

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

41 70 53

#41

C rating

**EMISSION TESTS ON THE PUENTE HILLS
ENERGY FROM LANDFILL GAS (PERG)
FACILITY - UNIT 400, SEPTEMBER 1993**

Prepared For:

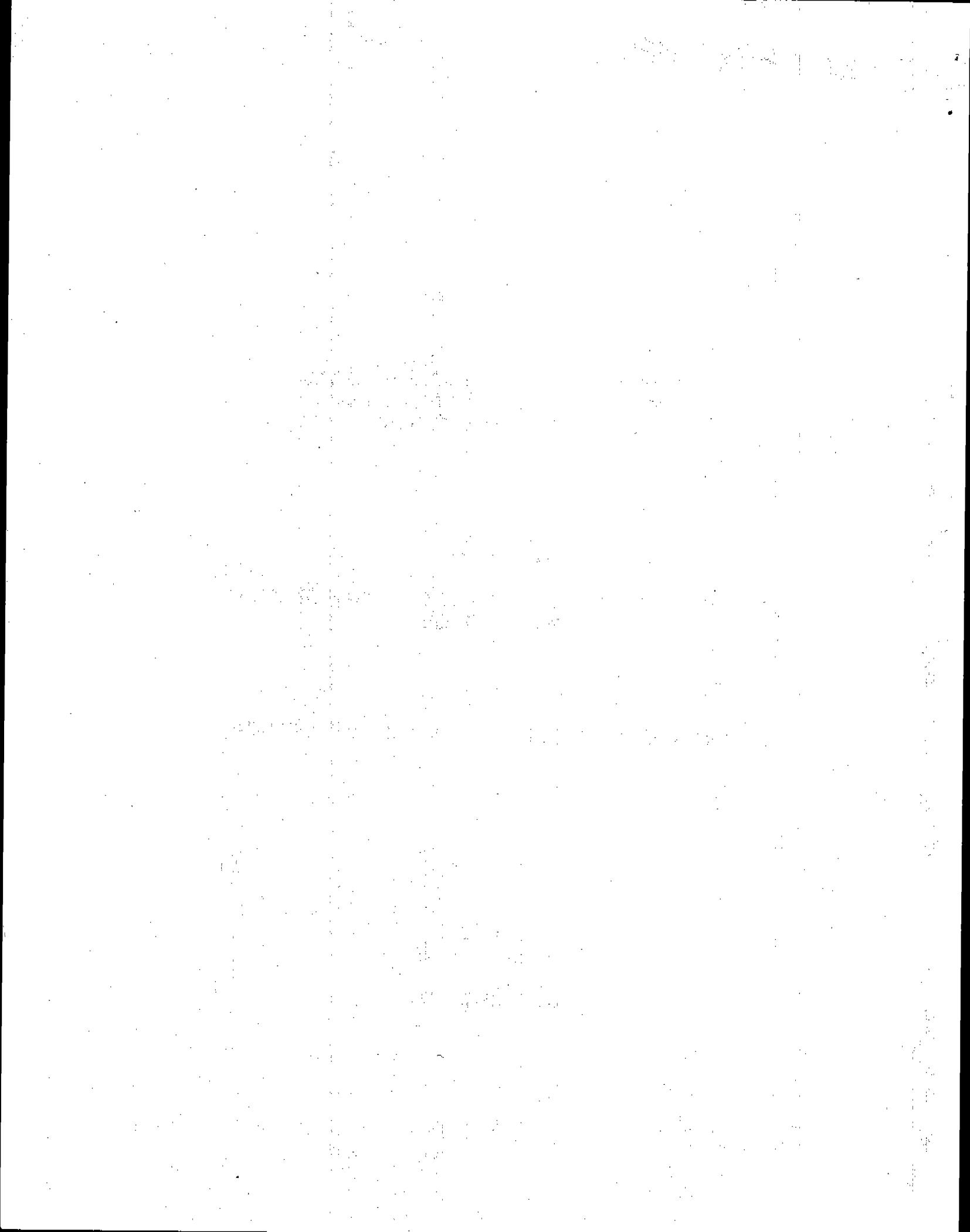
**COUNTY SANITATION DISTRICTS OF LOS ANGELES COUNTY
Whittier, California**

For Submittal To:

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

Prepared By:

Craig H. Fry


**CARNOT
Tustin, California**

NOVEMBER 1993

CARNOT

LAC1D-10242/R023D108.T

63

MEMORANDUM

#41

County Sanitation Districts
of Los Angeles County
218-699-7411

310

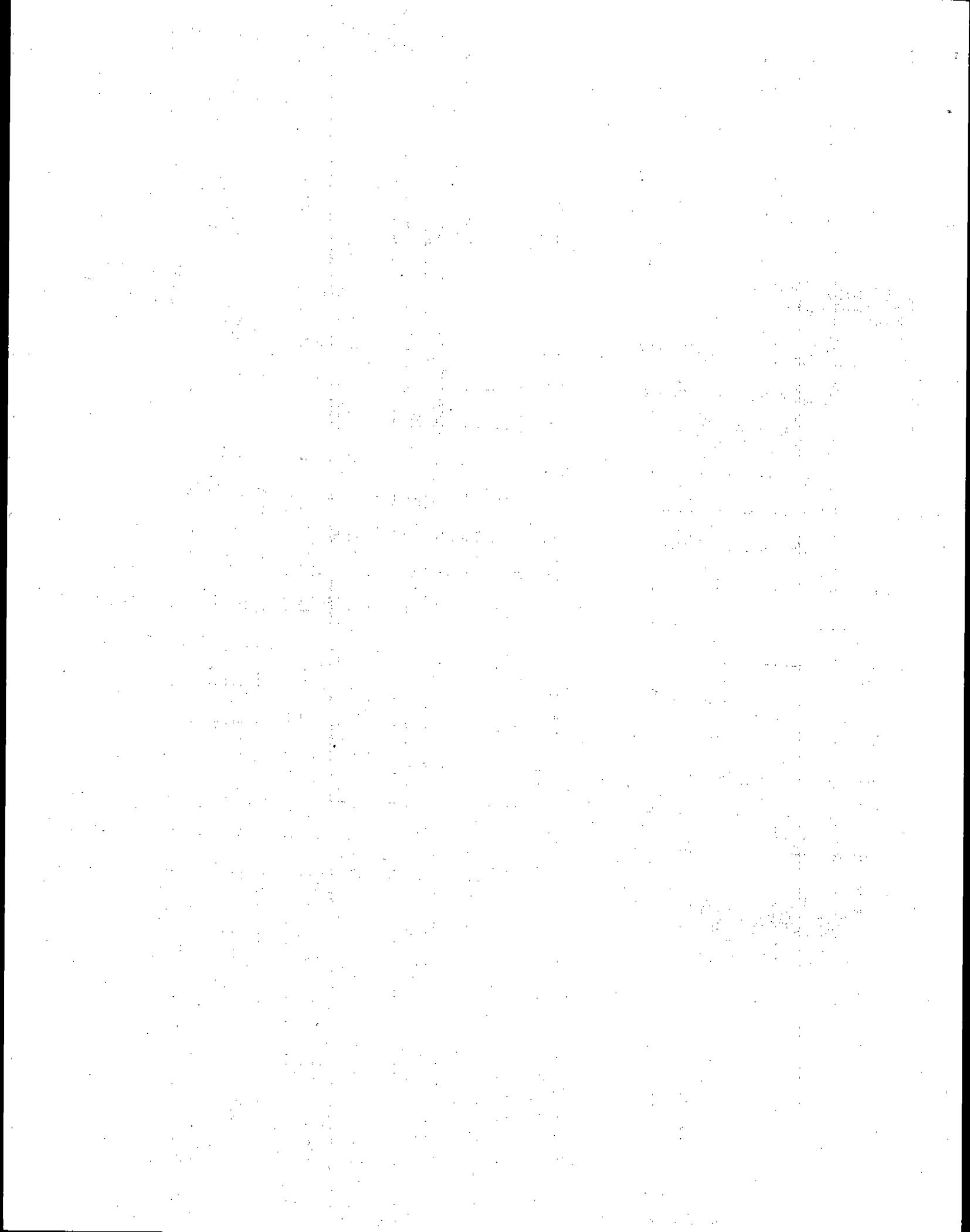
P.O. Box 4998
Whittier, CA 90607
218-685-5217
310

To: STEVE ROE

Date: 9/12/94

From: DAVID FREEMAN

Subject: Perco Boiler Test Results


HERE IS THE INFORMATION YOU REQUESTED.
IF YOU HAVE ANY QUESTIONS OR NEED MORE
INFORMATION, PLEASE CALL FRANK CAPONE.

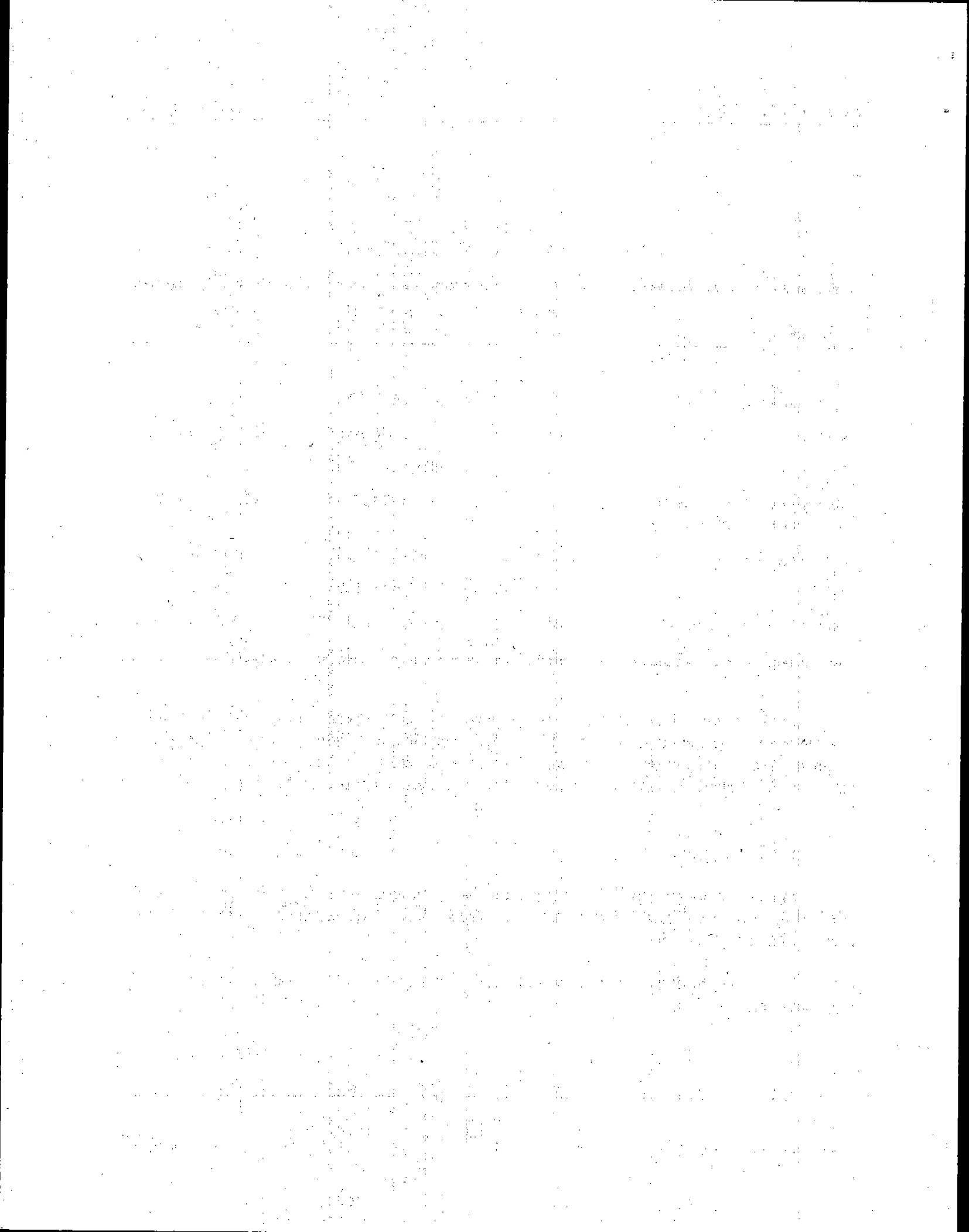
(310) 699-7411 EXT. 2460

FORM 85

received

9/15/94

TABLE 3-2
PERG INLET TEST PROCEDURES


Parameter	Sample Medium	Analytical Technique	Reference Method
O ₂ , CO ₂ and N ₂	Tedlar Bag	GC/TCD	SCAQMD 10.1
Moisture	Impinger Train	Gravimetric	SCAQMD 4.1
Flow Rate		Plant Flow Meter	
Methane and Total Gaseous Non-Methane Organics	Tedlar Bag	GC/FID	SCAQMD 25.2
Trace Organics	Tedlar Bag	GC/PID/ELCD	EPA T03
H ₂ S	Tedlar Bag	GC/FPD/ELCD	EPA 15
Reduced Sulfur Compounds	Tedlar Bag	GC/FPD/ELCD	EPA 15

