

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

753

EVALUATOR CMC

EVALUATION DATE 7/14/82

METHOD 5: SECONDARY EMISSIONS TEST REPORT EVALUATION

STATE: WY

FACILITY: FMC Wyoming Corp.

TEST DATE: 5/19/83

PROCESS(ES) TESTED: PA-24 sewage plant gas-fired
calciners w/ wet scrubbers

SAMPLING DURATION

must have at least 3 runs, each ≥ 1 hour
duration, with sampling ≥ 2 minutes at each
traverse point, and total sampling volume ≥ 30 dscf

3

SAMPLING TEMPERATURE

both probe and filter must be maintained at
248 \pm 25°F or other temperature specified in NSPS

3

PRODUCTION RATE

is process or production rate during
testing representative of normal rates

3

BACK-HALF

if any, what method was used to
catch and recover condensable matter

WY

CONTROL DEVICE(S)

are devices described, and their efficiencies given

2

90

EQUIPMENT were a borosilicate glass probe
liner and a glass fiber filter used

2

as per

METHOD 1

are calculations accurate, and is figure provided

3

CALIBRATION were both pre- and
post-test calibrations performed for
meter box

2

pitot tube

100

2

temperature sensor

100

2

nozzle (3 #)

2

METHODS 2,3

are data and calculations included for
gas velocity, cyclonic flow, and molecular
weight determination, and is source of
barometric pressure noted

2

no

LEAK CHECKS both pre- and post-test

3

3

FIELD DATA is field data on standard

forms, and does raw data correspond with printout

3

200

BLANKS were filter and reagent blanks
analyzed, and were any problems addressed

3

SAMPLE PREP

filter desiccation and tare weights documented

3

BOILER TESTS

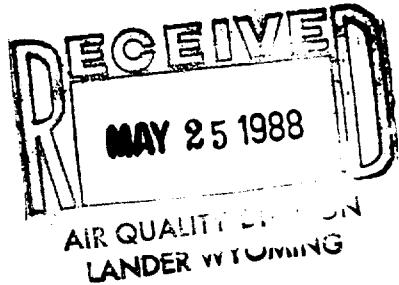
calculation of F_0 from Orsat accurate

N/A

ISOKINETICS within 100 \pm 10% for all runs

3

Don M
Rec'd


FMC Wyoming Corporation

Box 872
Green River Wyoming 82935
307 875 2580

May 24, 1988

Mr. Lee Gribovicz
District II Engineer
Air Quality Division
Department of Environmental Quality
210 Lincoln Street
Lander, Wyoming 82520

RE: Compliance Test Report
Emission Source: RA-24 A&B
Notice of Violation - Opacity
Emission

Dear Mr. Gribovicz:

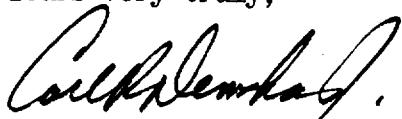
As a result of the Notice of Violation we received concerning opacity emissions from emission source RA-24 A&B, we submitted a Compliance Schedule to the Division with cover letter dated February 5, 1988. As you will remember, the schedule consisted of a Modification Section and a Replacement Section. Per the agreement reached with Division personnel, we were allowed to modify the scrubbers in an attempt to reduce the emissions from this source. In the schedule, a date of June 1, 1988 was targeted as the date when a decision would be made as to whether the modifications were successful. If unsuccessful, the replacement portion of the schedule would immediately be implemented. Per my letter dated April 13, 1988, the modifications made to the scrubbers showed that improved performance had been achieved. Therefore, compliance testing on this unit was scheduled to verify these results.

Attached is the report of this testwork which includes a summary of the test results, and sampling and analysis procedures used to run the tests. The report also contains an Appendix which includes all field data, laboratory worksheets, and calculations for each test. Diagrams in the report include:

- location of the sample ports in the stacks.
- location and number of sample points in each sample diameter.
- modifications made to the scrubber internals.

The section which contains the calculation of feedrate to the unit, and the logsheets of operating parameters monitored during the testwork has been separated from the main report and marked "CONFIDENTIAL" as provided for in § 35-11-1101 of the Wyoming Environmental Quality Act. We consider this information to be trade secret and proprietary as it is not available to the public or to our competitors. We would appreciate you treating it as such.

As we discussed in our telephone conversation of May 19, we encountered some difficulties which required that the compliance tests be run on May 19. For the record, I would like to reiterate below the circumstances which led to the change in schedule of the compliance tests:


The testwork was originally scheduled for May 17 and 18. The first test was run on May 17, but because of extreme fluctuations in feed to the system, a decision was made to defer the rest of the testing to May 18 when plant operating conditions would allow a more consistant feedrate. The second test of the original three-test series was run the morning of May 18. However, during this test, pressure drop instrumentation attached to the scrubbers showed a pressure drop which was approximately half of what we normally would expect across these units. Because of this discrepancy, a water manometer was used to check the pressure drop across these units with the instrument reading being verified. As a result, the unit was shut down and a full system inspection done to determine the cause of the low pressure drop readings across the scrubbers. No problems were found in the scrubbers themselves as the restriction rings were in place, and waterflow and nozzle operation was found to be acceptable. However, during the inspection of the cyclones, a large material buildup was found in the ductwork of both sets of cyclones (two cyclones service each scrubber separately). It was felt at this time that this buildup not only affected the performance of the cyclone but also accounted for the lower pressure drop observed in the scrubbers. This buildup was removed and when the system was started up, pressure drop in the scrubbers returned to normal. The condition found in the system was not representative of normal system operation. Therefore, the tests run on May 17 and 18 were discarded and the three-test compliance set run on May 19, 1988.

Mr. Lee Gribovicz
May 24, 1988

Page 3

If you have any questions concerning this report, or need any additional information, give me a call.

Yours very truly,

Carl R. Demshar, Jr.
Environmental Manager

jc

cc: Charles Collins, DEQ - Cheyenne
JW Coykendall*, JF Herink*, EA Dunn* - Green River

*Summary Table I included with cover letter

COMPLIANCE TEST REPORT
EMISSION SOURCE DA-24 A&E
(MODIFIED)
FMC WYOMING CORPORATION
GREEN RIVER, WYOMING

May 24, 1988

COMPLIANCE TEST REPORT

EMISSION SOURCE: RA-24 A&B

FMC WYOMING CORPORATION
GREEN RIVER, WYOMING

TEST DATE: MAY 19, 1988
REPORT DATE: MAY 24, 1988

COMPLIANCE TEST REPORT
EMISSION SOURCE: RA-24 A&B

Section

Introduction

Summary of Results

Sampling and Analysis Procedures

Calculation of Production Rate, and Control Room Logsheets
(Included in separate packet marked "CONFIDENTIAL")

APPENDIX

Section A-1 Test Data

- Field Data Sheets
- Laboratory Data Sheets
- Test Calculations
- Preliminary Test Data

Section A-2 Stack / Scrubber Information

- Drawing showing location of sample ports, and locations of sampling points per traverse.
- Drawing showing modifications made to scrubbers.
- Brief discussion of modifications made to scrubbers.

Introduction

Compliance tests on emission source RA-24 A&B were originally scheduled for May 17 and 18, 1988. Keeping with this schedule, one test was run on May 17 with plans to finish the testing on May 18. However, during the first test on May 18, it was noted that the pressure drop in the scrubbers was significantly less than normal. Further investigation showed this had also been the case during the May 17 test. Therefore, the system was shut down and inspected. During this inspection no problems were found in the scrubbers, but large material buildups were found in the cyclone ductwork which service each scrubber. Not only was this buildup responsible for the reduced pressure drop in the scrubbers, but it also had an adverse effect on cyclone efficiency. Observations of the probes and filter pads from the first two tests showed more dust accumulation than normal. Based on these observations, these two tests were discarded since the emission control system was not operating in a routine, normal mode. The buildup was removed from the ductwork and when operation of the system resumed, pressure drops in the scrubbers returned to normal. Therefore, the three emission tests, required to show compliance, were run on May 19, 1988.

Mr. Lee Gribovicz, the Air Quality Division's District Engineer, was in the plant on both May 17 and 18, but was unable to read stack opacities because the weather conditions were cool, overcast, and raining.

FMC Wyoming Corporation's personnel taking part in the testwork were:

Carl Demshar	Environmental Manager
Dale Clark	Senior Environmental Engineer
Ted Brown	Environmental Engineer
Simon Lee	Environmental Engineering Technician
Kieth Norris	Senior Laboratory Analyst

Summary of Results

This section summarizes the results of the compliance tests performed May 19, 1988 on emission source RA-24 A & B. Table I is a general summary showing the results of the testwork in relation to the maximum allowable emission for this unit. Table II is a summary of the results obtained from each of the compliance tests. Details of the individual tests, including field data sheets, laboratory data sheets, and calculation sheets can be found in the Appendix.

From Table I, it can be seen that the individual test results are well within the allowable emission rate for this particular unit.

