

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

Background Report Reference

AP-42 Section Number: 8.10

Background Chapter: 4

Reference Number: 1

Title: Source Emissions Compliance Test Report

Roy F. Weston, Inc.

October 1989

WESTON

6.0 CH4
BR #1

SOURCE EMISSIONS COMPLIANCE
TEST REPORT
NUMBER ONE CALCINER

SCM CHEMICALS
BALTIMORE, MD

September 1989

Jeffrey D. O'Reilly
Jeffrey D. O'Neill
Section Manager

Barry Jackson
Barry Jackson
Project Director

WESTON Project No. 2373-01-02-0082

Prepared By:

ROY F. WESTON, INC.
Weston Way
West Chester, PA 19380
(215) 692-3030

WESTON WAY
WEST CHESTER, PA 19380
PHONE: 215-692-3030
TELEX: 83-5348

October 9, 1989

Mr. Ronald E. Lipinski
Administrator Enforcement Program
Department of the Environment
2500 Broening Highway
Baltimore, MD 21224

Subject: SCM Chemicals
Number One Calciner
Compliance Test Report

Dear Mr. Lipinski:

Enclosed are three (3) copies of the above-referenced report.

As you requested, these copies were sent to you simultaneously with the report copies sent to Mr. James Wilkerson of SCM Chemicals.

Please contact Mr. Wilkerson should you have any questions.

Very truly yours,

ROY F. WESTON, INC.

Jeffrey D. O'Neill
Jeffrey D. O'Neill
Section Manager

JDO:dd
Enclosures

cc: B. L. Jackson, WESTON
J. Wilkerson, SCM

SCM009c.ltr

TABLE OF CONTENTS

<u>SECTION</u>	<u>TITLE</u>	<u>PAGE</u>
1	SUMMARY	1-1
2	INTRODUCTION	2-1
3	DESCRIPTION OF PROCESS OPERATIONS	3-1
	3.1 No. 1 Calciner	3-1
4	DESCRIPTION OF TEST LOCATION	4-1
	4.1 Stack Serving No. 1 Calciner	4-1
5	DESCRIPTION OF SAMPLING TRAINS	5-1
	5.1 Particulate	5-1
	5.2 Sulfuric Acid Mist/Sulfur Dioxide	5-3
6	TEST PROCEDURES	6-1
	6.1 Preliminary Tests	6-1
	6.2 Formal Tests	6-1
7	ANALYTICAL PROCEDURES	7-1
	7.1 Particulate Sample Recovery	7-1
	7.2 Particulate Analysis	7-2
	7.3 Sulfuric Acid Mist/Sulfur Dioxide Sample Recovery	7-4
	7.4 Sulfuric Acid Mist/Sulfur Dioxide Sample Analyses	7-5
8	TEST RESULTS AND DISCUSSION	8-1
	APPENDICES	
	Appendix A - Raw Test Data	
	Appendix B - Laboratory Reports	
	Appendix C - Sample Calculations	
	Appendix D - Equipment Calibration Records	
	Appendix E - List of WESTON Participants	

LIST OF TABLES AND FIGURES

<u>TABLE NO.</u>	<u>TITLE</u>	<u>PAGE</u>
1	Summary of Compliance Test Results for No. 1 Calciner	1-2
2	Summary of Particulate Test Data and Test Results	8-3
3	Summary of Sulfuric Acid Mist and Sulfur Dioxide Test Data and Test Results	8-4

<u>Figure No.</u>	<u>TITLE</u>	<u>PAGE</u>
1	No. 1 Calciner Process Schematic	3-3
2	Stack Serving No. 1 Calciner Port and Traverse Point Locations	4-2
3	Particulate Sampling Train-DOE Method 1005	5-2
4	Sulfuric Acid Mist/Sulfur Dioxide Sampling Train - DOE Method 1008	5-4

SECTION 1 SUMMARY

SCM Chemicals ("SCM") contracted Roy F. Weston, Inc. ("WESTON") to conduct a source testing and analysis program at its Baltimore, Maryland facility.

The primary objective of the survey was to determine the particulate, sulfuric acid mist and sulfur dioxide emissions compliance status of the No. 1 Calciner with the State of Maryland Department of the Environment ("DOE") allowable limits.

Testing procedures conformed to the specifications of the DOE.⁽¹⁾ A representative of DOE was present during all test periods.

A summary of compliance test results is presented in the following Table 1.

¹"Stack Test Methods for Stationary Sources, "Air Quality Control Administration - Technical Memorandum, Revised: June 1983.

SCM CHEMICALS
BALTIMORE, MARYLAND

TABLE 1
SUMMARY OF COMPLIANCE TEST RESULTS

NO. 1 CALCINER

Test Run No.	Test Date	Test Period	Measured gr/dscf (2)	Allowable gr/dscf	Sulfuric Acid Emission Concentration		Measured ppm	Allowable ppm
					Particulate Emission Concentration	Sulfuric Dioxide Emission Concentration		
1	9/7/89	1334-1528	0.0152	0.03	47.	70	635.	2,000
2	9/8/89	0805-1011	0.0129	0.03	151.	70	863.	2,000
3	9/8/89	1207-1410	0.0120	0.03	42.	70	440.	2,000
Series Average	-	-	0.0134	-	80.	-	646.	-

(1) Particulate emission concentration shown are based on the Maryland front half catch weights listed in Table 2.

(2) gr/dscf - grains per dry standard cubic foot at standard conditions of 77°F and 29.92 inches Hg.

SECTION 2

INTRODUCTION

SCM retained WESTON to conduct a source testing and analysis program on the stack serving Calciner No. 1 at its Baltimore, Maryland titanium dioxide production facility.

The primary objective of the survey was to determine the emissions compliance status of the No. 1 Calciner with Maryland DOE limits. Particulates, sulfuric acid mist (H_2SO_4) and sulfur dioxide (SO_2) were measured at the No. 1 Calciner Stack.

Maryland DOE approved test methods were used throughout the program. All tests were performed during the period 7-8 September 1989 by WESTON Air Quality Testing Services personnel.

Detailed test data and test results summaries are presented in Tables 2 and 3 of this report. Descriptions of the process, test location, test equipment, test procedures, sample recovery techniques and analytical methods used during the survey are also included herein. Raw test data, laboratory reports, sample calculations, equipment calibration records and a list of WESTON project participants are provided in Appendices A through E, respectively.

SECTION 3
DESCRIPTION OF PROCESS OPERATIONS

3.1 NO. 1 CALCINER

A titanium hydrated sulfate paste is extruded into one end of each 15' diameter by 165' long calciner. Each calciner is a steel shell, lined with acid brick, which rotates about once every 10-11 minutes and has a slight slope. The calciner or kiln, because of the rotation and slope, causes the paste to move down the inside and discharge at the far end 12-15 hours later. The kiln has a primary burner at the discharge end to furnish the bulk of heat but also has internal burners to provide additional heat. Exhaust gas from the kiln flow in one of two directions. During normal operations the gas flow proceeds through gas cleaning steps, but in an emergency (i.e., power failure), a powered damper opens and the gases vent to a natural gravity stack.

The paste enters the calciner and begins to dry. Further into the kiln the acid hydrolysate decomposes and gives up water, sulfur dioxide and sulfur trioxide. Next, as the dry cake tumbles, it produces titanium dioxide dust. Natural gas and/or oil is used as a fuel source producing normal products of combustion.

The carrier gas, when it reaches the separator contains sulfur oxides, particulate pollutants, and the oxygen depleted air. From the separator the gases go past a draft damper to a cyclone to remove most of the dust, and the remainder goes through a gas cleaning process. The first step is a low energy venturi scrubber using recycle water that cools the gases from about 700° to 200°F. This also removes dust and some acid mist. Next the gases go to a humidifying and cooling section called a conditioner, which reduces the temperature further to less than 195°F. From here, the gas goes to a variable-throat venturi which utilizes recycle scrubbing water containing a scrubbing alkali. From here gases go

to a separator to remove excess water using a Chevron type mist eliminator, and then through the I.D. fan to the stack.

The calciners operate between 50 and 82 TPD per kiln, (i.e., one kiln at 80 TPD rather than two kilns at 40 TPD and two kilns at 80 TPD rather than three kilns at 53 TPD each). Rates for most of the operating time have been between 50 and 75 TPD, although operating rates have ranged up to 82 TPD, the upper limit specified in the current operating permits for several of the calciners. Most of the testing has taken place at the higher operating rates. Some testing has taken place at rates up to 90 TPD.

See Figure 1 for a process schematic.

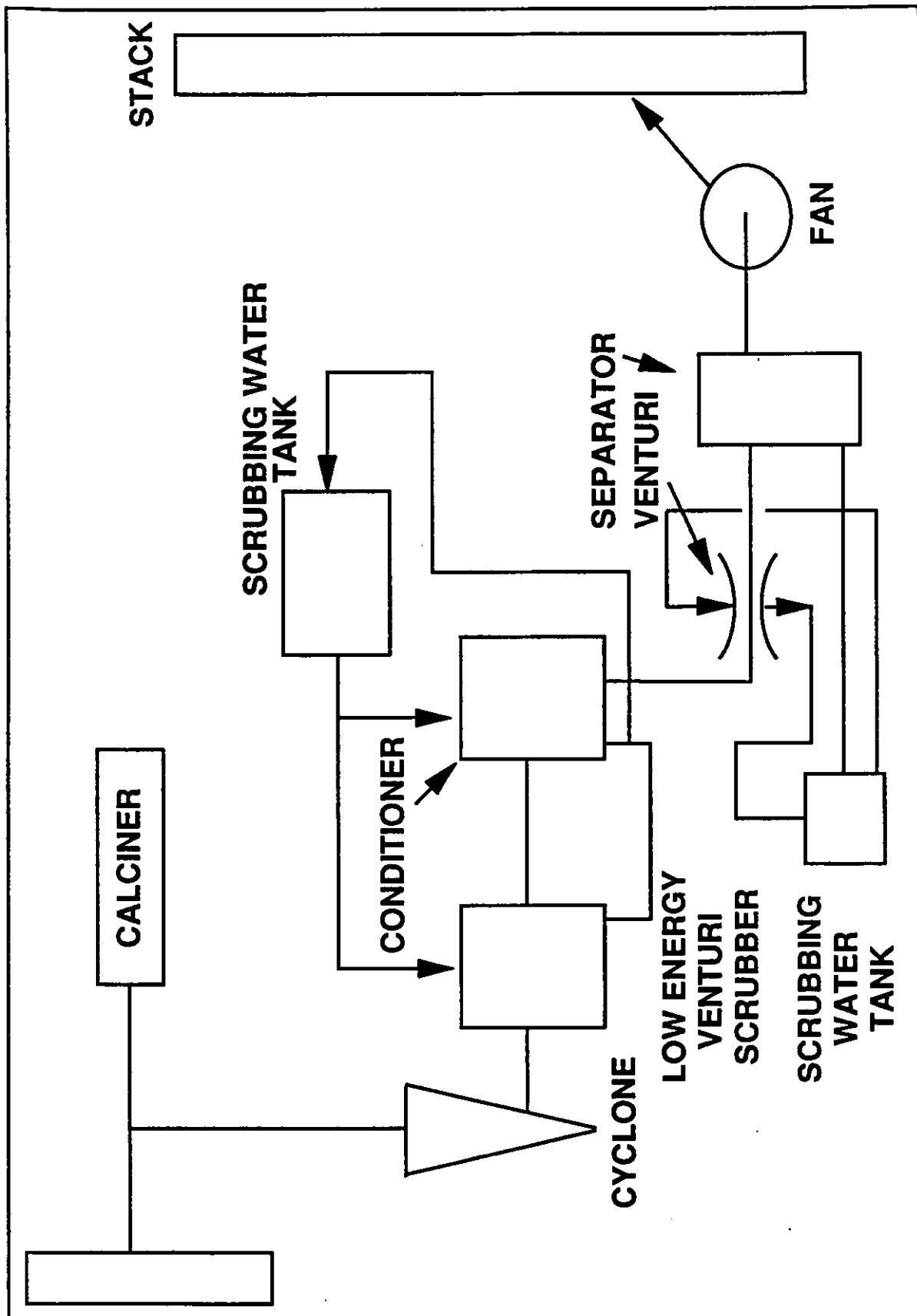
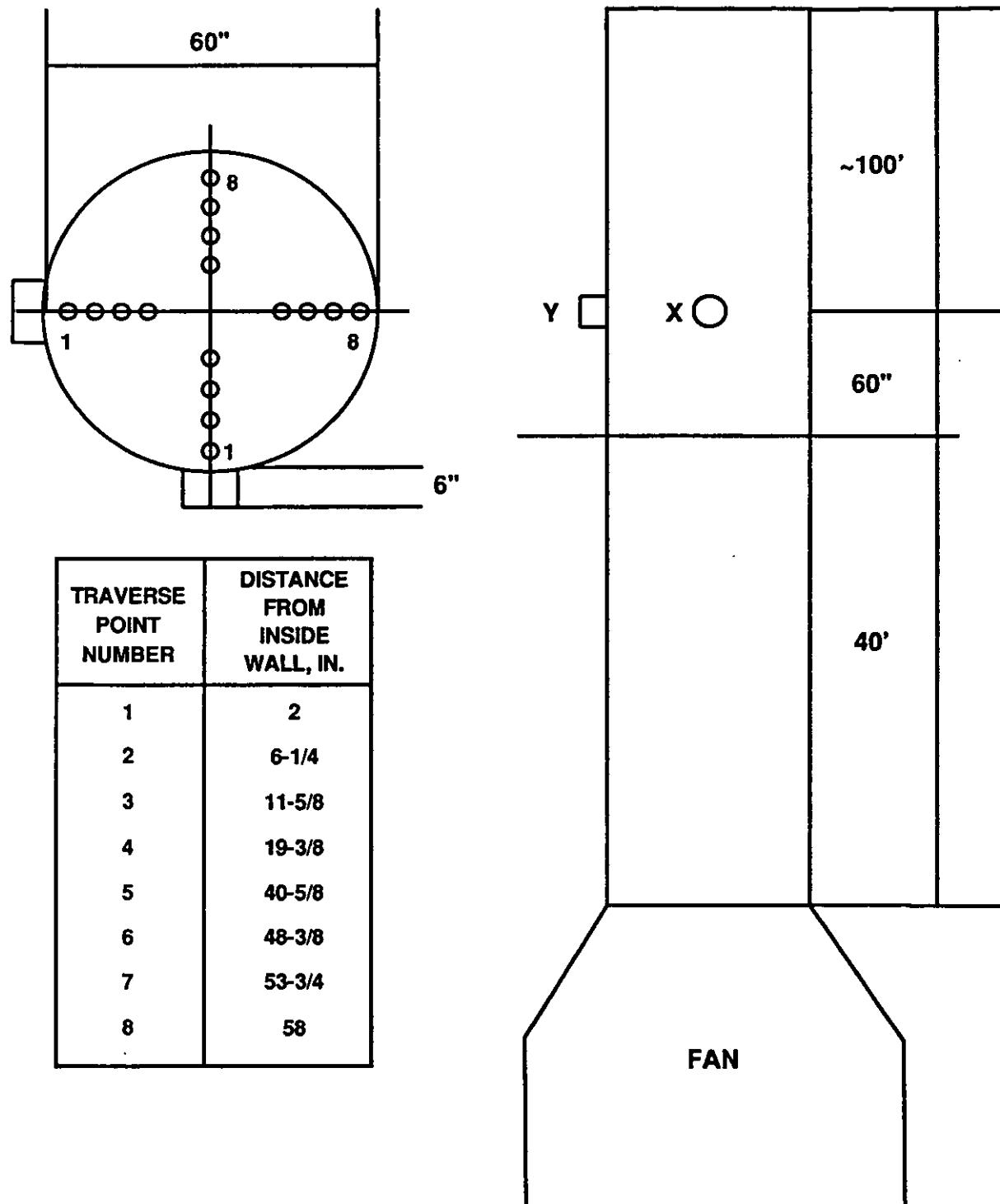


FIGURE 1
CALCINER PROCESS SCHEMATIC


SECTION 4

DESCRIPTION OF TEST LOCATION

4.0 NO. 1 CALCINER

Two test ports, 90° apart, were installed on a straight section of the fiberglass stack (60"ID) at a site which was 8 stack diameters downstream from the end of the taper above the fan breeching. The test ports were >10 stack diameters from the nearest downstream flow disturbance (stack discharge point). Traverse point selection criteria dictated by EPA Method 1 required a minimum of 16 points, per port axis, for this stack configuration. Figure 2 illustrates test port placement and traverse point locations.

SCM CORPORATION
Baltimore, Maryland

**FIGURE 2: STACK SERVING CALCINER #1
PORT AND TRAVERSE POINT LOCATIONS**

SECTION 5

DESCRIPTION OF SAMPLING TRAINS

5.1 PARTICULATE

The sampling train utilized to perform the particulate sampling was a DOE Method 1005 train (see Figure 3).

A calibrated stainless steel nozzle was attached to a heated (250° F) 6 ft. borosilicate probe. The probe was connected to a heated (250° F) borosilicate filter holder containing a 9-cm Reeve Angel 934 AH glass fiber filter (preweighed to a constant 0.1 mg weight). The first and second impingers contained 100 ml of distilled water each, the third impinger was dry, and the fourth impinger contained 300 grams of dry preweighed silica gel. The second impinger was a standard Greenburg-Smith type, the first, third, and fourth were of a modified design. All impingers were maintained in a crushed ice bath. A Nutech control console with a leakless vacuum pump, a calibrated dry gas meter, a calibrated orifice, and inclined manometers was connected to the final impinger via an umbilical cord to complete the train.

Flue gas velocity was measured with a calibrated "S" type pitot tube (provided with extensions) fastened alongside the sampling probe. Flue gas temperature was monitored with a calibrated direct readout pyrometer equipped with a chromel-alumel thermocouple positioned near the sampling nozzle. Filter and impinger exit gas temperatures were monitored with a calibrated direct readout pyrometer equipped with chromel-alumel thermocouples positioned near the filter holder and after the last impinger, respectively.

