

**Kirby Canyon Recycling and Disposal Facility**

**BAAQMD Facility # 1812**

**Annual Compliance Emissions Test Report #08004**  
**Initial Source Test for Landfill Gas Flare- Source A-12**

**Located at:**

910 Coyote Creek Golf Drive  
San Jose, CA 95198

**Performed and Reported by:**

Blue Sky Environmental, LLC  
624 San Gabriel Avenue  
Albany, CA 94706

**Prepared For:**

Cornerstone Environmental Group, LLC  
7600 Dublin Boulevard, Suite 285  
Dublin, CA 94568

**For Submittal To:**

Bay Area Air Quality Management District  
939 Ellis Street  
San Francisco, CA 94109

**Testing Performed On:**

January 23<sup>rd</sup>, 2008

**Final Report Submitted On:**

March 17<sup>th</sup>, 2008

BLUE SKY ENVIRONMENTAL, LLC

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that: a) the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program; b) that the sampling and analytical procedures and data presented in the report is authentic and accurate; c) that all testing details and conclusions are accurate and valid; and: d) that the production rate and/or heat input rate during the source test are reported accurately.

If this report is submitted for Compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please contact me at (510) 525 1261.

---

Guy Worthington  
Principal Project Manager

BLUE SKY ENVIRONMENTAL, LLC

TABLE of CONTENTS

|                                                                  |    |
|------------------------------------------------------------------|----|
| SECTION 1. INTRODUCTION.....                                     | 4  |
| 1.1. SUMMARY.....                                                | 4  |
| SECTION 2. SOURCE TEST PROGRAM.....                              | 4  |
| 2.1. OVERVIEW.....                                               | 5  |
| 2.2. POLLUTANTS TESTED.....                                      | 5  |
| 2.3. TEST DATA (\$.....                                          | 5  |
| 2.4. SAMPLING AND OBSERVING PERSONNEL.....                       | 5  |
| 2.5. SOURCE/PROCESS DESCRIPTION.....                             | 5  |
| 2.6. SOURCE OPERATING CONDITIONS.....                            | 6  |
| SECTION 3. SAMPLING AND ANALYSIS PROCEDURES.....                 | 7  |
| 3.1. PORT LOCATION.....                                          | 7  |
| 3.2. POINT DESCRIPTION/LABELING – PORTS/STACK.....               | 7  |
| 3.3. SAMPLE TRAIN DESCRIPTION.....                               | 7  |
| 3.4. SAMPLING PROCEDURE DESCRIPTION.....                         | 7  |
| 3.5. INSTRUMENTATION AND ANALYTICAL PROCEDURES.....              | 8  |
| 3.6. COMMENTS: LIMITATIONS AND DATA QUALIFICATIONS.....          | 9  |
| SECTION 4. APPENDICES.....                                       | 10 |
| A. Submitted Results.....                                        |    |
| B. Calculations.....                                             |    |
| C. Laboratory Reports.....                                       |    |
| D. Field Data Sheets.....                                        |    |
| E. Strip Charts.....                                             |    |
| F. Process Information.....                                      |    |
| G. Calibration Certifications and Quality Assurance Records..... |    |
| H. Sample Train Configuration and Stick Diagrams.....            |    |
| I. Related Correspondence (Source Test Plan).....                |    |
| J. BAAQMD ATC.....                                               |    |

## SECTION 1. INTRODUCTION

## 1.1. Summary

Blue Sky Environmental, LLC was contracted to perform the initial emissions testing on the newly installed A-12 Landfill Gas Flare at Kirby Canyon Recycling and Disposal Facility, 910 Coyote Creek Golf Drive, San Jose, California. Construction of the A-12 flare began in Fall 2007, and per ATC 15617 a source test was performed within 90 days of start-up. This report presents the results of the test program. Table 1 summarizes the source test information. Table 2 summarizes the results compared to the emission limits. The flare met all compliance emission criteria.

Table 1. Source Test Information

|                    |                                                                                                                                                                                                                                                                                                                 |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Location:     | Kirby Canyon Recycling and Disposal Facility, 910 Coyote Creek Golf Drive, San Jose, CA 95198                                                                                                                                                                                                                   |  |  |
| Source Contact:    | Joe Morse (408) 779-2206                                                                                                                                                                                                                                                                                        |  |  |
| Source Tested:     | Enclosed Landfill Gas Flare (A-12)                                                                                                                                                                                                                                                                              |  |  |
| Source Test Date:  | January 23 <sup>rd</sup> , 2008                                                                                                                                                                                                                                                                                 |  |  |
| Test Objective:    | Determine Compliance with Regulation 8, Rule 34 and ATC 15617 Condition 1437, Part 10, 11, 12 and 13                                                                                                                                                                                                            |  |  |
| Test Performed By: | Blue Sky Environmental, LLC<br>624 San Gabriel Ave.,<br>Albany, CA 94706<br>Guy Worthington (510) 508 3469                                                                                                                                                                                                      |  |  |
| Test Parameters:   | <u>Landfill Gas</u><br>O <sub>2</sub> , N <sub>2</sub> , CO <sub>2</sub> , BTU, THC, CH <sub>4</sub> , NMOC, HHV, F-Factor, Sulfur & VOC Species, Volumetric Flow Rate<br><u>Flare Emissions</u><br>THC, CH <sub>4</sub> , NMOC, NO <sub>x</sub> , CO, O <sub>2</sub> , SO <sub>2</sub> , Volumetric Flow Rate. |  |  |

Table 2. Compliance Summary

| A Condensate Off                                      | Average Test Result | Permit Limit | Compliance Status |
|-------------------------------------------------------|---------------------|--------------|-------------------|
| NO <sub>x</sub> , lbs/MMBTU                           | 0.04                | 0.05         | In Compliance     |
| CO, lbs/MMBTU                                         | <0.002              | 0.3          | In Compliance     |
| SO <sub>2</sub> , ppmvd                               | 15.3                | 300          | In Compliance     |
| NMOC, (ppmvd @ 3% O <sub>2</sub> as CH <sub>4</sub> ) | 7.7                 | 30           | In Compliance     |
| B Condensate On                                       |                     |              |                   |
| NO <sub>x</sub> , lbs/MMBTU                           | 0.04                | 0.05         | In Compliance     |
| CO, lbs/MMBTU                                         | <0.002              | 0.3          | In Compliance     |
| SO <sub>2</sub> , ppmvd                               | 14.9                | 300          | In Compliance     |
| NMOC, (ppmvd @ 3% O <sub>2</sub> as CH <sub>4</sub> ) | 8.8                 | 30           | In Compliance     |

## SECTION 2. SOURCE TEST PROGRAM

## **BLUE SKY ENVIRONMENTAL, LLC**

---

### **2.1. Overview**

This initial performance test was performed within 90 days of start-up and was conducted to demonstrate that the A-12 landfill gas flare is operating in accordance with the Bay Area Air Quality Management District (BAAQMD) ATC 15617 and Regulation 8 Rule 34.

### **2.2. Pollutants Tested**

The following BAAQMD, EPA and ASTM sampling and analytical methods were used:

|                                     |                                          |
|-------------------------------------|------------------------------------------|
| BAAQMD ST-5                         | CO <sub>2</sub>                          |
| BAAQMD ST-6                         | CO                                       |
| BAAQMD ST-7                         | NMOC                                     |
| BAAQMD ST-13A                       | NOx                                      |
| BAAQMD ST-14                        | O <sub>2</sub>                           |
| BAAQMD ST-19A (calculated from TRS) | SO <sub>2</sub> calculated from TRS      |
| EPA 19                              | Flow Rate Calculation, DSCFM             |
| EPA 25C                             | LFG Gas analysis for NMOC by GC          |
| EPA TO-15                           | AP-42 Table 2.4-1 VOC Species            |
| ASTM 1945/3588                      | LFG Gas analysis for BTU and F-Factor    |
| ASTM D-5504                         | Sulfur Species, H <sub>2</sub> S and TRS |

### **2.3. Test Date(s)**

Testing was conducted on January 23<sup>rd</sup>, 2008.

### **2.4. Sampling and Observing Personnel**

Guy Worthington and Jeff Mesloh representing Blue Sky Environmental, LLC, performed testing.

Lonnie Beehler of Shaw, Karen Grentz and Mark McKeever of Cornerstone Environmental Group, LLC were present to operate and oversee the Flare operation and assist in coordinating testing and the collection of process data during testing.

The BAAQMD was notified of the test in a plan submitted by Waste Management on January 8, 2008. A Source Test Protocol acknowledgement was requested and received by Blue Sky Environmental (NST # 1294), but no agency observers were present to witness the testing. Copies of the source test protocol can be found in Appendix I.

### **2.5. Source/Process Description**

The enclosed landfill gas flare consists of a 149 million British Thermal Units per hour (MMBtu/hr) multiple nozzle burner manufactured by LFG Specialties, Inc. The flare shell is approximately 50 feet high and approximately 12.5 feet in diameter. The inside diameter is 11 feet 6 inches.

During the initial start-up period the flare has operated at about  $\sim 1500 \pm 100$  scfm. The flare setpoint was established at 1500°F. Methane quality is typically about 50%, and the Oxygen content typically less than 1%. Landfill gas condensate is collected and periodically injected into the flare via one vertical nozzle positioned near the burner.

#### **2.6. Source Operating Conditions**

The flare operating temperature and the landfill gas flow rate records are contained in Appendix-E. The condensate injection rate was recorded in the field at approximately 1.0 gallon per minute.

The flare was operated between 1497 and 1507 °F avg. The average landfill gas flow rate ranged between 1441 and 1453 scfm.

The landfill gas methane content ranged between 45.1 and 48.0%.

## SECTION 3. SAMPLING AND ANALYSIS PROCEDURES

### 3.1. Port location

The A-12 Flare sampling was conducted in the 11.5 feet diameter HD stack, via ports approximately 45° above grade, accessed by a 60° boom-lift. Two of the four, 4-inch flange ports are available ~4 stack diameters downstream from the burners and ~1 stack diameters upstream from the exit.

### 3.2. Point description/Labeling – ports/stack

Blue Sky Environmental conducted two perpendicular 8 pt traverses and found O<sub>2</sub> stratification about 10%, therefore subsequent CEM sampling was conducted at a representative average point in the stack.

### 3.3. Sample train description

Sampling system diagrams are included in the appendix H. Additional descriptive information is included in the following section.

### 3.4. Sampling procedure description

Three, 30-minute test runs were performed with the Condensate Injection Off, and repeated with the Condensate Injection On.

Continuous Emission Monitoring by BAAQMD Methods ST-5, 6, 7, 13A and 14. These methods are all continuous monitoring techniques using instrumental analyzers to measure carbon dioxide (CO<sub>2</sub>), carbon monoxide (CO), total non-methane hydrocarbons (THC & CH<sub>4</sub>), nitrogen oxides (NO<sub>x</sub>) and oxygen (O<sub>2</sub>), respectively. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample and analyzing it by continuous monitoring gas analyzers in a CEM test van. The sampling system consists of a stainless steel sample probe, Teflon sample line, glass-fiber particulate filter, glass moisture-knockout condensers in line, Teflon sample transfer tubing, diaphragm pump and a stainless steel/Teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI was provided to each analyzer to avoid pressure variable response differences. The entire sampling system was leak checked prior to and at the end of the sampling program.

Methane in the exhaust was determined per BAAQMD Methods, using a charcoal scrubber to remove the non-methane organics, and determining the difference between the total hydrocarbon and non-methane hydrocarbon concentrations.

The sampling and analytical system (per BAAQMD Methods) was calibrated at the beginning and end of each test run. The calibration gases were selected to fall approximately within 80 to 90 percent of the instrument range. Zero and calibration drift values were determined for each test. All calibration gases are EPA Protocol #1. The analyzer data recording system consists of Omega 3 channel strip chart recorders.

**System Performance Criteria**

|                                   |                                           |
|-----------------------------------|-------------------------------------------|
| Instrument Linearity              | $\leq 2\%$ Full Scale (checked routinely) |
| Instrument Bias                   | $\leq 5\%$ Full Scale (checked routinely) |
| System Response Time              | $\leq \pm 2$ minutes (checked routinely)  |
| NOx Converter Efficiency (EPA 20) | $\geq 90\%$ (checked routinely)           |
| Instrument Zero Drift             | $\leq \pm 3\%$ Full Scale (complied)      |
| Instrument Span Drift             | $\leq \pm 3\%$ Full Scale (complied)      |

Concurrent with the exhaust sampling, Blue Sky collected a total of six integrated 1-liter Tedlar Bag samples of the LFG for analysis. The samples were collected using Teflon tubing connections, and the tubing and the Tedlar bag were filled and purged prior to sampling. The gas sample was controlled with a rotameter to collect a 30-minute integrated sample. All the samples were analyzed for NMOC, HHV, F-Factor, Fixed Gases, Sulfur Species (incl. H<sub>2</sub>S and TRS). One sample was analyzed for EPA AP-42 Table 2.4-1 Compounds.

The inlet volumetric flow rate was continuously measured and recorded by the LFG Flowmeter.

**3.5. Instrumentation and Analytical procedures**

The following continuous emissions analyzers were used:

| Instrumentation | Parameter       | Principle         |
|-----------------|-----------------|-------------------|
| TECO 42i        | NO <sub>x</sub> | Chemiluminescence |
| TECO 48C        | CO              | GFC/IR            |
| Ratfisch, RS-55 | THC             | FID               |
| Horiba PIR 2000 | CO <sub>2</sub> | IR                |
| Rosemount 755R  | O <sub>2</sub>  | Paramagnetic      |

All calibration gases are EPA Protocol #1. The analyzer data recording system consists of Omega 3 channel strip chart recorders, which can be supported by a Data Acquisition System (DAS).

The instrument response was recorded on strip charts and manually reduced. The averages were corrected for drift using BAAQMD & EPA Method 6C equations.

**3.6. Comments: Limitations and Data Qualifications**

Blue Sky Environmental has reviewed this report for accuracy, and concluded that the test procedures were followed and accurately described and documented. The review included the following items:

- Review of the general test
- Review of calculations
- Review of CEMS data
- Review of supporting documentation

The services described in this report were performed in a manner consistent with the generally accepted professional testing principles and practices. No other warranty, expressed or implied, is made. These services were performed in a manner consistent with our agreement with our client. The report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions contained in this report pertain to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and operating parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations, subsequent to this, and do not warranty the accuracy of information supplied by others.

**SECTION 4. APPENDICES**

- A. Tabulated Results**
- B. Calculations**
- C. Laboratory Reports**
- D. Field Data Sheets**
- E. Strip Charts**
- F. Process Information**
- G. Calibration Certifications and Quality Assurance Records**
- H. Sample Train Configuration and Stack Diagrams**
- I. Related Correspondence (Source Test Plan)**
- J. BAAQMD ATC**

**A**  
**Tabulated Results**

TABLE #1

Kirby Canyon Recycling & Disposal Facility  
Flare A-12  
1500°F - Condensate Off

| RUN                                              | 1A        | 2A        | 3A        | AVERAGE | LIMITS |
|--------------------------------------------------|-----------|-----------|-----------|---------|--------|
| Test Date                                        | 01/23/08  | 01/23/08  | 01/23/08  |         |        |
| Test Time                                        | 0905-0953 | 1003-1033 | 1043-1113 |         |        |
| Standard Temp., °F                               | 70        | 70        | 70        |         |        |
| Flare Temperature, °F                            | 1,502     | 1,502     | 1,502     | 1,502   |        |
| Condensate Injection, gpm                        | 0.0       | 0.0       | 0.0       | 0.0     |        |
| Fuel Flow Rate, DSCFM                            | 1,450     | 1,441     | 1,442     | 1,441   |        |
| Fuel Heat Input, MMBTU/HR                        | 39.0      | 40.7      | 41.0      | 40.2    |        |
| Exhaust Flow Rate, DSCFM (Method 19)             | 16,630    | 17,836    | 18,054    | 17,507  |        |
| Oxygen, O <sub>2</sub> , %                       | 13.0      | 13.2      | 13.2      | 13.1    |        |
| Carbon Dioxide, CO <sub>2</sub> , %              | 7.5       | 7.2       | 7.1       | 7.3     |        |
| NOx, ppm                                         | 12.2      | 12.1      | 12.3      | 12.2    |        |
| NOx, ppm @ 15% O <sub>2</sub>                    | 9.1       | 9.3       | 9.5       | 9.3     |        |
| NOx, lbs/hr                                      | 1.45      | 1.54      | 1.59      | 1.53    |        |
| NOx, lbs/MMBTU                                   | 0.04      | 0.04      | 0.04      | 0.04    | 0.05   |
| CO, ppm                                          | <1.0      | <1.0      | <1.0      | <1.0    |        |
| CO, ppm @ 15% O <sub>2</sub>                     | <0.7      | <0.8      | <0.8      | <0.8    |        |
| CO, lbs/hr                                       | <0.1      | <0.1      | <0.1      | <0.1    |        |
| CO, lbs/MMBTU                                    | <0.002    | <0.002    | <0.002    | <0.002  | 0.3    |
| Total Sulfurs as H <sub>2</sub> S in fuel, ppm   | 263.4     | 161.0     | 189.7     | 184.7   |        |
| SO <sub>2</sub> , ppm calculated emission        | 17.7      | 13.0      | 15.2      | 15.3    | 300    |
| THC, ppm                                         | 2.7       | 3.8       | 3.5       | 3.3     |        |
| THC, lbs/hr as CH <sub>4</sub>                   | 0.11      | 0.17      | 0.16      | 0.15    |        |
| CH <sub>4</sub> , ppm                            | <1.0      | <1.0      | <1.0      | <1.0    |        |
| NMHC, ppm as CH <sub>4</sub>                     | 2.7       | 3.8       | 3.5       | 3.3     |        |
| NMHC, lbs/hr as CH <sub>4</sub>                  | 0.11      | 0.17      | 0.16      | 0.15    |        |
| NMHC, ppm @ 3% O <sub>2</sub> as CH <sub>4</sub> | 6.1       | 8.9       | 8.3       | 7.7     | 30     |
| INLET NMHC ppm as CH <sub>4</sub>                | 3,148     | 3,385     | 2,685     | 3,073   |        |
| INLET NMHC lbs/hr as CH <sub>4</sub>             | 11.3      | 12.1      | 9.6       | 11.0    |        |
| NMHC Removal Efficiency                          | >99.0%    | >98.6%    | >98.3%    | >98.7%  | 98     |
| INLET CH <sub>4</sub>                            | 451,000   | 473,000   | 476,000   | 466,667 |        |
| INLET THC (TOC) ppm as CH <sub>4</sub>           | 454,148   | 476,385   | 478,685   | 469,739 |        |
| INLET THC (TOC) lbs/hr as CH <sub>4</sub>        | 1,635     | 1,704     | 1,714     | 1,684   |        |
| THC (TOC) Removal Efficiency                     | 99.993%   | 99.990%   | 99.991%   | 99.991% | 98     |

## WHERE,

ppm = Parts Per Million Concentration

lbs/hr = Pound Per Hour Emission Rate

Lbs = Standard Lbs = 20.94607

MW = Molecular Weight

DSCFM = Dry Standard Cubic Feet Per Minute

NOx = Oxides of Nitrogen as NO<sub>2</sub> (MW = 46)

CO = Carbon Monoxide (MW = 28)

TOC = Total Organic Carbon as Methane including CH<sub>4</sub> (MW = 16)

DHC = Total Hydrocarbons as Methane (MW = 16)

NMHC = Total Non-Methane Hydrocarbons as Methane (MW = 16)

SO<sub>2</sub> = Sulfur Dioxide as SO<sub>2</sub> (MW = 64.1)

## CALCULATIONS,

PPM @ 15% O<sub>2</sub> = ppm \* 5.9 / (20.9 - 1.6)PPM @ 3% O<sub>2</sub> = ppm \* 17.9 / (20.9 - 1.6)

Lbs/hr = ppm \* 8.2231405 \* DSCFM \* MW / 1000 \* 1000

Lbs/day = Lbs/hr \* 24

THC (TOC) Removal Efficiency = inlet lbs/hr-outlet lbs/hr / inlet lbs/hr

NMHC Removal Efficiency = inlet lbs/hr-outlet lbs/hr / inlet lbs/hr

SO<sub>2</sub> emission ppm = H<sub>2</sub>S in fuel \* Fuel Flow/Sack Gas Flow

TABLE #2

Kirby Canyon Recycling & Disposal Facility  
Flare A-12  
1500°F - Condensate On

| RUN                                              | 1B               | 2B               | 3B               | AVERAGE          | LIMITS    |
|--------------------------------------------------|------------------|------------------|------------------|------------------|-----------|
| Test Date                                        | 01/23/08         | 01/23/08         | 01/23/08         |                  |           |
| Test Time                                        | 1130-1216        | 1233-1303        | 1316-1346        |                  |           |
| Standard Temp., °F                               | 70               | 70               | 70               |                  |           |
| Flare Temperature, °F                            | 1,502            | 1,502            | 1,502            | 1,502            |           |
| Condensate Injection, gpm                        | 1.0              | 1.0              | 1.0              | 1.0              |           |
| Fuel Flow Rate, DSCFM                            | 1,450            | 1,451            | 1,453            | 1,451            |           |
| Fuel Heat Input, MMBTU/Hr                        | 41.1             | 40.5             | 41.6             | 41.1             |           |
| Exhaust Flow Rate, DSCFM (Method 19)             | 17,073           | 18,615           | 18,143           | 17,944           |           |
| Oxygen, O <sub>2</sub> , %                       | 12.8             | 13.6             | 13.2             | 13.2             |           |
| Carbon Dioxide, CO <sub>2</sub> , %              | 7.1              | 6.7              | 7.1              | 7.0              |           |
| NO <sub>x</sub> , ppm                            | 8.9              | 11.8             | 13.1             | 11.3             |           |
| NO <sub>x</sub> , ppm @ 15% O <sub>2</sub>       | 6.5              | 9.5              | 10.0             | 8.6              |           |
| NO <sub>x</sub> , lbs/hr                         | 1.09             | 1.56             | 1.69             | 1.45             |           |
| NO <sub>x</sub> , lbs/MMBTU                      | 0.03             | 0.04             | 0.04             | 0.04             | 0.05      |
| CO, ppm                                          | <1.0             | <1.0             | <1.0             | <1.0             |           |
| CO, ppm @ 15% O <sub>2</sub>                     | <0.7             | <0.8             | <0.8             | <0.8             |           |
| CO, lbs/hr                                       | <0.07            | <0.08            | <0.08            | <0.08            |           |
| CO, lbs/MMBTU                                    | <0.002           | <0.002           | <0.002           | <0.002           | 0.3       |
| Total Sulfurs as H <sub>2</sub> S in fuel, ppm   | 190              | 171              | 190              | 184              |           |
| SO <sub>2</sub> calculated emission, ppm         | 16.1             | 13.3             | 15.2             | 14.9             | 300       |
| THC, ppm                                         | 4.1              | 3.6              | 3.8              | 3.8              |           |
| THC, lbs/hr as CH <sub>4</sub>                   | 0.17             | 0.17             | 0.17             | 0.17             |           |
| CH <sub>4</sub> , ppm                            | <1.0             | <1.0             | <1.0             | <1.0             |           |
| NMHC, ppm as CH <sub>4</sub>                     | 4.1              | 3.6              | 3.8              | 3.8              |           |
| NMHC, lbs/hr as CH <sub>4</sub>                  | 0.17             | 0.17             | 0.17             | 0.17             |           |
| NMHC, ppm @ 3% O <sub>2</sub> as CH <sub>4</sub> | 9.0              | 8.8              | 8.7              | 8.8              | 30        |
| INLET NMHC ppm as CH <sub>4</sub>                | 3,634            | 3,711            | 3,830            | 3,725            |           |
| INLET NMHC lbs/hr as CH <sub>4</sub>             | 13.1             | 13.4             | 13.8             | 13.4             |           |
| <b>NMHC Removal Efficiency</b>                   | <b>&gt;98.7%</b> | <b>&gt;98.8%</b> | <b>&gt;98.8%</b> | <b>&gt;98.7%</b> | <b>98</b> |
| INLET CH <sub>4</sub>                            | 475,000          | 468,000          | 480,000          | 474,333          |           |
| INLET THC (TOC) ppm as CH <sub>4</sub>           | 478,634          | 471,711          | 483,830          | 478,058          |           |
| INLET THC (TOC) lbs/hr as CH <sub>4</sub>        | 1,723            | 1,699            | 1,745            | 1,722            |           |
| <b>THC (TOC) Removal Efficiency</b>              | <b>99.99%</b>    | <b>99.99%</b>    | <b>99.99%</b>    | <b>99.99%</b>    | <b>98</b> |

## WHERE,

ppm = Parts Per Million Concentration

lbs/hr = Pound Per Hour Emission Rate

PSF = Standard Cubic Feet

MW = Molecular Weight

DSCFM = Dry Standard Cubic Feet Per Minute

NO<sub>x</sub> = Oxides of Nitrogen as NO<sub>x</sub> (MW = 46)

CO = Carbon Monoxide (MW = 28)

TOC = Total Organic Carbon as Methane including CH<sub>4</sub> (MW = 16)

THC = Total Hydrocarbons as Methane (MW = 16)

NMHC = Total Non-Methane Hydrocarbons as Methane (MW = 16)

SO<sub>2</sub> = Sulfur Dioxide as SO<sub>2</sub> (MW = 64.1)

