

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

**POLYESTER RESIN
PLASTICS PRODUCT
FABRICATION
AP-42 Section 4.12
Reference Number
5**

**EXTENT OF EXPOSURE TO STYRENE
IN THE REINFORCED PLASTIC
BOAT MAKING INDUSTRY**

Michael S. Crandall

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
Centers for Disease Control
National Institute for Occupational Safety and Health
Division of Surveillance, Hazard Evaluations and Field Studies
Cincinnati, Ohio 45226

March 1982

DISCLAIMER

Mention of company names or products do not constitute endorsement by the National Institute for Occupational Safety and Health.

DHHS (NIOSH) Publication No. 82-110

ABSTRACT

Industrial hygiene surveys were conducted in seven fiberglass reinforced plastic boat fabrication plants. This study was designed to quantitate worker exposure patterns to styrene monomer. Exposure to acetone was also measured. There were 464 personal air samples collected in all (results of 96 of these are in excess of the OSHA eight-hour time weighted average standard of 100 parts per million). Statistical analyses were conducted to assess the comparability of certain job categories among the seven plants and within each plant.

Results show that there are differences in exposure among the job categories which may be indicative of resin use patterns. Also, plants with similar ventilation efficiency (as indicated by overall plant styrene levels) showed job category exposure similarities interplant. Dilution ventilation is indicated as being an adequate control measure in some plants. Control technology discussion proposes that in conjunction with general ventilation, the use of local ventilation, styrene-suppressed resins and work practice guidelines can be effective control methods in those plants with over-exposure problems.

POTENTIAL EXPOSURES

Exposure to styrene is directly related to the use of thermoset polyester resins. The polyester resin system used in the FRP boat industry is a mixture of styrene monomer, glycols (propylene glycol or diethylene glycol), saturated acid (phthalic anhydride or isophthalic anhydride), maleic anhydride and inhibitors. The handling of resins after manufacture does not involve exposure to these chemicals other than at trace levels, since they are substantially converted to polyester (1). The styrene content in the resin is approximately forty percent (by weight) (1, 2). It is both a reactant and a diluting solvent. During manual spray-up and lay-up operations, ten to fifteen percent of the styrene can evaporate into the work place air (1, 3). The remainder is consumed in the chemical reaction. The hardening system used may contain a cobalt salt (cobalt naphthenate) as an initiator and a hydroperoxide (methyl ethyl ketone peroxide (MEKO) or benzoyl peroxide) as a catalyst (1, 2). An attempt was made to determine exposure levels to MEKO. The analytical results were inconclusive, and the significance of exposure to this substance was not determined. Acetone is the only other compound likely to be present in large concentrations in the vapor phase. Its copious use as a solvent for cleaning laminating tools, spraying equipment and workers' hands warranted documentation of exposure levels. Its high vapor pressure (226.3 mm Hg @ 25°C) causes it to readily evaporate into ambient air from open containers. The presence of fiberglass dust was virtually nonexistent in the laminating areas and therefore was not quantitated.

CHEMICAL AND PHYSICAL PROPERTIES

Styrene ($C_6H_5CH - CH_2$) is a volatile liquid with an odor threshold reported to be less than one part per million (PPM) (4, 5). It is soluble in many organic solvents and its solubility in water is about 3.1 mg/ml. Some properties of styrene are given in Table I (7-10). Monomeric styrene production peaked at 7.2 billion pounds in 1979 (11). Approximately 500 million pounds of this were used in the production of polyester resins (12).

Acetone (CH_3COCH_3) is a colorless, highly volatile, flammable liquid with a burning taste and aromatic odor. It is the simplest but most commercially important ketone. Important properties of acetone are presented in Table II (13, 14).

TABLE I
PROPERTIES OF STYRENE

Synonyms	Cinnamene, cinnamol, cinnamenol, vinyl benzene, phenylethylene, phenethylene, stryol
Molecular formula	C ₆ H ₅ CH=CH ₂
Formula Weight	104.1
Boiling Point (760 mm Hg)	145 C (292.4 F)
Melting point	-30.6 C (-23.1 F)
Vapor density	3.6 (air = 1)
Density	0.9021 g/cu cm (25 C)
Solubility	0.31 g/100 ml water at 25 C; soluble in ethyl ether, benzene, heptane, ethanol, acetone
Flammable (explosive) limits	1.5 to 6.7% by volume in air
Flash Point	24-98 F 31 C (88F) Tag closed cup 37 C (98F) Tag open cup
Fire Point	99F
Autoignition temperature	490 C (914 F)
Critical temperature	362 C (684 F)
Critical pressure	37.8 atm
Vapor pressure	Temp F Temp C mm Hg 50 10 2.34 68 20 4.50 86 30 8.21 104 40 14.30
Concentration in saturated air	5,700 ppm (15 C)
Conversion factors, (25 C, 760 mm Hg)	1 ppm = 4.26 mg/cu m 1 mg/cu m = .235 ppm