Duplicate emissions measurements were performed to determine O₂, CO₂, CO and NO_x concentrations. The average concentrations were determined during each test for a period of 70 minutes. This test average was then corrected for measured system bias and drift. Exhaust N₂ data was calculated by difference from the concentration of the other major exhaust gas components.

3.3.2 Moisture

Moisture was measured in both the inlet and outlet streams of the boiler. SCAQMD Method 4.1 was used for the determinations. Duplicate inlet measurements were made with a separate Method 4.1 train.

The moisture determinations of the boiler exhaust were made in combination with the particulate matter tests.

TABLE 3-3
PERG EXHAUST TEST PROCEDURES

Parameter	Sample Medium	Analytical Technique	Reference Method
O ₂	CEM	Micro Fuel Cell	SCAQMD 100.1
CO ₂	CEM	NDIR	SCAQMD 100.1
NO _x	CEM	Chemiluminescence	SCAQMD 100.1
CO	CEM	NDIR/GFC	SCAQMD 100.1
SO _x	Impinger Train	Barium Thorin Titration	SCAQMD 6.1
Moisture	Impinger Train	Gravimetric	SCAQMD 4.1
Flow Rate	Pitot Tube	Differential Pressure	SCAQMD 2.1
Methane and Total Gaseous Non-Methane Organics	Stainless steel tank w/H ₂ O knockout	GC/FID for tank fraction TOC analysis for H ₂ O fraction	Modified SCAQMD 25.1
Particulate Matter	Wet Impingement Train	Gravimetric	SCAQMD 5.1
Trace Organics	Tedlar Bag	GC/PID/ELCD	EPA T03

3.3.3 Flow Rate

Landfill gas flow rate into the boiler was set to specification using existing LACSD instrumentation on site, and was monitored and recorded throughout the test period. The inlet gas density is calculated using the concentrations of oxygen, carbon dioxide and methane. Outlet gas flow rate was determined in conjunction with all isokinetic tests using a combined pitot probe system.

