.000
Hexane	C6	0.00	0.00	0.000
Heptane	C7	0.00	0.00	0.000
Octane	C8	0.00	0.00	0.000
Nonane	C9	0.00	0.00	
Total	100.00	492.88	443.79	4.69

CALCULATIONS

$$\text{EXHAUST FLOW RATE, Q} = (\text{scfm} * \text{Exp Fac}) * (20.92(20.92\%O_2))$$

$$8994.0 \quad \text{DSCFM}$$

$$\text{F - FACTOR} = (\text{Exp Fac} * 10^6) / (\text{hhv} * ((460 + \text{Tstd}) / 528))$$

$$9523.9 \quad \text{SCF/MMBtu}$$

013

EXPANSION AND F-FACTOR CALC. METHOD

Client: <u>Antelope Valley L.F.</u>	Date: <u>3/22/06</u>
Location: <u></u>	Job #: <u>W07-046</u>
Unit: <u>Flare Exhaust</u>	Bomb#: <u>Run 2</u>

Fuel temperature	deg F	Std. Temp.	<u>68</u>
Fuel Pressure	psi		
Fuel Flow Rate	cfm		
Exhaust Outlet O2	%	Fuel Flow	<u>644.6</u> scfm
Barometric Pressure			

COMPONENTS	MOLE %	HHV btu/ft3	LLV btu/ft3	Exp Factor dscf/scf fuel
Oxygen	1.37			0.014
Nitrogen	21.23			0.212
Carbon Dioxide	37.30			0.373
Methane	40.10	405.01	364.67	3.437
Ethane	C2	0.00	0.00	0.000
Propane	C3	0.00	0.00	0.000
Iso-Butane	C4	0.00	0.00	0.000
N-Butane		0.00	0.00	0.000
Iso-Pentane	C5	0.00	0.00	0.000
N-Pentane		0.00	0.00	0.000
Hexane	C6	0.00	0.00	0.000
Heptane	C7	0.00	0.00	0.000
Octane	C8	0.00	0.00	0.000
Nonane	C9	0.00	0.00	
Total	100.00	405.01	364.67	4.04

CALCULATIONS	
EXHAUST FLOW RATE, Q	= (scfm*Exp Fac)*(20.92(20.92-%O2)
	6539.0 DSCFM
F - FACTOR	= (Exp Fac*10^6)/(hhv*((460+Tstd)/528))
	9964.1 SCF/MMBtu

019

EXPANSION AND F-FACTOR CALC. METHOD

Client: <u>Antelope Valley L.F.</u>	Date: <u>3/22/06</u>
Location: <u></u>	Job #: <u>W07-046</u>
Unit: <u>Flare Exhaust</u>	Bomb#: <u>Run 3</u>

Fuel temperature	_____	deg F	Std. Temp.	<u>68</u>
Fuel Pressure	_____	psi		
Fuel Flow Rate	_____	cfm	Fuel Flow	<u>633.5</u> scfm
Exhaust Outlet O2	<u>12.2</u>	%		
Barometric Pressure	<u>27.57</u>			

COMPONENTS	MOLE %	HHV btu/ft3	LLV btu/ft3	Exp Factor dscf/scf fuel
Oxygen	1.05			0.011
Nitrogen	23.05			0.231
Carbon Dioxide	36.80			0.368
Methane	39.10	394.91	355.58	3.351
Ethane	C2	0.00	0.00	0.000
Propane	C3	0.00	0.00	0.000
Iso-Butane	C4	0.00	0.00	0.000
N-Butane		0.00	0.00	0.000
Iso-Pentane	C5	0.00	0.00	0.000
N-Pentane		0.00	0.00	0.000
Hexane	C6	0.00	0.00	0.000
Heptane	C7	0.00	0.00	0.000
Octane	C8	0.00	0.00	0.000
Nonane	C9	0.00	0.00	
Total	100.00	394.91	355.58	3.96

CALCULATIONS

$$\text{EXHAUST FLOW RATE, Q} = (\text{scfm} * \text{Exp Fac}) * (20.92(20.92\%O_2))$$

$$\text{6007.1 DSCFM}$$

$$\text{F - FACTOR} = (\text{Exp Fac} * 10^6) / (\text{hhv} * ((460 + \text{Tstd}) / 528))$$

$$\text{10027.3 SCF/MMBtu}$$

020

Facility: Antelope Valley L.F.
Source: Flare Exhaust
Job No.: W07-046
Date: 03/22/06

Run No.: 1
Fuel: L.F.G.
Std. O2: 3

	O2 %	CO2 %
Range:	25.00	15.00
Span:	12.00	7.00
Low:		
High:	20.12	12.01

** POST-TEST DRIFT (DIRECT)**

Values

Zero:

Span:

0.02	0.00		
11.98	6.96		

Percent Drift

Zero:

Span:

0.08	0.00
-0.08	-0.27

** PRE-TEST BIAS **

Values

Zero:

Span:

0.02	0.02		
11.98	6.96		

** POST-TEST BIAS **

Values

Zero:

Span:

-0.02	0.02		
12.03	7.01		

** BIAS CORRECTION **

Zero Average
Span Average

0.00	0.02
12.01	6.99

** POST-TEST DRIFT (BIAS)**

Percent Drift

Zero:

Span:

0.16	0.00
-0.20	-0.33

Bias-Corrected Concentration 12.88 7.26
Bias-Corrected Conc.(O2 adjusted)

** RAW AVERAGE CONCENTRATION **

Average:	12.89	7.24	
O2 adjust:	3.0		
Date	Time	O2	CO2
22-Mar-06	900	13.00	6.79
22-Mar-06	901	13.13	6.76
22-Mar-06	902	13.53	6.21
22-Mar-06	903	13.77	6.47
22-Mar-06	904	13.52	6.50
22-Mar-06	905	13.40	6.73
22-Mar-06	906	13.55	6.58
22-Mar-06	907	13.65	6.61
22-Mar-06	908	13.59	6.38
22-Mar-06	909	13.48	6.32
22-Mar-06	910	13.86	6.46
22-Mar-06	911	12.94	6.89

021

22-Mar-06	912	12.97	7.06
22-Mar-06	913	13.30	6.87
22-Mar-06	914	13.23	6.78
22-Mar-06	915	13.14	6.96
22-Mar-06	916	13.14	6.76
22-Mar-06	917	13.63	6.47
22-Mar-06	918	13.13	6.86
22-Mar-06	919	12.73	7.19
22-Mar-06	920	12.62	7.29
22-Mar-06	921	12.76	7.12
22-Mar-06	922	13.03	6.94
22-Mar-06	923	12.93	7.09
22-Mar-06	924	13.48	6.52
22-Mar-06	925	13.35	6.66
22-Mar-06	926	13.31	6.71
22-Mar-06	927	13.35	6.79
22-Mar-06	928	13.41	6.57
22-Mar-06	929	13.11	7.01
22-Mar-06	930	13.21	6.94
22-Mar-06	931	13.21	6.89
22-Mar-06	952	14.04	6.00
22-Mar-06	953	17.83	3.01
22-Mar-06	954	20.39	2.68
22-Mar-06	955	12.81	8.05
22-Mar-06	956	12.85	8.10
22-Mar-06	957	12.58	8.04
22-Mar-06	958	12.05	8.08
22-Mar-06	959	11.63	8.42
22-Mar-06	1000	11.51	8.33
22-Mar-06	1001	11.64	8.35
22-Mar-06	1002	11.84	8.09
22-Mar-06	1003	11.90	8.09
22-Mar-06	1004	12.00	8.03
22-Mar-06	1005	11.62	8.37
22-Mar-06	1006	11.47	8.52
22-Mar-06	1007	11.61	8.30
22-Mar-06	1008	11.86	8.11
22-Mar-06	1009	11.92	8.20
22-Mar-06	1010	11.81	8.16
22-Mar-06	1011	11.93	8.19
22-Mar-06	1012	11.96	8.11
22-Mar-06	1013	11.73	8.31
22-Mar-06	1014	11.66	8.39
22-Mar-06	1015	11.57	8.39
22-Mar-06	1016	11.72	8.41
22-Mar-06	1017	11.91	8.13
22-Mar-06	1018	12.02	8.15
22-Mar-06	1019	12.08	8.07
22-Mar-06	1020	11.71	8.34

Facility: Antelope Valley L.F.
Source: Flare Exhaust
Job No.: W07-046
Date: 3/22/06

Run No.: 2
Fuel: L.F.G.
Std. O2: 3

	O2 %	CO2 %
Range:	25	15
Span:	12.00	7.00
Low:		
High:	20.12	12.01

**** POST-TEST DRIFT (DIRECT)****

Values	0.02	0.00		
Zero:	0.02	0.00		
Span:	11.98	6.96		

Percent Drift

Zero:	0.08	0.00
Span:	-0.08	-0.27

**** PRE-TEST BIAS ****

Values	0.02	0.02		
Zero:	0.02	0.02		
Span:	11.98	6.96		

Values

Zero:	-0.02	0.02		
Span:	12.03	7.01		

**** BIAS CORRECTION ****

Zero Average	0.00	0.02
Span Average	12.01	6.99

**** POST-TEST DRIFT (BIAS)****

Percent Drift		
Zero:	0.16	0.00
Span:	-0.20	-0.33

Bias-Corrected Concentration 12.60 **7.41**
Bias-Corrected Conc.(O2 adjusted)

**** RAW AVERAGE CONCENTRATION ****

Average:	12.60	7.39	
O2 adjust:	3.0		
Date	Time	O2	CO2
22-Mar-06	1105	13.00	6.79
22-Mar-06	1106	13.13	6.76
22-Mar-06	1107	13.53	6.21
22-Mar-06	1108	13.77	6.47
22-Mar-06	1109	13.52	6.50
22-Mar-06	1110	13.40	6.73
22-Mar-06	1111	13.55	6.58
22-Mar-06	1112	13.65	6.61
22-Mar-06	1113	13.59	6.38
22-Mar-06	1114	13.48	6.32
22-Mar-06	1115	13.86	6.46
22-Mar-06	1116	12.94	6.89

22-Mar-06	1117	12.97	7.06
22-Mar-06	1118	13.30	6.87
22-Mar-06	1119	13.23	6.78
22-Mar-06	1120	13.14	6.94
22-Mar-06	1121	13.14	6.76
22-Mar-06	1122	11.63	6.47
22-Mar-06	1123	13.13	6.86
22-Mar-06	1124	12.73	7.19
22-Mar-06	1125	13.48	7.29
22-Mar-06	1126	12.76	7.12
22-Mar-06	1127	13.03	6.94
22-Mar-06	1128	12.93	6.79
22-Mar-06	1129	13.48	6.52
22-Mar-06	1130	13.35	6.66
22-Mar-06	1131	13.31	6.71
22-Mar-06	1132	13.35	6.79
22-Mar-06	1133	13.41	6.57
22-Mar-06	1134	13.11	7.01
22-Mar-06	1135	13.21	6.94
22-Mar-06	1136	11.63	6.89
22-Mar-06	1138	12.81	7.19
22-Mar-06	1139	12.81	7.19
22-Mar-06	1140	12.85	8.10
22-Mar-06	1141	12.58	8.04
22-Mar-06	1142	12.05	8.08
22-Mar-06	1143	11.63	8.42
22-Mar-06	1144	11.51	8.33
22-Mar-06	1145	11.64	8.35
22-Mar-06	1146	11.84	8.09
22-Mar-06	1147	11.90	8.09
22-Mar-06	1148	12.00	8.03
22-Mar-06	1149	11.62	8.37
22-Mar-06	1150	11.47	8.52
22-Mar-06	1151	11.61	8.30
22-Mar-06	1152	11.86	8.11
22-Mar-06	1153	11.92	8.20
22-Mar-06	1154	11.81	8.16
22-Mar-06	1155	11.93	8.19
22-Mar-06	1156	11.62	8.11
22-Mar-06	1157	11.73	8.31
22-Mar-06	1158	11.66	8.39
22-Mar-06	1200	11.57	8.39
22-Mar-06	1201	11.72	8.41
22-Mar-06	1202	11.91	8.13
22-Mar-06	1203	12.02	8.15
22-Mar-06	1204	12.08	8.07
22-Mar-06	1205	11.71	8.34

Facility: Antelope Valley L.F.
Source: Flare Exhaust
Job No.: W07-046
Date: 3/22/06