WESTON

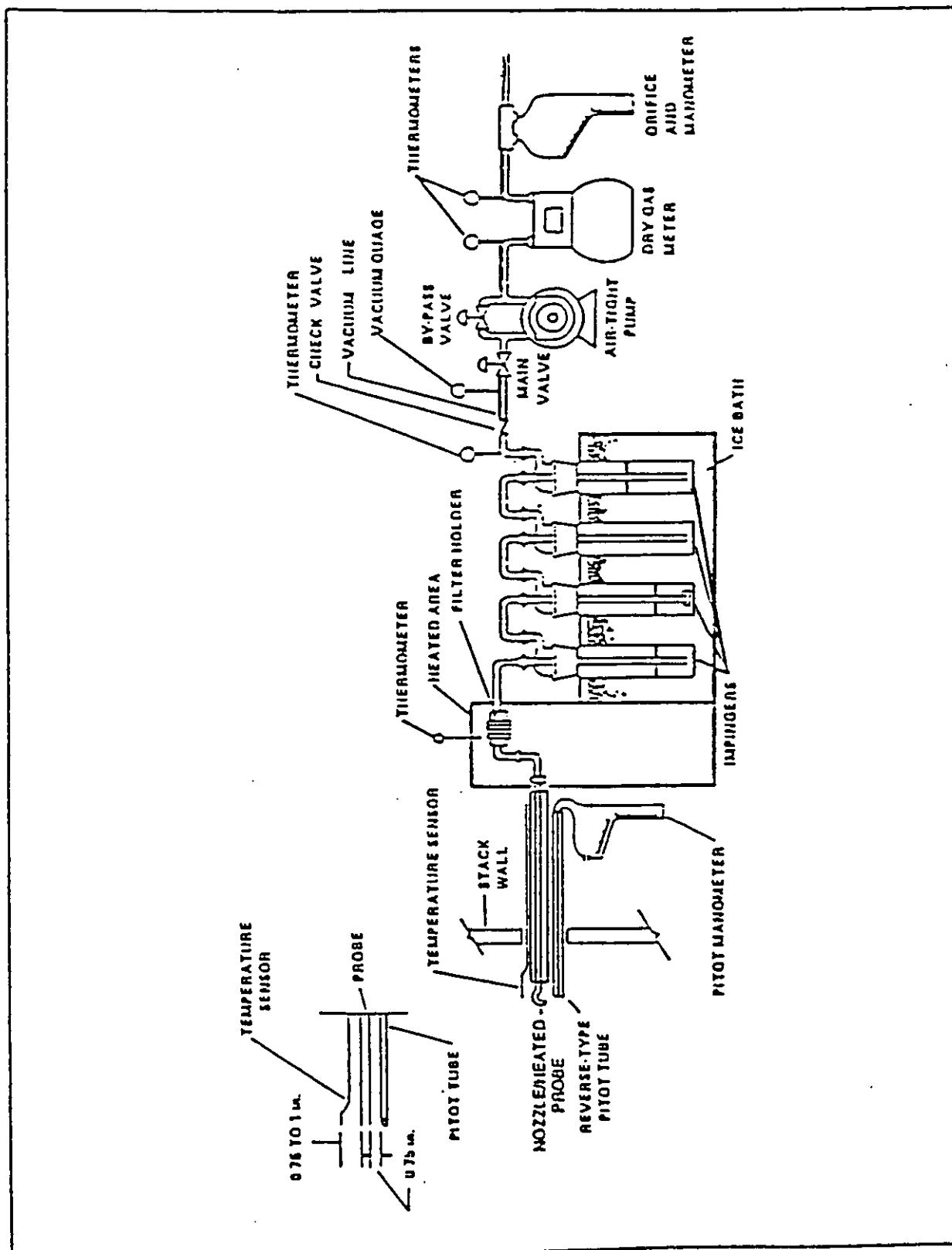


FIGURE 3 PARTICULATE SAMPLING TRAIN- DOE Method 1005

Stack dry gas stream composition (carbon dioxide, oxygen, and carbon monoxide contents) was determined utilizing a EPA Method 3 Tedlar bag sampler and an Orsat apparatus to analyze integrated samples of the flue gases for each test. The integrated samples of the flue gases were collected at a constant rate of 0.8 liter per minute at each sample point in conjunction with each particulate test run. Triplicate Orsat analyses were performed on each gas sample.

5.2 SULFURIC ACID MIST/SULFUR DIOXIDE

The sampling train utilized to perform the combined H_2SO_4/SO_2 sampling was a DOE Method 1008 train, modified with the addition of an extra impinger to increase the capacity of the train to collect condensate, as described below:

A calibrated stainless steel nozzle was attached to a heated ($250^{\circ}F$) borosilicate probe 6 feet in length. The probe was connected to the first impinger by means of rigid glass connectors. The probe to impinger glass connectors were inside a heated chamber ($250^{\circ}F$) to prevent condensation prior to the first impinger. The first impinger contained 200 ml of 80 percent isopropyl alcohol. Impinger No. 2 was dry and was separated from the third impinger by an unheated filter holder containing an unweighed 934 AH glass fiber filter. The third and fourth impingers each contained 100 ml of 3% hydrogen peroxide, and the fifth impinger contained 300 grams of dry silica gel. The first and fourth impingers were standard Greenburg-Smith types; the second, third and fifth were of a modified design. All impingers were maintained in an ice bath. A Nutech control console with a leakless vacuum pump, a calibrated dry gas meter, a calibrated orifice, and inclined manometers completed the sampling train (see Figure 4).

Flue gas velocity was measured with a calibrated "S" type pitot tube (provided with extensions) fastened alongside the sampling

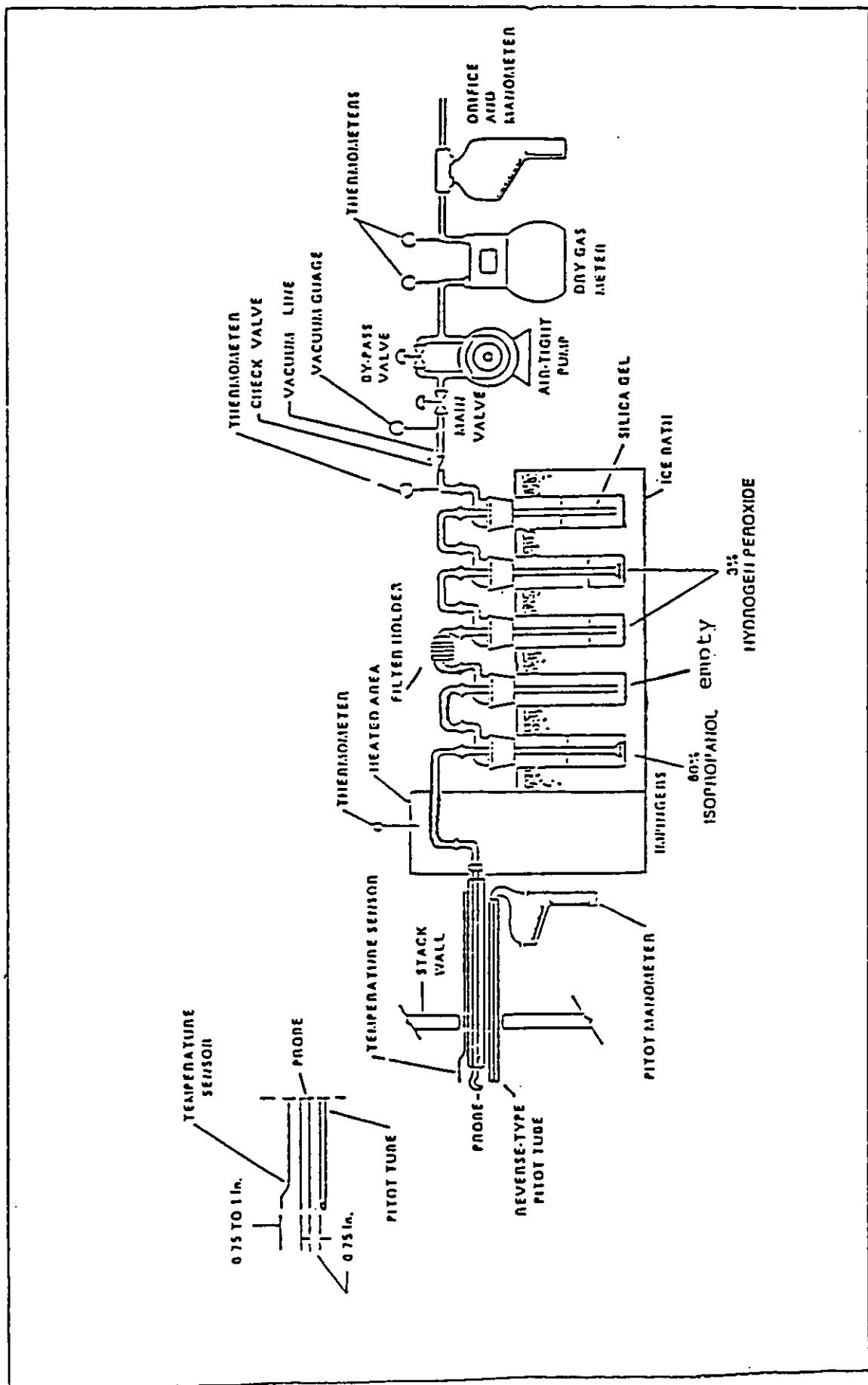


FIGURE 4 $\text{H}_2\text{SO}_4/\text{SO}_2$ SAMPLING TRAIN
Modified DOE Method 1008*

* Modified with the addition
of an empty impinger preceding
the filter.

probe. Flue gas temperature was monitored with a calibrated direct readout pyrometer equipped with a chromel-alumel thermocouple positioned near the sampling nozzle. Filter and impinger exit gas temperatures were monitored with a calibrated direct readout pyrometer equipped with chromel-alumel thermocouples positioned near the filter holder and after the last impinger respectively.

WESTON.

SECTION 6

TEST PROCEDURES

6.1 PRELIMINARY TESTS

Preliminary test data were obtained at the No. 1 Calciner Stack. Stack geometry measurements were recorded, and traverse point distances calculated. A preliminary velocity traverse was performed utilizing a calibrated "S"-type pitot tube and a Dwyer inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout pyrometer equipped with a chromel-alumel thermocouple. Water vapor content was estimated from a psychometric chart at the saturation temperature.

A check for the presence or absence of cyclonic flow was conducted at the stack prior to formal testing. The cyclonic flow check proved to be negative ($\bar{\alpha} < 10^\circ$) thus verifying the suitability of the test site for obtaining representative samples.

Preliminary test data was used for nozzle sizing and nomograph set-up for isokinetic sampling procedures.

Calibration of probe nozzles, pitot tubes, metering systems, probe heaters and temperature gauges was performed as specified in Section 5 of DOE Method 1005 test procedures (see Appendix D for calibration records).

6.2 FORMAL TESTS

A series of three particulate and H_2SO_4/SO_2 test runs were conducted on the No. 1 Calciner Stack location.

Test period length for particulate test run one was 96 minutes (16 total traverse points with readings taken every 6 minutes). Particulate test runs two and three were each 112 minutes in length (16 total traverse points with readings taken every 7 minutes).

Test period length for each acid mist and sulfur dioxide test was 80 minutes (16 total traverse points at 5 minutes each).

During particulate and H_2SO_4/SO_2 sampling, gas stream velocities were measured by inserting a calibrated "S"-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate was adjusted to maintain isokineticity. Flue gas temperature was monitored at each point with the pyrometer and thermocouple. Temperature measurements were made at the heated filter box, final impinger and at the center of the dry gas meter. During sampling the heated filter chamber was maintained at approximately 250 °F as required by DOE. Test data were recorded at each point during all test periods.

Leak checks were preformed on each apparatus according to DOE method instructions, prior to and following each run. In addition, leak checks were conducted before and after each traverse change over.

A constant rate integrated sampling technique was employed to collect flue gas samples at each particulate traverse point for the molecular weight determination using an Orsat analysis. The sampling train was operated for 5 minutes with the teflar bag disconnected to purge extraneous gases prior to each test. The flue gas sample train was leak checked before and after each test run.

WESTON.

Following completion of the H_2SO_4/so_2 test run, the impingers were purged with cleaned ambient air for 15 minutes. The purge air was passed through a 3% H_2O_2 solution, prior to the test impingers, to remove any SO_2 present in the ambient air.

SECTION 7

ANALYTICAL PROCEDURES

Sample integrity was assured through the maintenance of strict chain-of-custody procedures.

7.1 PARTICULATE SAMPLE RECOVERY

At the conclusion of each particulate test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory.

A consistent procedure was employed for sample recovery:

1. The preweighed glass fiber filter was removed from its holder with tweezers and placed in its original container (Petri dish) along with any loose particulate and filter fragments (sample type 1).
2. The particulate adhering to the internal surfaces of the nozzle, probe and front-half of the filter holder was rinsed with acetone into a borosilicate container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with acetone into the same container. The container was sealed with a Teflon-lined closure (sample type 2).
3. The total volume of liquid in impingers 1, 2 and 3 was measured to the nearest milliliter and the value recorded. The liquid was then placed in a borosilicate container along with a distilled water rinse of the impingers, connectors, and back-half of the filter holder. The container was sealed with a lid fitted with

WESTON.

a Teflon liner (sample type 3).

4. An acetone rinse of impingers 1, 2 and 3 was placed into a borosilicate container and sealed with a lid fitted with a teflon liner (sample type 4).
5. The silica gel was removed from the last impinger and immediately weighed to the nearest one tenth gram. The weight gain was recorded.
6. Acetone and distilled water blank samples were placed into borosilicate containers and sealed with teflon lined caps for gravimetric analysis. A blank filter sealed in its original petri dish container was also retained for gravimetric analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to determine whether or not leakage occurred during transport. All samples were placed into a locked shipping crate, then transported to the WESTON laboratories for analysis.

7.2 PARTICULATE ANALYSIS

Gravimetric analysis of the particulate samples was performed as follows:

1. The filters (sample type 1) and any loose fragments were desiccated at ambient temperature and pressure for 24 hours and weighed to the nearest 0.1 milligram to a constant (± 0.5 mg) weight.
2. The front-half acetone wash samples (sample type 2) and an acetone blank were transferred (after a volume measurement) to tared 250-ml beakers, and evaporated to

dryness at ambient temperature and pressure. The samples were then desiccated for 24 hours and weighed to the nearest 0.1 milligram to a constant weight.

Final front-half wash residue weights were determined by correcting for the acetone blank factor.

3. The back-half water and wash samples (sample type 3) were extracted (after volume measurement) with 3 separate 25-ml portions of chloroform followed by 3 25-ml additions of ethyl ether. The extracts were combined in a tared 250-ml beaker, evaporated to dryness at ambient temperature and pressure, then desiccated for 24 hours to a constant 0.1-mg weight. An ether/chloroform extraction was performed on the distilled water blank sample to obtain a blank correction value.
4. The resulting extracted water sample from Step 3 was poured into a tared beaker, evaporated to dryness at 100°C, then desiccated at ambient temperature and pressure to a constant 0.1 mg weight. The residue weights of the dried water samples were corrected for the water blank factor.
5. The back-half acetone wash sample (sample type 4) was transferred to a tared 250-ml beaker, and evaporated to dryness at ambient temperature and pressure. The samples were then desiccated for 24 hours and weighed to the nearest 0.1 milligram to a constant weight.
6. Acetone, distilled water, and ether/chloroform blank samples were analyzed to obtain blank correction factors.

The weight of the material collected on the glass fiber filter plus the residue weight of the front-half acetone wash sample yields the DOE catch weight which was used to calculate the particulate emission results. See Summary of Test Results tables for catch fraction breakdowns and Appendix B for complete laboratory reports.

7.3 SULFURIC ACID MIST/SULFUR DIOXIDE SAMPLE RECOVERY

For each test the sample recovery procedure was the same:

1. The internal surfaces of the nozzle, probe, and probe to impinger connectors were rinsed with 80% isopropyl alcohol while brushing and the rinses poured into a plastic container (sample type 1).
2. The contents of the first and second impingers were weighed to the nearest 0.1 gram and the value recorded. The liquid was added to the nozzle/probe wash (sample type 1) along with an 80% isopropyl alcohol rinse of the impingers, glass connectors and front-half of the unheated filter holder. The unheated filter was added to the 80% isopropyl alcohol nozzle/probe wash and impinger contents and wash.
3. The total liquid in the third and fourth impingers was weighed to the nearest 0.1 gram and the value recorded. The liquid was placed in a plastic container along with a distilled water rinse of the impingers and connectors (sample type 3).
4. The silica gel was removed from the last impinger and immediately weighed to the nearest 0.1 gram. The weight gain was recorded.
5. Blank samples of the 80% isopropyl alcohol and 3%

hydrogen peroxide solutions were placed into plastic containers.

Following sample recovery, each sample type 1 and 2 was taken up to a constant volume, the fluid levels were marked and the volumes recorded. The samples were thoroughly mixed and an aliquot of each sample was given to SCM personnel.

Each container was labeled to clearly identify its contents. The fluid level in each container was remarked to determine whether or not leakage occurred during transport to WESTON laboratories. All samples were placed in a locked crate for shipment.

7.4 SULFURIC ACID MIST/SULFUR DIOXIDE SAMPLE ANALYSIS

Following a volume measurement an aliquot of sample type 1 was pipetted into a 250 ml Erlenmeyer flask and diluted to 100 ml with 80% isopropyl alcohol. Two to four drops of thorin indicator were added and the solution titrated to a pink end point with 0.01 N barium perchlorate. The titration was repeated on a second aliquot and the titrant volumes averaged. A reagent blank was analyzed in like fashion.

Each SO₂ sample (sample Type 2) was analyzed as follows:

Following a volume measurement an aliquot was pipetted into a 250 ml Erlenmeyer flask and diluted with four parts 80% isopropanol. Two to four drops of thorin indicator were added and the mixture was titrated to a pink end point with 0.01 N barium perchlorate. The titration was repeated on a second aliquot and on a reagent blank.

SECTION 8

TEST RESULTS AND DISCUSSION

A summary of compliance test results is presented in Table 1, page 2 of this report. Detailed test data and test results summaries are included in Tables 2 and 3 of this section.

All test data and test results shown herein are believed to be representative of process emissions encountered during the survey periods. No sampling analytical or process problems were noted. A representative of MD DOE was present during all test periods.

During all test periods, the measured particulate concentration for the No. 1 Calciner was below the state allowable limit of 0.03 grains per dry standard cubic foot (gr/dscf). The average particulate concentration measured during the three test runs was 0.0134 gr/dscf.

During test runs one and three, the measured sulfuric acid mist concentration was below the state allowable limit of 70 mg/m^3 . The sulfuric acid mist concentration measured during test run two was 151 mg/m^3 . The average sulfuric acid concentration measured for the three tests was 80 mg/m^3 .

The average sulfur dioxide concentration measured during the three test runs at the No. 1 Calciner was 646 ppm/v which was below the state allowable limit of 2000 ppm/v.

It should be noted that the sulfuric acid mist concentration for test run two was originally determined based on titration of a 50 milliliter sample aliquot. The titration was repeated using a 100 milliliter aliquot volume as required by DOE Method 1008. The results reported herein are based on the titration obtained using the 100 milliliter aliquot. Both titration values for the 50 and

100 milliliter aliquots are reported in the laboratory report provided in Appendix B. The concentrations derived from these two values are essentially the same ($\pm 3\%$).

Process operations data was monitored by SCM personnel during all test periods.