TABLE 2
PROPERTIES OF ACETONE

Synonyms	2-Propanone, dimethylketal, dimethyl ketone, beta-ketoacopane, methyl ketone, pyroacetic ether, pyroacetic spirit		
Molecular formula	C3H6O	CH ₃	
		C=O	
		CH ₃	
Formula weight	48.08		
Boiling point	56.1 C (133 F)		
Melting Point	-95.6 C (-140 F)		
Density	0.7911 gm/cu m (20 C)		
Flammable limits	2.15 to 13% by volume in air		
Critical Temperature	188 C (370 F)		
Critical pressure	57.1 atm		
Vapor pressure	226.3 mm Hg at 25 C		
Conversion factors (25C, 760 mm Hg)	1 ppm - 24.0 mg/cu m 1 mg/cu m - 0.417 ppm		

PROCESS DESCRIPTION

The method used in manufacturing FRP boats is called contact molding and is a zero pressure molding method in which only one side contacts the mold surface. There are two principal techniques, hand lay-up and spray-up. Materials used in contact molding are polyester resin, gel coat (pigmented resin), split-strand glass fiber roving which is used for chopping in the spray-up operation, chopped-strand mat (made by chopping split-strand glass fibers, mixing with a binder and pressing into a mat) which is used in hand lay-up, and woven roving (a heavy cloth made from strand roving in a square weave pattern) whose greatest use is to provide a structural backbone in the hand lay-up operation.

Hand lay-up: Mat or mat-and-woven roving layers are wetted out with resin and manually laid-up on the gel coated mold. Resin is applied to the mold, using a brush on smaller pieces or an airless sprayer system on larger ones, and mat is laid on top of the resin. The preferred practice uses alternate layers of mat and woven roving.

Spray-up: A mechanism attached to the sprayer system used for wet out in hand-lay-up allows for chopping split-strand roving and "throwing" the chopped fibers onto the mold surface while at the same time spraying polyester resin. This tool is called a chopper-gun. In this manner a structure can be built up layer by layer in a mat-like style. Following deposition of fiber and resin, it is necessary to roll-out the structure (compacting the resin and glass) with a special rolling wheel. Spray-up is often used in combination with hand lay-up techniques.

The boat making process begins with polishing the surface of an FRP mold having the converse shape of the part being made, and the application of a releasing agent (usually a wax) in preparation for the initial layer of gel coat.

The pigments in gel coat are used for color, since this layer will appear as the outside surface of the boat, and for resistance to ultraviolet deterioration. The name gel coat stems from the fact that when the coat reaches a gel state, the remainder of the laminate is applied.

Methods of contact molding, or lamination, varied between companies.

Plants 2, 5, and 6 used only hand lay-up techniques. That is, the parts were constructed of alternating layers of chopped strand mat and woven roving, with each layer being wetted with resin. Plant 4 used spray-up to manufacture some of the smaller pieces but the process was extensively hand lay-up. Plants 1, 3 and 7 used a combination of hand lay-up and spray-up. These parts were constructed of alternating layers of chopped fiberglass from a chopper gun and woven roving. The chopped glass layer is, of course simultaneously mixed with resin as it is applied. The woven roving layer requires wet-out which is done using only the spraying mode of the chopper-gun. The chopped layer requires roll-out to compact the fiberglass and resin. The other layers, whether chopped-strand mat or woven roving, are usually squeegeed to insure saturation and to remove excess resin. A reason given, aside from any economic considerations, for choosing chopped-strand mat over spray-up, was the layer uniformity that this technique offers, resulting in uniform strength and flexibility of the piece.

Following lamination, structural support is necessary on certain parts.

Plywood and end grain balsa wood are two materials used for this support. The wood is positioned and then overlayed with fiberglass and resin to secure it in place. Chopped fiberglass, either from a gun or in mat form is generally used for this.