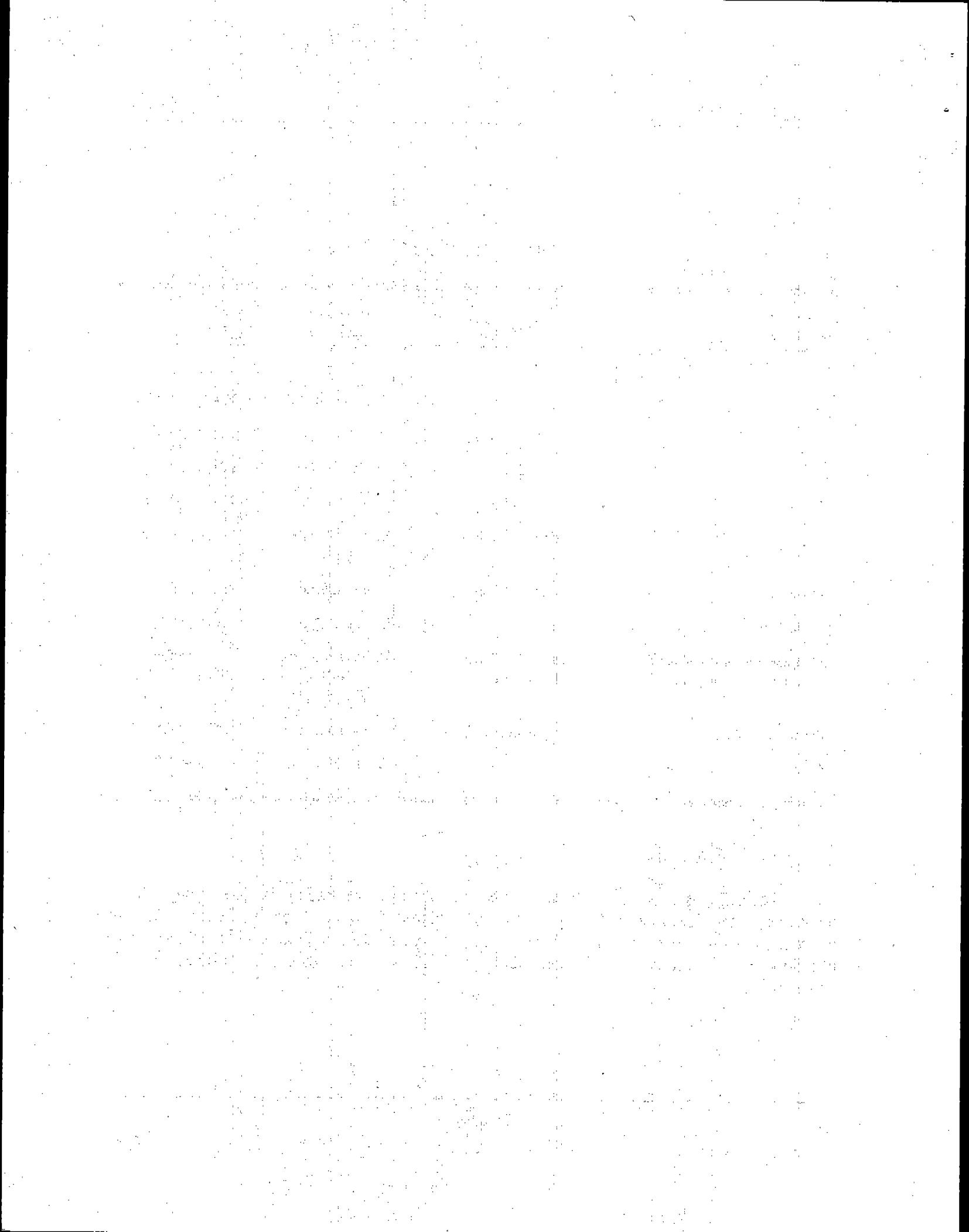
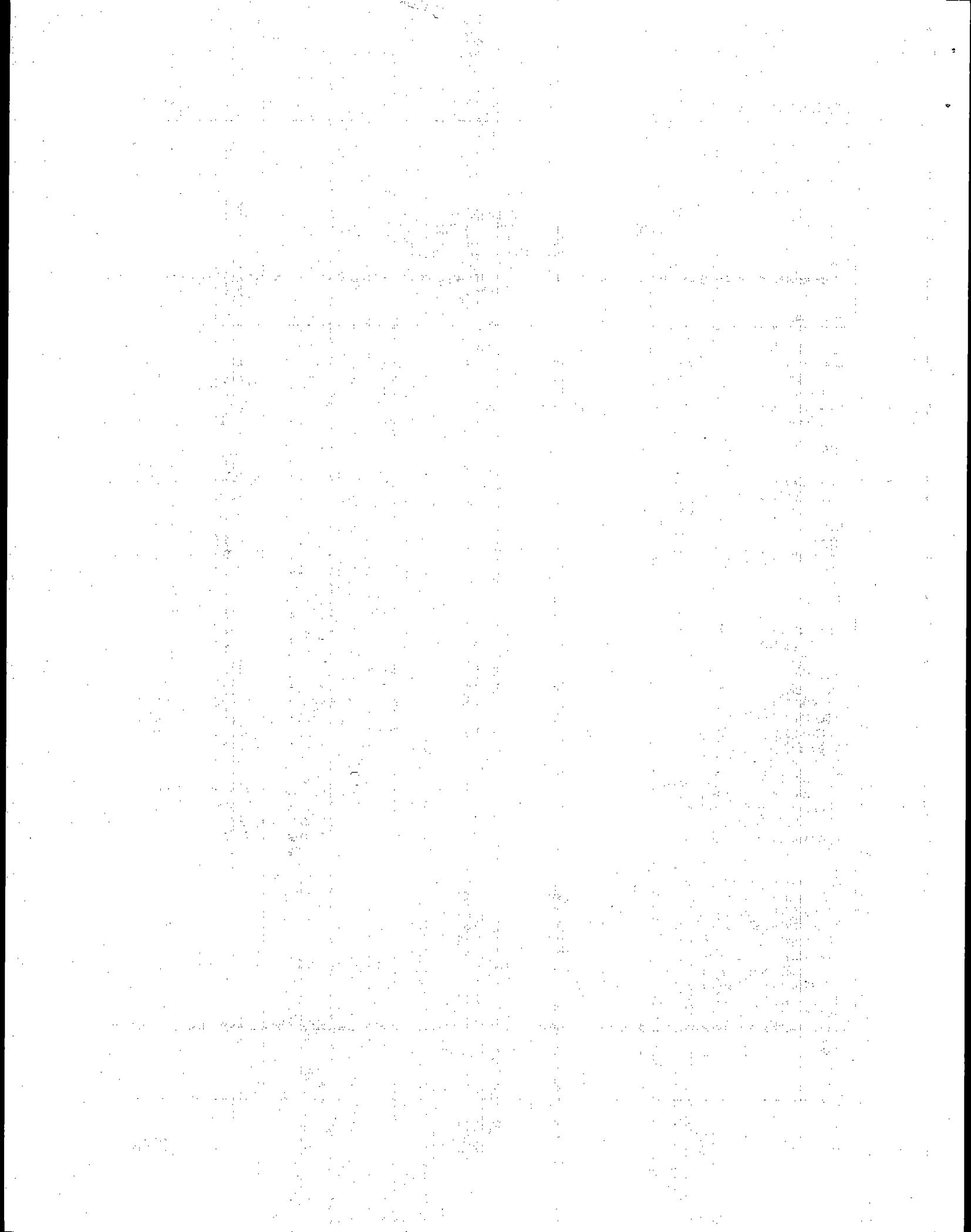
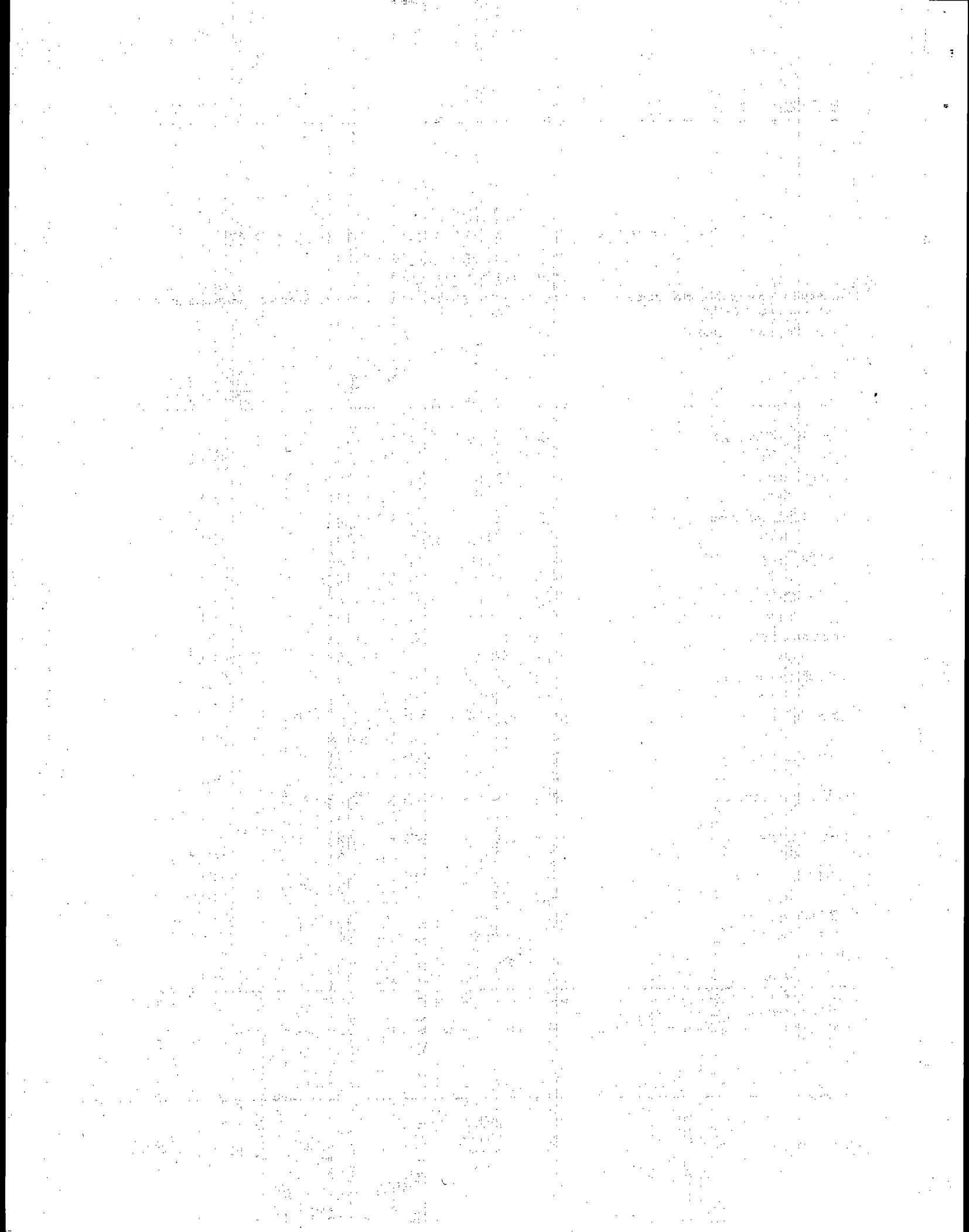