S.C.M. CHEMICALS
BALTIMORE, MD
TABLE 2
SUMMARY OF PARTICULATE TEST RESULTS

TEST DATA:

	1	2	3
	#1 Calciner	#1 Calciner	#1 Calciner
Test run number	9-7-89	9-8-89	9-8-89
Test location			
Test date	1334-1528	0805-1011	1207-1410
Test time period			

SAMPLING DATA:

Sampling duration, min.	96.0	112.0	112.0
Nozzle diameter, in.	0.552	0.506	0.506
Cross sectional nozzle area, sq.ft.	0.001662	0.001396	0.001396
Barometric pressure, in. Hg	29.95	29.92	29.92
Avg. orifice press. diff., in H2O	1.56	1.08	1.10
Avg. dry gas meter temp., deg F	93	93	93
Avg. abs. dry gas meter temp., deg. R	553	553	553
Total liquid collected by train, ml	564.0	607.0	596.0
Std. vol. of H2O vapor coll., cu.ft.	26.98	29.04	28.51
Dry gas meter calibration factor	1.000	1.000	1.000
Sample vol. at meter cond., dcf	65.253	65.095	64.512
Sample vol. at std. cond., dscf (1)	63.6	63.4	62.8
Percent of isokinetic sampling	97.0	101.2	99.1

GAS STREAM COMPOSITION DATA:

CO2, % by volume, dry basis	6.5	7.2	7.2
O2, % by volume, dry basis	8.7	7.4	7.6
CO, % by volume, dry basis	0.0	0.0	0.0
N2, % by volume, dry basis	84.7	85.4	85.2
Molecular wt. of dry gas, lb/lb mole	29.383	29.448	29.456
H2O vapor in gas stream, prop. by vol.	0.298	0.314	0.312
Mole fraction of dry gas	0.702	0.686	0.688
Molecular wt. of wet gas, lb/lb mole	25.99	25.85	25.88

GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:

Static pressure, in. H2O	-0.02	-0.02	-0.03
Static pressure, in. Hg	-0.001	-0.001	-0.002
Absolute pressure, in. Hg	29.949	29.919	29.918
Avg. temperature, deg. F	158	160	160
Avg. absolute temperature, deg.R	618	620	620
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	16	16	16
Avg. gas stream velocity, ft./sec.	11.22	11.24	11.33
Stack/duct cross sectional area, sq.ft.	19.64	19.64	19.64
Avg. gas stream volumetric flow, wacf/min.	13200	13200	13400
Avg. gas stream volumetric flow, dscf/min.	8100	7900	8000

LABORATORY PARTICULATE REPORT:

Front half acetone rinse, g	0.0205	0.0107	0.0076
Filter catch fraction, g	0.0424	0.0421	0.0414
Maryland front-half catch, g	0.0629	0.0528	0.0490
Ether-chloroform extract, g	0.0020	0.0018	0.0017
Back-half contents and H2O wash residue, g	0.0019	0.0016	0.0047
Back-half acetone wash residue,g	0.0024	0.0020	0.0027
Total catch, g	0.0692	0.0582	0.0581

PARTICULATE EMISSIONS:

Concentration, gr/dscf	0.0152	0.0129	0.0120
Mass rate, lbs/hr	1.0551	0.8666	0.8206

(1) Standard Conditions = 77 deg. F. (25 deg. C.) and
29.92 inches (760 mm) mercury, dry basis

S.C.M. CHEMICALS
BALTIMORE, MD
TABLE 3
SUMMARY OF H₂SO₄/SO₂ TEST RESULTS

TEST DATA:

	1	2	3
Test run number	#1 Calciner	#1 Calciner	#1 Calciner
Test location	9-7-89	9-8-89	9-8-89
Test date			
Test time period	1345-1528	0822-1008	1221-1404

SAMPLING DATA:

Sampling duration, min.	80.0	80.0	80.0
Nozzle diameter, in.	0.506	0.496	0.496
Cross sectional nozzle area, sq.ft.	0.001396	0.001342	0.001342
Barometric pressure, in. Hg	29.95	29.92	29.92
Avg. orifice press. diff., in H ₂ O	1.18	1.16	1.11
Avg. dry gas meter temp., deg F	86	89	88
Avg. abs. dry gas meter temp., deg. R	546	549	548
Total liquid collected by train, ml	388.0	413.3	400.0
Std. vol. of H ₂ O vapor coll., cu.ft.	18.56	19.77	19.14
Dry gas meter calibration factor	1.002	1.002	1.002
Sample vol. at meter cond., dcf	44.949	43.993	43.558
Sample vol. at std. cond., dscf (1)	44.502	43.255	42.886
Percent of isokinetic sampling	100.2	99.7	100.5

GAS STREAM COMPOSITION DATA:

CO ₂ , % by volume, dry basis	6.5	7.2	7.2
O ₂ , % by volume, dry basis	8.7	7.4	7.6
CO, % by volume, dry basis	0.0	0.0	0.0
N ₂ , % by volume, dry basis	84.7	85.4	85.2
Molecular wt. of dry gas, lb/lb mole	29.394	29.448	29.456
H ₂ O vapor in gas stream, prop. by vol.	0.294	0.314	0.309
Mole fraction of dry gas	0.706	0.686	0.691
Molecular wt. of wet gas, lb/lb mole	26.04	25.86	25.92

GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:

Static pressure, in. H ₂ O	-0.02	-0.02	-0.03
Static pressure, in. Hg	-0.001	-0.001	-0.002
Absolute pressure, in. Hg	29.949	29.919	29.918
Avg. temperature, deg. F	159	162	162
Avg. absolute temperature, deg.R	619	622	622
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	16	16	16
Avg. gas stream velocity, ft./sec.	10.82	11.37	11.09
Stack/duct cross sectional area, sq.ft.	19.64	19.64	19.64
Avg. gas stream volumetric flow, wacf/min.	12700	13400	13100
Avg. gas stream volumetric flow, dscf/min.	7800	7900	7800

SULFURIC ACID EMISSIONS:

Average concentration, lb/dscf x 10 ⁻⁶	2.96	9.44	2.60
Average concentration, ppm/v	11.83	37.68	10.37
Average concentration, mg/cu.m	47.45	151.13	41.61
Mass emission rate, lbs/hr	1.39	4.49	1.22

SULFUR DIOXIDE EMISSIONS:

Average concentration, lb/dscf x 10 ⁻⁶	103.9	141.2	72.0
Average concentration, ppm/v	635	863	440
Average concentration, mg/cu.m	1665	2262	1154
Mass emission rate, lbs/hr	49	67	34

(1) Standard Conditions = 77 deg. F. (25 deg. C.) and
29.92 inches (760 mm) mercury, dry basis

APPENDIX A

RAW TEST DATA

S.C.M.
BALTIMORE, MD

Test Data

	1	2	3
Run number	#1	#1	#1
Location	Calciner	Calciner	Calcin
Date	9-7-89	9-8-89	9-8-89
Time period	1334-1528	0805-1011	1207-1410
Operator	O'NEILL	O'NEILL	O'NEILL

Inputs For Calcs.

Sq. rt. delta P	0.175416	0.174769	0.176438
Delta H	1.56250	1.07500	1.09750
Stack temp. (deg.F)	158.25	160.44	159.63
Meter temp. (deg.F)	93.20	93.11	92.89
Sample volume (act.)	65.253	65.095	64.512
Barometric press. (in.Hg)	29.95	29.92	29.92
Volume H2O imp. (ml)	530.00	586	572
Weight chnge sil. gel (g)	34.00	21	24
% CO2	6.530	7.200	7.200
% O2	8.730	7.400	7.600
% CO	0.000	0.000	0.000
% N	84.700	85.400	85.200
Area of stack (sq.ft.)	19.64	19.64	19.64
Sample time (min.)	96	112	112
Static pressure (in.H2O)	-0.020	-0.020	-0.030
Nozzle dia. (in.)	0.5520	0.5060	0.5060
Meter box cal.	0.9997	0.9997	0.9997
Cp of pitot tube	0.84	0.84	0.84

Laboratory Report Data

Frst half acetone rinse, g	0.0205	0.0107	0.0076
Filter catch fraction, g	0.0424	0.0421	0.0414
Maryland FH catch, g	0.0629	0.0528	0.0490
Ether-chloreform extract residue, g	0.0020	0.0018	0.0017
Back-half contents and H2O wash residue, g	0.0019	0.0016	0.0047
Back-half acetone wash residue, g	0.0024	0.0020	0.0027
Total catch, g	0.0692	0.0582	0.0581

S.C.M.
BALTIMORE, MD

Test Data

	1	2	3
Run number	#1	#1	#1
Location	Calciner	Calciner	Calciner
Date	9-7-89	9-8-89	9-8-89
Time period	1345-1528	0822-1008	1221-1404
Operator	O'NEILL	O'NEILL	O'NEILL

Inputs For Calcs.

Sq. rt. delta P	0.169079	0.176534	0.172562
Delta H	1.17690	1.16080	1.11250
Stack temp. (deg.F)	159.19	161.90	161.81
Meter temp. (deg.F)	85.66	88.88	88.06
Sample volume (act.)	44.949	43.993	43.558
Barometric press. (in.Hg)	29.95	29.92	29.92
Volume H2O imp. (ml)	365.00	388.30	374.00
Weight chnge sil. gel (g)	23.00	25.00	26.00
% CO2	6.530	7.200	7.200
% O2	8.730	7.400	7.600
% CO	0.000	0.000	0.000
% N	84.740	85.400	85.200
Area of stack (sq.ft.)	19.64	19.64	19.64
Sample time (min.)	80	80	80
Static pressure (in.H2O)	-0.020	-0.020	-0.030
Nozzle dia. (in.)	0.5060	0.4960	0.4960
Meter box cal.	1.0020	1.0020	1.0020
Cp of pitot tube	0.84	0.84	0.84

Laboratory Report Data

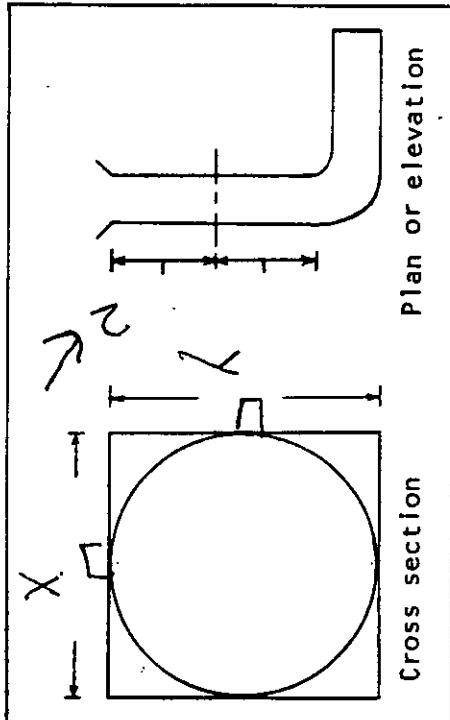
Acid mist as H2SO4			
vol. of titrate, ml(cor)	13.55	41.95	11.45
nor. of titrate, g-eq/l	0.01	0.01	0.01
vol. of acid mist			
sample (first two			
impingers, washes,			
probe and front half			
filter wash, filter),ml	900	900	900
vol. of sample aliquot			
titrated, ml	100.00	100.00	100.00
dilution factor	1.00	1.00	1.00
Sulfur dioxide as SO2			
vol. of titrate, ml(cor)	13.10	17.30	8.75
nor. of titrate, g-eq/l	0.01	0.01	0.01
vol. of acid mist			
sample (first two			
impingers, washes,			
probe and front half			
filter wash, filter),ml	500.00	500.00	500.00
vol. of sample aliquot			
titrated, ml	10.00	10.00	10.00
dilution factor	10.00	10.00	10.00

TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS

PLANT SCM CHEMICALS
DATE 9/7/97
SAMPLING LOCATION 100' i Calciner Stack
INSIDE OF FAR WALL TO 66"
OUTSIDE OF PORT. (DISTANCE A) 66"
INSIDE OF NEAR WALL TO 6"
OUTSIDE OF PORT. (DISTANCE B) 60"
STACK I.D. (DISTANCE A - DISTANCE B) 58 dia
NEAREST UPSTREAM DISTURBANCE > 2 dia
NEAREST DOWNSTREAM DISTURBANCE > 2 dia
CALCULATOR One by

SCHEMATIC OF SAMPLING LOCATION

GAS VELOCITY AND VOLUME DATA FORM


Plant SCM Location Calciner #1
Date 9/7/89 Run no. Prelim 24-hr. clock time 1040-11
Operators Meeter/Baylis Stack diameter or dimensions, in.
Barometric pressure, in. Hg 29.95 Cross sectional area, ft.² 60"
Pitot tube identification no. Pb Cp .84

a Must be <10 degrees to be acceptable.

PARTICULATE FIELD DATA FORM

Sheet 1 of 2

Plant SCR
City Balt MD #1
Location Site A
Operator CDC
Run No. 004
Date 9/7/87
Ambient temp. 80
Baro. press. (P_b) 10145
Sample box no. 80
Meter box no. 9
Meter box cal. (Y) 0.997
Probe length, ft. 6
Probe liner material PEHD
Probe heater setting 25

Pltot tube identification no. P6
Pltot tube cal. factor (C_p) 0.440
Nozzle identification no. 552
Avg. nozzle diameter (D_n) in. 0.552
Pyrometer identification no. 7
Thermocouple identification no. 7
Assumed moisture, % 3
Assumed temperature, °F. 60
Static pressure (P static), in. H₂O -0.02
K factor 560 Reference ΔP
Initial leak rate 0.01 cfm @ 13 in. Hg
Final leak rate 0.006 cfm @ 6 in. Hg
Filter no. 20082

Mid Pt Loc = 004 at 6" Hg Test point schematic

Traverse point number	Sampling time, min.	24-hr. clock time	Velocity head (ΔP), in. H ₂ O	Orifice meter pressure differential (ΔH), in. H ₂ O	Gas meter reading, ft. 3		Dry gas meter temperature (T _m), °F.	Source temperature (T _s), °F.	Pump vacuum, in. Hg. gauge	Impinger exit gas temp., °F.	Filter box temp., °F.
					Inlet of	Outlet of					
0	1334		606/127	608/127	78	78	150	150	62	62	231
1	3	0028	1.4	610/4	85	85	150	150	62	62	231
1	6	0028	1.4	610/4	81	81	150	150	62	62	231
2	9	030	1.53	612/3	81	81	150	150	62	62	231
2	12	030	1.53	614/1	72	72	150	150	62	62	231
2	15	033	1.65	617.0	74	74	150	150	62	62	231
3	18	035	1.75	618.9	77	77	150	150	62	62	231
3	21	035	1.75	620.7	68	68	150	150	62	62	231
4	24	035	1.75	622.2	99	99	150	150	62	62	231
5	27	035	1.75	625.1	60	60	150	150	62	62	231
5	30	035	1.75	627.9	54	54	150	150	62	62	231
6	33	030	1.53	624.3	59	59	150	150	62	62	231
6	36	030	1.53	633.0	88	88	150	150	62	62	231
7	39	030	1.53	633.9	89	89	150	150	62	62	231
7	42	030	1.53	635.1	80	80	150	150	62	62	231
8	45	030	1.43	637.1	70	70	150	150	62	62	231
8	48	030	1.43	638.778	100	90	150	150	62	62	231
Total 8		1422	Avg. f ΔP	1.25	638.778	100	Avg. T _m	Avg. T _m	Max. vac.	Max. temp.	Min. Max.
					Total V _m	32.651					

Comments:

51.