TABLE I

Comparison of Compliance Test Results
With Allowable Emission Rates

<u>Emission Source</u>	<u>Test Number</u>	<u>Emission Rate, lb/hr</u>	
		<u>Compliance Test</u>	<u>Allowable</u>
RA-24 A & B	88-03-S-P	25.58	45.0
RA-24 A & B	88-04-S-P	28.50	45.0
RA-24 A & B	88-05-S-P	<u>20.35</u>	<u>45.0</u>
	Average:	24.81	45.0

TABLE II
SUMMARY OF STACK SAMPLING CALCULATIONS

Stack: RA-24 A & B

	TEST 1	TEST 2	TEST 3
Test Code Number	-----	-----	-----
Barometric Pressure at site, (in Hg)	23.95	23.95	23.95
Absolute stack gas pressure, (in Hg)	23.36	23.36	23.37
Absolute average stack gas temp. A, (R)	610.8	604.5	589.9
Absolute average stack gas temp. B, (R)	599.7	593.2	589.0
Absolute average dry gas meter temp., (R)	537.05	552.1	556.3
Total volume of water collected, (ml)	205.5	204.7	197.4
Volume of gas through dry gas meter, (ft ³)	67.876	68.913	68.273
Average pressure drop across orifice, (in H ₂ O)	0.778	0.812	0.761
Pitot tube coefficient	0.84	0.84	0.84
Average velocity head of stack gas A, (in H ₂ O)	1.038	1.034	1.001
Average velocity head of stack gas B, (in H ₂ O)	1.095	1.006	0.976
Cross sectional area of stack, (ft ²)	7.069	7.069	7.069
Front half particulate collected, (gm)	0.2825	0.3239	0.2308
Back half particulate collected, (gm)	0.0006	0.0007	0.0018
Total particulate collected, (gm)	0.2831	0.3246	0.2326
Total sampling time, (min)	120	120	120
Cross sectional area of nozzle, (ft ² *10 ⁻⁴)	1.7672	1.7672	1.7672
Gas volume A, (acf ^m)	31000	30718	29357
Gas volume B, (acf ^m)	32404	29605	28602
Gas volume A, (scfm)	21001	21027	20602
Gas volume B, (scfm)	22359	20652	20103
Percent isokinetic	98.06	100.85	101.23
Emission rate, (lb/hr)	25.58	28.50	20.35

Sampling and Analysis Procedure

Compliance testing on emission source RA-24 A&B was conducted on May 19, 1988, using EPA Method No. 5, "Determination of Particulate Emissions from Stationary Sources". This unit consists of two stacks, RA-24A and RA-24B. Each emission test consisted of traversing two sample diameters in each stack with six points being sampled on each diameter. Every point was sampled for five minutes resulting in a sample time of sixty minutes for each stack and a total emission test sample of two hours. Only one sample box was used for sampling both stacks for each emission test. Figure 1, located in Section A-2 of the Appendix, shows the location of the sample ports in relation to the nearest flow disturbance such as an expansion, contraction, or bend in the stack, and the location of the sample points in each sample diameter. In addition to this drawing, a sketch of the modifications made to the internals of the scrubbers is also contained in this section of the report as Figure 2. A brief discussion of these modifications is also included in this section.

The operator's control room logsheets and circular natural gas flow chart, containing data pertinent to the operation of the system during the testwork can be found in the Confidential Section of the Compliance Test Report.

Calculation of Production Rate:

Emission Source: RA-24 A&B

Test Date: May 19, 1988

Test No. 88-03-S-P 52.1 tons per hour

Test No. 88-04-S-P 54.2 tons per hour

Test No. 88-05-S-P 52.1 tons per hour

Details of these calculations, along with the operator's control room logsheet and circular natural gas flow chart, containing the data used in these calculations are contained in the attached Confidential packet.

APPENDIX

Section A-1, Test Data

- Field Data Sheets
- Laboratory Data Sheets
- Test Calculations
- Preliminary Test Data

STACK SAMPLING FIELD DATA

SPD

Company Fmc Wy Coip.

Assumed Moisture, % _____

Plant Location Greenfield, WI

Probe Tip Diameter, in.

Run No. 88-03-S-P

Probe Length, ft.

Sampling Location R-15

Ambient Temperature, °F

Date 5-19-88

Bar Pressure in Hg 23.95

Start Time 09:49 / 10:27

Initial Leak Check - CES

Finish Time

CFM at in. Hg

Filter No.

Final Leak Check, CFS

192,000 cu. yds.

RA-24B "East"

VELOCITY AND VOLUME DETERMINATION

DRY GAS VOLUME

 $V_{mstd} = (17.71 \text{ deg R/in. Hg}) * V_m * (P_{bar} + \Delta H / 13.6) / T_m$ Where V_{mstd} =Volume(ft³) of gas sample at 70F and 29.92 in. Hg V_m =Volume (ft³) of gas at meter conditions T_m =Average dry gas meter temperature (R) P_{bar} =Barometric pressure (in. Hg) ΔH =Pressure drop across orifice (in. WG)

$$V_{mstd} = 17.71 * 67.88 * (23.95 + 0.778 / 13.6) / 537.1 = 53.736 \text{ ft}^3$$

VOLUME OF WATER VAPOR

 $V_{wstd} = (0.0474 \text{ ft}^3/\text{ml}) * V_{lc}$ Where V_{wstd} =Volume (ft³) of water vapor V_{lc} =Total volume of water collected (ml)

$$V_{wstd} = .00474 * 205.5 = 9.741 \text{ ft}^3$$

MOISTURE CONTENT

 $B_{wo} = V_{wstd} * 100 / (V_{wstd} + V_{mstd})$ Where B_{wo} =Percent moisture

$$B_{wo} = 9.74 * 100 / (9.74 + 53.74) = 15.345 \text{ percent}$$

CONCENTRATION

 $C_s' = (15.43 \text{ grains/gm}) * M_n / (V_{mstd} + V_{wstd})$ Where C_s' =Concentration (grains/scf) M_n =Total particulate collected (gm)

$$C_s' = 15.43 * 0.2831 / (53.74 + 9.74) = 0.0688 \text{ grains/scf}$$

STACK VELOCITY

Where V =Stack velocity (ft/sec) T_s =Stack absolute temperature (R) ΔP =Average pitot reading (in. WG) M_w =Molecular wt. of stack gas (lb/lb mole) K_p =Pitot tube coefficient

$$M_w = 0.18 * 15.35 + 0.44 * 1.86 + 0.32 * 10.67 + 0.28 * 72.13 = 27.190 \text{ lb/mole}$$

$$\text{RA-24A } V = 0.84 * 85.48 * 1.038 * \text{SQR}(610.8 / (27.19 * 23.36)) = 73.088 \text{ ft/sec}$$

$$\text{RA-24B } V = 0.84 * 85.48 * 1.095 * \text{SQR}(599.7 / (27.19 * 23.36)) = 76.398 \text{ ft/sec}$$

STACK VOLUME

 $ACFM = V * A * 60 \text{ AND } SCFM = ACFM * 530 * P_s / (T_s * 29.92)$

Where ACFM=Actual cubic Ft per minute at stack conditions

 A =Stack area (ft²)

SCFM=Standard cubic ft. per min. (29.92 in. Hg & 530 R)

$$\text{RA-24A } ACFM = 73.09 * 7.069 * 60 = 31000 \text{ acfm}$$

$$\text{RA-24B } ACFM = 76.40 * 7.069 * 60 = 32404 \text{ acfm}$$

$$\text{RA-24A } SCFM = 31000 * 530 * 23.36 / (610.8 * 29.92) = 21001 \text{ scfm}$$

$$\text{RA-24B } SCFM = 32404 * 530 * 23.36 / (599.7 * 29.92) = 22359 \text{ scfm}$$

CALCULATED DUST LOAD

 $lb/hr = C_s' * SCFM * 60 / 7000 \text{ grains/lb}$

$$\text{DUST LOAD} = 0.0688 * 43360 * 60 / 7000 = 25.58 \text{ Lb/Hr}$$

ISOKINETIC RATE

 $I = 98.05684 \%$

LABORATORY DATACompany FMC Wy. Corp.
Sampling Location R-15Run No.: 88-03-85-P
Date: 5-19-88MOISTURE COLLECTED

		Final Weight/Volume	Initial Weight/Volume	GM/ML	Water Weight/Volume Gain GM/ML
IMPINGER 1		<u>683.6</u>	<u>540.9</u>		
	Initial Weight/Volume				
	Increase	<u>142.7</u>		<u>142.7</u>	
IMPINGER 2		<u>597.3</u>	<u>557.8</u>		
	Initial Weight/Volume				
	Increase	<u>39.5</u>		<u>39.5</u>	
IMPINGER 3		<u>434.8</u>	<u>428.7</u>		
	Initial Weight/Volume				
	Increase	<u>6.1</u>		<u>6.1</u>	
IMPINGER 4		<u>625.9</u>	<u>608.7</u>		
	Initial Weight/Volume				
	Increase	<u>17.2</u>		<u>17.2</u>	
	TOTAL MOISTURE CATCH			<u>205.5</u>	

PARTICULATE COLLECTED

FRONT-HALF ANALYSIS (Nozzle, Probe, Cyclone, Filter Front-Half)

<u>75.0099</u>	Filter & Particulates	<u>0.8032</u>
<u>74.9945</u> ^{-0.002}	Filter Tare Weight	<u>0.5359</u>
<u>,0154</u>	Particulate	<u>0.2673</u>
	Washings	<u>0.0159</u>
	Particulate Catch	<u>0.2827</u>
	Acetone Blank	<u>0.0002</u>
	TOTAL FRONT CATCH	<u>0.2825</u>

BACK-HALF ANALYSIS (Impingers, Filter Back-Half)

<u>1.54</u>	Extractable Weight	<u>73.3333</u>
	Boil Down Weight	<u>73.3327</u>
	Impinger Catch	<u>0.0006</u>
	Water Blank	
	TOTAL BACK CATCH	<u>0.0006</u>
	TOTAL TRAIN CATCH	<u>0.2831</u>

Q
STACK SAMPLING FIELD DATACompany Fmc Corp.Plant Location Guangzhou, ChinaRun No. 88-04-S-PSampling Location P-15 ADate 5-19-88Start Time 11:17am 11:50amFinish Time 1:49pm 12:22pmFilter No. Assumed Moisture, % 15Probe Tip Diameter, in. 0.18Probe Length, ft. 5Ambient Temperature, °F Bar. Pressure, in. Hg. 23.95

Initial Leak Check, CFS

CFM 0.000 at 16 in. Hg.