## CALCULATIONS,

PPM @ 15% O<sub>2</sub> = ppm \* 5.9 / (20.9 \* 5.9/16)PPM @ 3% O<sub>2</sub> = ppm \* 17.9 / (20.9 \* 17.9/16)

lbs/hr = ppm \* 0.225 \* 1.05 \* 10 \* CFM \* MW / 1546.9R

lbs/day = lbs/hr \* 24

THC (TOC) Removal Efficiency = (inlet lbs/hr - outlet lbs/hr) / inlet lbs/hr

NMHC Removal Efficiency = (inlet lbs/hr - outlet lbs/hr) / inlet lbs/hr

SO<sub>2</sub> emission ppm = 1128 in fuel \* Fuel Flow/Stack Gas Flow

TABLE # 3

## Kirby Canyon Recycling &amp; Disposal Facility

Flare A-12

AP42 2.4-1

Full List

| Constituent                             | Method           | Units             | Detection Limit<br>MDL/PQL | Landfill Gas Samples |                        |
|-----------------------------------------|------------------|-------------------|----------------------------|----------------------|------------------------|
|                                         |                  |                   |                            | 01/23/08             | AP42 Table 2.4-1<br>3A |
| 1,1,1-Trichloroethane                   | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| 1,1,2,2-Tetrachloroethane               | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| 1,1-Dichloroethane                      | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| 1,1-Dichloroethene                      | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| 1,2-Dichloroethane                      | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| 1,2-Dichloropropane                     | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| 2-Propanol                              | EPA TO-15        | ppb               | 1.0/100                    | 26700                |                        |
| Acrylonitrile                           | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| Bromodichloromethane                    | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| Butane (C4)                             | EPA 18/ASTM 1945 | ppm               | 0.3                        | 18.2                 |                        |
| Carbon Disulfide                        | EPA TO-15        | ppb               | 1.0/100                    | 221                  |                        |
| Carbon Monoxide                         | ASTM 1945        | %                 | NA                         | NA                   |                        |
| Carbon Tetrachloride                    | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| Carbonyl sulfide                        | ASTM D-5504      | ppm               | 0.01                       | ND                   |                        |
| Chlorobenzene                           | EPA TO-15        | ppb               | 0.5/5                      | 257                  |                        |
| Chlorodifluoromethane                   | EPA TO-15        | ppb               | 1.0/100                    | 928                  |                        |
| Chloroethane                            | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| Chloroform                              | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| Chloromethane                           | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| 1,3-Dichlorobenzene                     | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| 1,4-Dichlorobenzene                     | EPA TO-15        | ppb               | 1.0/100                    | 741                  |                        |
| 1,2-Dichlorobenzene                     | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| Dichlorodifluoromethane                 | EPA TO-15        | ppb               | 1.0/100                    | 816                  |                        |
| Dichlorofluoromethane                   | EPA TO-15        | ppb               | 1.0/100                    | 383                  |                        |
| Dichloromethane (Methylene Chloride)    | EPA TO-15        | ppb               | 1.0/100                    | 241                  |                        |
| Dimethyl sulfide                        | ASTM D-5504      | ppm               | 0.01                       | 3.9                  |                        |
| Ethane (C2)                             | EPA 18/ASTM 1945 | ppm               | 30                         | ND                   |                        |
| Ethanol                                 | EPA TO-15        | ppb               | 1.0/100                    | 120000               |                        |
| Ethyl Mercaptan                         | ASTM D-5504      | ppm               | 0.01                       | ND                   |                        |
| Ethyl Benzene                           | EPA TO-15        | ppb               | 1.0/100                    | 7980                 |                        |
| 1,2-Dibromoethane (Ethylene Dibromide)  | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| Trichloroethane                         | EPA TO-15        | ppb               | 1.0/100                    | 179                  |                        |
| Hexane                                  | EPA TO-15        | ppb               | 1.0/100                    | 980                  |                        |
| Hydrogen sulfide                        | ASTM D-5504      | ppm               | 0.01                       | 181.08               |                        |
| Mercury                                 | NIOSH 6009       | ug/m <sup>3</sup> | NA                         | NA                   |                        |
| 2-Butanone (MIBK)                       | EPA TO-15        | ppb               | 1.0/100                    | 32700                |                        |
| Methyl iso-Butyl Kerone (MIBK)          | EPA TO-15        | ppb               | 1.0/100                    | 2130                 |                        |
| Pentane (C5)                            | EPA 18/ASTM 1945 | ppm               | 0.3                        | 62.9                 |                        |
| Tetrachloroethylene (Perchloroethylene) | EPA TO-15        | ppb               | 1.0/100                    | 27400                |                        |
| Propene (C3)                            | EPA 18/ASTM 1945 | ppm               | 0.3                        | 23.3                 |                        |
| trans-1,2-Dichloroethene                | EPA TO-15        | ppb               | 1.0/100                    | ND                   |                        |
| Trichloroethylene                       | EPA TO-15        | ppb               | 1.0/100                    | 192                  |                        |
| Vinyl Chloride                          | EPA TO-15        | ppb               | 1.0/100                    | 102                  |                        |
| o-xylene                                | EPA TO-15        | ppb               | 1.0/100                    | 14900                |                        |
| o-Xylene                                | EPA TO-15        | ppb               | 1.0/100                    | 3790                 |                        |
| Benzene                                 | EPA TO-15        | ppb               | 1.0/100                    | 876                  |                        |
| Toluene                                 | EPA TO-15        | ppb               | 1.0/100                    | 20200                |                        |

ND = not detected

pql = not detected (practical quantitation limit)

**B**  
**Calculations**

## BLUE SKY ENVIRONMENTAL, LLC

## CEM BIAS CORRECTION SUMMARY

|            |                                            |  |  |              |        |  |
|------------|--------------------------------------------|--|--|--------------|--------|--|
| Facility:  | Kirby Canyon Recycling & Disposal Facility |  |  | Barometric:  |        |  |
| Unit:      | flare A 12                                 |  |  | Leak Check:  | OK     |  |
| Condition: | 1500°F - Condensate On                     |  |  | Stat. Check: | OK     |  |
| Date:      | 01-25-08                                   |  |  | Personnel:   | gw, jm |  |

|                 | O <sub>2</sub> | CO <sub>2</sub> | NO <sub>x</sub> | CO   | THC   | CH4   | SO <sub>2</sub> |  |      |
|-----------------|----------------|-----------------|-----------------|------|-------|-------|-----------------|--|------|
| Analyzer        | 755R           | PIR 2000        | 421             | 48C  | RS-55 | RS-55 | 721AV           |  |      |
| Range           | 25             | 10              | 25              | 100  | 50    | 30    | 100             |  | x    |
| Units, ppm or % | %              | %               | ppm             | ppm  | ppm   | ppm   | ppm             |  |      |
| Span Gas Value  | 20.43          | 12.62           | 22.5            | 85.2 | 45.0  | 45.0  |                 |  | Ccal |

|            |                 |                 |                   |                  |                 |                 |  |                     |
|------------|-----------------|-----------------|-------------------|------------------|-----------------|-----------------|--|---------------------|
| Run 1B     | 0.00            | 0.00            | 0.0               | 0.0              | 0.0             | 0.0             |  | zero (initial), Cib |
| Test Time: | 20.38           | 12.60           | 45.3              | 88.2             | 45.5            | 45.5            |  | cal (initial), Cib  |
| 1130-1216  | 12.70           | 6.82            | 13.3              | <1               | 5.4             | <1              |  | TEST AVG, Cavg      |
|            | 0.30            | 0.00            | -0.3              | 0.0              | 2.7             | 2.7             |  | zero (final), Cib   |
|            | 20.00           | 11.70           | 22.3              | 84.0             | 46.5            | 46.5            |  | cal (final), Cib    |
|            | 0% <sub>a</sub> | 0% <sub>a</sub> | -1% <sub>a</sub>  | 0% <sub>a</sub>  | 5% <sub>a</sub> | 5% <sub>a</sub> |  | % zero drift        |
|            | 0% <sub>a</sub> | 0% <sub>a</sub> | -92% <sub>a</sub> | -1% <sub>a</sub> | 2% <sub>a</sub> | 2% <sub>a</sub> |  | % cal drift         |
|            | 12.79           | 7.08            | 8.9               | <1               | 4.1             | <1.0            |  | Cgas                |

|            |                 |                 |                  |                 |                 |                 |  |                     |
|------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|--|---------------------|
| Run 2B     | 0.30            | 0.00            | 0.3              | 0.0             | 2.7             | 2.7             |  | zero (initial), Cib |
| Test Time: | 20.00           | 12.60           | 22.3             | 84.0            | 46.5            | 46.5            |  | cal (initial), Cib  |
| 1233-1303  | 13.38           | 6.68            | 11.5             | <1              | 6.2             | <1              |  | TEST AVG, Cavg      |
|            | 0.30            | 0.00            | -0.3             | 0.0             | 2.7             | 2.7             |  | zero (final), Cib   |
|            | 20.00           | 12.44           | 22.2             | 84.0            | 46.3            | 46.3            |  | cal (final), Cib    |
|            | 0% <sub>a</sub> | 0% <sub>a</sub> | 0% <sub>a</sub>  | 0% <sub>a</sub> | 0% <sub>a</sub> | 0% <sub>a</sub> |  | % zero drift        |
|            | 0% <sub>a</sub> | 0% <sub>a</sub> | -2% <sub>a</sub> | 0% <sub>a</sub> | 0% <sub>a</sub> | 0% <sub>a</sub> |  | % cal drift         |
|            | 13.56           | 6.73            | 11.8             | <1              | 3.6             | <1.0            |  | Cgas                |

|            |                 |                 |                  |                 |                 |                 |  |                     |
|------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|--|---------------------|
| Run 3B     | 0.30            | 0.00            | 0.3              | 0.0             | 2.7             | 2.7             |  | zero (initial), Cib |
| Test Time: | 20.00           | 12.44           | 22.2             | 84.0            | 46.3            | 46.3            |  | cal (initial), Cib  |
| 1316-1346  | 13.00           | 6.98            | 12.8             | <1              | 6.5             | <1              |  | TEST AVG, Cavg      |
|            | 0.30            | 0.00            | -0.3             | 0.0             | 3.0             | 3.0             |  | zero (final), Cib   |
|            | 20.00           | 12.22           | 22.1             | 83.8            | 46.8            | 46.8            |  | cal (final), Cib    |
|            | 0% <sub>a</sub> | 0% <sub>a</sub> | 0% <sub>a</sub>  | 0% <sub>a</sub> | 1% <sub>a</sub> | 1% <sub>a</sub> |  | % zero drift        |
|            | 0% <sub>a</sub> | 0% <sub>a</sub> | -2% <sub>a</sub> | 0% <sub>a</sub> | 1% <sub>a</sub> | 1% <sub>a</sub> |  | % cal drift         |
|            | 13.17           | 7.14            | 13.1             | <1              | 3.8             | <1.0            |  | Cgas                |

Pollutant Concentration (Cgas) = (Cavg - Co) x Ccal / (Cheat - Co)  
 Zero and Calibration Drift = 100 x (Cib + Cib) / r

Co = (Cib + Cib) / 2 for zero gas  
 Cheat = (Cif + Cib) / 2 for cal gas

## STACK GAS FLOW RATE DETERMINATION -- Method 19

Facility: Kirby Canyon Recycling & Disposal Facility  
 Unit: Flare A-12  
 Condition: 150°F - Condensate On  
 Date: 01/25/08

|                                  | Time:<br>Run: | 1130-1216<br>Run 1B | 1233-1303<br>Run 2B | 1316-1346<br>Run 3B |                       |
|----------------------------------|---------------|---------------------|---------------------|---------------------|-----------------------|
| # cubic feet/rev                 |               | 1,450               | 1,451               | 1,453               | ft <sup>3</sup>       |
| # of seconds/rev                 |               | 60                  | 60                  | 60                  | seconds               |
| Gas Line Pressure (PSIG)         |               | 0.0                 | 0.0                 | 0.0                 | PSI Gauge             |
| Gas Line Pressure (PSIA)         |               | 14.7                | 14.7                | 14.7                | PSI Absolute          |
| Gross Calorific Value (Btu/60°F) | avg           | 481.6               | 474.5               | 486.7               | Btu / ft <sup>3</sup> |
| Stack Oxygen                     |               | 12.8                | 13.6                | 13.2                | %                     |
| Gas Fd-Factor (Btu/60°F)         | avg           | 9,482.1             | 9,489.1             | 9,488.6             | MMBtu/MMBtu           |
| Gas Temperature (°F)             |               | 70                  | 70                  | 70                  | °F                    |
| Standard Temperature (°F) Tstd   |               | 70                  | 70                  | 70                  | °F                    |

|                                   |        |        |        |           |
|-----------------------------------|--------|--------|--------|-----------|
| Realtime Fuel Rate (SCFM)         | 1450.0 | 1451.0 | 1453.0 | SCFM      |
| Corrected Fuel Rate (SCFM) @ Tstd | 1450.0 | 1451.0 | 1453.0 | SCFM      |
| Fuel Flowrate (SCFH)              | 87,000 | 87,060 | 87,180 | SCFH      |
| Million Btu per minute            | 0.685  | 0.676  | 0.694  | MMBtu/min |
| Heat Input (MMBtu/hour)           | 41.1   | 40.5   | 41.6   | MMBtu/hr  |

|                            |        |        |        |       |
|----------------------------|--------|--------|--------|-------|
| Stack Gas Flow Rate @ Tstd | 17,073 | 18,615 | 18,143 | DSCFM |
|----------------------------|--------|--------|--------|-------|

## WHERE:

Gas Fd-Factor = Fuel conversion factor (ratio of combustion gas volumes to heat inputs)  
 MMBtu = Million Btu

## CALCULATIONS:

$$\begin{aligned}
 \text{SCFM} &= \text{CFM} \times (460 + \text{Tstd}) / (\text{PSI} \times 14.7) \times 160 \times \text{Gas}^2 \text{F} \\
 \text{SCFH} &= \text{SCFM} \times 60 \\
 \text{MMBtu/min} &= \text{SCFM} \times 360 \text{ft}^3/\text{min} \times 520 / (460 + \text{Tstd}) = 1,000,300 \\
 \text{MMBtu/hr} \text{ Heat Input} &\approx \text{MMBtu/min} \times 60 \\
 \text{DSCFM} &= \text{Gas Fd-Factor} \times (460 + \text{Tstd}) / 520 \times \text{MMBtu/min} \times 20.9 / (20.9 - \text{O}_2\%)
 \end{aligned}$$







## BLUE SKY ENVIRONMENTAL, LLC

## CEM BIAS CORRECTION SUMMARY

|            |                                            |  |  |  |               |        |  |
|------------|--------------------------------------------|--|--|--|---------------|--------|--|
| Facility:  | Kirby Canyon Recycling & Disposal Facility |  |  |  | Barometric:   |        |  |
| Unit:      | flare A-12                                 |  |  |  | Leak Check:   | OK     |  |
| Condition: | 150°F - Condensate Off                     |  |  |  | Strat. Check: | OK     |  |
| Date:      | 01-25-08                                   |  |  |  | Personnel:    | gw, am |  |

|                 | O <sub>2</sub> | CO <sub>2</sub> | NOx  | CO   | THC   | CH4   | SO <sub>2</sub> |  |      |
|-----------------|----------------|-----------------|------|------|-------|-------|-----------------|--|------|
| Analyzer        | 755R           | PIR 2000        | 421  | 48C  | RS-55 | RS-55 | 721AT           |  |      |
| Range           | 25             | 15              | 25   | 100  | 50    | 50    | 100             |  | r    |
| Units, ppm or % | %              | ppm             | ppm  | ppm  | ppm   | ppm   | ppm             |  |      |
| Span Gas Value  | 20.43          | 12.62           | 22.5 | 85.2 | 45.0  | 45.0  |                 |  | Ccal |

|            |       |       |      |      |      |      |  |                     |
|------------|-------|-------|------|------|------|------|--|---------------------|
| Run 1A     | 0.00  | 0.00  | 0.00 | 0.0  | 0.0  | 0.0  |  | zero (initial), Cib |
| Test Time: | 20.40 | 12.60 | 22.5 | 85.2 | 45.0 | 45.0 |  | cal (initial), Cib  |
| 0935-0935  | 12.97 | 7.48  | 12.1 | 0.0  | 2.9  | 0.0  |  | TEST AVG, Cavg      |
|            | 0.25  | 0.00  | 0.2  | 0.0  | 0.5  | 0.5  |  | zero (final), Cib   |
|            | 20.25 | 12.52 | 22.2 | 85.2 | 45.0 | 45.0 |  | cal (final), Cib    |
|            | -1%   | -1%   | -1%  | 0%   | 1%   | 1%   |  | % zero drift        |
|            | -1%   | -1%   | -1%  | 0%   | 0%   | 0%   |  | % cal drift         |
|            | 12.99 | 7.52  | 12.2 | <1.0 | 2.7  | <1.0 |  | Cgas                |

|            |       |       |      |      |      |      |  |                     |
|------------|-------|-------|------|------|------|------|--|---------------------|
| Run 2A     | 0.25  | 0.00  | -0.2 | 0.0  | 0.5  | 0.5  |  | zero (initial), Cib |
| Test Time: | 20.25 | 12.52 | 22.2 | 85.2 | 45.0 | 45.0 |  | cal (initial), Cib  |
| 1035-1035  | 13.10 | 7.05  | 11.9 | 0.0  | 4.6  | 0.0  |  | TEST AVG, Cavg      |
|            | 0.25  | 0.00  | -0.2 | 0.0  | 1.1  | 1.1  |  | zero (final), Cib   |
|            | 20.00 | 12.34 | 22.3 | 84.8 | 45.3 | 45.3 |  | cal (final), Cib    |
|            | -0%   | -0%   | -0%  | 0%   | 1%   | 1%   |  | % zero drift        |
|            | -1%   | -1%   | -1%  | 0%   | 1%   | 1%   |  | % cal drift         |
|            | 13.21 | 7.16  | 12.1 | <1.0 | 3.8  | <1.0 |  | Cgas                |

|            |       |       |      |      |      |      |  |                     |
|------------|-------|-------|------|------|------|------|--|---------------------|
| Run 3 A    | 0.25  | 0.00  | -0.2 | 0.0  | 1.1  | 1.1  |  | zero (initial), Cib |
| Test Time: | 20.00 | 12.54 | 22.3 | 84.8 | 45.3 | 45.3 |  | cal (initial), Cib  |
| 1045-1113  | 13.10 | 6.90  | 12.1 | 0.0  | 5.2  | 0.0  |  | TEST AVG, Cavg      |
|            | 0.25  | 0.00  | -0.2 | 0.0  | 2.5  | 2.5  |  | zero (final), Cib   |
|            | 20.15 | 12.08 | 22.3 | 84.5 | 45.3 | 45.3 |  | cal (final), Cib    |
|            | -0%   | -0%   | -0%  | 0%   | 3%   | 3%   |  | % zero drift        |
|            | -1%   | -1%   | -1%  | 0%   | 0%   | 0%   |  | % cal drift         |
|            | 13.24 | 7.13  | 12.3 | <1.0 | 3.5  | <1.0 |  | Cgas                |

Pollutant Concentration (Cgas) = (Cavg - Co) x Ccal / (Cbeal - Co)  
 Zero and Calibration Drift = 100 x (Cib - Cib) / r

Co = (Cib + Cfb) / 2 for zero gas  
 Cbeal = (Cif + Cfb) / 2 for cal gas

## BLUE SKY ENVIRONMENTAL, LLC

## STACK GAS FLOW RATE DETERMINATION -- Method 19

Facility: Kirby Canyon Recycling &amp; Disposal Facility

Unit: Flare A 12

Condition: 1500°F - Condensate Off

Date: 01/23/08

|                                   | Time: | 0905-0953 | 1003-1033 | 1045-1113 |                       |
|-----------------------------------|-------|-----------|-----------|-----------|-----------------------|
|                                   | Run:  | 1         | 2         | 3         |                       |
| # cubic feet/rev                  |       | 1,450     | 1,441     | 1,442     | ft <sup>3</sup>       |
| # of seconds/rev                  |       | 60        | 60        | 60        | seconds               |
| Gas Line Pressure (PSIG)          |       | 0.0       | 0.0       | 0.0       | PSI Gauge             |
| Gas Line Pressure (PSIA)          |       | 14.7      | 14.7      | 14.7      | PSI Absolute          |
| Gross Calorific Value (@ 60°F)    | avg.  | 457.5     | 479.6     | 482.6     | Btu / ft <sup>3</sup> |
| Stack Oxygen                      |       | 13.0      | 13.2      | 13.2      | %                     |
| Gas Fd-Factor (@ 60°F)            | avg.  | 9,490.4   | 9,498.0   | 9,505.4   | DSCF/MMBtu            |
| Gas Temperature (°F)              |       | 70        | 70        | 70        | °F                    |
| Standard Temperature (°F) Tstd    |       | 70        | 70        | 70        | °F                    |
| Realtime Fuel Rate (CFM)          |       | 1450.0    | 1441.0    | 1442.0    | CFM                   |
| Corrected Fuel Rate (SCFM) @ Tstd |       | 1450.0    | 1441.0    | 1442.0    | SCFM                  |
| Fuel Flowrate (SCFH)              |       | 87,000    | 86,460    | 86,520    | SCFH                  |
| Million Btu per minute            |       | 0.651     | 0.678     | 0.683     | MMBtu/min             |
| Heat Input (MMBtu/hour)           |       | 39.0      | 40.7      | 41.0      | MMBtu/Hr              |

Stack Gas Flow Rate @ Tstd

|        |        |        |       |
|--------|--------|--------|-------|
| 16,630 | 17,836 | 18,054 | DSCFM |
|--------|--------|--------|-------|

## WHERE:

Gas Fd-Factor = Fuel conversion factor (ratio of combustion gas volumes to heat inputs)

MMBtu = Million Btu

## CALCULATIONS:

$$SCFM = CFM \cdot (460 \cdot Tstd) \cdot (PSIA) / 14.7 \cdot (460 + Gas^{\circ}F)$$

$$SCFH = SCFM \cdot 60$$

$$MMBtu/min = SCFM \cdot (Btu/ft^3) \cdot (520 / (460 \cdot Tstd)) \cdot 1,000,000$$

$$MMBtu/Hr Heat Input = MMBtu/min \cdot 60$$

$$DSCFM = Gas\ Fd-Factor \cdot ((460 \cdot Tstd) / 520) \cdot MMBtu/min \cdot 20.9 / (20.9 - O_2\%)$$

## BLUESKY ENVIRONMENTAL, LLC

## FID-FACTOR CALCULATION

| Landfill Gas - Run 1A                      |        |        |       |          |        |                    |                   |          |        |        |         |
|--------------------------------------------|--------|--------|-------|----------|--------|--------------------|-------------------|----------|--------|--------|---------|
| Kirby Canons Recycling & Disposal Facility |        |        |       |          |        |                    |                   |          |        |        |         |
| 1-23/2008                                  |        |        |       |          |        |                    |                   |          |        |        |         |
| Material                                   | Weight | Volume | Temp  | Pressure | Wt%    | Vol%               | Temp              | Pressure | Wt%    | Vol%   | Temp    |
| Helium                                     | 106    | 0.198  | 617   | 0.0000   | 0.0000 | 0.0000             | 617               | 0.0000   | 0.0000 | 0.0000 | 617     |
| Hydrogen (H <sub>2</sub> )                 | 202    | 0.076  | 3219  | 0.0000   | 0.0000 | 0.0000             | 3219              | 0.0000   | 0.0000 | 0.0000 | 3219    |
| Nitrogen                                   | 26.01  | 0.972  | 617   | 0.0000   | 0.0000 | 0.0000             | 617               | 0.0000   | 0.0000 | 0.0000 | 617     |
| Oxygen                                     | 72.01  | 1.083  | 617   | 0.0000   | 0.0000 | 0.0000             | 617               | 0.0000   | 0.0000 | 0.0000 | 617     |
| Carbon Monoxide                            | 25.01  | 0.914  | 3219  | 0.0000   | 0.0000 | 0.0000             | 3219              | 0.0000   | 0.0000 | 0.0000 | 3219    |
| Carbon Dioxide                             | 43.4   | 1.301  | 617   | 0.0000   | 0.0000 | 0.0000             | 617               | 0.0000   | 0.0000 | 0.0000 | 617     |
| Methane                                    | 16.12  | 0.585  | 0.020 | 0.0000   | 0.0000 | 0.0000             | 0.020             | 0.0000   | 0.0000 | 0.0000 | 0.020   |
| Ethane                                     | 9.01   | 0.182  | 1.171 | 0.0000   | 0.0000 | 0.0000             | 1.171             | 0.0000   | 0.0000 | 0.0000 | 1.171   |
| Propane                                    | 21.01  | 0.250  | 3219  | 0.0000   | 0.0000 | 0.0000             | 3219              | 0.0000   | 0.0000 | 0.0000 | 3219    |
| Isobutane                                  | 5.12   | 0.087  | 3201  | 0.0000   | 0.0000 | 0.0000             | 3201              | 0.0000   | 0.0000 | 0.0000 | 3201    |
| n-Butane                                   | 38.12  | 2.082  | 3206  | 0.0000   | 0.0000 | 0.0000             | 3206              | 0.0000   | 0.0000 | 0.0000 | 3206    |
| Isopentane                                 | 7.21   | 0.070  | 4074  | 0.0000   | 0.0000 | 0.0000             | 4074              | 0.0000   | 0.0000 | 0.0000 | 4074    |
| n-Pentane                                  | 72.1   | 1.995  | 4078  | 0.0000   | 0.0000 | 0.0000             | 4078              | 0.0000   | 0.0000 | 0.0000 | 4078    |
| Hexane                                     | 96.3   | 2.273  | 4109  | 0.0000   | 0.0000 | 0.0000             | 4109              | 0.0000   | 0.0000 | 0.0000 | 4109    |
| Total                                      |        |        |       | 1.0000   | 0.981  | 157.1              | 0.9999            | 0.0000   | 0.0000 | 0.0000 | 157.1   |
|                                            |        |        |       |          | SG     | Bar/l <sup>3</sup> | SG <sub>Bar</sub> | 2.838W   | 1.32%  | 5.40%  | 42.9°F* |
|                                            |        |        |       |          |        |                    |                   |          |        |        | 6.72b   |

\*Calculated using standard values.