Run 1

Sheet 2 of 2

Scrn Cadher. #1

9/7/34

Traverse point number	Sampling time, min.	24-hr. clock time	Orifice meter pressure differential (ΔP), in. H ₂ O	Gas meter reading, ft. 3	Dry gas meter temperature (T _m)	Source temperature (T _s), °F	Pump vacuum, in. Hg. gauge	Impinger exit gas temp., °F.	Filter box temp., °F.
			Inlet of	Outlet of					
0	1440	00:23	1.43	638,930	97	90	16.3	44	23.5
1	16	00:23	1.43	643.3	97	90	16.3	44	23.7
2	28	00:23	1.53	643.9	97	90	16.3	44	23.9
3	40	00:23	1.53	646.7	97	90	16.3	44	24.1
4	52	00:23	1.70	651.6	97	90	16.3	44	24.3
5	64	00:34	1.70	652.0	97	90	16.3	44	24.5
6	76	00:36	1.84	653.6	97	90	16.3	44	24.7
7	88	00:36	1.84	654.3	97	90	16.3	44	24.9
8	100	00:36	1.66	657.6	97	90	16.3	44	25.1
9	112	00:33	1.65	659.6	97	90	16.3	44	25.3
10	124	00:33	1.65	660.2	97	90	16.3	44	25.5
11	136	00:33	1.65	661.7	97	90	16.3	44	25.7
12	148	00:26	1.43	665.4	97	90	16.3	44	25.9
13	160	00:26	1.43	666.9	97	90	16.3	44	26.1
14	172	00:26	1.43	667.9	97	90	16.3	44	26.3
15	184	00:23	1.63	671.7	97	90	16.3	44	26.5
16	196	00:23	1.63	672.5	97	90	16.3	44	26.7
17	208	00:23	1.63	673.4	97	90	16.3	44	26.9
18	220	00:23	1.63	674.2	97	90	16.3	44	27.1
19	232	00:23	1.63	675.1	97	90	16.3	44	27.3
20	244	00:23	1.63	676.0	97	90	16.3	44	27.5
21	256	00:23	1.63	676.9	97	90	16.3	44	27.7
22	268	00:23	1.63	677.8	97	90	16.3	44	27.9
23	280	00:23	1.63	678.7	97	90	16.3	44	28.1
24	292	00:23	1.63	679.6	97	90	16.3	44	28.3
25	304	00:23	1.63	680.5	97	90	16.3	44	28.5
26	316	00:23	1.63	681.4	97	90	16.3	44	28.7
27	328	00:23	1.63	682.3	97	90	16.3	44	28.9
28	340	00:23	1.63	683.2	97	90	16.3	44	29.1
29	352	00:23	1.63	684.1	97	90	16.3	44	29.3
30	364	00:23	1.63	685.0	97	90	16.3	44	29.5
31	376	00:23	1.63	685.9	97	90	16.3	44	29.7
32	388	00:23	1.63	686.8	97	90	16.3	44	29.9
33	400	00:23	1.63	687.7	97	90	16.3	44	30.1
34	412	00:23	1.63	688.6	97	90	16.3	44	30.3
35	424	00:23	1.63	689.5	97	90	16.3	44	30.5
36	436	00:23	1.63	690.4	97	90	16.3	44	30.7
37	448	00:23	1.63	691.3	97	90	16.3	44	30.9
38	460	00:23	1.63	692.2	97	90	16.3	44	31.1
39	472	00:23	1.63	693.1	97	90	16.3	44	31.3
40	484	00:23	1.63	694.0	97	90	16.3	44	31.5
41	496	00:23	1.63	694.9	97	90	16.3	44	31.7
42	508	00:23	1.63	695.8	97	90	16.3	44	31.9
43	520	00:23	1.63	696.7	97	90	16.3	44	32.1
44	532	00:23	1.63	697.6	97	90	16.3	44	32.3
45	544	00:23	1.63	698.5	97	90	16.3	44	32.5
46	556	00:23	1.63	699.4	97	90	16.3	44	32.7
47	568	00:23	1.63	700.3	97	90	16.3	44	32.9
48	580	00:23	1.63	701.2	97	90	16.3	44	33.1
49	592	00:23	1.63	702.1	97	90	16.3	44	33.3
50	604	00:23	1.63	703.0	97	90	16.3	44	33.5
51	616	00:23	1.63	703.9	97	90	16.3	44	33.7
52	628	00:23	1.63	704.8	97	90	16.3	44	33.9
53	640	00:23	1.63	705.7	97	90	16.3	44	34.1
54	652	00:23	1.63	706.6	97	90	16.3	44	34.3
55	664	00:23	1.63	707.5	97	90	16.3	44	34.5
56	676	00:23	1.63	708.4	97	90	16.3	44	34.7
57	688	00:23	1.63	709.3	97	90	16.3	44	34.9
58	700	00:23	1.63	710.2	97	90	16.3	44	35.1
59	712	00:23	1.63	711.1	97	90	16.3	44	35.3
60	724	00:23	1.63	712.0	97	90	16.3	44	35.5
61	736	00:23	1.63	712.9	97	90	16.3	44	35.7
62	748	00:23	1.63	713.8	97	90	16.3	44	35.9
63	760	00:23	1.63	714.7	97	90	16.3	44	36.1
64	772	00:23	1.63	715.6	97	90	16.3	44	36.3
65	784	00:23	1.63	716.5	97	90	16.3	44	36.5
66	796	00:23	1.63	717.4	97	90	16.3	44	36.7
67	808	00:23	1.63	718.3	97	90	16.3	44	36.9
68	820	00:23	1.63	719.2	97	90	16.3	44	37.1
69	832	00:23	1.63	720.1	97	90	16.3	44	37.3
70	844	00:23	1.63	721.0	97	90	16.3	44	37.5
71	856	00:23	1.63	721.9	97	90	16.3	44	37.7
72	868	00:23	1.63	722.8	97	90	16.3	44	37.9
73	880	00:23	1.63	723.7	97	90	16.3	44	38.1
74	892	00:23	1.63	724.6	97	90	16.3	44	38.3
75	904	00:23	1.63	725.5	97	90	16.3	44	38.5
76	916	00:23	1.63	726.4	97	90	16.3	44	38.7
77	928	00:23	1.63	727.3	97	90	16.3	44	38.9
78	940	00:23	1.63	728.2	97	90	16.3	44	39.1
79	952	00:23	1.63	729.1	97	90	16.3	44	39.3
80	964	00:23	1.63	730.0	97	90	16.3	44	39.5
81	976	00:23	1.63	730.9	97	90	16.3	44	39.7
82	988	00:23	1.63	731.8	97	90	16.3	44	39.9
83	1000	00:23	1.63	732.7	97	90	16.3	44	40.1
84	1012	00:23	1.63	733.6	97	90	16.3	44	40.3
85	1024	00:23	1.63	734.5	97	90	16.3	44	40.5
86	1036	00:23	1.63	735.4	97	90	16.3	44	40.7
87	1048	00:23	1.63	736.3	97	90	16.3	44	40.9
88	1060	00:23	1.63	737.2	97	90	16.3	44	41.1
89	1072	00:23	1.63	738.1	97	90	16.3	44	41.3
90	1084	00:23	1.63	739.0	97	90	16.3	44	41.5
91	1096	00:23	1.63	740.9	97	90	16.3	44	41.7
92	1108	00:23	1.63	741.8	97	90	16.3	44	41.9
93	1120	00:23	1.63	742.7	97	90	16.3	44	42.1
94	1132	00:23	1.63	743.6	97	90	16.3	44	42.3
95	1144	00:23	1.63	744.5	97	90	16.3	44	42.5
96	1156	00:23	1.63	745.4	97	90	16.3	44	42.7
97	1168	00:23	1.63	746.3	97	90	16.3	44	42.9
98	1180	00:23	1.63	747.2	97	90	16.3	44	43.1
99	1192	00:23	1.63	748.1	97	90	16.3	44	43.3
100	1204	00:23	1.63	749.0	97	90	16.3	44	43.5
101	1216	00:23	1.63	750.9	97	90	16.3	44	43.7
102	1228	00:23	1.63	751.8	97	90	16.3	44	43.9
103	1240	00:23	1.63	752.7	97	90	16.3	44	44.1
104	1252	00:23	1.63	753.6	97	90	16.3	44	44.3
105	1264	00:23	1.63	754.5	97	90	16.3	44	44.5
106	1276	00:23	1.63	755.4	97	90	16.3	44	44.7
107	1288	00:23	1.63	756.3	97	90	16.3	44	44.9
108	1300	00:23	1.63	757.2	97	90	16.3	44	45.1
109	1312	00:23	1.63	758.1	97	90	16.3	44	45.3
110	1324	00:23	1.63	759.0	97	90	16.3	44	45.5
111	1336	00:23	1.63	760.9	97	90	16.3	44	45.7
112	1348	00:23	1.63	761.8	97	90	16.3	44	45.9
113	1360	00:23	1.63	762.7	97	90	16.3	44	46.1
114	1372	00:23	1.63	763.6	97	90	16.3	44	46.3
115	1384	00:23	1.63	764.5	97	90	16.3	44	46.5
116	1396	00:23	1.63	765.4	97	90	16.3	44	46.7
117	1408	00:23	1.63	766.3	97	90	16.3	44	46.9
118	1420	00:23	1						

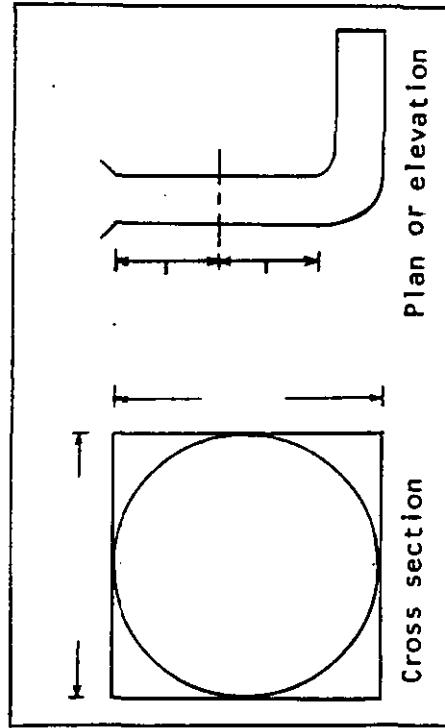
SAMPLE RECOVERY AND INTEGRITY DATA FORM

Plant SCM Batt. Rd. Sample date 9-7-89
 Sample location Calciner #1 Run number ONE
 Sample recovery person JPD/TB Recovery date 9-7-89
 Filter/thimble number(s) 200 BA

250 + 250 + MOISTURE
230 =

Impingers Silica gel
 Final volume (wt) 730 ml (g) Final wt 334 g — g
 Initial volume (wt) 200 ml (g) Initial wt 200 g — g
 Net volume (wt) 530 ml (g) Net wt 34 g — g
 Total moisture 564 ✓ (g)
 Color of silica gel pink 75%
 Description of impinger water clean all

RECOVERED SAMPLE


Blank filter container number 007-SCM-FILT-BLK Sealed ✓
 Blank thimble container number Sealed
 Filter/thimble container number 001-SCM-FILT-1 Sealed ✓
 Filter/thimble container number Sealed
 Filter/thimble container number Sealed
 Filter/thimble container number Sealed
 Description of particulate
 Front-half water rinse container number(s) Liquid level marked ?
 Front-half acetone rinse container number(s) 002-SCM-FHA-1 Liquid level marked ? ✓
 Impinger contents and back-half water rinse container number(s) 003-SCM-BHW-1 Liquid level marked ? ✓
 Back-half acetone rinse container number 004-SCM-BHA-1 Liquid level marked ? ✓
 Water blank container number 005-SCM-WATER-BLK Liquid level marked ? ✓
 Acetone blank container number 005-SCM-Acetone-BLK Liquid level marked ?
 Samples stored and locked 9/8/89 JPD

Remarks
 Date of laboratory custody 9/9/89
 Laboratory personnel taking custody MT
 Remarks all arrived safely

m³/hrSO₂ PARTICULATE-FIELD DATA FORM

Plant SCM

City Portland
 Location DA20, Cylinders
 Operator DA20, Cylinders
 Run No. ONE Date 9-7-87
 Ambient temp. OF 90
 Baro. press. (P_b) 10 in. Hg. 21.55
 Sample box no. #10
 Meter box no. #10
 Meter box ΔH@ 2.15
 Meter box cal. (Y) 1.003
 Probe length, ft. 6
 Probe liner material SSCO
 Probe heater setting 30

Sheet 1 of 2

Pitot tube identification no. <u>P 69</u>	Pitot tube call. factor (C _p) <u>0.826</u>
Nozzle identification no. <u>-</u>	Pyrometer identification no. <u>SO62</u>
Avg. nozzle diameter (D _n) <u>10</u>	Thermocouple identification no. <u>HT 10</u>
Assumed moisture, % <u>35</u>	Assumed temperature, OF. <u>140</u>
Static pressure (Pstatic), in. H ₂ O <u>- .05</u>	Static pressure (Pstatic), in. H ₂ O <u>- .05</u>
C factor <u>-</u>	Reference ΔP <u>-</u>
Initial leak rate <u>.016 cfm</u>	Initial leak rate <u>.015 cfm</u>
Final leak rate <u>.002 cfm</u>	Final leak rate <u>.001 cfm</u>
Filter no. <u>10/14</u>	Filter no. <u>10/14</u>

Filter 10/14 - good

Test point schematic K = 40°C

Pitot P_T L.C. = .002 at 4" NPT

Traverse point number	Sampling time, min.	24-hr. clock time	Velocity head (ΔP), in. H ₂ O	Orifice meter pressure differential (ΔH), in. H ₂ O	Gas meter reading, ft.3		Dry gas meter temperature (T _m)	Source temperature (T _s), OF.	Pump vacuum, in. Hg. gauge	Impinger exit gas temp., OF.	Filter box temp., OF.
					Inlet of.	Outlet of.					
1	5	1345	.021	.016	955.6	832	158	1	63	226	
2	10		.022	.019	958.6	832	158	1	64	224	
3	15		.023	.019	960.7	832	159	2	63	224	
4	20		.023	.019	963.4	833	159	2	63	224	
5	25		.023	.019	964.6	833	159	3	64	223	
6	30		.023	.019	964.6	833	159	3	64	223	
7	35		.023	.019	964.6	833	159	3	64	223	
8	40		.023	.019	973.4	837	159	2	63	220	
	0		.023	.019	975.3	838	159	2	63	220	
	5		.023	.019	975.3	838	159	2	63	220	
	10		.023	.019	975.3	838	159	2	63	220	
	15		.023	.019	975.3	838	159	2	63	220	
	20		.023	.019	975.3	838	159	2	63	220	
	25		.023	.019	975.3	838	159	2	63	220	
	30		.023	.019	975.3	838	159	2	63	220	
	35		.023	.019	975.3	838	159	2	63	220	
	40		.023	.019	975.3	838	159	2	63	220	
	45		.023	.019	975.3	838	159	2	63	220	
	50		.023	.019	975.3	838	159	2	63	220	
	55		.023	.019	975.3	838	159	2	63	220	
	60		.023	.019	975.3	838	159	2	63	220	
	65		.023	.019	975.3	838	159	2	63	220	
	70		.023	.019	975.3	838	159	2	63	220	
	75		.023	.019	975.3	838	159	2	63	220	
	80		.023	.019	975.3	838	159	2	63	220	
	85		.023	.019	975.3	838	159	2	63	220	
	90		.023	.019	975.3	838	159	2	63	220	
	95		.023	.019	975.3	838	159	2	63	220	
	100		.023	.019	975.3	838	159	2	63	220	
	105		.023	.019	975.3	838	159	2	63	220	
	110		.023	.019	975.3	838	159	2	63	220	
	115		.023	.019	975.3	838	159	2	63	220	
	120		.023	.019	975.3	838	159	2	63	220	
	125		.023	.019	975.3	838	159	2	63	220	
	130		.023	.019	975.3	838	159	2	63	220	
	135		.023	.019	975.3	838	159	2	63	220	
	140		.023	.019	975.3	838	159	2	63	220	
	145		.023	.019	975.3	838	159	2	63	220	
	150		.023	.019	975.3	838	159	2	63	220	
	155		.023	.019	975.3	838	159	2	63	220	
	160		.023	.019	975.3	838	159	2	63	220	
	165		.023	.019	975.3	838	159	2	63	220	
	170		.023	.019	975.3	838	159	2	63	220	
	175		.023	.019	975.3	838	159	2	63	220	
	180		.023	.019	975.3	838	159	2	63	220	
	185		.023	.019	975.3	838	159	2	63	220	
	190		.023	.019	975.3	838	159	2	63	220	
	195		.023	.019	975.3	838	159	2	63	220	
	200		.023	.019	975.3	838	159	2	63	220	
	205		.023	.019	975.3	838	159	2	63	220	
	210		.023	.019	975.3	838	159	2	63	220	
	215		.023	.019	975.3	838	159	2	63	220	
	220		.023	.019	975.3	838	159	2	63	220	
	225		.023	.019	975.3	838	159	2	63	220	
	230		.023	.019	975.3	838	159	2	63	220	
	235		.023	.019	975.3	838	159	2	63	220	
	240		.023	.019	975.3	838	159	2	63	220	
	245		.023	.019	975.3	838	159	2	63	220	
	250		.023	.019	975.3	838	159	2	63	220	
	255		.023	.019	975.3	838	159	2	63	220	
	260		.023	.019	975.3	838	159	2	63	220	
	265		.023	.019	975.3	838	159	2	63	220	
	270		.023	.019	975.3	838	159	2	63	220	
	275		.023	.019	975.3	838	159	2	63	220	
	280		.023	.019	975.3	838	159	2	63	220	
	285		.023	.019	975.3	838	159	2	63	220	
	290		.023	.019	975.3	838	159	2	63	220	
	295		.023	.019	975.3	838	159	2	63	220	
	300		.023	.019	975.3	838	159	2	63	220	
	305		.023	.019	975.3	838	159	2	63	220	
	310		.023	.019	975.3	838	159	2	63	220	
	315		.023	.019	975.3	838	159	2	63	220	
	320		.023	.019	975.3	838	159	2	63	220	
	325		.023	.019	975.3	838	159	2	63	220	
	330		.023	.019	975.3	838	159	2	63	220	
	335		.023	.019	975.3	838	159	2	63	220	
	340		.023	.019	975.3	838	159	2	63	220	
	345		.023	.019	975.3	838	159	2	63	220	
	350		.023	.019	975.3	838	159	2	63	220	
	355		.023	.019	975.3	838	159	2	63	220	
	360		.023	.019	975.3	838	159	2	63	220	
	365		.023	.019	975.3	838	159	2	63	220	
	370		.023	.019	975.3	838	159	2	63	220	
	375		.023	.019	975.3	838	159	2	63	220	
	380		.023	.019	975.3	838	159	2	63	220	
	385		.023	.019	975.3	838	159	2	63	220	
	390		.023	.019	975.3	838	159	2	63	220	
	395		.023	.019	975.3	838	159	2	63	220	
	400		.023	.019	975.3	838	159	2	63	220	
	405		.023	.019	975.3	838	159	2	63	220	
	410		.023	.019	975.3	838	159	2	63	220	
	415		.023	.019	975.3	838	159	2	63	220	
	420		.023	.019	975.3	838	159	2	63	220	
	425		.023	.019	975.3	838	159	2	63	220	
	430		.023	.019	975.3	838	159	2	63	220	
	435		.023	.019	975.3	838	159	2	63	220	
	440		.023	.019	975.3	838	159	2	63	220	
	445		.023	.019	975.3	838	159	2	63	220	
	450		.023	.019	975.3	838	159	2	63	220	
	455		.023	.019	975.3	838	159	2	63	220	
	460		.023	.019	975.3	838	159	2	63	220	
	465		.023	.019	975.3	838	159	2	63	220	
	470		.023	.019	975.3	838	159	2	63	220	
	475		.023	.019	975.3	838	159	2	63	220	
	480		.023	.019	975.3	838	159	2	63	220	
	485		.023	.019	975.3	838	159	2	63	220	
	490		.023	.019	975.3	838	159	2	63	220	
	495		.023	.019	975.3	838	159	2	63	220	
	500		.0								

M1002 Run Duke 9/7/57

Traverse point number	Sampling time, min.	24-hr. clock time	Velocity head (ΔP), in. H ₂ O	Orifice meter pressure differential (ΔH), in. H ₂ O	Gas meter reading, ft. 3	Dry gas meter temperature (T_m)	Source temperature (T_s), °F	Pump vacuum, in. Hg.	Impinger exit gas temp., °F.	Filter box temp., °F.
						Inlet of.	Outlet of.			
0	1448	1448	0.26	1.07	975.564	978.5	974	737	667	239
1		1449	0.26	1.15	976.7	977	971	760	667	236
2	10	1450	0.32	1.31	973.8	972	971	760	52	235
3	11	1451	0.35	1.44	972.1	970	971	760	52	234
4	22	1452	0.33	1.33	971.2	973	975	760	52	234
5	23	1453	0.33	1.33	971.2	973	975	760	52	234
6	24	1454	0.36	1.23	973.0	972	975	761	2	235
7	32	1455	0.28	0.28	976.1	973	975	760	2	235
8	40	1456	0.23	0.23	978.432	973	974	760	65	226
					978.432	973	974	760	2	227
22.0868										
Total 0			Avg. $\int \Delta P$	Avg. ΔH	Total V_m	Avg. T_m	Avg. T_s	Avg. vac.	Avg. temp.	Min. temp.
			1690.91	1.1769	44.949	85.66	159.19	3	66	234

Comments:

385.5 + 158

SAMPLE RECOVERY AND INTEGRITY DATA FORM

Plant SCMSample date 9-7-89Sample location # 1 LufkinerRun number DR/1ESample recovery person JDGRecovery date 9-7-89Filter(s) number - N/A $T_{SO2} = 251.5$ $H_{2O_2} = 285$ $F = \frac{543.5}{292.5}$ $F = \frac{285}{300} = 0.95$

Impingers

MOISTURE

Silica gel

Final volume (wt) ml (g)Final wt 345 g 323 gInitial volume (wt) ml (g)Initial wt 300 g 300 gNet volume (wt) ml (g)Net wt 15 g 23 gTotal moisture 388 gColor of silica gel pink 60%Description of impinger water All clear $ISO = 008-SCM - H_2SO_4 - 1$ $H_2O_2 = 009-SCM - SO_2 - 1$ RECOVERED SAMPLEBlank filter container number 1 Sealed ✓Filter container number 1 Sealed ✓

Description of particulate on filter

 $H_2O_2 - BLANK - 011-SCM - H_2O_2 - BLANK$ ✓Acetone rinse container number 150 Liquid level marked? ✓Acetone blank container number 010-SCM-#150 Liquid level marked? ✓

Samples stored and locked

Remarks

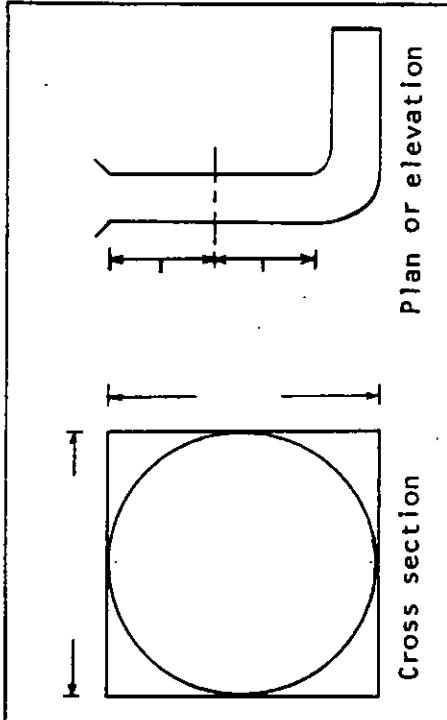
Date of laboratory custody

Laboratory personnel taking custody 9/9/89Remarks H₂SO₄ taken to TSV of 900 ml
all counted safely

244.