The following discussion addresses the factors affecting exposures in the lamination jobs.

Gel coat is applied in a ventilated booth using an airless sprayer system, except in the case of stationary molds which are coated in place. Generally only large hull and deck molds are stationary and at plants using this system the gel coating was performed on an off-shift so that exposure was experienced by the gel coater only. Plants 5 and 6 had this arrangement. In all plants surveyed, the gel coaters were the best protected from exposure. In addition to booth ventilation, protective clothing was commonplace on the gel coater. Coveralls, hoods and respirators were almost always worn during the gel coating operation.

The rest of the jobs are performed in a large area in the plant designated as the lamination area. Invisible boundaries usually segregate one section from the other (i.e., the hull lamination from deck lamination), with the entire environment being controlled by a central dilution ventilation system consisting of exhaust fans and tempered make-up air. The exception is Plant 6 which used natural ventilation exclusively. In some instances, the ventilation system was aided by the use of circular fans which developed directional air flow patterns. Aside from the effectiveness of the particular ventilation system, exposure potential is affected by the amount of resin used, the size and configuration of the part, and the protective equipment used.

The hull has the largest surface area over which catalyzed resin is applied resulting in greater exposure potential for these workers because of styrene evaporation. Since the hull has a somewhat concave shape its positioning affects exposure. On the mobile mold frame, the hull is turned on a longitudinal axis to access both halves for lamination. Laminating on this type mold is somewhat confining; however, if proper air movement is present styrene vapor does not accumulate. If a stationary hull mold is used, it is always in an upright position and the worker must perform his job inside this mold. Because styrene is more dense than air it will accumulate when the mold is in this position and exposure potential is greater.

Those working in deck and other large parts (flying bridges and aft decks) lamination also use a great deal of resin. Surface area of these parts is not as great but is proportional to the hull size. The frame generally holds these pieces flat or upright and there is no configuration type problem. Directional fans are used to limit accumulation of vapor.

In small parts lamination, the number of pieces being laid-up will affect exposure potential. The molds are laid on a table top instead of being mounted on a frame. There are no configuration problems with these pieces.

Acetone exposure in all instances will depend on the frequency of use as well as location of dispensing cans.

In the lamination jobs the protective equipment provided included half-face cartridge respirators and in some plants aprons and gloves. In plants 1, 3, 4, and 6, no formal policy existed governing respirator (or other protective equipment) use. The other plants had programs with varying enforcement policies.

- i) local ventilation;
- ii) styrene suppressed resins;
- iii) work practice guidelines.

Local Ventilation

Localized ventilation in general has the advantage of being more effective in removal of contaminants from the workplace. In operations where pieces are fabricated at fixed stations local exhaust in the form of hoods or booths is practical. However, the shapes and sizes of the pieces needing this type of control (hull molds in particular) have not lended themselves practically to application. An added factor is the mobile nature of most processes. The mold is moved from preparation, to gelcoat, to lay-up and then to a removal station.

There is one source of over-exposure that may be fitted with local ventilation. That is the stationary hull mold, as used in Plants 2, 5 and 6. In fact, since the survey was conducted at Plant 5, they have been experimenting with a local system for this purpose. The design includes an exhaust hood over the aft portion with fixed fans at the bow. The effect is a push-pull system sweeping air from bow to stern, while workers proceed to laminate counter current to airflow.

The major drawback to local ventilation is the retro-fitting into existing operations. The unique problems from plant to plant and the variety of operations and sizes of parts creates the difficulties inherent in the non-general solution to the problem.

Styrene-suppressed Resins

Recently the introduction of environmental resins, called styrene-suppressed resins, has been cause for optimism. The manufacturers claim

less styrene evolution from these than from their general purpose resins. The mechanism which produces this effect is an additive which migrates to the surface of the resin after catalyst is added and forms a barrier preventing the evaporation of styrene (1).

Schumacher et al conducted laboratory and in-plant testing of two styrene-suppressed resins. In the laboratory tests one resin showed a reduction of about 30 percent of styrene in the vapor phase. The plant test showed no difference in employee exposure to styrene using another type of styrene-suppressed resin (49). Plant 5 has also reported testing of these types of resins subsequent to the NIOSH survey (50). Some results of this in plant testing have indicated reductions in styrene exposure of nearly fifty percent.

