

→ DTE

COMMONWEALTH OF VIRGINIA
Department of Air Pollution Control

INTRA-AGENCY MEMORANDUM

TO: File

FROM: R. O. Goetz

SUBJECT: DUPONT, WAYNESBORO, REGISTRATION #20517

DATE: October 12, 1989

RE: STACK TEST 10-6-89 NEW DMF SCRUBBERS ON ORLON FIBER DRYERS

A witnessed stack test was performed 10-6-89 on one of two (#2 scrubber, near river) new large scrubbers for DMF (VOC) scrubbing efficiency, inlet and outlet concentrations and pounds per hour emission rates. The scrubber tested was fully loaded (one-half scrubbing capacity) by full production on one-half (3) of the six orlon fiber dryers.

Opacity was always zero (0%) except for a short moisture plume - VEE's attached.

See the attached stack test monitoring sheet and proposed test protocol by ETS for more details.

- "Preliminary" results indicate (average of three one hour test runs):
- 96.6% scrubbing efficiency
- Inlet DMF: 332 ppm, 175.5 lb/hr
- Outlet DMF: 11.6 ppm, 5.9 lb/hr
- DMF concentration in scrubber water reservoir: 2.6%
Plant hopes to increase this to 9 or 10% for more efficient recovery.
- Inlet feed water: 4000 lbs/hr -- 8 gal/min.
- Ran about six days before test day.

PERSONNEL PRESENT

duPont

Ron Shifflett - Environmental
Paul Dana - Orlon Process Engineer - Scrubber "father"
Merv Meckley - Wilmington, Del. - "Scrubber designer"
Jim Harris - Orlon manufacturing supervisor
Ed Mongan - Environmental
George Aylor - Retired duPont - construction coordinator
David Hopkins - Fiber Dryers

ETS

Ed Handel
Tony Underwood
Lori Graves

DAPC

Ray Goetz
Sam Barnard (VEE)

Raymond O. Goetz
Engineer, Region II

ROG/bh

Attachments

cc: Division of Technical Evaluation
S. K. Barnard

STACK TEST MONITORING

10-6-89

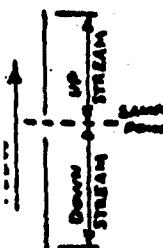
SOURCE NAME: DuPont #120517LOCATION: Wilmington - new DMF fiber dryer scrubber no 2 near riverDATE: 10-6-89OBSERVER'S NAME: R. O. GOETZPURPOSE OF TEST: COMPLIANCE - 6M ReductionTESTING DONE BY: ETS of ROKNKE - TED HANDEE, TROY UNDERWOOD, LORI GRAVES.LAB ANALYSIS DONE BY: SAME - on siteCOMPANY CONTACT: Ron Shifflett

TELEPHONE:

CONTROL EQUIPMENT OPERATING: #2 DMF SCRUBBER (AM RIVER) = 8 FT PACKED BEDOPACITY READING MADE: YES NOS. V. BARAHR - #2 GATE SAT CHECKINGOpenUNIT/PROCESS NAME: ORION FIBER DRYERS - #2 NEW DMF SCRUBBER - SEE ABOVERATED CAPACITY: CONFIDENTIALTYPE FUEL USED: NONEAPPROX. PROCESS RATE: CONFIDENTIAL (330) ABOVE NORMAL SHIFT MAX THRUPUTMETHOD OF DETERMINING PROCESS RATE: PLANT DATA (WEIGH PRODUCT OUT PORT)STACK HEIGHT: 93 FTINDIVIDUAL STACK COMMON STACKDIAMETER: (IF ROUND) 9 ft (IF RECTANGULAR) WIDTH LENGTH

I. SAMPLING POINT LOCATION

A. DISTANCE DOWNSTREAM FROM ANY FLOW DISTURBANCE:


NATURE OF DISTURBANCE ~ 3 ft

(BEND, CONTRACTION, EXPANSION, PAN, BAFFLES, ETC.)

B. DISTANCE UPSTREAM FROM ANY FLOW DISTURBANCE:

NATURE OF DISTURBANCE ~ 3 ft

(BEND, STACK EXIT, CONTRACTION, PAN, BAFFLES, EXPANSION, ETC.)

C. NUMBER OF PORTS IN STACK: 1D. NUMBER OF POINTS SAMPLED PER PORT: 1 middle of stack (gas-vol-only)

II. STACK GAS

A. STACK TEMPERATURE: ~ 100 °FB. ORSAT ANALYSIS: Only H₂O % per wet impingersC. PRELIMINARY A.P.: CRAB CONTINUOUS NUMBER OF INTEGRATED SAMPLES

III. PARTICULATE TEST

A. SAMPLING TRAIN Method = 5 ft A DMF method = stack gas thru ice, S.A. water impingers + silica gel - then GC/FID on site analysis of each impinger & each probe was & scrubbed water.

1. MANUFACTURER Specified test train MODEL 2. TEST METHOD: EPA METHOD 5 ASME PTC 21/27

OTHER (DESCRIBE)

3. TYPE FILTERS non-tinted probe, wet glass water impingers, silica gel, pump.4. PROBE LENGTH ~ 6 ft MATERIAL SS5. PROBE HEATER SETTING 6. HEATER BOX SETTING 7. METER CALIBRATION FACTOR 8. METER A H E FACTOR 9. DATE OF LAST CALIBRATION CHECK flowmeter calibrated between test runs.a. ORIFICE METER c. TEMPERATURE DEVICES e. NOZZLE DIAMETER b. DRY GAS METER d. PITOT TUBE f. OTHER

Test DMF specific to scrubber inlet w/ flow traverse in
breeding scrubber with DMF cone, moisture meter & water scrubber
water DMF cone (large water reservoir) = inlet, rpm & PTFE

On Pont 12 DMF scrubber
on carbon fiber dryer

B. NOMOGRAPH SETTINGS:

1. C FACTOR
2. ASSUMED MOISTURE CONTENT
3. INDICATED NOZZLE SIZE

C. SAMPLING PROCEDURE

1. LEAK CHECK DONE: BEFORE AFTER
2. PIPING: TYPE S for condensate P
3. NOZZLE SIZE USED:
4. TIME AT EACH PT.: 1 hr
5. TOTAL TIME OF TEST: 1 hr per run 3 runs
6. TEST INTERRUPTED: NO YES (EXPLAIN)

D. SAMPLE CLEAN-UP

1. FILTER HANDLED CAREFULLY: YES N. A. NO
2. FILTER HOLDER WASHED OUT: YES N. A. NO
3. PROBE WASHED OUT: YES N. A. NO
4. CYCLONE WASHED OUT: YES N. A. NO
5. WASHINGS SAVED: YES N. A. NO

MATERIAL USED: d. I. water

IV. ADDITIONAL COMMENTS:

10-6-87 Run #2 1126-1226 - witnessed - 0% VE -

" #3 1347-1447 - witnessed - 0% VE -

" #4 1717-1817 - not witnessed

c Run #1 was aborted due to test equipment power failure during test

All 3 runs =

① 1 of 2 scrubbers on line, all 6 fm on scrubber to fully load it,
3 of 6 dryers on at max throughput of about 33% more than normal
plant throughput per 8 hr shift for dryers that are on line
= 33% above normal dryer capacity = more than fully loaded
scrubber tested.

② Tested inlet ^{DMF} cone, water, gpm: outlet DMF cone, water; DMF
cone in big scrubber water reservoir.

③ Scrubber operating conditions:
~ 117 amps to 800 hp fan (this scrubber), ~ 29 to 40" pressure differential
in 6 gpm acfm, ~ 56,500 scfm 68°F, 29.92" Hg. (wet)
~ 37,000 scfm control room gas flow meter (needs calibrating)
~ 26,000 gpm recirculating water thru bottom = 8' hi packed bed.
~ 46°C
~ 4000 gph (8 gpm) inlet make up water (fresh Coyne Spring water), 15°C
inputs to top of 12 bubble cap trays above packed bed.
~ 0 to 6,000 gph (0 to 12 gpm) - avg ~ 1500 gph (3 gpm) outlet
bleed off take off water to DMF recovery. Outlet water flow
varies widely due to level control of big reservoir in bottom of scrubber -
avg ~ 3 gpm - takes days for much change in DMF cone in water.
~ 0.2" drop across fiber filter screen in treating.
~ 0.75" static head in treating upstream of venturi.

→ DTE

✓
2 Nov
10-13-87

COMPLIANCE TEST REPORT

OCT 12 1989

FOR

#20517

E. I. DUPONT DMF SCRUBBER NO. 2

LOCATED IN

WAYNESBORO, VA

OCTOBER, 1989

ETS, INC.

A subsidiary of ETS International, Inc.

SUITE C-103

3140 CHAPARRAL DRIVE

ROANOKE, VA 24018

*Pollution Control Consultants
Specializing In
Toxic Emission Measurement and Control*

ETS CONTRACT NO. 89-210-T

OCT 12 1989

REPORT CERTIFICATION

I have reviewed all testing details and results in this report and hereby certify that the test report is authentic and accurate.

DATE: October 10, 1989

SIGNATURE: Edward D. Handel

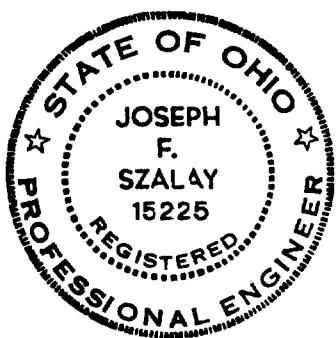
Edward D. Handel, PhD
Senior Chemist
ETS, Inc.

I have reviewed all testing details and results in this report and hereby certify that the test report is authentic and accurate.

DATE: October 10, 1989

SIGNATURE: James E. Wright

James E. Wright
Manager/Technical Services
ETS, Inc.


I have reviewed all testing details and results in this report and hereby certify that the test report is authentic and accurate.

DATE: OCTOBER 10, 1989

SIGNATURE: Joseph F. Szalay
Joseph F. Szalay

P.E.: E-015225

STATE OF: Ohio

TABLE OF CONTENTS

	<u>PAGE</u>
1.0 INTRODUCTION.....	1
2.0 TEST PROCEDURES.....	3
2.1 DMF GAS CONCENTRATION.....	3
2.2 MOISTURE CONTENT.....	4
2.3 TOTAL GAS FLOWRATE.....	4
2.4 WASTEWATER ANALYSIS.....	4
2.5 PROCESS DATA.....	5
3.0 SAMPLING AND TEST METHODOLOGY.....	5
3.1 DMF ANALYSIS.....	6
4.0 RESULTS.....	6

LIST OF TABLES

TABLE 1 - RESULTS OF EFFICIENCY TESTING ON SCRUBBER NO. 2.....	8
--	---

LIST OF FIGURES

FIGURE 1 - SCRUBBER SYSTEM.....	9
FIGURE 2 - SCRUBBER SCHEMATIC.....	10
FIGURE 3 - SAMPLING TRAIN.....	11
FIGURE 4 - TRAVERSE POINT LOCATIONS FOR INLET DUCT.....	12

LIST OF APPENDICES

APPENDIX A - COMPLIANCE TEST LOG.....	13
APPENDIX B - STACK VELOCITY DATA FIELD SHEETS AND CALIBRATION DATA FOR SAMPLING PUMPS....	14
APPENDIX C - ANALYTICAL METHODS.....	23
APPENDIX D - ANALYTICAL DATA.....	28
APPENDIX E - PLANT OPERATIONAL DATA.....	55

1.0 INTRODUCTION

A compliance test program was performed on the new wet scrubber system installed on the Orlon process at the duPont Waynesboro Plant. The testing program was designed to determine the level of abatement of N,N-Dimethylformamide (DMF) emissions.