186. \rightarrow

158


385.5

543.5

PARTICULATE FIELD DATA FORM

Sheet 1 of 2

Plant SCHMIDT MO
City Omaha Location Center #1
Operator John Run No. 9-8-81
Ambient temp. 70° F Date 9-8-81
Baro. press. (P_b), in. Hg. 29.93
Sample box no. #1
Meter box ΔH@ 1.518
Meter box cal. (Y) 0.9977
Probe length, ft. 6
Probe liner material BRASS
Probe heater setting 30

110 PT LC = .006 at 5" & = 35.0

Test point schematic

Traverse point number	Sampling time, min.	24-hr. clock time	Orifice meter pressure differential ($ΔP$), in. H ₂ O	Velocity head ($ΔH$), in. H ₂ O	Gas meter reading, ft. 3	Dry gas meter temperature (T _m)	Source temperature (T _s), °F	Pump vacuum, in. Hg. gauge	Impinger exit gas temp., °F.	Filter box temp., °F.	Filter box temp., °F.
0	0805	0031	1.09	74.5	671.853	74.5	77	163	3	85.7	85.7
1	7	0030	1.05	78.5	676.85	78	78	161	3	73.9	73.9
2	10.5	0030	1.05	78.0	678.01	78	78	161	3	73.5	73.5
3	14	0320	1.05	78.0	690.03	90	90	162	3	73.6	73.6
4	17.5	0323	1.16	82.5	692.45	92	92	162	3	73.6	73.6
5	21	0323	1.16	82.4	694.0	94	94	162	3	73.6	73.6
6	24.5	0323	1.16	82.7	697.2	97	97	161	3	73.7	73.7
7	27	0323	1.16	82.9	701.4	101	101	161	3	74.0	74.0
8	31.5	0323	1.16	82.9	705.6	101	101	161	3	74.0	74.0
9	35	0323	1.16	82.9	709.8	101	101	161	3	74.0	74.0
10	28.5	0323	1.16	82.9	714.0	101	101	161	3	74.0	74.0
11	43	0323	1.16	82.9	718.2	101	101	161	3	74.0	74.0
12	45.5	0323	1.16	82.9	722.4	102	102	161	3	73.7	73.7
13	49	0323	1.16	82.7	726.7	102	102	161	3	73.4	73.4
14	53.5	0323	1.16	82.7	731.0	102	102	161	3	73.5	73.5
15	56	0323	1.16	82.5	735.3	102	102	161	3	73.5	73.5
Total	8	0323	1.16	82.8	746.47	102	102	161	3	73.6	73.6
		Avg. $ΔP$			Total V_m	Avg. V_m	Avg. T_m	Max. vac.	Max. temp.	Min. Max.	

Comments:

7/18/89 - Run Two - Collection #1

Sheet 2 of 2

Comments:

SAMPLE RECOVERY AND INTEGRITY DATA FORM

Plant SCM Sample date 9-8-89
 Sample location Calciner #1 Run number 700
 Sample recovery person JDC / TB Recovery date 9-8-89
 Filter/thimble number(s) 97040

MOISTURE

Impingers

Final volume (wt) 786 ml (g)
 Initial volume (wt) 200 ml (g)
 Net volume (wt) 586 ml (g)
 Total moisture 607 (g).

Silica gel

Final wt 321 g - g
 Initial wt 300 g - g
 Net wt 21 g - g

Color of silica gel 60% pink
 Description of impinger water all clear

RECOVERED SAMPLE

Blank filter container number _____ Sealed _____

Blank thimble container number _____ Sealed _____

Filter/thimble container number 013 - SCM-FLT-2 Sealed ✓

Filter/thimble container number _____ Sealed _____

Filter/thimble container number _____ Sealed _____

Filter/thimble container number _____ Sealed _____

Description of particulate _____

Front-half water rinse container number(s) - Liquid level marked ? _____

Front-half acetone rinse container number(s) 012-SCM-FH7-2 Liquid level marked ? ✓

Impinger contents and back-half water rinse container number(s) 014-SCM-BHW-2 Liquid level marked ? -

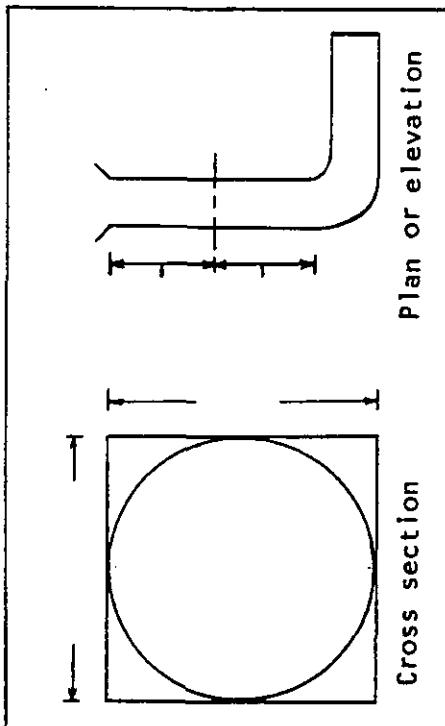
Back-half acetone rinse container number 015 - SCM-BHA-2 Liquid level marked ? ✓

Water blank container number _____ Liquid level marked ? _____

Acetone blank container number _____ Liquid level marked ? _____

Samples stored and locked ✓ 3001PM m 9/8/89

Remarks _____


Date of laboratory custody 9/9/89

Laboratory personnel taking custody M.T.

Remarks all arrived safely

50X
PARTICULATE FIELD DATA FORM

Plant SCM Sheet 1 of 2
 City BALTIMORE Pit tube identification no. P18
 Location canister Pit tube cal. factor (C_p) 0.40
 Operator John No. 102 No. 4956
 Run No. 102 Date 9-8-87
 Ambient temp. 70° F No. 10 No. 4956
 Baro. press. (P_b), in. Hg. 21.52
 Sample box no. 10 No. 10
 Meter box no. 10 No. 10
 Meter box ΔH 2.10
 Meter box cal. (Y) 1.00
 Probe length, ft. 6'
 Probe liner material BORECO
 Probe heater setting 50

Min. & Lc = .004 at 4" 37.1

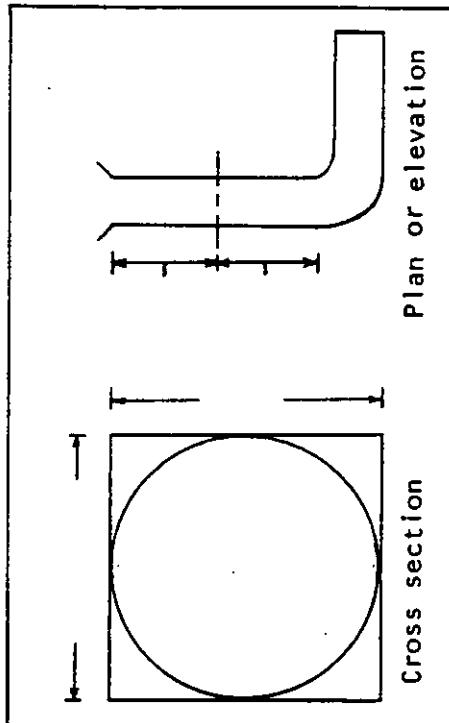
Test point schematic

Traverse point number	Sampling time, min.	24-hr. clock time	Velocity head (ΔP), in. H ₂ O	Orifice meter pressure differential (ΔH), in. H ₂ O	Gas meter reading, ft.3	Dry gas meter temperature (T_m)	Source temperature (T_s), °F	Pump vacuum, in. Hg. gauge	Impinger exit gas temp., °F.	Filter box temp., °F.
1	0	0822	.03	1.13	84	0.5	163	15	63	23
2	10	031	0.31	1.16	89	0.7	163	15	63	23
2	15	034	0.34	1.26	93	0.7	163	15	63	23
4	20	034	0.34	1.26	93	0.7	163	15	63	23
5	25	034	0.34	1.26	94	0.9	163	15	63	23
6	30	031	0.31	1.16	94	0.9	162	22	62	22
7	35	030	0.30	1.16	95	1.1	162	22	62	22
8	40	0902	0.25	1.16	95	1.1	162	22	62	22
Total	8				22.015					
					Avg. $\int \Delta P$	Avg. ΔH	Total V_m	Avg. T_m	Avg. T_s	Max. vac
										Max. temp. Min. Max.

Comments:

50x Calcina #1

9/8/87


Sheet 2 of 2

Comments:

PARTICULATE FIELD DATA FORM

Plant SCH City BALTIMORE MD Location Cylinder #1
 Operator Connelly Run No. 11 Date 11-08-89
 Ambient temp. 68° F Baro. press. (Pb) 24.92 Sample box no. #1
 Meter box no. #1 Meter box $\Delta H@$ 10810 Meter box cal. (Y) 0.9997
 Probe length, ft. 6' Probe liner material STAINLESS Probe heater setting 30

Min. Pt. LC = .004 at 51° 35.1

Test point schematic

Traverse point number	Sampling time, min.	24-hr. clock time	Orifice meter pressure differential (ΔP), in. H ₂ O	Gas meter reading, ft. 3	Dry gas meter temperature (T _m)	Source temperature (T _s), °F	Pump vacuum, in. Hg. gauge	Impinger exit gas temp., °F.	Filter box temp., °F.
0	1207	00:00	1.02	737.195	75	80	160	33	250
1	6	00:20	1.02	741.69	85	81	163	65	240
2	4	10:5	1.03	743.33	87	81	161	64	237
3	18	14:14	0.33	744.9	90	82	161	64	236
4	21	24:3	0.34	742.0	92	92	160	64	233
5	24	24:3	0.35	747.4	92	92	161	64	232
6	27	24:3	0.35	753.3	92	92	161	64	231
7	30	24:3	0.35	754.8	95	92	161	64	230
8	33	24:3	0.35	755.19	97	92	161	64	229
9	36	24:3	0.35	756.7	99	92	161	64	228
Total	6			769.93	81.0	100	161	64	227
			Avg. ΔP	Total ΔH	Avg. ΔH	Total ΔH	Avg. ΔH	Max. vac.	Max. temp. Min. Max.
									56

Comments:

Examiner #1
9/8/71

Sheet 2 of 2

1st Run 3

Traverse point number	Sampling time, min.	24-hr. clock time	Velocity head (ΔP), in. H ₂ O	Orifice meter pressure differential (ΔH), in. H ₂ O	Gas meter reading, ft. 3	Dry gas meter temperature (T_m)	Source temperature (T_s), °F	Pump vacuum, in. Hg. gauge	Impinger exit gas temp., °F	Filter box temp., °F
1	3.5	13:4	0.30	1.05	722.0	92	89	159	237	237
2	7	0.30	1.05	724.1	92	90	158	236	236	
3	10.5	0.33	1.16	726.9	92	91	160	243	243	
4	14	0.23	1.16	727.9	92	92	160	243	243	
5	17.5	0.36	1.26	728.1	100	93	160	240	240	
6	21	0.36	1.26	728.4	92	92	159	239	239	
7	24.5	0.36	1.26	728.4	92	92	159	239	239	
8	28	0.36	1.26	728.7	92	92	159	239	239	
9	31.5	0.36	1.26	728.7	92	92	159	239	239	
10	35	0.36	1.26	729.0	92	92	159	239	239	
11	38.5	0.36	1.26	729.0	92	92	159	239	239	
12	42	0.36	1.26	729.0	92	92	159	239	239	
13	45.5	0.36	1.26	729.0	92	92	159	239	239	
14	49	0.26	0.98	729.3	102	93	160	242	242	
15	52.5	0.26	0.98	729.3	102	93	160	242	242	
16	56	0.26	0.98	729.3	102	93	160	242	242	
17	59.5	0.26	0.98	729.3	102	93	160	242	242	
18	63	0.26	0.98	729.6	102	93	160	242	242	
19	66.5	0.26	0.98	729.7	102	93	160	242	242	
20	70	0.26	0.98	729.8	102	93	160	242	242	
21	73.5	0.26	0.98	730.0	102	93	160	242	242	
22	77	0.26	0.98	730.0	102	93	160	242	242	
23	80.5	0.26	0.98	730.0	102	93	160	242	242	
24	84	0.26	0.98	730.0	102	93	160	242	242	
25	87.5	0.26	0.98	730.0	102	93	160	242	242	
26	91	0.26	0.98	730.0	102	93	160	242	242	
27	94.5	0.26	0.98	730.0	102	93	160	242	242	
28	98	0.26	0.98	730.0	102	93	160	242	242	
29	101.5	0.26	0.98	730.0	102	93	160	242	242	
30	105	0.26	0.98	730.0	102	93	160	242	242	
31	108.5	0.26	0.98	730.0	102	93	160	242	242	
32	112	0.26	0.98	730.0	102	93	160	242	242	
33	115.5	0.26	0.98	730.0	102	93	160	242	242	
34	119	0.26	0.98	730.0	102	93	160	242	242	
35	122.5	0.26	0.98	730.0	102	93	160	242	242	
36	126	0.26	0.98	730.0	102	93	160	242	242	
37	129.5	0.26	0.98	730.0	102	93	160	242	242	
38	133	0.26	0.98	730.0	102	93	160	242	242	
39	136.5	0.26	0.98	730.0	102	93	160	242	242	
40	140	0.26	0.98	730.0	102	93	160	242	242	
41	143.5	0.26	0.98	730.0	102	93	160	242	242	
42	147	0.26	0.98	730.0	102	93	160	242	242	
43	151.5	0.26	0.98	730.0	102	93	160	242	242	
44	155	0.26	0.98	730.0	102	93	160	242	242	
45	158.5	0.26	0.98	730.0	102	93	160	242	242	
46	162	0.26	0.98	730.0	102	93	160	242	242	
47	165.5	0.26	0.98	730.0	102	93	160	242	242	
48	169	0.26	0.98	730.0	102	93	160	242	242	
49	172.5	0.26	0.98	730.0	102	93	160	242	242	
50	176	0.26	0.98	730.0	102	93	160	242	242	
51	180	0.26	0.98	730.0	102	93	160	242	242	
52	183.5	0.26	0.98	730.0	102	93	160	242	242	
53	187	0.26	0.98	730.0	102	93	160	242	242	
54	191.5	0.26	0.98	730.0	102	93	160	242	242	
55	195	0.26	0.98	730.0	102	93	160	242	242	
56	198.5	0.26	0.98	730.0	102	93	160	242	242	
57	202	0.26	0.98	730.0	102	93	160	242	242	
58	205.5	0.26	0.98	730.0	102	93	160	242	242	
59	209	0.26	0.98	730.0	102	93	160	242	242	
60	212.5	0.26	0.98	730.0	102	93	160	242	242	
61	216	0.26	0.98	730.0	102	93	160	242	242	
62	219.5	0.26	0.98	730.0	102	93	160	242	242	
63	223	0.26	0.98	730.0	102	93	160	242	242	
64	226.5	0.26	0.98	730.0	102	93	160	242	242	
65	230	0.26	0.98	730.0	102	93	160	242	242	
66	233.5	0.26	0.98	730.0	102	93	160	242	242	
67	237	0.26	0.98	730.0	102	93	160	242	242	
68	240.5	0.26	0.98	730.0	102	93	160	242	242	
69	244	0.26	0.98	730.0	102	93	160	242	242	
70	247.5	0.26	0.98	730.0	102	93	160	242	242	
71	251	0.26	0.98	730.0	102	93	160	242	242	
72	254.5	0.26	0.98	730.0	102	93	160	242	242	
73	258	0.26	0.98	730.0	102	93	160	242	242	
74	261.5	0.26	0.98	730.0	102	93	160	242	242	
75	265	0.26	0.98	730.0	102	93	160	242	242	
76	268.5	0.26	0.98	730.0	102	93	160	242	242	
77	272	0.26	0.98	730.0	102	93	160	242	242	
78	275.5	0.26	0.98	730.0	102	93	160	242	242	
79	279	0.26	0.98	730.0	102	93	160	242	242	
80	282.5	0.26	0.98	730.0	102	93	160	242	242	
81	286	0.26	0.98	730.0	102	93	160	242	242	
82	290	0.26	0.98	730.0	102	93	160	242	242	
83	293.5	0.26	0.98	730.0	102	93	160	242	242	
84	297	0.26	0.98	730.0	102	93	160	242	242	
85	300.5	0.26	0.98	730.0	102	93	160	242	242	
86	304	0.26	0.98	730.0	102	93	160	242	242	
87	307.5	0.26	0.98	730.0	102	93	160	242	242	
88	311	0.26	0.98	730.0	102	93	160	242	242	
89	314.5	0.26	0.98	730.0	102	93	160	242	242	
90	318	0.26	0.98	730.0	102	93	160	242	242	
91	321.5	0.26	0.98	730.0	102	93	160	242	242	
92	325	0.26	0.98	730.0	102	93	160	242	242	
93	328.5	0.26	0.98	730.0	102	93	160	242	242	
94	332	0.26	0.98	730.0	102	93	160	242	242	
95	335.5	0.26	0.98	730.0	102	93	160	242	242	
96	339	0.26	0.98	730.0	102	93	160	242	242	
97	342.5	0.26	0.98	730.0	102	93	160	242	242	
98	346	0.26	0.98	730.0	102	93	160	242	242	
99	349.5	0.26	0.98	730.0	102	93	160	242	242	
100	353	0.26	0.98	730.0	102	93	160	242	242	
101	356.5	0.26	0.98	730.0	102	93	160	242	242	
102	360	0.26	0.98	730.0	102	93	160	242	242	
103	363.5	0.26	0.98	730.0	102	93	160	242	242	
104	367	0.26	0.98	730.0	102	93	160	242	242	
105	370.5	0.26	0.98	730.0	102	93	160	242	242	
106	374	0.26	0.98	730.0	102	93	160	242	242	
107	377.5	0.26	0.98	730.0	102	93	160	242	242	
108	381	0.26	0.98	730.0	102	93	160	242	242	
109	384.5	0.26	0.98	730.0	102	93	160	242	242	
110	388	0.26	0.98	730.0	102	93	160	242	242	
111	391.5	0.26	0.98	730.0	102	93	160	242	242	
112	395	0.26	0.98	730.0	102	93	160	242	242	
113	398.5	0.26	0.98	730.0	102	93	160	242	242	
114	402	0.26	0.98	730.0	102	93	160	242	242	
115	405.5	0.26	0.98	730.0	102	93	160	242	242	
116	409	0.26	0.98	730.0	102	93	160	242	242	
117	412.5	0.26	0.98	730.0	102	93	160	242	242	
118	416	0.26	0.98	730.0	102	93	160	242	242	
119	419.5	0.26	0.98	730.0	102	93	160	242	242	
120	423	0.26	0.98	730.0	102	93	160	242	242	
121										