TABLE 4-1
GENERAL RESULTS - PERG UNIT NO. 400
SEPTEMBER 29, 1993

Parameter	INLET			EXHAUST GAS		
	First Run	Second Run	Average	First Run	Second Run	Average
O ₂ , % dry	4.03	3.79	3.91	5.22	5.12	5.17
CO ₂ , % dry	31.6	31.8	31.7	14.11	14.17	14.14
N ₂ , % dry	23.2	22.4	22.8	80.7	80.7	80.7
H ₂ O, %	6.0	7.4	6.7	15.9	16.1	16.0
Flow Rate, dscfm	11,000	10,740	10,870	69,460	70,080	69,770
Temperature, °F				319	326	323
NO:						
ppm				17.8	16.7	17.3
ppm @ 3% O ₂				20.3	18.9	19.6
lb/hr (as NO ₂)				8.99	8.51	8.75
CO:						
ppm				10.9	8.2	9.6
ppm @ 3% O ₂				12.4	9.3	10.9
lb/hr				3.35	2.54	2.95
SO ₂						
ppm				16.4	15.0	15.7
ppm @ 3% O ₂				18.7	17.0	17.9
lb/hr (as SO ₂)				11.5	10.6	11.1
HC: *						
CH ₄ ppm	429,000	432,000	430,500	1.13	1.04	1.09
TGNMO ppm	5,940	6,450	6,195	ND<2	ND<2	ND<2
TGNMO @ 3% O ₂	--	--	--	<2.3	<2.3	<2.3
TGNMO lb/hr (as CH ₄)	165.29	175.24	170.26	<0.35	<0.35	<0.35
Destruction Eff. %	--	--	--	>99.8	>99.8	>99.8
Particulate:						
Organic Fraction gr/dscf				0.0001	0.0003	0.0002
Inorganic Fraction gr/dscf				0.0078	0.0044	0.0061
Total Particulate gr/dscf				0.0079	0.0047	0.0063
gr/dscf @ 3% O ₂				0.0090	0.0053	0.0072
lb/hr				4.72	2.83	3.78
Sulfur Compounds:						
H ₂ S, ppm	64	63	64			
Methyl Mercaptan, ppm	1.7	1.8	1.8			
Ethyl Mercaptan, ppm	ND>0.96	ND>0.96	ND>0.96			
Dimethyl Sulfide, ppm	1.8	1.8	1.8			
Carbonyl Sulfide, ppm	ND<0.77	ND<0.77	ND<0.77			
Carbon Disulfide, ppm	ND<0.96	ND<0.96	ND<0.96			
Dimethyl Disulfide, ppm	ND<0.98	ND<0.98	ND<0.98			
Total Sulfur Compounds, ppm	<73.11	<72.21	<72.66			

* - TANK POSITION ONLY (EXHAUST).


TABLE 4-3
TRACE ORGANIC SPECIES DESTRUCTION EFFICIENCY RESULTS
PERG UNIT NO. 400, TEST NO. 1
SEPTEMBER 29, 1993

Species	Inlet	Exhaust	Destruction Efficiency, %
Methylene Chloride:	5400 ppb	0.3 ppb	
lb/hr	7.98×10^1	2.81×10^{-4}	99.96
Chloroform:	ND < 100 ppb	ND < 0.1 ppb	
lb/hr	$< 2.08 \times 10^2$	$< 1.31 \times 10^{-4}$	NA
1,1,1-Trichloroethane:	340 ppb	ND < 0.1 ppb	
lb/hr	7.89×10^2	$< 1.47 \times 10^{-4}$	> 99.81
Carbon Tetrachloride:	ND < 100 ppb	ND < 0.1 ppb	
lb/hr	$< 2.68 \times 10^2$	$< 1.69 \times 10^{-4}$	NA
1,1-Dichloroethene:	ND < 210 ppb	ND < 0.2 ppb	
lb/hr	$< 3.54 \times 10^2$	$< 2.13 \times 10^{-4}$	NA
Trichloroethylene:	700 ppb	ND < 0.1 ppb	
lb/hr	1.60×10^1	$< 1.45 \times 10^{-4}$	> 99.91
Tetrachloroethylene:	1700 ppb	ND < 0.2 ppb	
lb/hr	4.90×10^1	$< 3.65 \times 10^{-4}$	> 99.93
Chlorobenzene:	ND < 220 ppb	ND < 0.2 ppb	
lb/hr	$< 4.31 \times 10^2$	$< 2.48 \times 10^{-4}$	NA
Vinyl Chloride:	ND < 500 ppb	ND < 0.4 ppb	
lb/hr	$< 5.43 \times 10^2$	$< 2.75 \times 10^{-4}$	> 99.49
m-Dichlorobenzene:	ND < 230 ppb	ND < 0.2 ppb	
lb/hr	$< 5.88 \times 10^2$	$< 3.24 \times 10^{-4}$	NA
o+p Dichlorobenzene:	500 ppb	ND < 0.2 ppb	
lb/hr	1.28×10^1	$< 3.24 \times 10^{-4}$	> 99.75
1,1-Dichloroethane:	1300 ppb	ND < 0.1 ppb	
lb/hr	2.24×10^1	$< 1.09 \times 10^{-4}$	> 99.95
1,2-Dichloroethane:	ND < 110 ppb	ND < 0.1 ppb	
lb/hr	$< 1.89 \times 10^2$	$< 1.09 \times 10^{-4}$	NA
Benzene:	4600 ppb	1.5 ppb	
lb/hr	6.25×10^1	1.29×10^{-3}	99.79