Compliance testing was performed on only one scrubber (designated Scrubber No. 2) at this time. Scrubber No. 1 will be tested on a subsequent date. Testing was performed by L. Graves, T. Underwood and T. Handel of ETS, Inc. on Friday, October 6, 1989. The testing was coordinated with P. Dana and R. Schifflett of duPont. All operations data was collected by duPont personnel and has been included in this report as Appendix E. The test program was witnessed by R. Goetz of the Roanoke office of the State Air Pollution Control Board.

The test program consisted of three replicate series of measurements. All testing was conducted while the Orlon process was operating normally. Plant operations data were collected for each of the testing periods. This information is included as Appendix E. Each series of tests consists of the following measurements:

- 1) DMF gas concentration at the inlet duct of the dual scrubber system.
- 2) DMF gas concentration at the outlet of Scrubber No. 2.
- 3) Total gas volumetric flowrate at the inlet duct of the scrubber system.

- 4) Moisture content of the inlet duct of the scrubber system.
- 5) Moisture content of the outlet duct of the scrubber system.
- 6) DMF concentration in the scrubber system wastewater effluent.
- 7) Orlon process operational data.

All inlet/outlet testing was performed simultaneously in order to evaluate real time scrubber efficiency.

Figure 1 illustrates the overall gas flow details for the DMF scrubber system. The scrubber system is designed with two wet scrubber units, each designed to handle up to 75,000 actual cubic feet per minute (acf m) of exhaust gases. With both scrubbers in operation, the combined exhaust gases from the six Orlon dryers, the Pidler exhaust and the waste exhaust unit can be treated simultaneously. Due to a lack of demand for Orlon product, only one scrubber was conditioned for testing at this time. Scrubber No. 1 was isolated from the system and was not involved in the current series of tests.

Figure 2 shows the details of the scrubber construction. Each unit is equipped with an 800 HP blower to force the inlet gas through each scrubber. In the current test program, only the blower to scrubber No. 2 was operated.

2.0 TEST PROCEDURES

The rectangular inlet duct is 96 inches wide and 80 inches tall, with an effective diameter of 87 inches (7.3 feet). Three inlet sampling ports were located 56 feet downstream from the particulate screen and 14 feet upstream from the beginning of the right angle bend of the duct. Each port was three inches in diameter. Outlet sampling ports are located at the top of each scrubber, as shown in Figure 2. The diameter of the scrubber outlet stack is 8 feet.

2.1 DMF Gas Concentration

Determination of the DMF concentrations in the scrubber inlet and outlet gas streams was determined in general accordance with NIOSH Method 2004, which incorporates a solid sorbent tube (silica gel) for DMF absorption. Due to the high moisture content of the gas streams, the standard method was modified by placing a series of chilled impingers before the solid sorbent tube. The first two impingers each contained 15 mL of deionized water. A third impinger was empty. Due to the high solubility of DMF in water, it was anticipated that the DMF would be absorbed in the impinger solutions. Figure 3 illustrates the complete sample train employed in this test program.

Each sampling run was conducted for a period of 60 minutes at a nominal sampling rate of 1.5 liters per minute. Both inlet and outlet sampling was performed using the center of the respective ducts as the point of sample withdrawal.

The impinger solutions and the sorbent tube samples were analyzed using GC/FID in accordance with the general conditions outlined in NIOSH Method 2004. The impinger solution volumes were measured and recorded. Impinger 2 and 3 contents were combined and analyzed. Impinger 1 was analyzed separately. The probe and connecting lines were rinsed with deionized water. The probe wash volume was measured and the solution was analyzed for DMF.

2.2 Moisture Content

Moisture content of the inlet and outlet gas streams was determined by measuring the volume of water gain in the three impingers in the sampling train.

2.3 Total Gas Flowrate

The total volumetric flowrate of the inlet gases was measured using velocity traverses in accordance with EPA Methods 1 through 3 (40 CFR, Part 60, Appendix A). Four traverse points were used in each of the three inlet ports, giving a total of 12 traverse points (see Figure 4). The traverses were conducted before and after each of the DMF sampling runs. The traverses were performed using a Type "S" pitot tube, a type "K" thermocouple, and a digital manometer. Field data sheets for the stack velocity measurements are contained in Appendix B.

2.4 Wastewater Analysis

A sample of the scrubber wastewater was withdrawn during

each run. These samples were analyzed for DMF concentration by the ETS Mobile Laboratory utilizing the same procedures used to analyze the impinger solutions. The Analytical Method is contained in Appendix C and the results of the analytical determination of DMF are contained in Appendix D.

2.5 Process Data

Data collected by duPont plant personnel regarding the operation of the Orlon process and associated scrubber system is included in this report as Appendix E.

3.0 SAMPLING AND TEST METHODOLOGY

All sampling was conducted using sampling pumps calibrated onsite before and after each run. Each pump was calibrated with the sampling train in place using an inverted bubble flowmeter. Calibration data is contained in Appendix B. Each sampling train was leak checked preceding sampling interval by plugging the tip of the sampling probe and observing the complete cessation of bubbling in each of the impingers. The rotameter was also observed to insure that no leaks were present in the sampling train.

Sampling was coordinated using radio communication to ensure that inlet and outlet sampling was conducted simultaneously.

3.1 DMF Analysis

DMF analysis was performed onsite in the ETS Mobile Laboratory located at the foot of the DMF scrubbers. Analysis was begun immediately following each sampling period. The analysis was performed on a Shimadzu GC-14A gas chromatograph equipped with a flame ionization detector (FID). The analysis was performed using the following conditions:

Injection: 0.5 uL direct on-column

Injector Temperature: 250°C

Detector: FID

Detector Temperature: 220°C

Column: 10-meter, 0.53mm i.d. FSOT (Alltech SuperoxII)

Carrier: Nitrogen (3.0 mL/min)

Column Temperature: 100°C Isothermal

Samples were analyzed together with standards, spikes and duplicates.

4.0 RESULTS

Test run 1 was aborted during the test due to a power failure. The compliance data consists of three consecutive tests (runs 2, 3 and 4) performed on Friday October 6, 1989. All outlet data contained in this report is for Scrubber No. 2. The test log for the compliance testing is contained in Appendix A of this report. Duct flow measurements ranged between 61,000 and

68,000 acfm during the testing. The results of the DMF Compliance Tests for the duPont DMF Scrubber No. 2 are contained in Table 1.

Each of the three compliance tests demonstrated an efficiency of greater than 90 percent abatement of DMF emissions. The scrubber was operated at full capacity during each of the tests. The specific plant operations data were provided by duPont personnel and are contained in Appendix E of this report. The inlet concentrations of DMF ranged between 286 and 397 ppm_{dav} during the compliance testing. The outlet concentrations ranged from 17.1 to 8.9 ppm_{dav}. The average scrubber efficiency measured for the three tests was 96.3%.

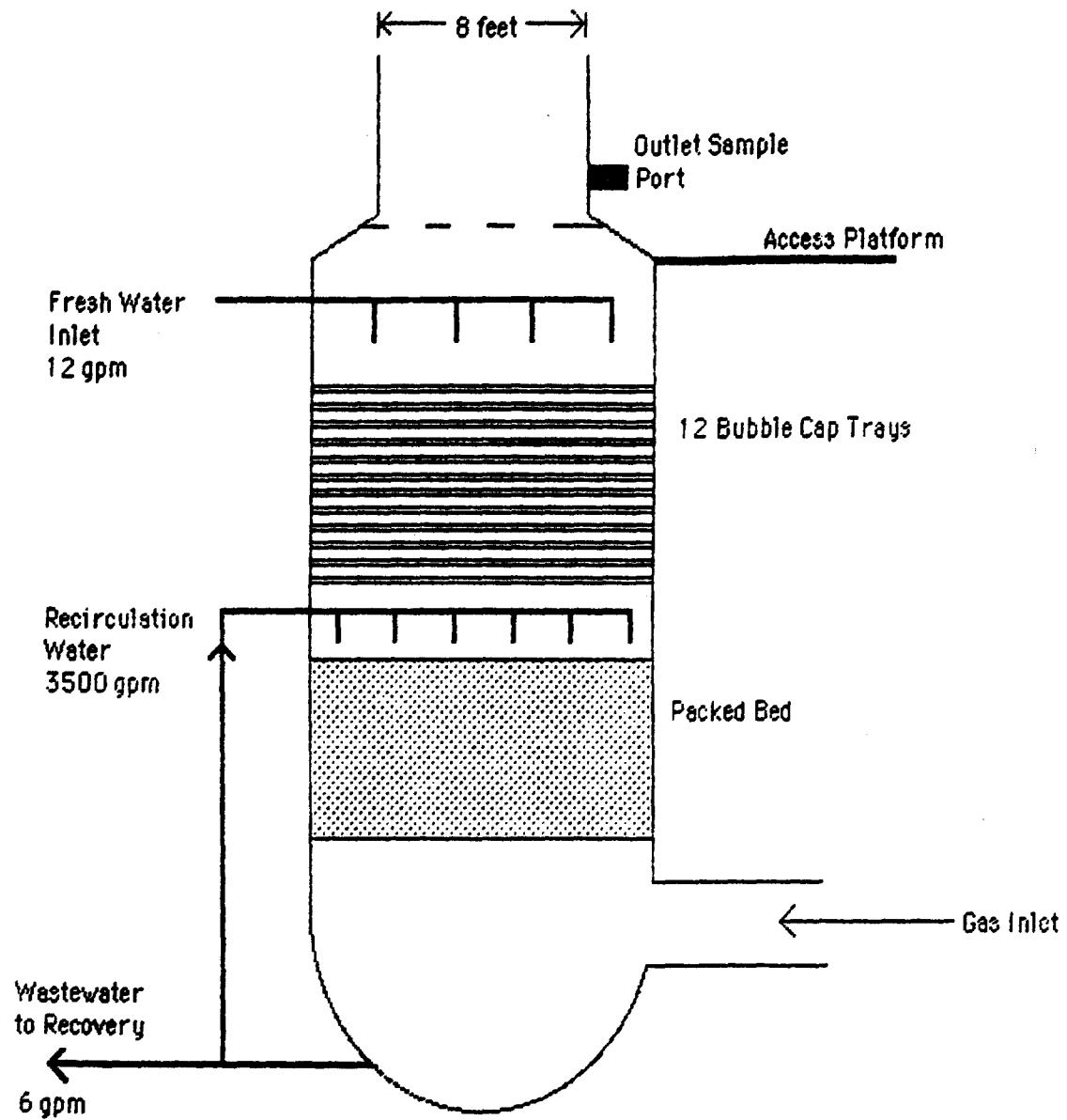

The concentration of DMF in the wastewater in the bottom of the stack remained relatively constant at 2.5% throughout the testing.

Table 1. Results of Efficiency Testing on Scrubber No. 2.