Final Leak Check, CFS

CFM at in. Hg.Stack Area = 7.069

Point No.	Time (min)	Dry Gas Meter FT ³	Pitot in. H ₂ O		Orifice ΔH in. H ₂ O	Dry Gas Temp. °F	Pump Vacuum in. Hg	Sample Box Temp. °F	Impinger Temp. °F	Stack Press. in. Hg	Stack Temp. °F
			P	VP							
			Desired	Actual							
North Port											
10	330.400	0.87	0.93	0.66	0.66	82	82	5.6	263	48	-7.5" 140
25	333.0	0.94	0.969	0.73	0.73	92	84	4.0	268	38	-7.5" 146
310	335.6	0.98	0.989	0.76	0.76	95	85	4.2	267	39	-7.4" 148
415	338.6	1.30	1.140	1.00	1.00	97	86	5.3	260	39	-7.75" 145
520	341.3	1.36	1.166	1.05	1.05	98	87	5.8	268	40	-7.70" 147
625	344.4	1.20	1.140	1.00	1.00	98	87	5.8	267	40	-7.70" 146
30	347.446										

East Port

10	347.446	0.90	0.949	0.69	0.69	85	85	4.3	265	48	-7.50" 141
25	349.9	0.78	0.964	0.73	0.73	96	88	5.0	267	44	-7.33" 142
310	350.5	1.06	1.029	0.81	0.81	98	88	5.2	267	46	-7.43" 145
415	355.2	0.98	0.989	0.76	0.76	98	88	5.3	271	45	-7.80" 145
520	357.9	1.10	1.019	0.85	0.85	99	89	6.0	266	44	-7.86" 145
625	360.9	1.20	1.095	0.93	0.93	99	89	6.8	268	45	-7.92" 146
30	363.730										

$$1.0389 \times 66.333 = 68.913$$

= 94.58

$$1.070 \times 1.070 = 94.58$$

$$1.070 \times 1.070 = 94.58$$

$$1.070 \times 1.070 = 94.58$$

Orsat

$$\% \text{CO}_2 = 2.4$$

$$\% \text{O}_2 = 13.1$$

$$\% \text{CO} = 0.0$$

1		12.416		2173		90.99	1734
total	Vm =	68.913	TDAR	9.97	90.5F	-7.56"	144.58
average		18.703	ΔH = 0.831	550.5°F		23.10 Hg	604.58

avg ΔH = 0.812

avg Tm = 552.1°F

avg Ps = 23.36 Hg

STACK SAMPLING FIELD DATA

$$\begin{array}{r} 1.034 \\ \hline 1.000 \\ \hline 1 \end{array}$$

Company Eric Clegg, Corp.

Plant Location Sioux City, Wyo

Run No. 88-04-S-P

Sampling Location E-15 B

Date 5-19-88

Start Time 10:30pm 1:09pm

Finish Time 1:00pm 1:39pm

Filter No.

R A - 24 - B

Assumed Moisture, % 15

Probe Tip Diameter, in. 0.18

Probe Length, ft. 5

Ambient Temperature, °F

Bar. Pressure, in. Hg. 33.95

Initial Leak Check, CFS

CFM at in. Hg.

Final Leak Check, CFS

CFM 2.00 at 10.0 in. Hg.

TEST NO. 88-04-S-P

DATE 05-19-88

VELOCITY AND VOLUME DETERMINATION

DRY GAS VOLUME

$V_{mstd} = (17.71 \text{ deg R/in. Hg}) * V_m * (P_{bar} + \Delta H / 13.6) / T_m$

Where V_{mstd} =Volume (ft³) of gas sample at 70F and 29.92 in. Hg

V_m =Volume (ft³) of gas at meter conditions

T_m =Average dry gas meter temperature (R)

P_{bar} =Barometric pressure (in. Hg)

ΔH =Pressure drop across orifice (in. WG)

$$V_{mstd} = 17.71 * 68.91 * (23.95 + 0.812 / 13.6) / 552.1 = 53.075 \text{ ft}^3$$

VOLUME OF WATER VAPOR

$V_{wstd} = (0.0474 \text{ ft}^3/\text{ml}) * V_{lc}$

Where V_{wstd} =Volume (ft³) of water vapor

V_{lc} =Total volume of water collected (ml)

$$V_{wstd} = .00474 * 204.7 = 9.703 \text{ ft}^3$$

MOISTURE CONTENT

$B_{wo} = V_{wstd} * 100 / (V_{wstd} + V_{mstd})$

Where B_{wo} =Percent moisture

$$B_{wo} = 9.70 * 100 / (9.70 + 53.07) = 15.456 \text{ percent}$$

CONCENTRATION

$C_s' = (15.43 \text{ grains/gm}) * M_n / (V_{mstd} + V_{wstd})$

Where C_s' =Concentration (grains/scf)

M_n =Total particulate collected (gm)

$$C_s' = 15.43 * 0.3246 / (53.07 + 9.70) = 0.0798 \text{ grains/scf}$$

STACK VELOCITY

Where V =Stack velocity (ft/sec)

T_s =Stack absolute temperature (R)

ΔP =Average pitot reading (in. WG)

M_w =Molecular wt. of stack gas (lb/lb mole)

K_p =Pitot tube coefficient

$$M_w = 0.18 * 15.46 + 0.44 * 1.86 + 0.32 * 11.08 + 0.28 * 71.61 = 27.195 \text{ lb/mole}$$

$$\begin{aligned} \text{RA-24A} \quad V &= 0.84 * 85.48 * 1.034 * \sqrt{604.5 / (27.20 * 23.36)} = 72.424 \text{ ft/sec} \\ \text{RA-24B} \quad V &= 0.84 * 85.48 * 1.006 * \sqrt{593.2 / (27.20 * 23.36)} = 69.801 \text{ ft/sec} \end{aligned}$$

STACK VOLUME

$ACFM = V * A * 60 \quad \text{AND} \quad SCFM = ACFM * 530 * P_s / (T_s * 29.92)$

Where ACFM=Actual cubic Ft per minute at stack conditions

A =Stack area (ft²)

SCFM=Standard cubic ft. per min. (29.92 in. Hg & 530 R)

$$\text{RA-24A} \quad ACFM = 72.42 * 7.069 * 60 = 30718 \text{ acfm}$$

$$\text{RA-24B} \quad ACFM = 69.80 * 7.069 * 60 = 29605 \text{ acfm}$$

$$\text{RA-24A} \quad SCFM = 30718 * 530 * 23.36 / (604.5 * 29.92) = 21027 \text{ scfm}$$

$$\text{RA-24B} \quad SCFM = 29605 * 530 * 23.36 / (593.2 * 29.92) = 20652 \text{ scfm}$$

CALCULATED DUST LOAD

$lb/hr = C_s' * SCFM * 60 / 7000 \text{ grains/lb}$

$$\text{DUST LOAD} = 0.0798 * 41679 * 60 / 7000 = 28.50 \text{ Lb/Hr}$$

ISOKINETIC RATE

$$I = 100.8515 \%$$

LABORATORY DATACompany FMC WY. CORP.
Sampling Location RA'-24A'BRun No.: 88-04-S-P
Date: 05-18-85MOISTURE COLLECTED

		Final Weight/Volume	Initial Weight/Volume	GM/ML	Water Weight/Volume Gain GM/ML
IMPINGER 1		<u>645.4</u>	<u>501.2</u>	<u>144.2</u>	<u>144.2</u>
IMPINGER 2		<u>570.1</u>	<u>532.5</u>	<u>37.6</u>	<u>37.6</u>
IMPINGER 3		<u>423.5</u>	<u>417.1</u>	<u>6.4</u>	<u>6.4</u>
IMPINGER 4		<u>647.0</u>	<u>630.5</u>	<u>16.5</u>	<u>16.5</u>
		TOTAL MOISTURE CATCH		<u>204.7</u>	

PARTICULATE COLLECTED

1-S "sample"	FRONT-HALF ANALYSIS (Nozzle, Probe, Cyclone, Filter Front-Half)
<u>73.5164</u>	<u>0.8930</u>
<u>73.5050</u> tare	<u>0.5792</u> tare
<u>.0114</u>	<u>0.3138</u>
	<u>0.6114</u>
	<u>0.3252</u>
	<u>0.0013</u>
	<u>0.3239</u>

2-B "Blank"	BACK-HALYSIS (Impingers, Filter Back-Half)
<u>74.8796</u>	<u>74.7263</u>
<u>74.8773</u> tare	<u>74.7256</u> tare
<u>.0013</u>	<u>.0007</u>
	<u>-.0007</u>
	<u>0.3246</u>

3. STACK SAMPLING FIELD DATA

SPL

Company FMCWY CO IDAssumed Moisture, % 15Plant Location Green River, WYProbe Tip Diameter, in. .18Run No. 88-05-5-PProbe Length, ft. 5Sampling Location R-15 RA-24A

Ambient Temperature, °F _____

Date 5-19-88Bar. Pressure, in. Hg. 23.95Start Time 14:55 / 15:31Initial Leak Check, CFS CFM .007 at 15 in. Hg.