As with many innovations there are problems to be solved in regard to the use of styrene-suppressed resins. Primarily there may be differences in the mechanical properties of finished plastic, such as reduced inter-laminar adhesion (1,50). Most agree that the development of a satisfactory resin of this type is a long way off.

Work Practice Guidelines

If properly conceived and implemented work practices can be very effective in exposure control, it is an opportunity for the workers to become directly involved. There are always choices to be made when performing job tasks, and education in the right choice at the right time can have an effect. Examples are things like spraying resin away from fellow workers and toward ventilation when possible; being certain that solvent containers are closed when appropriate; and minimizing overspray on to floors and walls. Other advantages to work practices are better house-keeping and more efficient operations.

REFERENCES

1. Brighton, C. A., Pritchard, G., and Skinner, G. A., Styrene Polymers: Technology and Environmental Aspects, Applied Science Publishers LTD, Essex, England, 1979, pp. 109-136.
2. Rolston, A. J., "Fiberglass Composite and Fabrication", Chemical Engineering, pp. 96-110, (Jan. 1980).
3. Rossavainen, A., "Styrene Use and Occupational Exposure in the Plastics Industry", Scandinavian Journal of Work, Environment and Health, Vol. 4, Supplement 2, pp. 7-13 (1978).
4. Leonardos, G., Kendall, D., and Barnard, N., "Odor Threshold Determinations of 53 Odorant Chemicals", Journal of the Air Pollution Control Association, Vol. 19, pp. 91-95.
5. Smith, H. O., and Hochstettler, A. D., "Determination of Odor Thresholds in Air Using Cl4-Labeled Compounds to Monitor Concentrations", Environmental Science Technology, Vol. 3, pp. 169-170, (1969).
6. Brooks, S. M., Anderson, L., Emmett, E., Carson, A., Tsay, J-Y, Elia, V., Buncher, R., Karbowsky, R., "The Effects of Protective Equipment on Styrene Exposure in Workers in the Reinforced Plastics Industry", Archives of Environmental Health, Vol. 35, No. 5, pp. 287-294, (1980).
7. "Styrene-Type Monomers", The Dow Chemical Company, Midland, MI., 13 pp., (1969).
8. Christensen, H. E., Fairchild, E. J., "Registry of Toxic Effect of Chemical Substances", HEW (NIOSH) publication no. 76-196. U. S. Department of Health, Education and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, p. 1107, (1976).
9. Weast, R. C., "Section C-Organic Compounds", CRC Handbook of Chemistry and Physics, 54th Ed., CRC Press, Cleveland, 1973-1974).
10. Patty, F. A., "The aromatic Hydrocarbons", Industrial Hygiene and Toxicology, 2nd ed., Vol. 2, Interscience Publishers, New York, 1963, pp. 1229-1231.
11. "Key Chemical, Styrene," Chemical and Engineering News, Vol. 57, No. 25, p. 10, (1979).
12. "Key Polymers, Polyesters," Chemical and Engineering News, Vol. 57, No. 32, p. 13, (1979).

13. "Criteria for a Recommended Standard", Occupational Exposure to Keytones, U. S. Department of Health and Human Services, Public Health Service, Center for Disease Control, NIOSH Publication No. 78-173, U. S. Government Printing Office, Washington, D.C., (1978).
14. Perry, R. H., Chilton, C.H., "Physical and Chemical Data", Chemical Engineers' Handbook, 5th Ed., McGraw Hill, 1976.
15. Bardodej, Z., "Styrene Metabolism", Ceskoslovenska Hygiene, Vol. 9, No. 4, pp. 223-36, (1968), (Czech).
16. Steuart, R. D., Dodd, H. C., Baretta, E. D., and Schaffer, A. W., "Human Exposure to Styrene Vapor", Archives of Environmental Health, Vol. 16, pp. 656-62, (1968).
17. Riihimaki, V., and Pfaffli, P., "Percutaneous Absorption of Solvent Vapors in Man", Scandinavian Journal of Work, Environment and Health, Vol. 4, pp. 73-85, (1978).
18. Dutkiewicz, T., and Tyras, H., "Skin Absorption of Tolvene, Styrene and Xylene by Man", British Journal of Industrial Medicine, Vol. 25, p. 243, (1968).
19. Gotell, P., Axelson, O., and Lindelof, B., "Field Studies on Human Styrene Exposure", Vol. 9, pp. 76-83, (1972).
20. Brooks, S. M., Anderson, L. A., Tsay J-Y, Carson, A., Buncher, C. R., Elia, V., Emmett, E. A., "Investigation of Workers Exposed to Styrene in the Reinforced Plastic Industry -- Health and Psychomotor Status, Toxicologic and Industrial Hygiene Data and Effects of Protective Equipment as it Relates to Exposures through Lung and Skin Routes", University of Cincinnati, College of Medicine, Institute of Environmental Health and Kettering Laboratory Report Prepared for the Society of Plastics Industries, 330 pp., 1979.
21. Rosensteel, R. E., and Meyer, C. R., "Health Hazard Evaluation Determination Report No. 75-150-378-Reinell Boats, Inc., Poplar Bluff, Mo.", Cincinnati, U. S. Department of Health, Education and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, 52 pp., (1977).
22. Golebiowska-Podgorszyk, I., "Clinical and Experimental Studies on the Pathogenesis of Toxic Effects of Styrene - Part I. Evaluation of the Role of Styrene in the Occurrence of Occupational Dermatoses",
23. Gotell, P., Axelson, O., and Lindelof, B., "Field Studies on Human Styrene Exposure", Work, Environment, Health, Vol. 9, pp. 76-83, (1972).