ND < indicates that the species was not detected. Values indicate the detection limit for this species and the concentration is less than the presented value.

(continued)

NA - indicates that the destruction efficiency cannot be calculated because the concentration is below detection limits.

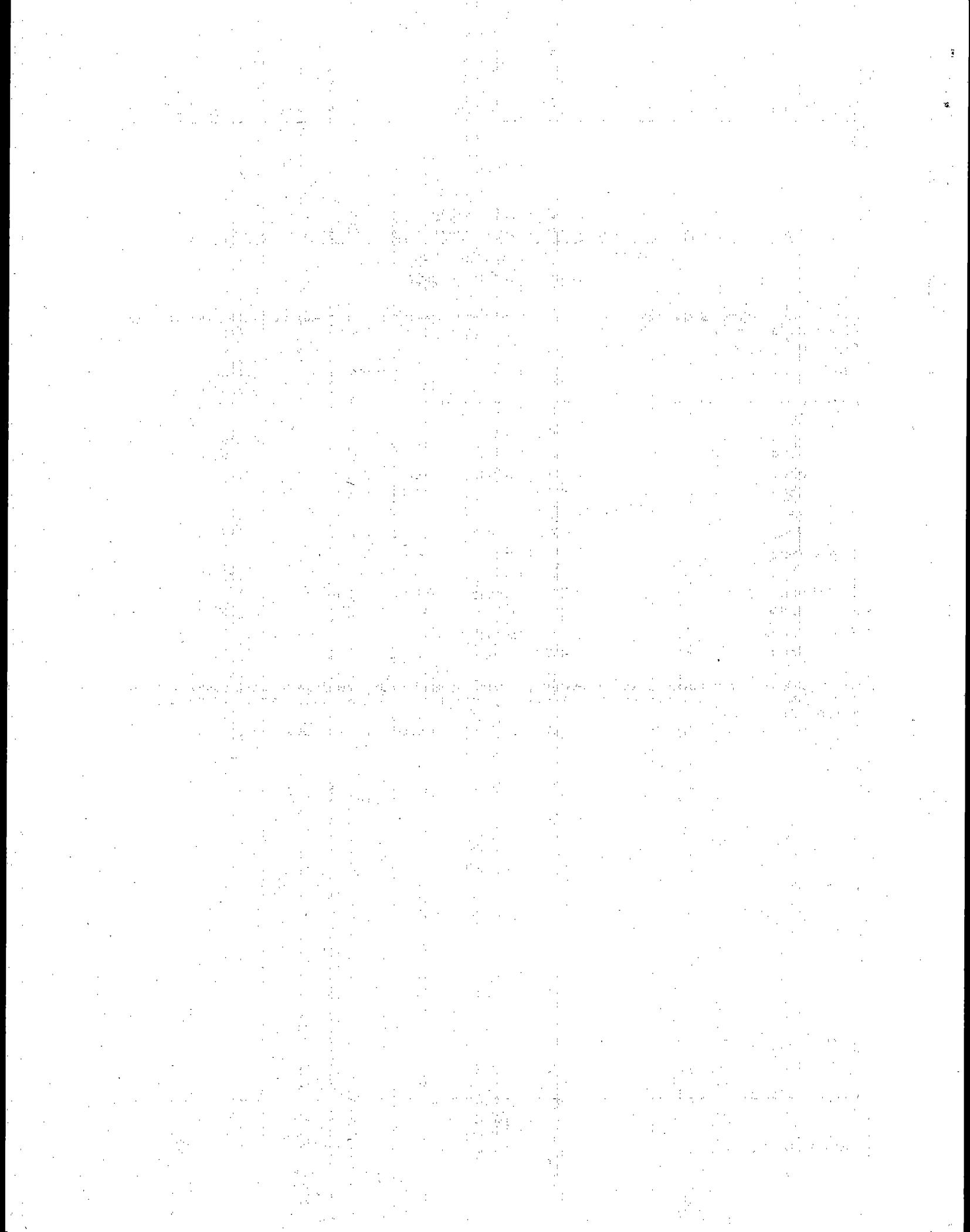
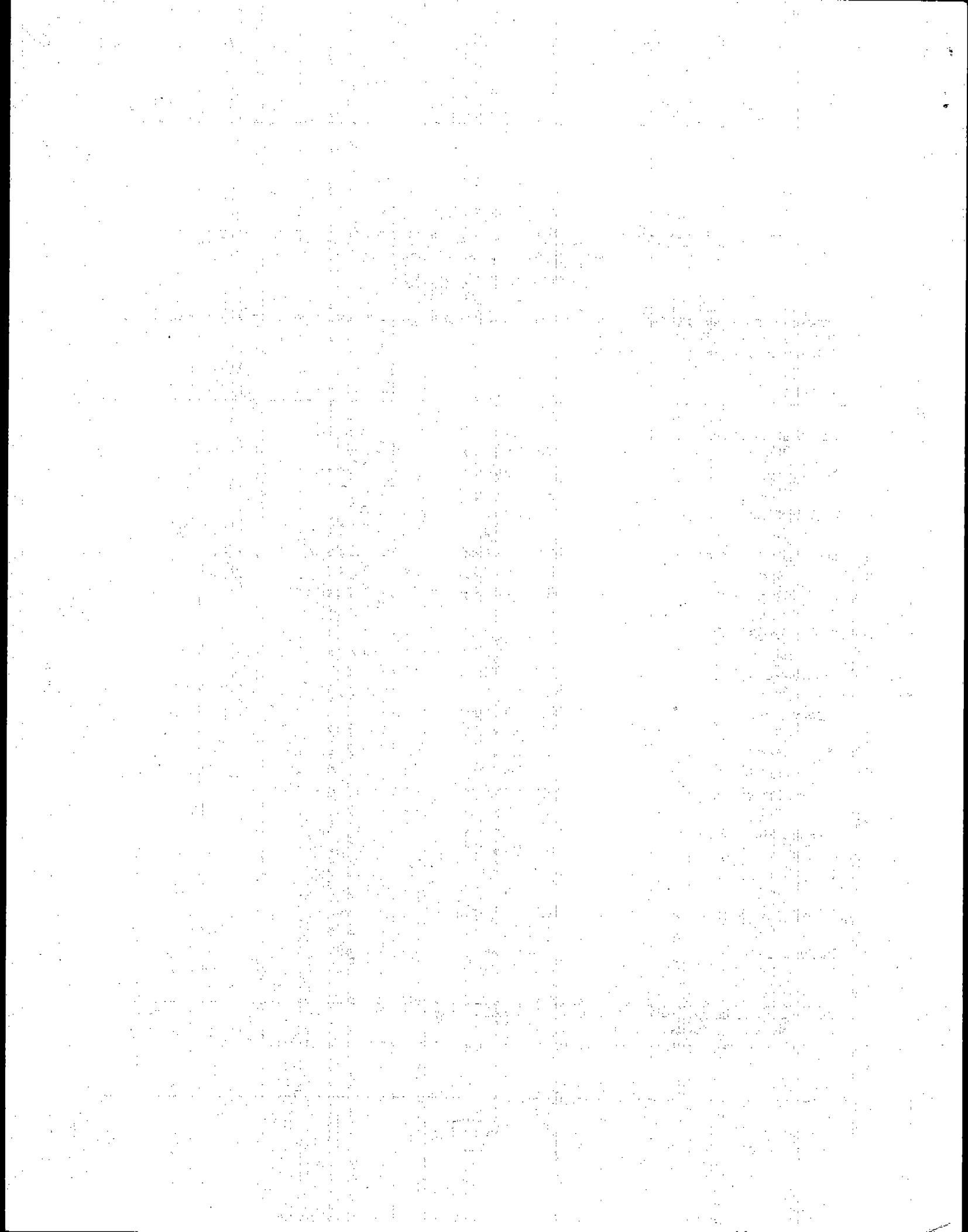