Run No.: 3
Fuel: L.F.G.
Std. O2: 3

	O2 %	CO2 %
Range:	25	15
Span:	12.00	7.00
Low:		
High:	20.12	12.01

**** POST-TEST DRIFT (DIRECT) ****

Values	0.02	0.00		
Zero:	0.02	0.00		
Span:	11.98	6.96		

Percent Drift

Zero:	0.08	0.00
Span:	-0.08	-0.27

**** PRE-TEST BIAS ****

Values	0.02	0.02		
Zero:	0.02	0.02		
Span:	11.98	6.96		

**** POST-TEST BIAS ****

Values	-0.02	0.02		
Zero:	-0.02	0.02		
Span:	12.03	7.01		

**** BIAS CORRECTION ****

Zero Average	0.00	0.02
Span Average	12.01	6.99

**** POST-TEST DRIFT (BIAS) ****

Percent Drift	0.16	0.00
Zero:	-0.20	-0.33

Bias-Corrected Concentration 12.18 **7.62**
Bias-Corrected Conc.(O2 adjusted)

**** RAW AVERAGE CONCENTRATION ****

Average:	12.19	7.60	
O2 adjust:	3.0		
Date	Time	O2	CO2
22-Mar-06	1213	12.15	7.61
22-Mar-06	1214	12.03	7.77
22-Mar-06	1215	12.04	7.70
22-Mar-06	1216	12.08	7.70
22-Mar-06	1217	12.19	7.62
22-Mar-06	1218	12.03	7.73
22-Mar-06	1219	12.10	7.65
22-Mar-06	1220	12.05	7.74
22-Mar-06	1221	12.13	7.66
22-Mar-06	1222	11.94	7.87
22-Mar-06	1223	12.01	7.81
22-Mar-06	1224	12.04	7.76

025

22-Mar-06	1225	12.04	7.75
22-Mar-06	1226	11.89	7.82
22-Mar-06	1227	11.98	7.83
22-Mar-06	1228	11.90	7.90
22-Mar-06	1229	12.01	7.74
22-Mar-06	1230	12.15	7.65
22-Mar-06	1231	12.06	7.76
22-Mar-06	1232	12.01	7.77
22-Mar-06	1233	12.18	7.60
22-Mar-06	1234	12.12	7.70
22-Mar-06	1235	12.07	7.73
22-Mar-06	1236	12.18	7.62
22-Mar-06	1237	12.00	7.79
22-Mar-06	1238	12.10	7.72
22-Mar-06	1239	12.10	7.67
22-Mar-06	1240	12.05	7.74
22-Mar-06	1241	11.94	7.87
22-Mar-06	1242	12.03	7.68
22-Mar-06	1243	12.43	7.45
22-Mar-06	1244	12.20	6.74
22-Mar-06	1245	12.08	7.81
22-Mar-06	1246	12.00	7.77
22-Mar-06	1247	12.08	7.68
22-Mar-06	1248	11.99	7.81
22-Mar-06	1249	12.15	7.68
22-Mar-06	1250	12.17	7.59
22-Mar-06	1251	12.39	7.45
22-Mar-06	1252	12.31	7.47
22-Mar-06	1253	12.23	7.57
22-Mar-06	1254	12.21	7.65
22-Mar-06	1255	12.37	7.43
22-Mar-06	1256	12.20	7.61
22-Mar-06	1257	12.33	7.54
22-Mar-06	1258	12.86	6.88
22-Mar-06	1259	12.82	7.17
22-Mar-06	1300	13.32	6.52
22-Mar-06	1301	12.60	7.35
22-Mar-06	1302	12.41	7.43
22-Mar-06	1303	12.27	7.54
22-Mar-06	1304	13.17	6.73
22-Mar-06	1305	12.27	7.56
22-Mar-06	1306	12.26	7.53
22-Mar-06	1307	11.84	7.97
22-Mar-06	1308	11.79	7.94
22-Mar-06	1309	12.13	7.64
22-Mar-06	1310	12.51	7.28
22-Mar-06	1311	12.15	7.70
22-Mar-06	1312	12.09	7.68
22-Mar-06	1313	12.23	7.61

Facility: Antelope Valley Landfill

SCAQMD Method 100.1 Performance Data

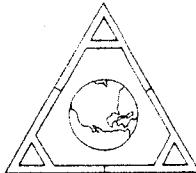
Source: Flare

Job No.: w07-046

Test Date: 3/22/06

PRETEST		CALIBRATION ERROR	
LEAK CHECK			
RANGE :	25	20	
	O2	CO2	
ZERO			
Instrument	0.00	0.00	
Cylinder	0.00	0.00	
Difference (%)	0.00	0.00	
LOW LEVEL			
Instrument			
Cylinder			
Difference (%)	0.00	0.00	
MID LEVEL			
Instrument	11.83	7.00	
Cylinder	12.00	7.00	
Difference (%)	-0.68	0.00	
HIGH LEVEL			
Instrument	20.00	11.80	
Cylinder	20.12	12.01	
Difference (%)	-0.48	-1.05	

PRETEST		LINEARITY	
	Cylinder	Instrument	
		<u>O2</u>	
Zero	0.00	0.00	
High Level	20.12	20.00	
Slope	1.01		
Intercept	0.00	Status	
Predicted Value	11.93	<1	
Linearity (%)	-0.39	PASS	
		<u>CO2</u>	
Zero	0.00	0.00	
High Level	12.01	11.80	
Slope	1.02		
Intercept	0.00	Status	
Predicted Value	6.88	<1	
Linearity (%)	0.61	PASS	


SYSTEM RESPONSE TIME			
	#1	#2	#3
Upscale			
O2	36	31	32
CO2	32	31	34
Downscale			
O2	34	34	30
CO2	34	30	31

POST TEST		CALIBRATION ERROR	
LEAK CHECK			
	O2	CO2	
ZERO			
Instrument	0.00	0.00	
Cylinder	0.00	0.00	
Difference (%)	0.00	0.00	
LOW LEVEL			
Instrument			
Cylinder			
Difference (%)	0.00	0.00	
MID LEVEL			
Instrument	7.20	7.20	
Cylinder	12.00	7.00	
Difference (%)	-19.20	1.00	
HIGH LEVEL			
Instrument	20.13	12.05	
Cylinder	20.12	12.01	
Difference (%)	0.02	0.20	

POST TEST		LINEARITY	
	Cylinder	Instrument	
		<u>O2</u>	
Zero	0.00	0.00	
High Level	20.12	20.13	
Slope	1.00		
Intercept	0.00	Status	
Predicted Value	12.00	<1	
Linearity (%)	-19.21	PASS	
		<u>CO2</u>	
Zero	0.00	0.00	
High Level	12.01	12.05	
Slope	1.00		
Intercept	0.00	Status	
Predicted Value	7.02	<1	
Linearity (%)	0.88	PASS	

02

APPENDIX C - Laboratory Results

AtmAA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants
laboratory services

LABORATORY ANALYSIS REPORT

Methane and Total Gaseous Non-Methane Organics Analysis in Tank and Canister Samples

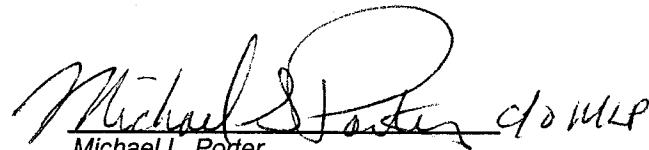
Report Date: March 27, 2006

Client: Horizon Air Measurement Services, Inc.

Site: Palmdale Landfill / Waste Management

Client Project No.: W60-046

Date Received: March 22, 2006


Date Analyzed: March 24, 2006

ANALYSIS DESCRIPTION

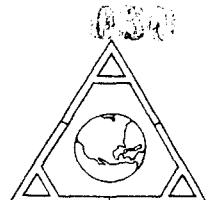
Percent level methane was measured by thermal conductivity detection/gas chromatography (TCD/GC). Low level methane and TGNMO were measured by Method 25 analysis, (FID/TCA).

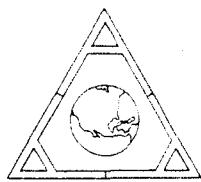
AtmAA Lab No.: Sample ID:	00816-8	00816-9	00816-10	00816-11	00816-12	00816-13
	Tank S	Tank R	Tank K	SUMMA 16	SUMMA 17	SUMMA 18
(Concentration, ppmv)						
Methane	488000	401000	391000	3.00	<1	<1
Ethane	9.40	8.38	7.63	<1	<1	<1
TGNMO	5330	5440	5180	4.30	3.78	5.00

*TGNMO is total gaseous non-methane organics (excluding ethane), reported as ppmv methane.
Ethane is reported as ppmv methane.*

Michael L. Porter
Laboratory Director

QUALITY ASSURANCE SUMMARY
(Repeat Analyses)


Site: Palmdale Landfill / Waste Management


Date Received: March 22, 2006

Date Analyzed: March 24, 2006

<u>Components</u>	Sample ID	Repeat Analysis		Mean Conc.	% Diff. From Mean
		Run #1	Run #2		
Methane	Tank S	404000	406000	488000	0.10
	S16	3.03	2.97	3.00	1.0
	S17	<1	<1	---	---
	S18	<1	<1	---	---
Ethane	Tank S	9.41	9.39	9.40	0.11
	Tank R	8.63	8.13	8.38	3.0
	Tank K	7.78	7.47	7.63	2.0
	S16	<1	<1	---	---
	S17	<1	<1	---	---
	S18	<1	<1	---	---
TGNMO	Tank S	5520	5140	5330	3.6
	Tank R	5470	5400	5440	0.64
	Tank K	5230	5130	5180	0.97
	S16	4.30	4.30	4.30	0.0
	S17	3.84	3.71	3.78	1.7
	S18	5.07	4.93	5.00	1.4

Six tank and canister samples, laboratory numbers 00816-(8-13), were analyzed for methane and TGNMO. Agreement between repeat analyses is a measure of precision and is shown in the column "% Difference from Mean". The average % Difference from Mean for 11 repeat measurements from six samples is 1.3%.

AtmAA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

**environmental consultants
laboratory services**

LABORATORY ANALYSIS REPORT

Carbon Dioxide and Oxygen Analysis in Steel Tank Samples

Report Date: March 28, 2006

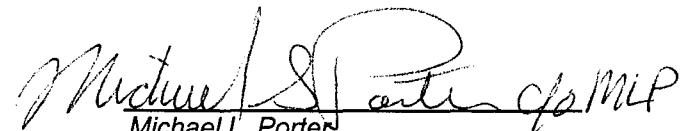
Client: Horizon Air Measurement Services

Site: Waste Management / Palmdale

Client Project No.: W06-046

Date Received: March 21, 2006

Date Analyzed: March 22, & 23, 2006


ANALYSIS DESCRIPTION

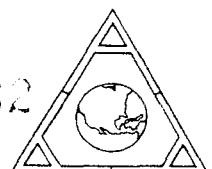
Carbon dioxide and oxygen were measured by thermal conductivity detection/gas chromatography (TCD/GC).

AtmAA Lab No.:	00816-8	00816-9	00816-10
Sample ID:	Tank S	Tank R	Tank K
(Concentration in %v)			

Carbon Dioxide 37.8 37.3 36.8

Oxygen 1.17 1.37 1.05

Michael L. Porter, MIP
Laboratory Director


031

QUALITY ASSURANCE SUMMARY
(Repeat Analyses)

Site: Waste Management / Palmdale
 Date Received: March 21, 2006
 Date Analyzed: March 22, & 23, 2006

<u>Components</u>	Sample ID	Repeat Analysis		Mean Conc.	% Diff. From Mean
		Run #1	Run #2		
Carbon Dioxide	Tank S	37.6	37.9	37.8	0.40
Oxygen	Tank S	1.13	1.2	1.17	3.0
	Tank R	1.63	1.11	1.37	19
	Tank K	0.99	1.10	1.05	5.3

Three steel tank samples, laboratory numbers 00816-(8-10), were analyzed for carbon dioxide and oxygen. Agreement between repeat analyses is a measure of precision and is shown in the column "% Difference from Mean". The average % Difference from Mean for 4 repeat measurements from three steel tank samples is 6.9%.