SAMPLE RECOVERY AND INTEGRITY DATA FORM

Plant SCM Sample date 9-8-89
 Sample location Calciner #1 Run number Three
 Sample recovery person JDO/TB Recovery date 9-8-89
 Filter/thimble number(s) 97041

MOISTURE

Impingers

Final volume (wt) ml (g)
 Initial volume (wt) 200 ml (g)
 Net volume (wt) 572 ml (g)
 Total moisture 596 (g)

Silica gel

Final wt 324 g g
 Initial wt 300 g g
 Net wt 24 g g

Color of silica gel 1/2 Blue 1/2 Orange/Pink
 Description of impinger water Clear

RECOVERED SAMPLE

Blank filter container number Sealed

Blank thimble container number Sealed

Filter/thimble container number 019-SCM-FILT-3 Sealed ✓

Filter/thimble container number Sealed

Filter/thimble container number Sealed

Filter/thimble container number Sealed

Description of particulate very very light loading

Front-half water rinse container number(s) Liquid level marked ?

Front-half acetone rinse container number(s) 019-SCM-FRA-3 Liquid level marked ?

Impinger contents and back-half water rinse container number(s) 020-SCM-BRN-3 Liquid level marked ?

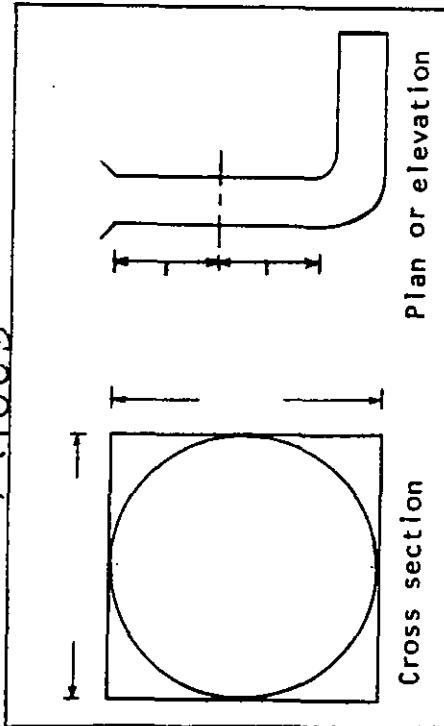
Back-half acetone rinse container number 021-SCM-BRN-3 Liquid level marked ?

Water blank container number Liquid level marked ?

Acetone blank container number Liquid level marked ?

Samples stored and locked 04 320 9/8/89

Remarks


Date of laboratory custody 9/9/89

Laboratory personnel taking custody An. T.

Remarks all arrived safely

SO_x
PARTICULATE FIELD DATA FORM
1009

Plant 5Cm
City BALT. m/s
Location CACIAC, H-1
Operator S. N. E. 11
Run No. 1000 Date 9-18-67
Ambient temp., F 85
Baro. press. (P_b), in. Hg. 21.12
Sample box no. #3
Meter box no. #6
Meter box ΔH@ 6.10
Meter box cal. (Y) 1.0022
Probe length, ft. 6
Probe liner material BOROSIL
Probe heater setting SD

μ100 ft. 100 ft 4"

K = 37 Test point schematic

Sheet 1 of 2
Pltot tube identification no. P 69
Pltot tube cal. factor (C_p) 0.840
Nozzle identification no.
Avg. nozzle diameter (D_n), in. 4.96
Pyrometer identification no. 410
Thermocouple identification no. 2
Assumed moisture, % 0.10
Assumed temperature, °F. 76.10
Static pressure (P static), in. H2O -0.030
C factor Reference Δp
Initial leak rate 0.14 cfm @ 15 in. Hg
Final leak rate 0.06 cfm @ 4.5 in. Hg
Filter no. 12 1/4
P tot = 0.4
P = 0.4

Traverse point number	Sampling time, min.	24-hr. clock time	Velocity head (ΔP), in. H ₂ O	Orifice meter pressure differential (ΔH), in. H ₂ O	Gas meter reading, ft. 3	Dry gas meter temperature (T _m), °F.	Inlet outlet of	Source temperature (T _s), °F.	Pump vacuum, in. Hg. gauge	Impinger exit gas temp., °F.	Filter box temp., °F.
1	0	12.21	0.025	0.13	60.9	83	162	2	67	219	229
2	2		0.028	0.04	63.1	85	162	2	58	212	222
3	4		0.029	0.08	65.6	87	162	2	53	212	222
4	6		0.032	0.18	68.7	91	163	2	52	212	222
5	8		0.035	0.30	71.7	93	163	2	52	212	222
6	10		0.035	0.30	73.7	91	163	2	52	212	222
7	12		0.032	0.18	76.9	96	162	2	62	218	229
8	14	13.01	0.028	0.04	79.5	96	162	2	60	219	229
Total θ - Avg. f ΔP Avg. ΔH Total V _m Avg. T _m Avg. vac. Max. temp. Min. Max.											
- - - - -											

Comments:

SC 11
Ex.H. MP
1/8/81
RJ 3 37.

Sheet 2 of 2

SDX

Traverse point number	Sampling time, min.	24-hr. clock time	Velocity head (ΔP), in. H ₂ O	Orifice meter pressure differential (ΔH), in. H ₂ O	Gas meter reading, ft. ³	Dry gas meter temperature (T_m)	Source temperature (T_s), °F	Pump vacuum, in.Hg.	Impinger exit gas temp., °F.	Filter box temp., °F.
						Inlet of.	Outlet of.	gauge		
1	1324	0.036	0.15	0.079	80.000	87	82	1.5	61	225
2	1325	0.034	0.15	0.074	80.000	87	82	1.5	61	225
3	1326	0.032	0.15	0.072	80.000	87	82	1.2	61	222
4	1327	0.033	0.15	0.073	80.000	87	82	2	61	222
5	1328	0.033	0.15	0.073	80.000	87	82	2	61	222
6	1329	0.034	0.15	0.074	80.000	87	82	2	61	222
7	1330	0.035	0.15	0.075	80.000	87	82	2	61	222
8	1331	0.040	0.24	0.096	80.000	96	92	2	62	227
9	1332	0.040	0.24	0.096	80.000	96	92	2	62	227
10	1333	0.040	0.24	0.096	80.000	96	92	2	62	227
11	1334	0.040	0.24	0.096	80.000	96	92	2	62	227
12	1335	0.040	0.24	0.096	80.000	96	92	2	62	227
13	1336	0.040	0.24	0.096	80.000	96	92	2	62	227
14	1337	0.040	0.24	0.096	80.000	96	92	2	62	227
15	1338	0.040	0.24	0.096	80.000	96	92	2	62	227
16	1339	0.040	0.24	0.096	80.000	96	92	2	62	227
17	1340	0.040	0.24	0.096	80.000	96	92	2	62	227
18	1341	0.040	0.24	0.096	80.000	96	92	2	62	227
19	1342	0.040	0.24	0.096	80.000	96	92	2	62	227
20	1343	0.040	0.24	0.096	80.000	96	92	2	62	227
21	1344	0.040	0.24	0.096	80.000	96	92	2	62	227
22	1345	0.040	0.24	0.096	80.000	96	92	2	62	227
23	1346	0.040	0.24	0.096	80.000	96	92	2	62	227
24	1347	0.040	0.24	0.096	80.000	96	92	2	62	227
25	1348	0.040	0.24	0.096	80.000	96	92	2	62	227
26	1349	0.040	0.24	0.096	80.000	96	92	2	62	227
27	1350	0.040	0.24	0.096	80.000	96	92	2	62	227
28	1351	0.040	0.24	0.096	80.000	96	92	2	62	227
29	1352	0.040	0.24	0.096	80.000	96	92	2	62	227
30	1353	0.040	0.24	0.096	80.000	96	92	2	62	227
31	1354	0.040	0.24	0.096	80.000	96	92	2	62	227
32	1355	0.040	0.24	0.096	80.000	96	92	2	62	227
33	1356	0.040	0.24	0.096	80.000	96	92	2	62	227
34	1357	0.040	0.24	0.096	80.000	96	92	2	62	227
35	1358	0.040	0.24	0.096	80.000	96	92	2	62	227
36	1359	0.040	0.24	0.096	80.000	96	92	2	62	227
37	1360	0.040	0.24	0.096	80.000	96	92	2	62	227
38	1361	0.040	0.24	0.096	80.000	96	92	2	62	227
39	1362	0.040	0.24	0.096	80.000	96	92	2	62	227
40	1363	0.040	0.24	0.096	80.000	96	92	2	62	227
41	1364	0.040	0.24	0.096	80.000	96	92	2	62	227
42	1365	0.040	0.24	0.096	80.000	96	92	2	62	227
43	1366	0.040	0.24	0.096	80.000	96	92	2	62	227
44	1367	0.040	0.24	0.096	80.000	96	92	2	62	227
45	1368	0.040	0.24	0.096	80.000	96	92	2	62	227
46	1369	0.040	0.24	0.096	80.000	96	92	2	62	227
47	1370	0.040	0.24	0.096	80.000	96	92	2	62	227
48	1371	0.040	0.24	0.096	80.000	96	92	2	62	227
49	1372	0.040	0.24	0.096	80.000	96	92	2	62	227
50	1373	0.040	0.24	0.096	80.000	96	92	2	62	227
51	1374	0.040	0.24	0.096	80.000	96	92	2	62	227
52	1375	0.040	0.24	0.096	80.000	96	92	2	62	227
53	1376	0.040	0.24	0.096	80.000	96	92	2	62	227
54	1377	0.040	0.24	0.096	80.000	96	92	2	62	227
55	1378	0.040	0.24	0.096	80.000	96	92	2	62	227
56	1379	0.040	0.24	0.096	80.000	96	92	2	62	227
57	1380	0.040	0.24	0.096	80.000	96	92	2	62	227
58	1381	0.040	0.24	0.096	80.000	96	92	2	62	227
59	1382	0.040	0.24	0.096	80.000	96	92	2	62	227
60	1383	0.040	0.24	0.096	80.000	96	92	2	62	227
61	1384	0.040	0.24	0.096	80.000	96	92	2	62	227
62	1385	0.040	0.24	0.096	80.000	96	92	2	62	227
63	1386	0.040	0.24	0.096	80.000	96	92	2	62	227
64	1387	0.040	0.24	0.096	80.000	96	92	2	62	227
65	1388	0.040	0.24	0.096	80.000	96	92	2	62	227
66	1389	0.040	0.24	0.096	80.000	96	92	2	62	227
67	1390	0.040	0.24	0.096	80.000	96	92	2	62	227
68	1391	0.040	0.24	0.096	80.000	96	92	2	62	227
69	1392	0.040	0.24	0.096	80.000	96	92	2	62	227
70	1393	0.040	0.24	0.096	80.000	96	92	2	62	227
71	1394	0.040	0.24	0.096	80.000	96	92	2	62	227
72	1395	0.040	0.24	0.096	80.000	96	92	2	62	227
73	1396	0.040	0.24	0.096	80.000	96	92	2	62	227
74	1397	0.040	0.24	0.096	80.000	96	92	2	62	227
75	1398	0.040	0.24	0.096	80.000	96	92	2	62	227
76	1399	0.040	0.24	0.096	80.000	96	92	2	62	227
77	1400	0.040	0.24	0.096	80.000	96	92	2	62	227
78	1401	0.040	0.24	0.096	80.000	96	92	2	62	227
79	1402	0.040	0.24	0.096	80.000	96	92	2	62	227
80	1403	0.040	0.24	0.096	80.000	96	92	2	62	227
81	1404	0.040	0.24	0.096	80.000	96	92	2	62	227
82	1405	0.040	0.24	0.096	80.000	96	92	2	62	227
83	1406	0.040	0.24	0.096	80.000	96	92	2	62	227
84	1407	0.040	0.24	0.096	80.000	96	92	2	62	227
85	1408	0.040	0.24	0.096	80.000	96	92	2	62	227
86	1409	0.040	0.24	0.096	80.000	96	92	2	62	227
87	1410	0.040	0.24	0.096	80.000	96	92	2	62	227
88	1411	0.040	0.24	0.096	80.000	96	92	2	62	227
89	1412	0.040	0.24	0.096	80.000	96	92	2	62	227
90	1413	0.040	0.24	0.096	80.000	96	92	2	62	227
91	1414	0.040	0.24	0.096	80.000	96	92	2	62	227
92	1415	0.040	0.24	0.096	80.000	96	92	2	62	227
93	1416	0.040	0.24	0.096	80.000	96	92	2	62	227
94	1417	0.040	0.24	0.096	80.000	96	92	2	62	227
95	1418	0.040	0.24	0.096	80.000	96	92	2	62	227
96	1419	0.040	0.24	0.096	80.000	96	92	2	62	227
97	1420	0.040	0.24	0.096	80.000	96	92	2	62	227
98	1421	0.040	0.24	0.096	80.000	96	92	2	62	227
99	1422	0.040	0.24	0.096	80.000	96	92	2	62	227
100	1423	0.040	0.24	0.096	80.000	96	92	2	62	227
101	1424	0.040	0.24	0.096	80.000	96	92	2	62	227
102	1425	0.040	0.24	0.096	80.000	96	92	2	62	227
103	1426	0.040	0.24	0.096	80.000	96	92	2	62	227
104	1427	0.040	0.24	0.096	80.000	96	92	2	62	227
105	1428	0.040	0.24	0.096	80.000	96	92	2	62	227
106	1429	0.040	0.24	0.096	80.000	96	92	2	62	227
107	1430	0.040	0.24	0.096	80.000	96	92	2	62	227
108	1431	0.040	0.24	0.096	80.000	96	92	2	62	227
109	1432	0.040	0.24</							

50X
SAMPLE RECOVERY AND INTEGRITY DATA FORM

Plant SCM

Sample date 7-8-89

Sample location Calciner #1

Run number Three

Sample recovery person JDO / TB

Recovery date 9-8-89

Filter(s) number —

$I_{50I} = 251.5$

$H_2O_2 I = 286.5$

$I_{50F} = 558$

MOISTURE

$H_2O_2 F = 354$
silica gel 67.5

Impingers

$I_{50I} = 306.5$

Final volume (wt) — ml (g)

Final wt — g 326 g

Initial volume (wt) — ml (g)

Initial wt — g 302 g

Net volume (wt) 374 ml (g)

Net wt — g 26 g

Total moisture 400 g

Color of silica gel 50% pink

all clear

Description of impinger water

022 - SCM - $H_2SO_4 - 3$

023 - SCM - SO_2 RECOVERED SAMPLE

Blank filter container number —

Sealed —

Filter container number —

Sealed —

Description of particulate on filter —

Acetone rinse
container number —

Liquid level
marked? —

Acetone blank
container number —

Liquid level
marked? —

Samples stored and locked ✓ at ON

Remarks —

Date of laboratory custody 9/9/89

Laboratory personnel taking custody M. T.

Remarks all arrived safely

355

203

358

GAS ANALYSIS DATA FORM

Plant SCM Sample location Calciner #1
 Date 9/8/89 Run no. Three Operator Barlis
 Sample type: single-point or multipoint; grab or integrated
 Analytical method Open Comments Leaky V = 0L

Sample point	24-hour clock time	% CO ₂		% O ₂		% CO	
		Reading 1	Reading 2	Net ^a	Reading 3	Net ^b	
1-1	Bag	6.4	15.2	8.8	12.2	0	
1-2	Bag	6.6	15.2	8.6	15.2	0	
1-3	Bag	6.6	15.4	9.0	15.4	0	
Ave	-					0	
2-1	Bag	7.2	14.6	7.7	14.6	0	
2-2	Bag	7.2	14.6	7.4	14.6	0	
2-3	Bag	7.2	14.6	7.4	14.6	0	
Ave	-	7.2	14.6	7.4	14.6	0	
3-1	Bag	7.2	14.8	7.6	14.8	0	
3-2	Bag	7.2	14.8	7.6	14.8	0	
3-3	Bag	7.2	14.8	7.6	14.8	0	
Ave	-	7.2	14.8	7.6	14.8	0	
Averages			----		----		

$$\% N_2 = 100 - (\% CO_2 + \% O_2 + \% CO) =$$

$$MW_d = 0.440 (\% CO_2) + 0.320 (\% O_2) + 0.280 (\% N_2 + \% CO) =$$

^a Net % O₂ = Reading 2 - Reading 1

^b Net % CO = Reading 3 - Reading 2

WESTON

APPENDIX B

LABORATORY REPORTS

ROY F. WESTON INC.
LIONVILLE LABORATORY

CLIENT: SCM BALT MD
RFW #: 8909L657
W.O. #: 2373-01-02

SAMPLES RECEIVED: 9-9-89

INORGANIC NARRATIVE

The following is a summary of the quality control results and a description of any problems encountered during the analysis of this batch of samples:

1. The analytical methods applied by the laboratory in the analysis of air samples contained in this batch were derived from the Maryland Dept. of the Environment Procedures.