	Run 2	Run 3	Run 4
Inlet Temperature (°F):	156.8	153.4	153.3
Inlet Pressure (Static) (in.H₂O):	-0.999	-0.972	-0.980
Duct Velocity (ft/s):	21.5	20.2	19.0
Duct Flowrate (acf_m):	68760	64790	60950
(scfm):	56080	53130	49820
(dscfm):	51090	44460	43160
 Inlet Moisture (%):	 8.9	 16.3	 13.4
Outlet Moisture (%):	10.4	10.4	8.9
 Inlet DMF Concentration (ppm_{av}):	 397	 286	 312
Outlet DMF Concentration (ppm_{av}):	8.9	17.1	12.6
 Inlet Emission Rate (lbs/hr):	 230.9	 144.7	 153.2
Outlet Emission Rate (lbs/hr):	3.0	8.6	6.2
Scrubber No. 2 Efficiency (%):	98.8	94.0	96.0
 Scrubber No. 2 Wastewater Analysis:			
Concentration (%(w/v)) before run:	2.19	2.59	2.55
Concentration (%(w/v)) after run:	2.59	2.55	2.55

Figure 1 - Scrubber System

OCT 12 1989

Figure 2 - Scrubber Schematic

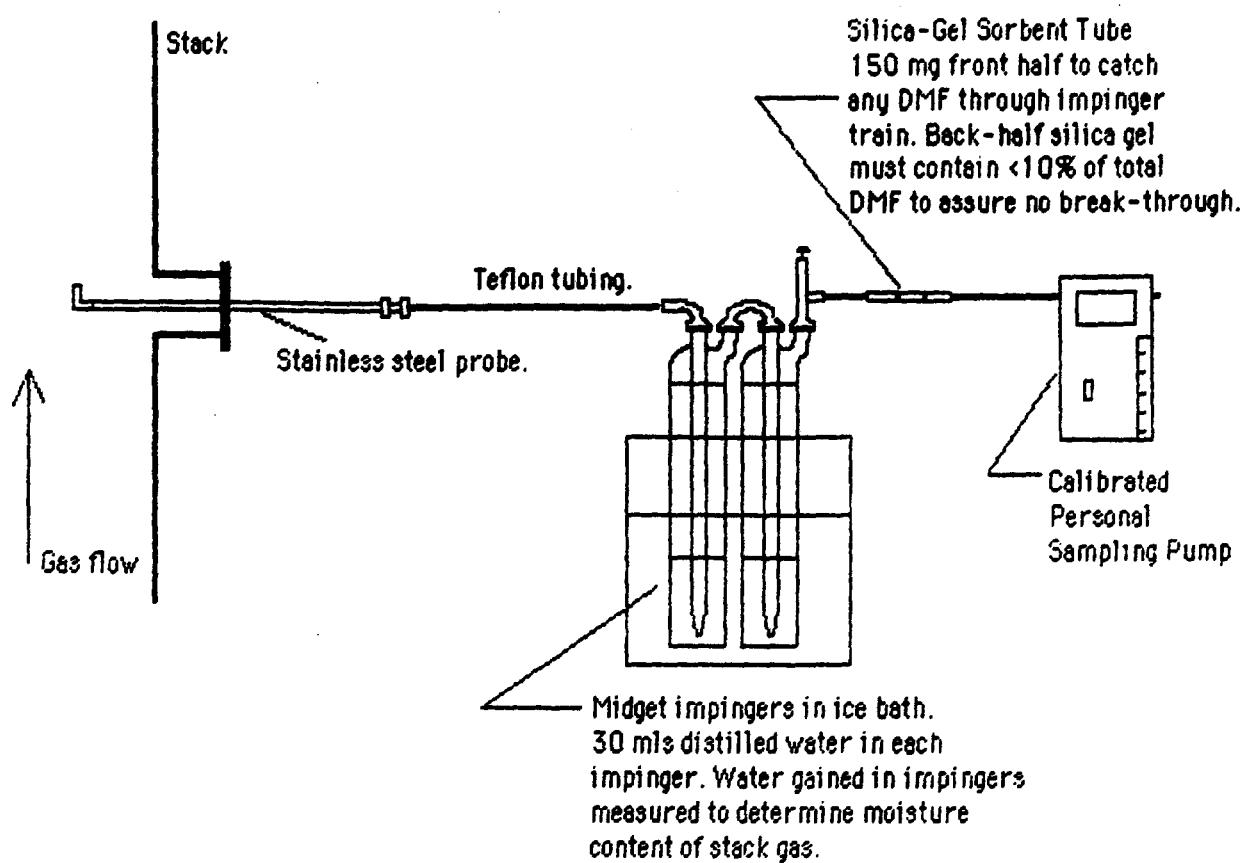


Figure 3 - Sampling Train

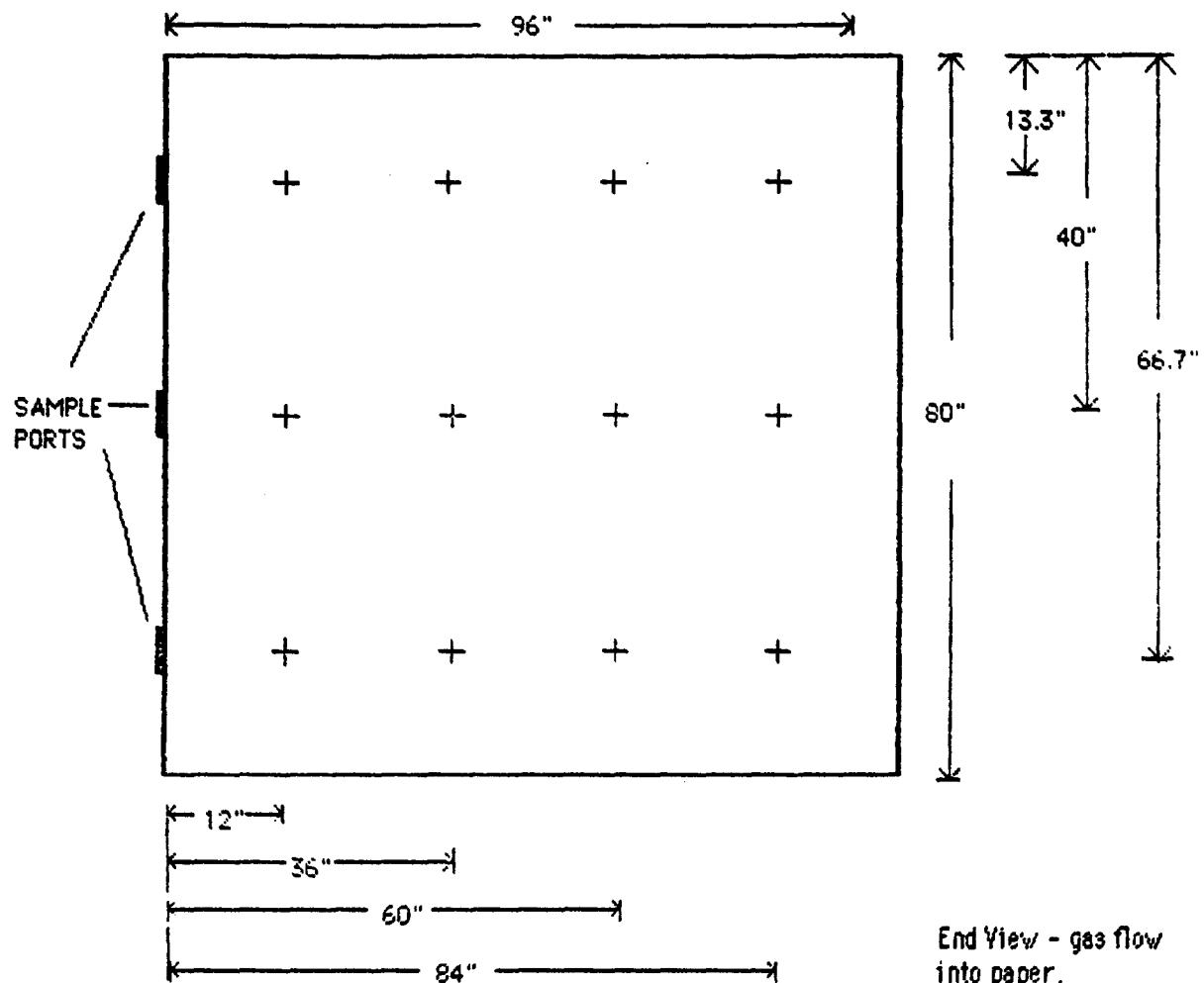


Figure 4 - Traverse Point Locations for Inlet Duct

APPENDIX A

Compliance Test Log

Run 1 - Aborted due to power failure during test.

Run 2 - Start Time: 11:26
End Time: 12:26

Run 3 - Start Time: 13:37
End Time: 14:47

Run 4 - Start Time: 17:14
End Time: 18:14

APPENDIX B
STACK VELOCITY DATA FIELD SHEETS
AND CALIBRATION DATA FOR
SAMPLING PUMPS

FIELD DATA SHEET

Project Input
 Location Waynesboro, VA
 Date October 6, 1989

RUN NUMBER 1 Inlet
 START TIME 1013
 END TIME

Traverse Data

PRE-TEST

Time	0755	
POINT	△P STACK In. W.C.	T STACK Deg. F
A 1	.048	82
2	.052	84
3	.052	85
4	.053	84
B 1	.050	82
2	.055	84
3	.053	84
4	.052	83
C 1	.049	81
2	.039	81
3	.040	81
4	.027	80
	.218	82.6

Stack
604

POST-TEST

Time	1000	
POINT	△P STACK In. W.C.	T STACK Deg. F
A 1	.126	155
2	.122	158
3	.133	161
4	.137	161
B 1	.114	159
2	.119	160
3	.127	162
4	.135	163
C 1	.102	152
2	.093	152
3	.100	152
4	.063	146
	.333	156.75

Stack
-978

CALIBRATION DATA

	NET TIME	NET VOLUME	RATE - 1pm
Pre-Test	30/30/30	.750	1.50
Post-Test			
		AVERAGE	

Notes

Initial Imp T° - 64°F

FIELD DATA SHEET

Project DUPONT 89-210
Location Waynesboro, Va
Date 10-6-89

RUN NUMBER #1 OUTLET
START TIME 1013
END TIME 1044

POWER CUE CO.
1024-5
104-1055-

Traverse Data

DDF-TEST

POST-TEST

CALIBRATION DATA

	NET TIME	NET VOLUME	RATE - 1pm
Pre-Test	19.6	500ml	1.56
Post-Test		500ml	
		AVERAGE	

Notes

LEAK CHECK = - 6000

EXIT TEMP = -

FIELD DATA SHEET

Project Dupont
 Location Waynesboro, VA
 Date October 6, 1989

RUN NUMBER 2 Inlet
 START TIME 1126
 END TIME 1226

Traverse Data

PRE-TEST

Time	1112	
POINT	△P STACK In. W.C.	T STACK Deg. F
A 1	.128	158
2	.133	157
3	.128	160
4	.136	161
<i>static</i> 035		
B 1	.118	157
2	.120	159
3	.129	157
4	.1133	156
C 1	.114	149
2	.094	148
3	.113	150
4	.075	147
	.343	154.92

POST-TEST

Time	1301	
POINT	△P STACK In. W.C.	T STACK Deg. F
A 1	.123	160
2	.131	163
3	.119	165
4	.134	166
<i>static</i> ab ²		
B 1	.112	158
2	.123	160
3	.121	162
4	.125	163
C 1	.117	155
2	.120	153
3	.106	153
4	.067	147

(200 .015)

.338

158.75

Notes

CALIBRATION DATA

	NET TIME	NET VOLUME	RATE - 1pm
Pre-Test	30/30/30	.750 L	1.500
Post-Test	30/30/39	.750 L	1.500
	AVERAGE		1.50

FIELD DATA SHEET

Project DUPONT 89-210
Location WYNNESBORO, Va
Date 10-6-89

RUN NUMBER #2 OUTLET
START TIME 1126 COMPUTER
END TIME 1226

Traverse Data

DDE-TEST

POST-TEST

CALIBRATION DATA

	NET TIME	NET VOLUME	RATE - 1pm
Pre-Test	19.9 sec	500ml	1.5
Post-Test	20.0 sec	500ml	1.5
		AVERAGE	1.5

Notes

LEAK CHECK - EXCELLENT
EXIT TEMP - 68°F

FIELD DATA SHEET

Project Dupont
 Location
 Date 10-6-89

RUN NUMBER 3 Inlet
 START TIME 1348
 END TIME 1448

Traverse Data

PRE-TEST

Time	1336	
POINT	△P STACK In. W.C.	T STACK Deg. F
A1	.108	154
2	.104	155
3	.115	156
4	.122	155
B1	.105	151
2	.103	153
3	.119	154
4	.110	155
C1	.086	145
2	.088	146
3	.094	148
4	.060	149

0.318 151.75

POST-TEST

Time	1505	
POINT	△P STACK In. W.C.	T STACK Deg. F
A1	.103	157
2	.108	159
3	.112	160
4	.112	161
B1	.102	152
2	.110	154
3	.113	156
4	.118	158
C1	.083	147
2	.083	151
3	.100	153
4	.054	153