CHAIN OF CUSTODY RECORD

Client/Project Name			Project Location			ANALYSES					
Project No.			Field Logbook No.								
Sampler: (Signature)			Chain of Custody Tape No.								
Sample No./Identification	Date	Time	Lab Sample Number	Type of Sample	REMARKS						
Relinquished by: (Signature)				Date	Time	Received by: (Signature)			Date	Time	
Relinquished by: (Signature)				Date	Time	Received by: (Signature)			Date	Time	
Relinquished by: (Signature)				Date	Time	Received for Laboratory: (Signature)			Date	Time	
Sample Disposal Method:				Disposed of by: (Signature)					Date	Time	
SAMPLE COLLECTOR HORIZON AIR MEASUREMENT SERVICES, INC 996 Lawton Drive, Suite 108 Newbury Park, CA 91320 (805) 498-8781 Fax (805) 498-3173				ANALYTICAL LABORATORY						No. 8956	

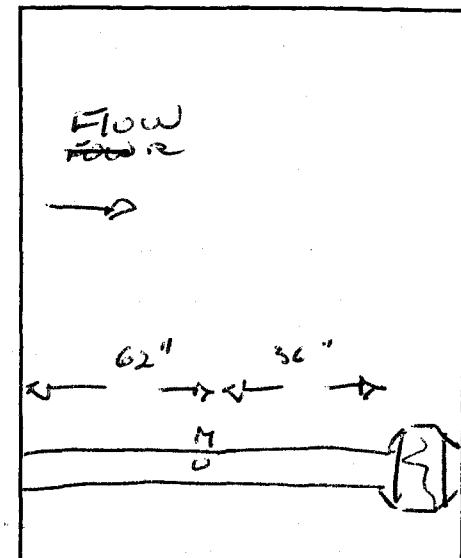
APPENDIX D - Field Data Sheets

VELOCITY DATA SHEET - METHOD 2

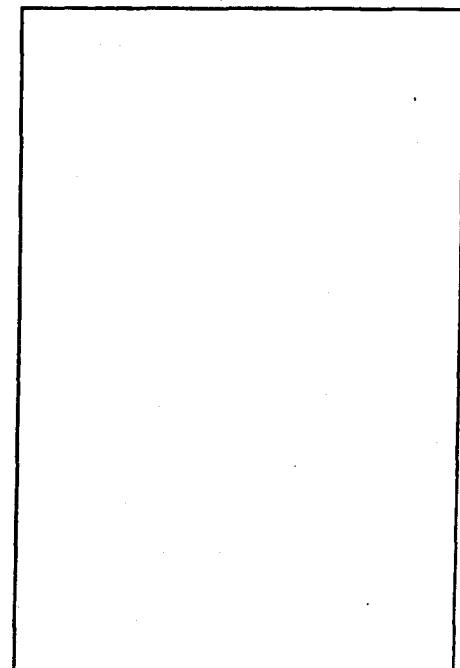
Facility: Antelope Valley Cr
Source: Marc Inlet
Job #: 4007-005
Date: 3/21/06 3/22/06

Baro. Press: 27.51
Static Press: 0.90
Pitot Tube #: STD 24"
Pitot Tube Type: STD
Magnahelic: 2

D, upstream: 3.6
D, downstream: 6.2
Stack Diameter: 10"


Run #:

3


$$\begin{array}{l}
 \text{Wet bulb: } \text{CH}_4 - 44.4\% \\
 \text{80% } \text{CO}_2 - 40.7\% \\
 \text{N}_2 \text{O} - 0.1\% \quad \text{N}_2(\text{B.A}) - 14.3\% \\
 \text{2.8 L H}_2\text{O}
 \end{array}$$

Initial: _____ **Final:** _____

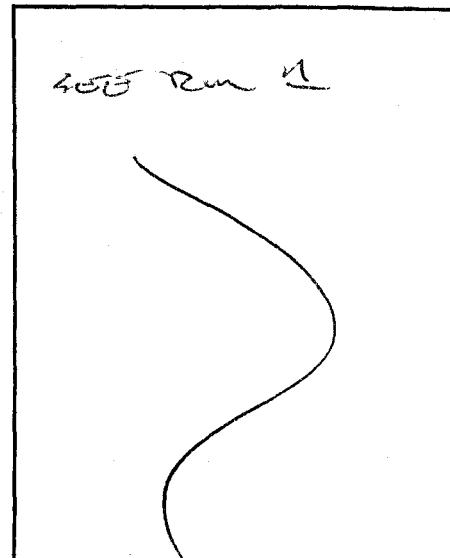
Side View

Top View

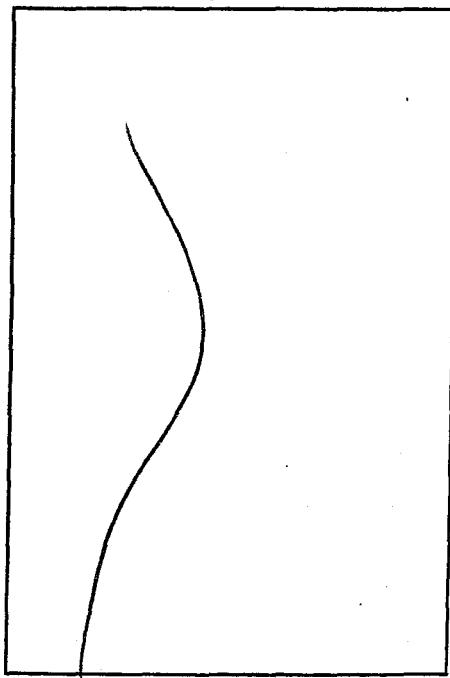
VELOCITY DATA SHEET - METHOD 2

Facility: ANLERC
Source: Flare Inlet
Job #: 607-046
Date: 3/22/06
Operator: n

Baro. Press: 27.51
Static Press: 0.90
Pitot Tube #: 510 2411
Pitot Tube Type: 510
Magnahelic: 1


D₁ upstream: 3.6
D₁ downstream: 6.2
Stack Diameter: 112 cm

Leak Check


Run #: 2

Wet bulb $86^{\circ}F$
4.0% H_2O

Side View

Top View

VELOCITY DATA SHEET - METHOD 2

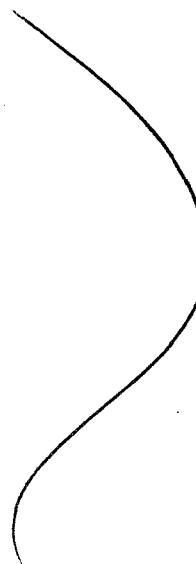
Facility: ANFEC
Source: Plane Inlet
Job #: WOT-046
Date: 3/21/06
Operator: LC

Baro. Press:	24.54
Static Press:	0.80
Pitot Tube #:	STD set "
Pitot Tube Type:	STD
Magnahelic:	# 2

D, upstream: 3.6
D, downstream: 6.2
Stack Diameter: 10"

Initial:

Run #: 3


$$\text{Wet bulb} = 25^{\circ}\text{C}$$

Side View

see Rev. 9

Top View

**TOTAL COMBUSTION ANALYSIS
SCAQMD METHOD 25
FIELD SAMPLING DATA SHEET**

Job #: 6007-act
 Facility: Antelope Valley FRC
 Location: Palmdale, CA
 Date: 3/22/06
 Operator: RE

Control Device: LEO Flare
 Sample Location: Inlet
 Ambient Temp.: ~70 °F
 Baro. Pressure: 27.57

SAMPLE A

Tank #: S Trap #:
 Initial Vacuum: 1.0
 Final Vacuum:
 Start Time: 0900-1000

Run 1

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00	27	100
05	26	100
10	25	100
15	24	100
20	23	100
25	22	100
30	21	100
35	20	100
40	19	100
45	18	100
50	17	100
55	16	100
60	15	

SAMPLE B

Tank #: R Trap #:
 Initial Vacuum: 1.0
 Final Vacuum:
 End Time: 1025-1205

Run 2

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00	27	100
05	26	100
10	25	100
15	24	100
20	23	100
25	22	100
30	21	100
35	20	100
40	19	100
45	18	100
50	17	100
55	16	100
60	15	

LEAK RATE

Pre Test:
 Post Test:

038

**TOTAL COMBUSTION ANALYSIS
SCAQMD METHOD 25
FIELD SAMPLING DATA SHEET**

Job #: 007-046
 Facility: AVLERC
 Location: Palm Lake, CA
 Date: 3/22/06
 Operator: VC

Control Device: 476 Elbow
 Sample Location: Inset
 Ambient Temp.: ~70°K
 Baro. Pressure: 22.67

SAMPLE A

Tank #: K Trap #: _____
 Initial Vacuum: 1.0
 Final Vacuum: _____
 Start Time: 12/3 - 13/3

Run 3

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00	27	100
05	26	100
10	25	100
15	24	100
20	23	100
25	22	100
30	21	100
35	20	100
40	19	100
45	18	100
50	17	100
55	16	100
60	15	

SAMPLE B

Tank #: _____ Trap #: _____
 Initial Vacuum: _____
 Final Vacuum: _____
 End Time: _____

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00		
05		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		

LEAK RATE

Pre Test: ✓
 Post Test: _____

039

**TOTAL COMBUSTION ANALYSIS
SCAQMD METHOD 25
FIELD SAMPLING DATA SHEET**

Job #: W07-046
 Facility: ANTELOPE VALLEY L.F.
 Location: Palm Dale, CA
 Date: 03-22-06
 Operator: TW

Control Device: Flame
 Sample Location: OUTLET
 Ambient Temp.: _____
 Baro. Pressure: 24.82

SAMPLE A

Tank #: S16 Trap #: NA
 Initial Vacuum: 29
 Final Vacuum: _____
 Start Time: _____

M25C

SAMPLE B

Tank #: S17 Trap #: NA
 Initial Vacuum: _____
 Final Vacuum: _____
 End Time: _____

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00	29	
05		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00	29	
05		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		

LEAK RATE

Pre Test: ✓/✓
 Post Test: ✓/✓

040

**TOTAL COMBUSTION ANALYSIS
SCAQMD METHOD 25
FIELD SAMPLING DATA SHEET**

Job #: W07-046
 Facility: Antelope Valley, L.F.
 Location: Palmdale, CA
 Date: 03-22-06
 Operator: JW

Control Device: Flare
 Sample Location: OUTLET
 Ambient Temp.: _____
 Baro. Pressure: 22.57

SAMPLE A C

Tank #: B18 Trap #: NA

Initial Vacuum: _____

Final Vacuum: _____

Start Time: _____

M 25 C

SAMPLE B

Tank #: _____ Trap #: _____

Initial Vacuum: _____

Final Vacuum: _____

End Time: _____

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00	29	
05		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		

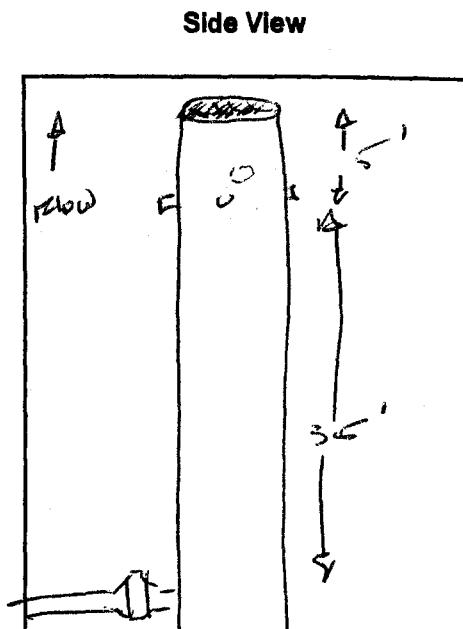
TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00		
05		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		

LEAK RATE

Pre Test: ✓
 Post Test: _____

041

VELOCITY DATA SHEET - METHOD 2

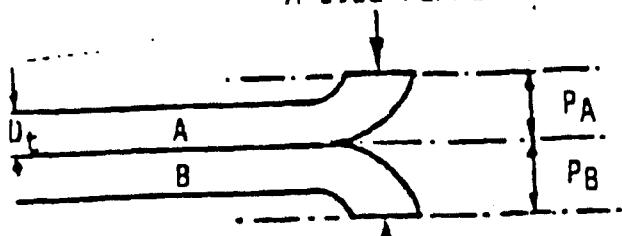

Facility: AWDRC
Source: Flare Exh
Job #: 007-046
Date: 3/22/06
Operator: RE

Baro. Press:	24.57
Static Press:	-0.00
Pitot Tube #:	10-1
Pitot Tube Type:	"S"
Magnahelic:	Main Duct

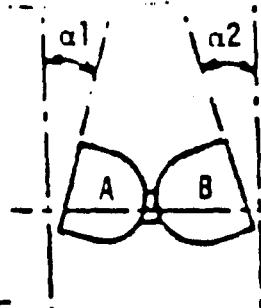
D₁ upstream: 0.58
D₂ downstream: 41.0
Stack Diameter: 104"