Finish Time _____

Final Leak Check, CFS CFM _____ at _____ in. Hg.

Filter No. _____

Stack Area = 7.069

West Stack

Point No.	Time (min)	Dry Gas Meter FT ³	Pitot in. H ₂ O		Orifice ΔH in. H ₂ O	Dry Gas Temp. °F		Pump Vacuum in. Hg Gauge	Sample Box Temp. °F	Impinger Temp. °F	Stack Press. in. Hg	Stack Temp. °F
			P	V _P		Inlet	Outlet					
West					Desired		Actual					
1	0	397.365	0.87	0.933	0.67	0.67	90	48	2.8	262	60	-7.0 116
2	5	400.0	0.87	0.933	0.67	0.67	95	89	2.9	268	59	-7.1 1129
3	10	402.5	1.0	1.000	0.77	0.77	99	89	3.0	267	59	-7.3 144
4	15	405.3	1.15	1.022	0.89	0.89	100	90	3.4	272	58	-7.2 146
5	20	408.2	1.15	1.022	0.89	0.89	101	90	3.5	265	57	-7.2 145
6	25	411.1	1.10	1.049	0.85	0.85	100	90	3.2	262	58	-7.2 145
	30	413.9										

Point No.	Time (min)	Dry Gas Meter FT ³	Pitot in. H ₂ O		Orifice ΔH in. H ₂ O	Dry Gas Temp. °F		Pump Vacuum in. Hg Gauge	Sample Box Temp. °F	Impinger Temp. °F	Stack Press. in. Hg	Stack Temp. °F
			P	V _P		Inlet	Outlet					
West					Desired		Actual					
1	0	413.9	0.80	0.994	0.62	0.62	95	38	3.0	264	63	-7.1 129
2	5	416.4	0.89	0.943	0.68	0.68	99	89	3.3	266	64	-7.1 139
3	10	419.0	1.0	1.000	0.77	0.77	101	90	3.7	256	62	-7.2 143
4	15	421.9	1.05	1.025	0.81	0.81	103	90	3.9	266	60	-7.5 144
5	20	424.5	1.05	1.025	0.81	0.81	104	92	4.0	262	59	-7.5 145
6	25	427.4	1.15	1.072	0.89	0.89	105	93	4.2	257	58	-7.5 145
	30	430.3										

Point No.	Time (min)	Dry Gas Meter FT ³	Pitot in. H ₂ O		Orifice ΔH in. H ₂ O	Dry Gas Temp. °F		Pump Vacuum in. Hg Gauge	Sample Box Temp. °F	Impinger Temp. °F	Stack Press. in. Hg	Stack Temp. °F
			P	V _P		Inlet	Outlet					
West					Desired		Actual					
1	0	423.9	0.80	0.994	0.62	0.62	95	38	3.0	264	63	-7.1 129
2	5	426.4	0.89	0.943	0.68	0.68	99	89	3.3	266	64	-7.1 139
3	10	429.0	1.0	1.000	0.77	0.77	101	90	3.7	256	62	-7.2 143
4	15	431.9	1.05	1.025	0.81	0.81	103	90	3.9	266	60	-7.5 144
5	20	434.5	1.05	1.025	0.81	0.81	104	92	4.0	262	59	-7.5 145
6	25	437.4	1.15	1.072	0.89	0.89	105	93	4.2	257	58	-7.5 145
	30	440.3										

Point No.	Time (min)	Dry Gas Meter FT ³	Pitot in. H ₂ O		Orifice ΔH in. H ₂ O	Dry Gas Temp. °F		Pump Vacuum in. Hg Gauge	Sample Box Temp. °F	Impinger Temp. °F	Stack Press. in. Hg	Stack Temp. °F
			P	V _P		Inlet	Outlet					
West					Desired		Actual					
1	0	433.9	0.80	0.994	0.62	0.62	95	38	3.0	264	63	-7.1 129
2	5	436.4	0.89	0.943	0.68	0.68	99	89	3.3	266	64	-7.1 139
3	10	439.0	1.0	1.000	0.77	0.77	101	90	3.7	256	62	-7.2 143
4	15	441.9	1.05	1.025	0.81	0.81	103	90	3.9	266	60	-7.5 144
5	20	444.5	1.05	1.025	0.81	0.81	104	92	4.0	262	59	-7.5 145
6	25	447.4	1.15	1.072	0.89	0.89	105	93	4.2	257	58	-7.5 145
	30	450.3										

Point No.	Time (min)	Dry Gas Meter FT ³	Pitot in. H ₂ O		Orifice ΔH in. H ₂ O	Dry Gas Temp. °F		Pump Vacuum in. Hg Gauge	Sample Box Temp. °F	Impinger Temp. °F	Stack Press. in. Hg	Stack Temp. °F
			P	V _P		Inlet	Outlet					
West					Desired		Actual					
1	0	453.9	0.80	0.994	0.62	0.62	95	38	3.0	264	63	-7.1 129
2	5	456.4	0.89	0.943	0.68	0.68	99	89	3.3	266	64	-7.1 139
3	10	459.0	1.0	1.000	0.77	0.77	101	90	3.7	256	62	-7.2 143
4	15	461.9	1.05	1.025	0.81	0.81	103	90	3.9	266	60	-7.5 144
5	20	464.5	1.05	1.025	0.81	0.81	104	92	4.0	262	59	-7.5 145
6	25	467.4	1.15	1.072	0.89	0.89	105	93	4.2	257	58	-7.5 145
	30	470.3										

1.00°F $\Delta H = 0.761$ $\text{avg. Tm} = 556.3$ $\text{avg. P} = 23.37^{\circ}\text{F}$

12.01°F $\Delta H = 0.771$ $\text{avg. Tm} = 554.5^{\circ}\text{R}$ $\text{avg. P} = 23.42^{\circ}\text{F}$ 589.96°R

RUN NUMBER 88-05-S-P

DATE

SAMPLING LOCATION R-15 RA-24B East

FILTER NUMBER

ASSUMED MOISTURE 15 % PROBE TIP DIAMETER in.

BAROMETRIC PRESSURE 23.95 in. Hg PROBE LENGTH ft.

INITIAL LEAK CHECK cfm @ in. Hg FINAL LEAK CHECK .004 cfm @ 6.0 in. Hg

Start: 16:06 / 16:43 Finish 17:13 RA-24B East

Pt.	Min.	Dry Gas Meter Ft ³	Pitot		Orifice ΔH in. H ₂ O		Dry Gas Temp.	Pump Vac. in. Hg	Sample Box Temp.	Imp. Temp.	Stack Press. in. Hg	Stack Temp.
			P	√P	Desired	Actual						
451												
10	0	430.3	0.68	0.825	0.52	0.52	99	92	3.4	272	57	-8.2
25	5	433.0	0.60	0.774	0.46	0.46	101	94	3.2	277	57	-8.4
30	10	435.2	0.40	0.632	0.31	0.31	100	94	3.0	225	59	-8.7
45	15	437.0	1.05	1.025	2.51	0.91	104	94	4.2	376	57	-9.3
50	20	439.7	1.1	1.049	0.95	0.95	105	94	4.5	267	58	-8.3
62	25	442.7	1.1	1.049	0.85	0.85	105	94	4.6	261	59	-8.5
70	30	445.5										
452												
10	0	445.5	1.1	1.049	0.85	0.85	99	93	4.8	265	57	-8.4
25	5	448.4	1.1	1.049	0.95	0.95	103	94	4.9	262	55	-8.5
30	10	451.3	1.1	1.049	0.85	0.85	103	94	5.0	271	52	-8.6
45	15	454.2	1.15	1.072	0.89	0.89	104	94	5.2	257	52	-8.6
50	20	457.2	1.15	1.072	0.89	0.89	104	94	5.5	250	52	-8.6
62	25	460.1	1.15	1.072	0.99	0.99	103	93	5.8	266	52	-8.6
70	30	463.0	82									

M2, 782

1376
1/4 0.9811.718
11.714

avg. VP (0.970) avg ΔH = 0.752

2354
98.1°F
58.1°FP₃ = 23.3246 58.9°F1548
129°F

TEST NO. 88-05-S-P

DATE 05-19-88

VELOCITY AND VOLUME DETERMINATION

DRY GAS VOLUME

$V_{mstd} = (17.71 \text{ deg R/in. Hg}) * V_m * (P_{bar} + \Delta H / 13.6) / T_m$