24. Bodner, A. H., Butler, G. J., and Okawa, M. T., "Health Hazard Evaluation/Toxicity Determination Report No. 73-103-128-American Standard Fiberglass Inc., Stockton, CA", Cincinnati, U. S. Department of Health, Education and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health 10 pp. (1974).
25. Chmeilewski, J., and Renke, W., "Clinical and Experimental Studies on the Pathogenesis of Toxic Effects of Styrene-Part II. The Effect of Styrene on the Respiratory System",
26. Gamberale, F., and Hullengren, M., "Exposure to Styrene - II, Psychological Functions", Work, Environment and Health, Vol. 11, pp. 86-93, (1974).
27. Zielhuis, R. L., Hartogensis, F., Jongh, J., Kalsbeek, J. W. H., and VanRees, H., "The Health of Workers Processing Reinforced Polyesters", in XIVth International Congress of Occupational Health, Madrid, Sept. 16-21, 1963, Vol. 3, pp. 1092-97, (1964).
28. Seppalainen, A. M., Harkonen, H., "Neurophysiological Findings among Workers Occupationally Exposed to Styrene", Scandinavian Journal of Work, Environment and Health, Vol. 3, pp. 140-146, (1976)
29. Harkonen, H., Lindstrom, K., Seppalainen, A. M., Asp, S., and Hernberg, S., "Exposure-Response Relationship between Sytrene Exposure and Central Nervous Functions", Scandinavian Journal of Work Environment and Health, Vol. 4, pp. 53-59, (1978).
30. Vainio, H., Paakkonen, R., Ronnholm, K., Raunio, V., and Pelkonen, O., "A Study on the Mutagenic Activity of Styrene and Styrene Oxide", Scandinavian Journal of Work, Environment and Health, Vol. 2, pp. 147-51, (1976).
31. Milvy, P., and Garro, A. J., "Mutagenic Activity of Styrene Oxide (1,2-epoxyethylbenzene), a Presumed Styrene Metabolite" Mutation Research, Vol. 40, pp. 15-18, (1976).
32. Stoltz, D. R., Withey, R. J., "Mutagenicity Testing of Styrene and Styrene Epoxide in *Salmonella Typhimurium*" Bulletin of Environmental Contaminants and Toxicology, Vol. 17, pp. 739-42, (1977).
33. Loprieno, N., Prescuittini, S., Sbrana, I., Stretti, G., Zaccaro, L., Abbondandolo, A., Bonatti, S., Fiorio, R., and Mazzaccaro, A., "Mutagenicity of Industrial Compounds - VII; Styrene and Styrene Oxide - II; Point Mutations, Chromosome Aberrations and DNA Repair Induction Analyses", Scandinavian Journal of Work, Environment and Health, Vol. 4, Supplement 2, pp. 169-78 (1978).