0.316 155.08

CALIBRATION DATA

	NET TIME	NET VOLUME	RATE - lpm
Pre-Test	30/30/29	.750 l	1.50
Post-Test	29/29/28	.750 l	1.51
	AVERAGE		1.50

Notes

Initial Temp	T ⁰ - 62°
Final	T ⁰ 74°

FIELD DATA SHEET

Project DUPONT 89-210
Location WYTHEWOOD, Va.
Date 10-6-89

RUN NUMBER #3 OUTLET
START TIME 1348 CONDUIT
END TIME 1448

Traverse Data

DOE-TEST

POST-TEST

CALIBRATION DATA

	NET TIME	NET VOLUME	RATE - 1pm
Pre-Test	20.2	500ml	1.44
Post-Test	20.5	500ml	1.44
	AVERAGE		1.44

Notes

LEAK CHECK = EXCELLENT
EXIT TEMP = 68-72°

FIELD DATA SHEET

Project Papant
 Location
 Date 10-6-89

RUN NUMBER 4 Inlet
 START TIME 1714
 END TIME 1814

Traverse Data

PPE-TEST

Time	△P STACK In. W.C.	T STACK Deg. F
A1	.100	150
2	.103	150
3	.108	151
4	.113	152
B1	.099	149
2	.103	151
3	.103	152
4	.108	154
C1	.072	151
2	.083	149
3	.093	148
4	.055	148

150.42

POST-TEST

Time	△P STACK In. W.C.	T STACK Deg. F
A1	.101	161
2	.113	161
3	.111	162
4	.119	162
B1	.098	160
2	.107	153
3	.111	155
4	.102	156
C1	.077	148
2	.084	148
3	.095	150
4	.053	152

0.310 156.08

CALIBRATION DATA

	NET TIME	NET VOLUME	RATE - lpm
Pre-Test	30/30/30	750mls	1.50
Post-Test	29/29/29	750mls	1.51
	AVERAGE		1.50

Notes

Initial Imp T - 64

Final Imp T - 67

FIELD DATA SHEET

Project DuPont 89-210
Location Waynesboro, Va
Date 10-6-89

RUN NUMBER 4 OUTLET
START TIME 1714
END TIME 1814

Traverse Data

PDF-TEST

POST-TEST

CALIBRATION DATA

	NET TIME	NET VOLUME	RATE - 1pm
Pre-Test	19.1 sec	500ml	1.56
Post-Test	20.2	500ml	1.44
	AVERAGE		1.50

Notes

LEAK CHECK = EXCELLENT
EXIT TEMP = 65° - 70°F

APPENDIX C
ANALYTICAL METHODS

FORMULA: (1) $\text{CH}_3\text{CON}(\text{CH}_3)_2$; $\text{C}_4\text{H}_9\text{NO}$
(2) $\text{O}=\text{C}(\text{H}_3)\text{N}(\text{CH}_3)_2$; $\text{C}_3\text{H}_7\text{NO}$
M.W.: (1) 87.12; (2) 73.10

(1) DIMETHYLACETAMIDE and
(2) DIMETHYLFORMAMIDE

METHOD: 2004
ISSUED: 5/15/85

OSHA: 10 ppm (skin) [(1) and (2)]

PROPERTIES: Table 1

NIOSH: no standard

ACGIH: 10 ppm (skin) [(1) and (2)]

[1 ppm = 3.56 mg/m³ @ NTP (1)]; [1 ppm = 2.99 mg/m³ @ NTP (2)]

SYNONYMS: (1): N,N-dimethylacetamide; CAS #127-19-5.

(2): N,N-dimethylformamide; DMF; CAS #68-12-2.

SAMPLING	MEASUREMENT
SAMPLER: SOLID SORBENT TUBE (silica gel, 150 mg/75 mg)	: !TECHNIQUE: GAS CHROMATOGRAPHY, FID !
FLOW RATE: 0.01 to 1 L/min	: !ANALYTE: dimethylacetamide or dimethylformamide !
VOL-MIN: 15 L @ 30 mg/m ³ -MAX: 80 L	: !DESORPTION: 1 mL methanol; 1 hr in ultrasonic bath !
SHIPMENT: routine	: !INJECTION VOLUME: 5 μL !
SAMPLE STABILITY: stable \geq 5 days @ 25 °C [1]	: !TEMPERATURE-INJECTION: 240 °C -DETECTOR: 320 °C -COLUMN: 140 °C
FIELD BLANKS: 10% (\geq 2) of samples	: !CARRIER GASES: N_2 , 50 mL/min !
ACCURACY	
RANGE STUDIED: (1): 18 to 105 mg/m ³ [1]; (2): 11 to 61 mg/m ³ [1] (45-L samples)	: !COLUMN: 1.5 m x 6 mm OD glass; 10% UCON 50-HB-5100, 2% KOH on 100/120 mesh Chromosorb WHP !
BIAS: not known [1]	: !CALIBRATION: analyte in methanol !
OVERALL PRECISION (s_r): (1): 0.067 [1]; (2): 0.056 [1]	: !RANGE: 0.5 to 4 mg per sample [1,2] ! !ESTIMATED LOD: 0.05 mg per sample [2] ! !PRECISION (s_r): (1): 0.032 [1]; (2): 0.037 [1] !

APPLICABILITY: The working range is 10 to 80 mg/m³ of either analyte for a 50-L air sample. The lower limit is determined by the desorption efficiency which must be determined over the range used. Silica gel has a high affinity for water; high relative humidity will adversely affect the efficiency of analyte adsorption.

INTERFERENCES: None identified. Separation conditions (column, temperature, etc.) may be changed to circumvent problems. Alternate columns include: 60/80 mesh Chromosorb P coated with 20% UCON LB 550X and 2% KOH; 100/120 mesh Chromosorb WHP with 10% Carbowax 20M and 2% KOH; 100/120 mesh Chromosorb WHP with 10% SP-2250; and 5% FFAP.

OTHER METHODS: This combines and replaces Methods S254 and S255 [2].

(1) DIMETHYLACETAMIDE and (2) DIMETHYLFORMAMIDE

METHOD: 2004

REAGENTS:

1. Methanol, reagent grade.*
2. Analyte: dimethylacetamide, reagent grade, or dimethylformamide, reagent grade.*
3. Acetone, reagent grade.*
4. Desorption efficiency (DE) stock solution, 0.05 mg/mL. Prepare solutions of dimethylacetamide or dimethylformamide fresh daily in acetone.
5. Hydrogen, prepurified.
6. Air, filtered, compressed.
7. Nitrogen, purified.

*See SPECIAL PRECAUTIONS.

EQUIPMENT:

1. Sampler: glass tube, 7 cm long, 6 mm OD, 4 mm ID, flame-sealed, with plastic caps, containing two sections of 20/40 mesh silica gel (front = 150 mg; back = 75 mg) separated by a 2-mm urethane foam plug. A silylated glass wool plug precedes the front section and a 3-mm urethane foam plug follows the back section. The pressure drop across the tube must be less than 3.4 kPa (2.5 cm Hg) at an airflow of 1 L/min. Tubes are commercially available.
2. Personal sampling pump, 0.01 to 1 L/min, with flexible connecting tubing.
3. Gas chromatograph, FID, integrator, and column (page 2004-1).
4. Vials, 2-mL, PTFE-lined crimp cap, or automatic sampler vials.
5. Microliter syringes, 10- μ L and other convenient sizes for making standards.
6. Pipets, 1.0 mL, delivery.
7. Volumetric flasks, 10-mL.
8. Ultrasonic bath.

SPECIAL PRECAUTIONS: Acetone and methanol are flammable and a dangerous fire and explosion risk. They are moderately toxic by ingestion and inhalation.

Dimethylacetamide and dimethylformamide are strong irritants to skin and tissue and moderate fire risks.

SAMPLING:

1. Calibrate each personal sampling pump with a representative sampler in line.
2. Break the ends of the sampler immediately before sampling. Attach sampler to personal sampling pump with flexible tubing.
3. Sample at an accurately known flow rate between 0.01 and 1 L/min for a total sample size of 15 to 80 L.
4. Cap the samplers. Pack securely for shipment.

SAMPLE PREPARATION:

5. Place the front and back sorbent sections of the sampler tube in separate vials. Discard the glass wool and foam plugs.
6. Add 1.0 mL methanol to each vial. Attach crimp cap to each vial.
7. Agitate for 60 min in an ultrasonic bath.

CALIBRATION AND QUALITY CONTROL:

8. Calibrate daily with at least five working standards over the ranges 0.05 to 4 mg dimethylacetamide or dimethylformamide per sample.
 - a. Add known amounts of analyte (neat or diluted with methanol) to methanol in 10-mL volumetric flasks and dilute to the mark.
 - b. Analyze together with samples and blanks (steps 11 and 12).
 - c. Prepare calibration graph (peak area vs. mg analyte).

9. Determine desorption efficiency (DE) at least once for each lot of silica gel used for sampling in the calibration range (step 8). Prepare three tubes at each of five levels plus three media blanks.
 - a. Remove and discard back sorbent section of a media blank sampler.
 - b. Inject a known amount (1 to 20 μ L) of pure analyte or DE stock solution directly onto front sorbent section with a microliter syringe.
 - c. Cap the tube. Allow to stand overnight.
 - d. Desorb (steps 5 through 7) and analyze together with working standards (steps 11 and 12).
 - e. Prepare a graph of DE vs. mg analyte recovered.
10. Analyze three quality control blind spikes and three analyst spikes to ensure that the calibration graph and DE graph are in control.

MEASUREMENT:

11. Set gas chromatograph according to manufacturer's recommendations and to conditions given on page 2004-1. Inject sample aliquot manually using solvent flush technique or with autosampler.

NOTE: If peak area is above the linear range of the working standards, dilute with methanol, reanalyze, and apply the appropriate dilution factor in calculations.

12. Measure peak area.

CALCULATIONS:

13. Determine the mass, mg (corrected for DE) of analyte found in the sample front (W_f) and back (W_b) sorbent sections, and in the average media blank front (B_f) and back (B_b) sorbent sections.

NOTE: If $W_b > W_f/10$, report breakthrough and possible sample loss.

14. Calculate concentration, C, of analyte in the air volume sampled, V (L):

$$C = \frac{(W_f + W_b - B_f - B_b) \cdot 10^3}{V}, \text{ mg/m}^3.$$

EVALUATION OF METHOD:

Method S254 for dimethylacetamide was evaluated over the range of 18 to 105 mg/m³ at an atmospheric temperature and pressure of 24 °C and 760 mm Hg using a 45-L sample [1]. Breakthrough occurred when sampling a test atmosphere containing 105.6 mg/m³ of dimethylacetamide at 0.876 L/min for 240 min. The front section of the silica gel tube was found to hold 22.2 mg dimethylacetamide under these conditions. The collection efficiency test conducted at a concentration of 105.6 mg/m³ was determined to be 1.00. Desorption efficiency at 0.943, 1.886, and 3.17 mg per silica gel tube was 88.8, 93.8, and 94.9%, respectively. A storage study for five days at 1.866 mg per silica gel tube gave a recovery of 93.6%. Overall sampling and measurement precision, s_r , was 0.067.

Method S255 for dimethylformamide was evaluated over the range of 11 to 61 mg/m³ at an atmospheric temperature and pressure of 23 °C and 761 mm Hg using a 45-L sample [1]. Breakthrough occurred when a test atmosphere containing 119.5 mg/m³ of dimethylformamide was sampled at 0.859 L/min for 146 min. The front section of the silica gel tube was found to hold 15 mg of dimethylformamide under these conditions. The collection efficiency test conducted at a concentration of 61.1 mg/m³ was determined to be 1.00. Desorption efficiency at 0.759, 1.518, and 3.04 mg per silica gel tube was 88.7, 90.4, and 92.2%, respectively. A storage study for five days at 1.5 mg dimethylformamide per silica gel tube gave a recovery of 91.7%. Overall sampling and measurement precision, s_r , was 0.056.