Where V_{mstd} =Volume (ft³) of gas sample at 70F and 29.92 in. Hg

V_m =Volume (ft³) of gas at meter conditions

T_m =Average dry gas meter temperature (R)

P_{bar} =Barometric pressure (in. Hg)

ΔH =Pressure drop across orifice (in. WG)

$$V_{mstd} = 17.71 * 68.27 * (23.95 + 0.761 / 13.6) / 556.3 = 52.177 \text{ ft}^3$$

VOLUME OF WATER VAPOR

$V_{wstd} = 0.0474 \text{ ft}^3/\text{ml} * V_{lc}$

Where V_{wstd} =Volume (ft³) of water vapor

V_{lc} =Total volume of water collected (ml)

$$V_{wstd} = 0.0474 * 197.4 = 9.357 \text{ ft}^3$$

MOISTURE CONTENT

$B_{wo} = V_{wstd} * 100 / (V_{wstd} + V_{mstd})$

Where B_{wo} =Percent moisture

$$B_{wo} = 9.36 * 100 / (9.36 + 52.18) = 15.206 \text{ percent}$$

CONCENTRATION

$C_s' = (15.43 \text{ grains/gm}) * M_n / (V_{mstd} + V_{wstd})$

Where C_s' =Concentration (grains/scf)

M_n =Total particulate collected (gm)

$$C_s' = 15.43 * 0.2326 / (52.18 + 9.36) = 0.0583 \text{ grains/scf}$$

STACK VELOCITY

Where V =Stack velocity (ft/sec)

T_s =Stack absolute temperature (R)

ΔP =Average pitot reading (in. WG)

M_w =Molecular wt. of stack gas (lb/lb mole)

K_p =Pitot tube coefficient

$$M_w = 0.18 * 15.21 + 0.44 * 1.78 + 0.32 * 11.36 + 0.28 * 71.65 = 27.219 \text{ lb/mole}$$

$$RA-24A \quad V = 0.84 * 85.48 * 1.001 * \text{SQR}(589.9 / (27.22 * 23.37)) = 69.215 \text{ ft/sec}$$

$$RA-24B \quad V = 0.84 * 85.48 * 0.976 * \text{SQR}(589.0 / (27.22 * 23.37)) = 67.435 \text{ ft/sec}$$

STACK VOLUME

$ACFM = V * A * 60 \quad \text{AND} \quad SCFM = ACFM * 530 * P_s / (T_s * 29.92)$

Where ACFM=Actual cubic Ft per minute at stack conditions

A =Stack area (ft²)

SCFM=Standard cubic ft. per min. (29.92 in. Hg & 530 R)

$$RA-24A \quad ACFM = 69.22 * 7.069 * 60 = 29357 \text{ acfm}$$

$$RA-24B \quad ACFM = 67.44 * 7.069 * 60 = 28602 \text{ acfm}$$

$$RA-24A \quad SCFM = 29357 * 530 * 23.37 / (589.9 * 29.92) = 20602 \text{ scfm}$$

$$RA-24B \quad SCFM = 28602 * 530 * 23.37 / (589.0 * 29.92) = 20103 \text{ scfm}$$

CALCULATED DUST LOAD

$lb/\text{hr} = C_s' * SCFM * 60 / 7000 \text{ grains/lb}$

$$\text{DUST LOAD} = 0.0583 * 40705 * 60 / 7000 = 20.35 \text{ Lb/Hr}$$

ISOKINETIC RATE

$I = 101.2268 \%$

3

LABORATORY DATACompany FMC Wy. Corp.
Sampling Location RA-24 A+BRun No.: 88-05-S-P
Date: 05-18-88MOISTURE COLLECTED

		Water Weight/Volume Gain GM/ML
IMPIINGER 1	Final Weight/Volume <u>664.5</u> Initial Weight/Volume <u>506.9</u> Increase <u>157.6</u>	<u>157.6</u>
IMPIINGER 2	Final Weight/Volume <u>541.7</u> Initial Weight/Volume <u>518.5</u> Increase <u>23.2</u>	<u>23.2</u>
IMPIINGER 3	Final Weight/Volume <u>439.7</u> Initial Weight/Volume <u>436.8</u> Increase <u>2.9</u>	<u>2.9</u>
IMPIINGER 4	Final Weight/Volume <u>712.7</u> Initial Weight/Volume <u>699.0</u> Increase <u>13.7</u>	<u>13.7</u>
	TOTAL MOISTURE CATCH <u>197.4</u>	

PARTICULATE COLLECTED

3-S "sample"

FRONT-HALF ANALYSIS (Nozzle, Probe, Cyclone, Filter Front-Half)

75.0318
75.0213 + are
.0105

Filter & Particulates	<u>0.7553</u>
Filter Tare Weight	<u>0.5336</u> + are
Particulate	<u>0.2216</u>
Washings	<u>0.6105</u>
Particulate Catch	<u>0.2321</u>
Acetone Blank	<u>0.0013</u>
TOTAL FRONT CATCH	<u>0.2308</u>

3-BH BACK-HALF ANALYSIS (Impingers, Filter Back-Half)

3-B "Blank"

73.3049
73.3036 + are
.0013

Extractable Weight	<u>74.4380</u>
Boil Down Weight	<u>74.4362</u> + are
Impinger Catch	<u>0.0018</u>
Water Blank	
TOTAL BACK CATCH	<u>0.0018</u>
TOTAL TRAIN CATCH	<u>0.2326</u>

Section A-2, Stack Information
And Scrubber Modifications

- Drawing showing location of sample ports and number of points per traverse (Figure 1)
- Drawing showing modifications made to internals of scrubbers (Figure 2)
- Brief discussion of modifications made to scrubbers

FIGURE 1

FMC WYOMING CORPORATION
CHEMICAL PRODUCTS GROUP
BOX 872
GREEN RIVER, WYOMING 82935
(307) 875-2580

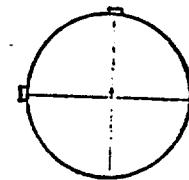
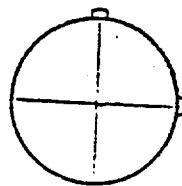
RA-24 A&B

SCRUBBER

SAMPLE
PORTS

24.3' (B)

$$\frac{B}{d} = 8.1$$

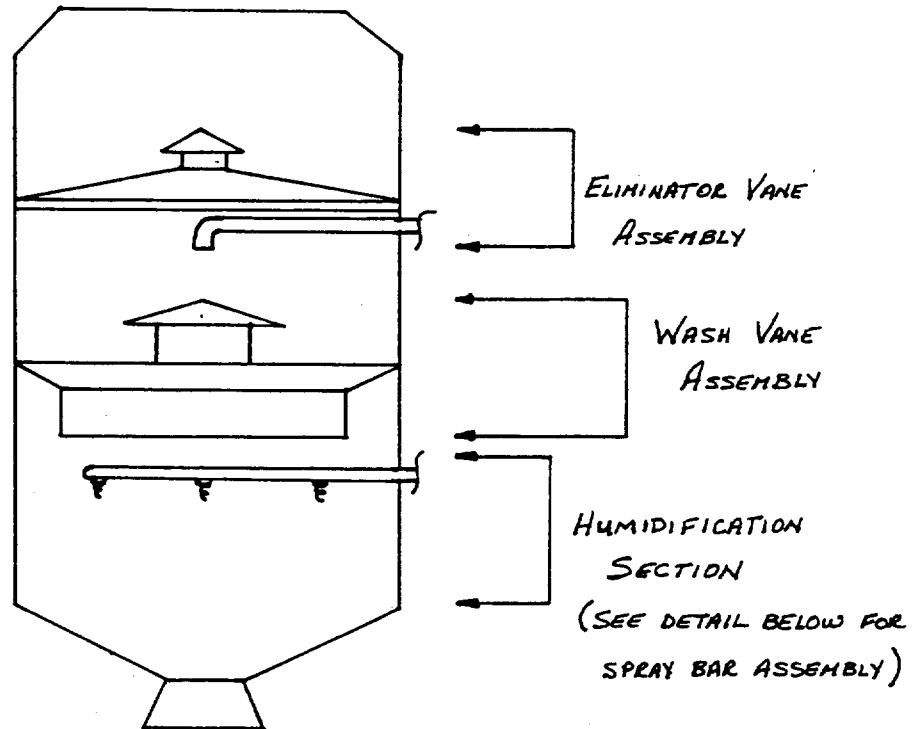


0
+3'
(d)

7.5' (A)

FAN

RA-24A

RA-24B


NO. OF POINTS PER TRAVERSE = 12
NO. OF POINTS PER DIAMETER = 6
NO. OF DIAMETERS PER RUN = 4
SAMPLE TIME PER POINT = 5 MINUTES