Run #: Pachmar - O₂/CO₂ sample points

Leak Check

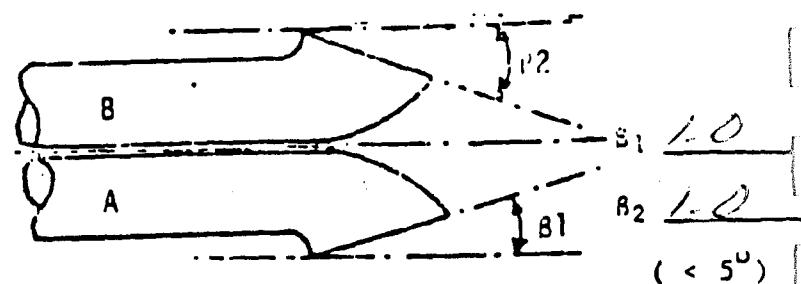


APPENDIX F - Calibrations

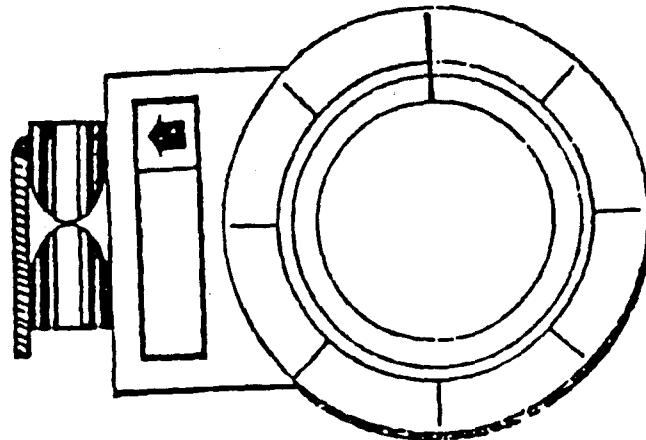
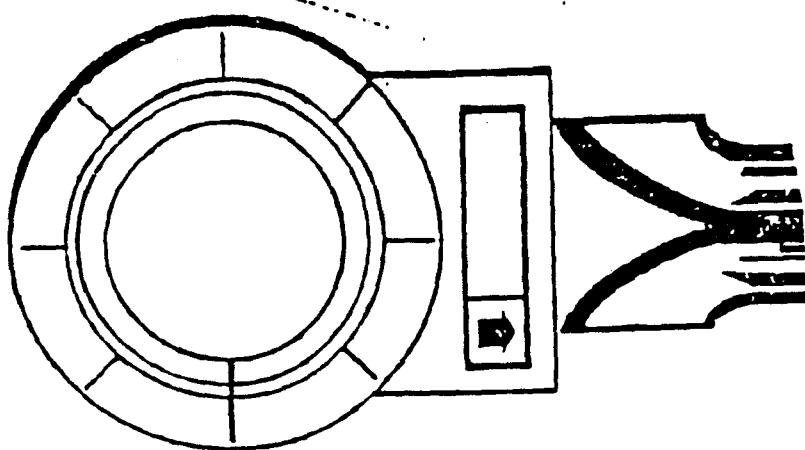

TYPE S PITOT TUBE INSPECTION DATA FORM

Tubing diameter, D_t 0.394 in.Pitot Tube Assembly Level? Yes No Pitot Tube Openings Damaged? Yes No

A-SIDE PLANE


NOTE: 0.848 $P_A = 0.424$ in.
$$\left\{ \begin{array}{l} 1.05 D_t < P < 1.50 D_t \\ P_B = 0.424 \text{ in.} \end{array} \right.$$
 $P_A = P_B$

$$0.4137 = 0.5910$$



$$\alpha_1 = 10^\circ$$

$$\alpha_2 = 10^\circ$$

 $(< 10^\circ)$

$$\beta_1 1.0$$

$$\beta_2 1.0$$

 $(< 5^\circ)$ Level Position to Find $\gamma = 1.0$

$$Z = A \sin \gamma 0.0148 \text{ in. } (< 1/8 \text{ in.})$$

Level Position to find $\theta = 1.0$

$$W = A \sin \theta 0.0148 \text{ in. } (< 1/32 \text{ in.})$$

Comments _____

Checked by: Bob JonesDate: 1-3-06Calibration Required? NO

STACK TEMPERATURE SENSOR CALIBRATION DATA- APEX PROBE ASSEMBLIES

Date: 03/06/06

Calibrated by: B. Jones

THERMOCOUPLE

ID:

	ICE WATER									ABSOLUTE T DIFF., %									BOILING WATER									ABSOLUTE T DIFF., %									BOILING OIL									ABSOLUTE T DIFF., %								
	REF			TC			REF			TC			REF			TC			REF			TC			REF			TC			REF			TC			REF			TC														
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3												
Stainless Steel Probes																																																						
3-1	32	32	32	31	30	31	0.2	0.4	0.2	212	212	212	211	210	210	0.1	0.3	0.3	536	536	535	532	534	534	0.4	0.2	0.1	536	536	535	532	534	534	0.4	0.2	0.1	536	536	535	532	534	534	0.4	0.2	0.1									
4-2	32	32	32	30	32	32	0.4	0.0	0.0	212	212	212	209	209	210	0.4	0.4	0.3	534	534	534	530	531	531	0.4	0.3	0.3	534	534	534	530	531	531	0.4	0.3	0.3	534	534	534	530	531	531	0.4	0.3	0.3									
4-3	32	32	32	30	30	31	0.4	0.4	0.2	212	212	212	208	209	210	0.6	0.4	0.3	546	545	544	540	542	542	0.6	0.3	0.2	546	545	544	540	542	542	0.6	0.3	0.2	546	545	544	540	542	542	0.6	0.3	0.2									
6-2	31	31	32	30	29	30	0.2	0.4	0.4	212	212	212	208	209	209	0.6	0.4	0.4	540	540	539	535	535	535	0.5	0.5	0.1	540	540	539	535	535	535	0.5	0.5	0.1	540	540	539	535	535	535	0.5	0.5	0.1									
6-3	32	32	32	31	31	30	0.2	0.2	0.4	212	212	212	209	209	210	0.4	0.4	0.3	539	538	538	537	535	535	0.2	0.3	0.4	539	538	538	537	535	535	0.2	0.3	0.4	539	538	538	537	535	535	0.2	0.3	0.4									
6-4	32	32	32	30	30	30	0.4	0.4	0.4	212	212	212	210	210	210	0.2	0.3	0.3	539	539	539	533	533	533	0.6	0.6	0.4	539	539	539	533	533	533	0.6	0.6	0.4	539	539	539	533	533	533	0.6	0.6	0.4									
A6-5	32	32	32	31	31	31	0.2	0.2	0.2	212	212	212	211	211	211	0.1	0.1	0.1	538	539	539	535	535	535	0.3	0.4	0.4	538	539	539	535	535	535	0.3	0.4	0.4	538	539	539	535	535	535	0.3	0.4	0.4									
A8-1	31	32	32	30	30	31	0.2	0.4	0.2	212	212	212	211	210	210	0.1	0.3	0.3	540	540	540	531	531	531	0.9	0.7	0.4	540	540	540	531	531	531	0.9	0.7	0.4	540	540	540	531	531	531	0.9	0.7	0.4									
A8-2	32	32	32	32	31	31	0.0	0.2	0.2	212	212	212	211	210	210	0.1	0.0	0.3	540	539	538	536	536	536	0.4	0.3	0.2	540	539	538	536	536	536	0.4	0.3	0.2	540	539	538	536	536	536	0.4	0.3	0.2									
A8-3	32	32	32	31	30	31	0.2	0.4	0.2	212	212	212	210	210	210	0.3	0.3	0.1	537	537	537	531	532	532	0.6	0.5	0.3	537	537	537	531	532	532	0.6	0.5	0.3	537	537	537	531	532	532	0.6	0.5	0.3									
10-1	32	32	32	32	31	31	0.0	0.2	0.2	212	212	212	210	210	210	0.3	0.3	0.3	537	537	537	536	534	534	0.3	0.3	0.2	537	537	537	536	534	534	0.3	0.3	0.2	537	537	537	536	534	534	0.3	0.3	0.2									
M17-1	32	32	32	33	33	32	-0.2	-0.2	0.0	212	212	212	211	211	211	0.1	0.1	0.1	540	540	540	542	542	542	-0.2	-0.2	-0.1	540	540	540	542	542	542	-0.2	-0.2	-0.1	540	540	540	542	542	542	-0.2	-0.2	-0.1									
M17-2	32	31	32	32	33	33	0.0	-0.4	-0.2	212	212	212	210	210	210	0.3	0.3	0.3	541	539	539	539	539	539	0.2	0.0	-0.1	541	539	539	539	539	539	0.2	0.0	-0.1	541	539	539	539	539	539	0.2	0.0	-0.1									
M17-3	32	32	32	31	32	31	0.2	0.0	0.2	212	212	212	211	211	212	0.1	0.1	0.0	543	545	545	545	546	546	-0.2	-0.1	-0.1	543	545	545	545	546	546	-0.2	-0.1	-0.1	543	545	545	545	546	546	-0.2	-0.1	-0.1									
Inconel																																																						
10-2 Inc	32	32	32	33	33	33	-0.2	-0.2	-0.2	212	212	212	210	211	211	0.3	0.1	0.1	540	539	538	539	537	537	0.1	0.2	0.0	540	539	538	539	537	537	0.1	0.2	0.0	540	539	538	539	537	537	0.1	0.2	0.0									
6-1 Inc	32	32	32	36	36	36	-0.8	-0.8	-0.8	212	212	212	206	207	208	0.9	0.7	0.6	549	550	549	543	540	540	0.6	0.6	1.0	549	550	549	543	540	540	0.6	1.0	0.9	549	550	549	543	540	540	0.6	1.0	0.9									
Loose Thermocouple																																																						
6-5	32	32	32	33	33	33	-0.2	-0.2	-0.2	212	212	212	210	211	211	0.3	0.1	0.1	536	536	536	537	537	537	-0.1	-0.2	-0.1	536	536	536	537	537	537	-0.1	-0.2	-0.1	536	536	536	537	537	537	-0.1	-0.2	-0.1									
6-8	32	32	32	33	32	32	-0.2	0.0	0.0	212	212	212	211	210	209	0.1	0.3	0.4	538	539	540	539	539	539	-0.1	0.0	0.1	538	539	540	539	539	539	-0.1	0.0	0.1	538	539	540	539	539	539	-0.1	0.0	0.1									
7-1	32	32	32	33	34	34	-0.2	-0.4	-0.4	212	212	212	210	210	210	0.3	0.3	0.3	543	544	544	544	544	544	-0.1	-0.1	-0.1	543	544	544	544	544	544	-0.1	-0.1	-0.1	543	544	544	544	544	544	-0.1	-0.1	-0.1									
8-3	32	32	32	32	33	32	0.0	-0.2	0.0	212	212	212	210	212	213	0.3	0.0	-0.1	545	546	545	545	543	543	0.2	0.3	0.2	545	546	545	545	543	543	0.2	0.3	0.2	545	546	545	545	543	543	0.2	0.3	0.2									

Note: If absolute temperature values of the reference thermometer being calibrated and the stack temperature sensors agree within 1.5 percent at each of the three calibration points no correction is needed.

Horizon Air Measurement Services, Inc.

030606 Thermocals

4/26/05

Horizon Air
 996 Lawrence Dr Ste 108
 Newbury Park, CA
 USA 91320

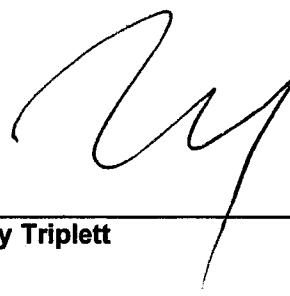
Attention: Deborah Vacherst

Praxair Order No. **81725000**
 Customer PO No. **8595**

Product Lot/Batch No. **109507309**
 Praxair Part No. **EV NICDOXP1-AS**

CERTIFICATE OF ANALYSIS

Primary Standard


Component	Requested Concentration	Certified Concentration	Analytical Principle	Analytical Accuracy
Carbon dioxide	7 %	7.00 %	V	±0.02 % abs.
Oxygen	12 %	12.00 %		±0.02 % abs.
Nitrogen	balance	balance		

Analytical Instruments: **Mettler~ID5~Gravimetric**
 Cylinder Style: **AS**
 Cylinder Pressure @70F: **2000 psig**
 Cylinder Volume: **148 ft3**
 Valve Outlet Connection: **590**
 Cylinder No(s). **CC 101707**

Filling Method: **Gravimetric**
 Date of Fill: **3/14/05**
 Expiration Date: **4/26/08**

Analyst: **Jack Fu**

QA Reviewer: **Ty Triplett**

The gas calibration cylinder standard prepared by Praxair Distribution is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard is provided and is certified against Praxair Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST) or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase by volume (e.g., ppmv) unless otherwise noted.