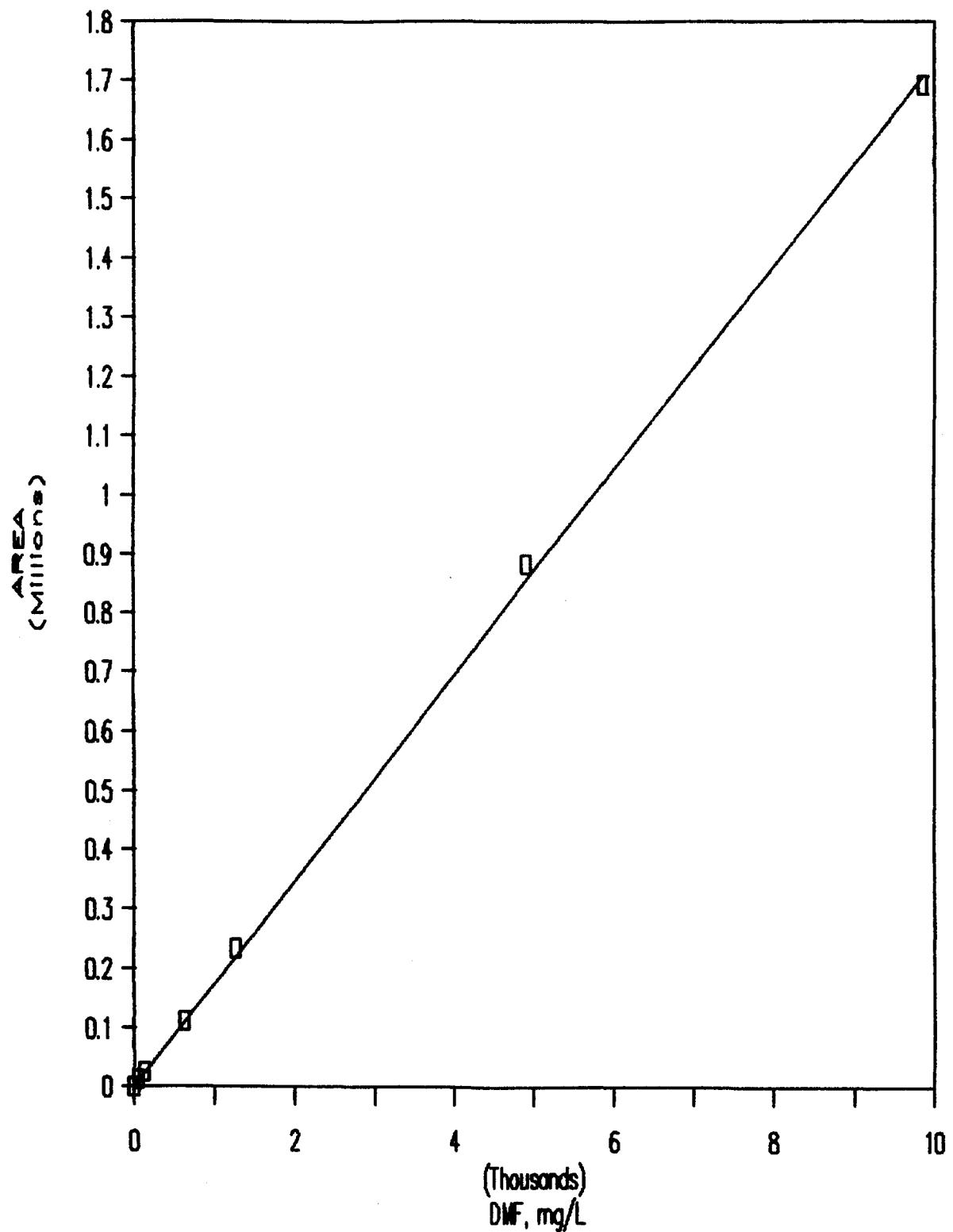
(1) DIMETHYLACETAMIDE and (2) DIMETHYLFORMAMIDE

METHOD: 2004

REFERENCES:

- [1] Documentation of the NIOSH Validation Tests, S254 (Dimethylacetamide) and S255 (Dimethylformamide), U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-185 (1977), available as GPO Stock #017-033-00231-2 from Superintendent of Documents, Washington, DC 20402.
- [2] NIOSH Manual of Analytical Methods, 2nd ed., Vol. 3, S254 and S255, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-157-C (1977).

METHOD REVISED BY: C. Neumeister, NIOSH/DPSE; S254 and S255 originally validated under NIOSH Contract CDC-99-74-45.


Table 1. Properties.

Analyte	Liquid density, g/mL @ 25 °C	BP (°C)	MP (°C)	VP @ 25 °C			Explosive range in air, % v/v
				Pa	mm Hg	ppm	
Dimethylacetamide	0.9366	166	-20	170	1.3	1700	1.8 to 11.5
Dimethylformamide	0.9440	153	-60	490	3.7	4900	2.2 to 15.2

APPENDIX D
ANALYTICAL DATA

E.I. du Pont - 89-210

DMF STUDY

(DMF)

Varian Waynesboro
DMF Scrubber #2
Compliance Testing

Analysis for: N,N-Dimethylformamide Analyst: T.H. Date: 10/6/89

Method: NIOSH Reference: 2004

Sample Collection:

Impinger: Volume: 15 ml Solution: Deionized Water

Tube, Type: Silica Gel

Desorption: Volume: 1.0 ml Solvent: Methanol

GC Conditions:

Injector Temp: 225 °C Injector volume: 0.5 μ l

Detector Temp: 225 °C Detector (FID) Range: 10

Column Type: Superox II, 10m, 0.53mm ID

Column Temp: Initial: 100 °C Time: 150 sec/min

Ramp: °C/min

Final: °C Time: min

Carrier: Gas: N₂ Flowrate: 3.0 ml/min

Sample ID	Collection Time (min)	Final Sample Volume (μ l)	Retention Time	Area	
Blank (water)			ND	ND	
Blank (water)			ND	ND	
9860 ppm DMF	Std		3.945	1692744	
4930 ppm DMF	Std		3.908	881939	
Scrubber WW / 50			3.874	101600	
Tray 1 / 50			3.88	27629 234	
1260 ppm DMF	Std		3.905	234646	

DuPont
Waynesboro
DMF Scrubber #2

Laboratory Analysis

Continuation page 2

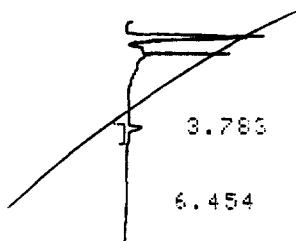
Sample ID	Collection Time (min)	Final Sample Volume (mL)	Retention Time	Area	
630 ppm DMF	Std		3.88	109807	
126 ppm DMF	Std		3.863	24181	
63 ppm DMF	Std		3.862	11852	
Tray 4			3.857	100811	
Tray 8			3.880	40506	
Tray 12			3.872	9056	
Tray 1 / 50			3.926	21072	
Bottom 11:20 / 50	—	3.979	75811	2.19%	
R2 - Inlet Lmp 1	21 ml	4.097	776678	94.1mg	
R2 - Inlet Lmp 2	15	4.046	40364	3.5 mg	
R2 - Inlet Probe Wash	13	4.03	3147893	11.1 mg	
R2 - Outlet - Lmp 1	22	3.969	9104	1.2 mg	
R2 - Outlet - Lmp 2	15	ND	ND	0 mg	
R2 - Outlet - Probe Wash	24	4.042	1685	0.2 mg	
Bottom after R2 / 50	—	4.007	89807	2.59%	
R3 - Outlet - Lmp 1	21	4.054	20915	49.7mg	
R3 - Outlet - Lmp 2	20	4.044	4413	3.2 mg	
R3 - Outlet - Probe Wash	24	4.066	12623	25.4mg	
R3 - Inlet - Lmp 1	20	4.078	410081	2.4mg	
R3 - Inlet - Lmp 2		4.001	42300		
R3 - Inlet - Probe Wash	25	4.002	183382	4.7mg	
Bottom after 17:00 / 50	—	3.983	88337	2.54%	
R3 - Inlet Lmp 2	17	3.977	27561	0.4mg	

Laboratory Analysis

DuPont
Waynesboro
DMF Scrubber #2

Continuation page 3

FILE 0
ATTEN 4
METHOD# 2021
SPL.WT 100
SPEED 6
FOR. RIS 6
TICKS 1

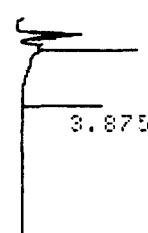

TIME PROGRAM FILE 0

0.01 LOCK ON
3.5 LOCK OFF

OCTOBER 6, 1989
DUPOUNT DMF COMPLIANCE

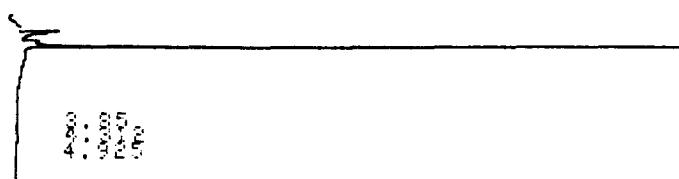
10M 0.53MMI SUPEROX 11 F80T
ISOTHERMAL 100C
DET225) INJ225
RANGE 10

0.5UL BLANK(WATER)


CHROMATOGRAM 1 MEMORIZED

IR501 CHROMATOPAC

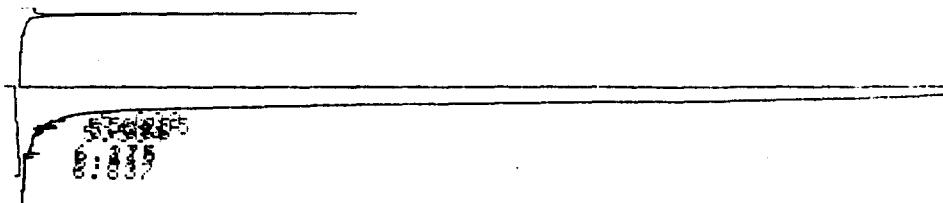
CHANNEL NO 1 FILE 0
SAMPLE NO 0 METHOD 2021
REPORT NO 60


PKNO	TIME	AREA	OK	ALPC	CONC	Ratio
1	3.783	2750		31801	1.00	
	TOTAL	2936			1.00	

BLANK

CHROMATOGRAM 1 MEMORIZED

WARNING NO PEAK
BLANK

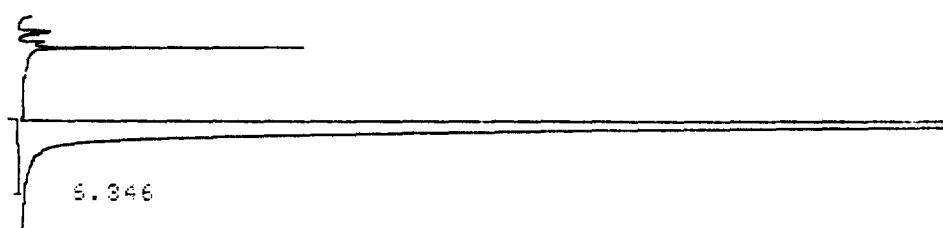


1114

223-02037-01

904124A

⊕ Shaded


CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

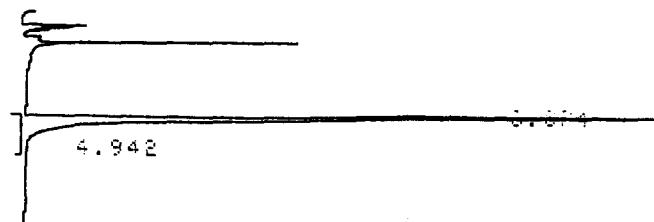
CHANNEL NO 1
SAMPLE NO 6
REPORT NO 61

FILE 8
METHOD 808.