34. Fleig, I., and Thiess, A., "Mutagenicity Study of Workers Employed in the Styrene and Polystyrene Processing and Manufacturing Industry", Scandinavian Journal of Work, Environment and Health, Vol. 4, Supplement 2, pp. 254-58, (1978).
35. Meretoja, T., Vainio, H., Sorsa, M., and Harkonen, H., "Occupational Styrene Exposure and Chromosomal Aberrations", Mutation Research, Vol. 56, pp. 193-97, (1977).
36. Meretoja, T., Jarventaus, H., Sorsa, M., and Vainio, H., "Chromosome Aberrations in Lymphocytes of Workers Exposed to Styrene", Scandinavian Journal of Work, Environment and Health, Vol. 4, Supplement 2, pp. 259-64, (1978).
37. Hogstedt, B., Hedner, K., Mark-Vendel, E., Mitelman, F., Schutz, A., and Skerfving, S., "Increased Frequency of Chromosome Aberrations in Workers Exposed to Styrene", Scandinavian Journal of Work, Environment and Health, Vol. 5, pp. 333-35, (1979).
38. Jersey, G. C., Balmer, M. F., Quast, J. F., Park, C. N., Schuetz, D. J., Beyer, J. E., Olson, K. J., McCollister, S. B., and Rampus, L. W., "Two Year Chronic Inhalation Toxicity and Carcinogenicity Study on Monomeric Styrene in Rats - Final Report", MCA No. Sry. 1.1-TOX-INH (2 yr.), Midland, MI., Dow Chemical USA, 150 pp., (Dec. 6, 1978).
39. Ponomarkov, V., and Tomatis, L., "Effects of Long-Term Oral Administration of Styrene to Mice and Rats", Scandinavian Journal of Work, Environment and Health, Supplement 2, pp. 127-35, (1978).
40. "Bioassay of a Solution of Beta-Nitrostyrene and Styrene for Possible Carcinogenicity", CAS No. 102-96-5 and 100-42-5, NIH Publication No. 79-1726, National Cancer Institute Carcinogenesis Technical Report Series 170, Bethesda, Md., U. S. Department of Health, Education and Welfare, Public Health Service, National Institutes of Health National Cancer Institute, 81 pp., (1979).
41. Nicholson, W. J., Selikoff, I. J., and Seidman, H., "Mortality Experience of Styrene-Polystyrene Polymerization Workers - Initial Findings", Scandinavian Journal of Work, Environment and Health, Supplement 2, pp. 247-52, (1978).
42. Ott, M. G., Kolesar, R. C., Scharweber, H. C., Schneider, E. J., and Venable, J. R., "A Mortality Survey of Employees Engaged in the Development or Manufacture of Styrene-Based Products", Submitted to Journal of Occupational Medicine.
43. Frentzel-Beyme, R., Thiess, A. M., and Wieland, R., "Survey of Mortality among Employees Engaged in the Manufacture of Styrene and Polystyrene at the BASF Ludwigshafen Works", Scandinavian Journal of Work, Environment and Health, Supplement 2, pp. 231-39, (1978).

44. "Occupational Safety and Health Standards for General Industry", (29 CFR Part 1910), Table 2-2, U. S. Department of Labor, Occupational Safety and Health Administration, Commerce Clearing House, Inc., Chicago, 1979.
45. TLV's Threshold for Chemical Substances and Physical Agents in the Workroom Environment with Intended Changes for 1980, American Conference Governmental Industrial Hygienists, Cincinnati, 1980.
46. NIOSH Manual of Analytical Methods, 2nd ed., Vol. 1, DHEW (NIOSH) Publication No. 77-157-A, Rockville, Md., U. S. Department of Health, Education and Welfare, Public Health and Service, Center for Disease Control, National Institute for Occupational Safety and Health, 1977.
47. SAS User's Guide, 1979 ed. SAS Institute, 1979, pp. 237-264.
48. Occupational Exposure Sampling Strategy Manual, NIOSH publication No. 77-173, U.S. Department of Health and Human Services, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, U. S. Government Printing Office, Washington, D.C., 1978.
49. Schumacher, R. L., Breysse, P. A., Carlyon, W. R., Hibbard, R. P., and Kleinman, G. D., "Styrene Exposure in the Fiberglass Fabrication Industry in Washington State", American Industrial Hygiene Association Journal, Vol. 42, pp. 143-149, (Feb. 1981).
50. Adams, J. M., Personal Communication, June 16, 1981.
51. Conrad, R. J., Hopkins, B. L., Fitch, H. G., Smith, M. J., Anger, W. K., and Dangel, R. F., "A Strategy to Validate Work Practices: An Application to the Reinforced Plastics Industry", University of Kansas, Lawrence, (1980).