Calculated Specific Gravity (SG) =  $\frac{Wt}{Vol} = \frac{\sum Wt}{\sum Vol} = \frac{0.981}{1.32}$ 

0.9995

Z =  $(\sum Wt \cdot Z_i) / \sum Wt = 0.9995$ 

Specific Gravity (corrected)

0.982

Specific Volume, (SV) ft<sup>3</sup>/lb13.21 ft<sup>3</sup>/lb

Gross Calorific Value (GCV) @ 60°F

457.3 Btu/lb Gross

Gross Calorific Value (GCV) @ 68°F

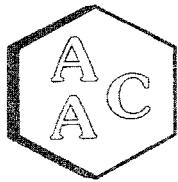
450.4 Btu/lb Gross

Gross Calorific Value (GCV)

6,057 Btu/lb

R<sub>ext, p</sub> = Btu/lb<sup>2</sup> °F<sup>-1</sup>

9,636 DSCF/MMBtu


Gross Calorific Value (GCV) @ 60°F

9,490 DSCF/MMBtu





Laboratory Reports  
C



## Atmospheric Analysis & Consulting, Inc.

CLIENT : Blue Sky Environmental, LLC  
PROJECT NAME : KIRBY  
AAC PROJECT NO. : 080037  
REPORT DATE : 1/24/2008

On January 24, 2008, Atmospheric Analysis & Consulting, Inc. received six (6) Tedlar Bags for Total Reduced Sulfur analysis by ASTM D-5504, non-methane organic compounds analysis by EPA 25C, Fixed Gases analysis by EPA 3C and hydrocarbon analysis by EPA 18. Upon receipt the samples were assigned unique Laboratory ID numbers as follows:

| Client ID    | Lab No.      |
|--------------|--------------|
| KIRBY-A12 1A | 080037-31201 |
| KIRBY-A12 2A | 080037-31202 |
| KIRBY-A12 3A | 080037-31203 |
| KIRBY-A12 1B | 080037-31204 |
| KIRBY-A12 2B | 080037-31205 |
| KIRBY-A12 3B | 080037-31206 |

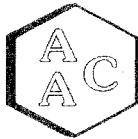
EPA 3C - An aliquot of the gaseous sample is injected into the GC/TCD for analysis following EPA 3C as specified in the SOW.

EPA 25C Analysis - Up to a 1 mL aliquot of samples is injected into the GC/FID/TCA for analysis following EPA 25C as specified in the SOW.

EPA 18 Analysis - Up to a 1 ml aliquot of samples is injected into the GC/FID for analysis following EPA 18 as specified in the SOW.

ASTM D-5504 - Up to a 1mL aliquot of sample is injected into the GC/SCD for analysis following ASTM D-5504 as specified in the SOW.

No problems were encountered during receiving, preparation, and/ or analysis of this sample. The test results included in this report meet all requirements of the NELAC Standards and/or AAC SOP# AAC1- EPA 25C, EPA 3C, EPA 18, and ASTM D-5504.


I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Release of the data contained in this hardcopy data package and its electronic data deliverable submitted on diskette has been authorized by the Laboratory Director or his designee, as verified by the following signature.

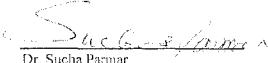
If you have any questions or require further explanation of data results, please contact the undersigned.

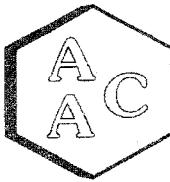
Sucha S. Parmar, PhD  
Technical Director

This report consists of 14 pages.






## Atmospheric Analysis & Consulting, Inc.


### Laboratory Analysis Report

|             |                            |                |            |
|-------------|----------------------------|----------------|------------|
| Client      | Blue Sky Environmental Inc | Sampling Date  | 01/23/2008 |
| Project No. | 080037                     | Receiving Date | 01/24/2008 |
| Matrix      | Air                        | Analysis Date  | 01/24/2008 |
| Units       | %                          | Report Date    | 01/24/2008 |

#### EPA Method 3C

| Detection Limit: 0.1 % |              |          | Analyte |          |      |         |      |
|------------------------|--------------|----------|---------|----------|------|---------|------|
| Client ID              | AAC ID       | Hydrogen | Oxygen  | Nitrogen | CO   | Methane | CO2  |
| KIRBY-A12 1A           | 080037-31201 | 0.2      | 2.0     | 16.6     | <PQL | 45.1    | 36.1 |
| KIRBY-A12 2A           | 080037-31202 | 0.2      | 1.0     | 13.6     | <PQL | 47.3    | 37.9 |
| KIRBY-A12 3A           | 080037-31203 | 0.2      | 0.8     | 13.2     | <PQL | 47.6    | 38.2 |
| KIRBY-A12 1B           | 080037-31204 | 0.2      | 1.0     | 13.4     | <PQL | 47.5    | 38.0 |
| KIRBY-A12 2B           | 080037-31205 | 0.2      | 1.3     | 14.4     | <PQL | 46.8    | 37.3 |
| KIRBY-A12 3B           | 080037-31206 | 0.2      | 0.8     | 12.7     | <PQL | 48.0    | 38.3 |

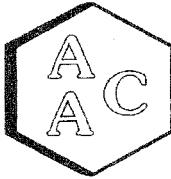
  
Dr. Sucha Parmar  
Technical Director



## Atmospheric Analysis & Consulting, Inc.

### LABORATORY ANALYSIS REPORT

|             |                            |                |            |
|-------------|----------------------------|----------------|------------|
| Client      | Blue Sky Environmental Inc | SAMPLING DATE  | 01/23/2008 |
| Project No. | 080037                     | RECEIVING DATE | 01/24/2008 |
| Matrix      | Air                        | ANALYSIS DATE  | 01/24/2008 |
| Units       | ppmV                       | REPORT DATE    | 01/24/2008 |


| Client ID.                                     | KIRBY-A12 1A | KIRBY-A12 2A | KIRBY-A12 3A | MDL  |
|------------------------------------------------|--------------|--------------|--------------|------|
| AAC ID                                         | 080037-31201 | 080037-31202 | 080037-31203 |      |
| Analysis Dilution Factor                       | 100, 10000   | 100, 2000    | 100, 2000    |      |
| Can Dilution Factor                            | 1.0          | 1.0          | 1.0          |      |
| H <sub>2</sub> S                               | 195.51       | 150.38       | 181.08       | 0.01 |
| Carbonyl Sulfide                               | <PQL         | <PQL         | <PQL         | 0.01 |
| SO <sub>2</sub>                                | <PQL         | <PQL         | <PQL         | 0.01 |
| Methyl Mercaptan                               | 1.75         | 3.74         | 2.85         | 0.01 |
| Ethyl Mercaptan                                | <PQL         | <PQL         | <PQL         | 0.01 |
| Dimethyl Sulfide                               | 4.29         | 4.89         | 3.90         | 0.01 |
| n-Butyl mercaptan                              | <PQL         | <PQL         | <PQL         | 0.01 |
| Carbon Disulfide                               | <PQL         | <PQL         | <PQL         | 0.01 |
| Allyl Sulfide                                  | <PQL         | <PQL         | <PQL         | 0.01 |
| Propyl Sulfide                                 | <PQL         | <PQL         | <PQL         | 0.01 |
| Allyl Disulfide                                | <PQL         | <PQL         | <PQL         | 0.01 |
| Isopropyl Mercaptan                            | 0.69         | 0.71         | 0.78         | 0.01 |
| t-Butyl mercaptan                              | <PQL         | <PQL         | <PQL         | 0.01 |
| Propyl Mercaptan                               | <PQL         | <PQL         | <PQL         | 0.01 |
| Butyl Sulfide                                  | <PQL         | <PQL         | <PQL         | 0.01 |
| Ethyl methyl sulfide                           | <PQL         | <PQL         | <PQL         | 0.01 |
| Thiophene                                      | <PQL         | <PQL         | <PQL         | 0.01 |
| Isobutyl mercaptan                             | <PQL         | <PQL         | <PQL         | 0.01 |
| Dimethyl Disulfide                             | <PQL         | <PQL         | <PQL         | 0.01 |
| Allyl mercaptan                                | <PQL         | <PQL         | <PQL         | 0.01 |
| 3-Methylthiophene                              | <PQL         | <PQL         | <PQL         | 0.01 |
| Tetrahydrothiophene                            | <PQL         | <PQL         | <PQL         | 0.01 |
| Diethyl sulfide                                | <PQL         | <PQL         | <PQL         | 0.01 |
| 2,4-diethylthiophene                           | <PQL         | <PQL         | <PQL         | 0.01 |
| 2,5-Dimethylthiophene                          | <PQL         | <PQL         | <PQL         | 0.01 |
| Diethyl Disulfide                              | <PQL         | <PQL         | <PQL         | 0.01 |
| Total Unidentified Sulfurs as H <sub>2</sub> S | 1.19         | 1.25         | 1.08         | 0.01 |
| Total Sulfurs as H <sub>2</sub> S              | 203.42       | 160.96       | 189.69       | 0.01 |

PQL = Practical Quantitation Limit (MDL x Analysis Dilution factor)

All compounds concentrations expressed in terms of HS

Dr. Sucha Parmar  
Technical Director

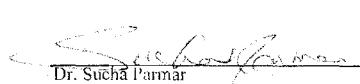
Page 3



## Atmospheric Analysis & Consulting, Inc.

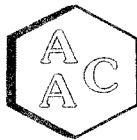
### LABORATORY ANALYSIS REPORT

Client  
Project No.  
Matrix  
Units


Blue Sky Environmental Inc  
080037  
Air  
ppmV

SAMPLING DATE 01/23/2008  
RECEIVING DATE 01/24/2008  
ANALYSIS DATE 01/24/2008  
REPORT DATE 01/24/2008

| Client ID.                                     | KIRBY-A12 1B | KIRBY-A12 2B | KIRBY-A12 3B | MDL  |
|------------------------------------------------|--------------|--------------|--------------|------|
| AAC ID                                         | 080037-31204 | 080037-31205 | 080037-31206 |      |
| Analysis Dilution Factor                       | 100, 2000    | 100, 2000    | 100, 2000    |      |
| Can Dilution Factor                            | 1.0          | 1.0          | 1.0          |      |
| H <sub>2</sub> S                               | 180.81       | 163.05       | 181.63       | 0.01 |
| Carbonyl Sulfide                               | <PQL         | <PQL         | <PQL         | 0.01 |
| SO <sub>2</sub>                                | <PQL         | <PQL         | <PQL         | 0.01 |
| Methyl Mercaptan                               | 3.25         | 2.90         | 2.89         | 0.01 |
| Ethyl Mercaptan                                | <PQL         | <PQL         | <PQL         | 0.01 |
| Dimethyl Sulfide                               | 3.83         | 3.73         | 3.85         | 0.01 |
| n-Butyl mercaptan                              | <PQL         | <PQL         | <PQL         | 0.01 |
| Carbon Disulfide                               | <PQL         | <PQL         | <PQL         | 0.01 |
| Allyl Sulfide                                  | <PQL         | <PQL         | <PQL         | 0.01 |
| Propyl Sulfide                                 | <PQL         | <PQL         | <PQL         | 0.01 |
| Allyl disulfide                                | <PQL         | <PQL         | <PQL         | 0.01 |
| Isopropyl Mercaptan                            | 0.64         | <PQL         | 0.54         | 0.01 |
| t-Butyl mercaptan                              | <PQL         | <PQL         | <PQL         | 0.01 |
| Propyl Mercaptan                               | <PQL         | <PQL         | <PQL         | 0.01 |
| Butyl Sulfide                                  | <PQL         | <PQL         | <PQL         | 0.01 |
| Ethyl methyl sulfide                           | <PQL         | <PQL         | <PQL         | 0.01 |
| Thiophene                                      | <PQL         | <PQL         | <PQL         | 0.01 |
| Isobutyl mercaptan                             | <PQL         | 0.61         | <PQL         | 0.01 |
| Dimethyl disulfide                             | <PQL         | <PQL         | <PQL         | 0.01 |
| Allyl mercaptan                                | <PQL         | <PQL         | <PQL         | 0.01 |
| 3-Methylthiophene                              | <PQL         | <PQL         | <PQL         | 0.01 |
| Tetrahydrothiophene                            | <PQL         | <PQL         | <PQL         | 0.01 |
| Diethyl sulfide                                | <PQL         | <PQL         | <PQL         | 0.01 |
| 2-Ethylthiophene                               | <PQL         | <PQL         | <PQL         | 0.01 |
| 2,5-Dimethylthiophene                          | <PQL         | <PQL         | <PQL         | 0.01 |
| Diethyl disulfide                              | <PQL         | <PQL         | <PQL         | 0.01 |
| Total Unidentified Sulfurs as H <sub>2</sub> S | 1.02         | 0.91         | 0.99         | 0.01 |
| Total Sulfurs as H <sub>2</sub> S              | 189.55       | 171.20       | 189.91       | 0.01 |


PQL = Practical Quantitation Limit (MDL x Analysis Dilution factor)

All compounds concentrations expressed in terms of H<sub>2</sub>S.

  
Dr. Sucha Parmar  
Technical Director

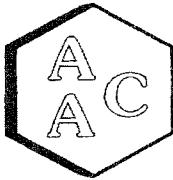
Page 4





## Atmospheric Analysis & Consulting, Inc.


### Laboratory Analysis Report


|             |                            |                |            |
|-------------|----------------------------|----------------|------------|
| CLIENT:     | Blue Sky Environmental Inc | Sampling Date  | 01/23/2008 |
| PROJECT NO. | 080037                     | Receiving Date | 01/24/2008 |
| MATRIX      | Air                        | Analysis Date  | 01/24/2008 |
| UNITS       | ppmv                       | Report Date    | 01/24/2008 |

| Client ID    | AAC ID       | ANALYSIS METHOD |     | EPA Method 18 |      |      |      |
|--------------|--------------|-----------------|-----|---------------|------|------|------|
|              |              | Detection Limit |     | 0.3 ppmv      |      |      |      |
| C1*          | C2**         | C3              | C4  | C5            | C6   | C6+  |      |
| KIRBY-A12 1A | 080037-31201 | NA              | <30 | 25.1          | 17.4 | 57.6 | 63.6 |
| KIRBY-A12 2A | 080037-31202 | NA              | <30 | 24.9          | 18.0 | 61.7 | 67.7 |
| KIRBY-A12 3A | 080037-31203 | NA              | <30 | 23.3          | 18.2 | 62.9 | 67.5 |
| KIRBY-A12 1B | 080037-31204 | NA              | <30 | 23.8          | 18.9 | 66.7 | 74.4 |
| KIRBY-A12 2B | 080037-31205 | NA              | <30 | 21.5          | 17.9 | 64.6 | 71.1 |
| KIRBY-A12 3B | 080037-31206 | NA              | <30 | 23.2          | 18.8 | 66.9 | 73.3 |
|              |              |                 |     |               |      |      | 402  |

\*C1 reported off of the EPA 3C report

\*\* Due to the extremely high C1 concentration, the C2 concentration could not be measured below this PQL due to matrix interference.

  
Dr. Sucha Parmar  
Technical Director

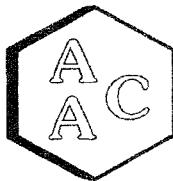


Atmospheric Analysis & Consulting, Inc.

*Laboratory Analysis Report*

|             |                            |                |            |
|-------------|----------------------------|----------------|------------|
| Client      | Blue Sky Environmental Inc | Sampling Date  | 01/23/2008 |
| Project No. | 080037                     | Receiving Date | 01/24/2008 |
| Matrix      | Air                        | Analysis Date  | 01/24/2008 |
| Units       | ppmv                       | Report Date    | 01/24/2008 |

**EPA Method 25C**


| <i>Detection Limit:</i> |              | 1.0 ppmv |
|-------------------------|--------------|----------|
| Client Sample ID        | AAC ID       | NMHC**   |
| KIRBY-A12 1A            | 080037-31201 | 3148     |
| KIRBY-A12 2A            | 080037-31202 | 3385     |
| KIRBY-A12 3A            | 080037-31203 | 2685     |
| KIRBY-A12 1B            | 080037-31204 | 3634     |
| KIRBY-A12 2B            | 080037-31205 | 3711     |
| KIRBY-A12 1A            | 080037-31206 | 3830     |

\*\*Non-Methane Hydrocarbons as Methane

Dr. Sucha Parmar  
Technical Director

Page 6

1534 Eastman Avenue • Suite A • Ventura, California 93003  (805) 650-1642 • FAX (805) 650-1644



## Atmospheric Analysis & Consulting, Inc.

### Quality Control/Quality Assurance Report

Date Analyzed: 1/24/2008  
Analyst: EV

Instrument ID: TCD#1  
Units: %

#### I - Method Blank-EPA Method 3C

| AAC ID       | Analyte  | MB Concentration |
|--------------|----------|------------------|
| Method Blank | Hydrogen | ND               |
|              | Oxygen   | ND               |
|              | Nitrogen | ND               |
|              | CO       | ND               |
|              | Methane  | ND               |
|              | CO2      | ND               |

#### II-Laboratory Control Spike & Duplicate - EPA Method 3C

| AAC ID                | Analyte  | Spike Added | LCS Result | LCSD Result | LCS % Rec * | LCSD % Rec * | % RPD*** |
|-----------------------|----------|-------------|------------|-------------|-------------|--------------|----------|
| Lab Control Standards | Hydrogen | 20.0        | 19.6       | 19.6        | 98          | 98           | 0.0      |
|                       | Nitrogen | 20.0        | 20.4       | 20.4        | 102         | 102          | 0.2      |
|                       | CO       | 20.0        | 18.7       | 18.6        | 94          | 93           | 0.3      |
|                       | Methane  | 20.0        | 19.4       | 19.4        | 97          | 97           | 0.2      |
|                       | CO2      | 20.0        | 19.3       | 19.2        | 96          | 96           | 0.2      |

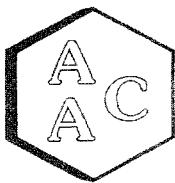
#### III - Duplicate Analysis - EPA Method 3C

| AAC ID       | Analyte  | Sample Concentration | Duplicate Concentration | Mean | % RPD*** |
|--------------|----------|----------------------|-------------------------|------|----------|
| 080037-31201 | Hydrogen | 0.19                 | 0.19                    | 0.2  | 0.5      |
|              | Oxygen   | 1.77                 | 1.99                    | 1.9  | 12.0     |
|              | Nitrogen | 15.53                | 16.31                   | 15.9 | 4.9      |
|              | CO       | 0.00                 | 0.00                    | 0.0  | 0.0      |
|              | Methane  | 43.27                | 42.95                   | 43.1 | 0.7      |
|              | CO2      | 34.67                | 34.38                   | 34.5 | 0.8      |

#### IV-Matrix Spike & Duplicate- EPA Method 3C

| AAC ID       | Analyte  | Sample Concentration | Spike Added | MS Result | MS Result | MS % Rec ** | MS % Rec ** | % RPD** |
|--------------|----------|----------------------|-------------|-----------|-----------|-------------|-------------|---------|
| 080037-31201 | Hydrogen | 0.09                 | 10.0        | 9.2       | 9.3       | 91          | 92          | 1.2     |
|              | Nitrogen | 7.96                 | 10.0        | 17.4      | 17.4      | 95          | 94          | 0.1     |
|              | CO       | 0.00                 | 10.0        | 9.5       | 9.6       | 95          | 96          | 0.8     |
|              | Methane  | 21.56                | 10.0        | 32.2      | 32.0      | 107         | 105         | 2.0     |
|              | CO2      | 17.26                | 10.0        | 27.6      | 27.5      | 104         | 102         | 1.7     |

\* Must be 85-115%


\*\* Must be 75-125%

\*\*\* Must be < 25%

  
Sucha Parmar, Ph.D.

Technical Director





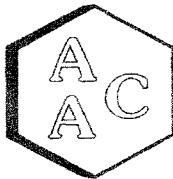
Atmospheric Analysis & Consulting, Inc.

## *Quality Control/Quality Assurance Report*

**Date Analyzed:** 1/24/2008 **Instrument ID:** TCD#1  
**Analyst:** EV **Calibration Date:** 08/21/07

### Opening Calibration Verification Standard

| Analyte         | xLR** | LR    | %RPD* |
|-----------------|-------|-------|-------|
| Hydrogen        | 2127  | 2133  | 0.3   |
| Oxygen***       | 56490 | 54265 | 4.0   |
| Nitrogen        | 59782 | 61719 | 3.2   |
| Carbon Monoxide | 65600 | 61832 | 5.9   |
| Methane         | 53998 | 52793 | 2.3   |
| Carbon Dioxide  | 88017 | 85454 | 3.0   |


### Closing Calibration Verification Standard

| Analyte         | xLR** | LR    | %RPD* |
|-----------------|-------|-------|-------|
| Hydrogen        | 2127  | 2142  | 0.7   |
| Nitrogen        | 59782 | 62607 | 4.6   |
| Carbon Monoxide | 65600 | 62682 | 4.5   |
| Methane         | 53998 | 53338 | 1.2   |
| Carbon Dioxide  | 88017 | 86743 | 1.5   |

\* Must be  $\leq 15\%$ .

\*\* Linear Response Factor from Initial Calibration Curve

#### Mean Response Factor



## Atmospheric Analysis & Consulting, Inc.

### Quality Control/Quality Assurance Report

Date Analyzed: 01/24/08  
Analyst: EV

Instrument ID: SCD#2  
Units: PPMV

#### I - Method Blank - ASTM D-5504

| AAC ID       | Analyte | MB Conc. |
|--------------|---------|----------|
| Method Blank | H2S     | ND       |

#### II-Laboratory Control Spike & Duplicate - ASTM D-5504

| Analyte | Spike Added | LCS Result | LCSD Result | LCS % Rec * | LCSD % Rec * | % RPD*** |
|---------|-------------|------------|-------------|-------------|--------------|----------|
| H2S     | 0.050       | 0.054      | 0.050       | 108         | 100          | 7.7      |

#### III-Matrix Spike & Duplicate- ASTM D-5504

Sample ID 080037-31203 x2000

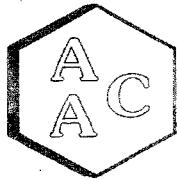
| Analyte | Sample Concentration | Spike Added | MS Result | MSD Result | MS % Rec ** | MSD % Rec ** | % RPD*** |
|---------|----------------------|-------------|-----------|------------|-------------|--------------|----------|
| H2S     | 0.045                | 0.050       | 0.092     | 0.095      | 93          | 99           | 3.2      |

#### IV - Duplicate Analysis - ASTM D-5504

Sample ID 080037-31203 x2000

| Analyte | Sample Concentration | Duplicate Concentration | Mean    | % RPD*** |
|---------|----------------------|-------------------------|---------|----------|
| H2S     | 180.677              | 181.480                 | 181.079 | 0.4      |

\* Must be 90-110%


\*\* Must be 85-115%

\*\*\* Must be < 10%

  
Dr. Sucha Parmar

Technical Director





## Atmospheric Analysis & Consulting, Inc.

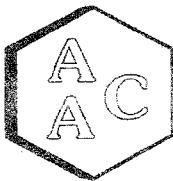
### *Quality Control/Quality Assurance Report*

Date Analyzed: 1/24/2008  
Analyst: EV  
Calibration Date: 1/15/2008

Instrument ID: SCD#2  
Units: PPMV

#### Opening Calibration Verification Standards

| Analyte | Std. Conc. | Result | %Recovery* |
|---------|------------|--------|------------|
| H2S     | 0.050      | 0.050  | 100        |


#### Closing Calibration Verification Standard

| Analyte | Std. Conc. | Result | %Recovery* |
|---------|------------|--------|------------|
| H2S     | 0.050      | 0.045  | 90         |

\* Must be 90-110%

Page 10

1534 Eastman Avenue • Suite A • Ventura, California 93003  (805) 650-1642 • FAX (805) 650-1644



## Atmospheric Analysis & Consulting, Inc.

### *Quality Control/Quality Assurance Report*

Date Analyzed: 1/24/2008  
Analyst: EV

Instrument ID: FID#3  
Units: PPMV

#### I - Method Blank-EPA Method 18

| AAC ID       | Analyte | MB<br>Concentration |
|--------------|---------|---------------------|
| Method Blank | Methane | ND                  |
|              | Ethane  | ND                  |
|              | Propane | ND                  |
|              | Butane  | ND                  |
|              | Pentane | ND                  |
|              | Hexane  | ND                  |

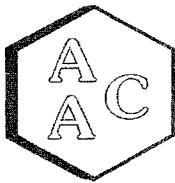
#### II-Laboratory Control Spike & Duplicate - EPA Method 18

| AAC ID                   | Analyte | Spike<br>Added | LCS<br>Result | LCSD<br>Result | LCS<br>% Rec * | LCSD<br>% Rec * | % RPD*** |
|--------------------------|---------|----------------|---------------|----------------|----------------|-----------------|----------|
| Lab Control<br>Standards | Methane | 100.4          | 101.3         | 103.8          | 100.9          | 103.4           | 2.5      |
|                          | Ethane  | 100.2          | 102.2         | 104.9          | 102.0          | 104.7           | 2.6      |
|                          | Propane | 100.2          | 98.1          | 102.2          | 97.9           | 102.0           | 4.2      |
|                          | Butane  | 100.4          | 95.3          | 100.4          | 94.9           | 100.0           | 5.2      |
|                          | Pentane | 100.0          | 94.5          | 100.9          | 94.5           | 100.9           | 6.5      |
|                          | Hexane  | 99.4           | 95.9          | 103.7          | 96.5           | 104.4           | 7.8      |

#### III - Duplicate Analysis - EPA Method 18

| AAC ID       | Analyte | Sample<br>Concentration | Duplicate<br>Concentration | Mean | % RPD*** |
|--------------|---------|-------------------------|----------------------------|------|----------|
| 080037-31201 | Methane | NA                      | NA                         | NA   | NA       |
|              | Ethane  | NA                      | NA                         | NA   | NA       |
|              | Propane | 19.55                   | 17.43                      | 18.5 | 11.5     |
|              | Butane  | 7.56                    | 7.48                       | 7.5  | 1.0      |
|              | Pentane | 6.07                    | 6.59                       | 6.3  | 8.1      |
|              | Hexane  | 3.79                    | 3.58                       | 3.7  | 5.9      |