Key to Analytical Techniques:

A	Flame Ionization with Methanizer	B	Gas Chromatography with Discharge Ionization Detector	C	Gas Chromatography with Electrolytic Conductivity Detector	D	Gas Chromatography with Flame Ionization Detector
E	Gas Chromatography with Flame Photometric Detector	F	Gas Chromatography with Helium Ionization Detector	G	Gas Chromatography with Methanizer Carbonizer	H	Gas Chromatography with Photoionization Detector
I	Gas Chromatography with Reduction Gas Analyzer	J	Gas Chromatography with Thermal Conductivity Detector	K	Gas Chromatography with Ultrasonic Detector	L	Infrared - FTIR or NDIR
M	Mass Spectrometry - MS or GC/MS	N	Proprietary	O	Paramagnetic	P	Specific Water Analyzer
Q	Total Hydrocarbon Analyzer	R	Wet Chemical	S	Detector Tube	T	Odor
U	Chemiluminescence	V	Gravimetric	W	Electrolytic Cell/Electrochemical	X	Photoionization
Y	Pulsed Fluorescence	Z	UV Spectrometry				

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

6/24/2005

Horizon Air
 996 Lawrence Dr Ste 108
 Newbury Park, CA
 USA 91320

Attention: Deborah Vacherst

Praxair Order No. **34872400**
 Customer Reference No.

Product Lot/Batch No. **109413307**
 Praxair Part No. **NI CDOXP80-AS**

CERTIFICATE OF ANALYSIS
Primary Standard

<u>Component</u>	<u>Requested Concentration</u>	<u>Certified Concentration</u>	<u>Analytical Principle</u>	<u>Analytical Accuracy</u>
Carbon dioxide	12 %	12.01 %	V	±0.02 % abs.
Oxygen	20 %	20.12 %		±0.02 % abs.
Nitrogen	balance	balance		

Analytical Instruments: **Mettler-ID5~Gravimetric**

Cylinder Style: **AS**
 Cylinder Pressure @70F: **2000 psig**
 Cylinder Volume: **152 ft3**
 Valve Outlet Connection: **590**
 Cylinder No(s). **CC 186563**

Filling Method: **Gravimetric**
 Date of Fill: **5/12/2004**
 Expiration Date: **12/31/2008**

Analyst: Jack Fu

QA Reviewer: Helena Tran

The gas calibration cylinder standard prepared by Praxair Distribution is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST) or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g. % or ppm) are for gas phase, by volume (e.g. ppmv) unless otherwise noted.

Key to Analytical Techniques:

A	Flame Ionization with Methanizer	B	Gas Chromatography with Discharge Ionization Detector	C	Gas Chromatography with Electrolytic Conductivity Detector	D	Gas Chromatography with Flame Ionization Detector
E	Gas Chromatography with Flame Photometric Detector	F	Gas Chromatography with Helium Ionization Detector	G	Gas Chromatography with Methanizer Carbonizer	H	Gas Chromatography with Photoionization Detector
I	Gas Chromatography with Reduction Gas Analyzer	J	Gas Chromatography with Thermal Conductivity Detector	K	Gas Chromatography with Ultrasonic Detector	L	Infrared - FTIR or NDIR
M	Mass Spectrometry - MS or GC/MS	N	Proprietary	O	Paramagnetic	P	Specific Water Analyzer
Q	Total Hydrocarbon Analyzer	R	Wet Chemical	S	Detector Tube	T	Odor
U	Chemiluminescence	V	Gravimetric	W	Electrolytic Cell/Electrochemical	X	Photoionization
Y	Pulsed Fluorescence	Z	UV Spectrometry				

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

APPENDIX G - Process Data

Tuesday March 21, 2006

0600 roll call
 ~ 0715 on site
 1030 off site
 1300 return

~~3/21/06~~ 0600 roll call
 0615 on site

Flare Process Data, AVCF

Time	Temp, °F	fuel flow, atm	Cond. Inj, gpm
0900	1477	78d	0.38
0910	1478	726	0.30
0920	1490	761	0.39
0930	1483	788	0.39
0942	1468	767	0.39
1002	1488	781	0.38
1012	1491	<u>771</u>	<u>0.38</u>
<u>2022</u>	<u>1481</u>	<u>768</u>	<u>0.38</u>
<u>1105</u>	<u>1482</u>	<u>765</u>	<u>0.39</u>
1112	1471	769	0.39
1125	1469	776	0.39
1135	1472	776	0.39
1146	1481	775	0.38
1156	<u>1474</u>	<u>762</u>	<u>0.38</u>
	<u>1477</u>	<u>770</u>	<u>0.39</u>

०९०

July 22nd 1860

Wings

Al sit 1346

0.38

179L

8Lhl

bΣφ

722
7.0

141 141

850

242

1491 1305

25.0

994

2261 261

52.0

232.

29th → 421

85.0

278

1711 221052

ପାତା ୧

9月

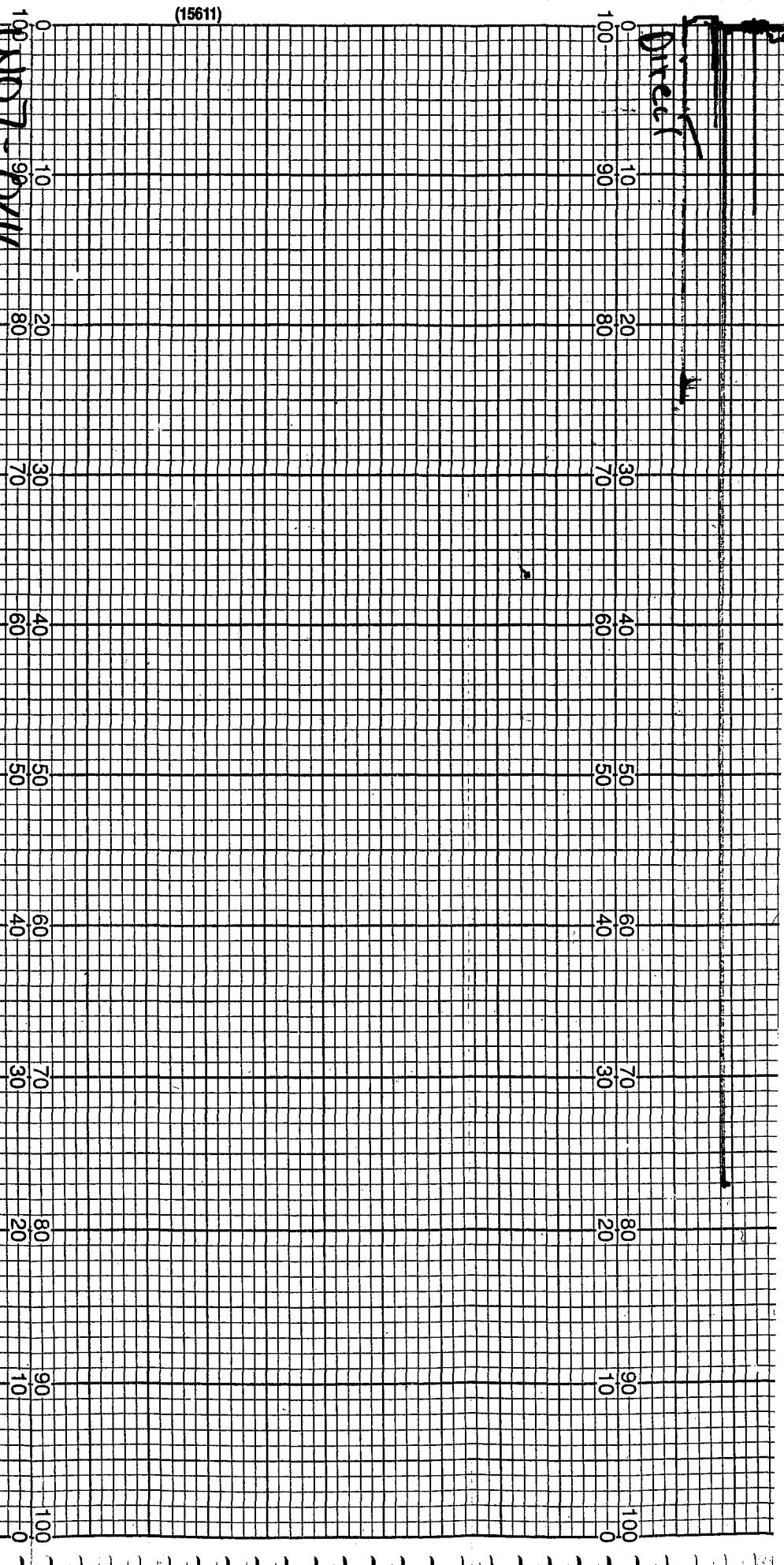
0211 3121

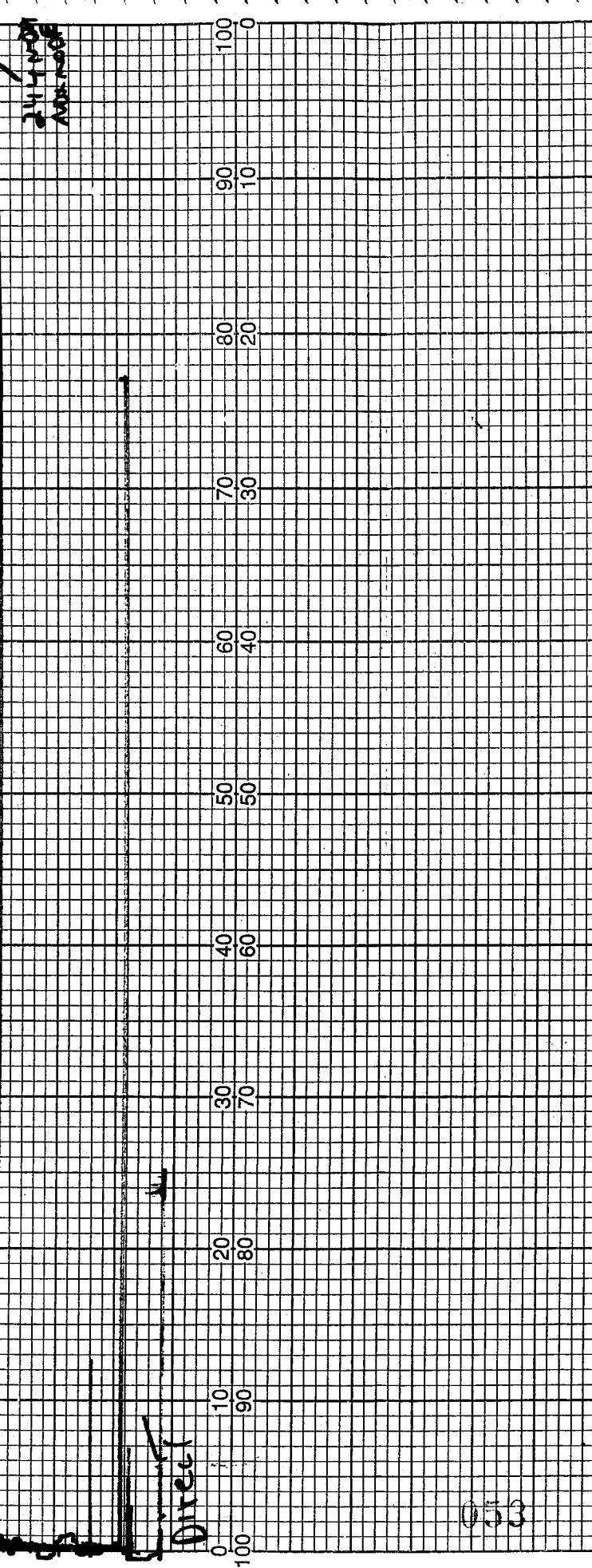
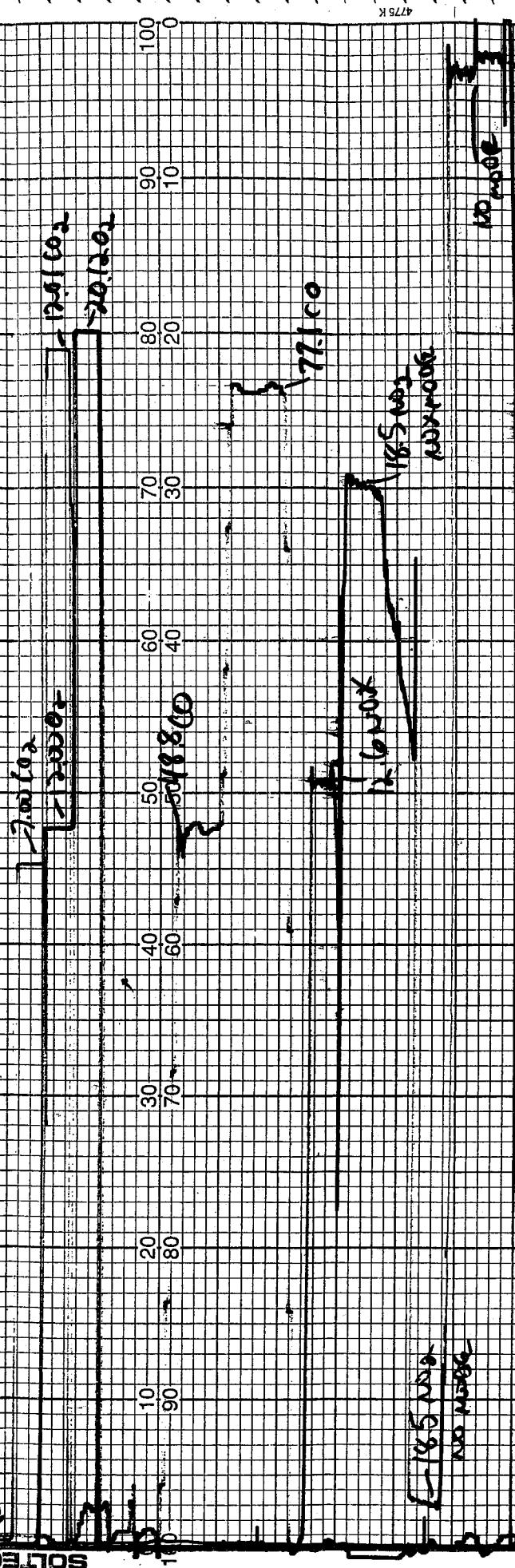
Lord + Mrs. +