TRAVERSE POINTS ON EACH DIAMETER

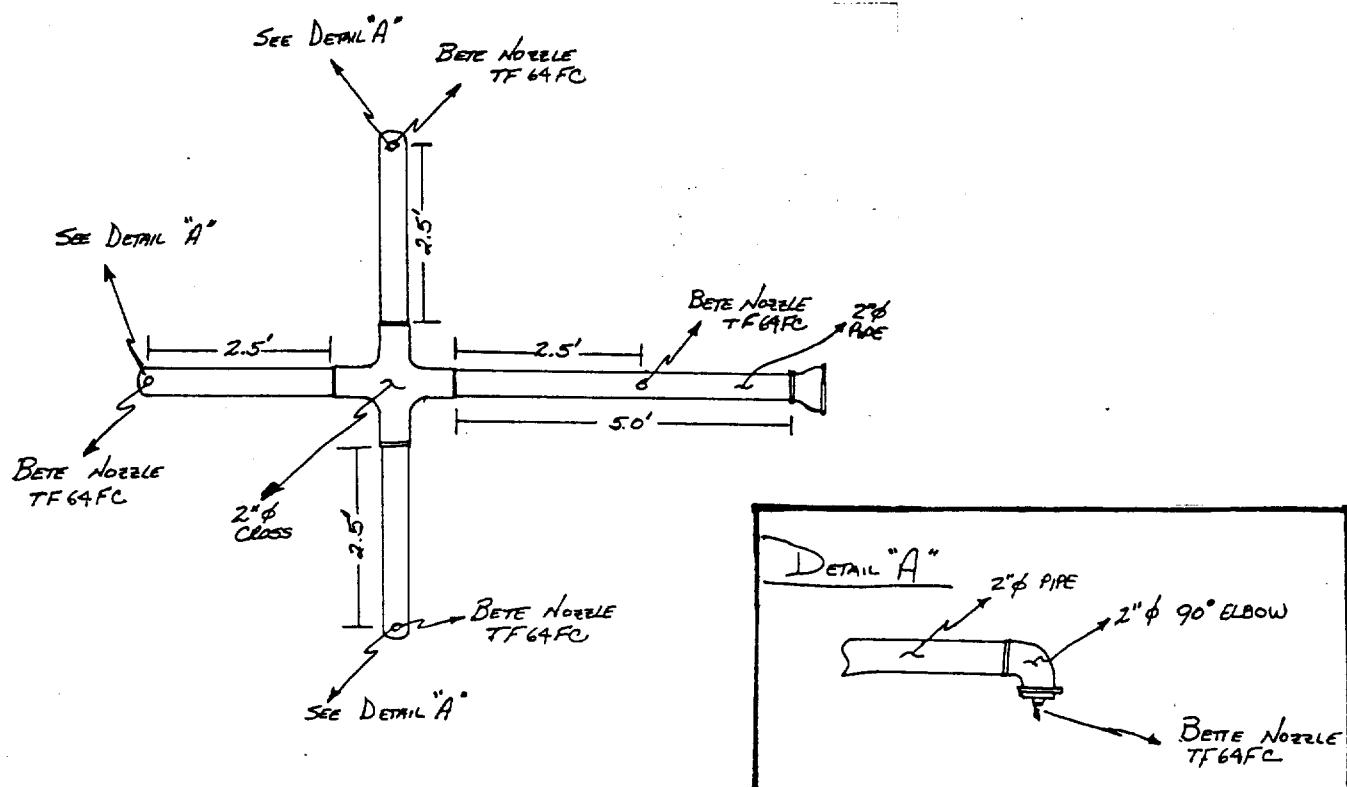

	% OF DIAMETER	DISTANCE FROM INSIDE WALL (IN.)	DISTANCE FROM COUPLING (IN.)
1	4.4	1.58	4.58
2	14.7	5.29	8.29
3	29.5	10.62	13.62
4	70.5	25.38	22.38
5	85.3	30.71	33.71
6	95.6	34.42	37.42

FIGURE 2

MODIFICATIONS MADE TO RA24A&B
DUCON MULTIVANE SCRUBBERS

DETAIL OF SPRAY BAR ASSEMBLY

DISCUSSIONS OF MODIFICATIONS
MADE TO SCRUBBERS
SERVICING SOURCE RA-24 A&B

The RA-24 A&B Compliance Schedule, submitted to the Air Quality Division under cover letter dated November 5, 1988, consisted of two main sections: A Modification Section and A Replacement Section. Under the Modification Section, several modifications were listed that had the potential when implemented, of reducing the emissions from this source. Listed below is a discussion of the modifications made and their resultant impact of reducing the emissions from this unit:

Nozzles - Humidification Section

The original blueprint of the scrubber's internals showed a manifold system much like the one shown in Figure 2. In addition, this print also showed the nozzles in this area as being only one-half inch in diameter (Bete Nozzle No. TF28FC). Through the years of operation, plugging of these nozzles was a problem. Therefore, this manifold/small-nozzle arrangement was replaced by one large Swirl Jet Nozzle. However, during the studies to reduce the emissions from this unit, the water coverage in the Humidification Section was found to be inadequate. Therefore, a decision was made to replace this single nozzle with a manifold system shown in the original print. In addition, larger Bete Nozzles (No. TF64FC), having a diameter of one-and-a-half inches were used. It was felt that these larger nozzles would reduce the chances of plugging.

It was also determined that four nozzles in this area would supply better water coverage of the cross-sectional area of the scrubber and thereby increase the incoming air/water contact. Telephone discussions with Ducon personnel (the manufacturer of the scrubbers) indicated that optimum air/water contact in this area (the Humidification Section) was imperative to properly cool the hot incoming gasses, resulting in optimum scrubber performance. The manifold design and nozzle placements can be seen in Figure 2. To further prevent plugging of these nozzles, a Lakos Separator was also installed in the water line leading to the Humidification Section of both scrubbers.

Lakos Separator

Throughout the attempts to reduce the emissions on this unit, it was noted that the spray nozzles had a tendency, over time, to plug with extraneous material. This material consisted mainly of scale from the piping. As a result a Lakos Separator, Model No. LL-3008, was installed on the water line feeding the Humidification Section of the scrubbers. Plugging in the upper or washing section, was not a problem as the flow is through an unrestricted, two-inch open-end pipe. Operation of the scrubbers with the Lakos in place showed the unit to be successful in removing the scale and other extraneous materials which plugged the nozzles.

Burner Modification/Repair

During the work performed to reduce the emissions from Source RA-24 A&B scrubbers, it was noted that the throat on the burner in this calcining unit had been burned away. In essence, this gave a very bushy-type flame pattern which reduced efficient heat transfer in this unit. Past experience has shown that a situation such as this can result in "overfiring" on the feed-end of the calciner to get appropriate calcination temperatures toward the discharge end of the calciner. This overfiring situation can cause excessive particle degradation resulting in excessive amounts of fines being generated, which in turn can cause an overload situation in the emission control system. The burner throat was repaired and the flame pattern returned to normal.

Dandy
De:

MEMORANDUM

TO: FMC Soda Ash Plant Compliance File

THROUGH: Chuck Collins, Air Quality Administrator
Bernie Dailey, Air Quality Supervisor

FROM: Lee Gribovicz, District Air Quality Engineer *LS*

SUBJECT: Review of RA-24 Retest

DATED: June 6, 1988

Summary

FMC has completed testing on RA-24 A&B twin exhaust scrubbers and results show dramatic improvement over previous testing. Results show an average total emission rate from the twin stacks of 24.2 pph (back half included) compared to an allowable of 45.0 pph. This result is down 45% from the tested value of 44.4 pph in September, 1987. Modifications included redesigning the internal spray system of the scrubbers, installing a cyclone on the scrubber liquor recirculation lines to remove scale and keep the spray nozzles from plugging, and rebuilding the calciners burner to reduce the generation of fines and reduce the load to the scrubber. These tests should be accepted for satisfying NOV #1908-88.

Discussion

As documented in past file correspondence, this sesqui plant calciner exhaust was suspected of marginal compliance with particulate emission limits due to a history of high opacity readings. The Division asked FMC to test this source to confirm its emission status. This testing was conducted in September, 1987 and showed emissions at 99% of the allowable rate. Although mass rate compliance was demonstrated, the Division obtained opacity readings of 49% and 52% on the twin exhaust stacks off this calciner, providing the basis for issuance of an NOV. NOV and Order #1908-88 required a plan for reducing opacity levels and FMC's response provided a two tiered plan of correction. First, they proposed a period of several months to try to adjust the existing twin Ducon scrubbers to improve their performance, and if that didn't bring the source back into compliance by June 1, 1988, then they would proceed with replacement of the scrubbers.

FMC made modifications to the scrubber and calciner, and felt they had accomplished their goal of returning the unit to compliance, so the week of May 16, 1988 they completed retesting on RA-24. I was on plant May 17-18th to observe portions of the work as described by my memo of May 24, 1988. FMC submitted the test report under a cover letter, also dated May 24th. The test report Section A-2 contains drawings of the scrubber internal components and a description of the modifications made to the units. Basically, FMC returned sprays to original design from the configuration that had evolved over the years by "seat-of-the-pants" design, and took steps to eliminate the nozzle plugging which had led to these "coffee time engineering" changes.

I have reviewed this test report and copies of my review work sheets are attached to this memo. The table below summarizes the test results:

	<u>Test 1</u>	<u>Test 2</u>	<u>Test 3</u>	<u>Average</u>
Maximum Process Rate (TPH)	57	57	57	57
Tested Process Rate (TPH)	52.1	54.2	52.1	52.8
Allowable Emission Rate (pph)	45.0	45.0	45.0	45.0
Tested Emission Rate (pph)	23.89	28.47	20.26	24.21

As can be noted, the source tested at 54% of its allowable rate, while the unit operated at about 93% of its effective maximum production rate. Past records have listed the design throughput for this calciner at 70 TPH, but as discussed in the May 24th test observation memo, the actual operational maximum is closer to the stated 57 TPH.