#### IV-Matrix Spike & Duplicate- EPA Method 18


| AAC ID       | Analyte | Sample<br>Concentration | Spike<br>Added | MS<br>Result | MSD<br>Result | MS<br>% Rec ** | MSD<br>% Rec ** | % RPD*** |
|--------------|---------|-------------------------|----------------|--------------|---------------|----------------|-----------------|----------|
| 080037-31201 | Methane | NA                      | NA             | NA           | NA            | NA             | NA              | NA       |
|              | Ethane  | NA                      | NA             | NA           | NA            | NA             | NA              | NA       |
|              | Propane | 9.2                     | 50.0           | 54.5         | 54.2          | 91             | 90              | 0.9      |
|              | Butane  | 3.8                     | 50.0           | 51.4         | 51.7          | 95             | 96              | 0.8      |
|              | Pentane | 3.2                     | 50.0           | 50.8         | 53.2          | 95             | 100             | 5.0      |
|              | Hexane  | 1.8                     | 50.0           | 50.4         | 49.8          | 97             | 96              | 1.2      |

\* Must be 85-115%

\*\* Must be 75-125%

\*\*\* Must be < 25%

*Dr. Sucha Parmar*  
Dr. Sucha Parmar  
Technical Director



## Atmospheric Analysis & Consulting, Inc.

### *Quality Control/Quality Assurance Report*

Date Analyzed: 1/24/2008

Instrument ID: FID#3

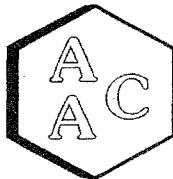
Analyst: EV

Calibration Date: 09/10/07

#### Opening Calibration Verification Standard

| Analyte | xCF** | CF   | %RPD* |
|---------|-------|------|-------|
| C1      | 716   | 690  | 3.7   |
| C2      | 1415  | 1376 | 2.8   |
| C3      | 2205  | 2069 | 6.4   |
| C4      | 2997  | 2745 | 8.8   |
| C5      | 3655  | 3403 | 7.1   |
| C6      | 4191  | 4123 | 1.6   |

#### Closing Calibration Verification Standard


| Analyte | xCF** | CF   | %RPD* |
|---------|-------|------|-------|
| C1      | 716   | 734  | 2.5   |
| C2      | 1415  | 1441 | 1.8   |
| C3      | 2205  | 2155 | 2.3   |
| C4      | 2997  | 2861 | 4.6   |
| C5      | 3655  | 3550 | 2.9   |
| C6      | 4191  | 4241 | 1.2   |

\* Must be <15%

\*\* Average Calibration Factor from Initial Calibration Curve

Page 12

1534 Eastman Avenue • Suite A • Ventura, California 93003  (805) 650-1642 • FAX (805) 650-1644



## Atmospheric Analysis & Consulting, Inc.

### Quality Control/Quality Assurance Report

Analysis Date: 1/24/2008

Analyst: EV

Units: ppmv

Instrument ID: FID#9

Calibration Date: 1/18/2008

#### I - Opening Calibration Verification Standard - Method 25C

| Analyte | xCF   | dCF   | %RPD* |
|---------|-------|-------|-------|
| CO      | 11713 | 11528 | 1.6   |
| CH4     | 11996 | 12264 | 2.2   |
| CO2     | 11842 | 11877 | 0.3   |
| Propane | 33025 | 32994 | 0.1   |

#### II - Method Blank - Method 25C

| AAC ID | Analyte | Sample Result |
|--------|---------|---------------|
| MB     | NMEHC   | ND            |

#### III - Laboratory Control Spike & Duplicate - Method 25C

| AAC ID   | Analyte | Spike Added | LCS Result | LCSD Result | LCS % Rec ** | LCSD % Rec ** | % RPD*** |
|----------|---------|-------------|------------|-------------|--------------|---------------|----------|
| LCS/LCSD | NMEHC   | 50.0        | 49.2       | 51.4        | 98.3         | 102.7         | 4.4      |

#### IV - Closing Calibration Verification Standard - Method 25C

| Analyte | xCF   | dCF   | %RPD* |
|---------|-------|-------|-------|
| CO      | 11713 | 10764 | 8.4   |
| CH4     | 11996 | 12361 | 3.0   |
| CO2     | 11842 | 11456 | 3.3   |
| Propane | 33025 | 32701 | 1.0   |

xCF - Average Calibration Factor from Initial Calibration Curve

dCF - Daily Calibration Factor

\* Must be <15%

\*\* Must be 90-110 %

\*\*\* Must be <20%

  
Dr. Suneela Parmar,  
Technical Director

Page 13



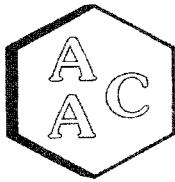
624 San Gobato Avenue  
Albany, CA 94706  
310.525.1261 ph/fax  
Contact: *Craig Worthington M.S., S.C., S.E.C.*  
E-Mail: [blue\\_skys\\_environment@yahoo.com](mailto:blue_skys_environment@yahoo.com)

## CHAIN OF CUSTODY RECORD

### Classification Name

2010-06-03

12345678


CONTINUOUS

Analysen-Brunnensteck

| CHAIN OF CUSTODY RECORD |             |                                 |                        | ANALYST REQUESTED |
|-------------------------|-------------|---------------------------------|------------------------|-------------------|
| Project Name            | KIRBY A-12  |                                 |                        |                   |
| Project #:              |             |                                 |                        |                   |
| SAMPLE Date             | SAMPLE Time | Sample ID (Method-Run-Fraction) | Type/Size of container |                   |
| 1/23/08                 | KIRBY A-12  | 1A                              | 100mL                  |                   |
|                         | KIRBY A-12  | 2A                              | 50mL                   |                   |
|                         | KIRBY A-12  | 3A                              | 50mL                   |                   |
|                         | KIRBY A-12  | 1B                              | 100mL                  |                   |
|                         | KIRBY A-12  | 2B                              | 50mL                   |                   |
|                         | KIRBY A-12  | 3B                              | 50mL                   |                   |

All samples submitted to laboratories for analysis are accepted on a custodial basis only. Ownership of the material remains with the client submitting the sample. Samples should be held for 90+ days. The laboratory reserves the right to return unused sample portions.

#### COMMENTS:



## Atmospheric Analysis & Consulting, Inc.

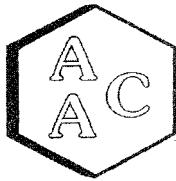
CLIENT : Blue Sky Environmental, LLC  
PROJECT NAME : Kirby A-12  
AAC PROJECT NO. : 080037  
REPORT DATE : 01/25/2008

On January 24, 2008, Atmospheric Analysis & Consulting, Inc. received one (1) Tedlar Bag for Volatile Organic Compounds analysis by EPA Method TO-15 for AP-42 list compounds. Upon receipt the sample was assigned a unique Laboratory ID number as follows:

| Client ID    | Lab ID       |
|--------------|--------------|
| Kirby-A12 3A | 080037-31203 |

TO-15 Analysis - Up to a 500 ml aliquot of sample is concentrated, put through a water and CO<sub>2</sub> management system, cryofocused and injected into the GC/MS (full scan mode) for analysis following EPA Method TO-15 as specified in the SOW.

No problems were encountered during receiving, preparation and/ or analysis of these samples. The test results included in this report meet all requirements of the NELAC Standards and/or AAC SOP# AACI-TO-15. Estimated uncertainty of the test results will be provided upon request.


I certify that this data is technically accurate, complete and in compliance with the terms and conditions of the contract. The Laboratory Director or his designee, as verified by the following signature, has authorized the release of the data contained in this hardcopy data package.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha S. Parmar, PhD  
Technical Director

This report consists of 10 pages.



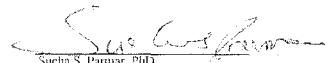


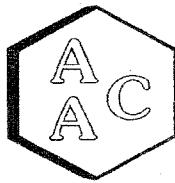
## Atmospheric Analysis & Consulting, Inc.

### Laboratory Analysis Report

CLIENT : Blue Sky Environmental, LLC DATE RECEIVED : 01/24/2008  
PROJECT NO : 0800037 DATE REPORTED : 01/25/2008  
MATRIX : ATR  
UNITS : PPB (v/v)

#### VOLATILE ORGANIC COMPOUNDS BY EPA TO-15


| Client ID<br>AAC ID          | Kirby-A12-3A<br>080037-31203 |               |           | Sample<br>Reporting<br>Limit<br>(RLADFs) | Method<br>Reporting<br>Limit |
|------------------------------|------------------------------|---------------|-----------|------------------------------------------|------------------------------|
| Date Sampled                 | 1/23/2008                    | Date Analyzed | 1/24/2008 |                                          |                              |
| Can Dilution Factor          | 1.00                         |               |           |                                          |                              |
| Chlorodifluoromethane        | 928                          | U             | 100       | 100                                      | 1.0                          |
| Dichlorodifluoromethane      | 816                          | U             | 100       | 100                                      | 1.0                          |
| Chloromethane                | ND                           | U             | 100       | 100                                      | 1.0                          |
| Vinyl Chloride               | 102                          | U             | 100       | 100                                      | 1.0                          |
| Chloroethane                 | ND                           | U             | 100       | 100                                      | 1.0                          |
| Dichlorodifluoromethane      | 383                          | U             | 100       | 100                                      | 1.0                          |
| Ethanol                      | 120000                       |               | 2500      | 5000                                     | 2.0                          |
| Acetone                      | 24800                        |               | 1000      | 2000                                     | 2.0                          |
| Trichlorodifluoromethane     | 179                          | U             | 100       | 100                                      | 1.0                          |
| Isopropyl Alcohol            | 26700                        |               | 1000      | 2000                                     | 2.0                          |
| Acrylonitrile                | ND                           | U             | 100       | 100                                      | 1.0                          |
| 1,1-Dichloroethylene         | ND                           | U             | 100       | 100                                      | 1.0                          |
| Methylene Chloride           | 41                           | U             | 100       | 100                                      | 1.0                          |
| Carbon Disulfide             | 231                          | U             | 100       | 100                                      | 1.0                          |
| o,p-Dichloroethylene         | ND                           | U             | 100       | 100                                      | 1.0                          |
| 1,1-Dichloroethane           | ND                           | U             | 100       | 100                                      | 1.0                          |
| 2-Butanone (MEK)             | 32700                        |               | 1000      | 1000                                     | 1.0                          |
| Heptane                      | 989                          | U             | 100       | 100                                      | 1.0                          |
| Chloroform                   | ND                           | U             | 100       | 100                                      | 1.0                          |
| 1,2-Dichloroethane           | ND                           | U             | 100       | 100                                      | 1.0                          |
| 1,1,1-Trichloroethane        | ND                           | U             | 100       | 100                                      | 1.0                          |
| Benzene                      | 876                          | U             | 100       | 100                                      | 1.0                          |
| Carboxy Tetrachloride        | ND                           | U             | 100       | 100                                      | 1.0                          |
| 1,2-Dichloropropane          | ND                           | U             | 100       | 100                                      | 1.0                          |
| Bromodichloromethane         | ND                           | U             | 100       | 100                                      | 1.0                          |
| Trichloroethene              | 192                          | U             | 100       | 100                                      | 1.0                          |
| 4-Methyl-2-Pentanone (Mibk)  | 2130                         | U             | 100       | 100                                      | 1.0                          |
| Toluene                      | 20200                        |               | 1000      | 1000                                     | 1.0                          |
| 1,2-Dibromoethane            | ND                           | U             | 100       | 100                                      | 1.0                          |
| Tetrachloroethylene          | 27400                        |               | 1000      | 1000                                     | 1.0                          |
| Chlorobenzene                | 257                          | U             | 100       | 100                                      | 1.0                          |
| Ethylbenzene                 | 7980                         |               | 1000      | 1000                                     | 1.0                          |
| m- & p-Xylenes               | 14900                        |               | 2000      | 2000                                     | 2.0                          |
| 1,1,2,2-Tetrachloroethane    | ND                           | U             | 100       | 100                                      | 1.0                          |
| c-Xylene                     | 3790                         | U             | 100       | 100                                      | 1.0                          |
| 1,3-Dichlorobenzene          | ND                           | U             | 100       | 100                                      | 1.0                          |
| 1,4-Dichlorobenzene          | 741                          | U             | 100       | 100                                      | 1.0                          |
| 1,2-Dichlorobenzene          | ND                           | U             | 100       | 100                                      | 1.0                          |
| PFb-Surrogate Std % Recovery | 992                          |               |           | 70-150%                                  |                              |


U - Analyte was detected. However the analyte concentration is an estimated value, which is between the Method Detection Limit (MDL) and the Reporting Limit (RL).

L - Estimated value, result outside linear range of instrument.

ND - Compound was analyzed for, but was not detected.

N - Estimated

  
Sucha S. Parmar, PhD  
Technical Director



## Atmospheric Analysis & Consulting, Inc.

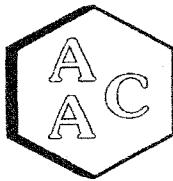
ANALYSIS DATE : 01/24/08

INSTRUMENT ID :

: GC/MS-03

ANALYST : JG/KP

STD ID :


: PS011408-01

### VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Continuing Calibration Verification of the 01/16/08 Calibration

| Compounds                      | Conc | Daily Conc | %REC |
|--------------------------------|------|------------|------|
| 4-BFB (surrogate standard)***  | 10   | 9.96       | 100  |
| Chlorodifluoromethane*         | 10   | 9.34       | 93   |
| Propylene*                     | 10   | 8.84       | 88   |
| DiClDifMethane*                | 10   | 10.03      | 100  |
| CHLOROMETHANE*                 | 10   | 8.56       | 86   |
| 1,2 DiCl-1,1,2,2-TetraFEthane* | 10   | 10.09      | 101  |
| VINYL CHLORIDE*                | 10   | 10.23      | 102  |
| Methanol*                      | 10   | 10.21      | 102  |
| 1,3-Butadiene*                 | 10   | 10.47      | 105  |
| BROMOMETHANE*                  | 10   | 10.22      | 102  |
| CHLOROETHANE*                  | 10   | 11.02      | 110  |
| Dichlorofluoromethane*         | 10   | 10.46      | 105  |
| Ethanol*                       | 10   | 9.22       | 92   |
| Vinyl Bromide*                 | 10   | 10.69      | 107  |
| Acetone*                       | 10   | 9.88       | 99   |
| TRICHLOROFLUOROMETHANE*        | 10   | 10.98      | 110  |
| Isopropanol*                   | 10   | 9.97       | 100  |
| Acrylonitrile*                 | 10   | 10.06      | 101  |
| 1,1 DICHLOROETHENE*            | 10   | 10.20      | 102  |
| METHYLENE CHLORIDE*            | 10   | 9.19       | 92   |
| Allyl CHLORIDE*                | 10   | 10.60      | 106  |
| Carbon disulfide*              | 10   | 9.96       | 100  |
| 1,1,2-TRICHLORO-1,2,3-TRIFLUO  | 10   | 10.26      | 103  |
| trans-1,2- DICHLOROETHYLENE*   | 10   | 10.31      | 103  |
| 1,1- DICHLOROETHANE*           | 10   | 10.05      | 101  |
| MTBE*                          | 10   | 10.16      | 102  |
| Vinyl Acetate*                 | 10   | 8.85       | 89   |
| MEK*                           | 10   | 9.66       | 97   |
| cis-1,2- DICHLOROETHYLENE*     | 10   | 10.04      | 100  |
| Hexane*                        | 10   | 9.76       | 98   |
| CHLOROFORM*                    | 10   | 10.14      | 101  |
| Ethyl Acetate*                 | 10   | 10.58      | 106  |
| Tetrahydrofuran*               | 10   | 9.51       | 95   |
| 1,2-DICHLOROETHANE*            | 10   | 10.54      | 105  |
| 1,1,1-TRICHLOROETHANE*         | 10   | 10.64      | 106  |





Atmospheric Analysis & Consulting, Inc.

ANALYSIS DATE : 01/24/08 INSTRUMENT ID : GC/MS-03  
ANALYST : JBG / KP STD ID : PS011408-01

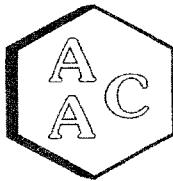
**VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15**

## Continuing Calibration Verification of the 01/16/08 Calibration

| Compounds                   | Conc | Daily Conc | %REC |
|-----------------------------|------|------------|------|
| BENZENE**                   | 10   | 9.18       | 92   |
| CARBON TETRACHLORIDE**      | 10   | 9.91       | 99   |
| Cyclohexane**               | 10   | 9.13       | 91   |
| 1,2-DICHLOROPROPANE**       | 10   | 9.19       | 92   |
| Bromodichloromethane**      | 10   | 9.57       | 96   |
| 1,4-Dioxane**               | 10   | 9.12       | 93   |
| TRICHLOROETHENE**           | 10   | 9.27       | 93   |
| 2,2,4-Trimethylpentane**    | 10   | 9.78       | 98   |
| Heptane**                   | 10   | 8.94       | 89   |
| cis-1,3 DICHLOROPROPENE**   | 10   | 9.58       | 96   |
| MIBK**                      | 10   | 9.15       | 92   |
| trans-1,3 DICHLOROPROPENE** | 10   | 10.15      | 102  |
| 1,1,2-TRICHLOROETHANE**     | 10   | 9.27       | 93   |
| TOLUENE**                   | 10   | 9.29       | 93   |
| 2-Hexanone**                | 10   | 9.61       | 96   |
| Dibromochloromethane**      | 10   | 9.85       | 99   |
| 1,2-DIBROMOETHANE**         | 10   | 9.60       | 96   |
| TETRACHLOROETHYLENE**       | 10   | 9.81       | 98   |
| CHLOROBENZENE***            | 10   | 9.47       | 95   |
| ETHYLBENZENE***             | 10   | 9.50       | 95   |
| m-, & p-XYLEMES***          | 20   | 19.52      | 98   |
| Bromoform***                | 10   | 9.96       | 100  |
| STYRENE***                  | 10   | 9.83       | 98   |
| 1,1,2,2-TETRACHLOROETHANE** | 10   | 9.09       | 91   |
| o-XYLENE***                 | 10   | 9.42       | 94   |
| Ethyltoluene***             | 10   | 9.93       | 99   |
| 1,3,5-TRIMETHYLBENZENE***   | 10   | 9.34       | 93   |
| 1,2,4-TRIMETHYLBENZENE***   | 10   | 9.54       | 95   |
| Benzyl Chloride**           | 10   | 10.49      | 105  |
| 1,3-DICHLOROBENZENE***      | 10   | 9.88       | 99   |
| 1,4-DICHLOROBENZENE***      | 10   | 9.72       | 97   |
| 1,2-DICHLOROBENZENE***      | 10   | 9.83       | 98   |
| 1,2,4-TRICHLOROBENZENE***   | 10   | 9.29       | 93   |
| HEXAChLOROBUTADIENE***      | 10   | 9.52       | 95   |

\* Internal std calculation ISI : Bromochloromethane

\*\* Internal std calculation JS2 : 1,4-Difluorobenzene


\*\* Internal std calculation (S2 : 1,4-Difluorobenzene)

\*\*\* Internal std calculation

%REC should be 70-130%

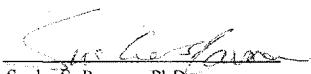
Sucha S. Parmar, PhD

### Technical Director



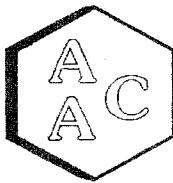
## Atmospheric Analysis & Consulting, Inc.

### Quality Control/Quality Assurance Report


CLIENT ID : Laboratory Control Spike      DATE ANALYZED : 01/24/08  
AAC ID : LCS/LCSD      DATE REPORTED : 01/24/08  
MEDIA : Air      UNITS : ppbv

### TQ-15 Laboratory Control Spike Recovery

| Compound             | Sample Conc. | Spike Added | Spike Res | Dup Spike Res | Spike % Rec * | Spike Dup % Rec * | RPD** % |
|----------------------|--------------|-------------|-----------|---------------|---------------|-------------------|---------|
| 1,1-DICHLOROETHYLENE | 0.0          | 10.00       | 10.20     | 9.97          | 102           | 100               | 2.3     |
| METHYLENE CHLORIDE   | 0.0          | 10.00       | 9.19      | 8.98          | 92            | 90                | 2.3     |
| BENZENE              | 0.0          | 10.00       | 9.18      | 9.04          | 92            | 90                | 1.5     |
| TRICHLOROETHENE      | 0.0          | 10.00       | 9.27      | 9.20          | 93            | 92                | 0.8     |
| TOLUENE              | 0.0          | 10.00       | 9.29      | 9.35          | 93            | 93                | 0.6     |
| TETRACHLOROETHYLENE  | 0.0          | 10.00       | 9.81      | 9.81          | 98            | 98                | 0.0     |
| CHLOROBENZENE        | 0.0          | 10.00       | 9.47      | 9.45          | 95            | 94                | 0.2     |
| ETHYLBENZENE         | 0.0          | 10.00       | 9.50      | 9.52          | 95            | 95                | 0.2     |
| m-, & p-XYLEMES      | 0.0          | 20.00       | 19.52     | 19.43         | 98            | 97                | 0.5     |
| o-XYLENE             | 0.0          | 10.00       | 9.42      | 9.36          | 94            | 94                | 0.6     |


\* Must be 70-130%

\*\* Must be < 25%

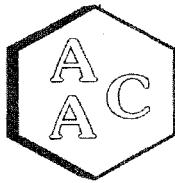
  
Sucha S. Parmar, PhD  
Technical Director

Page 5

1534 Eastman Avenue • Suite A • Ventura, California 93003  (805) 650-1612 • FAX (805) 650-1644



## Atmospheric Analysis & Consulting, Inc.


### Method Blank Analysis Report

MATRIX : AIR ANALYSIS DATE : 01/24/08  
UNITS : ppbv REPORT DATE : 01/24/08

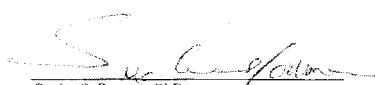
#### VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

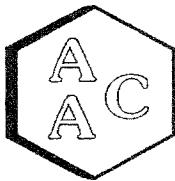
| Client ID<br>AAC ID                    | Method Blank<br>MB 012408 | RL  |
|----------------------------------------|---------------------------|-----|
| Chlorodifluoromethane*                 | <RL                       | 1.0 |
| Propylene*                             | <RL                       | 1.0 |
| DICIDIFMethane*                        | <RL                       | 1.0 |
| CHLOROMETHANE*                         | <RL                       | 1.0 |
| 1,2-DICL-1,1,2,2-TetraFibane*          | <RL                       | 1.0 |
| VINYL CHLORIDE*                        | <RL                       | 1.0 |
| Methanol*                              | <RL                       | 5.0 |
| 1,3-Butadiene*                         | <RL                       | 1.0 |
| BROMOMETHANE*                          | <RL                       | 1.0 |
| CHLOROETHANE*                          | <RL                       | 1.0 |
| Dichlorodifluoromethane                | <RL                       | 1.0 |
| Ethanol*                               | <RL                       | 2.0 |
| Vinyl Bromide*                         | <RL                       | 1.0 |
| Acetone*                               | <RL                       | 2.0 |
| TRICHLORODIFLUOROMETHANE*              | <RL                       | 1.0 |
| Isopropyl Alcohol*                     | <RL                       | 2.0 |
| Acrylonitrile*                         | <RL                       | 1.0 |
| 1,1-DICHLOROETHENE*                    | <RL                       | 1.0 |
| METHYLENE CHLORIDE*                    | <RL                       | 1.0 |
| Allyl CHLORIDE*                        | <RL                       | 1.0 |
| Carbon disulfide*                      | <RL                       | 1.0 |
| 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE* | <RL                       | 1.0 |
| trans-1,2- DICHLOROETHYLENE*           | <RL                       | 1.0 |
| 1,1- DICHLOROETHANE*                   | <RL                       | 1.0 |
| MTBE*                                  | <RL                       | 1.0 |
| Vinyl Acetate*                         | <RL                       | 1.0 |
| MEK*                                   | <RL                       | 1.0 |
| cis-1,2- DICHLOROETHYLENE*             | <RL                       | 1.0 |
| Hexane*                                | <RL                       | 1.0 |
| CHLOROFORM*                            | <RL                       | 1.0 |
| Ethyl Acetate*                         | <RL                       | 1.0 |
| Tetrahydrofuran*                       | <RL                       | 1.0 |
| 1,2-DICHLOROETHANE*                    | <RL                       | 1.0 |
| 1,1,1-TRICHLOROETHANE*                 | <RL                       | 1.0 |
| BENZENE**                              | <RL                       | 1.0 |
| CARBON TETRACHLORIDE**                 | <RL                       | 1.0 |
| Cyclohexane**                          | <RL                       | 1.0 |
| 1,2-DICHLOROPROPANE**                  | <RL                       | 1.0 |
| Bromodichloromethane**                 | <RL                       | 1.0 |
| 1,4-Dioxane**                          | <RL                       | 1.0 |
| TRICHLOROETHENE**                      | <RL                       | 1.0 |
| 2,2,4-Trimethylpentane**               | <RL                       | 1.0 |
| Heptane**                              | <RL                       | 1.0 |