ED Pts, 15/1

1921

2011


Σ 11321



APPENDIX E - Strip Chart Recordings

3-21-66

NOT - Off
Antelope Valley
Foothills, CA

RAC

053

• 33 •

CHART NO. ZD1 01 25-20M

(15611)

10°

(2100)

10000
10000

10
20
30
40
50
60
70
80
90

direct zone

No Nodde

N.F. Nodde

N.F. Nodde

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

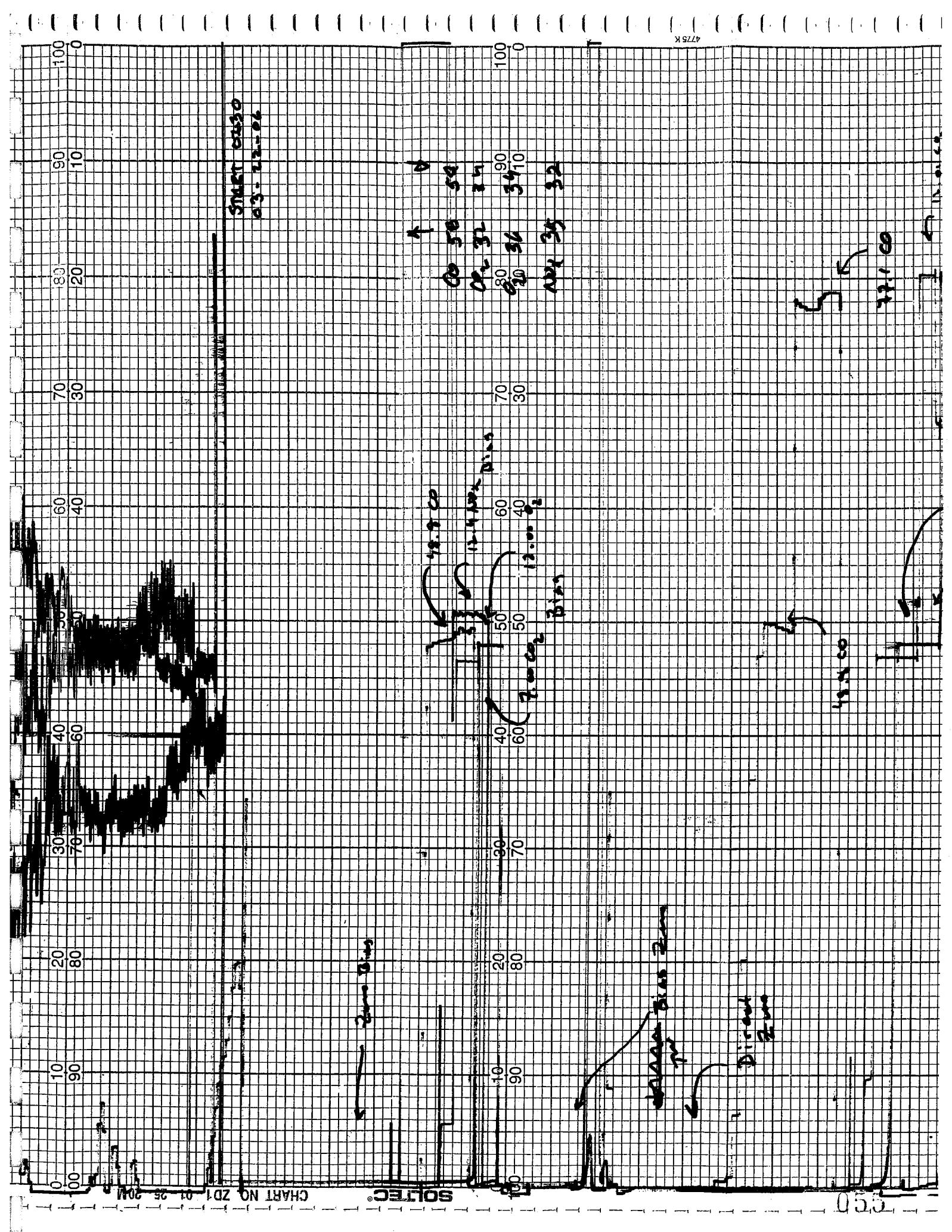
10000

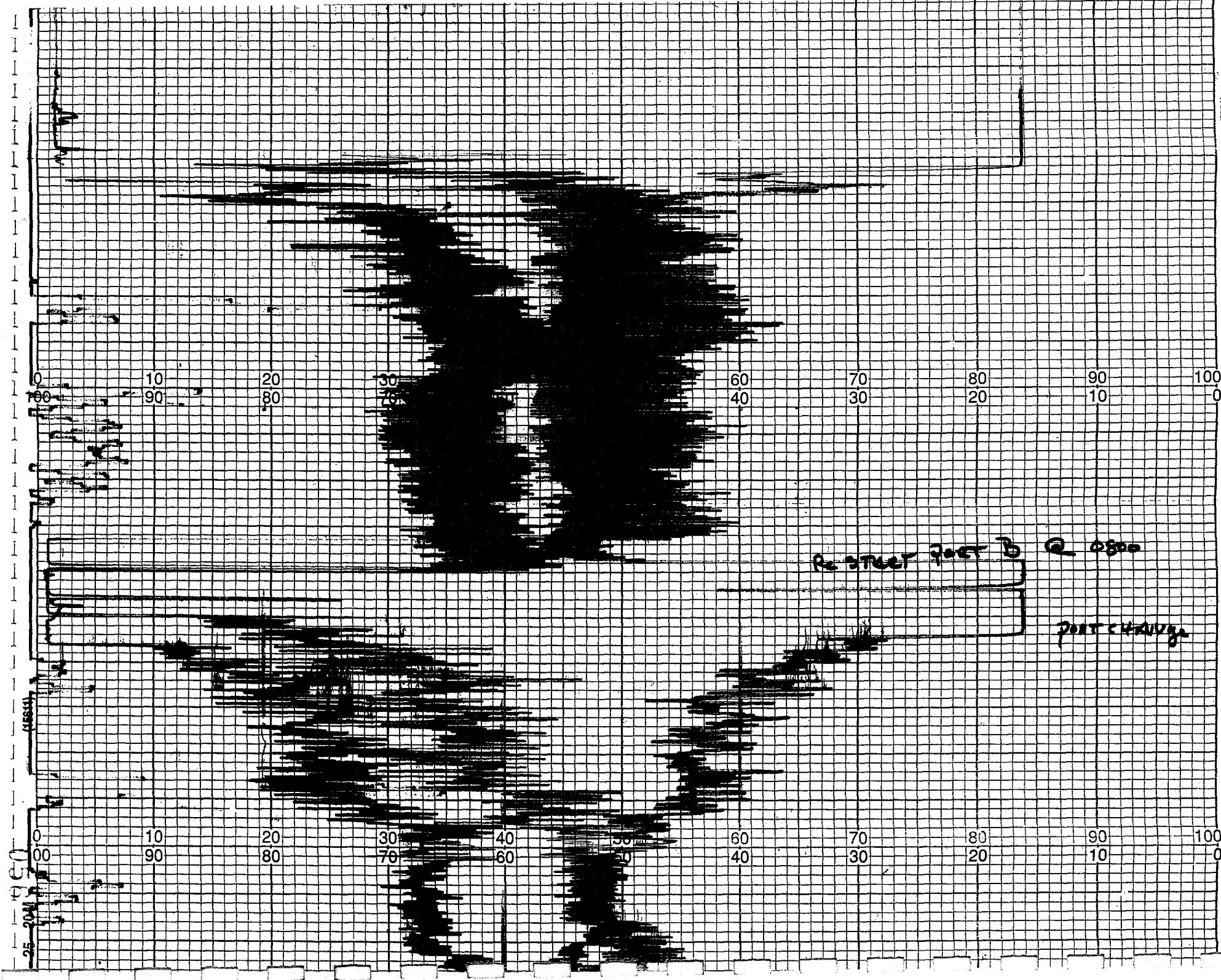
10000

10000

10000

10000


10000


10000

10000

24.51 NODDE
(MAX. MODE)

03-22-01
70

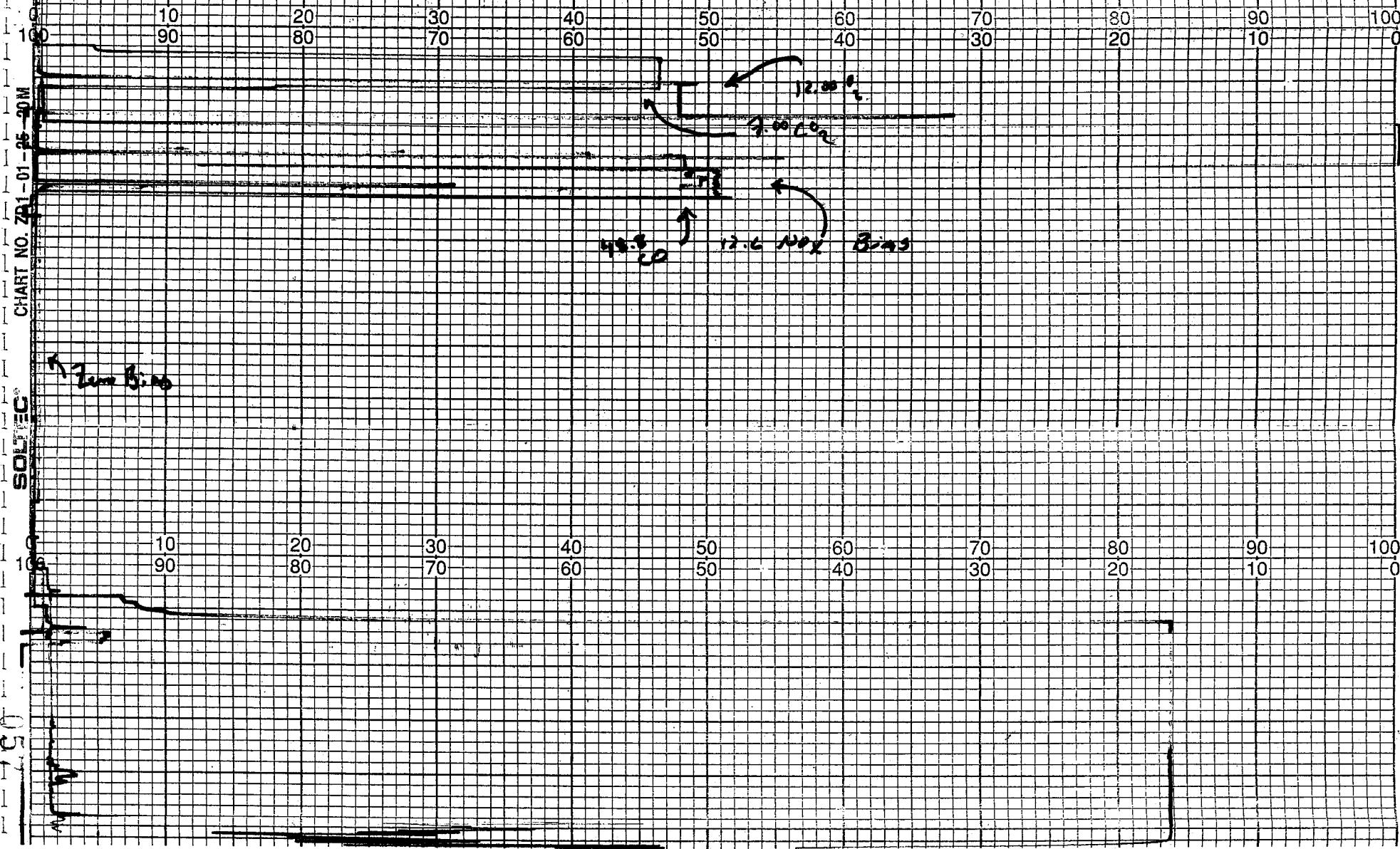

14564-11

CHART NO. 201 35 30 W

卷之三

7 Team B: 10

3742T
Pens #1
2 0200

250

(15611)