I was not on plant when the reported testing took place. As noted in the test observation memo and in the test report discussion, FMC found plugging problems in the precleaner cyclones after they had completed testing which I observed, and they felt that these first tests were not representative of actual emissions. From looking at the calciner gas usage chart and operators logs accompanying the report, it appears that process conditions were well documented and relatively stable. FMC has a very experienced and professional test crew, thus I have no concerns regarding FMC's sampling technique and procedures. I thus find that the values should be representative of normal emissions from this source and are an acceptable demonstration of compliance.

As stated earlier, although the September, 1987 testing showed marginal compliance (99% of allowable), the NOV was issued based on high opacity readings taken during the testing. The dates I was on plant, May 17th and 18th, the sky was continually heavily overcast, with occasional rain. Because of the densely spaced location of steam plumes from adjacent wet scrubbers in this sesqui plant area and because of the factor of other plant equipment interfering with the view of these stacks, opacity reading on this source is difficult under the best conditions. Thus I was unable to obtain any opacity readings while I was on plant. Because particulate emissions have been reduced so significantly (almost half), I am confident that the opacity of these stacks has dropped roughly proportionately, thus I am satisfied that the concerns of the NOV have been met. I recommend that the Division accept these tests as proof of compliance and notify FMC of this acceptance so that they do not have to pursue the replacement portion of their compliance plan.

LG/jw

TSP
STACK EMISSION REVIEW

COMPANY JMC LOCATION Green River
 TESTING FIRM JMC Env. Dept. TESTS CONDUCTED BY Ted Brown
Lynn Lee
Keith Morris
 DATE TESTED 5/19/88
 TEST OBSERVED BY not observed
 TEST EVALUATED BY JH

STACK DATA

Stack ht (ft) _____
 Stack dia (ft) two stacks; each 3 ft. diameter
 Process venting through stack RA-24A & RA-24B

TRAVERSE POINTS

Nozzle diameter: Test 1 0.18" Test 2 _____ Test 3 _____
 Location of sampling ports 24.3' (8.1 dia downstream); 7.5' (6.5 dia upstream)
 Number of traverse points per test: 12 points Test 1 _____ Test 3 _____
24 points Test 2 _____
 Do sampling points follow EPA guidelines? Yes 15 No _____

Comments:

EMISSIONS

	Test 1	Test 2	Test 3
Process wt rate (ton/hr)	<u>52.1</u>	<u>54.2</u>	<u>52.1</u> <u>52.8 TPH AVG</u>
Allowable emission (lb/hr)	<u>45.0</u> <u>pph</u>	<u>Section 25 limit</u>	<u>~57 TPH</u>
Measured emission (lb/hr)	<u>23.89</u>	<u>28.47</u>	<u>20.26</u> <u>[24.21 AVG]</u>
% Isokinetic	<u>104%</u>	<u>100%</u>	<u>101%</u>

*TO TPH Rating
maximum
but
actual production
limit*

Comments and recommendations:

*Test Was Run @ appx 93% of the actual production rate limit
for this unit.*

Emissions are 54% of allowable — ∴ accept test 6/2/88

*Total
Test*

$$P_{std} = 29.92 \text{ in Hg}$$

$$T_{std} = 528^{\circ}\text{R}$$

		Test 1	Test 2	Test 3
P_{bar}	= barometric pressure at site (in Hg)	<u>23.95</u>	—	—
P_s	= absolute stack gas pressure (in Hg)	<u>23.36</u>	—	<u>23.37</u>
T_s	= absolute average stack gas temp. ($^{\circ}\text{R}$)	<u>605.3</u>	<u>598.9</u>	<u>594.4</u>
T_m	= absolute average dry gas meter temp. ($^{\circ}\text{R}$)	<u>537.1</u>	<u>552.1</u>	<u>556.3</u>
V_{ic}	= total volume of water collected (ml)	<u>205.5</u>	<u>204.7</u>	<u>197.4</u>
V_m	= volume of gas through dry gas meter (ft^3)	<u>67.876</u>	<u>69.913</u>	<u>68.273</u>
ΔH	= average pressure drop across orifice (in H_2O)	<u>0.778</u>	<u>0.812</u>	<u>0.761</u>
C_p	= pitot tube coefficient	<u>0.84</u>	—	—
$(\sqrt{\Delta P})_{ave}$	= average velocity head of stack gas (in H_2O)	<u>0.997</u>	<u>1.020</u>	<u>0.989</u>
A_s	= cross-sectional area of stack (ft^2)	<u>14.137</u>	—	—
M_n	= total amount of particulate collected (g)	<u>0.2831</u>	<u>0.3246</u>	<u>0.2326</u>
θ	= total sampling time (min.)	<u>120</u>	—	—
A_n	= cross-sectional area of nozzle (ft^2)	<u>1.767×10^{-4}</u>	—	—

ORSAT ANALYSIS

	Test 1	Test 2	Test 3
% CO_2	<u>2.2</u>	<u>2.4</u>	<u>2.1</u>
% O_2	<u>12.6</u>	<u>13.1</u>	<u>13.4</u>
% CO	<u>0</u>	—	—
% N_2	<u>85.8</u>	<u>84.5</u>	—

CALCULATIONS

Total
Test

1. $V_{w \text{ std}}$ = volume of water vapor in gas @ STP (ft³)

$$V_{w \text{ std}} = 0.0474 \text{ ft}^3/\text{ml} \cdot V_{ic}$$

$$V_{w \text{ std}} = \underline{9.74}, \underline{9.70}, \underline{9.36} \text{ ft}^3$$

2. $V_{m \text{ std}}$ = volume of gas sample through dry gas meter @ STP (ft³)

$$V_{m \text{ std}} = \left(17.65 \frac{\text{°R}}{\text{in Hg}} \right) V_m \left(\frac{P_{bar} + H}{T_m} \right)$$

$$V_{m \text{ std}} = \underline{53.55}, \underline{52.90}, \underline{52.00} \text{ ft}^3$$

3. B_{wo} = proportion by volume of water vapor in gas stream (dimensionless)

$$B_{wo} = \frac{V_{w \text{ std}}}{V_{w \text{ std}} + V_{m \text{ std}}}$$

$$B_{wo} = \underline{0.15}, \underline{0.16}, \underline{0.15}$$

4. Molecular weight (lb/lb mole)

$$M_d = 0.44 (\% \text{ CO}_2) + .32 (\% \text{ O}_2) + .28 (\% \text{ N}_2 + \% \text{ CO})$$

$$M_d = \underline{28.86}, \underline{28.91}, \underline{28.87} \text{ lb/lb mole}$$

$$M_s = M_d (1 - B_{wo}) + 18 B_{wo}$$

$$M_s = \underline{27.19}, \underline{27.22}, \underline{27.21} \text{ lb/lb mole}$$

5. V_s = stack gas velocity (ft/sec)

$$V_s = 85.48 C_p (\sqrt{\Delta p})_{ave} \sqrt{\frac{T_s}{P_s M_s}}$$

$$V_s = \underline{69.81}, \underline{71.08}, \underline{68.65} \text{ ft/sec}$$

6. Q_s = volumetric flow rate, dry basis, @ STP (ft³/min)

$$Q_s = 60 (1 - B_{wo}) V_s \cdot A_s \left(\frac{520}{T_s} \right) \left(\frac{P_s}{29.92} \right)$$

$$Q_s = \underline{34,161}, \underline{35,069}, \underline{34,242} \text{ ft}^3 \text{ min}$$

$$Q_s = \underline{59,284}, \underline{60,294}, \underline{58,233}$$

$$Q_s = \underline{59,270}$$

PARTICULATE
CALCULATIONS (CONTINUED)

Total
Rest

7. C_s = concentration (lb/ft^3)

$$C_s = 2.205 \times 10^{-3} \frac{M_n}{V_m \text{ std}}$$

$$C_s = \underline{1.17 \times 10^{-5}}, \underline{1.35 \times 10^{-5}}, \underline{0.97 \times 10^{-5}} \text{ lb/ft}^3$$