## Atmospheric Analysis & Consulting, Inc.


### Method Blank Analysis Report


MATRIX : AIR ANALYSIS DATE : 01/24/08  
UNITS : ppbv REPORT DATE : 01/24/08

### VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

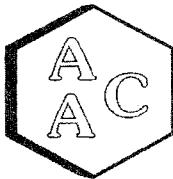
| Client ID<br>AAC ID           | Method Blank<br>MB 012408 | RL  |
|-------------------------------|---------------------------|-----|
| cis-1,3 DICHLOROPROPENE**     | <RL                       | 1.0 |
| MiBK**                        | <RL                       | 1.0 |
| trans-1,3 DICHLOROPROPENE**   | <RL                       | 1.0 |
| 1,1,2-TRICHLOROETHANE**       | <RL                       | 1.0 |
| TOLUENE**                     | <RL                       | 1.0 |
| 2-Hexanone**                  | <RL                       | 1.0 |
| Dibromochloromethane**        | <RL                       | 1.0 |
| 1,2-DIBROMOETHANE**           | <RL                       | 1.0 |
| TETRACHLOROETHYLENE**         | <RL                       | 1.0 |
| CHLOROBENZENE***              | <RL                       | 1.0 |
| ETHYL BENZENE***              | <RL                       | 1.0 |
| m- & p-XYLEMES***             | <RL                       | 2.0 |
| Bromoform***                  | <RL                       | 3.0 |
| STYRENE***                    | <RL                       | 1.0 |
| 1,1,2,2-TETRACHLOROETHANE***  | <RL                       | 1.0 |
| o-XYLENE***                   | <RL                       | 1.0 |
| Ethyltoluene***               | <RL                       | 1.0 |
| 1,3,5-TRIMETHYLBENZENE***     | <RL                       | 1.0 |
| 1,2,4-TRIMETHYLBENZENE***     | <RL                       | 1.0 |
| Benzyl Chloride***            | <RL                       | 5.0 |
| 1,3-DICHLOROBENZENE**         | <RL                       | 1.0 |
| 1,4-DICHLOROBENZENE***        | <RL                       | 1.0 |
| 1,2-DICHLOROBENZENE***        | <RL                       | 1.0 |
| 1,2,4-TRICHLOROBENZENE***     | <RL                       | 1.0 |
| HEXACHLOROBUTADIENE***        | <RL                       | 1.0 |
| System Monitoring Compounds   |                           |     |
| BFB-Surrogate Std. % Recovery | 96%                       | --  |

RL - Reporting Limit

  
Sucha S. Parmar, PhD  
Technical Director



## Atmospheric Analysis & Consulting, Inc.


### Quality Control/Quality Assurance Report

AAC ID : 080037-31203 DATE ANALYZED : 01/24/08  
MATRIX : Air DATE REPORTED : 01/25/08  
UNITS : ppbv

### TO-15 Duplicate Analysis

| Compound                               | Sample Conc | Duplicate Conc | % RPD |
|----------------------------------------|-------------|----------------|-------|
| Chlorodifluoromethane*                 | >P          | 1000           | 2.2   |
| Propylene*                             | 8750        | 9480           | 8.0   |
| Di(1,1,1,2,2,2-TetraF)ethane*          | <RL         | <RL            | 0.0   |
| CHLOROMETHANE*                         | <RL         | <RL            | 0.0   |
| 1,2-DiCl-1,2,2-TetraFethane*           | <RL         | <RL            | 0.0   |
| VINYL CHLORIDE*                        | <RL         | <RL            | 0.0   |
| Methanol*                              | 28000       | 27300          | 2.5   |
| 1,5-Butadiene*                         | <RL         | <RL            | 0.0   |
| PROPOMETHANE*                          | <RL         | <RL            | 0.0   |
| CHLOROETHANE*                          | <RL         | <RL            | 0.0   |
| Dichlorofluoromethane                  | <RL         | <RL            | 0.0   |
| Ibuprofen*                             | "E"         | 94500          | 95000 |
| Vinyl Bromide*                         | <RL         | <RL            | 0.0   |
| Acetone*                               | 24800       | 25600          | 3.2   |
| TRICHLOROFLUOROMETHANE*                | <RL         | <RL            | 0.0   |
| Isopropyl Alcohol*                     | 26700       | 27000          | 1.1   |
| Acrylonitrile*                         | <RL         | <RL            | 0.0   |
| 1,1-DICHLOROETHENE*                    | <RL         | <RL            | 0.0   |
| METHYLENE CHLORIDE*                    | <RL         | <RL            | 0.0   |
| Allyl CHLORIDE*                        | <RL         | <RL            | 0.0   |
| Carbon disulfide*                      | <RL         | <RL            | 0.0   |
| 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE* | <RL         | <RL            | 0.0   |
| trans-1,2-DICHLOROETHYLENE*            | <RL         | <RL            | 0.0   |
| 1,1-DICHLOROETHANE*                    | <RL         | <RL            | 0.0   |
| MTBE*                                  | <RL         | <RL            | 0.0   |
| Vinyl Acetate*                         | <RL         | <RL            | 0.0   |
| MEK*                                   | 32700       | 32900          | 0.6   |
| cis-1,2-DICHLOROETHYLENE*              | <RL         | <RL            | 0.0   |
| Hexane*                                | 1080        | 1090           | 0.9   |
| CHLOROFORM*                            | <RL         | <RL            | 0.0   |
| Ethyl Acetate*                         | 16900       | 11200          | 2.7   |
| Tetrahydrofuran*                       | 6950        | 6990           | 0.6   |
| 1,2-DICHLOROETHANE*                    | <RL         | <RL            | 0.0   |
| 1,1,1-TRICHLOROETHANE*                 | <RL         | <RL            | 0.0   |
| BENZENE**                              | 1440        | 1390           | 3.5   |
| CARBON TETRACHLORIDE**                 | <RL         | <RL            | 0.0   |





## Atmospheric Analysis & Consulting, Inc.

### Quality Control/Quality Assurance Report

AAC ID : 080037-31263 DATE ANALYZED : 01/24/08  
MATRIX : Air DATE REPORTED : 01/25/08  
UNITS : ppbv

### TO-15 Duplicate Analysis

| Compound                    | Sample Conc | Duplicate Conc | % RPD |
|-----------------------------|-------------|----------------|-------|
| Cyclohexane**               | 1310        | 1290           | 1.5   |
| 1,2-DICHLOROPROPANE**       | <RL         | <RL            | 0.0   |
| Bromodichloromethane**      | <RL         | <RL            | 0.0   |
| 1,4-Dioxane**               | <RL         | <RL            | 0.0   |
| TRICHLOROETHENE**           | <RL         | <RL            | 0.0   |
| 2,2,4-Trimethylpentane**    | <RL         | <RL            | 0.0   |
| Heptane**                   | 2540        | 2520           | 0.8   |
| cis- 1,3-DICHLOROPROPENE**  | <RL         | <RL            | 0.0   |
| MitBK**                     | 2300        | 2260           | 1.8   |
| trans 1,3 DICHLOROPROPENE** | <RL         | <RL            | 0.0   |
| 1,1,2-TRICHLOROETHANE**     | <RL         | <RL            | 0.0   |
| TOLUENE**                   | 20200       | 20200          | 0.0   |
| 2-Hexanone**                | <RL         | <RL            | 0.0   |
| Dibromochloromethane**      | <RL         | <RL            | 0.0   |
| 1,2-DIBROMOETHANE**         | <RL         | <RL            | 0.0   |
| TETRACHLOROETHYLENE**       | 27400       | 27400          | 0.0   |
| CHLOROBENZENE***            | <RL         | <RL            | 0.0   |
| ETHYLBENZENE***             | 7980        | 7990           | 0.1   |
| m- & p-XYLEMES***           | 14900       | 14900          | 0.0   |
| Bromofrom***                | <RL         | <RL            | 0.0   |
| STYRENE**                   | <RL         | <RL            | 0.0   |
| 1,1,2,2-TETRACHLOROETHANE** | <RL         | <RL            | 0.0   |
| o-XYLENE***                 | 4480        | 4460           | 0.4   |
| Ethylbenzene***             | <RL         | <RL            | 0.0   |
| 1,3,5-TRIMETHYLBENZENE***   | 1030        | 1030           | 0.0   |
| 1,2,4-TRIMETHYLBENZENE***   | 2380        | 2390           | 0.4   |
| Benzyl Chloride***          | <RL         | <RL            | 0.0   |
| 1,5-DICHLOROBENZENE***      | <RL         | <RL            | 0.0   |
| 1,4-DICHLOROBENZENE***      | <RL         | <RL            | 0.0   |
| 1,3-DICHLOROBENZENE***      | <RL         | <RL            | 0.0   |
| 1,2,4-TRICHLOROBENZENE***   | <RL         | <RL            | 0.0   |
| Hexachlorobutadiene***      | <RL         | <RL            | 0.0   |

### System Monitoring Compounds

| DPB-Surrogate Std. % Recovery | 97% | 96% | 1.3 |
|-------------------------------|-----|-----|-----|
| RL - Reporting Limit          |     |     |     |

\*\* = Estimated value for duplicate purposes only

\*\*\* = Value between method detection limit and reporting limit. Reported for duplicate purposes only.

*Sueha S. Parmar, PhD*  
Sueha S. Parmar, PhD  
Technical Director



BLUE SKY ENVIRONMENTAL, LLC  
624 San Gabriel Avenue  
Albany, CA 94706  
510.525.1261 ph/fax  
Contact: Guy Worthington 510.528.3  
E-Mail: blueskyenvironmental@yahoo.com

LAP:  
ADDRESS:

Page \_\_\_\_ of \_\_\_\_

**CHAIN OF CUSTODY RECORD**

All samples submitted to laboratories for analysis are accepted on a custodial basis only. Ownership of the material remains with the client submitting the sample. Samples should be held for 90+ days. The laboratory reserves the right to return unused sample portions.

## **Comments:**

|                  |       |       |              |       |       |
|------------------|-------|-------|--------------|-------|-------|
| Relinquished by: | Date: | Time: | Received by: | Date: | Time: |
| Relinquished by: | Date: | Time: | Received by: | Date: | Time: |
| Relinquished by: | Date: | Time: | Received by: | Date: | Time: |

Field Data Sheets  
D

## CONTINUOUS EMISSION MONITORING SUMMARY DATA SHEET

Facility: KIRBY CANYON Test #: 1, 2, 3 (A) Date: 1/23/08  
 Location: A-12 FLARE Personnel: g/w J.m Leak Check: ✓  
 Stratification Check: ✓

| Parameter     | O <sub>2</sub> | CO <sub>2</sub> | NOx    | CO      | THC   | CH <sub>4</sub> | SO <sub>2</sub> |  | Unit Description/Serial #: |
|---------------|----------------|-----------------|--------|---------|-------|-----------------|-----------------|--|----------------------------|
| Analyzer      | 755R           | PIR 2000        | 42     | 48C     | RS-55 | RS-55           |                 |  | A-12                       |
| Range         | 25             | 15              | 25     | 100     | 50    |                 |                 |  | Operating Conditions:      |
| Span Value(s) | 26.43          | 12.02           | 22.5   | 85.2    | 45.0  |                 |                 |  | CONDENSATE OFF             |
| Span Value(s) |                |                 |        |         |       |                 |                 |  | Fuel:                      |
| Span Value(s) |                |                 |        |         |       |                 |                 |  | LFG                        |
|               | 6              | 8               | 6      | 8       | 6     | 8               |                 |  | NOTES:                     |
|               | CAL            | 20.4            | 12.6   | 22.5    | 85.2  | 45.0            |                 |  |                            |
| (1)           |                |                 |        |         |       |                 |                 |  |                            |
| 1             | 0905           | 13.75           | 6.38   | 10.25   | ≤1    | 2.25            |                 |  |                            |
| 2             |                | 13.8            | 6.38   | 10.0    | ≤1    | 2.25            |                 |  |                            |
| 3             |                | 13.7            | 6.38   | 10.38   | ≤1    | 2.25            |                 |  |                            |
| 4             |                | 11.12           | 9.38   | 15.0    | ≤1    | 2.75            | θ               |  |                            |
| 5             |                | 10.88           | 9.38   | 15.75   | ≤1    | 2.75            |                 |  |                            |
| 6             |                | 10.75           | 9.38   | 15.75   | ≤1    | 2.25            |                 |  |                            |
| 7             |                | 13.38           | 7.35   | 11.88   | ≤1    | 2.75            |                 |  |                            |
| 8             |                | 13.35           | 7.35   | 11.75   | ≤1    | 3.25            |                 |  |                            |
| 9             |                | 13.13           | 7.35   | 12.63   | ≤1    | —               | θ               |  |                            |
| 10            |                | 13.5            | 7.42   | 11.50   | ≤1    | 3.25            |                 |  |                            |
| 11            |                | 14.0            | 7.08   | 10.25   | ≤1    | 4.0             |                 |  |                            |
| 12            | 0953           | 14.25           | 6.10   | 9.75    | ≤1    | 4.0             |                 |  |                            |
| 13            |                | 0.25            | θ      | -0.2    | θ     | 0.5             |                 |  |                            |
| 14            | CAL            | 20.25           | 12.52  | 22.24   | 85.2  | 45.0            |                 |  |                            |
| 15            | Avg            | (12.97)         | (7.48) | (12.07) | (≤1)  | (2.43)          |                 |  |                            |
| (2)           |                |                 |        |         |       |                 |                 |  |                            |
| 1             | 1003           | 13.0            | 7.05   | 11.88   | ≤1    | 3.4             |                 |  |                            |
| 2             |                | 13.1            | 7.05   | 11.88   | ≤1    | 4.5             |                 |  |                            |
| 3             |                | 13.1            | 7.05   | 11.88   | ≤1    | 4.5             |                 |  |                            |
| 4             |                | 13.1            | 7.05   | 11.88   | ≤1    | —               | θ               |  |                            |
| 5             |                | 13.1            | 7.05   | 11.88   | ≤1    | 5.0             |                 |  |                            |
| 6             | 1033           | 13.1            | 7.05   | 11.88   | ≤1    | 5.7             |                 |  |                            |
| 7             |                | 0.25            | θ      | -0.2    | θ     | 1.1             |                 |  |                            |
| 8             | CAL            | 20.0            | 12.34  | 22.25   | 84.8  | 45.3            |                 |  |                            |
| 9             | Avg            | (13.1)          | (7.05) | (11.88) | (≤1)  | (4.55)          |                 |  |                            |
| (3)           |                |                 |        |         |       |                 |                 |  |                            |
| 1             | 1043           | 13.1            | 6.9    | 12.1    | ≤1    | 4.8             |                 |  |                            |
| 2             |                | 13.1            | 6.9    | 12.1    | ≤1    | 5.2             |                 |  |                            |
| 3             |                | 13.1            | 6.9    | 12.1    | ≤1    | 5.25            |                 |  |                            |
| 4             |                | 13.1            | 6.9    | 12.1    | ≤1    | 5.3             |                 |  |                            |
| 5             |                | 13.1            | 6.9    | 12.1    | ≤1    | —               | θ               |  |                            |
| 6             | 1113           | 13.1            | 6.9    | 12.1    | ≤1    | 5.6             |                 |  |                            |
| 7             |                | 0.25            | θ      | -0.2    | θ     | 2.5             |                 |  |                            |
| 8             | CAL            | 20.15           | 12.08  | 22.25   | 84.5  | 45.3            |                 |  |                            |
| 9             | Avg            | (13.1)          | (6.9)  | (12.1)  | (≤1)  | (5.23)          |                 |  |                            |

## CONTINUOUS EMISSION MONITORING SUMMARY DATA SHEET

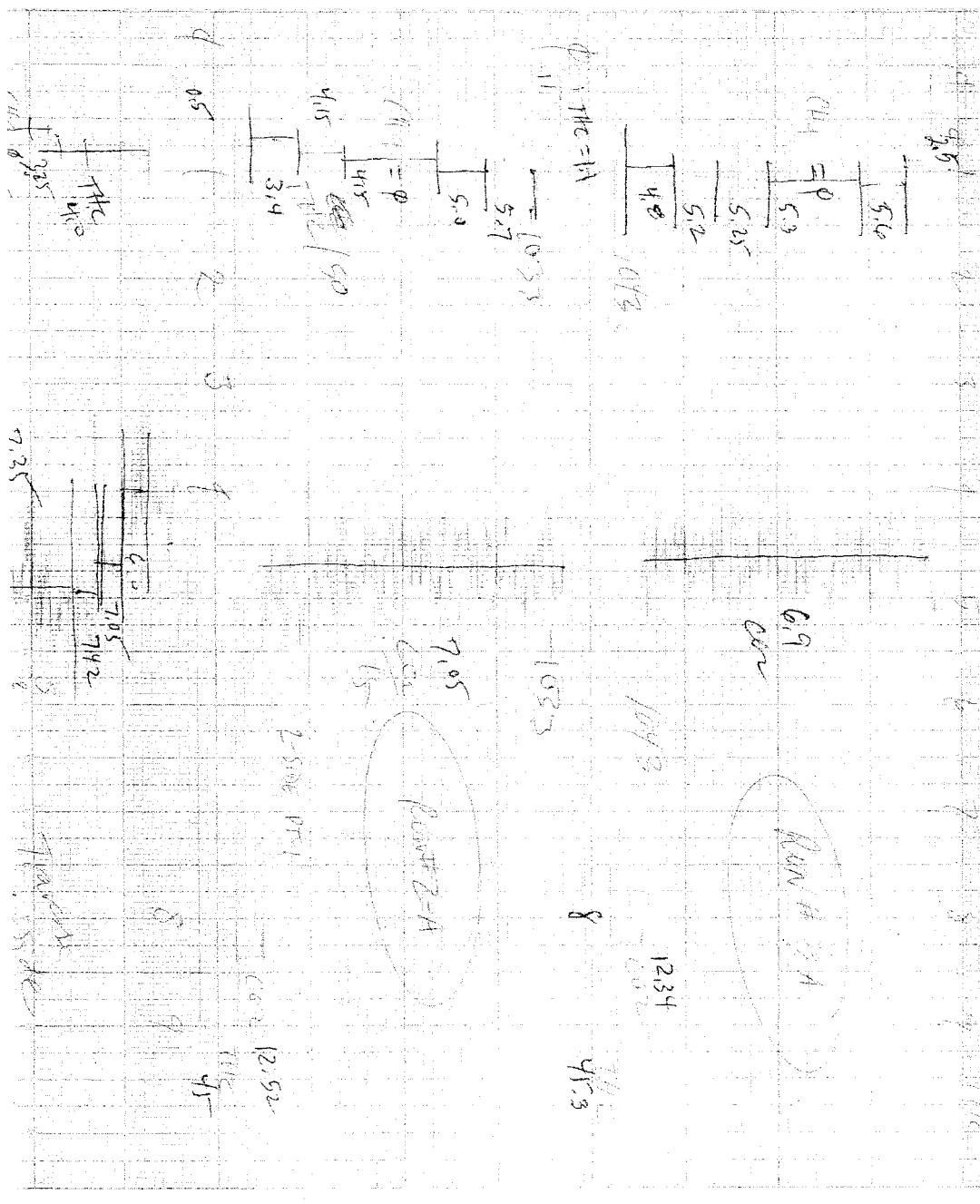
Facility: KIRBY CANYON  
Location: A-12 FLARE

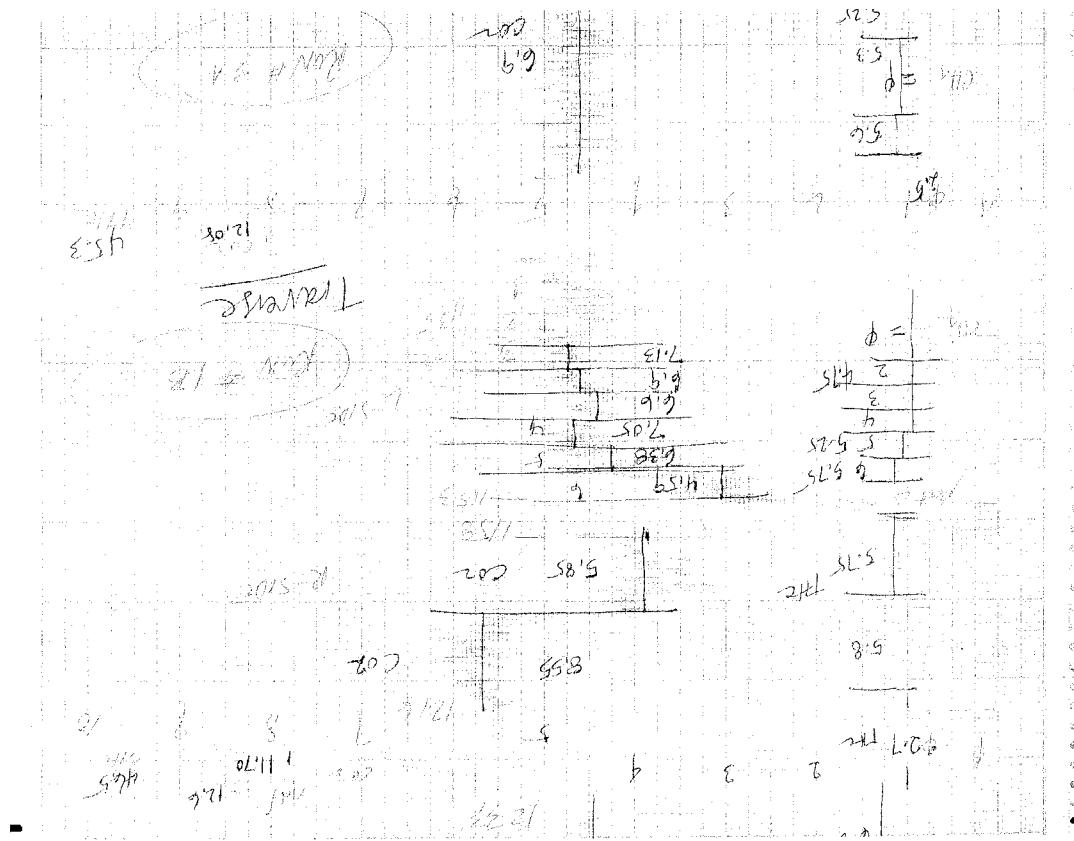
Test #: 1, 2, 3 (B)  
Personnel: CW JM

Date: 1/23/05  
Leak Check:

Leak Check:

### Stratification Check: ✓


| Parameter     | O <sub>2</sub> | CO <sub>2</sub> | NOx   | CO    | THC   | CH <sub>4</sub> | SO <sub>2</sub> |  | Unit Description/Serial #: |
|---------------|----------------|-----------------|-------|-------|-------|-----------------|-----------------|--|----------------------------|
| Analizer      | 755R           | PIR 2000        | 42    | 48C   | RS-55 | RS-55           |                 |  | A-12                       |
| Range         | .25            | 15              | 25    | 100   | 50    |                 |                 |  | Operating Conditions:      |
| Span Value(s) | 20.43          | 12.62           | 22.5  | 83.2  | 45    |                 |                 |  | Conductivity CN            |
| Span Value(s) |                |                 |       |       |       |                 |                 |  | Fuel: LFG                  |
| Span Value(s) |                |                 |       |       |       |                 |                 |  |                            |
|               | 0              | 0               | 0     | 0     | 0     | 0               |                 |  | NOTES:                     |
| (1) CAL       | 20.15          | 12.08           | 22.45 | 84    | 45.3  |                 |                 |  |                            |
| P4 1130       | 12.75          | 7.13            | 13.0  | 21    | 7.75  |                 |                 |  |                            |
| 2             | 12.75          | 6.9             | 13.0  | 21    | —     | 6               |                 |  | Traverse<br>post left      |
| 3             | 12.75          | 6.6             | 12.0  | 21    | 6.75  |                 |                 |  |                            |
| 4             | 13.25          | 7.05            | 12.1  | 21    | 6.75  |                 |                 |  |                            |
| 5             | 12.95          | 6.38            | 13.75 | 21    | 5.25  |                 |                 |  | post charge                |
| F 1148        | 13.1           | 6.39            | 12.5  | 21    | 5.25  |                 |                 |  |                            |
| 1 1158        | 13.75          | 5.85            | 11.50 | 21    | 5.75  |                 |                 |  |                            |
| 2             | 14.0           | 5.85            | 10.88 | 21    | 5.75  |                 |                 |  | Traverse<br>post right     |
| 3             | 13.63          | 5.85            | 11.88 | 21    | 5.75  |                 |                 |  |                            |
| 4             | 11.25          | 8.55            | 16.38 | 21    | 5.8   |                 |                 |  |                            |
| 5             | 11.0           | 8.55            | 16.25 | 21    | 5.8   |                 |                 |  |                            |
| 6             | 12.16          | 8.55            | 16.25 | 21    | 5.8   |                 |                 |  |                            |
|               | 0              | 0.30            | 0     | -0.25 | 0     | 2.7             |                 |  |                            |
| CAL           | 20.0           | 11.7            | 22.25 | 84    | 46.5  |                 |                 |  |                            |
| Avg           | 12.70          | 6.82            | 13.29 | 21    | 5.4   |                 |                 |  |                            |
|               | Adj 12.6       |                 |       |       |       |                 |                 |  |                            |
| (2) 1233      | 13.38          | 6.68            | 11.5  | 21    | 6.25  |                 |                 |  |                            |
|               | 13.38          | 6.68            | 11.5  | 21    | 6.25  |                 |                 |  |                            |
|               | 13.38          | 6.68            | 11.5  | 21    | 6.25  |                 |                 |  |                            |
|               | 13.38          | 6.68            | 11.5  | 21    | 6.25  |                 |                 |  |                            |
|               | 13.38          | 6.68            | 11.5  | 21    | 6.25  |                 |                 |  |                            |
| 1303          | 13.38          | 6.68            | 11.5  | 21    | 6.0   |                 |                 |  |                            |
|               | 0.3            | 0               | -0.25 | 0     | 2.7   |                 |                 |  |                            |
| CAL           | 20.0           | 13.44           | 22.15 | 84    | 46.3  |                 |                 |  |                            |
| Avg           | 13.38          | 6.68            | 11.5  | 21    | 6.2   |                 |                 |  |                            |
| (3) 1316      | 13.0           | 6.98            | 12.75 | 21    | 6.5   |                 |                 |  |                            |
|               | 13.0           | 6.98            | 12.75 | 21    | 6.5   |                 |                 |  |                            |
|               | 13.0           | 6.98            | 12.75 | 21    | 6.5   |                 |                 |  |                            |
|               | 13.0           | 6.98            | 12.75 | 21    | 6.5   |                 |                 |  |                            |
|               | 13.0           | 6.98            | 12.75 | 21    | 6.5   |                 |                 |  |                            |
| 1346          | 13.0           | 6.98            | 12.75 | 21    | 6.5   |                 |                 |  |                            |
|               | 0.3            | 0               | -0.25 | 0     | 3.0   |                 |                 |  |                            |
| CAL           | 20.0           | 12.22           | 22.13 | 83.8  | 46.8  |                 |                 |  |                            |
| Avg           | 13.0           | 6.98            | 12.75 | 21    | 6.5   |                 |                 |  |                            |