SOLTEC

100

10

0

10

0

0

20

0

0

30

0

0

40

0

0

50

0

0

60

0

0

70

0

0

80

0

0

90

0

0

100

0

0

100

0

0

100

10

0

10

0

0

20

0

0

30

0

0

40

0

0

50

0

0

60

0

0

70

0

0

80

0

0

90

0

0

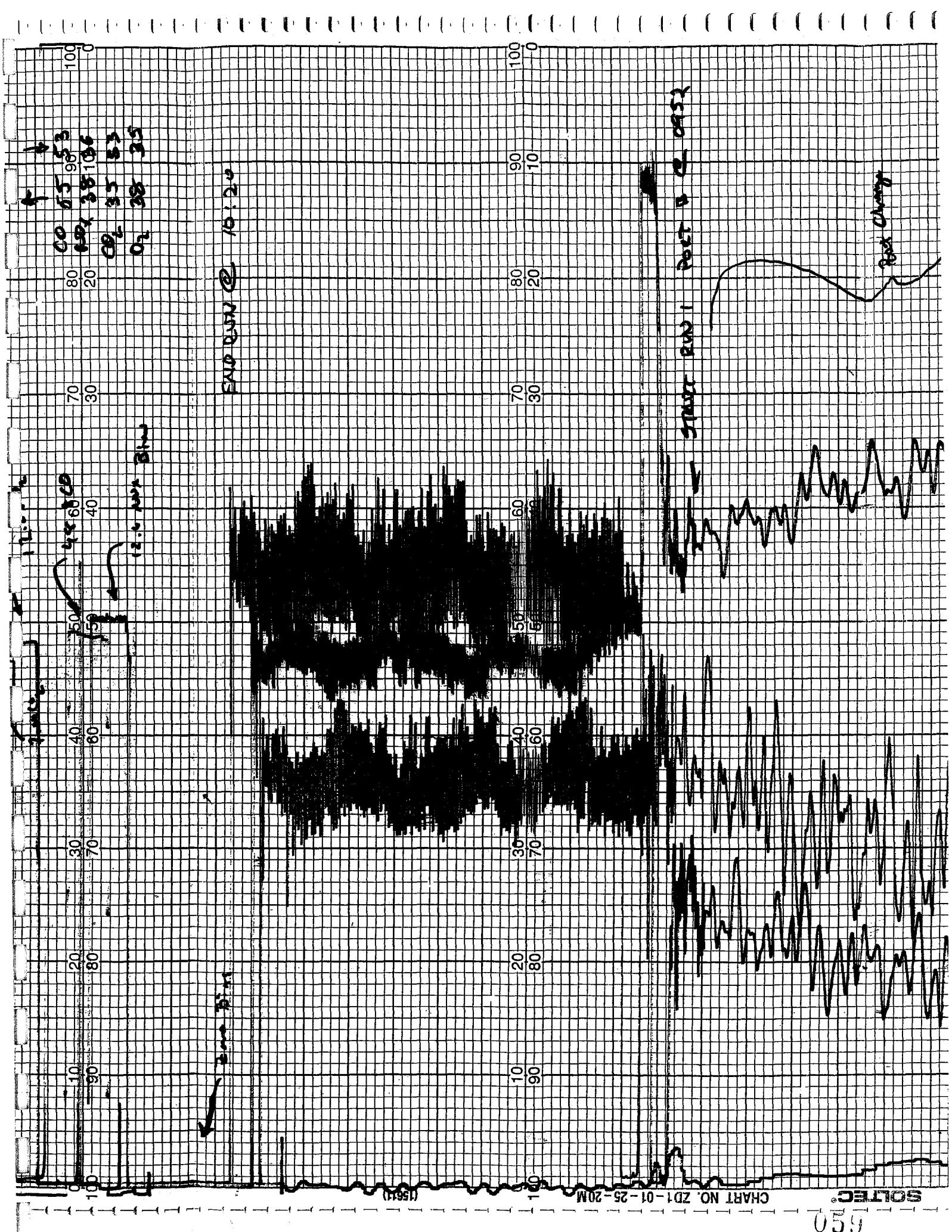
100

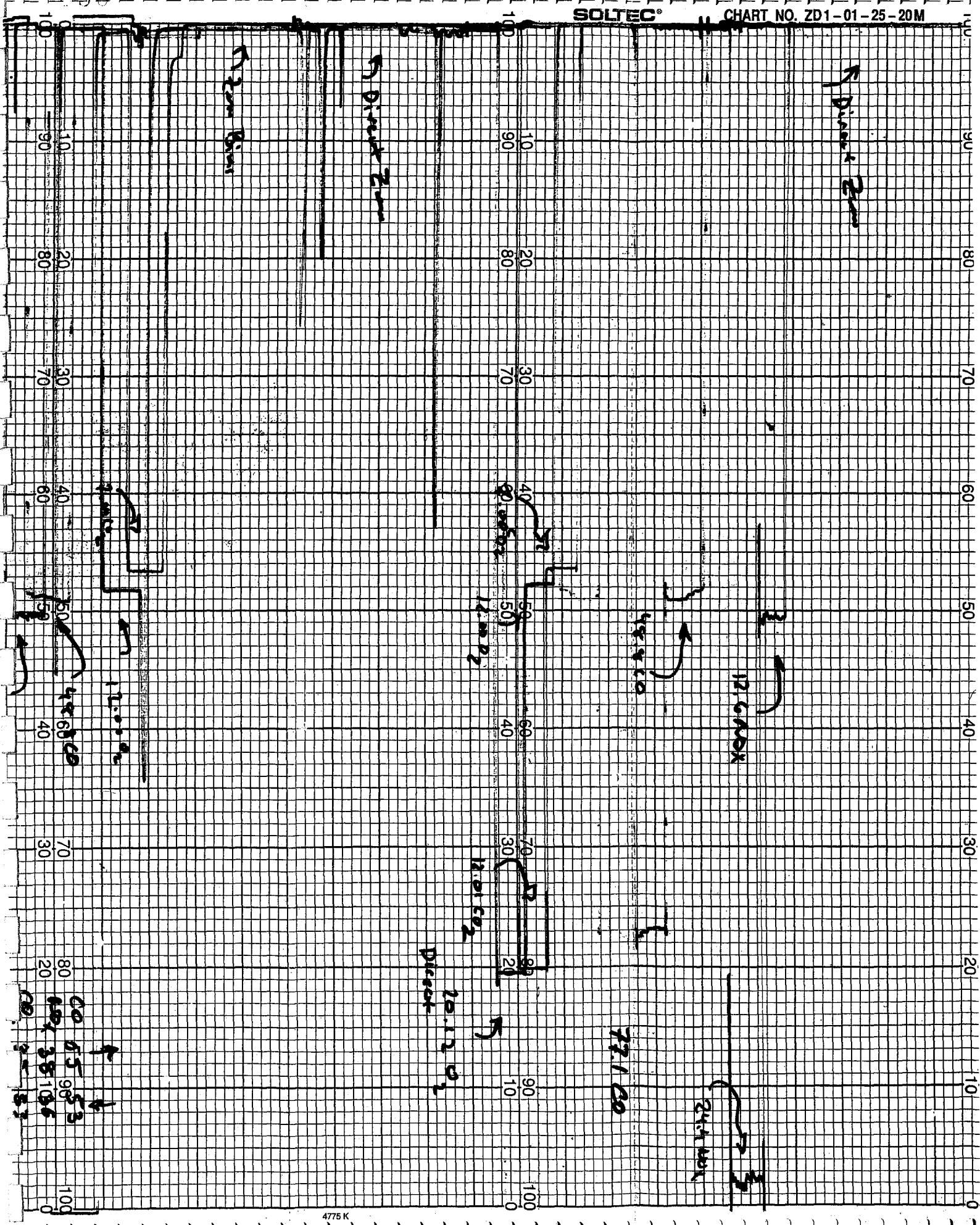
0

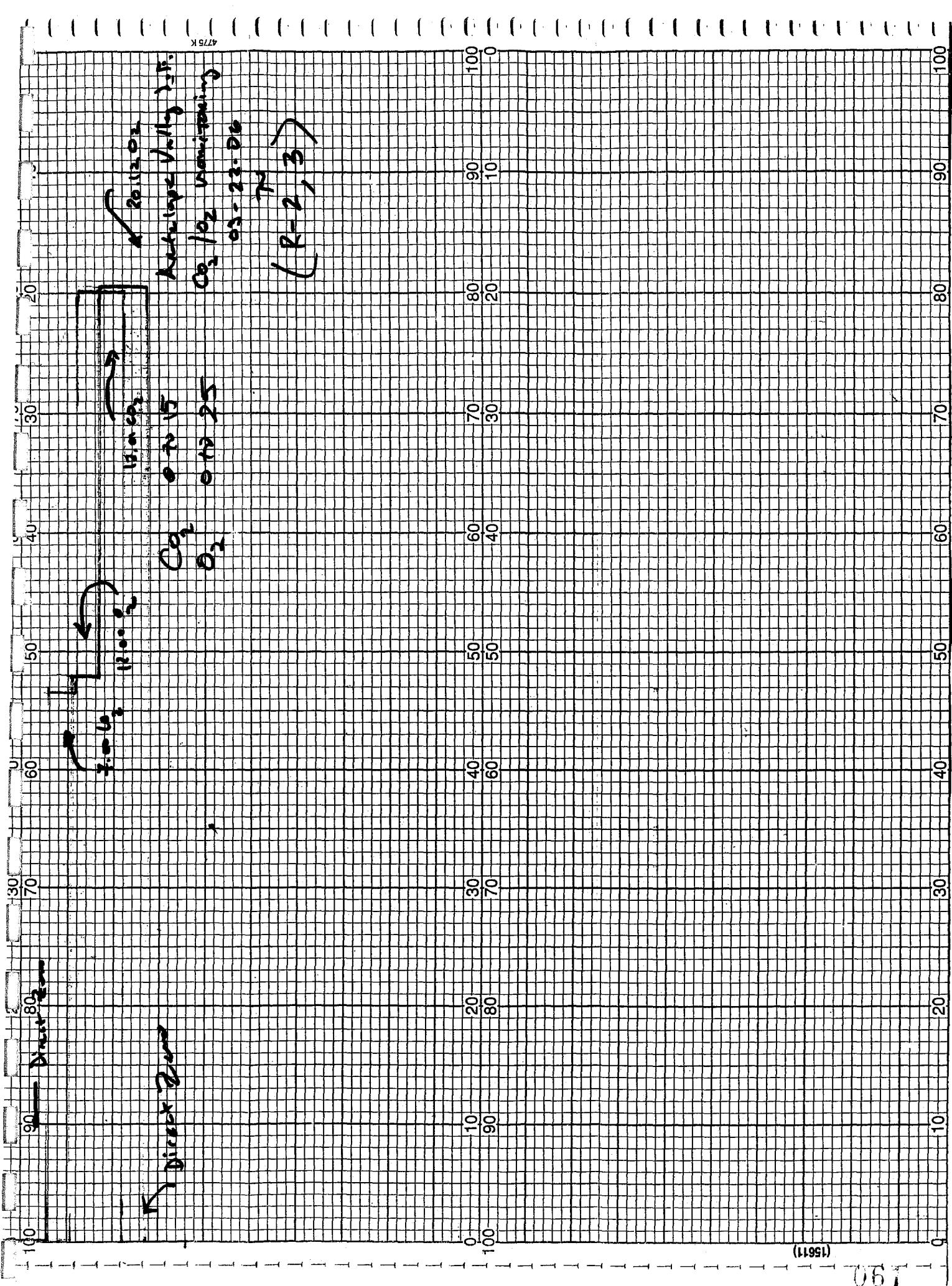
0

100

0