8. E = emission rate lb/hr

$$E = C_s \cdot Q_s \cdot 60$$

$$E = \underline{23.89}, \underline{28.47}, \underline{20.26} \text{ lb/hr}$$

9. % Isokinetic

$$I = 1.667 T_s \left(0.00267 V_{ic} + \frac{V_m}{T_m} [P_{bar} + \frac{\Delta H}{13.6}] \right)$$

$$\Theta V_s P_s A_n$$

$$I = \underline{104.41}, \underline{100.47}, \underline{101.15} \%$$

TSP
DATA SHEET

RA-24A
ONLY

P_{std} = 29.92 in Hg

T_{std} = 528°R

		Test 1	Test 2	Test 3
P_{bar}	= barometric pressure at site (in Hg)	<u>23.95</u>	—	→
P_s	= absolute stack gas pressure (in Hg)	<u>23.40</u>	<u>23.40</u>	<u>23.42</u>
T_s	= absolute average stack gas temp. (°R)	<u>610.8</u>	<u>604.5</u>	<u>589.9</u>
T_m	= absolute average dry gas meter temp. (°R)	<u>528.6</u>	<u>550.5</u>	<u>554.5</u>
V_{ic}	= total volume of water collected (ml)	—	—	—
V_m	= volume of gas through dry gas meter (ft^3)	<u>34.665</u>	<u>34.533</u>	<u>34.216</u>
ΔH	= average pressure drop across orifice (in H_2O)	<u>0.833</u>	<u>0.831</u>	<u>0.777</u>
C_p	= pitot tube coefficient	<u>0.84</u>	—	→
$(\sqrt{\Delta P})_{ave}$	= average velocity head of stack gas (in H_2O)	<u>1.038</u>	<u>1.035</u>	<u>1.002</u>
A_s	= cross-sectional area of stack (ft^2)	<u>7.069</u>	—	→
M_n	= total amount of particulate collected (g)	—	—	—
θ	= total sampling time (min.)	<u>60</u>	—	→
A_n	= cross-sectional area of nozzle (ft^2)	<u>1.767×10^{-4}</u>	—	→

ORSAT ANALYSIS

	Test 1	Test 2	Test 3
% CO_2	<u>2.2</u>	<u>2.4</u>	<u>2.1</u>
% O_2	<u>12.6</u>	<u>13.1</u>	<u>13.4</u>
% CO	<u>0</u>	<u>0</u>	<u>0</u>
% N_2	<u>85.2</u>	<u>84.5</u>	<u>84.5</u>

RA-24 A

CALCULATIONS

ONLY

1. $V_{w \text{ std}}$ = volume of water vapor in gas @ STP (ft³)

$$V_{w \text{ std}} = 0.0474 \text{ ft}^3/\text{ml} \cdot V_{ic}$$

$$V_{w \text{ std}} = \underline{\underline{\underline{}}}, \underline{\underline{\underline{}}}, \underline{\underline{\underline{}}} \text{ ft}^3$$

2. $V_{m \text{ std}}$ = volume of gas sample through dry gas meter @ STP (ft³)

$$V_{m \text{ std}} = \left(17.65 \frac{\text{°R}}{\text{in Hg}} \right) V_m \left(\frac{P_{\text{bar}} + H}{T_m} \right)$$

$$V_{m \text{ std}} = \underline{\underline{\underline{27.79}}}, \underline{\underline{\underline{26.58}}}, \underline{\underline{\underline{26.15}}} \text{ ft}^3$$

3. B_{wo} = proportion by volume of water vapor in gas stream (dimensionless)

$$B_{wo} = \frac{V_{w \text{ std}}}{V_{w \text{ std}} + V_{m \text{ std}}}$$

$$B_{wo} = \underline{\underline{\underline{0.15}}}, \underline{\underline{\underline{0.16}}}, \underline{\underline{\underline{0.15}}}$$

4. Molecular weight (lb/lb mole)

$$M_d = 0.44 (\% \text{ CO}_2) + .32 (\% \text{ O}_2) + .28 (\% \text{ N}_2 + \% \text{ CO})$$

$$M_d = \underline{\underline{\underline{28.86}}}, \underline{\underline{\underline{28.91}}}, \underline{\underline{\underline{28.87}}} \text{ lb/lb mole}$$

$$M_s = M_d (1 - B_{wo}) + 18 B_{wo}$$

$$M_s = \underline{\underline{\underline{27.19}}}, \underline{\underline{\underline{27.22}}}, \underline{\underline{\underline{27.21}}} \text{ lb/lb mole}$$

5. V_s = stack gas velocity (ft/sec)

$$V_s = 85.48 C_p (\sqrt{\Delta p})_{\text{ave}} \sqrt{\frac{T_s}{P_s M_s}}$$

$$V_s = \underline{\underline{\underline{73.03}}}, \underline{\underline{\underline{72.40}}}, \underline{\underline{\underline{69.72}}} \text{ ft/sec}$$

6. Q_s = volumetric flow rate, dry basis, @ STP (ft³/min)

$$Q_s = 60 (1 - B_{wo}) V_s \cdot A_s \left(\frac{520}{T_s} \right) \left(\frac{P_s}{29.92} \right)$$

$$Q_s = \underline{\underline{\underline{17,718}}}, \underline{\underline{\underline{17,725}}}, \underline{\underline{\underline{17,431}}} \text{ ft}^3 \text{ min}$$

$$Q_a = \underbrace{\underline{\underline{\underline{30,974}}}, \underline{\underline{\underline{30,707}}}, \underline{\underline{\underline{29,355}}}}_{\underline{\underline{\underline{70,346}}}} \quad \left. \begin{array}{l} 51\% \\ \text{of } Q_s \text{ flow} \end{array} \right]$$

TSP
DATA SHEET

RA-24 B
ONLY

$$P_{std} = 29.92 \text{ in Hg}$$

$$T_{std} = 528^\circ R$$

		Test 1	Test 2	Test 3
P_{bar}	= barometric pressure at site (in Hg)	<u>23.95</u>	—	—
P_s	= absolute stack gas pressure (in Hg)	<u>23.32</u>	—	—
T_s	= absolute average stack gas temp. ($^\circ R$)	<u>599.7</u>	<u>593.2</u>	<u>589.0</u>
T_m	= absolute average dry gas meter temp. ($^\circ R$)	<u>545.5</u>	<u>553.7</u>	<u>538.1</u>
V_{ic}	= total volume of water collected (ml)	—	—	—
V_m	= volume of gas through dry gas meter (ft^3)	<u>33.212</u>	<u>34.380</u>	<u>34.057</u>
ΔH	= average pressure drop across orifice (in H_2O)	<u>0.724</u>	<u>0.793</u>	<u>0.757</u>
C_p	= pitot tube coefficient	<u>0.84</u>	—	—
$(\sqrt{\Delta P})_{ave}$	= average velocity head of stack gas (in H_2O)	<u>0.847</u>	<u>1.006</u>	<u>0.976</u>
A_s	= cross-sectional area of stack (ft^2)	<u>7.069</u>	—	—
M_n	= total amount of particulate collected (g)	—	—	—
θ	= total sampling time (min.)	<u>60</u>	—	—
A_n	= cross-sectional area of nozzle (ft^2)	<u>1.767×10^{-4}</u>	—	—

ORSAT ANALYSIS

	Test 1	Test 2	Test 3
% CO_2	<u>2.7</u>	<u>2.4</u>	<u>2.1</u>
% O_2	<u>12.6</u>	<u>13.1</u>	<u>13.4</u>
% CO	<u>0</u>	<u>0</u>	<u>0</u>
% N_2	<u>85.2</u>	<u>84.5</u>	<u>84.5</u>

PA-74 B

ONLY

CALCULATIONS

1. $V_{w \text{ std}}$ = volume of water vapor in gas @ STP (ft³)

$$V_{w \text{ std}} = 0.0474 \text{ ft}^3/\text{ml} \cdot V_{ic}$$

$$V_{w \text{ std}} = \underline{\text{not calculated}} \text{ ft}^3$$

2. $V_{m \text{ std}}$ = volume of gas sample through dry gas meter @ STP (ft³)

$$V_{m \text{ std}} = \left(17.65 \frac{\text{°R}}{\text{in Hg}} \right) V_m \left(\frac{P_{\text{bar}} + \frac{H}{13.6}}{T_m} \right)$$

$$V_{m \text{ std}} = \underline{25.79}, \underline{26.31}, \underline{25.91} \text{ ft}^3$$

3. B_{wo} = proportion by volume of water vapor in gas stream (dimensionless)

$$B_{wo} = \frac{V_{w \text{ std}}}{V_{w \text{ std}} + V_{m \text{ std}}}$$

$$B_{wo} = \underline{0.15}, \underline{0.16}, \underline{0.15}$$

4. Molecular weight (lb/lb mole)

$$M_d = 0.44 (\% \text{ CO}_2) + .32 (\% \text{ O}_2) + .28 (\% \text{ N}_2 + \% \text{ CO})$$

$$M_d = \underline{28.86}, \underline{28.91}, \underline{28.87} \text{ lb/lb mole}$$

$$M_s = M_d (1 - B_{wo}) + 18 B_{wo}$$

$$M_s = \underline{27.19}, \underline{27.22}, \underline{27.21} \text{ lb/lb mole}$$

5. V_s = stack gas velocity (ft/sec)

$$V_s = 85.48 C_p (\sqrt{\Delta p})_{ave} \sqrt{\frac{T_s}{P_s M_s}}$$

$$V_s = \underline{68.93}, \underline{69.83}, \underline{67.51} \text{ ft/sec}$$

6. Q_s = volumetric flow rate, dry basis, @ STP (ft³/min)

$$Q_s = 60 (1 - B_{wo}) V_s \cdot A_s \left(\frac{520}{T_s} \right) \left(\frac{P_s}{29.92} \right)$$

$$Q_s = \underline{16,973}, \underline{17,362}, \underline{16,955} \text{ ft}^3 \text{ min}$$

$$Q_a = \underline{29,334}, \underline{29,617}, \underline{28,633}$$

$$29,195$$

49%
of the flow