E  
Strip Charts





● 1996年1月1日，中行国际有限公司（中行国际）与中行集团有限公司（中行集团）合并，中行国际更名为中行集团有限公司，中行集团有限公司成为中行集团的全资附属公司。

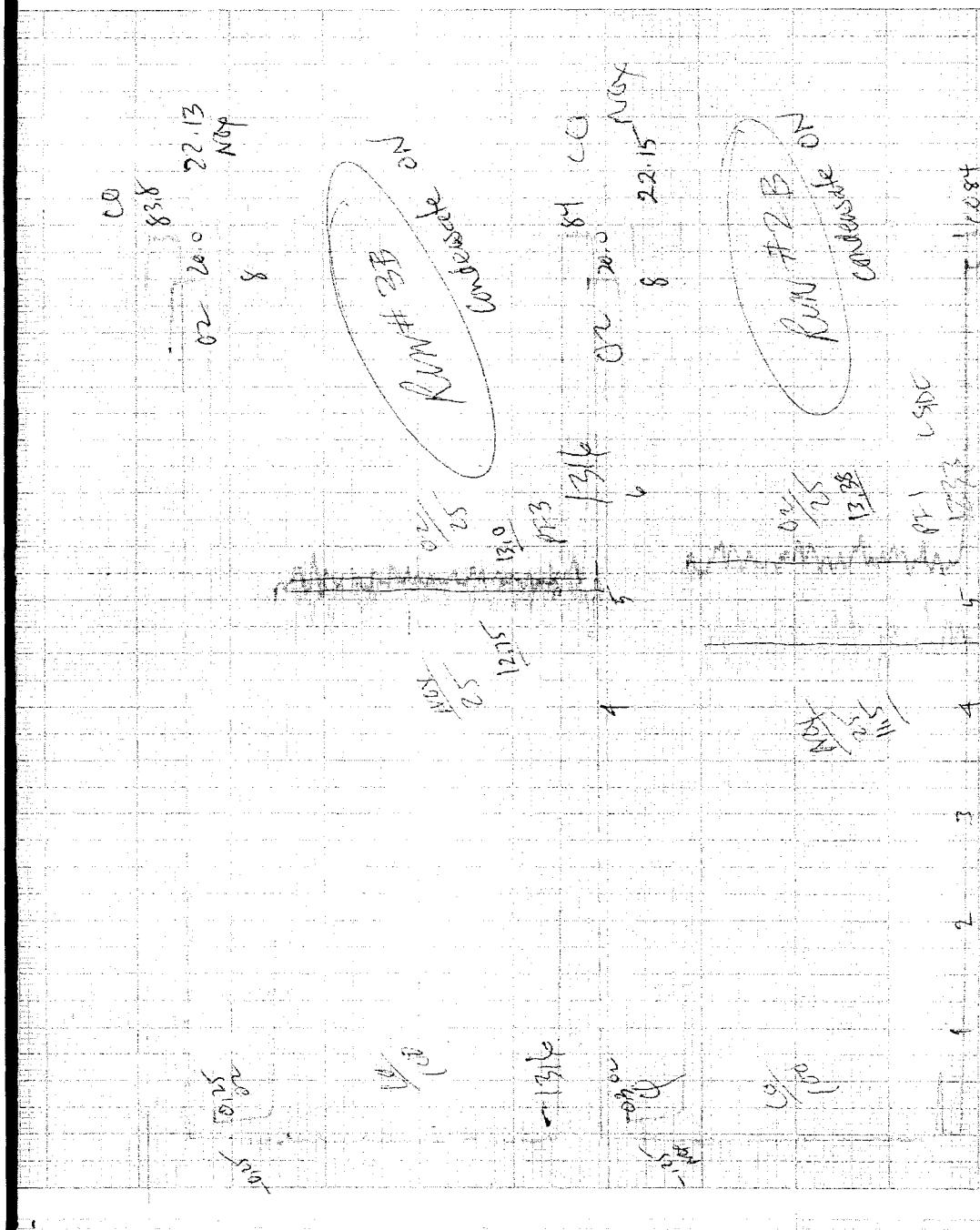








Graph showing the relationship between the number of condensate droplets ( $N$ ) and the number of droplets per unit area ( $N/A$ ).


The x-axis is labeled  $N/A$  and ranges from 0 to 10. The y-axis is labeled  $N$  and ranges from 0 to 100.

Two data series are plotted:

- no condensate** (open circles):  $N \approx 10N/A$
- condensate** (filled circles):  $N$  vs  $N/A$

| $N/A$ | $N$ (no condensate) | $N$ (condensate) |
|-------|---------------------|------------------|
| 0     | 0                   | 0                |
| 1     | 10                  | 10               |
| 2     | 20                  | 25               |
| 2.5   | 25                  | 65               |
| 3     | 30                  | 50               |
| 4     | 40                  | 35               |
| 5     | 50                  | 25               |
| 6     | 60                  | 20               |
| 7     | 70                  | 15               |
| 8     | 80                  | 10               |
| 9     | 90                  | 5                |





F  
Process Information

| Date                         | Time     | CH01  |      | CH02  |      | CH04       |      |
|------------------------------|----------|-------|------|-------|------|------------|------|
|                              |          | Flare | F    | Flare | SCFM | Condensate | GPM  |
|                              |          | MIN   | MAX  | MIN   | MAX  | MIN        | MAX  |
| <b>Condensate Off-Run 1</b>  |          |       |      |       |      |            |      |
| 2008/01/23                   | 09:04:00 | 1499  | 1504 | 1451  | 1471 | 0.00       | 0.00 |
| 2008/01/23                   | 09:06:00 | 1501  | 1505 | 1452  | 1467 | 0.00       | 0.00 |
| 2008/01/23                   | 09:08:00 | 1501  | 1504 | 1449  | 1469 | 0.00       | 0.00 |
| 2008/01/23                   | 09:10:00 | 1496  | 1504 | 1448  | 1468 | 0.00       | 0.00 |
| 2008/01/23                   | 09:12:00 | 1500  | 1505 | 1444  | 1468 | 0.00       | 0.00 |
| 2008/01/23                   | 09:14:00 | 1497  | 1509 | 1444  | 1460 | 0.00       | 0.00 |
| 2008/01/23                   | 09:16:00 | 1497  | 1507 | 1440  | 1458 | 0.00       | 0.00 |
| 2008/01/23                   | 09:18:00 | 1497  | 1503 | 1439  | 1463 | 0.00       | 0.00 |
| 2008/01/23                   | 09:20:00 | 1498  | 1509 | 1446  | 1464 | 0.00       | 0.00 |
| 2008/01/23                   | 09:22:00 | 1498  | 1504 | 1435  | 1467 | 0.00       | 0.00 |
| 2008/01/23                   | 09:24:00 | 1496  | 1506 | 1445  | 1463 | 0.00       | 0.00 |
| 2008/01/23                   | 09:26:00 | 1498  | 1504 | 1438  | 1459 | 0.00       | 0.00 |
| 2008/01/23                   | 09:28:00 | 1500  | 1506 | 1441  | 1459 | 0.00       | 0.00 |
| 2008/01/23                   | 09:30:00 | 1493  | 1507 | 1438  | 1462 | 0.00       | 0.00 |
| 2008/01/23                   | 09:32:00 | 1496  | 1505 | 1436  | 1458 | 0.00       | 0.00 |
| 2008/01/23                   | 09:34:00 | 1495  | 1506 | 1434  | 1458 | 0.00       | 0.00 |
| 2008/01/23                   | 09:36:00 | 1498  | 1509 | 1437  | 1454 | 0.00       | 0.00 |
| 2008/01/23                   | 09:38:00 | 1498  | 1510 | 1432  | 1458 | 0.00       | 0.00 |
| 2008/01/23                   | 09:40:00 | 1495  | 1509 | 1437  | 1458 | 0.00       | 0.00 |
| 2008/01/23                   | 09:42:00 | 1496  | 1508 | 1433  | 1451 | 0.00       | 0.00 |
| 2008/01/23                   | 09:44:00 | 1498  | 1505 | 1430  | 1457 | 0.00       | 0.00 |
| 2008/01/23                   | 09:46:00 | 1497  | 1508 | 1436  | 1450 | 0.00       | 0.00 |
| 2008/01/23                   | 09:48:00 | 1495  | 1509 | 1436  | 1453 | 0.00       | 0.00 |
| 2008/01/23                   | 09:50:00 | 1498  | 1506 | 1436  | 1453 | 0.00       | 0.00 |
| 2008/01/23                   | 09:52:00 | 1493  | 1506 | 1435  | 1457 | 0.00       | 0.00 |
| 2008/01/23                   | 09:54:00 | 1497  | 1506 | 1432  | 1449 | 0.00       | 0.00 |
|                              |          | 1497  | 1506 | 1439  | 1460 | 0          | 0    |
| <b>Condensate Off- Run 2</b> |          |       |      |       |      |            |      |
| 2008/01/23                   | 10:02:00 | 1501  | 1505 | 1424  | 1449 | 0.00       | 0.00 |
| 2008/01/23                   | 10:04:00 | 1495  | 1505 | 1431  | 1450 | 0.00       | 0.00 |
| 2008/01/23                   | 10:06:00 | 1498  | 1506 | 1421  | 1449 | 0.00       | 0.00 |
| 2008/01/23                   | 10:08:00 | 1495  | 1508 | 1430  | 1448 | 0.00       | 0.00 |
| 2008/01/23                   | 10:10:00 | 1493  | 1512 | 1431  | 1455 | 0.00       | 0.00 |
| 2008/01/23                   | 10:12:00 | 1494  | 1508 | 1430  | 1448 | 0.00       | 0.00 |
| 2008/01/23                   | 10:14:00 | 1497  | 1508 | 1431  | 1448 | 0.00       | 0.00 |
| 2008/01/23                   | 10:16:00 | 1500  | 1504 | 1430  | 1451 | 0.00       | 0.00 |
| 2008/01/23                   | 10:18:00 | 1497  | 1510 | 1434  | 1455 | 0.00       | 0.00 |
| 2008/01/23                   | 10:20:00 | 1497  | 1508 | 1431  | 1451 | 0.00       | 0.00 |
| 2008/01/23                   | 10:22:00 | 1501  | 1504 | 1427  | 1451 | 0.00       | 0.00 |
| 2008/01/23                   | 10:24:00 | 1498  | 1512 | 1431  | 1451 | 0.00       | 0.00 |
| 2008/01/23                   | 10:26:00 | 1497  | 1512 | 1434  | 1451 | 0.00       | 0.00 |
| 2008/01/23                   | 10:28:00 | 1499  | 1503 | 1429  | 1455 | 0.00       | 0.00 |
| 2008/01/23                   | 10:30:00 | 1497  | 1506 | 1431  | 1448 | 0.00       | 0.00 |
| 2008/01/23                   | 10:32:00 | 1497  | 1506 | 1434  | 1448 | 0.00       | 0.00 |
| 2008/01/23                   | 10:34:00 | 1498  | 1508 | 1431  | 1455 | 0.00       | 0.00 |
|                              |          | 1497  | 1507 | 1431  | 1452 | 0          | 0    |

| Date                         | Time     | CH01        |             | CH02          |             | CH04              |          |
|------------------------------|----------|-------------|-------------|---------------|-------------|-------------------|----------|
|                              |          | Flare<br>F  | SCFM        | Flare<br>SCFM | MAX         | Condensate<br>GPM | MIN      |
| <b>Condensate Off- Run 3</b> |          |             |             |               |             |                   |          |
| 2008/01/23                   | 10:42:00 | 1497        | 1506        | 1435          | 1448        | 0.00              | 0.00     |
| 2008/01/23                   | 10:44:00 | 1498        | 1510        | 1437          | 1449        | 0.00              | 0.00     |
| 2008/01/23                   | 10:46:00 | 1496        | 1508        | 1434          | 1458        | 0.00              | 0.00     |
| 2008/01/23                   | 10:48:00 | 1502        | 1506        | 1431          | 1451        | 0.00              | 0.00     |
| 2008/01/23                   | 10:50:00 | 1497        | 1503        | 1430          | 1454        | 0.00              | 0.00     |
| 2008/01/23                   | 10:52:00 | 1497        | 1506        | 1432          | 1448        | 0.00              | 0.00     |
| 2008/01/23                   | 10:54:00 | 1499        | 1506        | 1430          | 1450        | 0.00              | 0.00     |
| 2008/01/23                   | 10:56:00 | 1498        | 1506        | 1427          | 1450        | 0.00              | 0.00     |
| 2008/01/23                   | 10:58:00 | 1500        | 1505        | 1427          | 1458        | 0.00              | 0.00     |
| 2008/01/23                   | 11:00:00 | 1498        | 1503        | 1430          | 1454        | 0.00              | 0.00     |
| 2008/01/23                   | 11:02:00 | 1498        | 1510        | 1429          | 1454        | 0.00              | 0.00     |
| 2008/01/23                   | 11:04:00 | 1500        | 1508        | 1433          | 1455        | 0.00              | 0.00     |
| 2008/01/23                   | 11:06:00 | 1498        | 1508        | 1429          | 1451        | 0.00              | 0.00     |
| 2008/01/23                   | 11:08:00 | 1500        | 1503        | 1438          | 1457        | 0.00              | 0.00     |
| 2008/01/23                   | 11:10:00 | 1497        | 1507        | 1435          | 1453        | 0.00              | 0.00     |
| 2008/01/23                   | 11:12:00 | 1495        | 1510        | 1436          | 1455        | 0.00              | 0.00     |
| 2008/01/23                   | 11:14:00 | 1499        | 1503        | 1435          | 1456        | 0.00              | 0.00     |
|                              |          | <b>1498</b> | <b>1507</b> | <b>1432</b>   | <b>1452</b> | <b>0</b>          | <b>0</b> |
| <b>Condensate On- Run 1</b>  |          |             |             |               |             |                   |          |
| 2008/01/23                   | 11:34:00 | 1494        | 1508        | 1436          | 1460        | 1.07              | 1.10     |
| 2008/01/23                   | 11:36:00 | 1496        | 1510        | 1439          | 1457        | 1.07              | 1.09     |
| 2008/01/23                   | 11:38:00 | 1495        | 1508        | 1432          | 1456        | 1.06              | 1.09     |
| 2008/01/23                   | 11:40:00 | 1494        | 1507        | 1432          | 1456        | 1.05              | 1.08     |
| 2008/01/23                   | 11:42:00 | 1494        | 1504        | 1435          | 1453        | 1.06              | 1.09     |
| 2008/01/23                   | 11:44:00 | 1501        | 1504        | 1439          | 1455        | 1.05              | 1.08     |
| 2008/01/23                   | 11:46:00 | 1498        | 1504        | 1438          | 1459        | 1.05              | 1.08     |
| 2008/01/23                   | 11:48:00 | 1499        | 1507        | 1444          | 1458        | 1.05              | 1.07     |
| 2008/01/23                   | 11:50:00 | 1498        | 1505        | 1444          | 1458        | 1.05              | 1.08     |
| 2008/01/23                   | 11:52:00 | 1499        | 1504        | 1437          | 1461        | 1.04              | 1.07     |
| 2008/01/23                   | 11:54:00 | 1497        | 1510        | 1443          | 1461        | 1.04              | 1.07     |
| 2008/01/23                   | 11:56:00 | 1496        | 1509        | 1442          | 1463        | 1.03              | 1.06     |
| 2008/01/23                   | 11:58:00 | 1493        | 1508        | 1443          | 1460        | 1.03              | 1.06     |
| 2008/01/23                   | 12:00:00 | 1493        | 1510        | 1440          | 1457        | 1.03              | 1.05     |
| 2008/01/23                   | 12:02:00 | 1500        | 1513        | 1437          | 1462        | 1.03              | 1.06     |
| 2008/01/23                   | 12:04:00 | 1500        | 1504        | 1436          | 1460        | 1.02              | 1.06     |
| 2008/01/23                   | 12:06:00 | 1503        | 1505        | 1441          | 1464        | 1.03              | 1.06     |
| 2008/01/23                   | 12:08:00 | 1493        | 1504        | 1439          | 1456        | 1.03              | 1.05     |
| 2008/01/23                   | 12:10:00 | 1492        | 1504        | 1435          | 1462        | 1.03              | 1.05     |
| 2008/01/23                   | 12:12:00 | 1498        | 1504        | 1439          | 1463        | 1.03              | 1.05     |
| 2008/01/23                   | 12:14:00 | 1502        | 1507        | 1439          | 1473        | 1.02              | 1.04     |
| 2008/01/23                   | 12:16:00 | 1495        | 1508        | 1451          | 1477        | 1.01              | 1.04     |
|                              |          | <b>1497</b> | <b>1507</b> | <b>1439</b>   | <b>1460</b> | <b>1</b>          | <b>1</b> |

| Date                        | Time     | CH01       |      | CH02 |               | CH04 |      |                   |     |
|-----------------------------|----------|------------|------|------|---------------|------|------|-------------------|-----|
|                             |          | Flare<br>F | MIN  | MAX  | Flare<br>SCFM | MIN  | MAX  | Condensate<br>GPM | MIN |
| <b>Condensate On- Run 2</b> |          |            |      |      |               |      |      |                   |     |
| 2008/01/23                  | 12:32:00 | 1498       | 1505 | 1448 | 1462          | 1.02 | 1.04 |                   |     |
| 2008/01/23                  | 12:34:00 | 1497       | 1505 | 1441 | 1458          | 1.01 | 1.04 |                   |     |
| 2008/01/23                  | 12:36:00 | 1496       | 1508 | 1434 | 1462          | 1.01 | 1.03 |                   |     |
| 2008/01/23                  | 12:38:00 | 1501       | 1505 | 1440 | 1461          | 1.01 | 1.03 |                   |     |
| 2008/01/23                  | 12:40:00 | 1500       | 1501 | 1440 | 1461          | 1.00 | 1.03 |                   |     |
| 2008/01/23                  | 12:42:00 | 1500       | 1506 | 1439 | 1464          | 1.00 | 1.03 |                   |     |
| 2008/01/23                  | 12:44:00 | 1497       | 1508 | 1436 | 1465          | 1.00 | 1.04 |                   |     |
| 2008/01/23                  | 12:46:00 | 1497       | 1505 | 1435 | 1459          | 1.00 | 1.03 |                   |     |
| 2008/01/23                  | 12:48:00 | 1497       | 1507 | 1436 | 1459          | 1.00 | 1.03 |                   |     |
| 2008/01/23                  | 12:50:00 | 1497       | 1506 | 1436 | 1460          | 1.00 | 1.03 |                   |     |
| 2008/01/23                  | 12:52:00 | 1498       | 1507 | 1436 | 1460          | 1.00 | 1.03 |                   |     |
| 2008/01/23                  | 12:54:00 | 1497       | 1506 | 1446 | 1462          | 1.00 | 1.03 |                   |     |
| 2008/01/23                  | 12:56:00 | 1498       | 1506 | 1446 | 1467          | 1.00 | 1.02 |                   |     |
| 2008/01/23                  | 12:58:00 | 1497       | 1506 | 1439 | 1457          | 1.00 | 1.03 |                   |     |
| 2008/01/23                  | 13:00:00 | 1499       | 1506 | 1440 | 1460          | 1.00 | 1.02 |                   |     |
| 2008/01/23                  | 13:02:00 | 1498       | 1508 | 1440 | 1460          | 1.00 | 1.03 |                   |     |
| 2008/01/23                  | 13:04:00 | 1500       | 1506 | 1446 | 1463          | 1.00 | 1.03 |                   |     |
|                             |          | 1498       | 1506 | 1440 | 1462          | 1    | 1    |                   |     |
| <b>Condensate On- Run 3</b> |          |            |      |      |               |      |      |                   |     |
| 2008/01/23                  | 13:16:00 | 1497       | 1506 | 1444 | 1466          | 0.99 | 1.02 |                   |     |
| 2008/01/23                  | 13:18:00 | 1496       | 1510 | 1444 | 1462          | 0.99 | 1.02 |                   |     |
| 2008/01/23                  | 13:20:00 | 1499       | 1508 | 1441 | 1466          | 0.98 | 1.02 |                   |     |
| 2008/01/23                  | 13:22:00 | 1500       | 1508 | 1447 | 1463          | 0.98 | 1.02 |                   |     |
| 2008/01/23                  | 13:24:00 | 1497       | 1504 | 1441 | 1458          | 0.98 | 1.02 |                   |     |
| 2008/01/23                  | 13:26:00 | 1498       | 1505 | 1440 | 1458          | 0.99 | 1.02 |                   |     |
| 2008/01/23                  | 13:28:00 | 1500       | 1506 | 1444 | 1461          | 0.98 | 1.03 |                   |     |
| 2008/01/23                  | 13:30:00 | 1500       | 1505 | 1447 | 1462          | 0.98 | 1.01 |                   |     |
| 2008/01/23                  | 13:32:00 | 1500       | 1505 | 1444 | 1462          | 0.98 | 1.01 |                   |     |
| 2008/01/23                  | 13:34:00 | 1498       | 1505 | 1446 | 1462          | 0.98 | 1.02 |                   |     |
| 2008/01/23                  | 13:36:00 | 1500       | 1501 | 1445 | 1464          | 0.98 | 1.02 |                   |     |
| 2008/01/23                  | 13:38:00 | 1500       | 1508 | 1448 | 1466          | 0.98 | 1.01 |                   |     |
| 2008/01/23                  | 13:40:00 | 1496       | 1506 | 1441 | 1465          | 0.98 | 1.00 |                   |     |
| 2008/01/23                  | 13:42:00 | 1496       | 1506 | 1440 | 1465          | 0.97 | 1.01 |                   |     |
| 2008/01/23                  | 13:44:00 | 1494       | 1506 | 1446 | 1469          | 0.97 | 1.02 |                   |     |
| 2008/01/23                  | 13:46:00 | 1497       | 1510 | 1447 | 1465          | 0.98 | 1.02 |                   |     |
|                             |          | 1498       | 1506 | 1443 | 1463          | 1    | 1    |                   |     |

**G**  
**Calibration Certifications & QC Records**

11/6/07 IN SERVICE  


Praxair  
 5700 South Alameda St.  
 Los Angeles, CA 90058  
 Telephone: (323) 585-2125  
 Facsimile: (714) 542-6684

## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER BLUE SKY

P.O NUMBER

### REFERENCE STANDARD

| COMPONENT           | NIST SRM NO. | CYLINDER NO. | CONCENTRATION |
|---------------------|--------------|--------------|---------------|
| CARBON DIOXIDE GMIS | VR-SRM82745  | SK 18273     | 19.05 %       |
| OXYGEN GMIS         | VR-SRM82n59  | SC 95612     | 20.43 %       |

### ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

| 1. COMPONENT | CARBON DIOXIDE GMIS | ANALYTICAL PRINCIPLE | NDIR         | ANALYZER MAKE-MODEL-S/N | Siemens Ultramat 5B S/N A11-730 |       | LAST CALIBRATION DATE<br>09/04/07 | SECOND ANALYSIS DATE |
|--------------|---------------------|----------------------|--------------|-------------------------|---------------------------------|-------|-----------------------------------|----------------------|
|              |                     |                      |              |                         | Z                               | R     | C                                 | CONC.                |
|              |                     | FIRST ANALYSIS DATE  | 09/25/07     |                         |                                 |       |                                   |                      |
|              |                     | Z 0.00               | R 15.04      | C 12.62                 | CONC.                           | 12.62 | Z                                 |                      |
|              |                     | R 15.04              | Z 0.00       | C 12.62                 | CONC.                           | 12.62 | R                                 |                      |
|              |                     | Z 0.00               | C 12.62      | R 15.04                 | CONC.                           | 12.62 | Z                                 |                      |
|              |                     | U/M %                |              | MEAN TEST ASSAY         | 12.62                           | U/M % |                                   | MEAN TEST ASSAY      |
| 2. COMPONENT | OXYGEN GMIS         | ANALYTICAL PRINCIPLE | Paramagnetic | ANALYZER MAKE-MODEL-S/N | Siemens Oxymat 5B S/N A12-839   |       | LAST CALIBRATION DATE<br>09/04/07 | SECOND ANALYSIS DATE |
|              |                     |                      |              |                         | Z                               | R     | C                                 | CONC.                |
|              |                     | FIRST ANALYSIS DATE  | 09/25/07     |                         |                                 |       |                                   |                      |
|              |                     | Z 0.00               | R 20.98      | C 20.44                 | CONC.                           | 20.43 | Z                                 |                      |
|              |                     | R 20.98              | Z 0.00       | C 20.44                 | CONC.                           | 20.43 | R                                 |                      |
|              |                     | Z 0.00               | C 20.44      | R 20.98                 | CONC.                           | 20.43 | Z                                 |                      |
|              |                     | U/M %                |              | MEAN TEST ASSAY         | 20.43                           | U/M % |                                   | MEAN TEST ASSAY      |

Values not valid below 10% psig

|                                         |           |                         |
|-----------------------------------------|-----------|-------------------------|
| THIS CYLINDER NO.                       | SC 95612  | CERTIFIED CONCENTRATION |
| HAS BEEN CERTIFIED ACCORDING TO SECTION |           | 12.62 %                 |
| OF TRACEABILITY PROTOCOL NO.            | REV. 3/97 | OXYGEN                  |
| PROCEDURE                               | 61        | NITROGEN                |
| CERTIFIED ACCURACY                      | ± 3       | BALANCE                 |
| CYLINDER PRESSURE                       | 2000 PSIG |                         |
| CERTIFICATION DATE                      | 09/25/07  |                         |
| EXPIRATION DATE                         | 09/25/10  | TERM 26 MONTHS          |

ANALYZED BY

EZ  
 EUGENE CHU

CERTIFIED BY

GR  
 PABLO REYES

#### IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.



Praxair  
5700 South Alameda St.  
Los Angeles, CA 90058  
Telephone: (323) 585-21  
Facsimile: (714) 542-668

## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER BING RY

P.O. NUMBER

### REFERENCE STANDARD

| COMPONENT            | NIST SRM NO. | CYLINDER NO. | CONCENTRATION |
|----------------------|--------------|--------------|---------------|
| CARBON MONOXIDE GMIS | VS-GRM62013  | SGAL 1199    | 24.4 ppm      |
| NITRIC OXIDE GMIS    | VS-GRM620204 | CC 198417    | 24.7 ppm      |

### ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

| 1. COMPONENT        | CARBON MONOXIDE GMIS | ANALYZER MAKE-MODEL-S/N | THREE ELV. 47C S/N 0518112467 |                      |
|---------------------|----------------------|-------------------------|-------------------------------|----------------------|
|                     |                      |                         | LAST CALIBRATION DATE         | SECOND ANALYSIS DATE |
|                     | ANALYTICAL PRINCIPLE | NDIR                    | 05/18/97                      | 05/29/97             |
| FIRST ANALYSIS DATE |                      |                         |                               |                      |
| Z 0.0               | R 24.4               | C 22.6                  | Z 0.0                         | R 24.3               |
| R 24.4              | Z 0.0                | C 22.6                  | R 24.3                        | Z 0.0                |
| Z 0.0               | C 22.7               | R 24.4                  | Z 0.0                         | C 22.4               |
| U/M ppm             |                      | MEAN TEST ASSAY 22.6    | U/M ppm                       | MEAN TEST ASSAY 22.8 |
| 2. COMPONENT        | NITRIC OXIDE GMIS    | ANALYZER MAKE-MODEL-S/N | THREE ELV. 47C S/N 0518112467 |                      |
|                     |                      |                         | LAST CALIBRATION DATE         | SECOND ANALYSIS DATE |
| FIRST ANALYSIS DATE |                      | Chemiluminescence       | 05/18/97                      | 05/29/97             |
| Z 0.0               | R 24.5               | C 22.2                  | Z 0.0                         | R 24.5               |
| R 24.5              | Z 0.0                | C 22.1                  | R 24.5                        | Z 0.0                |
| Z 0.0               | C 22.1               | R 24.6                  | Z 0.0                         | C 22.1               |
| U/M ppm             |                      | MEAN TEST ASSAY 22.2    | U/M ppm                       | MEAN TEST ASSAY 22.3 |

Values not valid below 150 psig.