Debra K. White _____ Date
Inorganic Section Manager
Lionville Analytical Laboratory

ROY F. WESTON, INC.

GLOSSARY OF TERMS - INORGANIC REPORTS

DATA QUALIFIERS

- U - Indicates that the parameter was not detected at or above the reported limit. The associated numerical value is the sample detection limit.
- * - Indicates that the original sample result is greater than 4x the spike amount added. The USEPA-CLP has determined that spike results on samples where this occurs may be unreliable and, therefore, the control limits are not applicable.

ABBREVIATIONS

- MB - Method or preparation blank.
- MS - Matrix Spike.
- MSD - Matrix Spike Duplicate.
- REP - Sample Replicate.
- LC - Indicates a method LCS or Blank Spike.
- NC - Not calculable, result below the detection limit.

LABORATORY CHRONOLOGY AND HOLDTIME REPORT

The test code listed indicates the specific analysis or preparation procedure employed. The codes may be interpreted as follows:

- MAAW - Metals prep test for AA digestion, water matrix.
- MAAS - Metals prep test for AA digestion, soil matrix.
- MICW - Metals prep test for ICP digestion, water matrix.
- MICS - Metals prep test for ICP digestion, soil matrix.
- M**TO- This type of code indicates a total metal analysis (eg. MAGTO indicates an analysis for total silver).
- M**SO- This type of code indicates a soluble metal analysis. (eg. MAGSO indicates an analysis for soluble silver).
- M**EP- This type of code indicates an EPTOXICITY metals analysis (eg. MAGEP indicates an analysis for eptox silver).
- I**TO- This type of code indicates a non-metallic total analysis. There is also a complimentary soluble analysis for each of these codes (eg. ICNTO indicates an analysis for total cyanide).

A suffix of -R or -S following these codes indicates a replicate or spike analysis respectively.

ROY F. WESTON INC.

INORGANICS DATA SUMMARY REPORT 10/04/89

CLIENT: SCM BALT MD
 WORK ORDER: 2373-01-02-0000

WESTON BATCH #: 8909L657

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
-001	001-SCM-FILT-1	PARTICULATE	0.0424	grams	0.0000
-002	002-SCM-FHA-1	PARTICULATE	0.0227	grams	0.0000
-003	003-SCM-BHW-1	PARTICULATE	0.0055	grams	0.0000
-004	004-SCM-BHA-1	PARTICULATE	0.0030	grams	0.0000
-005	005-SCM-ACETONE-BLK	PARTICULATE	0.0007	grams	0.0000
-006	006-SCM-WATER-BLK	PARTICULATE	0.0010	grams	0.0000
-007	007-SCM-FILT-BLK	PARTICULATE	0.0000	grams	0.0000
-008	008-SCM-H ₂ SO ₄ -1	SULFURIC ACID	13.6	ML TITR	0.00
-009	009-SCM-SO ₂ -1	SULFUR DIOXIDE	13.0	ML TITR	0.00
-010	010-SCM-ISO-BLK	SULFURIC ACID	0.050	ML TITR	0.00
-011	011-SCM-H ₂ O ₂ -BLK	SULFUR DIOXIDE	0.10	ML TITR	0.00
-012	012-SCM-FHA-2	PARTICULATE	0.0123	grams	0.0000
-013	013-SCM-FILT-2	PARTICULATE	0.0421	grams	0.0000
-014	014-SCM-BHW-2	PARTICULATE	0.0053	grams	0.0000
-015	015-SCM-BHA-2	PARTICULATE	0.0027	grams	0.0000
-016	016-SCM-H ₂ SO ₄ -2	SULFURIC ACID	42.0	ML TITR	0.00
-017	017-CON-SO ₂ -2	SULFUR DIOXIDE	17.4	ML TITR	0.00
-018	018-SCM-FHA-3	PARTICULATE	0.0088	grams	0.0000
-019	019-SCM-FILT-3	PARTICULATE	0.0414	grams	0.0000
-020	020-SCM-BHW-3	PARTICULATE	0.0087	grams	0.0000
-021	021-SCM-BHA-3	PARTICULATE	0.0035	grams	0.0000

ROY F. WESTON INC.

INORGANICS DATA SUMMARY REPORT 10/04/89

CLIENT: SCM BALT MD
WORK ORDER: 2373-01-02-0000

WESTON BATCH #: 8909L657

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
=====	=====	=====	=====	=====	=====
-022	022-SCM-H ₂ SO ₄ -3	SULFURIC ACID	11.5	ML TITR	0.00
-023	023-SCM-SO ₂ -3	SULFUR DIOXIDE	8.8	ML TITR	0.00

INORGANICS DATA SUMMARY REPORT CONTINUED:
Analytical results for extractable particulates.
RfW batch #89091657:

Calciner #1, Run 1 back half water extract = 2.0 mg.
" " Run 2 " " " " = 1.8 mg.
" " Run 3 " " " " = 1.7 mg.
" " Water blank " = 0.0 mg.

LIBRARY OFFICIAL BY & HOLD TIME REPORT

PRODUCED ON 19/04/89 AT 10:17

PAGE 1

FILE	TEP	DATE_CREF	DATE_AHDL	DATE_AHAT	DATE_CCL	DATE_REC	MATRIX	CLL_ID
89L657-00100	IPART	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	001-SCM-FILT-1
89L657-00200	IPART	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	002-SCM-FHA-1
89L657-00300	IPART	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	003-SCM-BHW-1
89L657-00400	IPART	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	004-SCM-BHA-1
89L657-00500	IPART	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	005-SCM-ACETONE-BLK
89L657-00600	IPART	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	006-SCM-WATER-BLK
89L657-00700	IPART	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	007-SCM-FILT-BLK
89L657-00800	IPART	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	008-SCM-H2SO4-1
89L657-00900	IS01	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	009-SCM-S02-1
89L657-01000	IS04	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	010-SCM-IS0-BLK
89L657-01100	IS01	09/13/89	09/15/89	09/14/89	09/07/89	09/07/89	AIR	011-SCM-H2O2-BLK
89L657-01200	IPART	09/13/89	09/15/89	09/14/89	09/08/89	09/08/89	AIR	012-SCM-FHA-2
89L657-01300	IPART	09/13/89	09/15/89	09/14/89	09/08/89	09/08/89	AIR	013-SCM-FILT-2
89L657-01400	IPART	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	014-SCM-BHW-2
89L657-01500	IPART	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	015-SCM-BHA-2
89L657-01600	IHE04	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	016-SCM-H2SO4-2
89L657-01700	IS02	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	017-CON-S02-2
89L657-01800	IPART	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	018-SCM-FHA-3
89L657-01900	IPART	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	019-SCM-FILT-3
89L657-02000	IPART	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	020-SCM-BHW-3
89L657-02100	IPART	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	021-SCM-BHA-3
89L657-02200	IHE04	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	022-SCM-H2SO4-3
89L657-02300	IS01	09/13/89	09/15/89	09/15/89	09/08/89	09/08/89	AIR	023-SCM-S02-3

23 SELECTIONS QUALIFIED

89091657-		Beaker Volume	Tare(1) grams	Tare(2) grams	TAKE Avg	Final(1) grams	Final(2) grams	Final Avg	Δ wt	Net wt.	
002 FH		475	109.2081	109.2081	109.2307	109.2309	109.2308	109.2308	.0227	.0182	
001 FILTER #		20580	3929	3930	4353	4354	4355	4355	.09235	.04735	
FH TOTAL		6.15	820	112.4609	112.4609	112.4662	112.4664	112.4664	.0033	.0036	
003 BH		5.2	125	108.9170	109.9170	108.9200	108.9200	108.9200	.0030	.0030	
004 FH		6.11	150	109.7983	109.7983	109.8004	109.8003	109.8003	.0020	.0020	
Extracts		The (BH) samples were extracted with 75mLs of clean solvent and then the extract was combined and taken to dryness.		BHT = -0063		Total = .06915		Process #			
Comments											

Plant		Sampling Location	# 1 Calciner	Run #	Two	Process #
Test Date		Test Period	Stack #	Stack #	Stack #	Stack #
SCM	9-8-89					
012 FH	335	109.0417	109.0416	109.0537	109.0544	109.0539
013 FILTER 1	97040	3725	3725	4143	4147	4146
FILTER 2 #						
FH TOTAL	6.7	940	112.0408	112.0407	112.0463	112.0463
014 BH	140	110.7168	110.7168	110.7165	110.7165	110.7163
015 BHA	150	112.0868	112.0866	112.0834	112.0834	112.0831
Extracts	000	000	000	000	000	000
Comments	BHT = .0054					

Plant		Sampling Location	# 1 Calciner	Run #	Three	Process #
Test Date		Test Period	Stack #	Stack #	Stack #	Stack #
SCM	9-8-89					
018 FH	260	110.0643	110.0643	111.0731	111.0731	111.0731
019 FILTER 1	97041	3720	3720	4134	4134	4134
FILTER 2 #						
FH TOTAL	6.14	870	111.6857	111.6857	111.6944	111.6944
020 BH	621	111.4403	111.4403	111.4438	111.4438	111.4438
BHA	173	110.7823	110.7823	110.7841	110.7841	110.7841
Extracts	000	000	000	000	000	000
Comments	BHT = .0054					
003 ACETONE BLK	50	111.1526	111.1526	111.1526	111.1526	111.1526
006 WATER BLK	125	110.5582	110.5582	110.5582	110.5582	110.5582
Extracts	004	112.2582	112.2582	112.2582	112.2582	112.2582
Code:	BHA=Back half water (impinger contents + water wash). BHA=Back half acetone wash FH TOTAL=Front half catch weight TOTAL=Total train catch weight					
acetone wash	BHT= -009					
	Total = .0580					

WLTLE 5Cm 50X 9-15-89

Project No. _____

From Page No. RFW#	Run # Location	TSV aliquot ml	Diln factor (1)	Title (2)	Title (3)	Title Aug	N Ball
# 1 Calciner	<u>SO₃</u>						
909L 657-010	Do BBR	100	-	0.05	0.05	0.05	0.01
657-008	Run 1	900	100	-	13.70	13.50	13.60
* 657-016	Run 2	900	50	11.20	20.30	20.50	20.40
657-022	Run 3	900	100	-	11.60	11.40	11.50
657-016	Run with 100ml sample volume			42.0	42.0	42.0	0.01
	<u>SO₂</u>						
657-009	Run 1	500	10	1X10	13.20	13.20	13.00
657-017	Run 2	500	10	1X10	17.40	17.40	17.40
657-023	Run 3	500	10	1X10	8.80	8.90	8.85
657-011	H ₂ O ₂ BBR	100	10	-	0.10	0.10	0.10

WESTON

Custody Transfer Record/Lab Work Request

WESTON ANALYTICS USE ONLY

Refrigerator#	#Type Container	Volume	Preservative	ANALYSES REQUESTED
Client	Work Order	Date Due	RFW Contact	Client Contact/Phone
5100	572-01-52	1/11/98	5100	5100
	Date Rec'd.			

Eminent Physicians

Special Instructions:

Bennett/Benson 8

111

1

1

6

1

2

23

Custody Transfer Record/Lab Work Request

WESTON Analytics Use Only

Client SCN Work Order 2373-04-02-00532
Work Order Date Due 2011/04/01
Date Rec'd. 2011/04/01
ARFW Contact 1111111111
Client Contact/Phone 1111111111

גלויה גמי: גמג

Matrix:	W - Water	D9 - Drum Solids
S - Soil	O - Oil	DL - Drum Liquids
SE - Sediment	A - Air	F - Fish
SO - Solid	W1 - Wipe	X - Other

WESTON Analytics	Use Only		
Samples Were:	1 Shipped or Hand-Delivered		
NOTES:			
2 Ambient or Chilled			
NOTES:			
3 Received Broken/Leaking (Improperty Sealed)			
Y	N		
NOTES:			
4 Property Preserved			
Y	N		
NOTES:			
5 Received Within Hong Kong Times			
Y	N		
NOTES:			
COC Tape Was:			
1 Present on Outer Package			
Y N			
2 Unbroken on Outer Package			
Y N			
3 Present on Sample			
Y N			
4 Unbroken on Sample			
NOTES: Y N			
COC Record Was:			
1 Present Upon Receipt of Samples			
Y N			
Discrepancies Between Sample Labels and COC Record?			
Y N			
NOTES:			

WESTON

APPENDIX C

SAMPLE CALCULATIONS

DHMH Method 1005
Particulate Sample Calculation

CLIENT SCM CHEMICALS
TEST RUN NO. ONE
TEST LOCATION # 1 CALCINER

PLANT BALTIMORE MD.
TEST DATE 9/7/89
TEST PERIOD 1334-1528

1. Volume of dry gas sampled at standard conditions (77°F , 29.92 in. Hg.), dscf.

$$V_{m(\text{std})} = \frac{17.95 \times Y \times V_m \times (P_b + \frac{\Delta H}{13.6})}{(T_m + 460)}$$

$$V_{m(\text{std})} = \frac{17.95 \times 1.000 \times 65.25 \times (29.95 + \frac{1.56}{13.6})}{(93 + 460)} = 63.6$$

Where:

$V_{m(\text{std})}$ = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf.

V_m = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.

P_b = Barometric pressure, in. Hg.

ΔH = Average pressure drop across the orifice meter, in. H_2O .

T_m = Average dry gas meter temperature, $^{\circ}\text{F}$

Y = Dry gas meter calibration factor.

17.95 = Factor that includes ratio of standard temperature (537°R) to standard pressure (29.92 in. Hg), R/in. Hg.

13.6 = Specific gravity of mercury.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

$$V_{w(\text{std})} = 0.0480 \times W_t$$

$$V_{w(\text{std})} = 0.0480 \times 564. = 27.$$

Where:

$V_{w(\text{std})}$ = Volume of water vapor in the gas sample corrected to standard conditions, scf.

V_{wd} = Volume of liquid condensed in impingers, ml.

W_{wsq} = Volume of water vapor collected in silica gel, g.

w_t = Total weight of water collected (V_{wct} + W_{wsq}) g

0.0480 = Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant 21.8 (in. Hg) (ft^3)/(lb-mole) (R), absolute temperature at standard conditions (537 R), absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft^3 /g.

3. Moisture content

$$B_{ws} = \frac{V_{w(std)}}{V_{w(std)} + V_{m(std)}}$$

$$B_{ws} = \frac{27}{27 + 63.6} = 0.298$$

Where:

B_{ws} = Proportion of water vapor, by volume, in the gas stream, dimensionless.

4. Mole fraction of dry gas.

$$M_d = 1 - B_{ws}$$

$$M_d = 1 - 0.298 = 0.702$$

Where:

M_d = Mole fraction of dry gas, dimensionless.

5. Dry molecular weight of gas stream, lb/lb-mole.

$$MW_d = 0.440 (\% CO_2) + 0.320 (\% O_2) + 0.280 (\% N_2 + \% CO)$$

$$MW_d = (0.440 \times 6.5) + (0.320 \times 8.7) + (0.280) (84.7 + 0.0)$$
$$= 29.38$$

Where:

MW_d = Dry molecular weight, lb/lb-mole.

$\% CO_2$ = Percent carbon dioxide by volume, dry basis.

$\% O_2$ = Percent oxygen by volume, dry basis.

$\%N_2$ = Percent nitrogen by volume, dry basis.
 $\%CO$ = Percent carbon monoxide by volume, dry basis.
 0.440 = Molecular weight of carbon dioxide, divided by 100.
 0.320 = Molecular weight of oxygen, divided by 100.
 0.280 = Molecular weight of nitrogen or carbon monoxide, divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

$$\begin{aligned}
 MW_s &= (MW_d \times M_d) + 18 (1 - M_d) \\
 MW_s &= (29.36 \times 0.702) + 18 (1 - 0.702) \\
 &= 25.99
 \end{aligned}$$

Where:

$$\begin{aligned}
 MW_s &= \text{Molecular weight of wet gas, lb/lb-mole.} \\
 18 &= \text{Molecular weight of water, lb/lb-mole}
 \end{aligned}$$

7. Average velocity of gas stream at actual conditions, ft/sec.

$$\begin{aligned}
 V_s &= 85.48 \times C_p \times \left(\frac{T_s \text{ (avg)}}{P_s \times MW_s} \right)^{1/2} \\
 V_s &= 85.48 \times .84 \times 0.175416 \times \left[\frac{618}{29.95 \times 25.99} \right]^{1/2} = 11.22
 \end{aligned}$$

Where:

$$V_s = \text{Average gas stream velocity, ft/sec.}$$

$$85.48 = \text{Pitot tube constant, ft/sec} \times$$

$$\begin{aligned}
 &\text{(lb/lb-mole) (in Hg)} \\
 &\text{(\text{°R}) (in. H}_2\text{O)}
 \end{aligned}$$

$$C_p = \text{Pitot tube coefficient, dimensionless.}$$

$$T_s = \text{Absolute gas stream temperature, } \text{°R.} = T_s, \text{ } \text{°F} + 460$$

$$P_s = \text{Absolute gas stack pressure, in. Hg.} = P_b = \frac{P_{\text{static}}}{13.6}$$

$$\Delta P = \text{Velocity head of stack gas, in. H}_2\text{O.}$$

8. Average gas stream volumetric flow rate at actual conditions, wacf/hr.

$$\begin{aligned}
 Q_s(\text{act}) &= 3,600 \times V_s \times A_s \\
 &= 3,600 \times 11.22 \times 19.64 \div 60 = 13200 \text{ ACFM}
 \end{aligned}$$

Where:

$Q_s(\text{act})$ = Volumetric flow rate of wet stack gas at actual conditions, wacf/hr.

A_s = Cross-sectional area of stack, ft.²

9. Average gas stream dry volumetric flow rate at standard conditions, dscf/hr.

$$\begin{aligned}
 Q_s(\text{std}) &= 17.95 \times M_d \times \frac{P_s}{T_s} \times Q_s(\text{act}) \\
 &= 17.95 \times 0.702 \times \frac{29.38}{618} \times 13200 = 8100
 \end{aligned}$$

Where:

$Q_s(\text{std})$ = Volumetric flow rate of dry stack gas at standard conditions, dscf/hr.

10. Isokinetic variation calculated from intermediate values, percent.

$$\begin{aligned}
 I &= \frac{17.026 \times T_s \times V_m(\text{std})}{V_s \times e \times P_s \times M_d \times (D_n)^2} \\
 I &= \frac{17.026 \times 618 \times 63.6}{0.702 \times 11.22 \times 96 \times 29.95 \times (0.552)^2} = 97.0
 \end{aligned}$$

Where:

I = Percent of isokinetic sampling.

e = Total sampling time, minutes.

D_n = Diameter of nozzle, inches.