TABLE 4-3 (continued)
TRACE ORGANIC SPECIES DESTRUCTION EFFICIENCY RESULTS
PERG UNIT NO. 400, TEST NO. 1
SEPTEMBER 29, 1993

Species	Inlet	Exhaust	Destruction Efficiency, %
Flow rate, Inlet dscfm	11,000		
Flow rate, Exhaust dscfm	69,640		
Toluene: lb/hr	33000 ppb 5.29×10^{-1}	3.7 ppb 3.75×10^{-3}	99.93
Acetonitrile: lb/hr	ND < 2300 ppb $< 1.64 \times 10^{-1}$	ND < 2.3 ppb $< 1.04 \times 10^{-3}$	NA
m-Xylenes: lb/hr	15000 ppb 2.77×10^{-1}	0.9 ppb 1.05×10^{-3}	99.96
o+p Xylenes: lb/hr	12000 ppb 2.22×10^{-1}	0.9 ppb 1.05×10^{-3}	99.95
1,2-Dibromoethane: lb/hr	ND < 2900 ppb $< 9.48 \times 10^{-1}$	ND < 2.9 ppb $< 6.00 \times 10^{-3}$	NA
Benzyl Chloride: lb/hr	ND < 1000 ppb $< 2.20 \times 10^{-1}$	ND < 1.0 ppb $< 1.39 \times 10^{-3}$	NA

ND < indicates that the species was not detected. Values indicate the detection limit for this species and the concentration is less than the presented value.

NA - indicates that the destruction efficiency cannot be calculated because the concentration is below detection limits.


TABLE 4-4
TRACE ORGANIC SPECIES DESTRUCTION EFFICIENCY RESULTS
PERG UNIT NO. 400, TEST NO. 2
SEPTEMBER 29, 1993

Species	Inlet	Exhaust	Destruction Efficiency, %
Flow rate, Inlet dscfm	11,000		
Flow rate, Exhaust dscfm	69,640		
Methylene Chloride: lb/hr	5800 ppb 8.57×10^{-1}	0.3 ppb 2.81×10^{-4}	99.97
Chloroform: lb/hr	ND < 100 ppb $< 2.08 \times 10^{-2}$	ND < 0.1 ppb $< 1.31 \times 10^{-4}$	NA
1,1,1-trichloroethane: lb/hr	360 ppb 8.35×10^{-2}	ND < 0.1 ppb $< 1.47 \times 10^{-4}$	> 99.82
Carbon Tetrachloride: lb/hr	ND < 100 ppb $< 2.68 \times 10^{-2}$	ND < 0.1 ppb $< 1.69 \times 10^{-4}$	NA
1,1-dichloroethene: lb/hr	ND < 210 ppb $< 3.54 \times 10^{-2}$	ND < 0.2 ppb $< 2.13 \times 10^{-4}$	NA
Trichloroethylene: lb/hr	670 ppb 1.53×10^{-1}	ND < 0.1 ppb $< 1.45 \times 10^{-4}$	> 99.91
Tetrachloroethylene: lb/hr	1600 ppb 4.61×10^{-1}	ND < 0.2 ppb $< 3.65 \times 10^{-4}$	> 99.92
Chlorobenzene: lb/hr	ND < 220 ppb $< 4.31 \times 10^{-2}$	ND < 0.2 ppb $< 2.48 \times 10^{-4}$	NA
Vinyl Chloride: lb/hr	560 ppb 6.09×10^{-2}	ND < 0.4 ppb $< 2.75 \times 10^{-4}$	> 99.55
m-dichlorobenzene: lb/hr	ND < 230 ppb $< 5.88 \times 10^{-2}$	ND < 0.2 ppb $< 3.24 \times 10^{-4}$	NA
o+p dichlorobenzene: lb/hr	ND < 220 ppb $< 5.62 \times 10^{-2}$	ND < 0.2 ppb $< 3.24 \times 10^{-4}$	NA
1,1-dichloroethane: lb/hr	1300 ppb 2.24×10^{-1}	ND < 0.1 ppb $< 1.09 \times 10^{-4}$	> 99.95
1,2-dichloroethane: lb/hr	ND < 110 ppb $< 1.89 \times 10^{-2}$	ND < 0.1 ppb $< 1.09 \times 10^{-4}$	NA
Benzene: lb/hr	4200 ppb 5.71×10^{-1}	2.0 ppb 1.72×10^{-3}	99.70

ND < indicates that the species was not detected. Values indicate the detection limit for this species and the concentration is less than the presented value.