Max. value for reference use only.

| THIS CYLINDER NO.                       | CC 198414               | CERTIFIED CONCENTRATION  |
|-----------------------------------------|-------------------------|--------------------------|
| HAS BEEN CERTIFIED ACCORDING TO SECTION | EPA-403/R07/121         | CARBON MONOXIDE 22.7 ppm |
| OF TRACEABILITY PROTOCOL NO.            | Rev. 9/97               | NITRIC OXIDE 22.7 ppm    |
| PROCEDURE                               | SI                      | NITROGEN BALANCE         |
| CERTIFIED ACCURACY                      | ± 1 % NIST TRACEABLE    | MAX 22.5 ppm             |
| CYLINDER PRESSURE                       | 2000 PSIG               |                          |
| CERTIFICATION DATE                      | 05/29/97                |                          |
| EXPIRATION DATE                         | 05/29/99 TERM 24 MONTHS |                          |

ANALYZED BY

Henry Keung

CERTIFIED BY

PHIC RIM

#### IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

In Service 11/19/07  


Praxair  
 5700 South Alameda Street  
 Los Angeles, CA 90058  
 Telephone: (323) 585-2115  
 Facsimile: (714) 542-6689

## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER BLDG 529

P.O. NUMBER

### REFERENCE STANDARD

| COMPONENT            | NIST SRM NO. | CYLINDER NO. | CONCENTRATION |
|----------------------|--------------|--------------|---------------|
| CARBON MONOXIDE GMIS | VS-SRM#1679  | CG 31987     | 100.0 ppm     |
| NITRIC OXIDE GMIS    | VS-SRM#1684  | CG 134362    | 99.9 ppm      |

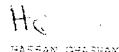
### ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

| 1. COMPONENT         | CARBON MONOXIDE GMIS | ANALYZER MAKE-MODEL-S/N | HORIBA, VIB-510, S/N 576876015 | LAST CALIBRATION DATE | 09/17/07 |                 |            |
|----------------------|----------------------|-------------------------|--------------------------------|-----------------------|----------|-----------------|------------|
| ANALYTICAL PRINCIPLE | NDIR                 |                         |                                | SECOND ANALYSIS DATE  | 10/08/07 |                 |            |
| FIRST ANALYSIS DATE  | 10/01/07             |                         |                                |                       |          |                 |            |
| Z 0                  | R 103.3              | C 85.1                  | CONC. 85.1                     | Z 0                   | R 103.3  | C 85.1          | CONC. 85.1 |
| R 103.3              | Z 0                  | C 85.2                  | CONC. 85.2                     | R 103.4               | Z 0      | C 85.3          | CONC. 85.2 |
| Z 0                  | C 85.2               | R 103.3                 | CONC. 85.2                     | Z 0                   | C 85.4   | R 103.4         | CONC. 85.2 |
| U/M ppm              | MEAN TEST ASSAY      | 85.2                    | U/M ppm                        | MEAN TEST ASSAY       | 85.2     | MEAN TEST ASSAY | 85.2       |
| 2. COMPONENT         | NITRIC OXIDE GMIS    | ANALYZER MAKE-MODEL-S/N | REICHMAN 961A S/N 00111384     | LAST CALIBRATION DATE | 09/17/07 |                 |            |
| ANALYTICAL PRINCIPLE | CHRMILUMINESCENCE    |                         |                                | SECOND ANALYSIS DATE  | 10/08/07 |                 |            |
| FIRST ANALYSIS DATE  | 10/01/07             |                         |                                |                       |          |                 |            |
| Z 0                  | R 856                | C 721                   | CONC. 85.7                     | Z 0                   | R 788    | C 659           | CONC. 85.1 |
| R 856                | Z 0                  | C 720                   | CONC. 85.7                     | R 781                 | Z 0      | C 659           | CONC. 85.1 |
| Z 0                  | C 721                | R 856                   | CONC. 85.7                     | Z 0                   | C 661    | R 788           | CONC. 85.1 |
| U/M mV               | MEAN TEST ASSAY      | 85.7                    | U/M mV                         | MEAN TEST ASSAY       | 85.7     | MEAN TEST ASSAY | 85.7       |


VALUES NOT VALID BELOW 100 PSIG  
 NOX VALUE FOR REFERENCE ONLY

| THIS CYLINDER NO.                       | CG 73018                | CERTIFIED CONCENTRATION  |
|-----------------------------------------|-------------------------|--------------------------|
| HAS BEEN CERTIFIED ACCORDING TO SECTION | EPA 004/97/121          | CARBON MONOXIDE 85.2 ppm |
| OF TRACEABILITY PROTOCOL NO.            | REV. 9/07               | NITRIC OXIDE 85.0 ppm    |
| PROCEDURE                               | G1                      | NITROGEN BALANCE         |
| CERTIFIED ACCURACY                      | ± 1 % NIST TRACEABLE    | NOX 85.0 ppm             |
| CYLINDER PRESSURE                       | 2000 PSIG               |                          |
| CERTIFICATION DATE                      | 10/08/07                |                          |
| EXPIRATION DATE                         | 10/08/09 TERM 24 MONTHS |                          |

ANALYZED BY

  
 VICTOR DOGAN

CERTIFIED BY

  
 HASSAN GRAHAM

#### IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.



*in service 12/1/07*

Praxair  
5700 South Alameda St.  
Los Angeles, CA 90058  
Telephone: (323) 585-215  
Facsimile: (714) 542-6681

## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

ANALYST: CUSTOMER: BLUE SKY

P.O. NUMBER:

### REFERENCE STANDARD

| COMPONENT    | NIST SRM NO. | CYLINDER NO. | CONCENTRATION |
|--------------|--------------|--------------|---------------|
| PROPANE GMIS | 26-SRM81665  | SA 9563      | 15.1 ppm      |

### ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

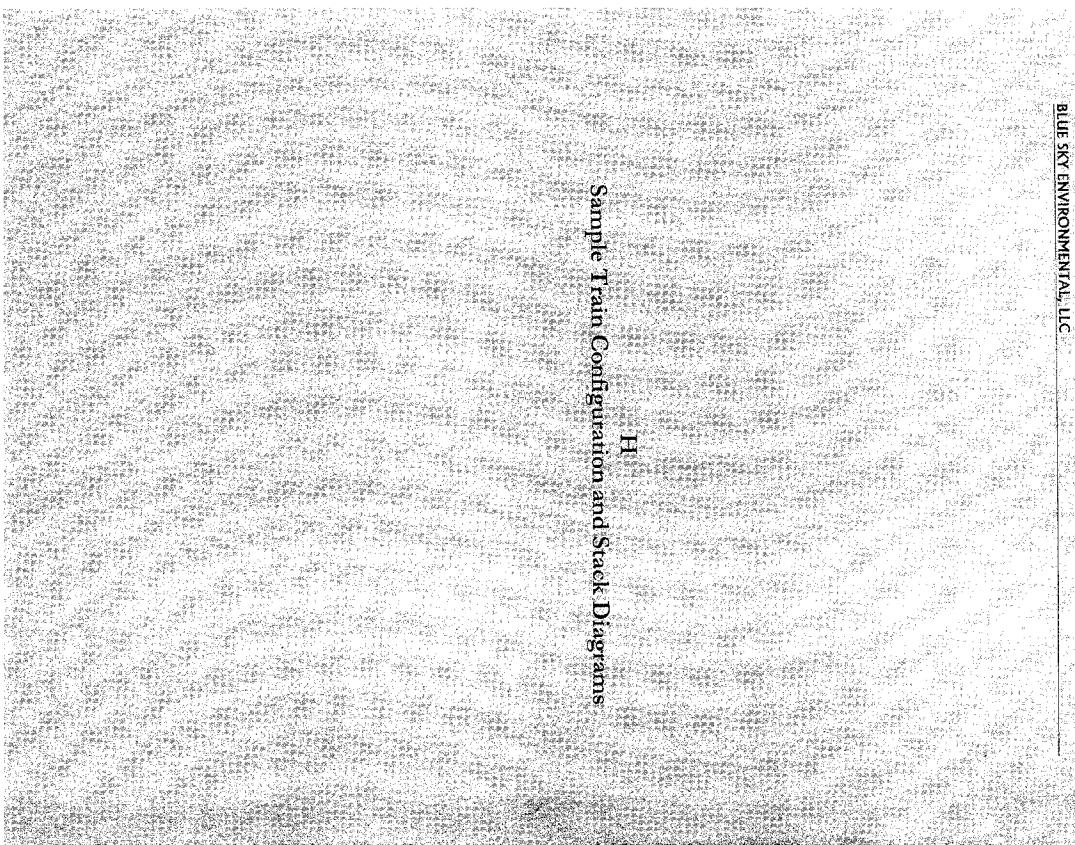
C=GAS CANDIDATE

| COMPONENT            | PROPANE GMIS              | ANALYZER MAKE-MODEL-S/N    | LAST CALIBRATION DATE | SECOND ANALYSIS DATE |
|----------------------|---------------------------|----------------------------|-----------------------|----------------------|
| ANALYTICAL PRINCIPLE | Flame Ionization Detector | HORIBA, FID-510, 851135122 | 09/04/07              |                      |
| FIRST ANALYSIS DATE  | 05/25/07                  |                            |                       |                      |
| Z 0.00               | R 27.56                   | C 40.83                    | CONC. 15.0            | Z R C CONC.          |
| R 27.59              | Z 0.00                    | C 40.98                    | CONC. 15.0            | R Z C CONC.          |
| Z 0.00               | C 41.02                   | R 27.52                    | CONC. 15.0            | Z C R CONC.          |
| U/M ppm              |                           | MEAN TEST ASSAY 15.0       | U/M ppm               | MEAN TEST ASSAY      |

Values not valid below 150 psig

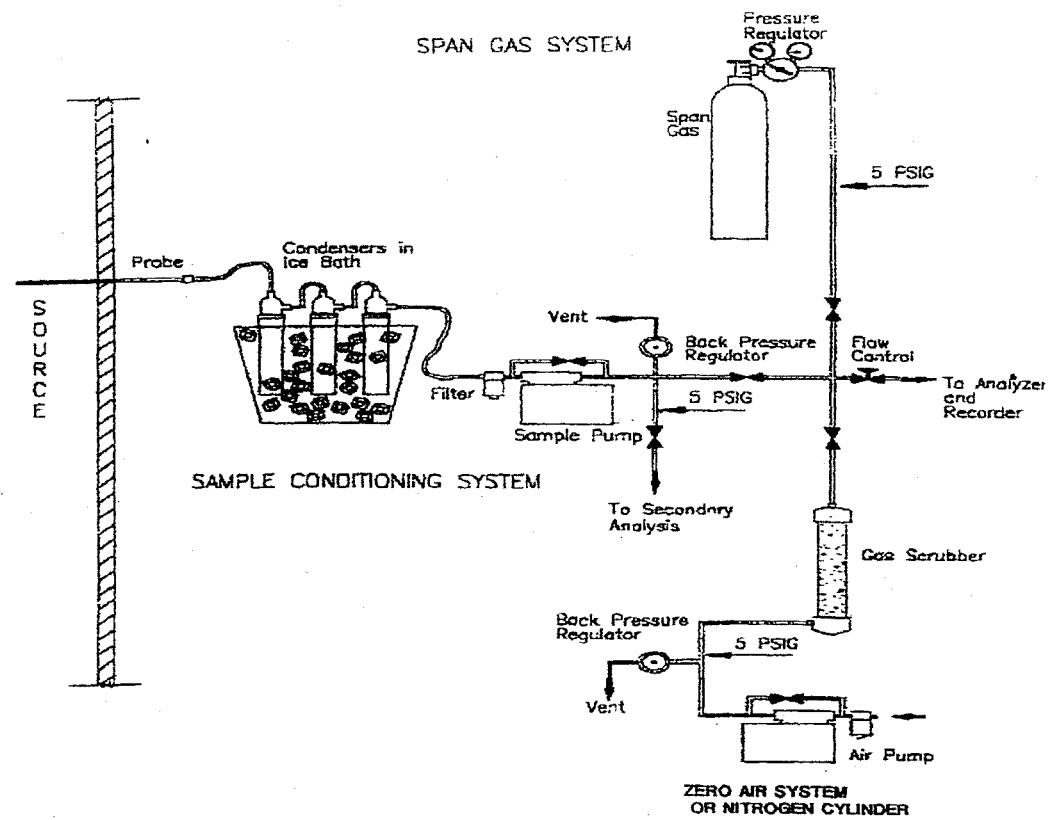
|                                         |                          |                         |           |
|-----------------------------------------|--------------------------|-------------------------|-----------|
| THIS CYLINDER NO.                       | CC 76661                 | CERTIFIED CONCENTRATION | 15.0 ppm  |
| HAS BEEN CERTIFIED ACCORDING TO SECTION |                          | EPA-600/R37/1.21        | PROPANE   |
| OF TRACEABILITY PROTOCOL NO.            |                          | Rev. 9/97               | ATR       |
| PROCEDURE                               | G1                       | BALANCE                 |           |
| CERTIFIED ACCURACY                      | $\pm 1$ % NIST TRACEABLE | 45.0                    |           |
| CYLINDER PRESSURE                       | 2000 PSIG                |                         |           |
| CERTIFICATION DATE                      | 05/25/07                 |                         |           |
| EXPIRATION DATE                         | 09/25/10                 | TERM                    | 36 MONTHS |

ANALYZED BY

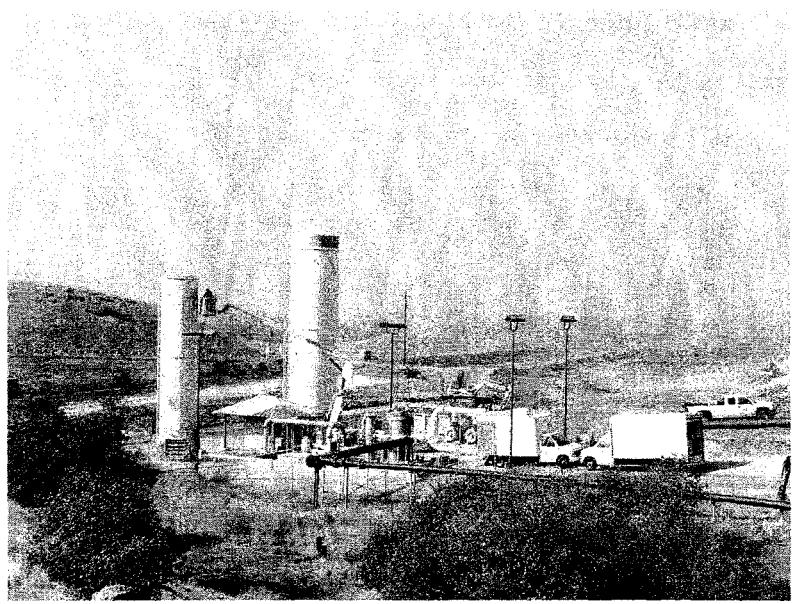

*Patricia Reyes*

CERTIFIED BY

*Ringene Cho*


### IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.




## Sample Train Configuration and Stack Diagrams

H



BAAQMD ST-5 (CO<sub>2</sub>)  
 BAAQMD ST-6 (CO)  
 BAAQMD ST-7 (THC by FID)  
 BAAQMD ST-13A (NO<sub>x</sub>)  
 BAAQMD ST-14 (O<sub>2</sub>)  
 BAAQMD ST-19A (SO<sub>2</sub>)



Kirby Canyon Flare A-12 (right)

I  
Related Correspondence (Source Test Plan)



**KIRBY CANYON RECYCLING & DISPOSAL FACILITY**  
A WASTE MANAGEMENT COMPANY

312 Granite Creek Drive  
P.O. Box 1870  
Mountain View, CA 94037  
(408) 779-2206  
(408) 779-5165 Fax

**VIA FAX (415) 749-4922**

January 8, 2008

Tim Underwood  
Principal Air Quality Engineer  
Source Test Division  
Bay Area Air Quality Management District  
939 Ellis Street  
San Francisco, CA 94109

Subject: Source Test Protocol & Test Notification

Dear Mr. Underwood:

Attached please find the Source Test Protocol for compliance emissions testing of the Enclosed Landfill Gas Flare (A-12) at Kirby Canyon Recycling and Disposal Facility in San Jose, CA. If you have any questions, please contact Guy Worthington from the Source Testing Contractor, Blue Sky Environmental, LLC at (510) 525-1261, or (510) 508-3469.

Sincerely,  
Kirby Canyon Recycling & Disposal Facility

  
Becky Zito  
Environmental Protection Manager

Cc: Paul Stout, Cornerstone Environmental Group



Blue Sky Environmental, LLC  
624 San Gabriel Avenue  
Albany, California 94706  
Phone (510) 525-1261  
Fax (510) 508-3469  
blue sky environmental@yahoocom

January 8, 2008

Attn: Tim Underwood  
Source Test Division  
Bay Area Air Quality Management District  
Compliance and Enforcement Division  
939 Ellis Street  
San Francisco, CA 94109

Re: Source Test Protocol for compliance emissions testing of the Enclosed Landfill Gas Flare (A-12) at Kirby Canyon Recycling and Disposal Facility, located at 910 Coyote Creek Golf Drive, San Jose, California. BAAQMD Facility #A1812.

Dear Mr. Underwood,

Blue Sky Environmental, LLC is pleased to present this Source Test Plan for the Enclosed Landfill Gas Flare (A-12) at the Kirby Canyon Recycling and Disposal Facility in San Jose, California. Blue Sky Environmental, LLC is approved by the California Air Resources Board as an independent contractor to conduct compliance emission testing. This Source Test Protocol will include the following:

| BAAQMD Source #<br>A-12 Flare                      | Test Parameters/Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compliance Test<br>Condensate on<br>Condensate off | Exhaust: THC, CH <sub>4</sub> , NMOC, NO <sub>x</sub> , CO, CO <sub>2</sub> , O <sub>3</sub><br>NO <sub>x</sub> 0.06 # MMBtu<br>CO 0.3 #/MMBtu<br>SO <sub>x</sub> 300 ppm, calculated from TPS analysis of the fuel<br>NMOC 98% DH or 30 ppm as CH <sub>4</sub> @ 5% O <sub>2</sub><br>Six LFG samples for HHV, H <sub>2</sub> S, CO <sub>2</sub> , N <sub>2</sub> , O <sub>2</sub> , THC, NMOC, CH <sub>4</sub><br>A single sample of LFG will be analyzed for AP42 Table 4.2-1<br>compounds excluding mercury, carbon monoxide and acetone. |

Testing is currently scheduled for January 23<sup>rd</sup>, with a 7:00 am arrival time. If you have any questions, please contact Guy Worthington at 510 525 1261, or 510 508 3469.

- At the flare exhaust, triplicate thirty-minute tests will be performed with the Condensate On and will be repeated with the Condensate Off. Testing will use BAAQMD methods for NO<sub>x</sub> (ST 13A), CO (ST 6), TNMHC's (ST 7-1D), CO<sub>2</sub> (ST-5) and O<sub>2</sub> (ST-14). Testing is designed to determine compliance with the following BAAQMD Permit and Reg 8 Rule 34 conditions listed in the Table above.
- Integrated Tedlar bag samples of the Landfill Gas (LFG) will be collected during each test run, and will be analyzed for HHV, H<sub>2</sub>S, CO<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub>, NMOC and CH<sub>4</sub>, using ASTM D545 (DPA 18 & 3C), EPA 25C and ASTM 5504. A single sample of LFG will be analyzed by EPA TO-15 GC/MS for AP42 Table 4.2-1 compounds excluding mercury, carbon monoxide and acetone. The samples will be analyzed within 72 hours.
- Fuel flow may be measured by BAAQMD Methods 17 & 18. The fuel moisture content will be determined by wet-bulb/dry-bulb measurement. The facility fuel flow meter will be recorded and a fuel analysis will be performed to calculate outlet volumetric flow rate using EPA Method

19. The facility is required to have accurate, operating Flare temperature recording and LFG gas flow monitors.
- Three copies of the compliance test report will be submitted to the client upon completion of the test program and will include analytical test results. The report will include a test description and tables presenting concentrations (ppm), emission rates (lbs/hr) for all sampling parameters. All supporting documents (strip charts, field data sheets, calibrations, calculations, etc.) will also be included. The final report is due to the BAAQMD 60 days after testing has been completed.

TRANSMISSION VERIFICATION REPORT

TIME : 01/08/2008 10:46  
NAME : CORNERSTONE  
FAX : 19255609879  
TEL : 19255609859  
SER. #: 000D7J468894

|              |                 |
|--------------|-----------------|
| DATE, TIME   | 01/08 10:46     |
| FAX NO./NAME | 14157494922     |
| DURATION     | 00:00:33        |
| PAGE(S)      | 03              |
| RESULT       | OK              |
| MODE         | STANDARD<br>ECM |



**KIRBY CANYON RECYCLING & DISPOSAL FACILITY**  
A WASTE MANAGEMENT COMPANY

910 Coyote Creek Golf Drive  
P.O. Box 1870  
Mountain View, CA 94037  
(408) 779-2206  
(408) 779-6165 Fxx

**VIA FAX (415) 749-4922**

January 8, 2008

Tim Underwood  
Principal Air Quality Engineer  
Source Test Division  
Bay Area Air Quality Management District  
939 Ellis Street  
San Francisco, CA 94109

Subject: Source Test Protocol & Test Notification

Dear Mr. Underwood:

Attached please find the Source Test Protocol for compliance emissions testing of the Enclosed Landfill Gas Flare (A-12) at Kirby Canyon Recycling and Disposal Facility in San Jose, CA. If you have any questions, please contact Guy Worthington from the Source Testing Contractor, Blue Sky Environmental, LLC at (510) 525-1261, or (510) 508-3469.

BLUE SKY ENVIRONMENTAL, LLC.

Authority To Construct  
J



BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT

SINCE 1955

ALAMEDA COUNTY  
Tom Bales  
Scott Haggerty  
Janet Lockhart  
Nate Miley

CONTRA COSTA COUNTY  
John Gialla  
Mark Ross  
(Chair)  
Michael Shrimansky  
Gayle B. Ulkerma

MARIN COUNTY  
Harold C. Brown, Jr.

NAPA COUNTY  
Brad Wagenknecht

SAN FRANCISCO COUNTY  
Chris Daly  
Jake McGoldrick  
Gavin Newsom

SAN MATEO COUNTY  
Jerry Hill  
Lisa Chen  
Carol Kidd

SANTA CLARA COUNTY  
Erin Garner  
Yoko Kishimoto  
Liz Kriss  
Patrick Kwok

SOLANO COUNTY  
John F. Silva

SONOMA COUNTY  
Tim Smith  
Pamela Torlak  
(Secretary)

Jack P. Brodbeck  
EXECUTIVE OFFICER/ABCO

May 31, 2007

Kirby Canyon Landfill  
P O Box 1870  
Morgan Hill, CA 95037

Attention: Joe Morse

Application Number: 15617  
Plant Number: 1812  
Equipment Location: 910 Coyote Creek Gif Dr  
Morgan Hill, CA 95037

Dear Applicant:

This is your Authority to Construct the following:

**A-12 Landfill Gas Flare with Condensate Injection System, 5 gallons per minute maximum condensate injection rate, 149 MMBtu/hr**

The equipment described above is subject to condition no. 1437.

**Notification**

Please contact your assigned Permit Engineer, listed in the correspondence section of this letter, in writing, (by letter, fax, or email) at least three days before the initial operation of the equipment so that we may observe the equipment in operation and verify conformance with the Authority to Construct. Operation includes any start-up of the source for testing or other purposes. Operation of equipment without notification to the District may result in enforcement action. **Do not send start-up notifications to the Air Pollution Control Officer.**

**Start-up Period**

After receipt of the start-up letter required above, this Authority to Construct authorizes operation during the start-up period from the date of initial operation noted in your start-up letter until the Permit to Operate is issued, up to a maximum of 90 days. All conditions (specific or implied) of the Authority to Construct are in effect during the start-up period.

**Fees**

District Regulation 3 requires a fee for each new Permit to Operate. You will be invoiced upon receipt of your start-up letter. No permits will be issued until all outstanding fees are paid.