PKNO	TIME	AREA	AK	TDAC	COND	NAME
1	3.954	1692744	5		106	
		16171201				
		-----	-----	-----	-----	
	TOTAL	1692744			106	
49300PPM	DME					

CR564 CHROMATOGRAM

CHANNEL NO 1
SAMPLE NO 9
REPORT NO 66

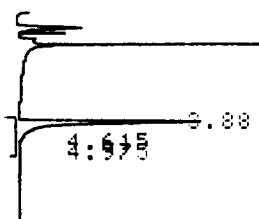

PKNO	TIME	AKA#	PK	LEN	CONT	REC'D
1	3.968	881989	0		160	
		8812741				
			-----	-----	-----	-----
	TOTAL	881989			160	

223-02037 01

9041241

Shimadzu

BOTTOM DILUTED 1:50



CHROMATOGRAPHY IN MEDICINE

CR501 CHROMATOGRAM

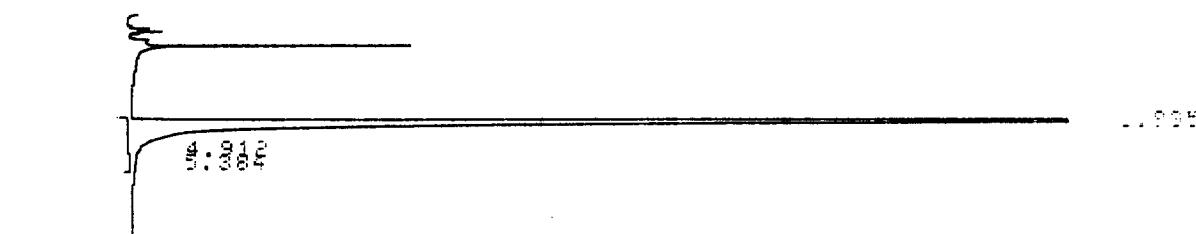
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 6

TOTAL 101660
TRAY1 DILUTED 1:50

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1


FILE 0

SAMPLE NO 0

METHOD 2001

REPORT NO 64

PKNO	TIME	AREA	WK	PERCENT	COUNT	PHASE
1	3.88	27629	0	100	1000	
		312chi				

		TOTAL	27629		100	
		1260PPM DMF				

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

FILE 0

SAMPLE NO 0

METHOD 2001

REPORT NO 65

PKNO	TIME	AREA	WK	PERCENT	COUNT	PHASE
1	3.905	234646	0	100	1000	

21010hi

TOTAL 234646 100

630PPM

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

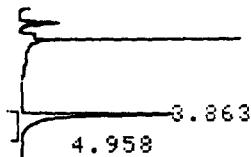
CHANNEL NO 1

FILE 0

SAMPLE NO 0

METHOD 2001

0015


223-02037-01

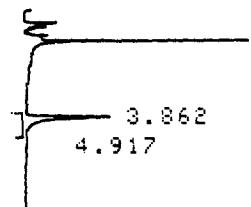
904124A

⊕ Skimadzu

1 3.88 109867 0
12432ml

TOTAL 109867 100

126PPM DMF


CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 67

FILE 0
METHOD 2621

PKNO	TIME	AREA	MR	PERC	CUMC	NAME
1	3.863	24181		100		
		2607ml				
TOTAL		24181		100		

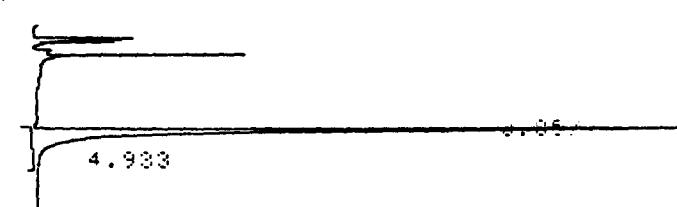
63PPM DMF

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 68

FILE 0
METHOD 2621

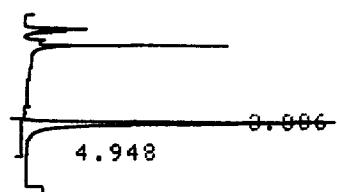
PKNO	TIME	AREA	MR	PERC	CUMC	NAME
1	3.862	11852		100		
		1463ml				


007

223-02037-01

904124A

⊕ Shimadzu



TOTAL 11852 100
TRAY 4

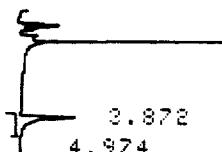
CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

10933ni

TOTAL 100811 100
TRAY 8

CHROMATOGRAM 1 MEMORIZED


CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 70

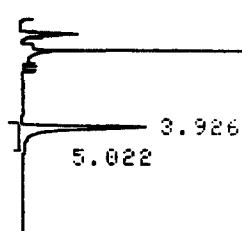
FILE 0
METHOD 4001

PKNO	TIME	AREA	ME	LENO	CORR	NAME
1	3.886	40506	S	5298hi	100	

TOTAL 40506 100

TRAY 12

CHROMATOGRAM 1 MEMORIZED


CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 71

FILE 0
METHOD 4001

PKNO	TIME	AREA	ME	LENO	CORR	NAME
1	3.872	9056		100201	100	

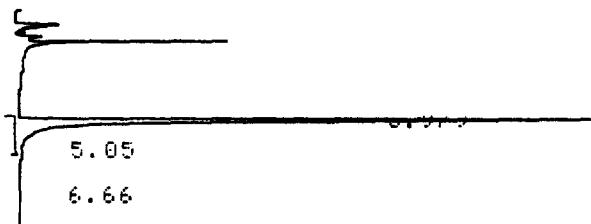
TOTAL 9056 100
TRAY 1 DILUTED 1:50

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0

FILE 0

1008

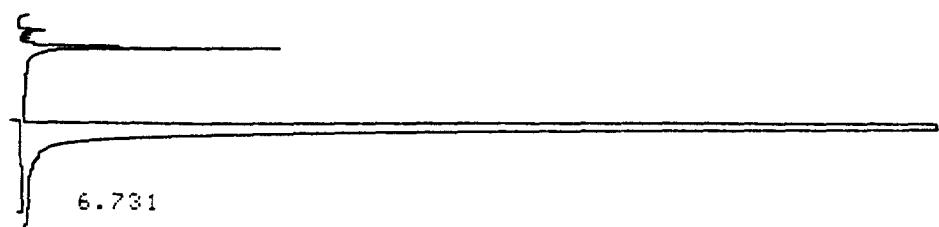

223-02037-01

904124A

⊕ Shimadzu

1	3.926	21672	100
		2119ni	
		-----	-----
	TOTAL	21672	100

BOTTOM 11:20
DILUTED 1:50



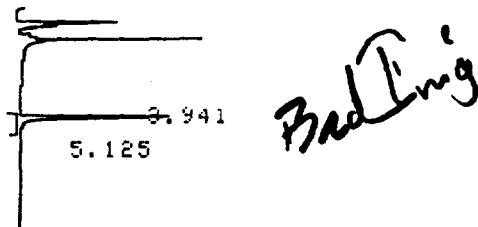
CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 73

PKNO	TIME	AREA	MRK	TYPE	COND	MEAS
1	3.979	75811	S		100	
		98779ni				
		-----			-----	
	TOTAL	75811			100	

R2-INLET-IMPI

CHROMATOGRAM 1 MEMORIZED


CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 74

009

223-02037-01

904124A

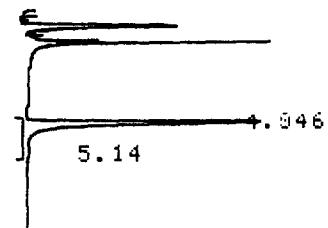
⊕ Skumada

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

FILE 0


SAMPLE NO 0

METHOD 2001

REPORT NO 75

PKNO	TIME	AREA	MK	LMNO	CONC	NAME
1	3.941	14957			100	
		2539hi				

					100	
		TOTAL	14957			

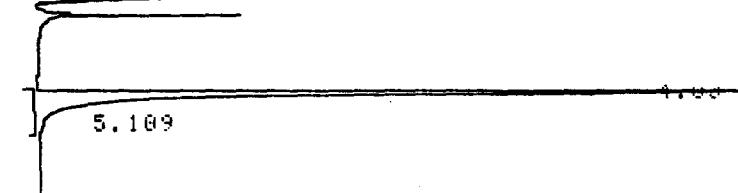
R2-INLET-IMP2

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

FILE 0


SAMPLE NO 0

METHOD 2001

REPORT NO 76

PKNO	TIME	AREA	MK	LMNO	CONC	NAME
1	4.046	40364 8			100	
		4048hi				

					100	
		TOTAL	40364			

R2-INLET-PROBE WASH

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

FILE 0

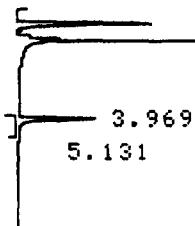
SAMPLE NO 0

METHOD 2001

REPORT NO 77

010

223-02037-01


904124A

⊕ Shimadzu

TOTAL 147893

100

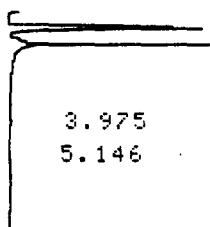
R2-OUTLET-IMP1

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

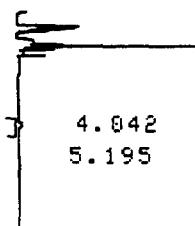
FILE 0


SAMPLE NO 0

METHOD 2021

REPORT NO 78

PKNO	TIME	AREA	MK	UNNO	CONC	NAME
1	3.969	9104			100	
		134101				
TOTAL		9104			100	


R2-OUTLET-IMP2

CHROMATOGRAM 1 MEMORIZED

WARNING NO PEAK

R2-OUTLET-PROBE WASH

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

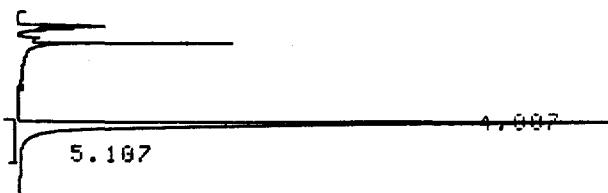
FILE 0

SAMPLE NO 0

METHOD 2021

REPORT NO 79

PKNO	TIME	AREA	MK	UNNO	CONC	NAME
1	4.042	1685			100	
		12811				
TOTAL		1685			100	


011

223-02037-01

904124A

⊕ Shimadzu

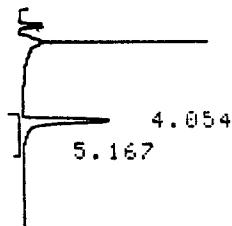
BOTTOM AFTER R2 DILUTED 1:50

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

FILE 0


SAMPLE NO 0

METHOD 2021

REPORT NO 80

PKNO	TIME	AREA	WK	TYPE	CONC	NAME
1	4.007	89807	S		100	
		100003hi				
	TOTAL	89807			100	

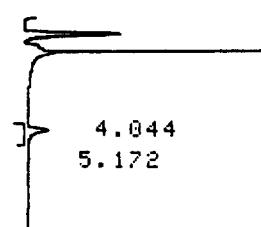
R3-OUTLET-IMP1

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

FILE 0


SAMPLE NO 0

METHOD 2021

REPORT NO 81

PKNO	TIME	AREA	WK	TYPE	CONC	NAME
1	4.054	20915	S		100	
		1491hi				
	TOTAL	20915			100	

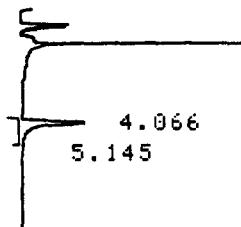
R3-OUTLET-IMP2

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

FILE 0

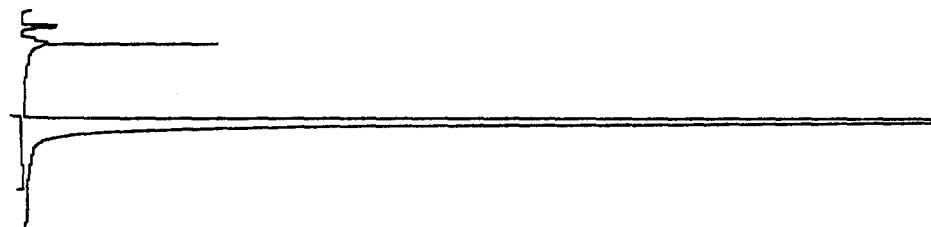

012

223-02037-01

904124A

⊕ Shimadzu

1 4.044 4413 .00
 391hi -----
 TOTAL 4413 100
 R3-OUTLET-PROBE WASH

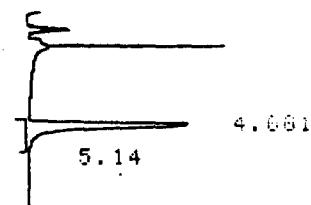


CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
 CHANNEL NO 1 FILE 0
 SAMPLE NO 0 METHOD 200A
 REPORT NO 83

PKNO	TIME	AREA	MK	IDNO	COND	NAME
1	4.066	12623			100	

1122hi -----
 TOTAL 12623 100
 R3-INLET-IMP1


CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
 CHANNEL NO 1 FILE 0
 SAMPLE NO 0 METHOD 200A
 REPORT NO 84

PKNO	TIME	AREA	MK	IDNO	COND	NAME
1	4.078	410081			100	

33950hi -----

TOTAL 410081 100
 R3-INLET-IMP2

CHROMATOGRAM 1 MEMORIZED

1113

223-02037-01

904124A

⊕ Shimadzu

1 4.001 42300
2725h1

TOTAL 42300 100

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1 FILE 0
SAMPLE NO 0 METHOD 2021
REPORT NO 86