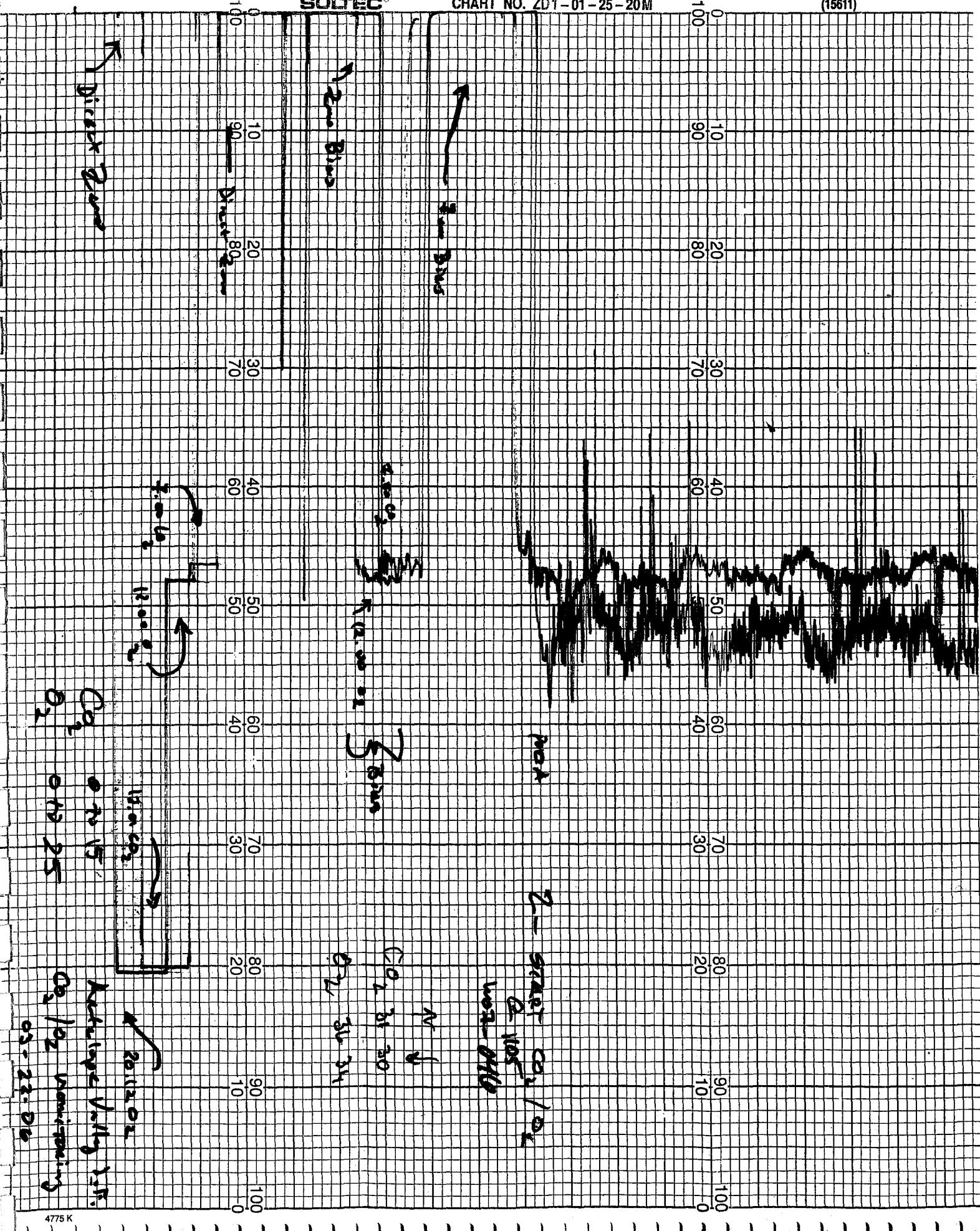

0

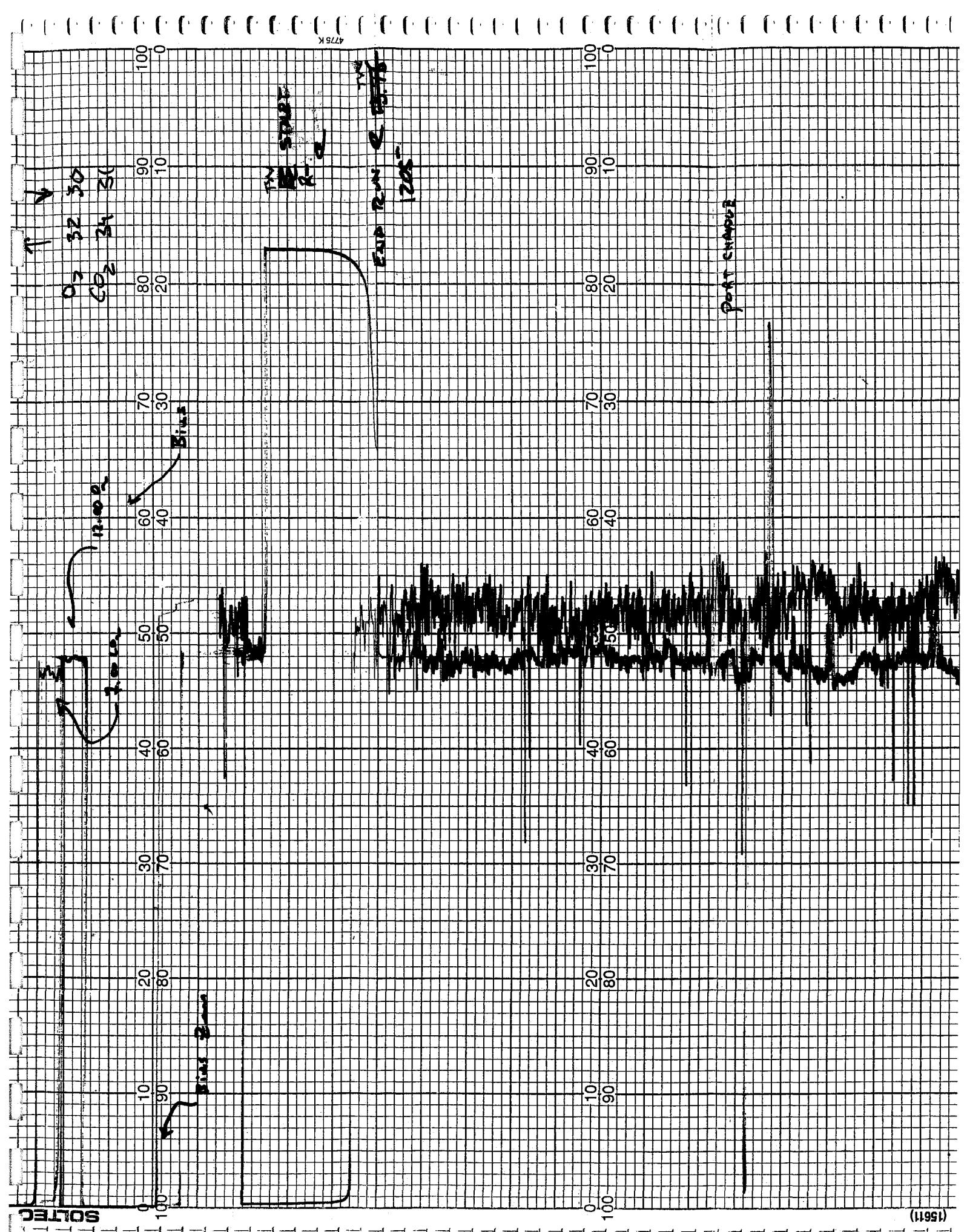

Pump Chamber 09:31


4775 K

Pump Chamber

27427
2005 #1
2005




290

SOLTEC®

CHART NO. ZD1-01-25-20M

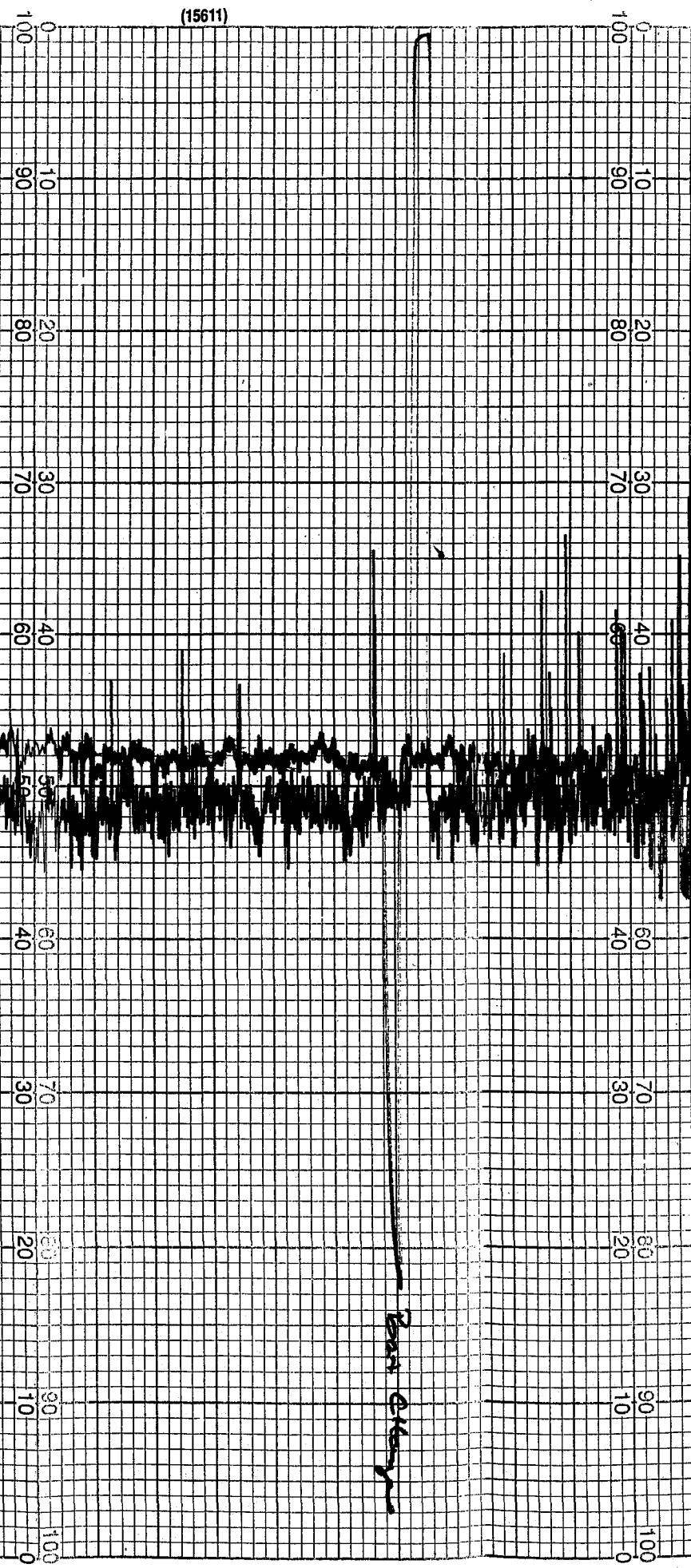
(15611)

490

SONIC

CHART NO. ZD1-01-25-20M

(15611)


22 Br. 5

1.000
1.000
1.000

2.0
2.0
2.0

ST 1213
P-3
C-2
34
36

02
32
36
C-2
34
36