**Implied Conditions**

In the absence of specific permit conditions to the contrary, the throughputs, fuel and material consumption, capacities, and hours of operation described in your permit application will be considered maximum allowable limits. A new permit will be required before any increase in these parameters, or change in raw material handled, may be made.

**Expiration**

In accordance with Regulation 2-1-407, this Authority to Construct expires two years from the date of issuance unless the authority to construct has been renewed.

*Steve M. A.*

THE AIR DISTRICT IS A CERTIFIED GREEN BUSINESS

PRINTED USING SOY-BASED INKS ON 100% POST-CONSUMER RECYCLED CONVENTIONAL PAPER

939 ELLIS STREET • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • WWW.BAAQMD.GOV



Trade Secret

Unless you have already designated specifically identified materials in your permit application as trade secret, under the California Public Records Act, all data in your permit application, the permit itself and all permit conditions will be considered a matter of public record and may be disclosed to a third party. Please contact your permit reviewer immediately if you wish to amend your permit application submittals or to designate certain permit conditions as trade secret. Unless we hear from you within ten (10) calendar days of this letter, except for materials which have been previously designated as trade secret, you shall be deemed to have waived any claim of trade secret with respect to all materials in the District's files relating to this permit application.

Right of Entry

The Air Pollution Control Officer of the Bay Area Air Quality Management District, the Chairman of the California Air Resources Board, the Regional Administrator of the Environmental Protection Agency, and/or their designees, upon presentation of credentials, shall be granted the right of entry to any premises on which an air pollution source is located for the purposes of:

- A. The inspection of the source
- B. The sampling of materials used at the source
- C. The conduct of an emissions source test
- D. The inspection of any records required by District rule or permit condition.

Correspondence

Please include your application number with any correspondence with the District. The District's regulations may be viewed online at [www.baaqmd.gov](http://www.baaqmd.gov). If you have any questions on this matter, please call Tamiko D. Endow, Air Quality Engineer II at (415) 749-4939. Startup information may be faxed to the Engineering Division at 415-749-5030.

Very truly yours,

Jack P. Broadbent  
Executive Officer/APCO

by   
Engineering Division

SBL:TDE:DT



BAY AREA  
AIR QUALITY  
MANAGEMENT

DISTRICT  
SINCE 1955

COND# 1437 -----

Condition #1437  
P#1812, Kirby Canyon Landfill  
For: S-1, Active Landfill with Landfill Gas Collection  
System; A-11, Landfill Gas Flare  
A-12, Landfill Gas Flare with Condensate Injection System, 5  
gallons per minute maximum condensate injection rate, 149  
MMBtu/hr

1. The owner/operator shall comply with the following waste acceptance and disposal limits and shall obtain the appropriate New Source Review permit, if one of the following limits is exceeded:
  - a. Except for temporary emergency situations approved by the Local Enforcement Agency, the total waste accepted and placed at the landfill shall not exceed 2600 tons in any day. (Basis: Regulation 2-1-301)
  - b. The total cumulative amount of all waste placed in the landfill shall not exceed 19.84 million tons. Exceedance of the cumulative tonnage limit is not a violation of the permit and does not trigger the requirement to obtain a New Source review permit, if the operator can, within 60 days of the date of discovery of the exceedance, provide documentation to the District demonstrating, in accordance with BAAQMD Regulation 2-1-234.8, that the limit should be higher. (Basis: Regulation 2-1-234.8)
  - c. The maximum design capacity of the landfill (total volume of all wastes placed in the landfill) shall not exceed 36.40 million cubic yards. (Basis: Regulation 2-1-301)
2. Handling Procedures for Soil Containing Volatile Organic Compounds
  - a. The procedures listed below in subparts b-1 do not apply if the following criteria are satisfied. However, the record keeping requirements in subpart m, below, are applicable.
    - i. The owner/operator has appropriate documentation demonstrating that either the organic content of the soil or the organic concentration above the soil is below the "contaminated" level (as defined in Regulation 8, Rule 40, Sections 205, 207, and 211). The handling of soil containing VOCs in concentrations below the "contaminated" level is subject to Part 3 below.
    - ii. The owner/operator has no documentation to prove that soil is not contaminated, but source of the soil is known and there is no reason to suspect that the soil might contain organic compounds.
  - b. The owner/operator shall provide verbal notification to the Compliance and Enforcement Division of the owner/operator's intention to accept contaminated soil at the facility at least 24 hours in advance of receiving the contaminated soil. The owner/operator shall provide an estimate of the amount of

*From the Office of the Director*

The Air District is a Certified Green Business

Printed using soy-based inks on 100% post-consumer recycled content paper



939 ELLIS STREET • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • WWW.BAAQMD.GOV



BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT  
SINCE 1955

contaminated soil to be received, the degree of contamination (range and average VOC Content), and the type or source of contamination.

c. Any soil received at the facility that is known or suspected to contain volatile organic compounds (VOCs) shall be handled as if the soil were contaminated, unless the owner/operator receives test results proving that the soil is not contaminated. To prove that the soil is not contaminated, the owner/operator shall collect soil samples in accordance with Regulation 8.40-601 within 24 hours of receipt of the soil by the facility. The organic content of the collected soil samples shall be determined in accordance with Regulation 8.40-602.

i. If these test results indicate that the soil is still contaminated or if the soil was not sampled within 24 hours of receipt by the facility, the owner/operator must continue to handle the soil in accordance with the procedures set forth in subparts e-1, below, until the soil has completed treatment or has been placed in a final disposal location and adequately covered. Storing soil in a temporary stockpile or pit is not considered treatment. Co-mingling, blending, or mixing of soil lots is not considered treatment.

ii. If these test results indicate that the soil - as received at the facility - has an organic content of 50 ppm or less, then the soil is no longer contaminated and shall be handled in accordance with the procedures in Part 3 instead of Part 2, subparts e-1.

d. Any contaminated soil received at the facility shall be clearly identified as contaminated soil, shall be handled in accordance with subparts e-1, below, and shall be segregated from non-contaminated soil. Contaminated soil lots may not be co-mingled, blended, or otherwise mixed with non-contaminated soil lots prior to treatment, reuse, or disposal. Mixing soil lots in an attempt to reduce the overall concentration of the contaminated soil or to circumvent any requirements or limits is strictly prohibited.

e. On-site handling of contaminated soil shall be limited to no more than 2 on-site transfers per soil lot. For instance, unloading soil from off-site transport vehicles into a temporary storage pile is 1 transfer. Moving soil from a temporary storage to a staging area is 1 transfer. Moving soil from a temporary storage pile to a final disposal site is 1 transfer. Moving soil from a staging area to a final disposal site is 1 transfer. Therefore, unloading soil from off-site transport into a temporary storage pile and then moving the soil from that temporary storage pile to the final disposal site is allowed. Unloading soil from off-site transport into a staging area and then moving the soil from that staging area to the final disposal site is allowed. However, unloading

*Executive Order*

The Air District is a Certified Green Business

Printed using soy-based ink on 100% post-consumer recycled content paper



939 ELLIS STREET • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • WWW.BAAQMD.GOV



BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT  
SINCE 1955

Soil from off-site transport to a temporary storage pile, moving this soil to a staging area, and then moving the soil again to a final disposal site is 3 on site transfers and is not allowed.

- f. If the contaminated soil has an organic content of less than 500 ppmw, the contaminated soil shall be treated, deposited in a final disposal site, or transported off-site for treatment within 90 days of receipt at the facility.
- g. If the contaminated soil has an organic content 500 ppmw or more, the contaminated soil shall be treated, deposited in a final disposal site, or transported off-site for treatment within 45 days of receipt at the facility.
- h. All active storage piles shall meet the requirements of Regulation 8-40-384 by using water sprays, vapor suppressants or approved coverings to minimize emissions. The exposed surface area of any active storage pile (including the active face at a landfill) shall be limited to 6000 ft<sup>2</sup>. The types of storage piles that may become subject to these provisions include (but are not limited to) truck unloading areas, staging areas, temporary stockpiles, soil on conveyors, bulldozers or trucks, the active face of a landfill, or other permanent storage pile at the final disposal location.
- i. All inactive storage piles shall meet the requirements of Regulation 8-40-385 including the requirement to cover contaminated soil during periods of inactivity longer than one hour. The types of storage piles that may become subject to these provisions include (but are not limited to) soil on trucks or other on-site equipment, staging areas, temporary stockpiles, and the permanent storage pile at the final disposal location. District approved coverings for inactive storage piles include continuous heavy-duty plastic sheeting (in good condition, joined at the seams, and securely anchored) or encapsulating vapor suppressants (with re-treatment as necessary to prevent emissions).
- j. The owner/operator must:
  - i. Keep contaminated soil covered with continuous heavy-duty plastic sheeting (in good condition, joined at the seams, and securely anchored) whenever soil is to be stored in temporary stockpiles or during on-site transport in trucks. Soil in trucks shall not be left uncovered for more than 1 hour.
  - ii. Establish a tipping area for contaminated soils near the active face that is isolated from the tipping area for other wastes.
  - iii. Spray contaminated soil with water or vapor suppressant immediately after dumping the soil from a truck at the tipping area.
  - iv. Ensure that all contaminated soil is transferred from the tipping area to the active face immediately after spraying with



939 ELLIS STREET • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • [WWW.BAAQMD.GOV](http://WWW.BAAQMD.GOV)

*Spencer J. Fox*

The Air District is a Certified Green Business  
Printed using soy-based ink on 100% post-consumer recycled content paper



BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT  
SINCE 1955

water or vapor suppressant.

- v. Ensure that contaminated soil in the tipping area is not disturbed by subsequent trucks. Trucks shall not drive over contaminated soil in the tipping area or track contaminated soil out of the tipping area on their wheels.
- vi. Spray contaminated soil on the active face with water or vapor suppressant (to keep the soil visibly moist) until the soil can be covered with an approved covering.
- vii. Limit the area of exposed soil on the active face to no more than 8000 ft<sup>2</sup>.
- viii. Ensure that contaminated soil spread on the active face is completely covered on all sides with one of the following approved coverings: at least 6 inches of clean compacted soil, at least 12 inches of compacted garbage, or at least 12 inches of compacted green waste.
- ix. Ensure that covering of soil on the active face is completed within one hour of the time that the soil was first dumped from a truck at the tipping area.
- k. Contaminated soil shall not be used as daily, intermediate, or final cover material for landfill waste operations unless the requirements of Regulation 8, Rule 40, Sections 116 or 117 have been satisfied.
- l. Contaminated soil is considered to be a decomposable solid waste pursuant to Regulation 8, Rule 34. All contaminated soil disposed of at a site shall be included in any calculations of the amount of decomposable waste in place that are necessary for annual reporting requirements or for purposes of 8-34-111 or 8-34-304.
- m. The owner/operator shall keep the following records for each lot of soil received, in order to demonstrate on-going compliance with the applicable provisions of Regulation 8, Rule 40.
  - i. For all soil received by the facility (including soil with no known contamination), record the arrival date at the facility, the soil lot number, the amount of soil in the lot, the organic content or organic concentration of the lot (if known), the type of contamination (if any), and keep copies of any test data or other information that documents whether the soil is contaminated (as defined in 8-40-205) or not contaminated, with what, and by how much.
  - ii. If the soil is tested for organic content after receipt by the facility, record the sampling date, test results, and the date that these results were received.
  - iii. For all on-site handling of contaminated soil, use a checklist or other approved method to demonstrate that appropriate procedures were followed during all on-site handling activities. One checklist shall be completed for each day and for each soil lot.

*Steve Hagerty*

The Air District is a Certified Green Business

printed using soy-based inks on 100% post-consumer recycled content paper

939 ELLIS STREET • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • [WWW.BAAQMD.GOV](http://WWW.BAAQMD.GOV)





BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT  
SINCE 1955

(if multiple lots are handled per day).

- iv. For soil aerated in accordance with 8-40-116 or 117 record the soil lot number, the amount of soil in the lot, the organic content, the final placement date, the final placement location, and describe how the soil was handled or used on-site.
- v. For final disposal at a landfill, record on a daily basis the soil lot number, the amount of soil placed in the landfill, the disposal date, and the disposal location.

All records shall be retained for at least 5 years from the date of entry and shall be made available for District inspection upon request. (basis: Regulations 8-40-301, 8-40-304 and 8-40-305)

- 3. Low VOC soil (soil that contains 50 ppmv or less of VOC) is not considered to be "contaminated soil" and may be used as daily, intermediate, or final cover material for landfill waste operations if the organic concentration above the soil does not exceed 50 ppmv (expressed as methane, C1). To demonstrate compliance with this requirement, each lot of soil to be used as cover material shall be randomly screened for VOC surface emissions (in such a manner as to be representative of the entire lot) using the testing procedures outlined in Regulation 8-40-604. The owner/operator shall keep the following records for each lot of soil subject to this requirement:
  - a. The soil lot number as established in part 2m.i. (above).
  - b. The time and date of the soil screening.
  - c. The name and affiliation of the person performing the monitoring.
  - d. The results of the screening and an acknowledgement that the procedures outlined in Regulation 8-40-604 were used.Soil presumed to be low VOC soil that is found to have a surface VOC concentration greater than 50 ppmv as described above shall be considered contaminated soil and will be subject to the requirements of part 2 of these conditions. (basis: Regulations 8-40-205, 8-40-604)
- 4. Water and/or dust suppressants shall be applied to all unpaved roadways, active soil removal, and fill areas as necessary to prevent visible particulate emissions. Paved roadways shall be kept sufficiently clear of dirt and debris to prevent visible particulate emissions from vehicle traffic or wind. (basis: Regulations 2-1-403, 8-301, and 8-305)
- 5. All collected landfill gas shall be vented to properly operating Landfill Gas Flare (A-11 or A-12). Raw landfill gas shall not be vented to the atmosphere, except for unavoidable landfill gas emissions that occur during collection system installation, maintenance, or repair that is performed in compliance with Regulation 8, Rule 34, Sections 113, 116, 117, or 118 and for component or surface leaks that do not

*Steve M. Aff*



The Air District is a Certified Green Business  
Printed using soy-based ink on 100% post-consumer recycled content paper

939 Ellis Street • San Francisco California 94109 • 415.771.6000 • [WWW.BAAQMD.GOV](http://WWW.BAAQMD.GOV)



BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT  
SINCE 1955

exceed the limits specified in 8-34-301.2 or 8-34-303.  
(basis: Regulation 8-34-301)

6. The owner/operator shall apply for and receive an Authority to Construct before modifying the landfill gas collection system described in Parts 6a-b below. Increasing or decreasing the number of wells or collectors, changing the length of collectors, or changing the locations of wells or collectors are all considered to be modifications that are subject to the Authority to Construct requirement.

a. The owner/operator has been issued a Permit to Operate for the landfill gas collection system components listed below. Well and collector locations, depths, and lengths are as described in detail in Permit Applications #2232 and #7835.

Current

|                                            |    |
|--------------------------------------------|----|
| Total Number of Wells and Collectors:      | 36 |
| Total Number of Leachate Collection Wells: | 4  |

b. The owner/operator was issued an Authority to Construct for additional landfill gas collection system components as described in Permit Application #11730. Additional wells installed under this Authority will be added to the Title V permit using the minor permit amendment procedures identified in Regulation 2-6-414.

(basis: Regulations 2-1-301, 8-34-301.1, 8-34-304, 8-34-305)

7. The landfill gas collection system described in Part 6a shall be operated continuously as defined in Regulation 8-34-219. Wells shall not be shut off, disconnected or removed from operation without written authorization from the APCO, unless the owner/operator complies with all applicable requirements of Regulation 8, Rule 34, Sections 113, 116, 117, and 118. (basis: Regulation 8-34-301.1)

8. The heat input to the A-11 Landfill Gas Flare shall not exceed 1,080 million BTU per day and shall not exceed 394,200 million BTU per year. When A-12 Landfill Gas Flare is started up, the A-11 Landfill Gas Flare Shall be removed from service after a 3 month startup and commissioning period. The owner/operator shall ensure that the heat input to the A-12 Landfill Gas Flare does not exceed 3,576 million BTU/day and does not exceed 1,305,240 million BTU/year. In order to demonstrate compliance with this part, the owner/operator shall calculate and record, on a monthly basis, the maximum daily and total monthly heat input to the flare based on: (a) the landfill gas flow rate recorded pursuant to part 14h, (b) the average methane concentration in the landfill gas measured in most recent source test, and (c) high heating value for methane of 1013 BTU per cubic foot at 60 degrees F. (basis: Regulation 2-1-301)

9. The minimum combustion zone temperature of the Flare shall be determined by the results of the most recent source test in which compliance with all

*Ed Gove, M.S. AIA*

The BAAQMD is a Certified Green Business

Printed using soy-based ink on 100% post-consumer recycled content paper

939 ELLIS STREET • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • WWW.BAAQMD.GOV





BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT  
SINCE 1965

applicable requirements was demonstrated. The minimum combustion zone temperature shall be the average temperature measured during the complying source test minus 50 degrees F. Once the minimum temperature has been established, it shall be maintained during all periods of flare operation. Compliance with the temperature limit shall be based on a 3-hour averaging period. Under no circumstances shall the minimum flare temperature be less than 1,400 degrees F. Based on the results of required source testing of the flares, the APCD may add an explicit temperature limit to the conditions for the flare in accordance with the procedures identified in Regulation 2-6-414 or 2-6-415. (Basis: Regulation 8-34-301.8)

10. Emissions of Nitrogen Oxides (NOx) from the Flare A-11 shall not exceed 0.06 pounds per million BTU. The owner/operator shall ensure that emissions of Nitrogen Oxides (NOx) from the Flare A-12 does not exceed 0.05 pounds per million BTU (calculated as NO2). (basis: RACT and Offsets)
11. The owner/operator shall ensure that the emissions of Carbon Monoxide (CO) from the Flares A-11 and A-12 do not exceed 0.3 pounds per million BTU. (basis: RACT and Offsets).
12. To demonstrate compliance with Regulation 8, Rule 34, Sections 301.8 and 412, and the above requirements, the owner/operator shall ensure that a District approved source test is conducted on the Landfill Gas Flare, A-12, within 90 days of startup, followed by annual source tests thereafter. The owner/operator shall obtain prior approval from the District's Source Test Manager for the location of sampling ports and source testing procedures. The owner/operator shall ensure that source tests continue to be performed annually on the Landfill Gas Flare (A-11) until it is removed from service. The startup and annual source test shall determine the following:
  - a. landfill gas flow rate to the flare (dry basis);
  - b. concentrations (dry basis) of carbon dioxide (CO2), nitrogen (N2), oxygen (O2), total hydrocarbons (THC), methane (CH4), and total non-methane organic compounds (NMOC) in the landfill gas;
  - c. stack gas flow rate from the flare (dry basis);
  - d. concentrations (dry basis) of nitrogen oxides (NOx), carbon monoxide (CO), THC, CH4, NMOC, SO2, and O2 in the flare stack gas;
  - e. the NMOC destruction efficiency achieved by the flare; and
  - f. the average combustion temperature in the flare during the test period.Annual source tests shall be conducted no earlier than 9 months and no later than 12 months after the previous source test. The Source Test Section of the District shall be contacted to obtain approval of the source test procedures at least 14 days in advance of each source test. The Source Test Section shall be notified of the scheduled test date at least 7 days in

*Franklin J. Fox*

The Air District is a Certified Green Business

Printed using soy-based inks on 100% post-consumer recycled content paper



939 Ellis Street • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • WWW.BAAQMD.GOV



BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT  
SINCE 1955

advance of each source test. The source test report shall be submitted to the Compliance and Enforcement Division and to the Source Test Section within 45 days of the test date. (basis: RACT, Regulations 2-1-391, 8-34-201.3, 8-34-412, and 9-1-302)

13. The owner/operator shall conduct a characterization of the landfill gas concurrent with the annual source test required by part 12 above. The landfill gas sample shall be drawn from the main landfill gas header. In addition to the compounds listed in part 11b, the landfill gas shall be analyzed for all the compounds listed in the most recent version of EPA's AP-42 Table 2-4-1 excluding acetone, carbon monoxide, and mercury. All concentrations shall be reported on a dry basis. The test report shall be submitted to the Compliance and Enforcement Division within 45 days of the test date. After conducting three annual landfill gas characterization tests, the owner/operator may request to remove specific compounds from the list of compounds to be tested for if the compounds have not been detected, have no significant impact on the cancer risk determination for the site, and have no significant impact on the hazard index determination for the site. (basis: Regulation 2-5 and Regulation 8-34-412)
- \*14. The landfill gas condensate injection rate into the flare shall not exceed 5 gallons per minute. Total landfill gas condensate injection throughput shall not exceed 1,500,000 gallons during any consecutive twelve-month period. The owner/operator may submit a written petition to the District to increase the landfill gas condensate injection rate subject to current District-approved source test results. (basis: Regulation 2-5)
15. To demonstrate compliance with the above conditions, the owner/operator shall maintain the following records in a District approved logbook.
  - a. The total amount of municipal solid waste received at S-1 recorded on a daily basis. A summary of the daily waste acceptance records for each calendar month.
  - b. For each area or cell that is not controlled by a landfill gas collection system, a record of the date that waste was initially placed in the area or cell. The cumulative amount of waste placed in each uncontrolled area or cell recorded on a monthly basis.
  - c. If the owner/operator plans to exclude an uncontrolled area or cell from the collection system requirement, the owner/operator shall also record the types and amounts of all non-decomposable waste placed in the area and the percentage (if any) of decomposable waste placed in the area.
  - d. Low VOC soil screening data, pursuant to part 3.
  - e. The dates, locations, and frequency per day of all watering activities on unpaved roads or active soil or fill areas. The dates, locations, and type of

*James D. A.*



The Air District is a Certified Green Business

Printed using soy-based ink on 100% post consumer recycled content paper

939 ELLIS STREET • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • [WWW.BAAQMD.GOV](http://WWW.BAAQMD.GOV)



BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT  
SINCE 1955

any dust suppressant applications. The dates and description of all paved roadway cleaning activities. All records shall be summarized monthly.

- f. The initial operation date for each new landfill gas well and collector.
- g. An accurate map of the landfill that indicates the locations of all refuse boundaries and the locations of all wells and collectors (using unique identifiers) that are required to be operating continuously pursuant to part 8a. Any areas containing only non-decomposable waste shall be clearly identified. This map shall be updated at least once a year to indicate changes in refuse boundaries and to include any newly installed wells and collectors.
- h. The operating times and the landfill gas flow rate to the Landfill Gas Flare recorded on a daily basis. A monthly summary of the heat input to the Landfill Gas Flare pursuant to part 8 shall be calculated and recorded.
- i. Continuous records of the combustion zone temperature for the Landfill Gas Flare during all hours of operation.
- j. Records of all test dates and test results performed to maintain compliance with parts 12 and 13 above or any applicable rule or regulation.
- k. Records of landfill gas condensate injection throughput and the duration of the injection recorded daily.

All records shall be maintained on site or shall be made readily available to District staff upon request for at least 5 years from the date of entry. These recordkeeping requirements do not replace the recordkeeping requirements contained in any applicable rules or regulations. (basis: Cumulative Increase, 2-1-301, 2-6-301, 3-301, 3-305, 8-2-301, 8-34-301, 8-34-304, 8-34-301, and 9-1-302)

16. The annual report required by BAAQMD Regulation 8-34-411 shall be submitted in two semi-annual increments. The reporting period for the first increment of the Regulation 8-34-411 annual report that is submitted subsequent to the issuance of the MPR Permit for this site shall be from December 1, 2002 through August 31, 2003. This first increment report shall be submitted by September 30, 2003. The reporting periods and report submittal due dates for all subsequent increments of the Regulation 8-34-411 report shall be synchronized with the reporting periods and report submittal due dates for the semi-annual MPR Permit monitoring reports that are required by Section I.F. of the MPR Permit for this site. (basis: Regulation 8-34-411 and 40 CFR Part 63.1980(a))
17. The gas collection system operating requirements listed below shall replace the well head requirements identified in Regulation 3-4-305.2 through 8-34-305.4 for the specified wells and collectors. All wells and



939 ELLIS STREET • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • WWW.BAAQMD.GOV

*Approved by the City*  
The Air District is a Certified Green Business  
• Printed using soy-based inks on 100% post-consumer recycled content paper



BAY AREA  
AIR QUALITY  
MANAGEMENT  
DISTRICT

SINCE 1955

collectors remain subject to the Regulation 8-34-305.1 requirement to maintain vacuum at each well head.

- a. The Regulation 8-34-305.2 temperature limit shall not apply to the Wells 36, 37, 41, 42, 51, and 52, provided that the landfill gas temperature at each of the wells 36, 37, 41, 42, 51, and 52 does not exceed 145 degrees F (63 degrees C).
- b. The owner/operator shall demonstrate compliance with the alternative wellhead landfill gas temperature limit in 17(a) above by monitoring the temperature of each wellhead on a monthly basis, in accordance with Regulation 8-34-505.
- c. All records to demonstrate compliance with Part 17(a) and all applicable sections of BAAQMD Regulation 8, Rule 34 shall be recorded in a District-approved log and made available to District staff upon request in accordance with Regulation 8-34-501.4, 501.9, and 414.
- d. If the temperatures measured at any of the Part 17(a) wells are found to exceed the temperature limit in Part 17(a), the owner/operator shall take all measures necessary to investigate the possibility of subsurface fires, including landfill gas testing for carbon monoxide (CO) on those landfill gas collection wells in Part 17(a) that exceed the operating temperature limit. If a fire is suspected, the owner/operator shall employ all means as appropriate to extinguish the fire, repair the well(s), and bring the well(s) back into service (basis: Regulation 8-34-301.2, 8-34-303, and 8-34-305, 46 CFR Part 60.755(a) and 60.759)

*Board Chair*

The Air District is a Certified Green Business

Printed using soy-based inks on 100% post-consumer recycled content paper



939 ELLIS STREET • SAN FRANCISCO CALIFORNIA 94109 • 415.771.6000 • [WWW.BAAQMD.GOV](http://WWW.BAAQMD.GOV)