PKNO	TIME	AREA	MRK	ABND	CUNC	NAME
1	4.002	183382	S		100	

18315h1

TOTAL 183382 100

BOTTOM WATER 17:10 /50

A chromatogram plot with a single prominent peak at 4.001 minutes. The baseline is flat and stable. The peak is sharp and reaches a maximum height. The x-axis is labeled with the peak time.

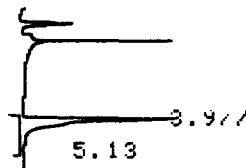
CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1 FILE 0
SAMPLE NO 0 METHOD 2021
REPORT NO 87

PKNO	TIME	AREA	MRK	ABND	CUNC	NAME
1	3.983	88337	S		100	

11014h1


114

223-02037-01

904124A

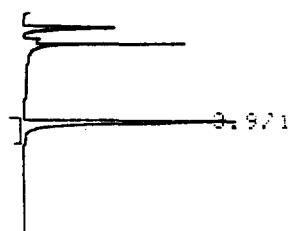
⊕ Skimadzu

DUP R3-INLET-IMP2

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1


FILE 0

SAMPLE NO 0

METHOD 2021

REPORT NO 88

PKNO	TIME	AREA	MK	IPNO	CONC	NAME
1	3.977	27561	S		100	
		2602hi				
TOTAL		27561			100	

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

FILE 0


SAMPLE NO 0

METHOD 2021

REPORT NO 89

PKNO	TIME	AREA	MK	IPNO	CONC	NAME
1	3.971	29608			100	
		3620hi				
TOTAL		29608			100	

R3-INLET-IMP2 1:1 W/4930

1115

223-02037-01

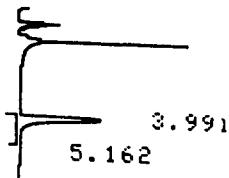
904124A

⊕ Shmadsen

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

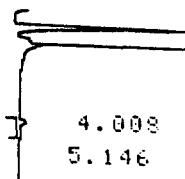

FILE 0

SAMPLE NO 0

METHOD 2021

REPORT NO 90

R4-OUTLET-IMP1

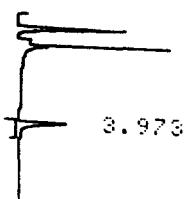


CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 91

PKNO	TIME	AKER	DE	EDNU	CUND	DRNG
1	3.991	18578			100	
		1408m				
		-----			-----	
	TOTAL	18378			100	

TOTAL
R4-OUTLET-IMP2



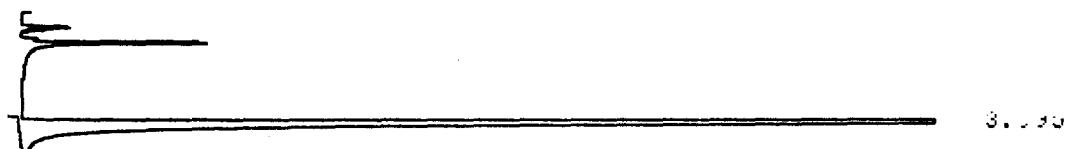
CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 92

PKNO	TIME	AREA	OK	TYPE	COND	NAME
1	4.008	2221			100	
		183m1				
		-----			-----	
	TOTAL	2221			100	

TOTAL
R4-OUTLET-PROBE WASH

CHROMATOGRAM 1 MEMOIRE


一一一

223-02037-01

904124A

Shenadzu

PKNO	TIME	AREA	MK	IDNO	CONC	NAME
1	3.973	6696			100	
		8561				

						TOTAL 6696
						100
R4-INLET-IMP1						

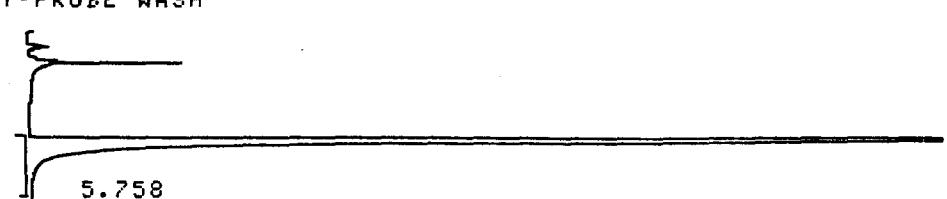
CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1	FILE 0
SAMPLE NO 0	METHOD 2621
REPORT NO 94	

PKNO	TIME	AREA	MK	IDNO	CONC	NAME
1	3.995	504737			100	
		6681/01				

						TOTAL 504737
						100
R4-INLET-IMP2						



CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1	FILE 0
SAMPLE NO 0	METHOD 2621
REPORT NO 95	

PKNO	TIME	AREA	MK	IDNO	CONC	NAME
1	3.948	89958			100	
		121061				

						TOTAL 89958
						100
R4-INLET-PROBE WASH						

CHROMATOGRAM 1 MEMORIZED

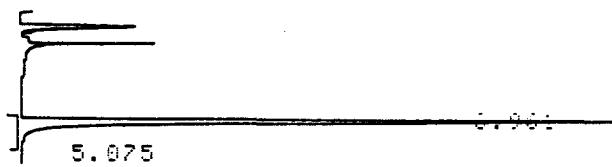
CR501 CHROMATOPAC

CHANNEL NO 1	FILE 0
SAMPLE NO 0	

0117

223-02037-01

904124A


⊕ Shimadzu

1
CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 96

FILE 6
METHOD 8021

PKNO	TIME	AREA	WK	IDNO	COND	NAME
1	3.971	298783	5	27573hi	100	

		TOTAL		298783	100	
		BOTTOM	19:00			

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC
CHANNEL NO 1
SAMPLE NO 0
REPORT NO 97

FILE 6
METHOD 8021

PKNO	TIME	AREA	WK	IDNO	COND	NAME
1	3.961	88290		9962hi	100	

		TOTAL		88290	100	

De Pont
Waynesboro
Scrubber #2 Compliance Test

Analysis for: DMF Analyst: LG Date: 10/9/89

Method: NIOSH Reference: 2004

Sample Collection:

Impinger: Volume: ml Solution:
 Tube, Type: Silica Gel (back-up to impingers)
 Desorption: Volume: 1.0 ml Solvent: methanol

GC Conditions:

Injector Temp: 225 °C Injector volume: 0.5 ul

Detector Temp: 225 °C Detector (FID) Range: 10

Column Type: Superox II, 10 m, 0.53 mm id

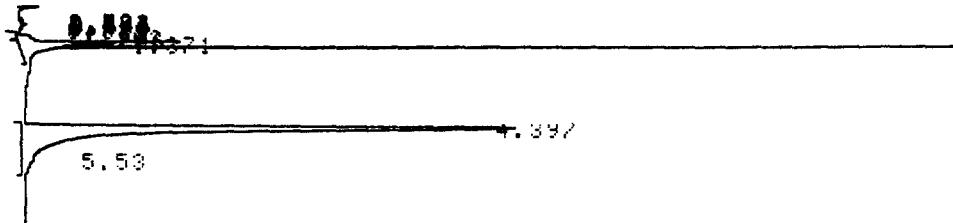
Column Temp: Initial: 100 °C Time: isothermal min
 Ramp: °C/min

Final: °C Time: min

Carrier: Gas: He Flowrate: ml/min

Sample ID	Collection Time (min)	Final Sample Volume (ml)	Retention Time	Area	
Stnd. 630 ppm			4.397	131,175	
Stnd. 126 ppm			4.386	28,239	
Stnd. 63 ppm			4.448	15,777	
Dup: Stnd. 63 ppm			4.387	13,947	
Dup (2): Stnd ⁶³ ppm			4.456	15,072	
Run 2, inlet, Front				N.D.	
Run 3, inlet, Front				N.D.	

Supplies with analysis
back-up tubes

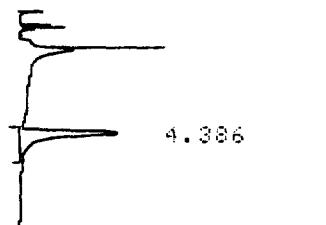

Laboratory Analysis DMF

Continuation page 2

ANALYSIS NO. 1
ANALYSIS PARAMETER FILE 0

WIDTH	5	SLOPE	100.00
DRIFT	0	MIN. AREA	1000
T.DBL	0	STOP. TM	8
ATTEN	4	SPEED	4
METHOD\$	2021	FORWARD	0
SPL.WT	100	LOW.WT	1

10/9/89 DUPONT DMF ANALYSIS
SILICA GEL BACK-UP TUBES
DMF STND-630PPM


CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO	1	FILE	0
SAMPLE NO	0	METHOD	2021
REPORT NO	1		

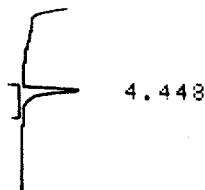
PKNO	TIME	AREA	REL	PERCENT	NAME
1	1.103	2121		1.103	
		25301			
2	1.371	27793	7	17.2571	
		162161			
3	4.397	181175	8	81.4754	
		838751			
		-----		-----	
TOTAL		161060		100	

DMF STND-126PPM

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO	1	FILE	0
SAMPLE NO	0	METHOD	2021
REPORT NO	2		


PKNO	TIME	AREA	REL	PERCENT	NAME
1	4.386	23233		1.00	
		166501			

01711

223-02037 01

904124A

⊕ Skimadzu

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

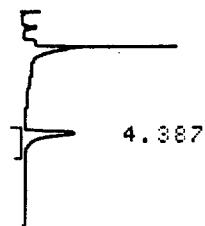
CHANNEL NO 1

FILE 0

SAMPLE NO 0

METHOD 0001

REPORT NO 3


PKNO	TIME	AREA	MR	LMIN	UNUN	UNUN
1	4.448	15777			100	
		1022h1				

TOTAL 15777

100

DUP: DMF STND-63PPM

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

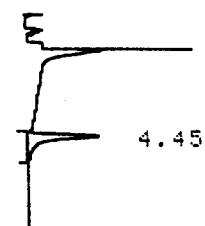
CHANNEL NO 1

FILE 0

SAMPLE NO 0

METHOD 0001

REPORT NO 4


PKNO	TIME	AREA	MR	LMIN	UNUN	UNUN
1	4.387	13947			100	
		893h1				

TOTAL 13947

100

DUP(#2)-DMF STND-63PPM

CHROMATOGRAM 1 MEMORIZED

CR501 CHROMATOPAC

CHANNEL NO 1

FILE 0

SAMPLE NO 0

METHOD 0001

REPORT NO 5

PKNO	TIME	AREA	MR	LMIN	UNUN	UNUN
------	------	------	----	------	------	------

0121

223-02037-01

904124A

⊕ Shimadzu

→DTE

COMMONWEALTH OF VIRGINIA
Department of Air Pollution Control

INTRA-AGENCY MEMORANDUM

TO: File

FROM: R. O. Goetz

SUBJECT: DUPONT, WAYNESBORO, REGISTRATION #20517

DATE: November 2, 1989

RE: STACK TEST [REDACTED] NEW DMF SCRUBBERS ON ORLON FIBER DRYERS

A witnessed stack test was performed 10-31-89 on one of two (#1 scrubber, away from river) new large scrubbers for DMF (VOC) scrubbing efficiency, inlet and outlet concentrations and pounds per hour emission rates. The scrubber tested was fully loaded (one-half scrubbing capacity) by full production on one-half (3) of the six orlon fiber dryers.