(continued)

NA - indicates that the destruction efficiency cannot be calculated because the concentration is below detection limits.

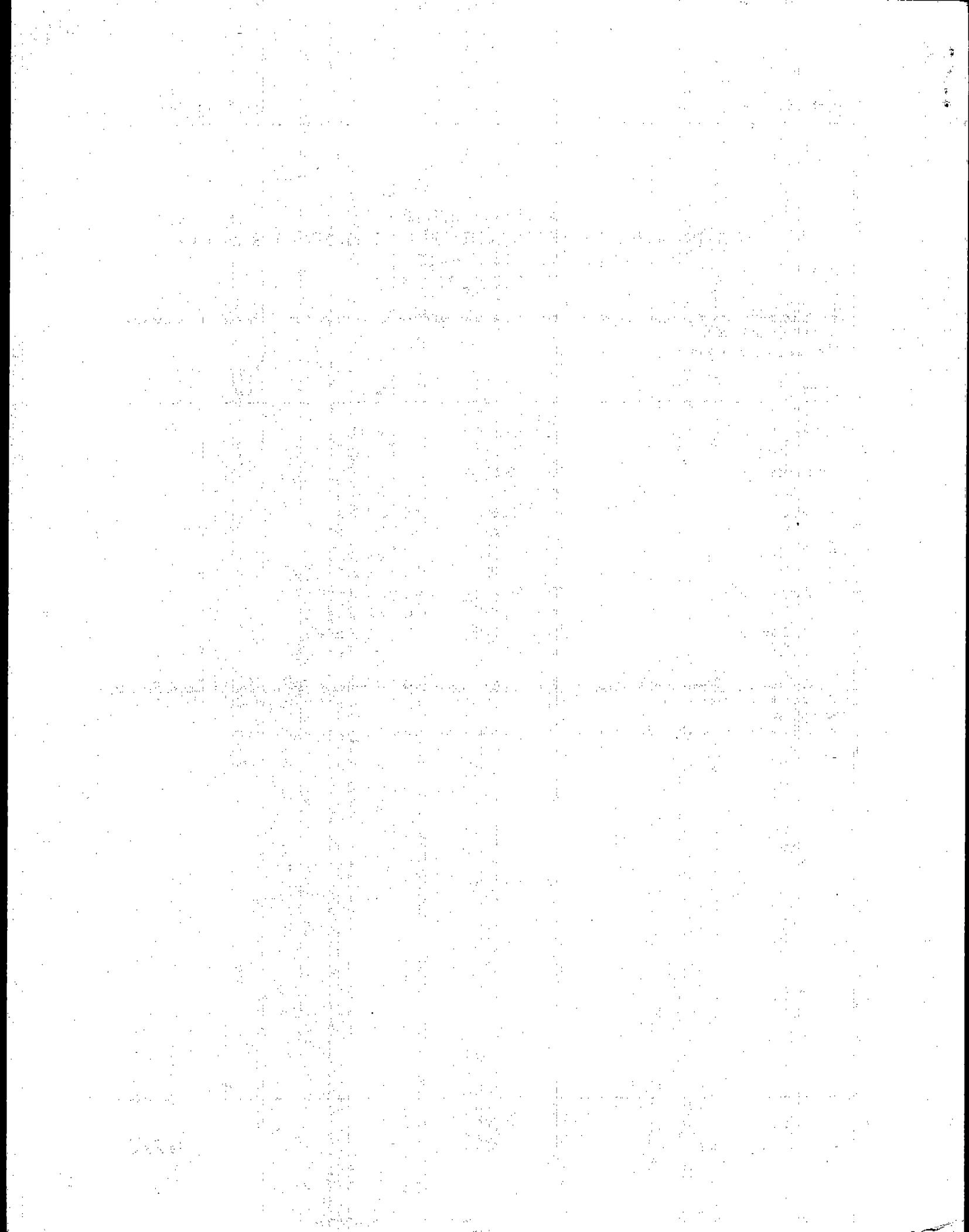


TABLE 4-4 (continued)
TRACE ORGANIC SPECIES DESTRUCTION EFFICIENCY RESULTS
PERG UNIT NO. 400, TEST NO. 2
SEPTEMBER 29, 1993

Species	Inlet	Exhaust	Destruction Efficiency, %
Flow rate, Inlet dscfm	11,000		
Flow rate, Exhaust dscfm	69,640		
Toluene:			
lb/hr	30000 ppb 4.81 x 10 ⁻¹	3.9 ppb 3.96 x 10 ⁻³	99.92
Acetonitrile:	ND < 2300 ppb lb/hr	ND < 2.3 ppb < 1.04 x 10 ⁻³	NA
m-xlenes:			
lb/hr	13000 ppb 2.40 x 10 ⁻¹	ND < 0.2 ppb < 2.34 x 10 ⁻⁴	> 99.99
o+p xlenes:			
lb/hr	11000 ppb 2.03 x 10 ⁻¹	0.7 ppb 8.18 x 10 ⁻⁴	99.96
1,2-dibromoethane:			
lb/hr	ND < 2900 ppb < 9.48 x 10 ⁻¹	ND < 2.9 ppb < 6.00 x 10 ⁻³	NA
Benzyl Chloride:			
lb/hr	ND < 1000 ppb < 2.20 x 10 ⁻¹	ND < 1.0 ppb < 1.39 x 10 ⁻³	NA

ND < indicates that the species was not detected. Values indicate the detection limit for this species and the concentration is less than the presented value.

NA - indicates that the destruction efficiency cannot be calculated because the concentration is below detection limits.