17.026 = Factor which includes standard temperature (537°R), standard pressure (28.92 in. Hg), the formula for calculating area of circle $\frac{D^2}{4}$, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), $\frac{(\text{in. Hg})}{(\text{°R})} \frac{(\text{in}^2)}{(\text{ft}^2)} \frac{(\text{min})}{(\text{sec})}$

11. Particulate concentration, gr/dscf.

$$C_1 = 15.432 \times \frac{M_t}{V_{m(\text{std})}}$$

$$C_1 = 15.432 \times \frac{0.06285}{63.6} = 0.0152$$

Where:

C_1 = Particulate concentration, gr/dscf.

M_t = Total weight of particulate caught by train, g.

15.432 = Conversion factor of gr/g.

12. Particulate concentration, gr/dscf.

$$C_2 = C_1 \times \frac{Q_{s(\text{std})}}{Q_{s(\text{act})}} = 0.0153 \times \frac{8100}{13200} = 0.009$$

Where:

C_2 = Particulate concentration, gr/wacf.

13. Particulate mass emission rate, lb/hr.

$$\begin{aligned} \text{PMR}_1 &= 0.000142857 \times C_1 \times Q_{s(\text{std})} \\ &= 0.000142857 \times 0.0152 \times 486000 = 1.06 \end{aligned}$$

Where:

PMR_1 = Particulate mass emission rate, lb/hr.

0.000142857 = Conversion factor relating grains to pounds (7,000), lb/gr.

14. Conversion factors:

FROM	TO	MULTIPLY BY
in.	mm.	25.40
ft. ²	m. ²	0.3048
ft. ³	m. ³	0.092903
ft.	m.	0.028317
gr/ft. ³	g/m. ³	2.28833
lbs/hr.	g/hr.	453.59

Temperature

$$^{\circ}\text{C} = \frac{5}{9} (\text{F}-32)$$

$$^{\circ}\text{R} = ^{\circ}\text{F} + 460$$

$$^{\circ}\text{K} = ^{\circ}\text{C} + 273$$

Maryland Method

EPA METHOD 8

H₂SO₄/SO₂ SAMPLE CALCULATIONS

15. Sulfuric Acid Mist Concentration, lb/dscf

No. Calciner
Test Date:
Run No.:
Test Period:

$$C_{H_2SO_4} = 1.081 \times 10^{-4} (V_t - V_{tb}) \times \left(\frac{V_{soln}}{V_a} \right) D$$

$$C_{H_2SO_4} = \frac{1.081 \times 10^{-4} (1340 - 0.050.01) \frac{900}{100}}{44.5} = 2.96 \times 10^{-6}$$

WHERE:

$C_{H_2SO_4}$ = Concentration of H_2SO_4 Mist at standard conditions, lb/dscf.

1.081×10^{-4} = Conversion factor including the gram equivalent weight of H_2SO_4 (49), 453.6 g/lb, and 1,000 ml/l, (lb)(l)/(g)(ml).

V_t = Volume of barium perchlorate titrate used for the sample, ml.

V_{tb} = Volume of titrate used for the blank, ml.

N = Normality of barium perchlorate titrate, g-eq./l.

V_{soln} = Total solution volume of H_2SO_4 mist sample (contents of first two impingers + washes), (probe and front half filter wash + filter), ml

V_a = Volume of sample aliquot titrated, ml.

16. D = Dilution Factor

Concentration of H_2SO_4 mist, ppm by volume.

$$C_{H_2SO_4} (\text{ppm}) = 3.993 \times 10^5 \times C_{H_2SO_4}$$

$$= 3.993 \times 10^5 \times 2.97 \times 10^{-6} = 11.8$$

Concentration of H_2SO_4 mist, mg/m³ (milligrams per cubic meter)

$$C_{H_2SO_4} (\text{mg/m}^3) = C_{H_2SO_4} (\text{ppm}) \times \frac{M}{24.45}$$

$$= 11.8 \times \frac{98.08}{24.45} = 47.0 \text{ mg/m}^3$$

Where:

$$C_{H_2SO_4} = \text{Concentration of } H_2SO_4, \text{ ppm by volume.}$$

$$3.993 \times 10^6 = \text{Conversion factor including number of cubic feet/liter (0.0353, 453.6 g/lb, 24.46 l/g, - mole wt, } 98.0 \text{ g/g - mole wt, and } 10^6 \text{ ppm, (ft}^3 \text{) (ppm)/lb.}$$

17. Mass emission rate of H_2SO_4 , lb/hr.

$$\begin{aligned} PMR_{H_2SO_4} &= C_{H_2SO_4} \times Q_s(\text{std}) \\ &= 2.97 \times 10^{-6} \times 7800 \times 60 = 1.39 \end{aligned}$$

Where:

$$PMR_{H_2SO_4} = H_2SO_4 \text{ mist mass emission rate, lb/hr.}$$

18. Concentration of Sulfur Dioxide at standard conditions, dry basis, lb/dscf.

$$C_{SO_2} = \frac{7.061 \times 10^{-5} (V_t - V_{\text{std}}) \times \left(\frac{V_{\text{soln}}}{V_a}\right)}{V_m(\text{std})}$$

$$= \frac{7.061 \times 10^{-5} (13.2 - 1) \times 0.1 \times \left(\frac{500}{10}\right) \times 10}{44.5}$$

$$= 103.9 \times 10^{-6}$$

Where:

$$C_{SO_2} = \text{Concentration of sulfur dioxide at standard conditions (77°F and 29.92 in. Hg), dry basis, lb/dscf.}$$

$$7.051 \times 10^{-5} = \text{Conversion factor including number of grams per gram equivalent of sulfur dioxide (32.0 g/g - eq), 453.6 g/lb, and 1,000 ml/l, (lb) (1)/(g) (ml).}$$

Other terms as defined above.

19. Concentration of sulfur dioxide parts per million by volume.

$$C_{SO_2} \text{ (ppm)} = 6.1137 \times 10^6 \times C_{SO_2}$$

$$= 6.1137 \times 10^6 \times 103.9 \times 10^{-6} = 635$$

Where:

$$C_{SO_2} \text{ (ppm)} = \text{Concentration of sulfur dioxide ppm by volume}$$

$$6.1137 \times 10^6 = \text{Conversion factor including number of cubic feet/liter (0.0353, 453.6 g/lb, 24.45 1/g - mole wt, 64.0 g/g - mole wt, and } 10^6 \text{ ppm, (ft}^3\text{) (ppm)/lb.}$$

20. Mass emission rate of sulfur dioxide lb/hr.

$$PME_{SO_2} = C_{SO_2} \times Q_s(\text{std})$$

$$= 103.9 \times 10^{-6} \times 7800 \times 60 = 49.$$

Where:

$$PME_{SO_2} = \text{sulfur dioxide mass emission rate, lb/hr.}$$

21. Concentration of sulfur dioxide milligrams per cubic meter

$$C_{SO_2} \text{ (mg/m}^3\text{)} = C_{SO_2} \text{ (ppm)} \times \frac{M}{24.45}$$

$$= 635 \times \frac{64.06}{24.45} = 1665.$$

APPENDIX D

EQUIPMENT CALIBRATION RECORDS

METER BOX CALIBRATION DATA AND CALCULATION FORM

Date 11 AUGUST 1989

Meter Box Number NUTECH # 9

Barometric pressure, P_b = 30.20 in. Hg

Calibrated by M. TED BARKER

Orifice manometer setting (ΔH), in. H_2O	Gas volume		Temperatures			Time (θ), min	Y_i	$\Delta H\theta_i$ in. H_2O	
	Wet test meter (V_w), ft^3	Dry gas meter (V_d), ft^3	Wet test meter (t_w), °F	Inlet (t_{d1}), °F	Outlet (t_{d0}), °F	Avg ^a (t_d), °F			
-.5	5	400.375 395.297	73	83 84	80 80 80	82	13:06	1.000	1.888
.0	5	395.046 389.982	73	84 85	81 81 81	83	8:48	1.003	1.701
1.5	10	411.365 401.367	73	75 79	74 83 75	76	14:33	1.004	1.763
.0	10	422.450 412.366	73	79 83	76 86 77	78	12:57	.9998	1.852
.0	10	433.155 422.955	73	85 88	78 89 78	78	10:42	.9915	1.886
4.0	10								
							Avg	Y 1.9997	$\Delta H\theta$ 1.818

$\frac{\Delta H}{13.6}$	$Y_i = \frac{V_w P_b (t_d + 460)}{V_d (P_b + \frac{\Delta H}{13.6}) (t_w + 460)}$	$\Delta H\theta_i = \frac{0.0317 \Delta H}{P_b (t_d + 460)} \left[\frac{(t_w + 460) \theta}{V_w} \right]^2$
0.5	0.0368 $(5)(30.2)(82+460)$ $(5.078)(30.2 + .0368)(73+460)$	$(.0317)(.5)$ $(30.2)(82+460)$ 5
0	0.0735 $(5)(30.2)(83+460)$ $(5.064)(30.2 + .0735)(73+460)$	$(.0317)(1.0)$ $(30.2)(83+460)$ 5
.5	0.110 $(10)(30.2)(77+460)$ $(9.998)(30.2 + .110)(73+460)$	$(.0317)(1.5)$ $(30.2)(77+460)$ 10
2.0	0.147 $(10)(30.2)(80+460)$ $(10.087)(30.2 + .147)(73+460)$	$(.0317)(2.0)$ $(30.2)(80+460)$ 10
0	0.221 $(10)(30.2)(83+460)$ $(10.20)(30.2 + .221)(73+460)$	$(.0317)(3.0)$ $(30.2)(83+460)$ 10
4.0	0.294	

^a If there is only one thermometer on the dry gas meter, record the temperature under t_d .

M. J. Barker

POSTTEST DRY GAS METER CALIBRATION DATA FORM

Test numbers 2 Date 9-16-89 Meter box number 9 Plant SCFM
 Barometric pressure, P_b = 30.11 in.Hg Dry gas meter number 684 3913 Pretest Y 1.004

Orifice manometer setting, (ΔH), in. H ₂ O	Gas volume	Temperature				Y ₁
		Wet test meter, (V_w), ft ³	Dry gas meter (V_d), ft ³	Inlet, (t_{di}), °F	Outlet, (t_{do}), °F	
1.25	10	819.42	72	82	83	0.93
1.25	10	829.629	72	82	83	0.93
1.25	10	834.647	72	82	83	0.93
1.25	10	829.525	72	82	83	0.93

If there is only one thermometer on the dry gas meter, record the temperature under t_d .

V_w = Gas volume passing through the wet test meter, ft³.
 V_d = Gas volume passing through the dry gas meter, ft³.
 t_w = Temperature of the gas in the wet test meter, °F.
 t_{di} = Temperature of the inlet gas of the dry gas meter, °F.
 t_{do} = Temperature of the outlet gas of the dry gas meter, °F.
 ΔH = Pressure differential across orifice, in H₂O.
 Y_1 = Ratio of accuracy of wet test meter to dry gas meter for each run.
 P_b = Barometric pressure, in. Hg.
 t = Time of calibration run, min.

$$Y_1 = \frac{V_w P_b (t_d + 460)}{V_d (P_b + \frac{\Delta H}{13.6}) (t_w + 460)}$$

$$\Delta H \theta_1 = \frac{0.0317 \Delta H}{P_b (t_d + 460)} \left[\frac{(t_w + 460)}{V_w} \right]$$

POSTTEST DRY GAS METER CALIBRATION DATA FORM

Test numbers 8 Date 8 AUG 89 Meter box number UNIVETCA #0 Plant 6842659 Pretest Y 1.004
 Barometric pressure, P_b = 29.96 in. Hg Dry gas meter number 6842659 Pretest Y 1.004

Orifice anerometer setting, (ΔH), in. H2O	Gas volume	Wet test meter (V_w), ft ³	Dry gas meter (V_d), ft ³	Temperature			Time (θ), min	Vacuum settling, in. Hg.	γ_1	
				Wet test meter (t_w), °F	Dry gas meter Inlet (t_{d1}), °F	Average (t_d), °F				
1.6	10	932.628	73	80	75	76	80	14.39	4.11	1.006
1.6	10	942.691	73	83	80	80	83	14.51	4.11	1.008
1.6	10	932.628	73	85	88	82	81	14.51	4.11	1.008
1.6	10	952.757	73	87	81	81	85	15.15	4.11	1.009
		942.691	73	91	92	81	81			

If there is only one thermometer on the dry gas meter, record the temperature under t_d .

V_w = Gas volume passing through the wet test meter, ft³.
 V_d = Gas volume passing through the dry gas meter, ft³.
 t_w = Temperature of the gas in the wet test meter, °F.
 t_{d1} = Temperature of the inlet gas of the dry gas meter, °F.
 t_d = Temperature of the outlet gas of the dry gas meter, °F.
 t_{d0} = Average temperature of the gas in the dry gas meter, °F.
 ΔH = Pressure differential across orifice, in H₂O.
 γ_1 = Ratio of accuracy of wet test meter to dry gas meter for each run.
 γ = Average ratio of accuracy of wet test meter to dry gas meter for all three runs;
 tolerance = pretest $\gamma \pm 0.05\gamma$
 P_b = Barometric pressure, in. Hg.
 θ = Time of calibration run, min.

M. J. Barker

POSTTEST DAY GAS METER CALIBRATION DATA FORM

Test numbers 5 Date 9-16-89 Meter box number 10 Plant SCM
 Barometric pressure, P_b = 20.01 in.Hg Dry gas meter number 6042659 pretest Y 1.008

Orifice diameter setting, (ΔH), in. H ₂ O	Gas volume	Temperature				Y ₁	$\frac{V_w P_b (t_d + 460)}{V_d (P_b + \frac{\Delta H}{13.6}) (t_w + 460)}$
		Wet test meter (V_w), ft ³	Dry gas meter (V_d), ft ³	Wet test meter (t_w), °F	Dry gas meter Inlet Outlet (t_{di}), (t_{do}), °F		
1.1	10	100.665	76	60	79 84	1.00	1.00
1.1	10	100.614	76	60	84 96	2	0.996
1.1	10	120.662	76	60	80 92	2	0.996
1.1	10	100.936	76	60	80 92	2	0.9959
						Y =	1.001

If there is only one thermometer on the dry gas meter, record the temperature under t_d .

V_w = Gas volume passing through the wet test meter, ft³.

V_d = Gas volume passing through the dry gas meter, ft³.

t_w = Temperature of the gas in the wet test meter, °F.
 t_{di} = Temperature of the inlet gas of the dry gas meter, °F.

t_{do} = Temperature of the outlet gas of the dry gas meter, °F.


t_d = Average temperature of the gas in the dry gas meter, $\frac{t_{di} + t_{do}}{2}$, °F.

ΔH = Pressure differential across orifice, in H₂O.

Y_1 = Ratio of accuracy of wet test meter to dry gas meter for each run.
 Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs;
 tolerance = pretest Y \pm 0.05Y

P_b = Barometric pressure, in. Hg.

t = Time of calibration run, min.

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Date 1/17/89 Potentiometer 100000 number March 9
Ambient temperature 67 °F Barometric pressure 29.57 in. Hg
Calibrator JK Mill Reference: mercury-in-glass yes

Other

Reference point number	Source ^a (specify)	Reference thermometer temperature, °F	Thermocouple potentiometer temperature, °F	Temperature difference, %
	ICE BATH	32°F	34°F	+ 0.41%
	AMBIENT	67°F	67°F	0
	HOT OIL	301°F	306°F	+ 0.66%

Type of calibration system used.

$$\left[\frac{\text{ref temp, } ^\circ\text{F} + 459.67 - (\text{test thermom temp, } ^\circ\text{F} + 459.67)}{\text{ref temp, } ^\circ\text{F} + 459.67} \right] \times 100 \leq 1.5\%$$

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Date 1/17/89 POTENSIOMETER number 114341/10
Ambient temperature 68 °F Barometric pressure 29.57 in. Hg
Calibrator full scale Reference: mercury-in-glass yes

other

Reference point number	Source ^a (specify)	Reference thermometer temperature, °F	Thermocouple potentiometer temperature, °F	Temperature difference, %
	ICE BATH	32°F	+33°F	+0.20%
	AMBIENT	68°F	68°F	0
	HOT OIL	301°F	308°F	+0.92%

Type of calibration system used.

$$\left[\frac{\text{ref temp. } ^\circ\text{F} + 459.67 - (\text{test thermom temp. } ^\circ\text{F} + 459.67)}{\text{ref temp. } ^\circ\text{F} + 459.67} \right] 100 < 1.5\%$$

TYPE S PITOT TUBE INSPECTION DATA FORM

PITOT TUBE PG

Pitot tube assembly level? yes _____ no _____Pitot tube openings damaged? _____ yes (explain below) no _____ $\alpha_1 = \underline{2}^\circ$ ($<10^\circ$), $\alpha_2 = \underline{2}^\circ$ ($<10^\circ$), $\beta_1 = \underline{1}^\circ$ ($<5^\circ$), $\beta_2 = \underline{2}^\circ$ ($<5^\circ$) $\gamma = \underline{2}^\circ$, $\theta = \underline{1}^\circ$, $A = \underline{1.018}$ cm in. $z = A \sin \gamma = \underline{.036}$ cm in.; <0.32 cm ($<1/8$ in.), $w = A \sin \theta = \underline{.018}$ cm in.; $<.08$ cm ($<1/32$ in.) $p_A = \underline{.509}$ cm in. $p_b = \underline{.509}$ cm in. $D_t = \underline{.380}$ cm in.Comments: inspected 9/21/88 Jack MillsCalibration required? _____ yes no _____

TYPE S PITOT TUBE INSPECTION DATA FORM

PITOT TUBE P18

Pitot tube assembly level? yes _____ noPitot tube openings damaged? _____ yes (explain below) no $\alpha_1 = \underline{3}^\circ$ ($<10^\circ$), $\alpha_2 = \underline{2}^\circ$ ($<10^\circ$), $\beta_1 = \underline{4}^\circ$ ($<5^\circ$), $\beta_2 = \underline{2}^\circ$ ($<5^\circ$) $\gamma = \underline{0}^\circ$, $\theta = \underline{1}^\circ$, $A = \underline{.766}$ cm (in) $z = A \sin \gamma = \underline{0}$ cm (in); < 0.32 cm ($<1/8$ in.). $w = A \sin \theta = \underline{.013}$ cm (in); $<.08$ cm ($<1/32$ in.) $P_A = \underline{.383}$ cm (in) $P_b = \underline{.383}$ cm (in) $D_t = \underline{.380}$ cm (in)Comments: inspected 9/2/88 Jack MillsCalibration required? _____ yes no

APPENDIX E

LIST OF WESTON PARTICIPANTS

PROJECT PARTICIPANTS

The following WESTON employees participated in this project:

Paul Meeter econENVIRONomics Division
Project Scientist