Opacity appeared to be zero (0%). It was impossible to be sure this date due to fog the first two test runs and a cloudy background the third of three test runs.

See the attached stack test monitoring sheet and proposed test protocol by ETS for more details.

- "Preliminary" results indicate better than 95% DMF collection efficiency, less than 5 lbs/hr DMF emission per scrubber.
- DMF concentration in scrubber water reservoir: 3%. Plant hopes to increase this to 9 or 10% for more efficient recovery.
- Inlet feed water: 5300 lbs/hr -- 11 gal/min.
- Ran about four days before test day.

STACK TEST MONITORING

Ref: 10/6/89 other scrubber

SOURCE NAME: DuPont - H20517 - Orlon Fiber Dryer Scrubber (DMF)
 LOCATION: Waynesboro
 DATE: 10-31-89

OBSERVER'S NAME: R. D. Scott
 P. H. Hunter

PURPOSE OF TEST: Compliance (DMF reduction)
 TESTING DONE BY: ETS of Roanoke Edward (Ted) Handel
 LAB ANALYSIS DONE BY: same - on site

COMPANY CONTACT: Ron Shifflett
 TELEPHONE:
 CONTROL EQUIPMENT OPERATING: ~~H1 DMF Scrubber (away from river)~~ = 8 ft packed bed
 OPACITY READING MADE: YES ~~see below~~ NO
 Unofficial observation = 0% opacity with best background + 12 bubble cap trays.
 UNIT/PROCESS NAME: Orlon fiber dryer scrubber no 1 (of 2) for DMF collection.
 RATED CAPACITY: Confidential
 TYPE FUEL USED: none

APPROX. PROCESS RATE: Confidential (at normal capacity of 3 = 1/3 of dryer to
 METHOD OF DETERMINING PROCESS RATE: product scales. noted 1/3 (1 of 3) scrubbers =
 STACK HEIGHT: 93 ft [±] fully loaded scrubber tested
 INDIVIDUAL STACK COMMON STACK
 DIAMETER: (IF ROUND) 8 ft (IF RECTANGULAR) WIDTH LENGTH

I. SAMPLING POINT LOCATION

A. DISTANCE DOWNSTREAM FROM ANY FLOW DISTURBANCE:

NATURE OF DISTURBANCE ~~~ 4 ft~~

(BEND, CONTRACTION, EXPANSION, PAN, BAFFLES, ETC.)

B. DISTANCE UPSTREAM FROM ANY FLOW DISTURBANCE:

NATURE OF DISTURBANCE ~~~ 3 ft~~

(BEND, STACK EXIT, CONTRACTION, PAN, BAFFLES, EXPANSION, ETC.)

C. NUMBER OF PORTS IN STACK: 1

D. NUMBER OF POINTS SAMPLED PER PORT: ~~middle of stack (gas-visual)~~

II. STACK GAS

A. STACK TEMPERATURE: ~~~ 100°F~~B. ORSAT ANALYSIS: ~~only H2O per iced impingers~~GRAB ~~CONTINUOUS~~ NUMBER OF INTEGRATED SAMPLESC. PRELIMINARY AP: MIN. ~~1.4~~ MAX. ~~1.4~~

DMF OSHA method = stack gas thru 2 iced impingers

III. PARTICULATE TEST ~~D.I. water + silica gel~~ ~~then GC/FID on-site analysis in~~
~~mobil test lab - analyze each impinger & subseuval E~~A. SAMPLING TRAIN: ~~scrubber water~~1. MANUFACTURER ~~Special test train - sealine~~ MODEL

2. TEST METHOD: EPA METHOD 5 ASME PTC 21/27

3. OTHER (DESCRIBE) ~~sealane~~3. TYPE FILTERS ~~non-heated glass, iced glass~~ ~~D.I. water, impingers, silica gel, pump~~4. PROBE: LENGTH ~~~ 6 ft~~ MATERIAL ~~SS (w/ Teflon tube)~~

5. PROBE HEATER SETTING

6. HEATER BOX SETTING

7. METER CALIBRATION FACTOR

8. METER ΔH FACTOR9. DATE OF LAST CALIBRATION CHECK ~~flow rate calibrated each test run.~~

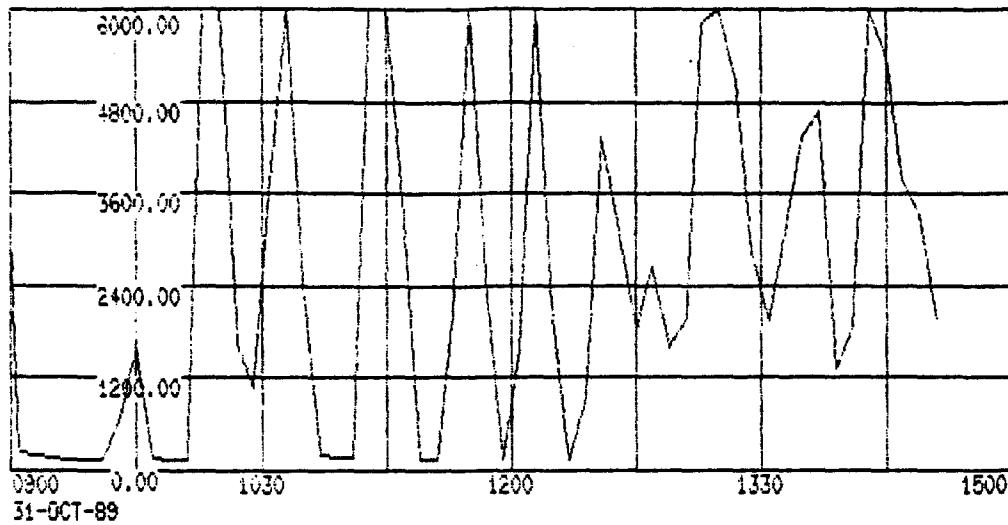
a. ORIFICE METER

b. DRY GAS METER

c. TEMPERATURE DEVICES

d. PITOT TUBE

e. NOZZLE DIAMETER


f. OTHER

Test: DMF (VOC) is specific via GC/FID from cold water impingers with probe with
 Scrubber inlet from pump & PPL DMF & moisture; scrubber outlet from PPL DMF
 & moisture; scrubber water DMF %.

NEXT

31-OCT-89 14:38:20

GB#1 LIQUOR FLOW
6813 LB/HR

DUF Scrubber ^{#1} liquid flow to solvent recovery
during stack test 10/31/89.

WALLACE E. REED, CHAIRMAN
CHARLOTTESVILLE

TIMOTHY E. BARROW,
VICE CHAIRMAN
VIRGINIA BEACH

SAM C. BROWN, JR.
VIRGINIA BEACH

RICHARD L. COOK
RICHMOND

MANUEL DEESE
RICHMOND

WALLACE N. DAVIS
EXECUTIVE DIRECTOR

COMMONWEALTH of VIRGINIA

Department of Air Pollution Control
VALLEY OF VIRGINIA REGIONAL OFFICE
SUITE D, EXECUTIVE OFFICE PARK
5338 PETERS CREEK ROAD
ROANOKE, VIRGINIA 24019
703 857-7328
FAX 703 857-7577
TDD 804 371-8471

DONALD L. SHEPHERD
REGIONAL DIRECTOR

October 16, 1989

Mr. Ron Shifflett
E. I. duPont de Nemours and
Company, Incorporated
Waynesboro, VA 22980

Dear Mr. Shifflett:

Our review of the [REDACTED] of DMF removal efficiency of the [REDACTED] and the test report you submitted has led us to conclude that [REDACTED] the capability of this [REDACTED] design to remove [REDACTED] of captured DMF. In conjunction with your earlier emissions inventorying and stack testing that indicated that approximately 77% of plant DMF emissions are exhausted by the stacks now controlled by these scrubbers, we also conclude that the 69% overall DMF reduction target specified in condition #15 of your July 3, 1989 permit has been met. You may therefore start-up the new Lycra spinning equipment described by that permit.

You are reminded that you [REDACTED] in order to comply with condition #5 and with the remainder of Condition #15 of the [REDACTED] and that conditions #6 and #16 must still be met by April 1, 1990.

Please feel free to call if you have any questions.

Sincerely,

Donald L. Shepherd

Donald L. Shepherd
Director, Region II

cc: [REDACTED]

→ DTE

OCT 12 1989

WAYNESBORO PLANT
WAYNESBORO, VIRGINIA 22980

October 10, 1989

TEXTILE FIBERS DEPARTMENT

1120517

Mr. Donald L. Shepherd
Director, Region II
Department of Air Pollution Control
Suite D, Executive Office Park
5338 Peters Creek Road
Roanoke, Virginia 24019

CONFIDENTIAL

Dear Mr. Shepherd:

On Friday, October 18, 1985, a compliance sampling was performed on our [REDACTED] which is located in the ORLON area of our plant. The compliance sampling was performed by ETS, Inc., of Roanoke, Virginia.

Prior to the start of this test, we were requested to provide information about certain measurements that were to be taken during the compliance testing. A copy of that requested information has been sent to your office. You also requested information about the ORLON production rates during the testing. This production information was not included in our recent submittal due to our opinion that it is [REDACTED] Below is the information that you requested.

<u>Test No.</u>	<u>Start Time</u>	<u>Finish Time</u>	<u>Dryers Operating</u>	<u>Pounds of ORLON dried</u>
2	11:26	12:26	#2, #3 & #5	15,928
3	13:47	14:47	#2, #3 & #5	14,845
4	17:17	18:17	#1, #3 & #5	14,981

I would request that you treat this information as confidential. If you have additional questions call me at (703) 949-2844.

Sincerely,

Ronald B. Shifflett
Safety, Health & Environmental
Affairs

CONFIDENTIAL

→ DTE

COMMONWEALTH OF VIRGINIA
Department of Air Pollution Control

INTRA-AGENCY MEMORANDUM

TO: File

FROM: R. O. Goetz

SUBJECT: DUPONT, WAYNESBORO, REG. NO. 20517

DATE: October 16, 1989

RE: STACK TEST NEW DMF SCRUBBERS (ORLON)

A stack test report has been received for the October 6, 1989 stack test of the new no. 2 (near river) DMF scrubber on orlon fiber drying. The test was witnessed by R. O. Goetz with S. K. Barnard observing opacity (always 0%).

The test report showed that this scrubber was "in compliance" with an efficiency exceeding 90%. It averaged 96.3% efficiency for three test runs.

The scrubber was fully loaded by all emissions from one-half (3) of the dryers at capacity venting through one-half the scrubbers (1 of 2).

This test is in reference to the July 3, 1989 permit for several areas of the plant and a related consent agreement.

There will be a similar test of the other scrubber in a few weeks.

For additional details, see the test report and 10-12-89 memo of test observations.

Raymond O. Goetz
Engineer, Region II

ROG/bh

Attachments

cc: DTE
S. K. BARNARD